Development of a quality assurance program for ionizing radiation secondary calibration laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaton, H.T. II; Taylor, A.R. Jr.
For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. Thismore » paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.« less
Radiation and Health Technology Laboratory Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.
2005-07-09
The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less
NASA Technical Reports Server (NTRS)
Butler, James J.; Johnson, B. Carol; Rice, Joseph P.; Brown, Steven W.; Barnes, Robert A.
2007-01-01
Historically, the traceability of the laboratory calibration of Earth-observing satellite instruments to a primary radiometric reference scale (SI units) is the responsibility of each instrument builder. For the NASA Earth Observing System (EOS), a program has been developed using laboratory transfer radiometers, each with its own traceability to the primary radiance scale of a national metrology laboratory, to independently validate the radiances assigned to the laboratory sources of the instrument builders. The EOS Project Science Office also developed a validation program for the measurement of onboard diffuse reflecting plaques, which are also used as radiometric standards for Earth-observing satellite instruments. Summarized results of these validation campaigns, with an emphasis on the current state-of-the-art uncertainties in laboratory radiometric standards, will be presented. Future mission uncertainty requirements, and possible enhancements to the EOS validation program to ensure that those uncertainties can be met, will be presented.
NASA Astrophysics Data System (ADS)
Roberson, P. I.; Campbell, G. W.
1984-11-01
The national laboratories are probable candidates to serve as secondary standards laboratories for the federal sector. Representatives of the major Department of Energy laboratories were polled concerning attitudes toward a secondary laboratory structure. Generally, the need for secondary laboratories was recognized and the development of such a program was encouraged. The secondary laboratories should be reviewed and inspected by the National Bureau of Standards. They should offer all of the essential, and preferably additional, calibration services in the field of radiological health protection. The selection of secondary laboratories should be based on economic and geographic criteria and/or be voluntary.
Services of the CDRH X-ray calibration laboratory and their traceability to National Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerra, F.; Heaton, H.T.
The X-ray Calibration Laboratory (XCL) of the Center for Devices and Radiological Health (CDRH) provides calibration services for the Food and Drug Administration (FDA). The instruments calibrated are used by FDA and contract state inspectors to verify compliance with federal x-ray performance standards and for national surveys of x-ray trends. In order to provide traceability of measurements, the CDRH XCL is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for reference, diagnostic, and x-ray survey instrument calibrations. In addition to these accredited services, the CDRH XCL also calibrates non-invasive kVp meters in single- and three-phase x-ray beams, and thermoluminescentmore » dosimeter (TLD) chips used to measure CT beam profiles. The poster illustrates these services and shows the traceability links back to the National Standards.« less
Radiological and microwave Protection at NRL, January - December 1983
1984-06-27
reduced to background. 18 Surveys with TLD badges were made on pulsed electron beam machines in Buildings 101 and A68 throughout the year. The Gamble...calibration of radiation dosimetry systems required by the Laboratory’s radiological safety program, or by other Laboratory or Navy groups. The Section...provides consultation and assistance on dosimetry problems to the Staff, Laboratory, and Navy. The Section maintains and calibrates fixed-field radiac
Primary calibrations of radionuclide solutions and sources for the EML quality assessment program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisenne, I.M.
1993-12-31
The quality assurance procedures established for the operation of the U.S. Department of Energy`s Environmental Measurements Laboratory (DOE-EML`s) Quality Assessment Program (QAP) are essentially the same as those that are in effect for any EML program involving radiometric measurements. All these programs have at their core the use of radionuclide standards for their instrument calibration. This paper focuses on EML`s approach to the acquisition, calibration and application of a wide range of radionuclide sources that are required to meet its programmatic needs.
Laser and Optical Fiber Metrology in Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sporea, Dan; Sporea, Adelina
2008-04-15
The Romanian government established in the last five years a National Program for the improvement of country's infrastructure of metrology. The set goal was to develop and accredit testing and calibration laboratories, as well as certification bodies, according to the ISO 17025:2005 norm. Our Institute benefited from this policy, and developed a laboratory for laser and optical fibers metrology in order to provide testing and calibration services for the certification of laser-based industrial, medical and communication products. The paper will present the laboratory accredited facilities and some of the results obtained in the evaluation of irradiation effects of optical andmore » optoelectronic parts, tests run under the EU's Fusion Program.« less
NASA Technical Reports Server (NTRS)
Butler, James J.; Barnes, Robert A.
2002-01-01
The detection and study of climate change over a time frame of decades requires successive generations of satellite, airborne, and ground-based instrumentation carefully calibrated against a common radiance scale. In NASA s Earth Observing System (EOS) program, the pre-launch radiometric calibration of these instruments in the wavelength region from 400 nm to 2500 nm is accomplished using internally illuminated integrating spheres and diffuse reflectance panels illuminated by irradiance standard lamps. Since 1995, the EOS Calibration Program operating within the EOS Project Science Office (PSO) has enlisted the expertise of national standards laboratories and government and university metrology laboratories in an effort to validate the radiance scales assigned to sphere and panel radiance sources by EOS instrument calibration facilities. This state-of-the-art program has been accomplished using ultra-stable transfer radiometers independently calibrated by the above participating institutions. In ten comparisons since February 1995, the agreement between the radiance measurements of the transfer radiometers is plus or minus 1.80% at 411 nm, plus or minus 1.31% at 552.5 nm, plus or minus 1.32% at 868.0 nm, plus or minus 2.54% at 1622nm, and plus or minus 2.81% at 2200nm (sigma =1).
An Automated Thermocouple Calibration System
NASA Technical Reports Server (NTRS)
Bethea, Mark D.; Rosenthal, Bruce N.
1992-01-01
An Automated Thermocouple Calibration System (ATCS) was developed for the unattended calibration of type K thermocouples. This system operates from room temperature to 650 C and has been used for calibration of thermocouples in an eight-zone furnace system which may employ as many as 60 thermocouples simultaneously. It is highly efficient, allowing for the calibration of large numbers of thermocouples in significantly less time than required for manual calibrations. The system consists of a personal computer, a data acquisition/control unit, and a laboratory calibration furnace. The calibration furnace is a microprocessor-controlled multipurpose temperature calibrator with an accuracy of +/- 0.7 C. The accuracy of the calibration furnace is traceable to the National Institute of Standards and Technology (NIST). The computer software is menu-based to give the user flexibility and ease of use. The user needs no programming experience to operate the systems. This system was specifically developed for use in the Microgravity Materials Science Laboratory (MMSL) at the NASA LeRC.
Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooraghi, Michael
2015-09-01
The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise asmore » part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.« less
A Microcomputer-Based Data Acquisition System for Use in Undergraduate Laboratories.
ERIC Educational Resources Information Center
Johnson, Ray L.
1982-01-01
A laboratory computer system based on the Commodore PET 2001 is described including three applications for the undergraduate analytical chemistry laboratory: (1) recording a UV-visible absorption spectrum; (2) recording and use of calibration curves; and (3) recording potentiometric data. Lists of data acquisition programs described are available…
Guild, Georgia E.; Stangoulis, James C. R.
2016-01-01
Within the HarvestPlus program there are many collaborators currently using X-Ray Fluorescence (XRF) spectroscopy to measure Fe and Zn in their target crops. In India, five HarvestPlus wheat collaborators have laboratories that conduct this analysis and their throughput has increased significantly. The benefits of using XRF are its ease of use, minimal sample preparation and high throughput analysis. The lack of commercially available calibration standards has led to a need for alternative calibration arrangements for many of the instruments. Consequently, the majority of instruments have either been installed with an electronic transfer of an original grain calibration set developed by a preferred lab, or a locally supplied calibration. Unfortunately, neither of these methods has been entirely successful. The electronic transfer is unable to account for small variations between the instruments, whereas the use of a locally provided calibration set is heavily reliant on the accuracy of the reference analysis method, which is particularly difficult to achieve when analyzing low levels of micronutrient. Consequently, we have developed a calibration method that uses non-matrix matched glass disks. Here we present the validation of this method and show this calibration approach can improve the reproducibility and accuracy of whole grain wheat analysis on 5 different XRF instruments across the HarvestPlus breeding program. PMID:27375644
Bidirectional Reflectance Round-Robin in Support of the Earth Observing System Program
NASA Technical Reports Server (NTRS)
Early, E.; Barnes, P.; Johnson, B.; Butler, J.; Bruegge, C.; Biggar, S.; Spyak, P.; Pavlov, M.
1999-01-01
Laboratory measurements of the bidirectional reflectance distribution function (BRDRF) of diffuse reflectors are required to support calibration in the Earth Observing System (EOS) program of the National Aeronautics and Space Administration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY... as an unbiased third party to accredit both testing and calibration laboratories. Supplementary...
Code of Federal Regulations, 2014 CFR
2014-01-01
... AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY... as an unbiased third party to accredit both testing and calibration laboratories. Supplementary...
Code of Federal Regulations, 2013 CFR
2013-01-01
... AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY... as an unbiased third party to accredit both testing and calibration laboratories. Supplementary...
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY... as an unbiased third party to accredit both testing and calibration laboratories. Supplementary...
Code of Federal Regulations, 2012 CFR
2012-01-01
... AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY... as an unbiased third party to accredit both testing and calibration laboratories. Supplementary...
Calibration of Photon Sources for Brachytherapy
NASA Astrophysics Data System (ADS)
Rijnders, Alex
Source calibration has to be considered an essential part of the quality assurance program in a brachytherapy department. Not only it will ensure that the source strength value used for dose calculation agrees within some predetermined limits to the value stated on the source certificate, but also it will ensure traceability to international standards. At present calibration is most often still given in terms of reference air kerma rate, although calibration in terms of absorbed dose to water would be closer to the users interest. It can be expected that in a near future several standard laboratories will be able to offer this latter service, and dosimetry protocols will have to be adapted in this way. In-air measurement using ionization chambers (e.g. a Baldwin—Farmer ionization chamber for 192Ir high dose rate HDR or pulsed dose rate PDR sources) is still considered the method of choice for high energy source calibration, but because of their ease of use and reliability well type chambers are becoming more popular and are nowadays often recommended as the standard equipment. For low energy sources well type chambers are in practice the only equipment available for calibration. Care should be taken that the chamber is calibrated at the standard laboratory for the same source type and model as used in the clinic, and using the same measurement conditions and setup. Several standard laboratories have difficulties to provide these calibration facilities, especially for the low energy seed sources (125I and 103Pd). Should a user not be able to obtain properly calibrated equipment to verify the brachytherapy sources used in his department, then at least for sources that are replaced on a regular basis, a consistency check program should be set up to ensure a minimal level of quality control before these sources are used for patient treatment.
NASA Technical Reports Server (NTRS)
1976-01-01
The recommendations, procedures, and techniques are summarized which provided by the Kodak Apparatus Division to the Ames Research Center to support the Earth Resources Aircraft Program at that facility. Recommendations, procedures, and calibration data are included for sensitometry, densitometry, laboratory cleanliness, and determination of camera exposure. Additional comments are made regarding process control procedures and general laboratory operations.
2016-07-18
Research Laboratory Space Vehicles Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL -RV...Satellite Program Space Weather Sensors (1 Dec 2000 – 30 Nov 2014), AFRL -RV-PS-TR-2016-0053, Air Force Research Laboratory, Kirtland AFB, NM, Jan 2015. [2...Archive Listing (1982-2013) and File Formats Descriptions, AFRL -RV-PR-TR-2014-0174, Air Force Research Laboratory, Kirtland AFB, NM, Aug 2014. [3
NASA Astrophysics Data System (ADS)
Ryan, D. P.; Roth, G. S.
1982-04-01
Complete documentation of the 15 programs and 11 data files of the EPA Atomic Absorption Instrument Automation System is presented. The system incorporates the following major features: (1) multipoint calibration using first, second, or third degree regression or linear interpolation, (2) timely quality control assessments for spiked samples, duplicates, laboratory control standards, reagent blanks, and instrument check standards, (3) reagent blank subtraction, and (4) plotting of calibration curves and raw data peaks. The programs of this system are written in Data General Extended BASIC, Revision 4.3, as enhanced for multi-user, real-time data acquisition. They run in a Data General Nova 840 minicomputer under the operating system RDOS, Revision 6.2. There is a functional description, a symbol definitions table, a functional flowchart, a program listing, and a symbol cross reference table for each program. The structure of every data file is also detailed.
15 CFR 285.14 - Criteria for accreditation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL... for the competence of testing and calibration laboratories, including revisions from time to time. ...
15 CFR 285.14 - Criteria for accreditation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL... for the competence of testing and calibration laboratories, including revisions from time to time. ...
15 CFR 285.14 - Criteria for accreditation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL... for the competence of testing and calibration laboratories, including revisions from time to time. ...
15 CFR 285.14 - Criteria for accreditation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL... for the competence of testing and calibration laboratories, including revisions from time to time. ...
15 CFR 285.14 - Criteria for accreditation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL... for the competence of testing and calibration laboratories, including revisions from time to time. ...
Hanford radiological protection support services annual report for 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, M.; Bihl, D.E.; Fix, J.J.
1995-06-01
Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for the calendar year 1994. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program- related publications, presentations, and other staff professional activities are also described.
Hanford radiological protection support services. Annual report for 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, M.; Bihl, D.E.; Carbaugh, E.H.
1996-05-01
Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.
NASA Astrophysics Data System (ADS)
Wiandt, T. J.
2008-06-01
The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.
The Calibration of dc Voltage Standards at NIST
Field, Bruce F.
1990-01-01
This document describes the procedures used at NIST to calibrate dc voltage standards in terms of the NIST volt. Three calibration services are offered by the Electricity Division: Regular Calibration Service (RCS) of client standard cells at NIST; the Volt Transfer Program (VTP) a process to determine the difference between the NIST volt and the volt as maintained by a group of standard cells in a client laboratory; and the calibration of client solid-state dc voltage standards at NIST. The operational procedures used to compare these voltage standards to NIST voltage standards and to maintain the NIST volt via the ac Josephson effect are discussed. PMID:28179777
10 CFR 431.20 - Department of Energy recognition of nationally recognized certification programs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... requirements for the competence of calibration and testing laboratories. (4) Expertise in electric motor test... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials... to assure that basic models of electric motor continue to conform to the efficiency levels for which...
ISO/IEC 17025 laboratory accreditation of NRC Acoustical Standards Program
NASA Astrophysics Data System (ADS)
Wong, George S. K.; Wu, Lixue; Hanes, Peter; Ohm, Won-Suk
2004-05-01
Experience gained during the external accreditation of the Acoustical Standards Program at the Institute for National Measurement Standards of the National Research Council is discussed. Some highlights include the preparation of documents for calibration procedures, control documents with attention to reducing future paper work and the need to maintain documentation or paper trails to satisfy the external assessors. General recommendations will be given for laboratories that are contemplating an external audit in accordance to the requirements of ISO/IEC 17025.
Bureau of Mines method of calibrating a primary radon measuring apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holub, R.F.; Stroud, W.P.
1991-04-01
This paper reports on the Bureau of Mines method of calibrating a primary radon measuring apparatus. One requirement for accurate monitoring of radon in working environments, dwellings, and outdoors is to ensure that the measurement instrumentation is properly calibrated against a recognized standard. To achieve this goal, the U.S. Bureau of Mines Radiation Laboratory has participated since 1988 in a program to establish international radon measurement standards. Originally sponsored by the Organization for Economic Cooperation and Development (OECD), the program is also sponsored by the International Atomic Energy Agency. While the National Institute of Standards and Technology (NIST) radium solutionmore » ampules are acceptable to all participating laboratories as a primary standard, a method of transferring radon from the NIST source into The Bureau's method transfers radon from the primary solution by bubbling 3 L of air through it into a steel cylinder. After homogenizing the radon concentrations in the cylinder, eight alpha-scintillation cells are filled consecutively and measured in a standard counting system. The resulting efficiency is 81.7 {plus minus} 1.2 pct.« less
2016-10-01
ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop ...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory...Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER
The OLI Radiometric Scale Realization Round Robin Measurement Campaign
NASA Technical Reports Server (NTRS)
Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart
2011-01-01
A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.
Development of a Hampton University Program for Novel Breast Cancer Imaging and Therapy Research
2013-04-01
intracavitary brachytherapy procedures during laboratory pre-clinical imaging and dosimetry equipment testing, calibration and data processing, in collaboration... electronics and detector instrumentation development; 4) breast phantom construction and implantation; 5) laboratory pre-clinical device testing...such as the ionization chamber, diode, radiographic verification 6 films and thermoluminescent dosimeters ( TLD ) but the scintillator fiber detectors
Isotherm Sensor Calibration Program for Mars Science Laboratory Heat Shield Flight Data Analysis
NASA Technical Reports Server (NTRS)
Santos, Jose A.; Oishi, Tomo; Martinez, Ed R.
2011-01-01
Seven instrumented sensor plugs were installed on the Mars Science Laboratory heat shield in December 2008 as part of the Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) project. These sensor plugs contain four in-depth thermocouples and one Hollow aErothermal Ablation and Temperature (HEAT) sensor. The HEAT sensor follows the time progression of a 700 C isotherm through the thickness of a thermal protection system (TPS) material. The data can be used to infer char depth and, when analyzed in conjunction with the thermocouple data, the thermal gradient through the TPS material can also be determined. However, the uncertainty on the isotherm value is not well defined. To address this uncertainty, a team at NASA Ames Research Center is carrying out a HEAT sensor calibration test program. The scope of this test program is described, and initial results from experiments conducted in the laboratory to study the isotherm temperature of the HEAT sensor are presented. Data from the laboratory tests indicate an isotherm temperature of 720 C 60 C. An overview of near term arc jet testing is also given, including preliminary data from 30.48cm 30.48cm PICA panels instrumented with two MEDLI sensor plugs and tested in the NASA Ames Panel Test Facility. Forward work includes analysis of the arc jet test data, including an evaluation of the isotherm value based on the instant in time when it reaches a thermocouple depth.
The Magnetospheric Multiscale Magnetometers
NASA Technical Reports Server (NTRS)
Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.;
2014-01-01
The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.
Gate Set Tomography on a trapped ion qubit
NASA Astrophysics Data System (ADS)
Nielsen, Erik; Blume-Kohout, Robin; Gamble, John; Rundinger, Kenneth; Mizrahi, Jonathan; Sterk, Johathan; Maunz, Peter
2015-03-01
We present enhancements to gate-set tomography (GST), which is a framework in which an entire set of quantum logic gates (including preparation and measurement) can be fully characterized without need for pre-calibrated operations. Our new method, ``extended Linear GST'' (eLGST) uses fast, reliable analysis of structured long gate sequences to deliver tomographic precision at the Heisenberg limit with GST's calibration-free framework. We demonstrate this precision on a trapped-ion qubit, and show significant (orders of magnitude) advantage over both standard process tomography and randomized benchmarking. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Laboratory evaluation of Fecker and Loral optical IR PWI systems
NASA Technical Reports Server (NTRS)
Gorstein, M.; Hallock, J. N.; Houten, M.; Mcwilliams, I. G.
1971-01-01
A previous flight test of two electro-optical pilot warning indicators, using a flashing xenon strobe and silicon detectors as cooperative elements, pointed out several design deficiencies. The present laboratory evaluation program corrected these faults and calibrated the sensitivity of both systems in azimuth elevation and range. The laboratory tests were performed on an optical bench and consisted of three basic components: (1) a xenon strobe lamp whose output is monitored at the indicator detector to give pulse to pulse information on energy content at the receiver; (2) a strobe light attenuating optical system which is calibrated photometrically to provide simulated range; and (3) a positioning table on which the indicator system under study is mounted and which provides spatial location coordinates for all data points. The test results for both systems are tabulated.
Hazardous Environment Robotics
NASA Technical Reports Server (NTRS)
1996-01-01
Jet Propulsion Laboratory (JPL) developed video overlay calibration and demonstration techniques for ground-based telerobotics. Through a technology sharing agreement with JPL, Deneb Robotics added this as an option to its robotics software, TELEGRIP. The software is used for remotely operating robots in nuclear and hazardous environments in industries including automotive and medical. The option allows the operator to utilize video to calibrate 3-D computer models with the actual environment, and thus plan and optimize robot trajectories before the program is automatically generated.
Computer assisted performance tests of the Lyman Alpha Coronagraph
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Kohl, J. L.
1979-01-01
Preflight calibration and performance tests of the Lyman Alpha Coronagraph rocket instrument in the laboratory, with the experiment in its flight configuration and illumination levels near those expected during flight were successfully carried out using a pulse code modulation telemetry system simulator interfaced in real time to a PDP 11/10 computer system. Post acquisition data reduction programs developed and implemented on the same computer system aided in the interpretation of test and calibration data.
Evaluation of the CMODIS-measured radiance
NASA Astrophysics Data System (ADS)
Mao, Zhihua; Pan, Delu; Huang, Haiqing
2006-12-01
A Chinese Moderate Resolution Imaging Spectrometer (CMODIS) on "Shenzhou-3" spaceship was launched on March 25, 2002. CMODIS has 34 channels, with 30 visible and near-infrared channels and 4 infrared channels. The 30 channels are 20nm width with wavelength ranging from 403nm to 1023nm. The radiance calibration of CMODIS was finished in the laboratory measurements before it was launched and the laboratory calibration coefficients were used to calibrate the CMODIS raw data. Since none of on-board radiance absolute calibration devices including internal lamps system and calibration system which is based on solar reflectance and lunar irradiance were installed with the sensor, how about the accuracy of CMODIS-measured radiance is a key question for the remote sensing data processing and ocean applications. A new model was developed as a program to evaluate the accuracy of calibrated radiance measured by CMODIS at the top of the atmosphere (TOA). The program can compute the Rayleigh scattering radiance and aerosol scattering radiance together with the radiance component from the water-leaving radiance to deduce the total radiance at TOA under some similar observation conditions of CMODIS. Both the multiple-scattering effects and atmosphere absorbing effects are taken into account on the radiative transfer model to improve the accuracy of atmospheric scattering radiances. The model was used to deduce the spectral radiances at TOA and compared with the radiances measured by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to check the performance of the model, showing that the spectral radiances from the model with small differences from those of SeaWiFS. The spectral radiances of the model can be taken as reference values to evaluate the accuracy of CMODIS calibrated radiance. The relative differences of the two radiances are large from 16% to 300%, especially for CMODIS at the near-infrared channels with more than one time larger than those of the model. It is shown that the calibration coefficients from the laboratory measurements are not reliable and the radiance of CMODIS needs to be recalibrated before the data are used for oceanography applications. The results show that the model is effective in evaluating the CMODIS sensor and easily to be modified to evaluate other kinds of ocean color satellite sensors.
An expanded safeguards role for the DOE safeguards analytical laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.D.
The New Brunswick Laboratory (NBL) is a Government-owned, Government-operated (GOGO) laboratory, with the mission to provide and maintain a nuclear material measurements and standards laboratory. The functional responsibilities of NBL serve as a technical response to the statutory responsibility of the Department of Energy (DOE) to assure the safeguarding of nuclear materials. In the execution of its mission, NBL carries out activities in six safeguards-related programs: measurement development, measurement evaluation, measurement services, safeguards assessment, reference and calibration materials and site-specific assistance. These program activities have been implemented by NBL for many years; their relative emphases, however, have been changed recentlymore » to address the priorities defined by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP). As a consequence, NBL operations are in the ''mainstream'' of domestic safeguards activities. This expanded safeguards role for NBL is discussed in this paper.« less
NASA Astrophysics Data System (ADS)
Hueni, A.
2015-12-01
ESA's Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by a Swiss-Belgian consortium and entered its operational phase at the end of 2010 (Schaepman et al., 2015). Work on the sensor model has been carried out extensively within the framework of European Metrology Research Program as part of the Metrology for Earth Observation and Climate (MetEOC and MetEOC2). The focus has been to improve laboratory calibration procedures in order to reduce uncertainties, to establish a laboratory uncertainty budget and to upgrade the sensor model to compensate for sensor specific biases. The updated sensor model relies largely on data collected during dedicated characterisation experiments in the APEX calibration home base but includes airborne data as well where the simulation of environmental conditions in the given laboratory setup was not feasible. The additions to the model deal with artefacts caused by environmental changes and electronic features, namely the impact of ambient air pressure changes on the radiometry in combination with dichroic coatings, influences of external air temperatures and consequently instrument baffle temperatures on the radiometry, and electronic anomalies causing radiometric errors in the four shortwave infrared detector readout blocks. Many of these resolved issues might be expected to be present in other imaging spectrometers to some degree or in some variation. Consequently, the work clearly shows the difficulties of extending a laboratory-based uncertainty to data collected under in-flight conditions. The results are hence not only of interest to the calibration scientist but also to the spectroscopy end user, in particular when commercial sensor systems are used for data collection and relevant sensor characteristic information tends to be sparse. Schaepman, et al, 2015. Advanced radiometry measurements and Earth science applications with the Airborne Prism Experiment (APEX). RSE, 158, 207-219.
Computer program for calculation of oxygen uptake
NASA Technical Reports Server (NTRS)
Castle, B. L.; Castle, G.; Greenleaf, J. E.
1979-01-01
A description and operational precedures are presented for a computer program, written in Super Basic, that calculates oxygen uptake, carbon dioxide production, and related ventilation parameters. Program features include: (1) the option of entering slope and intercept values of calibration curves for the O2 and CO2 and analyzers; (2) calculation of expired water vapor pressure; and (3) the option of entering inspured O2 and CO2 concentrations. The program is easily adaptable for programmable laboratory calculators.
Relocation of the Deep Space Network Maintenance Center
NASA Technical Reports Server (NTRS)
Beutler, K. F.
1981-01-01
The Jet Propulsion Laboratory maintains a Deep Space Network (DSN) maintenance center (DMC), whose task is to engineer and manage the repair and calibration program for the electronic and mechanical equipment used in the tracking stations located at Madrid, Spain, and Canberra, Australia. The DMC also manages the Goldstone complex maintenance facility (GCMF), whose task is to repair and calibrate the Goldstone electronic and mechanical equipment. The rationale for moving the facility to Barstow, California, and the benefits derived from the move are discussed.
Bureau of Mines method of calibrating a primary radon-measuring apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holub, R.R.; Stroud, W.P.
1990-01-01
One important requirement for accurate monitoring of radon in working environments, dwellings, and outdoors is to ensure that the measurement instrumentation is properly calibrated against a recognized standard. To achieve this goal, the U.S. Department of Interior Bureau of Mines (BoM) Radiation Laboratory has participated since 1983 in a program to establish international radon measurement standards. While the National Institute of Standards and Technology (NIST) radium solution ampules are acceptable to all participating laboratories as a primary standard, a method of transferring radon from the NIST source into each laboratory's primary counting apparatus is a critical problem. The Bureau's methodmore » transfers radon from the primary solution by bubbling 3 L of air through it into a steel cylinder. After homogenizing the radon concentrations in the cylinder, eight alpha-scintillation cells are filled consecutively and measured in a standard counting system. The resulting efficiency is 81.7 + or - 1.2%.« less
Determination of $sup 241$Am in soil using an automated nuclear radiation measurement laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engstrom, D.E.; White, M.G.; Dunaway, P.B.
The recent completion of REECo's Automated Laboratory and associated software systems has provided a significant increase in capability while reducing manpower requirements. The system is designed to perform gamma spectrum analyses on the large numbers of samples required by the current Nevada Applied Ecology Group (NAEG) and Plutonium Distribution Inventory Program (PDIP) soil sampling programs while maintaining sufficient sensitivities as defined by earlier investigations of the same type. The hardware and systems are generally described in this paper, with emphasis being placed on spectrum reduction and the calibration procedures used for soil samples. (auth)
Radon intercomparisons at EML, January 1983 and February 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisenne, I.M.; George, A.C.; Keller, H.W.
1985-02-01
This report summarizes the results of two radon measurement intercomparison exercises held at the Environmental Measurements Laboratory (EML) in January 1983 and February 1984. Nineteen organizations, including five US federal facilities, one national laboratory, two state laboratories, six universities, three private sector laboratories and two non-US facilities participated in these exercises. The results indicate good agreement among the participants at /sup 222/Rn concentration levels of 50 and 80 pCi.L/sup -1/. Improvements in the EML calibration facilities, and the participation of two US laboratories in a Nuclear Energy Agency intercomparison program are also discussed. 8 references, 6 figures, 8 tables.
NASA Technical Reports Server (NTRS)
Warshawsky, I.
1982-01-01
Calibrations by four U.S. laboratories of four hot-cathode ion gauges, in the range 0.07-13 mPa, showed systematic differences among laboratories that were much larger than the expected error of any one calibration. They also suggested that any of the four gauges tested, if properly packaged and shipped, was able to serve as a transfer standard with probable error of 2%. A second comparison was made of the calibrations by two U.S. laboratories of some other gauges that had also been calibrated by the National Physical Laboratory, England. Results did not permit conclusive determination of whether differences were due to the laboratories or to changes in the gauges.
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1987-01-01
Developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data Acquisition are discussed. Topics discussed include sorption compression/mechanical expanded hybrid refrigeration, calculated 70-meter antenna performance for offset L-band, systolic arrays and stack decoding, and calibrations of Deep Space Network antennas.
2011-01-01
flow rates which were held constant from trial to trial by critical orifices, were checked with several different calibrated mass flow meters. None of...processes or products in mind”. ECBC views the ILIR program as a critical part of its efforts to ensure a high level of basic science, foster innovation in...missions. The ILIR program solicits innovative proposals from the Center’s principal investigators (PI) that correspond to ECBC’s critical core
29 CFR 1910.7 - Definition and requirements for a nationally recognized testing laboratory.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., written testing procedures, and calibration and quality control programs) to perform: (i) Testing and... test standards; or (ii) Experimental testing and examining of equipment and materials for workplace..., labeled, or accepted, the following controls or services: (i) Implements control procedures for...
Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin
2016-12-01
The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of radionuclides and cumulative and committed effective doses, based on measurements made with these instruments. This program constitutes a convenient tool for assessing intakes and doses without consulting tabulated calibration factors and dose coefficients.
Anigstein, Robert; Olsher, Richard H.; Loomis, Donald A.; Ansari, Armin
2017-01-01
The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: 60Co, 131I, 137Cs, and 192Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of radionuclides and cumulative and committed effective doses, based on measurements made with these instruments. This program constitutes a convenient tool for assessing intakes and doses without consulting tabulated calibration factors and dose coefficients. PMID:27798478
[Fundamental aspects for accrediting medical equipment calibration laboratories in Colombia].
Llamosa-Rincón, Luis E; López-Isaza, Giovanni A; Villarreal-Castro, Milton F
2010-02-01
Analysing the fundamental methodological aspects which should be considered when drawing up calibration procedure for electro-medical equipment, thereby permitting international standard-based accreditation of electro-medical metrology laboratories in Colombia. NTC-ISO-IEC 17025:2005 and GTC-51-based procedures for calibrating electro-medical equipment were implemented and then used as patterns. The mathematical model for determining the estimated uncertainty value when calibrating electro-medical equipment for accreditation by the Electrical Variable Metrology Laboratory's Electro-medical Equipment Calibration Area accredited in compliance with Superintendence of Industry and Commerce Resolution 25771 May 26th 2009 consists of two equations depending on the case; they are: E = (Ai + sigmaAi) - (Ar + sigmaAr + deltaAr1) and E = (Ai + sigmaAi) - (Ar + sigmaA + deltaAr1). The mathematical modelling implemented for measuring uncertainty in the Universidad Tecnológica de Pereira's Electrical Variable Metrology Laboratory (Electro-medical Equipment Calibration Area) will become a good guide for calibration initiated in other laboratories in Colombia and Latin-America.
7 CFR 802.1 - Qualified laboratories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... certification program having auditing capability is automatically approved by the Service. (2) Any county or... calibration is approved by the Service. The State approval may be documented by a certificate or letter. The.... (Approved by the Office of Management and Budget under control number 0580-0011) [51 FR 7052, Feb. 28, 1986...
SCALA: In situ calibration for integral field spectrographs
NASA Astrophysics Data System (ADS)
Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory
2017-11-01
Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.
Check Calibration of the NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (2014 Test Entry)
NASA Technical Reports Server (NTRS)
Johnson, Aaron; Pastor-Barsi, Christine; Arrington, E. Allen
2016-01-01
A check calibration of the 10- by 10-Foot Supersonic Wind Tunnel (SWT) was conducted in May/June 2014 using an array of five supersonic wedge probes to verify the 1999 Calibration. This check calibration was necessary following a control systems upgrade and an integrated systems test (IST). This check calibration was required to verify the tunnel flow quality was unchanged by the control systems upgrade prior to the next test customer beginning their test entry. The previous check calibration of the tunnel occurred in 2007, prior to the Mars Science Laboratory test program. Secondary objectives of this test entry included the validation of the new Cobra data acquisition system (DAS) against the current Escort DAS and the creation of statistical process control (SPC) charts through the collection of series of repeated test points at certain predetermined tunnel parameters. The SPC charts secondary objective was not completed due to schedule constraints. It is hoped that this effort will be readdressed and completed in the near future.
TweezPal - Optical tweezers analysis and calibration software
NASA Astrophysics Data System (ADS)
Osterman, Natan
2010-11-01
Optical tweezers, a powerful tool for optical trapping, micromanipulation and force transduction, have in recent years become a standard technique commonly used in many research laboratories and university courses. Knowledge about the optical force acting on a trapped object can be gained only after a calibration procedure which has to be performed (by an expert) for each type of trapped objects. In this paper we present TweezPal, a user-friendly, standalone Windows software tool for optical tweezers analysis and calibration. Using TweezPal, the procedure can be performed in a matter of minutes even by non-expert users. The calibration is based on the Brownian motion of a particle trapped in a stationary optical trap, which is being monitored using video or photodiode detection. The particle trajectory is imported into the software which instantly calculates position histogram, trapping potential, stiffness and anisotropy. Program summaryProgram title: TweezPal Catalogue identifier: AEGR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 44 891 No. of bytes in distributed program, including test data, etc.: 792 653 Distribution format: tar.gz Programming language: Borland Delphi Computer: Any PC running Microsoft Windows Operating system: Windows 95, 98, 2000, XP, Vista, 7 RAM: 12 Mbytes Classification: 3, 4.14, 18, 23 Nature of problem: Quick, robust and user-friendly calibration and analysis of optical tweezers. The optical trap is calibrated from the trajectory of a trapped particle undergoing Brownian motion in a stationary optical trap (input data) using two methods. Solution method: Elimination of the experimental drift in position data. Direct calculation of the trap stiffness from the positional variance. Calculation of 1D optical trapping potential from the positional distribution of data points. Trap stiffness calculation by fitting a parabola to the trapping potential. Presentation of X-Y positional density for close inspection of the 2D trapping potential. Calculation of the trap anisotropy. Running time: Seconds
SU-E-T-210: Surviving a Visit by the Radiological Physics Center.
Grant, W; Mcgary, J; Rosen, I; Nitsch, P; Davidson, S
2012-06-01
To demonstrate an objective approach to determining if a negative report from the Radiological Physics Center (RPC) of greater than 10% error is valid or has clinical significance. The discrepancy involved the clinical activity (mgRaEq) of Cs-137 sources, some manufactured by 3M and some by Amersham. Measurements were made in the proprietary RPC Well Counter calibrated by the MD Anderson ADCL and our Well Counter (CNMC, Model 44D) calibrated by the same laboratory as well as the University of Wisconsin ADCL. In addition, we possess an Amersham Cs-137 Check Source that had been calibrated by the UW-ADCL in 2002. All clinical sources were checked in both Well Counters on the first visit. One clinical source and the Check Source were measured in a second visit that occurred 51 days later. On the initial RPC visit, 9 of 25 sources had a minimum of an 8% discrepancy between the RPC and the Institution, with a maximum of 11%. Contributing errors included using the incorrect straw position by us, an unexplained 2.3% error in the RPC data identified 73 days post-visit, a 2% variation in Chamber Factors for our Well Counter from the two ADCL's. When we use the 2004 value of Air Kerma Strength for the Check Source to determine a Calibration Factor of the Well Counter, all sources were within 0.5% of their decayed value established in 2002. This work emphasizes the value of having simple Constancy Check systems in a Quality Assurance program as 'Accuracy' has error bars. The disagreement in calibration data between the ADCL Laboratories, which was at the 2% maximum quoted in their Calibration Reports, is a reminder that there is uncertainty in measurements. Constancy Checks allow one to sort out discrepancies and to answer challenges to the validity of your program. © 2012 American Association of Physicists in Medicine.
EML Gamma Spectrometry Data Evaluation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, Karin M.
2001-01-01
This report presents the results of the analyses for the third EML Gamma Spectrometry Data Evaluation Program (October 1999). This program assists laboratories in providing more accurate gamma spectra analysis results and provides a means for users of gamma data to assess how a laboratory performed on various types of gamma spectrometry analyses. This is accomplished through the use of synthetic gamma spectra. A calibration spectrum, a background spectrum, and three sample spectra are sent to each participant in the spectral file format requested by the laboratory. The calibration spectrum contains nuclides covering the energy range from 59.5 keV tomore » 1836 keV. The participants are told fallout and fission product nuclides could be present. The sample spectra are designed to test the ability of the software and user to properly resolve multiplets and to identify and quantify nuclides in a complicated fission product spectrum. The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Thirty-one sets of results were reported from a total of 60 laboratories who received the spectra. Six foreign laboratories participated. The percentage of the results within 1 of the expected value was 68, 33, and 46 for samples 1, 2, and 3, respectively. From all three samples, 18% of the results were more than 3 from the expected value. Eighty-three (12%) values out of a total of 682 expected results were not reported for the three samples. Approximately 30% of these false negatives were due the laboratories not reporting 144Pr in sample 2 which was present at the minimum detectable activity level. There were 53 false positives reported with 25% of these responses due to problems with background subtraction. The results show improvement in the ability of the software or user to resolve peaks separated by 1 keV. Improvement is still needed either in the analysis report produced by the software or in the review of these results by the users.« less
Corporate Functional Management Evaluation of the LLNL Radiation Safety Organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sygitowicz, L S
2008-03-20
A Corporate Assess, Improve, and Modernize review was conducted at Lawrence Livermore National Laboratory (LLNL) to evaluate the LLNL Radiation Safety Program and recommend actions to address the conditions identified in the Internal Assessment conducted July 23-25, 2007. This review confirms the findings of the Internal Assessment of the Institutional Radiation Safety Program (RSP) including the noted deficiencies and vulnerabilities to be valid. The actions recommended are a result of interviews with about 35 individuals representing senior management through the technician level. The deficiencies identified in the LLNL Internal Assessment of the Institutional Radiation Safety Program were discussed with Radiationmore » Safety personnel team leads, customers of Radiation Safety Program, DOE Livermore site office, and senior ES&H management. There are significant issues with the RSP. LLNL RSP is not an integrated, cohesive, consistently implemented program with a single authority that has the clear roll and responsibility and authority to assure radiological operations at LLNL are conducted in a safe and compliant manner. There is no institutional commitment to address the deficiencies that are identified in the internal assessment. Some of these deficiencies have been previously identified and corrective actions have not been taken or are ineffective in addressing the issues. Serious funding and staffing issues have prevented addressing previously identified issues in the Radiation Calibration Laboratory, Internal Dosimetry, Bioassay Laboratory, and the Whole Body Counter. There is a lack of technical basis documentation for the Radiation Calibration Laboratory and an inadequate QA plan that does not specify standards of work. The Radiation Safety Program lack rigor and consistency across all supported programs. The implementation of DOE Standard 1098-99 Radiological Control can be used as a tool to establish this consistency across LLNL. The establishment of a site wide ALARA Committee and administrative control levels would focus attention on improved processes. Currently LLNL issues dosimeters to a large number of employees and visitors that do not enter areas requiring dosimetry. This includes 25,000 visitor TLDs per year. Dosimeters should be issued to only those personnel who enter areas where dosimetry is required.« less
Meijer, Piet; Kynde, Karin; van den Besselaar, Antonius M H P; Van Blerk, Marjan; Woods, Timothy A L
2018-04-12
This study was designed to obtain an overview of the analytical quality of the prothrombin time, reported as international normalized ratio (INR) and to assess the variation of INR results between European laboratories, the difference between Quick-type and Owren-type methods and the effect of using local INR calibration or not. In addition, we assessed the variation in INR results obtained for a single donation in comparison with a pool of several plasmas. A set of four different lyophilized plasma samples were distributed via national EQA organizations to participating laboratories for INR measurement. Between-laboratory variation was lower in the Owren group than in the Quick group (on average: 6.7% vs. 8.1%, respectively). Differences in the mean INR value between the Owren and Quick group were relatively small (<0.20 INR). Between-laboratory variation was lower after local INR calibration (CV: 6.7% vs. 8.6%). For laboratories performing local calibration, the between-laboratory variation was quite similar for the Owren and Quick group (on average: 6.5% and 6.7%, respectively). Clinically significant differences in INR results (difference in INR>0.5) were observed between different reagents. No systematic significant differences in the between-laboratory variation for a single-plasma sample and a pooled plasma sample were observed. The comparability for laboratories using local calibration of their thromboplastin reagent is better than for laboratories not performing local calibration. Implementing local calibration is strongly recommended for the measurement of INR.
The Sixth SeaWiFS/SIMBIOS Intercalibration Round-Robin Experiment (SIRREX-6)
NASA Technical Reports Server (NTRS)
Riley, Thomas; Bailey, Sean
1998-01-01
For the sixth Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-6), NASA personnel carried the same four Satlantic in-water radiometers to nine separate laboratories and calibrated them. Two of the sensors were seven-channel radiance heads and two were seven-channel irradiance heads. The calibration and data reduction procedures used at each site followed that laboratory's normal procedures. The reference lamps normally used for the calibration of these types of instruments by the various laboratories were also used for this experiment. NASA personnel processed the data to produce calibration parameters from the various laboratories
USCEA/NIST measurement assurance programs for the radiopharmaceutical and nuclear power industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golas, D.B.
1993-12-31
In cooperation with the U.S. Council for Energy Awareness (USCEA), the National Institute of Standards and Technology (NIST) supervises and administers two measurement assurance programs for radioactivity measurement traceability. One, in existence since the mid 1970s, provides traceability to suppliers of radiochemicals and radiopharmaceuticals, dose calibrators, and nuclear pharmacy services. The second program, begun in 1987, provides traceability to the nuclear power industry for utilities, source suppliers, and service laboratories. Each program is described, and the results of measurements of samples of known, but undisclosed activity, prepared at NIST and measured by the participants are presented.
A historical perspective of the YF-12A thermal loads and structures program
NASA Technical Reports Server (NTRS)
Jenkins, Jerald M.; Quinn, Robert D.
1996-01-01
Around 1970, the Y-F-12A loads and structures efforts focused on numerous technological issues that needed defining with regard to aircraft that incorporate hot structures in the design. Laboratory structural heating test technology with infrared systems was largely created during this program. The program demonstrated the ability to duplicate the complex flight temperatures of an advanced supersonic airplane in a ground-based laboratory. The ability to heat and load an advanced operational aircraft in a laboratory at high temperatures and return it to flight status without adverse effects was demonstrated. The technology associated with measuring loads with strain gages on a hot structure was demonstrated with a thermal calibration concept. The results demonstrated that the thermal stresses were significant although the airplane was designed to reduce thermal stresses. Considerable modeling detail was required to predict the heat transfer and the corresponding structural characteristics. The overall YF-12A research effort was particularly productive, and a great deal of flight, laboratory, test and computational data were produced and cross-correlated.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mueller, James L.; Mclean, James T.; Johnson, B. Carol; Westphal, Todd L.; Cooper, John W.
1994-01-01
The results of the second Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-2), which was held at the Center for Hydro-Optics and Remote Sensing (CHORS) at San Diego State University on 14-25 Jun. 1993 are presented. SeaWiFS is an ocean color radiometer that is scheduled for launch in 1994. The SIRREXs are part of the SeaWiFS Calibration and Validation Program that includes the GSFC, CHORS, NIST, and several other laboratories. GSFC maintains the radiometric scales (spectral radiance and irradiance) for the SeaWiFS program using spectral irradiance standards lamps, which are calibrated by NIST. The purpose of each SIRREX is to assure that the radiometric scales which are realized by the laboratories who participate in the SeaWiFS Calibration and Validation Program are correct; that is, the uncertainties of the radiometric scales are such that measurements of normalized water-leaving radiance using oceanographic radiometers have uncertainties of 5%. SIRREX-1 demonstrated, from the internal consistency of the results, that the program goals would not be met without improvements to the instrumentation. The results of SIRREX-2 demonstrate that spectral irradiance scales realized using the GSFC standard irradiance lamp (F269) are consistent with the program goals, as the uncertainty of these measurements is assessed to be about 1%. However, this is not true for the spectral radiance scales, where again the internal consistency of the results is used to assess the uncertainty. This is attributed to inadequate performance and characterization of the instrumentation. For example, spatial nonuniformities, spectral features, and sensitivity to illumination configuration were observed in some of the integrating sphere sources. The results of SIRREX-2 clearly indicate the direction for future work, with the main emphasis on instrument characterization and the assessment of the measurement uncertainties so that the results may be stated in a more definitive manner.
NASA Technical Reports Server (NTRS)
Woodfill, J. R.; Thomson, F. J.
1979-01-01
The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.
DOE research and development report. Progress report, October 1980-September 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, Carleton D.
The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less
Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony
2013-01-01
The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values. PMID:24672156
First Interlaboratory Comparison on Calibration of Temperature-Controlled Enclosures in Turkey
NASA Astrophysics Data System (ADS)
Uytun, A.; Kalemci, M.
2017-11-01
The number of accredited laboratories in the field of calibration of temperature-controlled enclosures has been increasing in Turkey. One of the main criteria demonstrating the competence of a calibration laboratory is successful participation in interlaboratory comparisons. Therefore, TUBITAK UME Temperature Laboratory organized the first interlaboratory comparison on "Calibration of Temperature-Controlled Enclosures" in Turkey as a pilot laboratory between January and November, 2013. Forty accredited laboratories which provide routine calibration services to the industry in this field participated in the comparison. The standards used during the comparison was a climatic chamber for the measurements at -40 {°}C, -20 {°}C, 40 {°}C and 100 {°}C and an oven for the measurements at 200 {°}C. The protocol of the comparison was prepared considering guide EURAMET cg-20 and BS EN/IEC standards 600068-3-5 and 600068-3-11. During the comparison measurements, each participant had the liberty to choose the most convenient calibration points in terms of their accreditation scope among the values mentioned above and carried out on-site measurements at UME. The details and the results of this comparison are given in the paper. Determination of the statistical consistency of the results with the uncertainties given by the participants can be assessed by the method of En value assessment for each laboratory. En values for all measurement results based on the results of pilot and participating laboratories were calculated.
Piper, Roman K; Mozhayev, Andrey V; Murphy, Mark K; Thompson, Alan K
2017-09-01
Evaluations of neutron survey instruments, area monitors, and personal dosimeters rely on reference neutron radiations, which have evolved from the heavy reliance on (α,n) sources to a shared reliance on (α,n) and the spontaneous fission neutrons of californium-252 (Cf). Capable of producing high dose equivalent rates from an almost point source geometry, the characteristics of Cf are generally more favorable when compared to the use of (α,n) and (γ,n) sources or reactor-produced reference neutron radiations. Californium-252 is typically used in two standardized configurations: unmoderated, to yield a fission energy spectrum; or with the capsule placed within a heavy-water moderating sphere to produce a softened spectrum that is generally considered more appropriate for evaluating devices used in nuclear power plant work environments. The U.S. Department of Energy Cf Loan/Lease Program, a longtime origin of affordable Cf sources for research, testing and calibration, was terminated in 2009. Since then, high-activity sources have become increasingly cost-prohibitive for laboratories that formerly benefited from that program. Neutron generators, based on the D-T and D-D fusion reactions, have become economically competitive with Cf and are recognized internationally as important calibration and test standards. Researchers from the National Institute of Standards and Technology and the Pacific Northwest National Laboratory are jointly considering the practicality and technical challenges of implementing neutron generators as calibration standards in the U.S. This article reviews the characteristics of isotope-based neutron sources, possible isotope alternatives to Cf, and the rationale behind the increasing favor of electronically generated neutron options. The evaluation of a D-T system at PNNL has revealed characteristics that must be considered in adapting generators to the task of calibration and testing where accurate determination of a dosimetric quantity is necessary. Finally, concepts are presented for modifying the generated neutron spectra to achieve particular targeted spectra, simulating Cf or workplace environments.
Solid laboratory calibration of a nonimaging spectroradiometer.
Schaepman, M E; Dangel, S
2000-07-20
Field-based nonimaging spectroradiometers are often used in vicarious calibration experiments for airborne or spaceborne imaging spectrometers. The calibration uncertainties associated with these ground measurements contribute substantially to the overall modeling error in radiance- or reflectance-based vicarious calibration experiments. Because of limitations in the radiometric stability of compact field spectroradiometers, vicarious calibration experiments are based primarily on reflectance measurements rather than on radiance measurements. To characterize the overall uncertainty of radiance-based approaches and assess the sources of uncertainty, we carried out a full laboratory calibration. This laboratory calibration of a nonimaging spectroradiometer is based on a measurement plan targeted at achieving a =10% uncertainty calibration. The individual calibration steps include characterization of the signal-to-noise ratio, the noise equivalent signal, the dark current, the wavelength calibration, the spectral sampling interval, the nonlinearity, directional and positional effects, the spectral scattering, the field of view, the polarization, the size-of-source effects, and the temperature dependence of a particular instrument. The traceability of the radiance calibration is established to a secondary National Institute of Standards and Technology calibration standard by use of a 95% confidence interval and results in an uncertainty of less than ?7.1% for all spectroradiometer bands.
An intelligent space for mobile robot localization using a multi-camera system.
Rampinelli, Mariana; Covre, Vitor Buback; de Queiroz, Felippe Mendonça; Vassallo, Raquel Frizera; Bastos-Filho, Teodiano Freire; Mazo, Manuel
2014-08-15
This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.
An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System
Rampinelli, Mariana.; Covre, Vitor Buback.; de Queiroz, Felippe Mendonça.; Vassallo, Raquel Frizera.; Bastos-Filho, Teodiano Freire.; Mazo, Manuel.
2014-01-01
This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization. PMID:25196009
42 CFR 493.1255 - Standard: Calibration and calibration verification procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accuracy of the test system throughout the laboratory's reportable range of test results for the test system. Unless otherwise specified in this subpart, for each applicable test system the laboratory must... test system instructions, using calibration materials provided or specified, and with at least the...
VIEW OF BUILDING 126, LOOKING NORTH. BUILDING 126, THE SOURCE ...
VIEW OF BUILDING 126, LOOKING NORTH. BUILDING 126, THE SOURCE CALIBRATION LABORATORY, WAS USED TO EXPOSE AND CALIBRATE RADIATION DETECTION DEVICES, INCLUDING THERMOLUMINESCENT DOSIMETERS, WORN BY EMPLOYEES TO DETECT RADIATION EXPOSURE - Rocky Flats Plant, Source Calibration Laboratory, Between Second & Third Streets & Central & Cedar Avenues, Golden, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuehne, David Patrick; Lattin, Rebecca Renee
The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack samplingmore » system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable performance of the test instruments for the specific tests used in stack flow characterization.« less
New Brunswick Laboratory: Progress report, October 1987--September 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
NBL has been tasked by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP) to assure the application of accurate and reliable measurement technology for the safeguarding of special nuclear materials. NBL is fulfilling its mission responsibilities by identifying and addressing the measurement and measurement-related needs of the nuclear material safeguards community. These responsibilities are being addressed by activities in the following program areas: (1) reference and calibration materials, (2) measurement development, (3) measurement services, (4) measurement evaluation, (5) safeguards assessment, and (6) site-specific assistance. Highlights of each of these programs areas are provided in this summary.
Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty
NASA Astrophysics Data System (ADS)
Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.
This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.
The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March-November 2002. Volume 2
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Abel, Peter; Carder, Kendall; Chapin, Albert; Clark, Dennis; Cooper, John; Davis, Curtis; English, David; Fargion, Giulietta; Feinholz, Michael;
2003-01-01
The second SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-2) was carried out in 2002. The purpose of the SIMRIC's was to ensure a common radiometric scale among the calibration facilities that are engaged in calibrating in-situ radiometrics used for ocean color-related research and to document the calibration procedures and protocols. The SeaWIFS Transfer Radiometer (SXR-II) measured the calibration radiances at six wavelengths from 411nm to 777nm in the ten laboratories participating in the SIMRIC-2. The measured radiances were compared with the radiances expected by the laboratories. The agreement was within the combined uncertainties for all but two laboratories. Likely error sources were identified in these laboratories and corrective measures were implemented. NIST calibrations in December 2001 and January 2003 showed changes ranging from -0.6% to +0.7% for the six SXR-II channels. Two independent light sources were used to monitor changes in the SXR-II responsivity between the NIST calibrations. A 2% variation of the responsivity of channel 1 of the SXR-II was detected, and the SXR-II responsivity was corrected using the monitoring data. This report also compared directional reflectance calibrations of a Spectralon plaque by different calibration facilities
Catalog of Federal metrology and calibration capabilities: 1980 edition
NASA Astrophysics Data System (ADS)
Leedy, K. O.
1980-09-01
Federal laboratories involved in metrology and calibration are listed. Included is the name of a person to contact at each laboratory telephone number and address. The capabilities of each laboratory are indicated in a tabular listing by agency. To provide geographical distribution, the laboratories are listed by States. In addition, the laboratories are shown on a map by coded number. Other references are described.
NASA Technical Reports Server (NTRS)
Edgett, Kenneth S.; Anderson, Donald L.
1995-01-01
This paper describes an empirical method to correct TIMS (Thermal Infrared Multispectral Scanner) data for atmospheric effects by transferring calibration from a laboratory thermal emission spectrometer to the TIMS multispectral image. The method does so by comparing the laboratory spectra of samples gathered in the field with TIMS 6-point spectra for pixels at the location of field sampling sites. The transference of calibration also makes it possible to use spectra from the laboratory as endmembers in unmixing studies of TIMS data.
Construction of a 1 MeV Electron Accelerator for High Precision Beta Decay Studies
NASA Astrophysics Data System (ADS)
Longfellow, Brenden
2014-09-01
Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. Beta decay energy calibration for detectors is typically established using conversion sources. However, the calibration points from conversion sources are not evenly distributed over the beta energy spectrum and the foil backing of the conversion sources produces perturbations in the calibration spectrum. To improve this, an external, tunable electron beam coupled by a magnetic field can be used to calibrate the detector. The 1 MeV electron accelerator in development at Triangle Universities Nuclear Laboratory (TUNL) utilizes a pelletron charging system. The electron gun shoots 104 electrons per second with an energy range of 50 keV to 1 MeV and is pulsed at a 10 kHz rate with a few ns width. The magnetic field in the spectrometer is 1 T and guiding fields of 0.01 to 0.05 T for the electron gun are used to produce a range of pitch angles. This accelerator can be used to calibrate detectors evenly over its energy range and determine the detector response over a range of pitch angles. TUNL REU Program.
NASA Technical Reports Server (NTRS)
Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.
1994-01-01
Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.
Steinmetz, Josiane; Schiele, Françoise; Gueguen, René; Férard, Georges; Henny, Joseph
2007-01-01
The improvement of the consistency of gamma-glutamyltransferase (GGT) activity results among different assays after calibration with a common material was estimated. We evaluated if this harmonization could lead to reference limits common to different routine methods. Seven laboratories measured GGT activity using their own routine analytical system both according to the manufacturer's recommendation and after calibration with a multi-enzyme calibrator [value assigned by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) reference procedure]. All samples were re-measured using the IFCC reference procedure. Two groups of subjects were selected in each laboratory: a group of healthy men aged 18-25 years without long-term medication and with alcohol consumption less than 44 g/day and a group of subjects with elevated GGT activity. The day-to-day coefficients of variation were less than 2.9% in each laboratory. The means obtained in the group of healthy subjects without common calibration (range of the means 16-23 U/L) were significantly different from those obtained by the IFCC procedure in five laboratories. After calibration, the means remained significantly different from the IFCC procedure results in only one laboratory. For three calibrated methods, the slope values of linear regression vs. the IFCC procedure were not different from the value 1. The results obtained with these three methods for healthy subjects (n=117) were gathered and reference limits were calculated. These were 11-49 U/L (2.5th-97.5th percentiles). The calibration also improved the consistency of elevated results when compared to the IFCC procedure. The common calibration improved the level of consistency between different routine methods. It permitted to define common reference limits which are quite similar to those proposed by the IFCC. This approach should lead to a real benefit in terms of prevention, screening, diagnosis, therapeutic monitoring and for epidemiological studies.
Issues concerning international comparison of free-field calibrations of acoustical standards
NASA Astrophysics Data System (ADS)
Nedzelnitsky, Victor
2002-11-01
Primary free-field calibrations of laboratory standard microphones by the reciprocity method establish these microphones as reference standard devices for calibrating working standard microphones, other measuring microphones, and practical instruments such as sound level meters and personal sound exposure meters (noise dosimeters). These primary, secondary, and other calibrations are indispensable to the support of regulatory requirements, standards, and product characterization and quality control procedures important for industry, commerce, health, and safety. International Electrotechnical Commission (IEC) Technical Committee 29 Electroacoustics produces international documentary standards, including standards for primary and secondary free-field calibration and measurement procedures and their critically important application to practical instruments. This paper addresses some issues concerning calibrations, standards activities, and the international key comparison of primary free-field calibrations of IEC-type LS2 laboratory standard microphones that is being planned by the Consultative Committee for Acoustics, Ultrasound, and Vibration (CCAUV) of the International Committee for Weights and Measures (CIPM). This comparison will include free-field calibrations by the reciprocity method at participating major national metrology laboratories throughout the world.
Design, development and fabrication of a Solar Experiment Alignment Sensor (SEAS)
NASA Technical Reports Server (NTRS)
Bancroft, J. R.; Fain, M. Z.; Johnson, D. F.
1971-01-01
The design, development and testing of a laboratory SEAS (Solar Experiment Alignment Sensor) system are presented. The system is capable of overcoming traditional alignment and calibration problems to permit pointing anywhere on the solar disc to an accuracy of five arc seconds. The concept, development and laboratory testing phases of the program are discussed, and particular attention has been given to specific problems associated with selection of materials, and components. The conclusions summarize performance capability and discuss areas for further study including the effects of solar limb darkening and effects of annual variations in the apparent solar diameter.
Shahbazian, M. D.; Valsamakis, A.; Boonyaratanakornkit, J.; Cook, L.; Pang, X. L.; Preiksaitis, J. K.; Schönbrunner, E. R.; Caliendo, A. M.
2013-01-01
Commutability of quantitative reference materials has proven important for reliable and accurate results in clinical chemistry. As international reference standards and commercially produced calibration material have become available to address the variability of viral load assays, the degree to which such materials are commutable and the effect of commutability on assay concordance have been questioned. To investigate this, 60 archived clinical plasma samples, which previously tested positive for cytomegalovirus (CMV), were retested by five different laboratories, each using a different quantitative CMV PCR assay. Results from each laboratory were calibrated both with lab-specific quantitative CMV standards (“lab standards”) and with common, commercially available standards (“CMV panel”). Pairwise analyses among laboratories were performed using mean results from each clinical sample, calibrated first with lab standards and then with the CMV panel. Commutability of the CMV panel was determined based on difference plots for each laboratory pair showing plotted values of standards that were within the 95% prediction intervals for the clinical specimens. Commutability was demonstrated for 6 of 10 laboratory pairs using the CMV panel. In half of these pairs, use of the CMV panel improved quantitative agreement compared to use of lab standards. Two of four laboratory pairs for which the CMV panel was noncommutable showed reduced quantitative agreement when that panel was used as a common calibrator. Commutability of calibration material varies across different quantitative PCR methods. Use of a common, commutable quantitative standard can improve agreement across different assays; use of a noncommutable calibrator can reduce agreement among laboratories. PMID:24025907
Performance of electrolyte measurements assessed by a trueness verification program.
Ge, Menglei; Zhao, Haijian; Yan, Ying; Zhang, Tianjiao; Zeng, Jie; Zhou, Weiyan; Wang, Yufei; Meng, Qinghui; Zhang, Chuanbao
2016-08-01
In this study, we analyzed frozen sera with known commutabilities for standardization of serum electrolyte measurements in China. Fresh frozen sera were sent to 187 clinical laboratories in China for measurement of four electrolytes (sodium, potassium, calcium, and magnesium). Target values were assigned by two reference laboratories. Precision (CV), trueness (bias), and accuracy [total error (TEa)] were used to evaluate measurement performance, and the tolerance limit derived from the biological variation was used as the evaluation criterion. About half of the laboratories used a homogeneous system (same manufacturer for instrument, reagent and calibrator) for calcium and magnesium measurement, and more than 80% of laboratories used a homogeneous system for sodium and potassium measurement. More laboratories met the tolerance limit of imprecision (coefficient of variation [CVa]) than the tolerance limits of trueness (biasa) and TEa. For sodium, calcium, and magnesium, the minimal performance criterion derived from biological variation was used, and the pass rates for total error were approximately equal to the bias (<50%). For potassium, the pass rates for CV and TE were more than 90%. Compared with the non homogeneous system, the homogeneous system was superior for all three quality specifications. The use of commutable proficiency testing/external quality assessment (PT/EQA) samples with values assigned by reference methods can monitor performance and provide reliable data for improving the performance of laboratory electrolyte measurement. The homogeneous systems were superior to the non homogeneous systems, whereas accuracy of assigned values of calibrators and assay stability remained challenges.
Evaluation of Calibration Laboratories Performance
NASA Astrophysics Data System (ADS)
Filipe, Eduarda
2011-12-01
One of the main goals of interlaboratory comparisons (ILCs) is the evaluation of the laboratories performance for the routine calibrations they perform for the clients. In the frame of Accreditation of Laboratories, the national accreditation boards (NABs) in collaboration with the national metrology institutes (NMIs) organize the ILCs needed to comply with the requirements of the international accreditation organizations. In order that an ILC is a reliable tool for a laboratory to validate its best measurement capability (BMC), it is needed that the NMI (reference laboratory) provides a better traveling standard—in terms of accuracy class or uncertainty—than the laboratories BMCs. Although this is the general situation, there are cases where the NABs ask the NMIs to evaluate the performance of the accredited laboratories when calibrating industrial measuring instruments. The aim of this article is to discuss the existing approaches for the evaluation of ILCs and propose a basis for the validation of the laboratories measurement capabilities. An example is drafted with the evaluation of the results of mercury-in-glass thermometers ILC with 12 participant laboratories.
Spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Vane, Gregg; Chrien, Thomas G.; Miller, Edward A.; Reimer, John H.
1987-01-01
The laboratory spectral and radiometric calibration of the AVIRIS science data collected since 1987 is described. The instrumentation and procedures used in the calibration are discussed and the accuracy achieved in the laboratory as determined by measurement and calculation is compared with the requirements. Instrument performance factors affecting radiometry are described. The paper concludes with a discussion of future plans.
Indirect check of the stability of the reference ion chamber used for accelerator output calibration
NASA Astrophysics Data System (ADS)
Kang, Sei-Kwon; Yoon, Jai-Woong; Park, Soah; Hwang, Taejin; Cheong, Kwang-Ho; Han, Tae Jin; Kim, Haeyoung; Lee, Me-Yeon; Kim, Kyoung Ju; Bae, Hoonsik
2014-11-01
A linear accelerator's output is periodically checked by using a reference ion chamber which is also periodically calibrated at the accredited standard dosimetry laboratories. We suggest a simple procedure for checking the chamber's stability between calibrations by comparison with another ion chamber. To identify the long-term stability of chambers, we collected and assessed the dose-to-water conversion factors provided by standard laboratories for three chambers during a period of four years. To develop the chamber constancy check program, we used one Farmer-type reference ion chamber FC65-G, two ion chambers (CC13a and CC13b) and one CC01 ion chamber (IBA). Under the accelerator, each chamber was placed inside the solid phantom and irradiated; the experimental configurations were identical. To check the variation in charge collection of the reference chamber, we monitored the ratios of the FC65-G values over each chamber reading. Based on the error propagation of the two chamber ratios, we estimated the uncertainty of the output calibration from the chamber variation. The calibration factors provided for the three chambers showed 0.04 ˜ 0.12% standard deviations during four years. For procedure development, the reading ratios of FC65-G over CCxx showed very good stability; the ratios of FC65-G over CC13a, CC13b and CC01 varied less than 0.059, 0.087 and 0.248%, respectively, over five measurements. By ascribing possible uncertainties of the ratio to the reference chamber alone, we could conservatively check the stability of the reference chamber for treatment safety. An extension of the chamber calibration period was also evaluated. In conclusion, we designed a stability check procedure for the reference chamber based on a reading ratio of two chambers. This could help the user assess the chamber stability between periodic chamber calibration, and the associated patient treatment could be carried out with enhanced safety.
Preparation and validation of gross alpha/beta samples used in EML`s quality assessment program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpitta, S.C.
1997-10-01
A set of water and filter samples have been incorporated into the existing Environmental Measurements Laboratory`s (EML) Quality Assessment Program (QAP) for gross alpha/beta determinations by participating DOE laboratories. The participating laboratories are evaluated by comparing their results with the EML value. The preferred EML method for measuring water and filter samples, described in this report, uses gas flow proportional counters with 2 in. detectors. Procedures for sample preparation, quality control and instrument calibration are presented. Liquid scintillation (LS) counting is an alternative technique that is suitable for quantifying both the alpha ({sup 241}Am, {sup 230}Th and {sup 238}Pu) andmore » beta ({sup 90}Sr/{sup 90}Y) activity concentrations in the solutions used to prepare the QAP water and air filter samples. Three LS counting techniques (Cerenkov, dual dpm and full spectrum analysis) are compared. These techniques may be used to validate the activity concentrations of each component in the alpha/beta solution before the QAP samples are actually prepared.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, T.A.; Baker, D.F.; Edwards, C.L.
1993-10-01
Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos Nationalmore » Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Prinzio, Renato; Almeida, Carlos Eduardo de; Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro
In Brazil there are over 100 high dose rate (HDR) brachytherapy facilities using well-type chambers for the determination of the air kerma rate of {sup 192}Ir sources. This paper presents the methodology developed and extensively tested by the Laboratorio de Ciencias Radiologicas (LCR) and presently in use to calibrate those types of chambers. The system was initially used to calibrate six well-type chambers of brachytherapy services, and the maximum deviation of only 1.0% was observed between the calibration coefficients obtained and the ones in the calibration certificate provided by the UWADCL. In addition to its traceability to the Brazilian Nationalmore » Standards, the whole system was taken to University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) for a direct comparison and the same formalism to calculate the air kerma was used. The comparison results between the two laboratories show an agreement of 0.9% for the calibration coefficients. Three Brazilian well-type chambers were calibrated at the UWADCL, and by LCR, in Brazil, using the developed system and a clinical HDR machine. The results of the calibration of three well chambers have shown an agreement better than 1.0%. Uncertainty analyses involving the measurements made both at the UWADCL and LCR laboratories are discussed.« less
Weykamp, C W; Penders, T J; Miedema, K; Muskiet, F A; van der Slik, W
1995-01-01
We investigated the effect of calibration with lyophilized calibrators on whole-blood glycohemoglobin (glyHb) results. One hundred three laboratories, using 20 different methods, determined glyHb in two lyophilized calibrators and two whole-blood samples. For whole-blood samples with low (5%) and high (9%) glyHb percentages, respectively, calibration decreased overall interlaboratory variation (CV) from 16% to 9% and from 11% to 6% and decreased intermethod variation from 14% to 6% and from 12% to 5%. Forty-seven laboratories, using 14 different methods, determined mean glyHb percentages in self-selected groups of 10 nondiabetic volunteers each. With calibration their overall mean (2SD) was 5.0% (0.5%), very close to the 5.0% (0.3%) derived from the reference method used in the Diabetes Control and Complications Trial. In both experiments the Abbott IMx and Vision showed deviating results. We conclude that, irrespective of the analytical method used, calibration enables standardization of glyHb results, reference values, and interpretation criteria.
Variability of creatinine measurements in clinical laboratories: results from the CRIC study.
Joffe, Marshall; Hsu, Chi-yuan; Feldman, Harold I; Weir, Matthew; Landis, J R; Hamm, L Lee
2010-01-01
Estimating equations using serum creatinine (SCr) are often used to assess glomerular filtration rate (GFR). Such creatinine (Cr)-based formulae may produce biased estimates of GFR when using Cr measurements that have not been calibrated to reference laboratories. In this paper, we sought to examine the degree of this variation in Cr assays in several laboratories associated with academic medical centers affiliated with the Chronic Renal Insufficiency Cohort (CRIC) Study; to consider how best to correct for this variation, and to quantify the impact of such corrections on eligibility for participation in CRIC. Variability of Cr is of particular concern in the conduct of CRIC, a large multicenter study of subjects with chronic renal disease, because eligibility for the study depends on Cr-based assessment of GFR. A library of 5 large volume plasma specimens from apheresis patients was assembled, representing levels of plasma Cr from 0.8 to 2.4 mg/dl. Samples from this library were used for measurement of Cr at each of the 14 CRIC laboratories repetitively over time. We used graphical displays and linear regression methods to examine the variability in Cr, and used linear regression to develop calibration equations. We also examined the impact of the various calibration equations on the proportion of subjects screened as potential participants who were actually eligible for the study. There was substantial variability in Cr assays across laboratories and over time. We developed calibration equations for each laboratory; these equations varied substantially among laboratories and somewhat over time in some laboratories. The laboratory site contributed the most to variability (51% of the variance unexplained by the specimen) and variation with time accounted for another 15%. In some laboratories, calibration equations resulted in differences in eligibility for CRIC of as much as 20%. The substantial variability in SCr assays across laboratories necessitates calibration of SCr measures to a common standard. Failing to do so may substantially affect study eligibility and clinical interpretations when they are determined by Cr-based estimates of GFR. 2010 S. Karger AG, Basel.
Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture
NASA Astrophysics Data System (ADS)
Jurčević, M.; Hegeduš, H.; Golub, M.
2010-01-01
Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kegel, T.M.
Calibration laboratories are faced with the need to become accredited or registered to one or more quality standards. One requirement common to all of these standards is the need to have in place a measurement assurance program. What is a measurement assurance program? Brian Belanger, in Measurement Assurance Programs: Part 1, describes it as a {open_quotes}quality assurance program for a measurement process that quantifies the total uncertainty of the measurements (both random and systematic components of error) with respect to national or designated standards and demonstrates that the total uncertainty is sufficiently small to meet the user`s requirements.{close_quotes} Rolf Schumachermore » is more specific in Measurement Assurance in Your Own Laboratory. He states, {open_quotes}Measurement assurance is the application of broad quality control principles to measurements of calibrations.{close_quotes} Here, the focus is on one important part of any measurement assurance program: implementation of statistical process control (SPC). Paraphrasing Juran`s Quality Control Handbook, a process is in statistical control if the only observed variations are those that can be attributed to random causes. Conversely, a process that exhibits variations due to assignable causes is not in a state of statistical control. Finally, Carrol Croarkin states, {open_quotes}In the measurement assurance context the measurement algorithm including instrumentation, reference standards and operator interactions is the process that is to be controlled, and its direct product is the measurement per se. The measurements are assumed to be valid if the measurement algorithm is operating in a state of control.{close_quotes} Implicit in this statement is the important fact that an out-of-control process cannot produce valid measurements. 7 figs.« less
Volume 14: The first SeaWiFS intercalibration round-robin experiment, SIRREX-1, July 1992
NASA Technical Reports Server (NTRS)
Mueller, James L.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1993-01-01
The results of the first Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-1), which was held at the Center for Hydro-Optics and Remote Sensing (CHORS) at San Diego State University (SDSU) on 27-31 July 1992 are presetend. Oceanographic radiometers to be used in the SeaWiFS Calibration and Validation Program will be calibrated by individuals from the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center (GSFC), CHORS, and seven other laboratories. The purpose of the SIRREX experiments is to assure the radiometric standards used in all of these laboratories are referenced to the same scales of spectral irradiance and radiance, which will be maintained by GSFC and periodically recalibrated by the National Institute of Standards and Technology (NIST). The spectral irradiance scale of GSFC's FEL lamp number F269 (recalibrated by NIST in October 1992) was transferred to lamps belonging to the 9 participating laboratories; l set of lamp transfer measurements (involving 4 of the lamps) was precise to within less than 1 percent and meets SeaWiFS goals, but a second set (involving another 14 lamps) did not. The spectral radiance scale of the GSFC 40-inch integrating sphere source was transferred to integrating sphere radiance sources belonging to four of the other laboratories. Reflectance plaques, used for irradiance-to-radiance transfer by five of the laboratories, were compared, but spectral bidirectional reflectance distribution functions (BRDF's) were not determined quantitatively. Also reported are results of similar comparisons (in October 1992) between the GSFC scales of spectral irradiance and radiance and those used by the Hughes/Santa Barbara Research Center (SBRC) to calibrate and characterize the SeaWiFS instrument. This first set of intercalibration round-robin experiments was a valuable learning experience for all participants, and led to several important procedural changes, which will be implemented in the second SIRREX, to be held at CHORS in June 1993.
NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-01-01
This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market. Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available formore » model calibration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares software simulation findings to reference results generated with state-of-the-art simulation tools such as EnergyPlus, SUNREL, and DOE-2.1E. The BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX includes building physics and utility bill calibration test cases. The diagram illustrates the utility bill calibration test cases. Participants are given input ranges and synthetic utility bills. Software tools use the utility bills to calibrate key model inputs and predict energy savings for the retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs.« less
Sostman, H E
1977-01-01
I discuss the traceability of calibration of electronic thermometers to thermometric constants of nature or to the National Bureau of Standards, form a manufacturer's basic standards through the manufacturing process to the user's laboratory. Useful electrical temperature sensors, their advantages, and means for resolving their disadvantages are described. I summarize our development of a cell for realizing the melting phase equilibrium of pure gallium (at 29.770 degrees C) as a thermometer calibration fixed point, and enumerate its advantages in the routine calibration verification of electrical thermometers in the clinical chemistry laboratory.
Proficiency Testing Activities of Frequency Calibration Laboratories in Taiwan, 2009
2009-11-01
cht.com.tw Abstract In order to meet the requirements of ISO 17025 and the demand of TAF (Taiwan Accreditation Foundation) for calibration inter... IEC 17025 General requirements for the competence of testing and calibration laboratories. The proficiency testing results are then important...on-site evaluation, an assessment team is organized to examine the technical competence of the labs and their compliance with the requirements of ISO
A calibration service for biomedical instrumentation maintenance laboratories.
Barnes, A; Evans, A L; Job, H M; Laing, R; Smith, D C
1999-01-01
An in-house calibration laboratory for the Biomedical Instrumentation Maintenance Services of the hospitals in the West of Scotland was established in 1993. This paper describes the development of this calibration service in the context of an overall quality system and also estimates its costs. Not only does the in-house service have many advantages but it is shown to be cost effective for workloads exceeding 260 items per annum.
NASA Astrophysics Data System (ADS)
Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham
2016-09-01
A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.
NASA Astrophysics Data System (ADS)
Wang, Shifeng; Wang, Rui; Zhang, Pengfei; Dai, Xiang; Gong, Dawei
2017-08-01
One of the motivations of OptoBot Lab is to train primer students into qualified engineers or researchers. The series training programs have been designed by supervisors and implemented with tutoring for students to test and practice their knowledge from textbooks. An environment perception experiment using a 32 layers laser scanner is described in this paper. The training program design and laboratory operation is introduced. The four parts of the experiments which are preparation, sensor calibration, 3D space reconstruction, and object recognition, are the participating students' main tasks for different teams. This entire program is one of the series training programs that play significant role in establishing solid research skill foundation for opto-electronic students.
Ultrashort Pulse (USP) Laser-Matter Interactions
2013-03-05
spectroscopy • Frequency/time transfer • High-capacity comms • Coherent LIDAR • Optical clocks • Calibration Material Science ultrashort, high...Laboratory 41 Laser -driven x-rays generation (0.1 – 10 MeV) • Scattering from a 300 MeV electron beam can Doppler shift a 1-eV energy laser ...1 Integrity Service Excellence Ultrashort Pulse (USP) Laser – Matter Interactions 5 MAR 2013 Dr. Riq Parra Program Officer AFOSR/RTB
Radiometric calibration of an airborne multispectral scanner. [of Thematic Mapper Simulator
NASA Technical Reports Server (NTRS)
Markham, Brian L.; Ahmad, Suraiya P.; Jackson, Ray D.; Moran, M. S.; Biggar, Stuart F.; Gellman, David I.; Slater, Philip N.
1991-01-01
The absolute radiometric calibration of the NS001 Thematic Mapper Simulator reflective channels was examined based on laboratory tests and in-flight comparisons to ground measurements. The NS001 data are calibrated in-flight by reference to the NS001 internal integrating sphere source. This source's power supply or monitoring circuitry exhibited greater instability in-flight during 1988-1989 than in the laboratory. Extrapolating laboratory behavior to in-flight data resulted in 7-20 percent radiance errors relative to ground measurements and atmospheric modeling. Assuming constancy in the source's output between laboraotry and in-flight resulted in generally smaller errors. Upgrades to the source's power supply and monitoring circuitry in 1990 improved its in-flight stability, though in-flight ground reflectance based calibration tests have not yet been performed.
Tong, Qing; Chen, Baorong; Zhang, Rui; Zuo, Chang
Variation in clinical enzyme analysis, particularly across different measuring systems and laboratories, represents a critical but long-lasting problem in diagnosis. Calibrators with traceability and commutability are imminently needed to harmonize analysis in laboratory medicine. Fresh frozen human serum pools were assigned values for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), creatine kinase (CK) and lactate dehydrogenase (LDH) by six laboratories with established International Federation of Clinical Chemistry and Laboratory Medicine reference measurement procedures. These serum pools were then used across 76 laboratories as a calibrator in the analysis of five enzymes. Bias and imprecision in the measurement of the five enzymes tested were significantly reduced by using the value-assigned serum in analytical systems with open and single-point calibration. The median (interquartile range) of the relative biases of ALT, AST, GGT, CK and LDH were 2.0% (0.6-3.4%), 0.8% (-0.8-2.3%), 1.0% (-0.5-2.0%), 0.2% (-0.3-1.0%) and 0.2% (-0.9-1.1%), respectively. Before calibration, the interlaboratory coefficients of variation (CVs) in the analysis of patient serum samples were 8.0-8.2%, 7.3-8.5%, 8.1-8.7%, 5.1-5.9% and 5.8-6.4% for ALT, AST, GGT, CK and LDH, respectively; after calibration, the CVs decreased to 2.7-3.3%, 3.0-3.6%, 1.6-2.1%, 1.8-1.9% and 3.3-3.5%, respectively. The results suggest that the use of fresh frozen serum pools significantly improved the comparability of test results in analytical systems with open and single-point calibration.
A new gated x-ray detector for the Orion laser facility
NASA Astrophysics Data System (ADS)
Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal
2012-10-01
Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.
Development and implementation of an automated quantitative film digitizer quality control program
NASA Astrophysics Data System (ADS)
Fetterly, Kenneth A.; Avula, Ramesh T. V.; Hangiandreou, Nicholas J.
1999-05-01
A semi-automated, quantitative film digitizer quality control program that is based on the computer analysis of the image data from a single digitized test film was developed. This program includes measurements of the geometric accuracy, optical density performance, signal to noise ratio, and presampled modulation transfer function. The variability of the measurements was less than plus or minus 5%. Measurements were made on a group of two clinical and two laboratory laser film digitizers during a trial period of approximately four months. Quality control limits were established based on clinical necessity, vendor specifications and digitizer performance. During the trial period, one of the digitizers failed the performance requirements and was corrected by calibration.
Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules
NASA Technical Reports Server (NTRS)
Faulcon, Nettie D.
2001-01-01
Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.
Reliability of analog quantum simulation
NASA Astrophysics Data System (ADS)
Sarovar, Mohan; Zhang, Jun; Zeng, Lishan
Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. We formalize the notion of AQS reliability to calibration errors by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach connects to the notion of parameter space compression in statistical physics and naturally reveals the importance of model symmetries in dictating the robust properties. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
DeWerd, Larry A; Huq, M Saiful; Das, Indra J; Ibbott, Geoffrey S; Hanson, William F; Slowey, Thomas W; Williamson, Jeffrey F; Coursey, Bert M
2004-03-01
Low dose rate brachytherapy is being used extensively for the treatment of prostate cancer. As of September 2003, there are a total of thirteen 125I and seven 103Pd sources that have calibrations from the National Institute of Standards and Technology (NIST) and the Accredited Dosimetry Calibration Laboratories (ADCLs) of the American Association of Physicists in Medicine (AAPM). The dosimetry standards for these sources are traceable to the NIST wide-angle free-air chamber. Procedures have been developed by the AAPM Calibration Laboratory Accreditation Subcommittee to standardize quality assurance and calibration, and to maintain the dosimetric traceability of these sources to ensure accurate clinical dosimetry. A description of these procedures is provided to the clinical users for traceability purposes as well as to provide guidance to the manufacturers of brachytherapy sources and ADCLs with regard to these procedures.
Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Nealy, J. E.
1975-01-01
A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
Accurate solar radiation measured by radiometers depends on instrument performance specifications, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methodologies and resulting differences provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these methods calibrate radiometers indoors and some outdoors. To establish or understand the differences in calibration methodologies, we processed and analyzed field-measured data from radiometers deployed for 10 months at NREL's Solar Radiation Research Laboratory. These different methods of calibration resulted in a difference ofmore » +/-1% to +/-2% in solar irradiance measurements. Analyzing these differences will ultimately assist in determining the uncertainties of the field radiometer data and will help develop a consensus on a standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainties will help the accurate prediction of the output of planned solar conversion projects and improve the bankability of financing solar projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, D A; TenKate, L B
Graphite furnace atomic absorption spectrophotometry (GFAAS) is used for determination of ultra-trace metals in environmentally important samples. In the generation of GFAAS calibration curves for many environmental applications, low concentration calibration standards must be prepared dally, as required by the Statement of Work (SOW) for the US Environmental Protection Agency (EPA) Contract Laboratory Program (CLP). This results in significant time and work for the analyst and significant cost to the Analytical Chemistry Laboratory (ACL) for chemicals and waste management. While EPA SW 846 is less prescriptive than the CLP SOW, ACL has been following the CLP guidelines because in-house criteriamore » regarding the stability of GFAAS standards have not been established. A study was conducted to determine the stability of GFAAS standards for analytes commonly used in the ACL (single and mixed) as a function of time. Data were collected over nine months. The results show that GFAAS standards for Sb, Pb, Se, Ag, and TI are stable for a longer period of time than currently assumed by the CLP SOW. Reducing the frequency of preparing these standards will increase efficiency, decrease the handling of hazardous the quantity of hazardous waste generated, and decrease the quantity of hazardous substances to be ordered and stocked by the laboratory. These benefits will improve GFAAS analysis quality, reduce costs, enhance safety, and lower environmental concerns.« less
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
The role of LATU as national metrology institute of Uruguay and its responsibilities
NASA Astrophysics Data System (ADS)
Robatto, O.; Quagliata, E.; Santo, C.; Sica, A.; Sponton, M.
2013-09-01
Laboratorio Tecnológico del Uruguay (LATU) is the National Metrology Institute of Uruguay and has the obligation to maintain the national standards stated by National Law 15298. At present LATU is acting as a secondary laboratory as well as a primary laboratory. LATU was ISO 17025:2005 DKD (Deutscher Kalibrierdienst) accredited from 2001 up to 2007. By that time LATU decided to support its Capabilities of Measurement and Calibration (CMCs) at CIPM-MRA (Mutual Recognition Arrangement between national metrology institutes (NMIs)) by peer assessment. A Peer Review has been done in 2008 in order to get the QSTF (Sistema Interamericano de Metrología, Quality System Task Force) approval. "New "CMCs for Industrial Thermometers have been approved by the JCRB on September 2010. CMCs claimed for Standard Resistance Platinum Thermometers (SPRTs) calibration at fixed points have not been approved yet because there were some requirements of traceability of employed cells that were not fulfilled but will be solved properly. The declared CMCs have been chosen by LATU in order to cover the increasing calibration services required by the industry and the secondary calibration laboratories. To demonstrate its technical competence an support its declared "CMCs" LATU has also participated at bilateral and regional comparisons. In recent years LATU, the National Accreditation Body (OUA), the Standards Institute, the National Institute of Quality and Compliance Bodies have become Members of a new Institution to strengthen the Quality Infrastructure of the country (SUNAMEC). As part of this new activities, LATU is giving training courses to the secondary laboratories performing calibrations in temperature that want to get accredited by the National Accreditation Body and to act as Technical Evaluators or Auditors when required by OUA. It is expected, that in the future and in the frame of new accredited and recognized temperature calibration laboratories, LATU could strengthen its activities in maintaining its own national standards, developing new calibration services and performing comparisons as pilot laboratory for Uruguay and also regionally. The role of secondary laboratory could be diminished and therefore the activities as a reference laboratory in investigation would be benefited. This paper describes all the activities carried out at LATU in Temperature in the last years to reach the goals stated and the coming ones that have to be done to help developing main objectives as a country in this field.
Review of the National Information Assurance Partnership (NIAP)
2006-01-01
accreditation is to ensure that laboratories meet the re- quirements of ISO / IEC 17025 :2005, General Requirement for the Competence of Cali- bration and...isoguide2. [ISO1999] ISO / IEC 17025 , General Requirements for the Competence of Testing and Calibration Laboratories, 1999, http://www.iso.ch/ iso ...Protection Profiles and Secu- rity Targets, 2003. [ISO2005] ISO / IEC 17025 , General Requirements for the Competence of Testing and Calibration Laboratories
Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K
2011-12-01
Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components.
Novel, Post-Stall, Thrust-Vectored F-15 RPVs: Laboratory and Flight Tests
1990-04-24
Flight Tests Program Manager : Douglas Bowers 1ST-Year Report Principal Investigator: Benjamin 6al-Or April 24, 1990 DTIC.LECTE AUG201990 i/ E...constructed. The geometry, dimensions and preliminary wind-tunnel test data for such a design are provided In Appendix A. If funded, such a 3rd...Preliminary Calibration Flight Test Data Obtained from the Onboard Computer ........ 33 Talless, PST-RaNPAS, Roll-Yaw-Pitch, Thrust-Vectored, PST F-15 (Cf. ADp
Calibration methodology application of kerma area product meters in situ: Preliminary results
NASA Astrophysics Data System (ADS)
Costa, N. A.; Potiens, M. P. A.
2014-11-01
The kerma-area product (KAP) is a useful quantity to establish the reference levels of conventional X-ray examinations. It can be obtained by measurements carried out with a KAP meter on a plane parallel transmission ionization chamber mounted on the X-ray system. A KAP meter can be calibrated in laboratory or in situ, where it is used. It is important to use one reference KAP meter in order to obtain reliable quantity of doses on the patient. The Patient Dose Calibrator (PDC) is a new equipment from Radcal that measures KAP. It was manufactured following the IEC 60580 recommendations, an international standard for KAP meters. This study had the aim to calibrate KAP meters using the PDC in situ. Previous studies and the quality control program of the PDC have shown that it has good function in characterization tests of dosimeters with ionization chamber and it also has low energy dependence. Three types of KAP meters were calibrated in four different diagnostic X-ray equipments. The voltages used in the two first calibrations were 50 kV, 70 kV, 100 kV and 120 kV. The other two used 50 kV, 70 kV and 90 kV. This was related to the equipments limitations. The field sizes used for the calibration were 10 cm, 20 cm and 30 cm. The calibrations were done in three different cities with the purpose to analyze the reproducibility of the PDC. The results gave the calibration coefficient for each KAP meter and showed that the PDC can be used as a reference instrument to calibrate clinical KAP meters.
Parameter estimation uncertainty: Comparing apples and apples?
NASA Astrophysics Data System (ADS)
Hart, D.; Yoon, H.; McKenna, S. A.
2012-12-01
Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The First SIMBIOS Radiometric Intercomparison (SIMRIC-1), April-September 2001
NASA Technical Reports Server (NTRS)
Meister, Gerhard; Abel, Peter; McClain, Charles; Barnes, Robert; Fargion, Giulietta; Cooper, John; Davis, Curtiss; Korwan, Daniel; Godin, Mike; Maffione, Robert
2002-01-01
This report describes the first SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-1). The purpose of the SIMRIC-1 is to ensure a common radiometric scale of the calibration facilities that are engaged in calibrating in situ radiometers used for ocean color related research and to document the calibration procedures and protocols. SIMBIOS staff visited the seven participating laboratories for at least two days each. The SeaWiFS Transfer Radiometer SXR-II measured the calibration radiances produced in the laboratories. The measured radiances were compared with the radiances expected by the laboratories. Typically, the measured radiances were higher than the expected radiances by 0 to 2%. This level of agreement is satisfactory. Several issues were identified, where the calibration protocols need to be improved, especially the reflectance calibration of the reference plaques and the distance correction when using the irradiance standards at distances greater than the 50 cm. The responsivity of the SXR-II changed between 0.3% (channel 6) and 1.6% (channel 2) from December 2000 to December 2001. Monitoring the SXR-II with a portable light source showed a linear drift of the calibration, except for channel 1, where a 2% drop occurred in summer.
Year-round measurements of ozone at 66 deg S with a visible spectrometer
NASA Technical Reports Server (NTRS)
Roscoe, Howard K.; Oldham, Derek J.; Squires, James A. C.; Pommereau, Jean-Pierre; Goutail, Florence; Sarkissian, Alain
1994-01-01
In March 1990, a zenith-sky UV-visible spectrometer of the design 'Systeme Automatique d'Obervation Zenithal' (SAOZ) was installed at Faraday in Antarctica (66.3 deg S, 64.3 deg W). SAOZ records spectra between 290 and 600 nm during daylight. Its analysis program fits laboratory spectra of constituents, at various wavelengths, to the differential of the ratio of the observed spectrum and a reference spectrum. The least-squares fitting procedure minimizes the sum-of-squares of residuals. Ozone is deduced from absorption in its visible bands between 500 and 560 nm. The fortunate colocation of this SAOZ with the well-calibrated Dobson at Faraday has allowed us to examine the calibration of the zero of the SAOZ, difficult at visible wavelengths because of the small depth of absorption. Here we describe recent improvements and limitations to this calibration, and discuss SAOZ measurements of ozone during winter in this important location at the edge of the Antarctic vortex.
NASA Astrophysics Data System (ADS)
Gugliada, V. R.; Austin, M. E.; Brookman, M. W.
2017-10-01
Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.
NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius
NASA Astrophysics Data System (ADS)
Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.
2018-01-01
Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget
NIST Mechanisms for Disseminating Measurements
Gills, T. E.; Dittman, S.; Rumble, J. R.; Brickenkamp, C. S.; Harris, G. L.; Trahey, N. M.
2001-01-01
The national responsibilities assigned to the National Bureau of Standards (NBS) early in the last century for providing measurement assistance and service are carried out today by the four programs that comprise the National Institute of Standards and Technology (NIST) Office of Measurement Services (OMS). They are the Calibration Program (CP), the Standard Reference Materials Program (SRMP), the Standard Reference Data Program (SRDP), and the Weights and Measures Program (W&MP). Organized when the U.S. Congress changed the NBS name to NIST, the OMS facilitates access to the measurement and standards activities of NIST laboratories and programs through the dissemination of NIST products, data, and services. A brief historical introduction followed by a perspective of pivotal measurement developments from 1901 to the present and concluding with a look to the future of NIST measurement services in the next decade of the new millennium are presented for each OMS program. PMID:27500025
Comparison of the uncertainties of several European low-dose calibration facilities
NASA Astrophysics Data System (ADS)
Dombrowski, H.; Cornejo Díaz, N. A.; Toni, M. P.; Mihelic, M.; Röttger, A.
2018-04-01
The typical uncertainty of a low-dose rate calibration of a detector, which is calibrated in a dedicated secondary national calibration laboratory, is investigated, including measurements in the photon field of metrology institutes. Calibrations at low ambient dose equivalent rates (at the level of the natural ambient radiation) are needed when environmental radiation monitors are to be characterised. The uncertainties of calibration measurements in conventional irradiation facilities above ground are compared with those obtained in a low-dose rate irradiation facility located deep underground. Four laboratories quantitatively evaluated the uncertainties of their calibration facilities, in particular for calibrations at low dose rates (250 nSv/h and 1 μSv/h). For the first time, typical uncertainties of European calibration facilities are documented in a comparison and the main sources of uncertainty are revealed. All sources of uncertainties are analysed, including the irradiation geometry, scattering, deviations of real spectra from standardised spectra, etc. As a fundamental metrological consequence, no instrument calibrated in such a facility can have a lower total uncertainty in subsequent measurements. For the first time, the need to perform calibrations at very low dose rates (< 100 nSv/h) deep underground is underpinned on the basis of quantitative data.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Kumar, Harish; Mandal, Goutam; Das, M. B.; Sharma, D. C.
The present paper discusses the establishment of traceability of reference grade hydrometers at National Physical Laboratory, India (NPLI). The reference grade hydrometers are calibrated and traceable to the primary solid density standard. The calibration has been done according to standard procedure based on Cuckow's Method and the reference grade hydrometers calibrated covers a wide range. The uncertainty of the reference grade hydrometers has been computed and corrections are also calculated for the scale readings, at which observations are taken.
The EBIT Calorimeter Spectrometer: a new, permanent user facility at the LLNL EBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, F S; Beiersdorfer, P; Brown, G V
The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 {micro}s event timing, and capable of uninterrupted acquisitionmore » sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.« less
Optimized star sensors laboratory calibration method using a regularization neural network.
Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen
2018-02-10
High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.
Characterization of X-ray fields at the center for devices and radiological health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerra, F.
This talk summarizes the process undertaken by the Center for Devices and Radiological Health (CDRH) for establishing reference x-ray fields in its accredited calibration laboratory. The main considerations and their effects on the calibration parameters are discussed. The characterization of fields may be broken down into two parts: (1) the initial setup of the calibration beam spectra and (2) the ongoing measurements and controls which ensure consistency of the reference fields. The methods employed by CDRH for both these stages and underlying considerations are presented. Uncertainties associated with the various parameters are discussed. Finally, the laboratory`s performance, as evidenced bymore » ongoing measurement quality assurance results, is reported.« less
In-Flight Spectral Calibration of the APEX Imaging Spectrometer Using Fraunhofer Lines
NASA Astrophysics Data System (ADS)
Kuhlmann, Gerrit; Hueni, Andreas; Damm, Aalexander; Brunner, Dominik
2015-11-01
The Airborne Prism EXperiment (APEX) is an imaging spectrometer which allows to observe atmospheric trace gases such as nitrogen dioxide (NO2). Using a high resolution spectrum of solar Fraunhofer lines, APEX measurements collected during flight have been spectrally calibrated for centre wavelength positions (CW) and instrument slit function (ISF) and compared to the laboratory calibration. We find that CWs depend strongly on both across- and along-track position due to spectral smile and CWs dependency on ambient pressure. The width of the ISF is larger than estimated from the laboratory calibration but can be described by a linear scaling of the laboratory values. The ISF width depends on across- but not on along-track direction. The results demonstrate the importance of characterizing and monitoring the instrument performance during flight and will be used to improve the Empa APEX NO2 retrieval algorithm.
Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration
NASA Technical Reports Server (NTRS)
Barsi, Julia A.; Shott, John R.; Raqueno, Nina G.; Markham, Brian L.; Radocinski, Robert G.
2014-01-01
Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq m·sr·micrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq m·sr·micrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have not changed the statistical assessment but indicate that the correction (particularly in band 11) is probably only valid for a subset of data. While the stray light effect is small enough in Band 10 to make the data useful across a wide array of applications, the effect in Band 11 is larger and the vicarious results suggest that Band 11 data should not be used where absolute calibration is required.
Franesqui, Miguel A; Yepes, Jorge; García-González, Cándida
2017-08-01
This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].
Cho, H. Jean; Jaffe, Peter R.; Smith, James A.
1993-01-01
This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil matrix was added to the model, the calibrated gas-water mass transfer rate constant is 2 orders of magnitude lower than that predicted using the power law model developed for the nonsorbing laboratory soil.
The Site-Scale Saturated Zone Flow Model for Yucca Mountain
NASA Astrophysics Data System (ADS)
Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.
2006-12-01
This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the previous model calibration. Specific discharge at a point 5~km from the repository is also examined and found to be within acceptable uncertainty. The results show that updated model yields a calibration with smaller residuals than the previous model revision while ensuring that flowpaths follow measured gradients and paths derived from hydrochemical analyses. This work was supported by the Yucca Mountain Site Characterization Office as part of the Civilian Radioactive Waste Management Program, which is managed by the U.S. Department of Energy, Yucca Mountain Site Characterization Project. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Song, Wenqi; Shen, Ying; Peng, Xiaoxia; Tian, Jian; Wang, Hui; Xu, Lili; Nie, Xiaolu; Ni, Xin
2015-05-26
The program of continuous quality improvement in clinical laboratory processes for complete blood count (CBC) was launched via the platform of Beijing Children's Hospital Group in order to improve the quality of pediatric clinical laboratories. Fifteen children's hospitals of Beijing Children's Hospital group were investigated using the method of Chinese adapted continuous quality improvement with PDCA (Plan-Do-Check-Action). The questionnaire survey and inter-laboratory comparison was conducted to find the existing problems, to analyze reasons, to set forth quality targets and to put them into practice. Then, targeted training was conducted to 15 children's hospitals and the second questionnaire survey, self examinations by the clinical laboratories was performed. At the same time, the Group's online internal quality control platform was established. Overall effects of the program were evaluated so that lay a foundation for the next stage of PDCA. Both quality of control system documents and CBC internal quality control scheme for all of clinical laboratories were improved through this program. In addition, standardization of performance verification was also improved, especially with the comparable verification rate of precision and internal laboratory results up to 100%. In terms of instrument calibration and mandatory diagnostic rates, only three out of the 15 hospitals (20%) failed to pass muster in 2014 from 46.67% (seven out of the 15 hospitals) in 2013. The abnormal data of intraday precision variance coefficients of the five CBC indicator parameters (WBC, RBC, Hb, Plt and Hct) of all the 15 laboratories accounted for 1.2% (2/165) in 2014, a marked decrease from 9.6% (14/145) in 2013. While the number of the hospitals using only one horizontal quality control object for daily quality control has dropped to three from five. The 15 hospitals organized a total of 263 times of training in 2014 from 101 times in 2013, up 160%. The quality improvement program for the clinical laboratories launched via the Hospital Group platform can promote the joint development of the pediatric clinical laboratory discipline of all the member hospitals with remarkable improvement results, and the experience is recommendable for further rollout.
Preliminary results of BTDF calibration of transmissive solar diffusers for remote sensing
NASA Astrophysics Data System (ADS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-09-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their onboard transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Summary of the COS Cycle 20 Calibration Program
NASA Astrophysics Data System (ADS)
Roman-Duval, Julia; Aloisi, Alessandra; Bostroem, K. Azalee; Ely, Justin; Holland, Stephen; Lockwood, Sean; Oliveira, Cristina; Penton, Steven; Proffitt, Charles; Sahnow, David; Sonnentrucker, Paule; Welty, Alan D.; Wheeler, Thomas
2015-06-01
We summarize the Cycle 20 calibration program for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, covering the time period from November 2012 through October 2013. We give an overview of the Calibration plan and status summaries for each of the individual proposals comprising the C20 Calibration program.
Summary of the COS Cycle 21 Calibration Program
NASA Astrophysics Data System (ADS)
Sana, Hugues; Fox, Andrew; Roman-Duval, Julia; Ely, Justin; Bostroem, K. Azalee; Lockwood, Sean; Oliveira, Cristina; Penton, Steve; Proffitt, Charles; Sahnow, David; Sonnentrucker, Paule; Welty, Alan D.; Wheeler, Thomas
2015-09-01
We summarize the Cycle 21 calibration program for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, covering the time period from November 2013 through October 2014. We give an overview of the Calibration plan and status summaries for each of the individual proposals comprising the C21 Calibration program.
NASA Astrophysics Data System (ADS)
Peixoto, J. G. P.; de Almeida, C. E.
2001-09-01
It is recognized by the international guidelines that it is necessary to offer calibration services for mammography beams in order to improve the quality of clinical diagnosis. Major efforts have been made by several laboratories in order to establish an appropriate and traceable calibration infrastructure and to provide the basis for a quality control programme in mammography. The contribution of the radiation metrology network to the users of mammography is reviewed in this work. Also steps required for the implementation of a mammography calibration system using a constant potential x-ray and a clinical mammography x-ray machine are presented. The various qualities of mammography radiation discussed in this work are in accordance with the IEC 61674 and the AAPM recommendations. They are at present available at several primary standard dosimetry laboratories (PSDLs), namely the PTB, NIST and BEV and a few secondary standard dosimetry laboratories (SSDLs) such as at the University of Wisconsin and at the IAEA's SSDL. We discuss the uncertainties involved in all steps of the calibration chain in accord with the ISO recommendations.
2014-02-18
5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 63401F 6. AUTHOR(S) Wm. Robert Johnston, Chadwick D. Lindstrom , and Gregory P. Ginet 5d. PROJECT...Dosimeter and AFGL- 701-4/Fluxmeter, PL-TR-95-2103, Phillips Laboratory, AFMC, Hanscom AFB, MA. Johnston, W. R., C. D. Lindstrom , and G. P. Ginet...virbo.org/johnston/crres/ MEAHEEFCC.pdf]. Johnston, W. R., C. D. Lindstrom , and G. P. Ginet (2013), Characterization of radiation belt electron energy
Improving Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-02-01
New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools that calculate optimal packages of efficiency measures. To improve the accuracy of energy analysis for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed the Building Energy Simulation Test for Existing Homes (BESTEST-EX), a method for diagnosing and correcting errors in building energy audit software and calibration procedures. BESTEST-EX consists of building physics and utility billmore » calibration test cases, which software developers can use to compare their tools simulation findings to reference results generated with state-of-the-art simulation tools. Overall, the BESTEST-EX methodology: (1) Tests software predictions of retrofit energy savings in existing homes; (2) Ensures building physics calculations and utility bill calibration procedures perform to a minimum standard; and (3) Quantifies impacts of uncertainties in input audit data and occupant behavior. BESTEST-EX is helping software developers identify and correct bugs in their software, as well as develop and test utility bill calibration procedures.« less
Initial Radiometric Calibration of the AWiFS using Vicarious Calibration Techniques
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Thome, Kurtis; Aaron, David; Leigh, Larry
2006-01-01
NASA SSC maintains four ASD FieldSpec FR spectroradiometers: 1) Laboratory transfer radiometers; 2) Ground surface reflectance for V&V field collection activities. Radiometric Calibration consists of a NIST-calibrated integrating sphere which serves as a source with known spectral radiance. Spectral Calibration consists of a laser and pen lamp illumination of integrating sphere. Environmental Testing includes temperature stability tests performed in environmental chamber.
Tiros IV Radiation Data Catalog and Users' Manual
NASA Technical Reports Server (NTRS)
Kunde, V. G.
1963-01-01
The TIROS IV Meteorological Satellite contains a medium resolution scanning radiometer. Two of the channels of this instrument are sensitive to reflected solar radiation and the remaining two respond to emitted thermal radiation from the earth and its atmosphere. The two thermal channels are calibrated in terms of equivalent blackbody temperatures, and the reflected solar radiation channels in terms of effective radiant emittances. The calibration data, along with orbital and attitude data and the radiation data from the satellite, were incorporated in a computer program for an IBM 7090 which was used to produce, in binary form, the "Final Meteorological Radiation Tape" which is the basic repository of all radiation data. After launch, the radiometer displaye d the same degradation of response characteristics as did its predecessors in TIROS II and TIROS III. The onset of degradation results in a departure of the data from the prelaunch laboratory calibration. The cause of degradation has not been determined, and the matter is still being studied at the Goddard Space Flight Center. Before work with the TIROS IV radiation data is attempted, an understanding of the radiometer, its calibration, and the problems encountered in the experiment, especially from response degradation, is essential. The instrumentation design, development work, and the calibrations herein described were performed by the Goddard Space Flight Center Staff, whereas the computer and programming efforts were carried out jointly by the staffs of the National Weather Satellite Center, U. S. Weather Bureau, and the Goddard Space Flight Center. In this Catalog-Manual, the radiometer an d its calibration, data processing, the "Final Meteorological Radiation Tape", the observed degradation patterns, and possible corrections for degradation are discussed. The Catalog-Manual also includes, in two forms, documentation of each orbit of successfully reduced radiation data acquired by TIROS IV. One method of presentation is the Index of Final Meteorological Radiation Tapes and the other is a Subpoint Track, Summary of Available Radiation Data in diagrammatic form.
[Laboratory accreditation and proficiency testing].
Kuwa, Katsuhiko
2003-05-01
ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.
New Brunswick Laboratory progress report, October 1989--September 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The New Brunswick Laboratory (NBL) has been tasked by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP) to assure the application of accurate and reliable measurement technology for the safeguarding of special nuclear materials. NBL is fulfilling its mission responsibilities by identifying the measurement and measurement-related needs of the nuclear material safeguards community and addressing them by means of activities in the following program areas: (1) reference and calibration materials, (2) measurement development, (3) measurement services, (4) measurement evaluation, (5) safeguards assessment, and (6) site-specific assistance. Highlights of each of these program areas are provided in this summary.more » This progress report is written as a part of NBL's technology transfer responsibilities, primarily for the use and benefit of the scientific personnel that perform safeguards-related measurements. Consequently, the report is technical in nature. Many of the reports of multi-year projects are fragmentary in that only partial results are reported. Separate topical reports are to be issued at the completion of many of these projects. 30 refs.« less
Gray QB-sing-faced version 2 (SF2) open environment test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plummer, J.; Immel, D.; Bobbitt, J.
This report details the design upgrades incorporated into the new version of the GrayQbTM SF2 device and the characterization testing of this upgraded device. Results from controlled characterization testing in the Savannah River National Laboratory (SRNL) R&D Engineering Imaging and Radiation Lab (IRL) and the Savannah River Site (SRS) Health Physics Instrument Calibration Laboratory (HPICL) is presented, as well as results from the open environment field testing performed in the E-Area Low Level Waste Storage Area. Resultant images presented in this report were generated using the SRNL developed Radiation Analyzer (RAzerTM) software program which overlays the radiation contour images ontomore » the visual image of the location being surveyed.« less
Software For Calibration Of Polarimetric SAR Data
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce
1994-01-01
POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING.
Georgiev, Georgi T; Butler, James J; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
Preliminary Results of BTDF Calibration of Transmissive Solar Diffusers for Remote Sensing
NASA Technical Reports Server (NTRS)
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.
PRELIMINARY RESULTS OF BTDF CALIBRATION OF TRANSMISSIVE SOLAR DIFFUSERS FOR REMOTE SENSING
Georgiev, Georgi T.; Butler, James J.; Thome, Kurt; Cooksey, Catherine; Ding, Leibo
2016-01-01
Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute’s (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA’s Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples. PMID:28003712
NASA Astrophysics Data System (ADS)
Crawford, C. J.; Chickadel, C. C.; Hall, D. K.; Jennings, D. E.; Jhabvala, M. D.; Kim, E. J.; Jessica, L.; Lunsford, A.
2017-12-01
The NASA Terrestrial Hydrology Program sponsored a ground and airborne snow experiment (SnowEx) to the Grand Mesa area and Senator Beck Basin in western Colorado during February 2017. This communication summarizes efforts to develop traceable instrument calibration requirements for SnowEx Grand Mesa in support of thermal infrared (TIR) and visible-to-shortwave infrared (VSWIR) snow measurement science. Cross-calibration outcomes for TIR instruments (7-10 µm and 8-14 µm response functions) indicate that an at-sensor measurement accuracy of within 1.5 degrees Celsius was achieved across ground and airborne sensors using laboratory and field blackbody sources. A cross-calibration assessment of VSWIR spectrometers (0.35 to 2.5 µm response functions) using a National Institutes of Standard Technology (NIST) traceable source indicates an at-sensor measurement accuracy of within 5% for visible-near infrared spectral radiance (W/cm-2/sr-1/nm) and irradiance (W/m-2/nm), and within 20% for shortwave infrared measurements before a radiometric cross-calibration correction was applied. Additional validation is undertaken to assess the ground and airborne SnowEx Grand Mesa TIR and VSWIR instrument cross-calibration quality by benchmarking against on-orbit image acquisitions of the snow surface on February 14th and 15th, 2017 from Landsat Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel-2A Multi-Spectral Instrument (MSI).
Electronic test and calibration circuits, a compilation
NASA Technical Reports Server (NTRS)
1972-01-01
A wide variety of simple test calibration circuits are compiled for the engineer and laboratory technician. The majority of circuits were found inexpensive to assemble. Testing electronic devices and components, instrument and system test, calibration and reference circuits, and simple test procedures are presented.
Naito, H K
1989-03-01
We have approached a dawn of a new era in detection, evaluation, treatment, and monitoring of individuals with elevated blood cholesterol levels who are at increased risk for CHD. The NHLBI's National Cholesterol Education Program will be the major force underlying this national awareness program, which is dependent on the clinical laboratories providing reliable data. Precision or reproducibility of results is not a problem for most of the laboratories, but accuracy is a major concern. Both the manufacturers and laboratorians need to standardize the measurement for cholesterol so that the accuracy base is traceable to the NCCLS NRS/CHOL. The manufacturers need to adopt a uniform policy that will ensure that the values assigned to calibration, quality control, and quality assurance or survey materials are accurate and traceable to the NCCLS/CHOL. Since, at present, there are some limitations of these materials caused by matrix effects, laboratories are encouraged to use the CDC-NHLBI National Reference Laboratory Network to evaluate and monitor their ability to measure patient blood cholesterol levels accurately. Major areas of analytical problems are identified and general, as well as specific, recommendations are provided to help ensure reliable measurement of cholesterol in patient specimens.
Calibration procedure for Slocum glider deployed optical instruments.
Cetinić, Ivona; Toro-Farmer, Gerardo; Ragan, Matthew; Oberg, Carl; Jones, Burton H
2009-08-31
Recent developments in the field of the autonomous underwater vehicles allow the wide usage of these platforms as part of scientific experiments, monitoring campaigns and more. The vehicles are often equipped with sensors measuring temperature, conductivity, chlorophyll a fluorescence (Chl a), colored dissolved organic matter (CDOM) fluorescence, phycoerithrin (PE) fluorescence and spectral volume scattering function at 117 degrees, providing users with high resolution, real time data. However, calibration of these instruments can be problematic. Most in situ calibrations are performed by deploying complementary instrument packages or water samplers in the proximity of the glider. Laboratory calibrations of the mounted sensors are difficult due to the placement of the instruments within the body of the vehicle. For the laboratory calibrations of the Slocum glider instruments we developed a small calibration chamber where we can perform precise calibrations of the optical instruments aboard our glider, as well as sensors from other deployment platforms. These procedures enable us to obtain pre- and post-deployment calibrations for optical fluorescence instruments, which may differ due to the biofouling and other physical damage that can occur during long-term glider deployments. We found that biofouling caused significant changes in the calibration scaling factors of fluorescent sensors, suggesting the need for consistent and repetitive calibrations for gliders as proposed in this paper.
Interlaboratory calibration of atmospheric nitrous oxide measurements
NASA Technical Reports Server (NTRS)
Rasmussen, R. A.; Pierotti, D.
1978-01-01
Samples representative of Northern Hemispheric conditions in mid-1976 were analyzed by 11 laboratories to resolve the question of the absolute tropospheric concentration of nitrous oxide. The laboratories all employed electron capture-gas chromatography for the analysis. After exclusion of one anomalously low determination, the calibration results showed a mean concentration of 323.5 + or - 8.7 ppb v/v nitrous oxide.
Calibration Laboratory Capabilities Listing as of April 2009
NASA Technical Reports Server (NTRS)
Kennedy, Gary W.
2009-01-01
This document reviews the Calibration Laboratory capabilities for various NASA centers (i.e., Glenn Research Center and Plum Brook Test Facility Kennedy Space Center Marshall Space Flight Center Stennis Space Center and White Sands Test Facility.) Some of the parameters reported are: Alternating current, direct current, dimensional, mass, force, torque, pressure and vacuum, safety, and thermodynamics parameters. Some centers reported other parameters.
Karon, Brad S; Wickremasinghe, Andrea C; Lo, Stanley F; Saenger, Amy K; Cook, Walter J
2010-08-01
To determine the relationship between BiliChek TcB (Respironics, Marietta GA) and Doumas reference serum or plasma total bilirubin (TSB). Pooled samples with values assigned by the Doumas reference method were used to establish the relationship between a local laboratory and reference Doumas TSB. We then established the relationship between TcB and TSB in the 3 months before and after reassignment of calibrator setpoints undertaken to match the local laboratory to Doumas reference bilirubin values. Before calibrator setpoint reassignment TSB as measured in our laboratory overestimated Doumas reference bilirubin. After calibrator adjustment laboratory TSB was within 1.7-6.8 micromol/L (0.1-0.4 mg/dL) of Doumas reference values. Mean bias between BiliChek TcB and TSB was 42.8+/-22.2 micromol/L (2.5+/-1.3mg/dL) (n=94) before and 49.6+/-22.2 micromol/L (2.9+/-1.3mg/dL) (n=115) after calibration adjustment. BiliChek TcB significantly overestimates TSB as measured by the Doumas reference method. 2010 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations
NASA Technical Reports Server (NTRS)
Kimmel, Roger L.; Prabhu, Dinesh
2015-01-01
The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.
EML Gamma Spectrometry Data Evaluation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, Karin M.
1998-02-28
This report represents the results of the analyses for the second EML Gamma Spectrometry Data Evaluation Program (August 1997). A calibration spectrum, a background spectrum and three sample spectra were included for each software format as part of the evaluation. The calibration spectrum contained nuclides covering the range from 59.5 keV to 1836 keV. The participants were told fallout and fission product nuclides as well as naturally occurring nuclides could be present. The samples were designed to test the detection and quantification of very low levels of nuclides and the ability of the software and user to properly resolve multiplets.more » The participants were asked to report values and uncertainties as Becquerel per sample with no decay correction. Twenty-nine sets of results were reported from a total of 70 laboratories who received the spectra. The percentage of the results within 1 F of the expected value was 76, 67, and 55 for samples 1, 2, and 3, respectively. From all three samples, 12% of the results were more than 3 F from the expected value. Sixty-two nuclides out of a total of 580 expected results were not reported for the three samples. Sixty percent of these false negatives were due to nuclides which were present at the minimum detectable activity level. There were 53 false positives reported with 60% of the responses due to problems with background subtraction. The results indicate that the Program is beneficial to the participating laboratories in that it provides them with analysis problems that are difficult to create with spiked samples due to the unavailability of many nuclides and the short half-lives of others. EML will continue its annual distribution, the third is to be held in March 1999.« less
Jeff Cheatham, senior metrologist
2015-01-27
JEFF CHEATHAM, SENIOR METROLOGIST AT THE MARSHALL METROLOGY AND CALIBRATION LABORATORY, SPENT 12 YEARS DEVELOPING 2400 AUTOMATED SOFTWARE PROCEDURES USED FOR CALIBRATION AND TESTING SPACE VEHICLES AND EQUIPMENT
Hanford Waste End Effector Phase I Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.
This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less
Calibration of a laboratory spectrophotometer for specular light by means of stacked glass plates.
NASA Technical Reports Server (NTRS)
Allen, W. A.; Richardson, A. J.
1971-01-01
Stacked glass plates have been used to calibrate a laboratory spectrophotometer, over the spectral range 0.5-2.5 microns, for specular light. The uncalibrated instrument was characterized by systematic errors when used to measure the reflectance and transmittance of stacked glass plates. Calibration included first, a determination of the reflectance of a standard composed of barium sulfate paint deposited on an aluminum plate; second, the approximation of the reflectance and transmittance residuals between observed and computed values by means of cubic equations; and, finally, the removal of the systematic errors by a computer. The instrument, after calibration, was accurate to 1% when used to measure the reflectance and transmittance of stacked glass plates.
Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casson, W.H.; Thein, C.M.; Bogard, J.S.
This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developmentsmore » in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.« less
Calibration of work zone impact analysis software for Missouri.
DOT National Transportation Integrated Search
2013-12-01
This project calibrated two software programs used for estimating the traffic impacts of work zones. The WZ Spreadsheet : and VISSIM programs were recommended in a previous study by the authors. The two programs were calibrated using : field data fro...
2016 NIST (133Xe) and Transfer (131mXe, 133mXe, 135Xe) Calibration Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Troy A.
A significantly improved calibration of the High Purity Germanium detectors used by the Idaho National Laboratory Noble Gas Laboratory was performed during the annual NIST calibration. New sample spacers provide reproducible and secure support of samples at distances of 4, 12, 24, 50 and 100 cm. Bean, 15mL and 50mL Schlenk tube geometries were calibrated. Also included in this year’s calibration was a correlation of detector dead-time with sample activity that can be used to predict the schedule of counting the samples at each distance for each geometry. This schedule prediction will help staff members set calendar reminders so thatmore » collection of calibration data at each geometry will not be missed. This report also correlates the counting efficiencies between detectors, so that if the counting efficiency on one detector is not known, it can be estimated from the same geometry on another detector.« less
Reliability of High-Temperature Fixed-Point Installations over 8 Years
NASA Astrophysics Data System (ADS)
Elliott, C. J.; Ford, T.; Ongrai, O.; Pearce, J. V.
2017-12-01
At NPL, high-temperature metal-carbon eutectic fixed points have been set up for thermocouple calibration purposes since 2006, for realising reference temperatures above the highest point specified in the International Temperature Scale of 1990 for contact thermometer calibrations. Additionally, cells of the same design have been provided by NPL to other national measurement institutes (NMIs) and calibration laboratories over this period, creating traceable and ISO 17025 accredited facilities around the world for calibrating noble metal thermocouples at 1324 {°}C (Co-C) and 1492 {°}C (Pd-C). This paper shows collections of thermocouple calibration results obtained during use of the high-temperature fixed-point cells at NPL and, as further examples, the use of cells installed at CCPI Europe (UK) and NIMT (Thailand). The lifetime of the cells can now be shown to be in excess of 7 years, whether used on a weekly or monthly basis, and whether used in an NMI or industrial calibration laboratory.
Accuracy Analysis and Validation of the Mars Science Laboratory (MSL) Robotic Arm
NASA Technical Reports Server (NTRS)
Collins, Curtis L.; Robinson, Matthew L.
2013-01-01
The Mars Science Laboratory (MSL) Curiosity Rover is currently exploring the surface of Mars with a suite of tools and instruments mounted to the end of a five degree-of-freedom robotic arm. To verify and meet a set of end-to-end system level accuracy requirements, a detailed positioning uncertainty model of the arm was developed and exercised over the arm operational workspace. Error sources at each link in the arm kinematic chain were estimated and their effects propagated to the tool frames.A rigorous test and measurement program was developed and implemented to collect data to characterize and calibrate the kinematic and stiffness parameters of the arm. Numerous absolute and relative accuracy and repeatability requirements were validated with a combination of analysis and test data extrapolated to the Mars gravity and thermal environment. Initial results of arm accuracy and repeatability on Mars demonstrate the effectiveness of the modeling and test program as the rover continues to explore the foothills of Mount Sharp.
In-core flux sensor evaluations at the ATR critical facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy Unruh; Benjamin Chase; Joy Rempe
2014-09-01
Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less
Wind-Tunnel Balance Characterization for Hypersonic Research Applications
NASA Technical Reports Server (NTRS)
Lynn, Keith C.; Commo, Sean A.; Parker, Peter A.
2012-01-01
Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration.
NICMOS Cycles 13 and 14 Calibration Plans
NASA Astrophysics Data System (ADS)
Arribas, Santiago; Bergeron, Eddie; de Jong, Roeof; Malhotra, Sangeeta; Mobasher, Bahram; Noll, Keith; Schultz, Al; Wiklind, Tommy; Xu, Chun
2005-11-01
This document summarizes the NICMOS Calibration Plans for Cycles 13 and 14. These plans complement the SMOV3b, the Cycle 10 (interim), and the Cycles 11 and 12 (regular) calibration programs executed after the installation of the NICMOS Cooling System (NCS).. These previous programs have shown that the instrument is very stable, which has motivated a further reduction in the frequency of the monitoring programs for Cycle 13. In addition, for Cycle 14 some of these programs were slightly modified to account for 2 Gyro HST operations. The special calibrations on Cycle 13 were focussed on a follow up of the spectroscopic recalibration initiated in Cycle 12. This program led to the discovery of a possible count rate non-linearity, which has triggered a special program for Cycle 13 and a number of subsequent tests and calibrations during Cycle 14. At the time of writing this is a very active area of research. We also briefly comment on other calibrations defined to address other specific issues like: the autoreset test, the SPAR sequences tests, and the low-frequency flat residual for NIC1. The calibration programs for the 2-Gyro campaigns are not included here, since they have been described somewhere else. Further details and updates on specific programs can be found via the NICMOS web site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sailer, S.J.
This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCPmore » has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.« less
WFC3: SMOV and Cycle 17 Calibration Programs
NASA Astrophysics Data System (ADS)
Deustua, Susana E.; MacKenty, J.; Kimble, R.; Martel, A. R.; Baggett, S.; Barker, E.; Borders, T.; Bushouse, H.; Brown, T. M.; Dressel, L.; Dulude, M.; Hartig, G.; Hilbert, B.; Kalirai, J.; Quijano, J. Kim; Kozhurina-Platais, V.; McLean, B.; McCullough, P.; Pavlovsky, C.; Petro, L.; Pirzkal, N.; Rajan, A.; Riess, A.; Sabbi, E.; Viana, A.; Wheeler, T.; Wong, M. H.; Kuemmel, M.; Kuntschner, H.; Walsh, J.; WFC3 Team
2010-01-01
The Servicing Mission Observatory Verification (SMOV4) commissioning activities were carried out over 3 months following the installation of Wide Field Camera 3 (WFC3) into HST during Servicing Mission 4. Following SMOV4, once WFC3 was enabled for routine science observations, the WFC3 Cycle 17 Calibration program began. Both SMOV4 and Cycle 17 calibration programs characterize the UVIS and IR channels, monitor their behavior with time, and provide the reference files used in the data reduction pipeline. Comprising 43 SMOV4 and 35 Cycle 17 programs, the commissioning and calibration of WFC3 require approximately 400 orbits during its first 15 months on-orbit. This paper discusses the contents, rationale, and initial results of WFC3 SMOV4 and Cycle 17 Calibration Programs. We also highlight some issues that may affect GO programs.
Calibration of Hurricane Imaging Radiometer C-Band Receivers
NASA Technical Reports Server (NTRS)
Biswas, Sayak K.; Cecil, Daniel J.; James, Mark W.
2017-01-01
The laboratory calibration of airborne Hurricane Imaging Radiometer's C-Band multi-frequency receivers is described here. The method used to obtain the values of receiver frontend loss, internal cold load brightness temperature and injected noise diode temperature is presented along with the expected RMS uncertainty in the final calibration.
Programmable Multiple-Ramped-Voltage Power Supply
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Howell, S. K.
1993-01-01
Ramp waveforms range up to 2,000 V. Laboratory high-voltage power-supply system puts out variety of stable voltages programmed to remain fixed with respect to ground or float with respect to ramp waveform. Measures voltages it produces with high resolution; automatically calibrates, zeroes, and configures itself; and produces variety of input/output signals for use with other instruments. Developed for use with ultraviolet spectrometer. Also applicable to control of electron guns in general and to operation of such diverse equipment used in measuring scattering cross sections of subatomic particles and in industrial electron-beam welders.
2018-02-01
international proficiency testing sponsored by the Organisation for the Prohibition of Chemical Weapons (The Hague, Netherlands). Traditionally...separate batch of standards at each level for a total of six analyses at each calibration level. Concentrations of the tested calibration levels are...and ruthenium at each calibration level. 11 REFERENCES 1. General Requirements for the Competence of Testing and Calibration Laboratories
Laboratory calibration of pyrgeometers with known spectral responsivities.
Gröbner, Julian; Los, Alexander
2007-10-20
A methodology is presented to calibrate pyrgeometers measuring atmospheric long-wave radiation, if their spectral dome transmission is known. The new calibration procedure is based on a black-body cavity to retrieve the sensitivity of the pyrgeometer, combined with calculated atmospheric long-wave spectra to determine a correction function in dependence of the integrated atmospheric water vapor to convert Planck radiation spectra to atmospheric long-wave spectra. The methodology was validated with two custom CG4 pyrgeometers with known dome transmissions by a comparison to the World Infrared Standard Group of Pyrgeometers at the World Radiation Center-Infrared Radiometry Section. The responses retrieved using the new laboratory calibration agree to within 1% with the responses determined by a comparison to the WISG, which is well within the uncertainties of both methodologies.
NASA Technical Reports Server (NTRS)
Akers, James C.; Cooper, Beth A.
2004-01-01
NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive onsite assessment that includes proficiency testing and documentation review. The ATL NVLAP accreditation currently applies specifically to its ISO 3744 soundpower- level determination procedure (see the photograph) and supporting ISO 17025 quality system, although all ATL operations are conducted in accordance with its quality system. The ATL staff is currently developing additional procedures to adapt this quality system to the testing of space flight hardware in accordance with International Space Station acoustic emission requirements.<
Results of the 1980 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1981-01-01
Thirty-eight modules were carried to an altitude of about 36 kilometers. In addition to the cell calibration program, an experiment to evaluate the calibration error versus altitude was performed. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.
Design of an ultra-portable field transfer radiometer supporting automated vicarious calibration
NASA Astrophysics Data System (ADS)
Anderson, Nikolaus; Thome, Kurtis; Czapla-Myers, Jeffrey; Biggar, Stuart
2015-09-01
The University of Arizona Remote Sensing Group (RSG) began outfitting the radiometric calibration test site (RadCaTS) at Railroad Valley Nevada in 2004 for automated vicarious calibration of Earth-observing sensors. RadCaTS was upgraded to use RSG custom 8-band ground viewing radiometers (GVRs) beginning in 2011 and currently four GVRs are deployed providing an average reflectance for the test site. This measurement of ground reflectance is the most critical component of vicarious calibration using the reflectance-based method. In order to ensure the quality of these measurements, RSG has been exploring more efficient and accurate methods of on-site calibration evaluation. This work describes the design of, and initial results from, a small portable transfer radiometer for the purpose of GVR calibration validation on site. Prior to deployment, RSG uses high accuracy laboratory calibration methods in order to provide radiance calibrations with low uncertainties for each GVR. After deployment, a solar radiation based calibration has typically been used. The method is highly dependent on a clear, stable atmosphere, requires at least two people to perform, is time consuming in post processing, and is dependent on several large pieces of equipment. In order to provide more regular and more accurate calibration monitoring, the small portable transfer radiometer is designed for quick, one-person operation and on-site field calibration comparison results. The radiometer is also suited for laboratory calibration use and thus could be used as a transfer radiometer calibration standard for ground viewing radiometers of a RadCalNet site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Lai, Canhai; Marcy, Peter William
2017-05-01
A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less
Microwave blackbodies for spaceborne receivers
NASA Technical Reports Server (NTRS)
Stacey, J. M.
1985-01-01
The properties of microwave blackbody targets are explained as they apply to the calibration of spaceborne receivers. Also described are several practicable, blackbody targets used to test and calibrate receivers in the laboratory and in the thermal vacuum chamber. Problems with the precision and the accuracy of blackbody targets, and blackbody target design concepts that overcome some of the accuracy limitations present in existing target designs, are presented. The principle of the Brewster angle blackbody target is described where the blackbody is applied as a fixed-temperature test target in the laboratory and as a variable-temperature target in the thermal vacuum chamber. The reflectivity of a Brewster angle target is measured in the laboratory. From this measurement, the emissivity of the target is calculated. Radiatively cooled thermal suspensions are discussed as the coolants of blackbody targets and waveguide terminations that function as calibration devices in spaceborne receivers. Examples are given for the design of radiatively cooled thermal suspensions. Corrugated-horn antennas used to observe the cosmic background and to provide a cold-calibration source for spaceborne receivers are described.
NASA Technical Reports Server (NTRS)
Witteborn, Fred C.; Cohen, Martin; Bregman, Jesse D.; Wooden, Diane H.; Heere, Karen; Shirley, Eric L.
1999-01-01
Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the KI.5 III star alpha Boo is measured from 3 to 30 microns, and that of the C-type asteroid 1 Ceres from 5 to 30 microns. While these "standard" spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically, they provide a model-independent means of calibrating celestial flux in the spectral range from 12 to 30 microns, where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux-calibrated by theoretical modeling of these hot stars, strengthens our confidence in the applicability of the stellar models as primary irradiance standards.
Bayesian model calibration of ramp compression experiments on Z
NASA Astrophysics Data System (ADS)
Brown, Justin; Hund, Lauren
2017-06-01
Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Flow Control and Measurement in Electric Propulsion Systems: Towards an AIAA Reference Standard
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Baldwin, Jeff; Frieman, Jason D.; Walker, Mitchell L. R.; Hicks, Nathan S.; Polzin, Kurt A.; Singleton, James T.
2013-01-01
Accurate control and measurement of propellant flow to a thruster is one of the most basic and fundamental requirements for operation of electric propulsion systems, whether they be in the laboratory or on flight spacecraft. Hence, it is important for the electric propulsion community to have a common understanding of typical methods for flow control and measurement. This paper addresses the topic of propellant flow primarily for the gaseous propellant systems which have dominated laboratory research and flight application over the last few decades, although other types of systems are also briefly discussed. While most flight systems have employed a type of pressure-fed flow restrictor for flow control, both thermal-based and pressure-based mass flow controllers are routinely used in laboratories. Fundamentals and theory of operation of these types of controllers are presented, along with sources of uncertainty associated with their use. Methods of calibration and recommendations for calibration processes are presented. Finally, details of uncertainty calculations are presented for some common calibration methods and for the linear fits to calibration data that are commonly used.
NASA Technical Reports Server (NTRS)
Witteborn, Fred C.; Cohen, Martin; Bregman, Jess D.; Wooden, Diane; Heere, Karen; Shirley, Eric L.
1998-01-01
Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards.
NASA Astrophysics Data System (ADS)
Bau, Sébastien; Toussaint, André; Payet, Raphaël; Witschger, Olivier
2017-06-01
Strategies for measuring occupational exposure to aerosols composed of nanoparticles and/or ultrafine particles highlight the use of techniques for determining airborne-particle number concentration as well as number size distribution. The objective of the present work was to set up a system for conducting laboratory verification campaigns of condensation particle counters (CPCs). Providing intercomparison data as well as calibrating and checking CPCs are among the key elements in ensuring reliable laboratory or field measurement campaigns. For this purpose, the reproducible aerosol source “Calibration Tool”, initially developed by the Fraunhofer ITEM, was acquired by the Laboratory of Aerosol Metrology at INRS. As a first part of this study, a detailed characterization of the Calibration Tool developed at the laboratory is the subject of the parametric study presented here. The complete installation is named the “DCC” for “Device for Counter Check”. Used in combination with a reference counter, the DCC can now be used for routine laboratory measurements. Unlike that used for primary calibration of a CPC, the proposed protocol allows a wide range of number concentrations and particle sizes to be investigated and reproduced. The second part of this work involves comparison of the number concentrations measured by several models of CPC in parallel at the exit of a flow splitter, with respect to a reference.
Reliability of an x-ray system for calibrating and testing personal radiation dosimeters
NASA Astrophysics Data System (ADS)
Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.
2018-03-01
Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.
New NREL Method Reduces Uncertainty in Photovoltaic Module Calibrations |
calibration traceability to certified test laboratories. This reliable calibration, in turn, determines the of a spire flash simulator, SOMS outdoor test bed, and LACSS continuous simulator. In NREL's Cell and % (k=2 coverage factor). This value is the lowest reported Pmax uncertainty of any accredited test
Calibration Of Airborne Visible/IR Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Vane, G. A.; Chrien, T. G.; Miller, E. A.; Reimer, J. H.
1990-01-01
Paper describes laboratory spectral and radiometric calibration of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) applied to all AVIRIS science data collected in 1987. Describes instrumentation and procedures used and demonstrates that calibration accuracy achieved exceeds design requirements. Developed for use in remote-sensing studies in such disciplines as botany, geology, hydrology, and oceanography.
Psychophysical contrast calibration
To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli
2013-01-01
Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843
Ottaway, Josh; Farrell, Jeremy A; Kalivas, John H
2013-02-05
An essential part to calibration is establishing the analyte calibration reference samples. These samples must characterize the sample matrix and measurement conditions (chemical, physical, instrumental, and environmental) of any sample to be predicted. Calibration usually requires measuring spectra for numerous reference samples in addition to determining the corresponding analyte reference values. Both tasks are typically time-consuming and costly. This paper reports on a method named pure component Tikhonov regularization (PCTR) that does not require laboratory prepared or determined reference values. Instead, an analyte pure component spectrum is used in conjunction with nonanalyte spectra for calibration. Nonanalyte spectra can be from different sources including pure component interference samples, blanks, and constant analyte samples. The approach is also applicable to calibration maintenance when the analyte pure component spectrum is measured in one set of conditions and nonanalyte spectra are measured in new conditions. The PCTR method balances the trade-offs between calibration model shrinkage and the degree of orthogonality to the nonanalyte content (model direction) in order to obtain accurate predictions. Using visible and near-infrared (NIR) spectral data sets, the PCTR results are comparable to those obtained using ridge regression (RR) with reference calibration sets. The flexibility of PCTR also allows including reference samples if such samples are available.
Summary of the COS Cycle 22 Calibration Program
NASA Astrophysics Data System (ADS)
Sonnentrucker, Paule; Becker, George; Bostroem, Azalee; Debes, John H.; Ely, Justin; Fox, Andrew; Lockwood, Sean; Oliveira, Cristina; Penton, Steven; Proffitt, Charles; Roman-Duval, Julia; Sahnow, David; Sana, Hugues; Taylor, Jo; Welty, Alan D.; Wheeler, Thomas
2016-09-01
We summarize the calibration activities for the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope during Cycle 22 which ran from November 2014 through October 2015. We give an overview of the COS calibration plan, COS usage statistics and we briefly describe major changes with respect to the previous cycle. High-level executive summaries for each calibration program comprising Cycle 22 are also given here. Results of the analysis attached to each program are published in separate ISRs.
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.
Reflectance of Mercury's Polar Regions: Calibration and Implications for Mercury's Volatiles
NASA Astrophysics Data System (ADS)
Neumann, G. A.; Sun, X.; Cao, A.; Deutsch, A. N.; Head, J. W.
2018-05-01
Calibration of laser altimeter reflectances under widely varying conditions is supported by laboratory data from an engineering simulator to address the distribution of volatile deposits in Mercury's polar cold traps.
2009-06-01
Filters, Order 3, Type 0-C, Optional Range B.2.2 Sound Level Meter Calibration • ISO / IEC 17025 :2005 General requirements for the competence of...noise levels − NCSL -National Conference of Standards Laboratories − ISO - International Standards Organization − IEC - The International...testing and calibration laboratories • ISO 10012:2003 Measurement management systems -- Requirements for measurement processes and measuring
Tests and calibration of NIF neutron time of flight detectors.
Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C
2008-10-01
The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.
NASA Astrophysics Data System (ADS)
Chibunichev, A. G.; Kurkov, V. M.; Smirnov, A. V.; Govorov, A. V.; Mikhalin, V. A.
2016-10-01
Nowadays, aerial survey technology using aerial systems based on unmanned aerial vehicles (UAVs) becomes more popular. UAVs physically can not carry professional aerocameras. Consumer digital cameras are used instead. Such cameras usually have rolling, lamellar or global shutter. Quite often manufacturers and users of such aerial systems do not use camera calibration. In this case self-calibration techniques are used. However such approach is not confirmed by extensive theoretical and practical research. In this paper we compare results of phototriangulation based on laboratory, test-field or self-calibration. For investigations we use Zaoksky test area as an experimental field provided dense network of target and natural control points. Racurs PHOTOMOD and Agisoft PhotoScan software were used in evaluation. The results of investigations, conclusions and practical recommendations are presented in this article.
External Quality Assessment Scheme for reference laboratories - review of 8 years' experience.
Kessler, Anja; Siekmann, Lothar; Weykamp, Cas; Geilenkeuser, Wolf Jochen; Dreazen, Orna; Middle, Jonathan; Schumann, Gerhard
2013-05-01
We describe an External Quality Assessment Scheme (EQAS) intended for reference (calibration) laboratories in laboratory medicine and supervised by the Scientific Division of the International Federation of Clinical Chemistry and Laboratory Medicine and the responsible Committee on Traceability in Laboratory Medicine. The official EQAS website, RELA (www.dgkl-rfb.de:81), is open to interested parties. Information on all requirements for participation and results of surveys are published annually. As an additional feature, the identity of every participant in relation to the respective results is disclosed. The results of various groups of measurands (metabolites and substrates, enzymes, electrolytes, glycated hemoglobins, proteins, hormones, thyroid hormones, therapeutic drugs) are discussed in detail. The RELA system supports reference measurement laboratories preparing for accreditation according to ISO 17025 and ISO 15195. Participation in a scheme such as RELA is one of the requirements for listing of the services of a calibration laboratory by the Joint Committee on Traceability in Laboratory Medicine.
The calibration and flight test performance of the space shuttle orbiter air data system
NASA Technical Reports Server (NTRS)
Dean, A. S.; Mena, A. L.
1983-01-01
The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason
2010-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.
In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
NASA Technical Reports Server (NTRS)
Conel, James E.; Green, Robert O.; Alley, Ronald E.; Bruegge, Carol J.; Carrere, Veronique; Margolis, Jack S.; Vane, Gregg; Chrien, Thomas G.; Slater, Philip N.; Biggard, Stuart F.
1988-01-01
A reflectance-based method was used to provide an analysis of the in-flight radiometric performance of AVIRIS. Field spectral reflectance measurements of the surface and extinction measurements of the atmosphere using solar radiation were used as input to atmospheric radiative transfer calculations. Five separate codes were used in the analysis. Four include multiple scattering, and the computed radiances from these for flight conditions were in good agreement. Code-generated radiances were compared with AVIRIS-predicted radiances based on two laboratory calibrations (pre- and post-season of flight) for a uniform highly reflecting natural dry lake target. For one spectrometer (C), the pre- and post-season calibration factors were found to give identical results, and to be in agreement with the atmospheric models that include multiple scattering. This positive result validates the field and laboratory calibration technique. Results for the other spectrometers (A, B and D) were widely at variance with the models no matter which calibration factors were used. Potential causes of these discrepancies are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun
2014-08-15
Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less
Rajan, K N Govinda; Selvam, T Palani; Bhatt, B C; Vijayam, M; Patki, V S; Vinatha; Pendse, A M; Kannan, V
2002-04-07
The primary standard of low air kerma rate sources or beams, maintained at the Radiological Standards Laboratory (RSL) of the Bhabha Atomic Research Centre (BARC), is a 60 cm3 spherical graphite ionization chamber. A 192Ir HDR source was standardized at the hospital site in units of air kerma strength (AKS) using this primary standard. A 400 cm3 bakelite chamber, functioning as a reference standard at the RSL for a long period, at low air kerma rates (compared to external beam dose rates), was calibrated against the primary standard. It was seen that the primary standard and the reference standard, both being of low Z, showed roughly the same scatter response and yielded the same calibration factor for the 400 cm3 reference chamber, with or without room scatter. However, any likelihood of change in the reference chamber calibration factor would necessitate the re-transport of the primary standard to the hospital site for re-calibration. Frequent transport of the primary standard can affect the long-term stability of the primary standard, due to its movement or other extraneous causes. The calibration of the reference standard against the primary standard at the RSL, for an industrial type 192Ir source maintained at the laboratory, showed excellent agreement with the hospital calibration, making it possible to check the reference chamber calibration at RSL itself. Further calibration procedures have been developed to offer traceable calibration of the hospital well ionization chambers.
The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review
NASA Astrophysics Data System (ADS)
Chen, Maosi; Davis, John; Tang, Hongzhao; Ownby, Carolyn; Gao, Wei
2013-09-01
The continuous, over two-decade data record from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is ideal for climate research which requires timely and accurate information of important atmospheric components such as gases, aerosols, and clouds. Except for parameters derived from MFRSR measurement ratios, which are not impacted by calibration error, most applications require accurate calibration factor(s), angular correction, and spectral response function(s) from calibration. Although a laboratory lamp (or reference) calibration can provide all the information needed to convert the instrument readings to actual radiation, in situ calibration methods are implemented routinely (daily) to fill the gaps between lamp calibrations. In this paper, the basic structure and the data collection and pretreatment of the MFRSR are described. The laboratory lamp calibration and its limitations are summarized. The cloud screening algorithms for MFRSR data are presented. The in situ calibration methods, the standard Langley method and its variants, the ratio-Langley method, the general method, Alexandrov's comprehensive method, and Chen's multi-channel method, are outlined. The reason that all these methods do not fit for all situations is that they assume some properties, such as aerosol optical depth (AOD), total optical depth (TOD), precipitable water vapor (PWV), effective size of aerosol particles, or angstrom coefficient, are invariant over time. These properties are not universal and some of them rarely happen. In practice, daily calibration factors derived from these methods should be smoothed to restrain error.
Results of the 1995 JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1995-01-01
The Jet Propulsion Laboratory (JPL) solar cell calibration program was conceived to produce reference standards for the purpose of accurately setting solar simulator intensities. The concept was to fly solar cells on a high-altitude balloon, to measure their output at altitudes near 120,000 ft (36.6 km), to recover the cells, and to use them as reference standards. The procedure is simple. The reference cell is placed in the simulator beam, and the beam intensity is adjusted until the reference cell reads the same as it read on the balloon. As long as the reference cell has the same spectral response as the cells or panels to be measured, this is a very accurate method of setting the intensity. But as solar cell technology changes, the spectral response of the solar cells changes also, and reference standards using the new technology must be built and calibrated. Until the summer of 1985, there had always been a question as to how much the atmosphere above the balloon modified the solar spectrum. If the modification was significant, the reference cells might not have the required accuracy. Solar cells made in recent years have increasingly higher blue responses, and if the atmosphere has any effect at all, it would be expected to modify the calibration of these newer blue cells much more so than for cells made in the past. JPL has been flying calibration standards on high-altitude balloons since 1963 and continues to organize a calibration balloon flight at least once a year. The 1995 flight was the 48th flight in this series. The 1995 flight incorporated 46 solar cell modules from 7 different participants. The payload included Si, amorphous Si, GaAs, GaAs/Ge, dual junction cells, top and bottom sections of dual junction cells, and a triple junction cell. A new data acquisition system was built for the balloon flights and flown for the first time on the 1995 flight. This system allows the measurement of current-voltage (I-V) curves for 20 modules in addition to measurement of modules with fixed loads as had been done in the past.
Phase Calibration for the Block 1 VLBI System
NASA Technical Reports Server (NTRS)
Roth, M. G.; Runge, T. F.
1983-01-01
Very Long Baseline Interferometry (VLBI) in the DSN provides support for spacecraft navigation, Earth orientation measurements, and synchronization of network time and frequency standards. An improved method for calibrating instrumental phase shifts has recently been implemented as a computer program in the Block 1 system. The new calibration program, called PRECAL, performs calibrations over intervals as small as 0.4 seconds and greatly reduces the amount of computer processing required to perform phase calibration.
Chirila, Madalina M; Sarkisian, Khachatur; Andrew, Michael E; Kwon, Cheol-Woong; Rando, Roy J; Harper, Martin
2015-04-01
The current measurement method for occupational exposure to wood dust is by gravimetric analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated by analysis of the same samples between two laboratories. Field samples were collected from six wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. Gravimetric mass was determined in one laboratory by weighing the filters before and after aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on the filter which is placed on a motorized stage inside the spectrometer. The metric used for the DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 cm(-1). Calibration curves were constructed separately in both laboratories using the same sets of prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125-4 mg of wood dust. Using the same procedure in both laboratories to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 25% of the average result with a mean difference between the laboratories of 18.5%. Some observations are included as to how the calibration and analysis can be improved. In particular, determining the wood type on each sample to allow matching to the most appropriate calibration increases the apparent proportion of wood dust in the sample and this likely provides more realistic DRIFTS results. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.
Abdul-Ali, Deborah; Loeffler, Juergen; White, P. Lewis; Wickes, Brian; Herrera, Monica L.; Alexander, Barbara D.; Baden, Lindsey R.; Clancy, Cornelius; Denning, David; Nguyen, M. Hong; Sugrue, Michele; Wheat, L. Joseph; Wingard, John R.; Donnelly, J. Peter; Barnes, Rosemary; Patterson, Thomas F.; Caliendo, Angela M.
2013-01-01
Twelve laboratories evaluated candidate material for an Aspergillus DNA calibrator. The DNA material was quantified using limiting-dilution analysis; the mean concentration was determined to be 1.73 × 1010 units/ml. The calibrator can be used to standardize aspergillosis diagnostic assays which detect and/or quantify nucleic acid. PMID:23616459
Lyon, G Marshall; Abdul-Ali, Deborah; Loeffler, Juergen; White, P Lewis; Wickes, Brian; Herrera, Monica L; Alexander, Barbara D; Baden, Lindsey R; Clancy, Cornelius; Denning, David; Nguyen, M Hong; Sugrue, Michele; Wheat, L Joseph; Wingard, John R; Donnelly, J Peter; Barnes, Rosemary; Patterson, Thomas F; Caliendo, Angela M
2013-07-01
Twelve laboratories evaluated candidate material for an Aspergillus DNA calibrator. The DNA material was quantified using limiting-dilution analysis; the mean concentration was determined to be 1.73 × 10(10) units/ml. The calibrator can be used to standardize aspergillosis diagnostic assays which detect and/or quantify nucleic acid.
Thermocouple Calibration and Accuracy in a Materials Testing Laboratory
NASA Technical Reports Server (NTRS)
Lerch, B. A.; Nathal, M. V.; Keller, D. J.
2002-01-01
A consolidation of information has been provided that can be used to define procedures for enhancing and maintaining accuracy in temperature measurements in materials testing laboratories. These studies were restricted to type R and K thermocouples (TCs) tested in air. Thermocouple accuracies, as influenced by calibration methods, thermocouple stability, and manufacturer's tolerances were all quantified in terms of statistical confidence intervals. By calibrating specific TCs the benefits in accuracy can be as great as 6 C or 5X better compared to relying on manufacturer's tolerances. The results emphasize strict reliance on the defined testing protocol and on the need to establish recalibration frequencies in order to maintain these levels of accuracy.
Global Particle Size Distributions: Measurements during the Atmospheric Tomography (ATom) Project
NASA Astrophysics Data System (ADS)
Brock, C. A.; Williamson, C.; Kupc, A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Schuh, H.; Erdesz, F.
2016-12-01
The Atmospheric Tomography (ATom) project is a three-year NASA-sponsored program to map the spatial and temporal distribution of greenhouse gases, reactive species, and aerosol particles from the Arctic to the Antarctic. In situ measurements are being made on the NASA DC-8 research aircraft, which will make four global circumnavigations of the Earth over the mid-Pacific and mid-Atlantic Oceans while continuously profiling between 0.2 and 13 km altitude. In situ microphysical measurements will provide an unique and unprecedented dataset of aerosol particle size distributions between 0.004 and 50 µm diameter. This unbiased, representative dataset allows investigation of new particle formation in the remote troposphere, placing strong observational constraints on the chemical and physical mechanisms that govern particle formation and growth to cloud-active sizes. Particles from 0.004 to 0.055 µm are measured with 10 condensation particle counters. Particles with diameters from 0.06 to 1.0 µm are measured with one-second resolution using two ultra-high sensitivity aerosol size spectrometers (UHSASes). A laser aerosol spectrometer (LAS) measures particle size distributions between 0.12 and 10 µm in diameter. Finally, a cloud, aerosol and precipitation spectrometer (CAPS) underwing optical spectrometer probe sizes ambient particles with diameters from 0.5 to 50 µm and images and sizes precipitation-sized particles. Additional particle instruments on the payload include a high-resolution time-of-flight aerosol mass spectrometer and a single particle laser-ablation aerosol mass spectrometer. The instruments are calibrated in the laboratory and on the aircraft. Calibrations are checked in flight by introducing four sizes of polystyrene latex (PSL) microspheres into the sampling inlet. The CAPS probe is calibrated using PSL and glass microspheres that are aspirated into the sample volume. Comparisons between the instruments and checks with the calibration aerosol indicate flight performance within uncertainties expected from laboratory calibrations. Analysis of data from the first ATom circuit in August 2016 shows high concentrations of newly formed particles in the tropical middle and upper troposphere and Arctic lower troposphere.
Mohan, Vishnu; Hersh, William R
2013-01-01
There is a need for informatics educational programs to develop laboratory courses that facilitate hands-on access to an EHR, and allow students to learn and evaluate functionality and configuration options. This is particularly relevant given the diversity of backgrounds of informatics students. We implemented an EHR laboratory course that allowed students to explore an EHR in both inpatient and outpatient clinical environments. The course focused on specific elements of the EHR including order set development, customization, clinical decision support, ancillary services, and billing and coding functionality. Students were surveyed at the end of the course for their satisfaction with the learning experience. We detailed challenges as well as lessons learned after analyzing student evaluations of this course. Features that promote the successful offering of an online EHR course, include (1) using more than one EHR to allow students to compare functionalities, (2) ensuring appropriate course calibration, (3) countering issues specific to EHR usability, and (4) fostering a fertile environment for rich online conversations are discussed.
NASA Technical Reports Server (NTRS)
Vane, Gregg (Editor)
1987-01-01
The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.
Operating Experience Review of the INL HTE Gas Monitoring System
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Cadwallader; K. G. DeWall
2010-06-01
This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.
Calibration of water-velocity meters
Kaehrle, William R.; Bowie, James E.
1988-01-01
The U.S. Geological Survey, Department of the Interior, as part of its responsibility to appraise the quantity of water resources in the United States, maintains facilities for the calibration of water-velocity meters at the Gulf Coast Hydroscience Center's Hydraulic Laboratory Facility, NSTL, Mississippi. These meters are used in hydrologic studies by the Geological Survey, U.S. Army Corps of Engineers, U.S. Department of Energy, state agencies, universities, and others in the public and private sector. This paper describes calibration facilities, types of water-velocity meters calibrated, and calibration standards, methods and results.
Accreditation experience of radioisotope metrology laboratory of Argentina.
Iglicki, A; Milá, M I; Furnari, J C; Arenillas, P; Cerutti, G; Carballido, M; Guillén, V; Araya, X; Bianchini, R
2006-01-01
This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (alpha/beta)-gamma coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.
Condensation nuclei measurement in the stratosphere for the NASA ACE program
NASA Astrophysics Data System (ADS)
Wilson, James Charles
1994-11-01
A condensation nucleus counter which operated at stratospheric pressures was developed, designed, and constructed. It was calibrated in the laboratory. Its response as a function of particle size and concentration was reported. This was the first time that the response of such an instrument was verified in the laboratory. An inlet was constructed which provided near isokinetic sampling. The resulting instrument, the U-2 CNC, was deployed on NASA U-2 aircraft in the study of the climatic effects of aerosol. These studies occurred in March, April, May, July, November, and December of 1992 and in April, May, June, and December of 1983. The U-2 CNC was used in the study of the aerosol cloud resulting from the eruption of El Chichon. It permitted the observation of new particle formation in the stratosphere.
NASA Technical Reports Server (NTRS)
Taff, L. G.; Beatty, D. E.; Yakutis, A. J.; Randall, P. M. S.
1985-01-01
The majority of work performed by the Lincoln Laboratory's Space Surveillance Group, at the request of NASA, to define the near-earth population of man-made debris is summarized. Electrooptical devices, each with a 1.2 deg FOV, were employed at the GEODSS facility in New Mexico. Details of the equipment calibration and alignment procedures are discussed, together with implementation of a synchronized time code for computer controlled videotaping of the imagery. Parallax and angular speed data served as bases for distinguishing between man-made debris and meteoroids. The best visibility was obtained in dawn and dusk twilight conditions at elevation ranges of 300-2000 km. Tables are provided of altitudinal density distribution of debris. It is noted that the program also yielded an extensive data base on meteoroid rates.
Condensation nuclei measurement in the stratosphere for the NASA ACE program
NASA Technical Reports Server (NTRS)
Wilson, James Charles
1994-01-01
A condensation nucleus counter which operated at stratospheric pressures was developed, designed, and constructed. It was calibrated in the laboratory. Its response as a function of particle size and concentration was reported. This was the first time that the response of such an instrument was verified in the laboratory. An inlet was constructed which provided near isokinetic sampling. The resulting instrument, the U-2 CNC, was deployed on NASA U-2 aircraft in the study of the climatic effects of aerosol. These studies occurred in March, April, May, July, November, and December of 1992 and in April, May, June, and December of 1983. The U-2 CNC was used in the study of the aerosol cloud resulting from the eruption of El Chichon. It permitted the observation of new particle formation in the stratosphere.
Zantek, N D; Hsu, P; Refaai, M A; Ledford-Kraemer, M; Meijer, P; Van Cott, E M
2013-06-01
The performance of factor VII (FVII) assays currently used by clinical laboratories was examined in North American Specialized Coagulation Laboratory Association (NASCOLA) proficiency tests. Data from 12 surveys conducted between 2008 and 2010, involving 20 unique specimens plus four repeat-tested specimens, were analyzed. The number of laboratories per survey was 49-54 with a total of 1224 responses. Numerous reagent/instrument combinations were used. For FVII > 80 or <40 U/dL, 99.5% of results (859/863) were correctly classified by laboratories as normal/abnormal. Classification of specimens with 40-73 U/dL FVII was heterogeneous. Interlaboratory precision was better for normal specimens (coefficient of variation (CV) 10.7%) than for FVII<20 U/dL (CV 33.1%), with a mean CV of 17.2% per specimen. Intralaboratory precision for repeated specimens demonstrated no significant difference between the paired survey results (mean absolute difference 2.5-5.0 U/dL). For specimens with FVII >50 U/dL, among commonly used methods, one thromboplastin and one calibrator produced results 5-6 U/dL higher and another thromboplastin and calibrator produced results 5-6 U/dL lower than all other methods, and human thromboplastin differed from rabbit by +7.6 U/dL. Preliminary evidence suggests these differences could be due to the calibrator. For FVII <50 U/dL, differences among the commonly used reagents and calibrators were generally not significant. © 2013 Blackwell Publishing Ltd.
First International Symposium on Strain Gauge Balances. Pt. 1
NASA Technical Reports Server (NTRS)
Tripp, John S. (Editor); Tcheng, Ping (Editor)
1999-01-01
The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.
Laboratory data on coarse-sediment transport for bedload-sampler calibrations
Hubbell, David Wellington; Stevens, H.H.; Skinner, J.V.; Beverage, J.P.
1987-01-01
A unique facility capable of recirculating and continuously measuring the transport rates of sediment particles ranging in size from about 1 to 75 millimeters in diameter was designed and used in an extensive program involving the calibration of bedload samplers. The facility consisted of a 9-footwide by 6-foot-deep by 272-foot-long rectangular channel that incorporated seven automated collection pans and a sedimentreturn system. The collection pans accumulated, weighed, and periodically dumped bedload falling through a slot in the channel floor. Variations of the Helley-Smith bedload sampler, an Arnhem sampler, and two VUV-type samplers were used to obtain transport rates for comparison with rates measured at the bedload slot (trap). Tests were conducted under 20 different hydraulic and sedimentologic conditions (runs) with 3 uniform-size bed materials and a bed-material mixture. Hydraulic and sedimentologic data collected concurrently with the calibration measurements are described and, in part, summarized in tabular and graphic form. Tables indicate the extent of the data, which are available on magnetic media. The information includes sediment-transport rates; particle-size distributions; water discharges, depths, and slopes; longitudinal profiles of streambed-surface elevations; and temporal records of streambed-surface elevations at fixed locations.
First International Symposium on Strain Gauge Balances. Part 2
NASA Technical Reports Server (NTRS)
Tripp, John S (Editor); Tcheng, Ping (Editor)
1999-01-01
The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.
POLCAL - POLARIMETRIC RADAR CALIBRATION
NASA Technical Reports Server (NTRS)
Vanzyl, J.
1994-01-01
Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the processing altitude or in the aircraft roll angle are possible causes of error in computing the antenna patterns inside the processor. POLCAL uses an altitude error correction algorithm to correctly remove the antenna pattern from the SAR images. POLCAL also uses a topographic calibration algorithm to reduce calibration errors resulting from ground topography. By utilizing the backscatter measurements from either the corner reflectors or a well-known distributed target, POLCAL can correct the residual amplitude offsets in the various polarization channels and correct for the absolute gain of the radar system. POLCAL also gives the user the option of calibrating a scene using the calibration data from a nearby site. This allows precise calibration of all the scenes acquired on a flight line where corner reflectors were present. Construction and positioning of corner reflectors is covered extensively in the program documentation. In an effort to keep the POLCAL code as transportable as possible, the authors eliminated all interactions with a graphics display system. For this reason, it is assumed that users will have their own software for doing the following: (1) synthesize an image using HH or VV polarization, (2) display the synthesized image on any display device, and (3) read the pixel locations of the corner reflectors from the image. The only inputs used by the software (in addition to the input Stokes matrix data file) is a small data file with the corner reflector information. POLCAL is written in FORTRAN 77 for use on Sun series computers running SunOS and DEC VAX computers running VMS. It requires 4Mb of RAM under SunOS and 3.7Mb of RAM under VMS for execution. The standard distribution medium for POLCAL is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 9-track 1600 BPI magnetic tape in DEC VAX FILES-11 format or on a TK50 tape cartridge in DEC VAX FILES-11 format. Other distribution media may be available upon request. Documentation is included in the price of the program. POLCAL 4.0 was released in 1992 and is a copyrighted work with all copyright vested in NASA.
Development of a High Resolution X-ray Spectrometer on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Gao, L.; Kraus, B.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Liedahl, D.; Macphee, A. G.; Le, H. P.; Thorn, D.; Nelson, D.
2017-10-01
A high-resolution x-ray spectrometer has been designed, calibrated, and deployed on the National Ignition Facility (NIF) to measure plasma parameters for a Kr-doped surrogate capsule imploded at NIF conditions. Two conical crystals, each diffracting the He α and He β complexes respectively, focus the spectra onto a steak camera photocathode for time-resolved measurements with a temporal resolution of <20 ps. A third cylindrical crystal focuses the entire He α to He β spectrum onto an image plate for a time-integrated spectrum to correlate the two streaked signals. The instrument was absolutely calibrated by the x-ray group at the Princeton Plasma Physics Laboratory using a micro-focus x-ray source. Detailed calibration procedures, including source and spectrum alignment, energy calibration, crystal performance evaluation, and measurement of the resolving power and the integrated reflectivity will be presented. Initial NIF experimental results will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
NASA Technical Reports Server (NTRS)
Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.
1988-01-01
Spectral and radiometric calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were performed in the laboratory in June and November, 1987, at the beginning and end of the first flight season. Those calibrations are described along with changes in instrument characteristics that occurred during the flight season as a result of factors such as detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally-induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. These factors caused loss of signal in three spectrometers, loss of spectral resolution in two spectrometers, and added uncertainty in the radiometry of AVIRIS. Results from in-flight assessment of the laboratory calibrations are presented. A discussion is presented of improvements made to the instrument since the end of the first flight season and plans for the future. Improvements include: (1) a new thermal control system for stabilizing spectrometer temperatures, (2) kinematic mounting of the spectrometers to the instrument rack, and (3) new epoxy for attaching the optical fibers inside their mounting tubes.
NASA Technical Reports Server (NTRS)
Tawfik, Hazem
1991-01-01
A relatively simple, inexpensive, and generic technique that could be used in both laboratories and some operation site environments is introduced at the Robotics Applications and Development Laboratory (RADL) at Kennedy Space Center (KSC). In addition, this report gives a detailed explanation of the set up procedure, data collection, and analysis using this new technique that was developed at the State University of New York at Farmingdale. The technique was used to evaluate the repeatability, accuracy, and overshoot of the Unimate Industrial Robot, PUMA 500. The data were statistically analyzed to provide an insight into the performance of the systems and components of the robot. Also, the same technique was used to check the forward kinematics against the inverse kinematics of RADL's PUMA robot. Recommendations were made for RADL to use this technique for laboratory calibration of the currently existing robots such as the ASEA, high speed controller, Automated Radiator Inspection Device (ARID) etc. Also, recommendations were made to develop and establish other calibration techniques that will be more suitable for site calibration environment and robot certification.
Solar neutrino detectors as sterile neutrino hunters
NASA Astrophysics Data System (ADS)
Pallavicini, Marco; Borexino-SOX Collaboration; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cloué, O.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jedrzejczak, K.; Jeschke, D.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Ortica, F.; Papp, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Reinert, Y.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Veyssière, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.
2017-09-01
The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a 144Ce-144Pr anti-neutrino source and, possibly in the medium term future, with a 51Cr neutrino source.
Calibrating/testing meters in hot water test bench VM7
NASA Astrophysics Data System (ADS)
Kling, E.; Stolt, K.; Lau, P.; Mattiasson, K.
A Hot Water Test Bench, VM7, has been developed and constructed for the calibration and testing of volume and flowmeters, in a project at the National Volume Measurement Laboratory at the Swedish National Testing and Research Institute. The intended area of use includes use as a reference at audit measurements, e.g. for accredited laboratories, calibration of meters for the industry and for the testing of hot water meters. The objective of the project, which was initiated in 1989, was to design equipment with stable flow and with a minimal temperature drop even at very low flow rates. The principle of the design is a closed system with two pressure tanks at different pressures. The water is led from the high pressure tank through the test object and the volume standard, in the form of master meters or a piston prover alternatively, to the low pressure tank. Calibrations/tests are made comparing the indication of the test object to that of master meters covering the current flow rate. These are, in the same test cycle, calibrated to the piston prover. Alternatively, the test object can be calibrated directly to the piston prover.
Final report on EURAMET.L-S21: `Supplementary comparison of parallel thread gauges'
NASA Astrophysics Data System (ADS)
Mudronja, Vedran; Šimunovic, Vedran; Acko, Bojan; Matus, Michael; Bánréti, Edit; István, Dicso; Thalmann, Rudolf; Lassila, Antti; Lillepea, Lauri; Bartolo Picotto, Gian; Bellotti, Roberto; Pometto, Marco; Ganioglu, Okhan; Meral, Ilker; Salgado, José Antonio; Georges, Vailleau
2015-01-01
The results of the comparison of parallel thread gauges between ten European countries are presented. Three thread plugs and three thread rings were calibrated in one loop. Croatian National Laboratory for Length (HMI/FSB-LPMD) acted as the coordinator and pilot laboratory of the comparison. Thread angle, thread pitch, simple pitch diameter and pitch diameter were measured. Pitch diameters were calibrated within 1a, 2a, 1b and 2b calibration categories in accordance with the EURAMET cg-10 calibration guide. A good agreement between the measurement results and differences due to different calibration categories are analysed in this paper. This comparison was a first EURAMET comparison of parallel thread gauges based on the EURAMET ctg-10 calibration guide, and has made a step towards the harmonization of future comparisons with the registration of CMC values for thread gauges. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
WFC3 Cycle 19 Calibration Program
NASA Astrophysics Data System (ADS)
Sabbi, E.; WFC3 Team
2012-03-01
The Cycle 19 WFC3 Calibration Program runs from October 2011 through September 2012 and is designed to measure and monitor the behavior of both the UVIS and IR channels. The program was prepared with the actual usage of WFC3 in mind, to provide the best calibration data and reference les for the approved scientic programs. During Cycle 19 the WFC3 team is using 125 external and 1587 internal orbits of HST time divided in 29 di erent programs, grouped in six categories: Monitor, Photometry, Spectroscopy, Detectors, Flat-elds, and Image Quality
NASA Technical Reports Server (NTRS)
Barnes, Robert A.; Holmes, Alan W.; Barnes, William L.; Esaias, Wayne E.; Mcclain, Charles R.; Svitek, Tomas; Hooker, Stanford B.; Firestone, Elaine R.; Acker, James G.
1994-01-01
Based on the operating characteristics of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), calibration equations have been developed that allow conversion of the counts from the radiometer into Earth-existing radiances. These radiances are the geophysical properties the instrument has been designed to measure. SeaWiFS uses bilinear gains to allow high sensitivity measurements of ocean-leaving radiances and low sensitivity measurements of radiances from clouds, which are much brighter than the ocean. The calculation of these bilinear gains is central to the calibration equations. Several other factors within these equations are also included. Among these are the spectral responses of the eight SeaWiFS bands. A band's spectral response includes the ability of the band to isolate a portion of the electromagnetic spectrum and the amount of light that lies outside of that region. The latter is termed out-of-band response. In the calibration procedure, some of the counts from the instrument are produced by radiance in the out-of-band region. The number of those counts for each band is a function of the spectral shape of the source. For the SeaWiFS calibration equations, the out-of-band responses are converted from those for the laboratory source into those for a source with the spectral shape of solar flux. The solar flux, unlike the laboratory calibration, approximates the spectral shape of the Earth-existing radiance from the oceans. This conversion modifies the results from the laboratory radiometric calibration by 1-4 percent, depending on the band. These and other factors in the SeaWiFS calibration equations are presented here, both for users of the SeaWiFS data set and for researchers making ground-based radiance measurements in support of Sea WiFS.
NASA Technical Reports Server (NTRS)
Novelli, P. C.; Collins, J. E., Jr.; Myers, R. C.; Sachse, G. W.; Scheel, H. E.
1994-01-01
The carbon monoxide (CO) reference scale created by the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) is used to quantify measurements of CO in the atmosphere, calibrate standards of other laboratories and to otherwise provide reference gases to the community measuring atmospheric CO. This reference scale was created based upon a set of primary standards prepared by gravimetric methods at CMDL and has been propagated to a set of working standards. In this paper we compare CO mixing ratios assigned to the working standards by three approaches: (1) calibration against the original gravimetric standards, (2) calibration using only working standards as the reference gas, and (3) calibration against three new gravimetric standards prepared to CMDL. The agreement between these values was typically better than 1%. The calibration histories of CMDL working standards are reviewed with respect to expected rates of CO change in the atmosphere. Using a Monte Carlo approach to simulate the effect of drifting standards on calculated mixing ratios, we conclude that the error solely associated with the maintenance of standards will limit the ability to detect small CO changes in the atmosphere. We also report results of intercalibration experiments conducted between CMDL and the Diode Laser Sensor Group (DACOM) at the NASA Langley Research Center (Hampton, Virginia), and CMDL and the Fraunhofer-Institut (Garmisch-Partenkirchen, Germany). Each laboratory calibrated several working standards for CO using their reference gases, and these results were compared to calibrations conducted by CMDL. The intercomparison of eight standards (CO concentrations between approximately 100 and approximately 165 ppb) by CMDL and NASA agreed to better than +/- 2%. The calibration of six standards (CO concentrations between approximately 50 and approximately 210 ppb) by CMDL and the Fraunhofer-Institut agreed to within +/- 2% for four standards, and to within +/- 5% for all six standards.
Operating experience review of an INL gas monitoring system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee C.; DeWall, K. G.; Herring, J. S.
2015-03-12
This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.
Masanza, Monica Musenero; Nqobile, Ndlovu; Mukanga, David; Gitta, Sheba Nakacubo
2010-12-03
Laboratory is one of the core capacities that countries must develop for the implementation of the International Health Regulations (IHR[2005]) since laboratory services play a major role in all the key processes of detection, assessment, response, notification, and monitoring of events. While developed countries easily adapt their well-organized routine laboratory services, resource-limited countries need considerable capacity building as many gaps still exist. In this paper, we discuss some of the efforts made by the African Field Epidemiology Network (AFENET) in supporting laboratory capacity development in the Africa region. The efforts range from promoting graduate level training programs to building advanced technical, managerial and leadership skills to in-service short course training for peripheral laboratory staff. A number of specific projects focus on external quality assurance, basic laboratory information systems, strengthening laboratory management towards accreditation, equipment calibration, harmonization of training materials, networking and provision of pre-packaged laboratory kits to support outbreak investigation. Available evidence indicates a positive effect of these efforts on laboratory capacity in the region. However, many opportunities exist, especially to support the roll-out of these projects as well as attending to some additional critical areas such as biosafety and biosecuity. We conclude that AFENET's approach of strengthening national and sub-national systems provide a model that could be adopted in resource-limited settings such as sub-Saharan Africa.
Photogrammetric calibration of the NASA-Wallops Island image intensifier system
NASA Technical Reports Server (NTRS)
Harp, B. F.
1972-01-01
An image intensifier was designed for use as one of the primary tracking systems for the barium cloud experiment at Wallops Island. Two computer programs, a definitive stellar camara calibration program and a geodetic stellar camara orientation program, were originally developed at Wallops on a GE 625 computer. A mathematical procedure for determining the image intensifier distortions is outlined, and the implementation of the model in the Wallops computer programs is described. The analytical calibration of metric cameras is also discussed.
Optical laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre
NASA Astrophysics Data System (ADS)
Lakkala, Kaisa; Suokanerva, Hanne; Matti Karhu, Juha; Aarva, Antti; Poikonen, Antti; Karppinen, Tomi; Ahponen, Markku; Hannula, Henna-Reetta; Kontu, Anna; Kyrö, Esko
2016-07-01
This paper describes the laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre (FMI-ARC, http://fmiarc.fmi.fi). They comprise an optical laboratory, a facility for biological studies, and an office. A dark room has been built, in which an optical table and a fixed lamp test system are set up, and the electronics allow high-precision adjustment of the current. The Brewer spectroradiometer, NILU-UV multifilter radiometer, and Analytical Spectral Devices (ASD) spectroradiometer of the FMI-ARC are regularly calibrated or checked for stability in the laboratory. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, Keith
The measurement of photovoltaic (PV) performance with respect to reference conditions requires measuring current versus voltage for a given tabular reference spectrum, junction temperature, and total irradiance. This report presents the procedures implemented by the PV Cell and Module Performance Characterization Group at the National Renewable Energy Laboratory (NREL) to achieve the lowest practical uncertainty. A rigorous uncertainty analysis of these procedures is presented, which follows the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement. This uncertainty analysis is required for the team’s laboratory accreditation under ISO standard 17025, “General Requirements for the Competence ofmore » Testing and Calibration Laboratories.” The report also discusses additional areas where the uncertainty can be reduced.« less
Information Management Systems in the Undergraduate Instrumental Analysis Laboratory.
ERIC Educational Resources Information Center
Merrer, Robert J.
1985-01-01
Discusses two applications of Laboratory Information Management Systems (LIMS) in the undergraduate laboratory. They are the coulometric titration of thiosulfate with electrogenerated triiodide ion and the atomic absorption determination of calcium using both analytical calibration curve and standard addition methods. (JN)
Optical Characterization Laboratory | Energy Systems Integration Facility |
Laboratory offers the following capabilities. Solar Thermal Calibration The Optical Characterization collectors for solar thermal energy generation to enable the study of increasingly stable (less intermittent Characterization Laboratory's environmental characterization hub offers high-temperature/humidity thermal chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, S.S.; Attari, A.
1995-01-01
The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less
NASA Astrophysics Data System (ADS)
Morales, Abed; Quiroga, Aldo; Daued, Arturo; Cantero, Diana; Sequeira, Francisco; Castro, Luis Carlos; Becerra, Luis Omar; Salazar, Manuel; Vega, Maria
2017-01-01
A supplementary comparison was made between SIM laboratories concerning the calibration of four hydrometers within the range of 600 kg/m3 to 2000 kg/m3. The main objectives of the comparison were to evaluate the degree of equivalences SIM NMIs in the calibration of hydrometers of high accuracy. The participant NMIs were: CENAM, IBMETRO, INEN, INDECOPI, INM, INTN and LACOMET. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Astrophysics Data System (ADS)
Bloembergen, P.; Bonnier, G.; Ronsin, H.
1990-01-01
Argon triple point calibration facilities have been compared among eight laboratories with one transfer system, employing local long-stem standard platinum resistance thermometers. The apparatus intercompared, included a sealed cell and its associated cryostat. As is evidenced by the results of long-term investigations, previously performed at the INM, cells of the type employed may show a triple-point temperature, which is stable within the reproducibility of the measurements (simeq0,1 mK) over a period of about 10 years. At each laboratory the mean difference between the Argon triple-point temperature of the transfer cell (t) and the local cell (i) has been determined, using a standard resistance thermometer previously calibrated at the fixed points, according to the IPTS-68; associated repeatabilities are typically of the order of 0,1 mK. The reproducibility attained by measuring the mean difference in different laboratories, using cells of the same type and origin (INM), amounts to 0,4 mK.
40 CFR 1065.920 - PEMS Calibrations and verifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065... verification. The verification consists of operating an engine over a duty cycle in the laboratory and... by laboratory equipment as follows: (1) Mount an engine on a dynamometer for laboratory testing...
White, Helen E; Hedges, John; Bendit, Israel; Branford, Susan; Colomer, Dolors; Hochhaus, Andreas; Hughes, Timothy; Kamel-Reid, Suzanne; Kim, Dong-Wook; Modur, Vijay; Müller, Martin C; Pagnano, Katia B; Pane, Fabrizio; Radich, Jerry; Cross, Nicholas C P; Labourier, Emmanuel
2013-06-01
Current guidelines for managing Philadelphia-positive chronic myeloid leukemia include monitoring the expression of the BCR-ABL1 (breakpoint cluster region/c-abl oncogene 1, non-receptor tyrosine kinase) fusion gene by quantitative reverse-transcription PCR (RT-qPCR). Our goal was to establish and validate reference panels to mitigate the interlaboratory imprecision of quantitative BCR-ABL1 measurements and to facilitate global standardization on the international scale (IS). Four-level secondary reference panels were manufactured under controlled and validated processes with synthetic Armored RNA Quant molecules (Asuragen) calibrated to reference standards from the WHO and the NIST. Performance was evaluated in IS reference laboratories and with non-IS-standardized RT-qPCR methods. For most methods, percent ratios for BCR-ABL1 e13a2 and e14a2 relative to ABL1 or BCR were robust at 4 different levels and linear over 3 logarithms, from 10% to 0.01% on the IS. The intraassay and interassay imprecision was <2-fold overall. Performance was stable across 3 consecutive lots, in multiple laboratories, and over a period of 18 months to date. International field trials demonstrated the commutability of the reagents and their accurate alignment to the IS within the intra- and interlaboratory imprecision of IS-standardized methods. The synthetic calibrator panels are robust, reproducibly manufactured, analytically calibrated to the WHO primary standards, and compatible with most BCR-ABL1 RT-qPCR assay designs. The broad availability of secondary reference reagents will further facilitate interlaboratory comparative studies and independent quality assessment programs, which are of paramount importance for worldwide standardization of BCR-ABL1 monitoring results and the optimization of current and new therapeutic approaches for chronic myeloid leukemia. © 2013 American Association for Clinical Chemistry.
NASA Technical Reports Server (NTRS)
Scott, W. A.
1984-01-01
The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1998-01-01
Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1 micro meter CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth's surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.
Results of the 1983 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1984-01-01
The 1983 solar cell calibration balloon flight was successfully completed and met all objectives of the program. Thirty-four modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. Cell calibration data are tabulated as well as the repeatability of standard solar cell BFS-17A (35 flights over a 21-year period).
Effects of experimental design on calibration curve precision in routine analysis
Pimentel, Maria Fernanda; Neto, Benício de Barros; Saldanha, Teresa Cristina B.
1998-01-01
A computational program which compares the effciencies of different experimental designs with those of maximum precision (D-optimized designs) is described. The program produces confidence interval plots for a calibration curve and provides information about the number of standard solutions, concentration levels and suitable concentration ranges to achieve an optimum calibration. Some examples of the application of this novel computational program are given, using both simulated and real data. PMID:18924816
Design and laboratory calibration of the compact pushbroom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin
2009-11-01
The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.
Melhem, N; El Balaa, H; Younes, G; Al Kattar, Z
2017-06-15
The Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission has different calibration methods for various types of dosimeters used in industrial, military and medical fields. The calibration is performed using different beams of X-rays (low and medium energy) and Gamma radiation delivered by a Cesium 137 source. The Secondary Standard Dosimetry laboratory in charge of calibration services uses different protocols for the determination of high and low air kerma rate and for narrow and wide series. In order to perform this calibration work, it is very important to identify all the beam characteristics for the different types of sources and qualities of radiation. The following work describes the methods used for the determination of different beam characteristics and calibration coefficients with their uncertainties in order to enhance the radiation protection of workers and patient applications in the fields of medical diagnosis and industrial X-ray. All the characteristics of the X-ray beams are determined for the narrow spectrum series in the 40 and 200 keV range where the inherent filtration, the current intensity, the high voltage, the beam profile and the total uncertainty are the specific characteristics of these X-ray beams. An X-ray software was developed in order to visualize the reference values according to the characteristics of each beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Validation of software for calculating the likelihood ratio for parentage and kinship.
Drábek, J
2009-03-01
Although the likelihood ratio is a well-known statistical technique, commercial off-the-shelf (COTS) software products for its calculation are not sufficiently validated to suit general requirements for the competence of testing and calibration laboratories (EN/ISO/IEC 17025:2005 norm) per se. The software in question can be considered critical as it directly weighs the forensic evidence allowing judges to decide on guilt or innocence or to identify person or kin (i.e.: in mass fatalities). For these reasons, accredited laboratories shall validate likelihood ratio software in accordance with the above norm. To validate software for calculating the likelihood ratio in parentage/kinship scenarios I assessed available vendors, chose two programs (Paternity Index and familias) for testing, and finally validated them using tests derived from elaboration of the available guidelines for the field of forensics, biomedicine, and software engineering. MS Excel calculation using known likelihood ratio formulas or peer-reviewed results of difficult paternity cases were used as a reference. Using seven testing cases, it was found that both programs satisfied the requirements for basic paternity cases. However, only a combination of two software programs fulfills the criteria needed for our purpose in the whole spectrum of functions under validation with the exceptions of providing algebraic formulas in cases of mutation and/or silent allele.
Summary of the STIS Cycle 19 Calibration Program
NASA Astrophysics Data System (ADS)
Roman-Duval, Julia; Ely, Justin; Aloisi, Alessandra; Oliveira, Cristina; Proffitt, Charles; Hernandez, Svea; Mason, Elena; Sonnetrucker, Paule; Wolfe, Michael; Long, Chris; DiFelice, Audrey; Bostroem, Azalee K.; Holland, Stephen; Lockwood, Sean; Cox, Colin; Wheeler, Thomas
2014-11-01
We summarize the Cycle 19 calibration program for the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope, covering the time period November 2011 through October 2012. We give an overview of the whole program, and status summaries for each of the individual proposals comprising the program.
Schühle, U; Curdt, W; Hollandt, J; Feldman, U; Lemaire, P; Wilhelm, K
2000-01-20
The Solar Ultraviolet Measurement of Emitted Radiation (SUMER) vacuum-ultraviolet spectrograph was calibrated in the laboratory before the integration of the instrument on the Solar and Heliospheric Observatory (SOHO) spacecraft in 1995. During the scientific operation of the SOHO it has been possible to track the radiometric calibration of the SUMER spectrograph since March 1996 by a strategy that employs various methods to update the calibration status and improve the coverage of the spectral calibration curve. The results for the A Detector were published previously [Appl. Opt. 36, 6416 (1997)]. During three years of operation in space, the B detector was used for two and one-half years. We describe the characteristics of the B detector and present results of the tracking and refinement of the spectral calibration curves with it. Observations of the spectra of the stars alpha and rho Leonis permit an extrapolation of the calibration curves in the range from 125 to 149.0 nm. Using a solar coronal spectrum observed above the solar disk, we can extrapolate the calibration curves by measuring emission line pairs with well-known intensity ratios. The sensitivity ratio of the two photocathode areas can be obtained by registration of many emission lines in the entire spectral range on both KBr-coated and bare parts of the detector's active surface. The results are found to be consistent with the published calibration performed in the laboratory in the wavelength range from 53 to 124 nm. We can extrapolate the calibration outside this range to 147 nm with a relative uncertainty of ?30% (1varsigma) for wavelengths longer than 125 nm and to 46.5 nm with 50% uncertainty for the short-wavelength range below 53 nm.
Results of the 1984 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1984-01-01
The 1984 solar cell calibration balloon flight was successfully completed on July 19, meeting all objectives of the program. Thirty-six modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1986-01-01
The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1982 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1983-01-01
The 1982 solar cell calibration balloon flight was successfully completed on July 21, meeting all objectives of the program. Twenty-eight modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
TOGA/COARE AMMR 1992 data processing
NASA Technical Reports Server (NTRS)
Kunkee, D. B.
1994-01-01
The complete set of Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean Atmosphere Response Experiment (COARE) flight data for the 91.65 GHz Airborne Meteorological Radiometer (AMMR92) contains data from nineteen flights: two test flights, four transit flights, and thirteen experimental flights. The data flight occurred between December 16, 1992 and February 28, 1993. Data collection from the AMMR92 during the first ten flights of TOGA/COARE was performed using the executable code TSK30041. These are IBM PC/XT programs used by the NASA Goddard Space Flight Center (GSFC). During one flight, inconsistencies were found during the operation of the AMMR92 using the GSFC data acquisition system. Consequently, the Georgia Tech (GT) data acquisition system was used during all successive TOGA/COARE flights. These inconsistencies were found during the data processing to affect the recorded data as well. Errors are caused by an insufficient pre- and post-calibration setting period for the splash-plate mechanism. The splash-plate operates asynchronusly with the data acquisition system (there is no position feedback to the GSFC or GT data system). This condition caused both the calibration and the post-calibration scene measurement to be corrupted on a randomly occurring basis when the GSFC system was used. This problem did not occur with the GT data acquisition system due to sufficient allowance for splash-plate settling. After TOGA/COARE it was determined that calibration of the instrument was a function of the scene brightness temperature. Therefore, the orientation error in the main antenna beam of the AMMR92 is hypothesized to be caused by misalignment of the internal 'splash-plate' responsible for directing the antenna beam toward the scene or toward the calibration loads. Misalignment of the splash-plate is responsible for 'scene feedthrough' during calibration. Laboratory investigation at Georgia Tech found that each polarization is affected differently by the splash-plate alignment error. This is likely to cause significant and unique errors in the absolute calibration of each channel.
TOGA/COARE AMMR 1992 data processing
NASA Astrophysics Data System (ADS)
Kunkee, D. B.
1994-05-01
The complete set of Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean Atmosphere Response Experiment (COARE) flight data for the 91.65 GHz Airborne Meteorological Radiometer (AMMR92) contains data from nineteen flights: two test flights, four transit flights, and thirteen experimental flights. The data flight occurred between December 16, 1992 and February 28, 1993. Data collection from the AMMR92 during the first ten flights of TOGA/COARE was performed using the executable code TSK30041. These are IBM PC/XT programs used by the NASA Goddard Space Flight Center (GSFC). During one flight, inconsistencies were found during the operation of the AMMR92 using the GSFC data acquisition system. Consequently, the Georgia Tech (GT) data acquisition system was used during all successive TOGA/COARE flights. These inconsistencies were found during the data processing to affect the recorded data as well. Errors are caused by an insufficient pre- and post-calibration setting period for the splash-plate mechanism. The splash-plate operates asynchronusly with the data acquisition system (there is no position feedback to the GSFC or GT data system). This condition caused both the calibration and the post-calibration scene measurement to be corrupted on a randomly occurring basis when the GSFC system was used. This problem did not occur with the GT data acquisition system due to sufficient allowance for splash-plate settling. After TOGA/COARE it was determined that calibration of the instrument was a function of the scene brightness temperature. Therefore, the orientation error in the main antenna beam of the AMMR92 is hypothesized to be caused by misalignment of the internal 'splash-plate' responsible for directing the antenna beam toward the scene or toward the calibration loads. Misalignment of the splash-plate is responsible for 'scene feedthrough' during calibration. Laboratory investigation at Georgia Tech found that each polarization is affected differently by the splash-plate alignment error. This is likely to cause significant and unique errors in the absolute calibration of each channel.
Design and calibration of a scanning tunneling microscope for large machined surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigg, D.A.; Russell, P.E.; Dow, T.A.
During the last year the large sample STM has been designed, built and used for the observation of several different samples. Calibration of the scanner for prope dimensional interpretation of surface features has been a chief concern, as well as corrections for non-linear effects such as hysteresis during scans. Several procedures used in calibration and correction of piezoelectric scanners used in the laboratorys STMs are described.
The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
NASA Astrophysics Data System (ADS)
Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.
2014-03-01
Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. The user study provided trends and location-specific information on pollutants, and affected change in user behavior. The study demonstrated the utility of the M-Pod as a tool to assess personal exposure.
NASA Astrophysics Data System (ADS)
Kowalewski, M. G.; Janz, S. J.
2015-02-01
Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.
Vicarious calibrations of HICO data acquired from the International Space Station.
Gao, Bo-Cai; Li, Rong-Rong; Lucke, Robert L; Davis, Curtiss O; Bevilacqua, Richard M; Korwan, Daniel R; Montes, Marcos J; Bowles, Jeffrey H; Corson, Michael R
2012-05-10
The Hyperspectral Imager for the Coastal Ocean (HICO) presently onboard the International Space Station (ISS) is an imaging spectrometer designed for remote sensing of coastal waters. The instrument is not equipped with any onboard spectral and radiometric calibration devices. Here we describe vicarious calibration techniques that have been used in converting the HICO raw digital numbers to calibrated radiances. The spectral calibration is based on matching atmospheric water vapor and oxygen absorption bands and extraterrestrial solar lines. The radiometric calibration is based on comparisons between HICO and the EOS/MODIS data measured over homogeneous desert areas and on spectral reflectance properties of coral reefs and water clouds. Improvements to the present vicarious calibration techniques are possible as we gain more in-depth understanding of the HICO laboratory calibration data and the ISS HICO data in the future.
Calibration Device Designed for proof ring used in SCC Experiment
NASA Astrophysics Data System (ADS)
Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.
2017-11-01
In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.
Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology.
Hoss, Udo; Budiman, Erwin Satrya
2017-05-01
The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre ™ and FreeStyle Libre Pro ™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration.
Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology
Budiman, Erwin Satrya
2017-01-01
Abstract The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre™ and FreeStyle Libre Pro™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration. PMID:28541139
An Enclosed Laser Calibration Standard
NASA Astrophysics Data System (ADS)
Adams, Thomas E.; Fecteau, M. L.
1985-02-01
We have designed, evaluated and calibrated an enclosed, safety-interlocked laser calibration standard for use in US Army Secondary Reference Calibration Laboratories. This Laser Test Set Calibrator (LTSC) represents the Army's first-generation field laser calibration standard. Twelve LTSC's are now being fielded world-wide. The main requirement on the LTSC is to provide calibration support for the Test Set (TS3620) which, in turn, is a GO/NO GO tester of the Hand-Held Laser Rangefinder (AN/GVS-5). However, we believe it's design is flexible enough to accommodate the calibration of other laser test, measurement and diagnostic equipment (TMDE) provided that single-shot capability is adequate to perform the task. In this paper we describe the salient aspects and calibration requirements of the AN/GVS-5 Rangefinder and the Test Set which drove the basic LTSC design. Also, we detail our evaluation and calibration of the LTSC, in particular, the LTSC system standards. We conclude with a review of our error analysis from which uncertainties were assigned to the LTSC calibration functions.
Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range
NASA Astrophysics Data System (ADS)
Gaines, J. L.; Wittmayer, F. J.
1986-08-01
The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.
Imager for Mars Pathfinder (IMP) image calibration
Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; Kramm, R.; Dummel, A.; Crowe, D.; Bos, B.J.; Bell, J.F.; Rueffer, P.; Gliem, F.; Johnson, J. R.; Maki, J.N.; Herkenhoff, K. E.; Singer, Robert B.
1999-01-01
The Imager for Mars Pathfinder returned over 16,000 high-quality images from the surface of Mars. The camera was well-calibrated in the laboratory, with <5% radiometric uncertainty. The photometric properties of two radiometric targets were also measured with 3% uncertainty. Several data sets acquired during the cruise and on Mars confirm that the system operated nominally throughout the course of the mission. Image calibration algorithms were developed for landed operations to correct instrumental sources of noise and to calibrate images relative to observations of the radiometric targets. The uncertainties associated with these algorithms as well as current improvements to image calibration are discussed. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
OBrien, L. E.; Gemer, A.; Gruen, E.; Collette, A.; Horanyi, M.; Moebius, E.; Auer, S.; Juhasz, A.; Srama, R.; Sternovsky, Z.
2012-12-01
We report the development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration. The two STEREO spacecrafts have indicated that nano-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and subsequently accelerated outward by the solar wind. The temporal variability and directionality are governed by conditions in the inner heliosphere and the mass analysis of the particles reveals the chemical differentiation of solid matter near the Sun. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. NDA is a linear time-of-flight mass analyzer that modeled after Cosmic Dust Analyzer (CDA) on Cassini and the more recent Lunar Dust EXperiment (LDEX) for the upcoming LADEE mission to the Moon. The ion optics of the instrument is optimized through numerical modeling. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed towards the solar direction. A laboratory prototype is built and tested and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with from 1 to over 50 km/s velocity.
Results of the 1987 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1987-01-01
The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1988 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1988-01-01
The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1989 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1989-01-01
The 1989 solar cell calibration balloon flight was successfully completed on August 9, 1989, meeting all objectives of the program. Forty-two modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1985 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1986-01-01
The 1985 solar cell calibration balloon flight was successfully completed on July 12, 1985, meeting all objectives of the program. Fifty-seven modules were carried to an altitude of 115,000 ft (35.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
1985-07-01
surrogate halocarbons. A 10.2 Calibrate the system daily as Agency. combination of bromochloromethane, described in Section 7. 2-bromo- 1 - chloropropane ...described in Section 7. 2-bromo- 1 - chloropropane , and 0.3 Adjust the purge gas (nitrogen 8.3.2 The laboratory must develop 14-dichlorobutane is...46 UNCLSSIFIED F/G 13/2 UL mhmmhmhohEEEmhI wJI. 1.0S ’, LI U.2..12.2 1 . 111110 MICROCOPY RESOLUION ES CHART""., -6 -’S- . 1 °"°, 5- -i -1.0..-+-’.2,i
NASA Technical Reports Server (NTRS)
Watts, Michael E.
1991-01-01
The Acoustic Laboratory Data Acquisition System (ALDAS) is an inexpensive, transportable means to digitize and analyze data. The system is based on the Macintosh 2 family of computers, with internal analog-to-digital boards providing four channels of simultaneous data acquisition at rates up to 50,000 samples/sec. The ALDAS software package, written for use with rotorcraft acoustics, performs automatic acoustic calibration of channels, data display, two types of cycle averaging, and spectral amplitude analysis. The program can use data obtained from internal analog-to-digital conversion, or discrete external data imported in ASCII format. All aspects of ALDAS can be improved as new hardware becomes available and new features are introduced into the code.
Toward Improvements in Inter-laboratory Calibration of Argon Isotope Measurements
NASA Astrophysics Data System (ADS)
Hemming, S. R.; Deino, A. L.; Heizler, M. T.; Hodges, K. V.; McIntosh, W. C.; Renne, P. R.; Swisher, C. C., III; Turrin, B. D.; Van Soest, M. C.
2015-12-01
It is important to continue to develop strategies to improve our ability to compare results between laboratories chronometers. The U-Pb community has significantly reduced inter-laboratory biases with the application of a community tracer solution and the distribution of synthetic zircon solutions. Inevitably sample selection and processing and even biases in interpretations will still lead to some disagreements in the assignment of ages. Accordingly natural samples that are shared will be important for achievement of the highest levels of agreement. Analogous improvements in quality and inter-laboratory agreement of analytical aspects of Ar-Ar can be achieved through development of synthetic age standards in gas canisters with multiple pipettes to deliver various controlled amounts of argon to the mass spectrometer. A preliminary proof-of concept comes from the inter-laboratory calibration experiment for the 40Ar/39Ar community. This portable Argon Pipette Intercalibration System (APIS) consists of three 2.7 L canisters each equipped with three pipettes of 0.1, 0.2 and 0.4 cc volumes. The currently traveling APIS has the three canisters filled with air and 40Ar*/39Ar of 1.73 and canister 2 has a 40Ar*/39Ar of 40.98 (~ Alder Creek and Fish Canyon in the same irradiation). With these pipettes it is possible to combine them to provide 0.1, 0.2, 0.3 (0.1+0.2), 0.4, 0.5 (0.1+0.4), 0.6 (0.2+0.4), and 0.7 (0.1+0.2+0.4) cc. The configuration allows a simple test for inter-laboratory biases and for volume/pressure dependent mass fractionation on the measured ratios for a gas with a single argon isotope composition. Although not yet tested, it is also possible to mix gas from any one of the three canisters in proportions of these increments, allowing even more tightly controlled calibration of measurements. We suggest that ultimately each EARTHTIME lab should be equipped with such a system permanently, with a community plan for a traveling system to periodically repeat the inter-calibration tests. The composition(s) of such systems may not be the same for each lab, depending on the requirements of equipment and main age ranges targeted. But with a relatively small number of end member compositions it should be possible to greatly improve the calibration capability of the community.
NASA Technical Reports Server (NTRS)
Bueker, P. A.
1982-01-01
The Nitrogen Washout System measures nitrogen elimination on a breath basis from the body tissues of a subject breathing pure oxygen. The system serves as a prototype for a Space Shuttle Life Sciences experiment and in the Environmental Physiology Laboratory. Typically, a subject washes out body nitrogen for three hours while breathing oxygen from a mask enclosed in a positive-pressure oxygen tent. A nitrogen washout requires one test operator and the test subject. A DEC LSI-11/02 computer is used to (1) control and calibrate the mass spectrometer and Skylab spirometer, (2) gather and store experimental data and (3) provide limited real time analysis and more extensive post-experiment analysis. Five programs are used to gather and store the experimental data and perform all the real time control and analysis.
NASA Technical Reports Server (NTRS)
Snow, Walter L.; Childers, Brooks A.; Jones, Stephen B.; Fremaux, Charles M.
1993-01-01
A model space positioning system (MSPS), a state-of-the-art, real-time tracking system to provide the test engineer with on line model pitch and spin rate information, is described. It is noted that the six-degree-of-freedom post processor program will require additional programming effort both in the automated tracking mode for high spin rates and in accuracy to meet the measurement objectives. An independent multicamera system intended to augment the MSPS is studied using laboratory calibration methods based on photogrammetry to characterize the losses in various recording options. Data acquired to Super VHS tape encoded with Vertical Interval Time Code and transcribed to video disk are considered to be a reasonable priced choice for post editing and processing video data.
A Survey of Clinical Faculty Calibration in Dental Hygiene Programs.
Dicke, Nichole L; Hodges, Kathleen O; Rogo, Ellen J; Hewett, Beverly J
2015-08-01
This study investigated the calibration efforts of entry-level dental hygiene programs in the U.S. Four aspects were explored, including attitudes, characteristics, quality and satisfaction, to evaluate current calibration practices. A descriptive comparative survey design was used. Directors of accredited dental hygiene programs (n=345) were asked to forward an electronic survey invitation to clinical faculty. Eighty-five directors forwarded the survey to 847 faculty; 45.3% (n=384) participated. The 37-item survey contained multiple-choice and Likert scale questions and was available for 3 weeks. Descriptive statistics were used to analyze demographic data and research questions. The Kruskal-Wallis, Spearman Correlation Coefficient and Mann-Whitney U tests were employed to analyze hypotheses (p=0.05). The demographic profile for participants revealed that most worked for institutions awarding associate entry-level degrees, had 1 to 10 years' experience, taught clinically and didactically, and held a master's degree. Clinical instructors valued calibration, believed it reduced variation and wanted more calibration. Some were not offered quality calibration. There was a difference between the entry-level degree awarded and the program's evaluation of clinical skill faculty reliability, as analyzed using the Kruskal-Wallis test (p=0.008). Additionally, full-time versus part-time educators reported more observed student frustration with faculty variance, as evaluated using the Mann-Whitney U test (p=0.001, bfp=0.004). Faculty members value calibration's potential benefits and want enhanced calibration efforts. Calibration efforts need to be improved to include standards for measuring intra- and inter-rater reliability and plans for resolving inconsistencies. More research is needed to determine effective calibration methods and their impact on student learning. Copyright © 2015 The American Dental Hygienists’ Association.
Droplet sizing instrumentation used for icing research: Operation, calibration, and accuracy
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
The accuracy of the Forward Scattering Spectrometer Probe (FSSP) is determined using laboratory tests, wind tunnel comparisons, and computer simulations. Operation in an icing environment is discussed and a new calibration device for the FSSP (the rotating pinhole) is demonstrated to be a valuable tool. Operation of the Optical Array Probe is also presented along with a calibration device (the rotating reticle) which is suitable for performing detailed analysis of that instrument.
2017-11-01
sent from light-emitting diodes (LEDs) of 5 colors ( green , red, white, amber, and blue). Experiment 1 involved controlled laboratory measurements of...A-4 Red LED calibration curves and quadratic curve fits with R2 values . 37 Fig. A-5 Green LED calibration curves and quadratic curve fits with R2...36 Table A-4 Red LED calibration measurements ................................................... 36 Table A-5 Green LED
Time Transfer Between USNO and PTB: Operation and Calibration Results
2004-09-01
transfer ( TWSTFT ) is routinely executed between USNO and PTB via two links, using a connection at Ku-band and X-band. The Ku-band measurements are...desirable. Up to now, three calibration experiments were carried out with a transportable TWSTFT station provided by USNO: in June 2002, January 2003...and July 2003. Because only a few TWSTFT calibrations of civil time laboratories were performed up to now, this first “semiannual” schedule
Luczak, Susan E; Hawkins, Ashley L; Dai, Zheng; Wichmann, Raphael; Wang, Chunming; Rosen, I Gary
2018-08-01
Biosensors have been developed to measure transdermal alcohol concentration (TAC), but converting TAC into interpretable indices of blood/breath alcohol concentration (BAC/BrAC) is difficult because of variations that occur in TAC across individuals, drinking episodes, and devices. We have developed mathematical models and the BrAC Estimator software for calibrating and inverting TAC into quantifiable BrAC estimates (eBrAC). The calibration protocol to determine the individualized parameters for a specific individual wearing a specific device requires a drinking session in which BrAC and TAC measurements are obtained simultaneously. This calibration protocol was originally conducted in the laboratory with breath analyzers used to produce the BrAC data. Here we develop and test an alternative calibration protocol using drinking diary data collected in the field with the smartphone app Intellidrink to produce the BrAC calibration data. We compared BrAC Estimator software results for 11 drinking episodes collected by an expert user when using Intellidrink versus breath analyzer measurements as BrAC calibration data. Inversion phase results indicated the Intellidrink calibration protocol produced similar eBrAC curves and captured peak eBrAC to within 0.0003%, time of peak eBrAC to within 18min, and area under the eBrAC curve to within 0.025% alcohol-hours as the breath analyzer calibration protocol. This study provides evidence that drinking diary data can be used in place of breath analyzer data in the BrAC Estimator software calibration procedure, which can reduce participant and researcher burden and expand the potential software user pool beyond researchers studying participants who can drink in the laboratory. Copyright © 2017. Published by Elsevier Ltd.
Whale, Alexandra S; Devonshire, Alison S; Karlin-Neumann, George; Regan, Jack; Javier, Leanne; Cowen, Simon; Fernandez-Gonzalez, Ana; Jones, Gerwyn M; Redshaw, Nicholas; Beck, Julia; Berger, Andreas W; Combaret, Valérie; Dahl Kjersgaard, Nina; Davis, Lisa; Fina, Frederic; Forshew, Tim; Fredslund Andersen, Rikke; Galbiati, Silvia; González Hernández, Álvaro; Haynes, Charles A; Janku, Filip; Lacave, Roger; Lee, Justin; Mistry, Vilas; Pender, Alexandra; Pradines, Anne; Proudhon, Charlotte; Saal, Lao H; Stieglitz, Elliot; Ulrich, Bryan; Foy, Carole A; Parkes, Helen; Tzonev, Svilen; Huggett, Jim F
2017-02-07
This study tested the claim that digital PCR (dPCR) can offer highly reproducible quantitative measurements in disparate laboratories. Twenty-one laboratories measured four blinded samples containing different quantities of a KRAS fragment encoding G12D, an important genetic marker for guiding therapy of certain cancers. This marker is challenging to quantify reproducibly using quantitative PCR (qPCR) or next generation sequencing (NGS) due to the presence of competing wild type sequences and the need for calibration. Using dPCR, 18 laboratories were able to quantify the G12D marker within 12% of each other in all samples. Three laboratories appeared to measure consistently outlying results; however, proper application of a follow-up analysis recommendation rectified their data. Our findings show that dPCR has demonstrable reproducibility across a large number of laboratories without calibration. This could enable the reproducible application of molecular stratification to guide therapy and, potentially, for molecular diagnostics.
Creation and Validation of Sintered PTFE BRDF Targets & Standards
Durell, Christopher; Scharpf, Dan; McKee, Greg; L’Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine
2016-01-01
Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming “near perfect” reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE’s angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions. PMID:26900206
Creation and Validation of Sintered PTFE BRDF Targets & Standards.
Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine
2015-09-21
Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.
VSHEC—A program for the automatic spectrum calibration
NASA Astrophysics Data System (ADS)
Zlokazov, V. B.; Utyonkov, V. K.; Tsyganov, Yu. S.
2013-02-01
Calibration is the transformation of the output channels of a measuring device into the physical values (energies, times, angles, etc.). If dealt with manually, it is a labor- and time-consuming procedure even if only a few detectors are used. However, the situation changes appreciably if a calibration of multi-detector systems is required, where the number of registering devices extends to hundreds (Tsyganov et al. (2004) [1]). The calibration is aggravated by the fact that needed pivotal channel numbers should be determined from peak-like distributions. But peak distribution is an informal pattern so that a procedure of pattern recognition should be employed to discard the operator interference. The automatic calibration is the determination of the calibration curve parameters on the basis of reference quantity list and the data which partially are characterized by these quantities (energies, angles, etc). The program allows the physicist to perform the calibration of the spectrometric detectors for both the cases: that of one tract and that of many. Program summaryProgram title: VSHEC Catalogue identifier: AENN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6403 No. of bytes in distributed program, including test data, etc.: 325847 Distribution format: tar.gz Programming language: DELPHI-5 and higher. Computer: Any IBM PC compatible. Operating system: Windows XX. Classification: 2.3, 4.9. Nature of problem: Automatic conversion of detector channels into their energy equivalents. Solution method: Automatic decomposition of a spectrum into geometric figures such as peaks and an envelope of peaks from below, estimation of peak centers and search for the maximum peak center subsequence which matches the reference energies in the statistically most plausible way. Running time: On Celeron (R) (CPU 2.66 GHh) it is the time needed for the dialog via the visual interface. Pure computation—less than 1 s for the test run.
Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; ...
2016-12-24
The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with amore » calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.« less
NASA Astrophysics Data System (ADS)
Avison, Janine; Barham, Richard
2014-01-01
This document and the accompanying spreadsheets constitute the final report for key comparison CCAUV.A-K5 on the pressure calibration of laboratory standard microphones in the frequency range from 2 Hz to 10 kHz. Twelve national measurement institutes took part in the key comparison and the National Physical Laboratory piloted the project. Two laboratory standard microphones IEC type LS1P were circulated to the participants and results in the form of regular calibration certificates were collected throughout the project. One of the microphones was subsequently deemed to have compromised stability for the purpose of deriving a reference value. Consequently the key comparison reference value (KCRV) has been made based on the weighted mean results for sensitivity level and for sensitivity phase from just one of the microphones. Corresponding degrees of equivalence (DoEs) have also been calculated and are presented. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCAUV, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan
The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides, have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with amore » calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was previously significantly over-estimated, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. Here, the uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.« less
Crawford, Charles G.; Martin, Jeffrey D.
2017-07-21
In October 2012, the U.S. Geological Survey (USGS) began measuring the concentration of the pesticide fipronil and three of its degradates (desulfinylfipronil, fipronil sulfide, and fipronil sulfone) by a new laboratory method using direct aqueous-injection liquid chromatography tandem mass spectrometry (DAI LC–MS/MS). This method replaced the previous method—in use since 2002—that used gas chromatography/mass spectrometry (GC/MS). The performance of the two methods is not comparable for fipronil and the three degradates. Concentrations of these four chemical compounds determined by the DAI LC–MS/MS method are substantially lower than the GC/MS method. A method was developed to correct for the difference in concentrations obtained by the two laboratory methods based on a methods comparison field study done in 2012. Environmental and field matrix spike samples to be analyzed by both methods from 48 stream sites from across the United States were sampled approximately three times each for this study. These data were used to develop a relation between the two laboratory methods for each compound using regression analysis. The relations were used to calibrate data obtained by the older method to the new method in order to remove any biases attributable to differences in the methods. The coefficients of the equations obtained from the regressions were used to calibrate over 16,600 observations of fipronil, as well as the three degradates determined by the GC/MS method retrieved from the USGS National Water Information System. The calibrated values were then compared to over 7,800 observations of fipronil and to the three degradates determined by the DAI LC–MS/MS method also retrieved from the National Water Information System. The original and calibrated values from the GC/MS method, along with measures of uncertainty in the calibrated values and the original values from the DAI LC–MS/MS method, are provided in an accompanying data release.
Bastian, Thomas; Maire, Aurélia; Dugas, Julien; Ataya, Abbas; Villars, Clément; Gris, Florence; Perrin, Emilie; Caritu, Yanis; Doron, Maeva; Blanc, Stéphane; Jallon, Pierre; Simon, Chantal
2015-03-15
"Objective" methods to monitor physical activity and sedentary patterns in free-living conditions are necessary to further our understanding of their impacts on health. In recent years, many software solutions capable of automatically identifying activity types from portable accelerometry data have been developed, with promising results in controlled conditions, but virtually no reports on field tests. An automatic classification algorithm initially developed using laboratory-acquired data (59 subjects engaging in a set of 24 standardized activities) to discriminate between 8 activity classes (lying, slouching, sitting, standing, walking, running, and cycling) was applied to data collected in the field. Twenty volunteers equipped with a hip-worn triaxial accelerometer performed at their own pace an activity set that included, among others, activities such as walking the streets, running, cycling, and taking the bus. Performances of the laboratory-calibrated classification algorithm were compared with those of an alternative version of the same model including field-collected data in the learning set. Despite good results in laboratory conditions, the performances of the laboratory-calibrated algorithm (assessed by confusion matrices) decreased for several activities when applied to free-living data. Recalibrating the algorithm with data closer to real-life conditions and from an independent group of subjects proved useful, especially for the detection of sedentary behaviors while in transports, thereby improving the detection of overall sitting (sensitivity: laboratory model = 24.9%; recalibrated model = 95.7%). Automatic identification methods should be developed using data acquired in free-living conditions rather than data from standardized laboratory activity sets only, and their limits carefully tested before they are used in field studies. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Schneider, M.; Müller, R.; Krawzcyk, H.; Bachmann, M.; Storch, T.; Mogulsky, V.; Hofer, S.
2012-07-01
The German Aerospace Center DLR - namely the Earth Observation Center EOC and the German Space Operations Center GSOC - is responsible for the establishment of the ground segment of the future German hyperspectral satellite mission EnMAP (Environmental Mapping and Analysis Program). The Earth Observation Center has long lasting experiences with air- and spaceborne acquisition, processing, and analysis of hyperspectral image data. In the first part of this paper, an overview of the radiometric in-flight calibration concept including dark value measurements, deep space measurements, internal lamps measurements and sun measurements is presented. Complemented by pre-launch calibration and characterization these analyses will deliver a detailed and quantitative assessment of possible changes of spectral and radiometric characteristics of the hyperspectral instrument, e.g. due to degradation of single elements. A geometric accuracy of 100 m, which will be improved to 30 m with respect to a used reference image, if it exists, will be achieved by ground processing. Therfore, and for the required co-registration accuracy between SWIR and VNIR channels, additional to the radiometric calibration, also a geometric calibration is necessary. In the second part of this paper, the concept of the geometric calibration is presented in detail. The geometric processing of EnMAP scenes will be based on laboratory calibration results. During repeated passes over selected calibration areas images will be acquired. The update of geometric camera model parameters will be done by an adjustment using ground control points, which will be extracted by automatic image matching. In the adjustment, the improvements of the attitude angles (boresight angles), the improvements of the interior orientation (view vector) and the improvements of the position data are estimated. In this paper, the improvement of the boresight angles is presented in detail as an example. The other values and combinations follow the same rules. The geometric calibration will mainly be executed during the commissioning phase, later in the mission it is only executed if required, i.e. if the geometric accuracy of the produced images is close to or exceeds the requirements of 100 m or 30 m respectively, whereas the radiometric calibration will be executed periodically during the mission with a higher frequency during commissioning phase.
Hunt, Andrew G.
2015-08-12
This report addresses the standard operating procedures used by the U.S. Geological Survey’s Noble Gas Laboratory in Denver, Colorado, U.S.A., for the measurement of dissolved gases (methane, nitrogen, oxygen, and carbon dioxide) and noble gas isotopes (helium-3, helium-4, neon-20, neon-21, neon-22, argon-36, argon-38, argon-40, kryton-84, krypton-86, xenon-103, and xenon-132) dissolved in water. A synopsis of the instrumentation used, procedures followed, calibration practices, standards used, and a quality assurance and quality control program is presented. The report outlines the day-to-day operation of the Residual Gas Analyzer Model 200, Mass Analyzer Products Model 215–50, and ultralow vacuum extraction line along with the sample handling procedures, noble gas extraction and purification, instrument measurement procedures, instrumental data acquisition, and calculations for the conversion of raw data from the mass spectrometer into noble gas concentrations per unit mass of water analyzed. Techniques for the preparation of artificial dissolved gas standards are detailed and coupled to a quality assurance and quality control program to present the accuracy of the procedures used in the laboratory.
Luczak, Susan E; Rosen, I Gary
2014-08-01
Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.
Polarization effects on hard target calibration of lidar systems
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.
1987-01-01
The theory of hard target calibration of lidar backscatter data, including laboratory measurements of the pertinent target reflectance parameters, is extended to include the effects of polarization of the transmitted and received laser radiation. The bidirectional reflectance-distribution function model of reflectance is expanded to a 4 x 4 matrix allowing Mueller matrix and Stokes vector calculus to be employed. Target reflectance parameters for calibration of lidar backscatter data are derived for various lidar system polarization configurations from integrating sphere and monostatic reflectometer measurements. It is found that correct modeling of polarization effects is mandatory for accurate calibration of hard target reflectance parameters and, therefore, for accurate calibration of lidar backscatter data.
Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.; ...
2017-02-17
Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.
Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).
New radiation protection calibration facility at CERN.
Brugger, Markus; Carbonez, Pierre; Pozzi, Fabio; Silari, Marco; Vincke, Helmut
2014-10-01
The CERN radiation protection group has designed a new state-of-the-art calibration laboratory to replace the present facility, which is >20 y old. The new laboratory, presently under construction, will be equipped with neutron and gamma sources, as well as an X-ray generator and a beta irradiator. The present work describes the project to design the facility, including the facility placement criteria, the 'point-zero' measurements and the shielding study performed via FLUKA Monte Carlo simulations. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Leisso, N.
2015-12-01
The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through the use of an On-Board Calibration (OBC) system. Recent advances in the understanding of the NIS sensor that have led to improvements in the overall calibration accuracy are reported. In addition, the NIS calibration and data products are compared to Earth-observing satellite sensors.
Impact of dose calibrators quality control programme in Argentina
NASA Astrophysics Data System (ADS)
Furnari, J. C.; de Cabrejas, M. L.; del C. Rotta, M.; Iglicki, F. A.; Milá, M. I.; Magnavacca, C.; Dima, J. C.; Rodríguez Pasqués, R. H.
1992-02-01
The national Quality Control (QC) programme for radionuclide calibrators started 12 years ago. Accuracy and the implementation of a QC programme were evaluated over all these years at 95 nuclear medicine laboratories where dose calibrators were in use. During all that time, the Metrology Group of CNEA has distributed 137Cs sealed sources to check stability and has been performing periodic "checking rounds" and postal surveys using unknown samples (external quality control). An account of the results of both methods is presented. At present, more of 65% of the dose calibrators measure activities with an error less than 10%.
Męczykowska, Hanna; Kobylis, Paulina; Stepnowski, Piotr; Caban, Magda
2017-05-04
Passive sampling is one of the most efficient methods of monitoring pharmaceuticals in environmental water. The reliability of the process relies on a correctly performed calibration experiment and a well-defined sampling rate (R s ) for target analytes. Therefore, in this review the state-of-the-art methods of passive sampler calibration for the most popular pharmaceuticals: antibiotics, hormones, β-blockers and non-steroidal anti-inflammatory drugs (NSAIDs), along with the sampling rate variation, were presented. The advantages and difficulties in laboratory and field calibration were pointed out, according to the needs of control of the exact conditions. Sampling rate calculating equations and all the factors affecting the R s value - temperature, flow, pH, salinity of the donor phase and biofouling - were discussed. Moreover, various calibration parameters gathered from the literature published in the last 16 years, including the device types, were tabled and compared. What is evident is that the sampling rate values for pharmaceuticals are impacted by several factors, whose influence is still unclear and unpredictable, while there is a big gap in experimental data. It appears that the calibration procedure needs to be improved, for example, there is a significant deficiency of PRCs (Performance Reference Compounds) for pharmaceuticals. One of the suggestions is to introduce correction factors for R s values estimated in laboratory conditions.
Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo
2015-08-01
Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Pilot Quality Control Program for Audit RT External Beams at Mexican Hospitals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez R, J T; Tovar M, V M
2008-08-11
A pilot quality control program for audit 18 radiotherapy RT external beams at 13 Mexican hospitals is described--for eleven {sup 60}Co beams and seven photon beams of 6, 10 and 15 MV from accelerators. This program contains five parts: a) Preparation of the TLD-100 powder: washing, drying and annealing (one hour 400 deg. C plus 24 hrs 80 deg. C). b) Sending two IAEA type capsules to the hospitals for irradiation at the hospital to a nominal D{sub W} = 2 Gy{center_dot}c) Preparation at the SSDL of ten calibration curves CC in the range of 0.5 Gy to 6 Gymore » in terms of absorbed dose to water D{sub W} for {sup 60}Co with traceability to primary laboratory NRC (Canada), according to a window irradiation: 26/10/2007-7/12/2007. d) Reading all capsules that match their hospital time irradiation and the SSDL window irradiation. f) Evaluation of the Dw imparted by the hospitals.« less
Importance of Calibration/Validation Traceability for Multi-Sensor Imaging Spectrometry Applications
NASA Technical Reports Server (NTRS)
Thome, K.
2017-01-01
Knowledge of calibration traceability is essential for ensuring the quality of data products relying on multiple sensors and especially true for imaging spectrometers. The current work discusses the expected impact that imaging spectrometers have in ensuring radiometric traceability for both multispectral and hyperspectral products. The Climate Absolute Radiance and Refractivity Observatory Pathfinder mission is used to show the role that high-accuracy imaging spectrometers can play in understanding test sites used for vicarious calibration of sensors. The associated Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer calibration demonstration system is used to illustrate recent advances in laboratory radiometric calibration approaches that will allow both the use of imaging spectrometers as calibration standards as well as to ensure the consistency of the multiple imaging spectrometers expected to be on orbit in the next decade.
Design and calibration of field deployable ground-viewing radiometers.
Anderson, Nikolaus; Czapla-Myers, Jeffrey; Leisso, Nathan; Biggar, Stuart; Burkhart, Charles; Kingston, Rob; Thome, Kurtis
2013-01-10
Three improved ground-viewing radiometers were built to support the Radiometric Calibration Test Site (RadCaTS) developed by the Remote Sensing Group (RSG) at the University of Arizona. Improved over previous light-emitting diode based versions, these filter-based radiometers employ seven silicon detectors and one InGaAs detector covering a wavelength range of 400-1550 nm. They are temperature controlled and designed for greater stability and lower noise. The radiometer systems show signal-to-noise ratios of greater than 1000 for all eight channels at typical field calibration signal levels. Predeployment laboratory radiance calibrations using a 1 m spherical integrating source compare well with in situ field calibrations using the solar radiation based calibration method; all bands are within ±2.7% for the case tested.
NASA Astrophysics Data System (ADS)
Cárdenas Moctezuma, A.; Torres Guzmán, J. C.
2016-01-01
CENAM, through the Force and Pressure Division, organized a comparison on testing machines calibration, in compression mode. The participating laboratories were SIM National Institutes of Metrology from Colombia, Peru and Costa Rica, where CENAM, Mexico was the pilot and reference laboratory. The results obtained by the laboratories are presented in this paper as well as the analysis of compatibility. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Twenty-Five Years of Landsat Thermal Band Calibration
NASA Technical Reports Server (NTRS)
Barsi, Julia A.; Markham, Brian L.; Schoff, John R.; Hook, Simon J.; Raqueno, Nina G.
2010-01-01
Landsat-7 Enhanced Thematic Mapper+ (ETM+), launched in April 1999, and Landsat-5 Thematic Mapper (TM), launched in 1984, both have a single thermal band. Both instruments thermal band calibrations have been updated previously: ETM+ in 2001 for a pre-launch calibration error and TM in 2007 for data acquired since the current era of vicarious calibration has been in place (1999). Vicarious calibration teams at Rochester Institute of Technology (RIT) and NASA/Jet Propulsion Laboratory (JPL) have been working to validate the instrument calibration since 1999. Recent developments in their techniques and sites have expanded the temperature and temporal range of the validation. The new data indicate that the calibration of both instruments had errors: the ETM+ calibration contained a gain error of 5.8% since launch; the TM calibration contained a gain error of 5% and an additional offset error between 1997 and 1999. Both instruments required adjustments in their thermal calibration coefficients in order to correct for the errors. The new coefficients were calculated and added to the Landsat operational processing system in early 2010. With the corrections, both instruments are calibrated to within +/-0.7K.
Situation analysis of occupational and environmental health laboratory accreditation in Thailand.
Sithisarankul, Pornchai; Santiyanont, Rachana; Wongpinairat, Chongdee; Silva, Panadda; Rojanajirapa, Pinnapa; Wangwongwatana, Supat; Srinetr, Vithet; Sriratanaban, Jiruth; Chuntutanon, Swanya
2002-06-01
The objective of this study was to analyze the current situation of laboratory accreditation (LA) in Thailand, especially on occupational and environmental health. The study integrated both quantitative and qualitative approaches. The response rate of the quantitative questionnaires was 54.5% (226/415). The majority of the responders was environmental laboratories located outside hospital and did not have proficiency testing. The majority used ISO 9000, ISO/IEC 17025 or ISO/ EEC Guide 25, and hospital accreditation (HA) as their quality system. However, only 30 laboratories were currently accredited by one of these systems. Qualitative research revealed that international standard for laboratory accreditation for both testing laboratory and calibration laboratory was ISO/IEC Guide 25, which has been currently revised to be ISO/IEC 17025. The National Accreditation Council (NAC) has authorized 2 organizations as Accreditation Bodies (ABs) for LA: Thai Industrial Standards Institute, Ministry of Industry, and Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health. Regarding LA in HA, HA considered clinical laboratory as only 1 of 31 items for accreditation. Obtaining HA might satisfy the hospital director and his management team, and hence might actually be one of the obstacles for the hospital to further improve their laboratory quality system and apply for ISO/IEC 17025 which was more technically oriented. On the other hand, HA may be viewed as a good start or even a pre-requisite for laboratories in the hospitals to further improve their quality towards ISO/IEC 17025. Interviewing the director of NAC and some key men in some large laboratories revealed several major problems of Thailand's LA. Both Thai Industrial Standards Institute and Bureau of Laboratory Quality Standards did not yet obtain Mutual Recognition Agreement (MRA) with other international ABs. Several governmental bodies had their own standards and accreditation systems, and did not accept other bodies' standards and systems. This put a burden to private laboratories because they had to apply and get accredited from several governmental bodies, but still had to apply and get accredited from international ABs especially for those dealing with exports. There were only few calibration laboratories, not enough for supporting the calibration required for the equipment in testing laboratories' LA. Purchasing proficiency testing specimens from abroad was very expensive, and often got into troubles with the customs duty procedures. The authors recommend some strategies and activities to improve laboratory accreditation in Thailand. Improvement in occupational and environmental health laboratories would essentially be beneficial to laboratory accreditation of other areas such as clinical laboratory.
Li, Xiang; Arzhantsev, Sergey; Kauffman, John F; Spencer, John A
2011-04-05
Four portable NIR instruments from the same manufacturer that were nominally identical were programmed with a PLS model for the detection of diethylene glycol (DEG) contamination in propylene glycol (PG)-water mixtures. The model was developed on one spectrometer and used on other units after a calibration transfer procedure that used piecewise direct standardization. Although quantitative results were produced, in practice the instrument interface was programmed to report in Pass/Fail mode. The Pass/Fail determinations were made within 10s and were based on a threshold that passed a blank sample with 95% confidence. The detection limit was then established as the concentration at which a sample would fail with 95% confidence. For a 1% DEG threshold one false negative (Type II) and eight false positive (Type I) errors were found in over 500 samples measured. A representative test set produced standard errors of less than 2%. Since the range of diethylene glycol for economically motivated adulteration (EMA) is expected to be above 1%, the sensitivity of field calibrated portable NIR instruments is sufficient to rapidly screen out potentially problematic materials. Following method development, the instruments were shipped to different sites around the country for a collaborative study with a fixed protocol to be carried out by different analysts. NIR spectra of replicate sets of calibration transfer, system suitability and test samples were all processed with the same chemometric model on multiple instruments to determine the overall analytical precision of the method. The combined results collected for all participants were statistically analyzed to determine a limit of detection (2.0% DEG) and limit of quantitation (6.5%) that can be expected for a method distributed to multiple field laboratories. Published by Elsevier B.V.
42 CFR 493.1495 - Standard; Testing personnel responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... samples are tested in the same manner as patient specimens; (3) Adhere to the laboratory's quality control policies, document all quality control activities, instrument and procedural calibrations and maintenance... HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS Personnel for Nonwaived...
Coleman performs VO2 Max PFS Software Calibrations and Instrument Check
2011-02-24
ISS026-E-029180 (24 Feb. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, performs VO2max portable Pulmonary Function System (PFS) software calibrations and instrument check while using the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station.
USDA-ARS?s Scientific Manuscript database
A series of laboratory experiments were conducted to assess the accuracy of permeation tube (PT) devices using a calibration gas generator system to measure permeation rate (PR) of volatile organic compounds (VOCs). Calibration gas standards of benzene, toluene, and m-xylene (BTX) were produced from...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
...(b)(4) and 211.68 require that laboratory apparatus (mechanical equipment used in manufacturing) be... Apparatus 1 and 2--Current Good Manufacturing Practice; Availability AGENCY: Food and Drug Administration... a guidance for industry entitled ``The Use of Mechanical Calibration of Dissolution Apparatus 1 and...
Geometric Calibration and Validation of Ultracam Aerial Sensors
NASA Astrophysics Data System (ADS)
Gruber, Michael; Schachinger, Bernhard; Muick, Marc; Neuner, Christian; Tschemmernegg, Helfried
2016-03-01
We present details of the calibration and validation procedure of UltraCam Aerial Camera systems. Results from the laboratory calibration and from validation flights are presented for both, the large format nadir cameras and the oblique cameras as well. Thus in this contribution we show results from the UltraCam Eagle and the UltraCam Falcon, both nadir mapping cameras, and the UltraCam Osprey, our oblique camera system. This sensor offers a mapping grade nadir component together with the four oblique camera heads. The geometric processing after the flight mission is being covered by the UltraMap software product. Thus we present details about the workflow as well. The first part consists of the initial post-processing which combines image information as well as camera parameters derived from the laboratory calibration. The second part, the traditional automated aerial triangulation (AAT) is the step from single images to blocks and enables an additional optimization process. We also present some special features of our software, which are designed to better support the operator to analyze large blocks of aerial images and to judge the quality of the photogrammetric set-up.
Ulkowski, Piotr; Bulski, Wojciech; Chełmiński, Krzysztof
2015-10-01
Unidos 10001, Unidos E (10008/10009) and Dose 1 electrometers from 14 radiotherapy centres were calibrated 3-4 times over a long period of time, together with Farmer type (PTW 30001, 30013, Nuclear Enterprises 2571 and Scanditronix-Wellhofer FC65G) cylindrical ionization chambers and plane-parallel type chambers (PTW Markus 23343 and Scanditronix-Wellhofer PPC05). On the basis of the long period of repetitive establishing of calibration coefficients for the same electrometers and ionization chambers, the accuracy of electrometers and the long-term stability of ionization chambers were examined. All measurements were carried out at the same laboratory, by the same staff, according to the same IAEA recommendations. A good accuracy and long-term stability of the dosimeters used in Polish radiotherapy centres was observed. These values were within 0.1% for electrometers and 0.2% for the chambers with electrometers. Furthermore, these values were not observed to vary over time. The observations confirm the opinion that the requirement of calibration of the dosimeters more often than every 2 years is not justified. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dambergs, Robert G; Mercurio, Meagan D; Kassara, Stella; Cozzolino, Daniel; Smith, Paul A
2012-06-01
Information relating to tannin concentration in grapes and wine is not currently available simply and rapidly enough to inform decision-making by grape growers, winemakers, and wine researchers. Spectroscopy and chemometrics have been implemented for the analysis of critical grape and wine parameters and offer a possible solution for rapid tannin analysis. We report here the development and validation of an ultraviolet (UV) spectral calibration for the prediction of tannin concentration in red wines. Such spectral calibrations reduce the time and resource requirements involved in measuring tannins. A diverse calibration set (n = 204) was prepared with samples of Australian wines of five varieties (Cabernet Sauvignon, Shiraz, Merlot, Pinot Noir, and Durif), from regions spanning the wine grape growing areas of Australia, with varying climate and soils, and with vintages ranging from 1991 to 2007. The relationship between tannin measured by the methyl cellulose precipitation (MCP) reference method at 280 nm and tannin predicted with a multiple linear regression (MLR) calibration, using ultraviolet (UV) absorbance at 250, 270, 280, 290, and 315 nm, was strong (r(2)val = 0.92; SECV = 0.20 g/L). An independent validation set (n = 85) was predicted using the MLR algorithm developed with the calibration set and gave confidence in the ability to predict new samples, independent of the samples used to prepare the calibration (r(2)val = 0.94; SEP = 0.18 g/L). The MLR algorithm could also predict tannin in fermenting wines (r(2)val = 0.76; SEP = 0.18 g/L), but worked best from the second day of ferment on. This study also explored instrument-to-instrument transfer of a spectral calibration for MCP tannin. After slope and bias adjustments of the calibration, efficient calibration transfer to other laboratories was clearly demonstrated, with all instruments in the study effectively giving identical results on a transfer set.
NASA Astrophysics Data System (ADS)
Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.
The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).
Empirical transfer functions for stations in the Central California seismological network
Bakun, W.H.; Dratler, Jay
1976-01-01
A sequence of calibration signals composed of a station identification code, a transient from the release of the seismometer mass at rest from a known displacement from the equilibrium position, and a transient from a known step in voltage to the amplifier input are generated by the automatic daily calibration system (ADCS) now operational in the U.S. Geological Survey central California seismographic network. Documentation of a sequence of interactive programs to compute, from the calibration data, the complex transfer functions for the seismographic system (ground motion through digitizer) the electronics (amplifier through digitizer), and the seismometer alone are presented. The analysis utilizes the Fourier transform technique originally suggested by Espinosa et al (1962). Section I is a general description of seismographic calibration. Section II contrasts the 'Fourier transform' and the 'least-squares' techniques for analyzing transient calibration signals. Theoretical consideration for the Fourier transform technique used here are described in Section III. Section IV is a detailed description of the sequence of calibration signals generated by the ADCS. Section V is a brief 'cookbook description' of the calibration programs; Section VI contains a detailed sample program execution. Section VII suggests the uses of the resultant empirical transfer functions. Supplemental interactive programs by which smooth response functions, suitable for reducing seismic data to ground motion, are also documented in Section VII. Appendices A and B contain complete listings of the Fortran source Codes while Appendix C is an update containing preliminary results obtained from an analysis of some of the calibration signals from stations in the seismographic network near Oroville, California.
TIMED solar EUV experiment: preflight calibration results for the XUV photometer system
NASA Astrophysics Data System (ADS)
Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.
1999-10-01
The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.
SU-E-T-677: Reproducibility of Production of Ionization Chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukolowicz, P; Bulski, W; Ulkowski, P
Purpose: To compare the reproducibility of the production of several cylindrical and plane-parallel chambers popular in Poland in terms of a calibration coefficient. Methods: The investigation was performed for PTW30013 (20 chambers), 30001 (10 chambers), FC65-G (17 chambers) cylindrical chambers and for PPC05 (14 chambers), Roos 34001 (8 chambers) plane parallel chambers. The calibration factors were measured at the same accredited secondary standard laboratory in terms of a dose to water. All the measurements were carried out at the same laboratory, by the same staff, in accordance with the same IAEA recommendations. All the chambers were calibrated in the Co60more » beam. Reproducibility was described in terms of the mean value, its standard deviation and the ratio of the maximum and minimum value of calibration factors for each set of chambers separately. The combined uncertainty budged (1SD) calculated according to the IAEA-TECDOC-1585 of the calibration factor was of 0.25%. Results: The calibration coefficients for PTW30013, 30001, and FC65-G chambers were 5.36±0.03, 5.28±0.06, 4.79±0.015 nC/Gy respectively and for PPC05, and Roos chambers were 59±2, 8.3±0.1 nC/Gy respectively. The maximum/minimum ratio of calibration factors for PTW30013, 30001, FC65-G, and for PPC05, Roos chambers were 1.03, 1.03, 1.01, 1.14 and 1.03 respectively. Conclusion: The production of all ion chambers was very reproducible except the Markus type PPC05 for which the ratio of maximum/minimum calibration coefficients of 1.14 was obtained.« less
Spectroradiometric considerations for advanced land observing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1986-01-01
Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.
Dantas, B M; Lucena, E A; Dantas, A L A; Santos, M S; Julião, L Q C; Melo, D R; Sousa, W O; Fernandes, P C; Mesquita, S A
2010-10-01
Internal exposures may occur in nuclear power plants, radioisotope production, and in medicine and research laboratories. Such practices require quick response in case of accidents of a wide range of magnitudes. This work presents the design and calibration of a mobile laboratory for the assessment of accidents involving workers and the population as well as for routine monitoring. The system was set up in a truck with internal dimensions of 3.30 m × 1.60 m × 1.70 m and can identify photon emitters in the energy range of 100-3,000 keV in the whole body, organs, and in urine. A thyroid monitor consisting of a lead-collimated NaI(Tl)3" × 3" (7.62 × 7.62 cm) detector was calibrated with a neck-thyroid phantom developed at the IRD (Instituto de Radioproteção e Dosimetria). Whole body measurements were performed with a NaI(Tl)8" × 4" (20.32 × 10.16 cm) detector calibrated with a plastic-bottle phantom. Urine samples were measured with another NaI(Tl) 3" × 3" (7.62 × 7.62 cm) detector set up in a steel support. Standard solutions were provided by the National Laboratory for Metrology of Ionizing Radiation of the IRD. Urine measurements are based on a calibration of efficiency vs. energy for standard volumes. Detection limits were converted to minimum committed effective doses for the radionuclides of interest using standard biokinetic and dosimetric models in order to evaluate the applicability and limitations of the system. Sensitivities for high-energy activation and fission products show that the system is suitable for use in emergency and routine monitoring of individuals under risk of internal exposure by such radionuclides.
Legato: Personal Computer Software for Analyzing Pressure-Sensitive Paint Data
NASA Technical Reports Server (NTRS)
Schairer, Edward T.
2001-01-01
'Legato' is personal computer software for analyzing radiometric pressure-sensitive paint (PSP) data. The software is written in the C programming language and executes under Windows 95/98/NT operating systems. It includes all operations normally required to convert pressure-paint image intensities to normalized pressure distributions mapped to physical coordinates of the test article. The program can analyze data from both single- and bi-luminophore paints and provides for both in situ and a priori paint calibration. In addition, there are functions for determining paint calibration coefficients from calibration-chamber data. The software is designed as a self-contained, interactive research tool that requires as input only the bare minimum of information needed to accomplish each function, e.g., images, model geometry, and paint calibration coefficients (for a priori calibration) or pressure-tap data (for in situ calibration). The program includes functions that can be used to generate needed model geometry files for simple model geometries (e.g., airfoils, trapezoidal wings, rotor blades) based on the model planform and airfoil section. All data files except images are in ASCII format and thus are easily created, read, and edited. The program does not use database files. This simplifies setup but makes the program inappropriate for analyzing massive amounts of data from production wind tunnels. Program output consists of Cartesian plots, false-colored real and virtual images, pressure distributions mapped to the surface of the model, assorted ASCII data files, and a text file of tabulated results. Graphical output is displayed on the computer screen and can be saved as publication-quality (PostScript) files.
AVIRIS data calibration information: Wasatch Mountains and Park City region, Utah
Rockwell, Barnaby W.; Clark, Roger N.; Livo, K. Eric; McDougal, Robert R.; Kokaly, Raymond F.
2002-01-01
This report contains information regarding the reflectance calibration of spectroscopic imagery acquired over the Wasatch Mountains and Park City region, Utah, by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor on August 5, 1998. This information was used by the USGS Spectroscopy Laboratory to calibrate the Park City AVIRIS imagery to unitless reflectance prior to spectral analysis. The Utah AVIRIS data were analyzed as a part of the USEPA-USGS Utah Abandoned Mine Lands Imaging Spectroscopy Project.
2012-06-08
Earth Scan Laboratory, Louisiana State University. Raw OCM data were calibrated by converting raw counts to radiance values for the eight OCM spectral...La(λi)) Aerosol path radiance is the contribution of scattering by particles similar to or larger than the wavelength of light such as dust, pollen ...University. Raw OCM data were calibrated by converting raw counts to radiance values for the eight OCM spectral bands using the SeaSpace Terascan TM
The quantity time relation in the ionizing radiations
NASA Astrophysics Data System (ADS)
Jordão, B. O.; Quaresma, D. S.; Peixoto, J. G. P.
2018-03-01
The metrology area has taken a step forward with regard to the uncertainty calculation. This mathematical tool used in laboratories is essential to ensure that the values resulting from a measurement are reliable. For this to be possible, all equipment used in a measurement process must be reliable and, above all, traceable to the international metrology system. We propose to present in this work: (i) the development and calibration of a microcontrolled time device with a resolution of 1x10-4 s, in order to characterize the time greatness and make it re-producible; (ii) the calibration of the quartz clock present in a computer present in the dosimetry laboratories; (iii) a more in-depth study of the influence of time quantity on calibrations of instruments used in the area of radiological protection, diagnostic radiology and radiotherapy, with measurements performed on the Kerma magnitude in air or its rate.
Measuring Systems for Thermometer Calibration in Low-Temperature Range
NASA Astrophysics Data System (ADS)
Szmyrka-Grzebyk, A.; Lipiński, L.; Manuszkiewicz, H.; Kowal, A.; Grykałowska, A.; Jancewicz, D.
2011-12-01
The national temperature standard for the low-temperature range between 13.8033 K and 273.16 K has been established in Poland at the Institute of Low Temperature and Structure Research (INTiBS). The standard consists of sealed cells for realization of six fixed points of the International Temperature Scale of 1990 (ITS-90) in the low-temperature range, an adiabatic cryostat and Isotech water and mercury triple-point baths, capsule standard resistance thermometers (CSPRT), and AC and DC bridges with standard resistors for thermometers resistance measurements. INTiBS calibrates CSPRTs at the low-temperature fixed points with uncertainties less than 1 mK. In lower temperature range—between 2.5 K and about 25 K — rhodium-iron (RhFe) resistance thermometers are calibrated by comparison with a standard which participated in the EURAMET.T-K1.1 comparison. INTiBS offers a calibration service for industrial platinum resistance thermometers and for digital thermometers between 77 K and 273 K. These types of thermometers may be calibrated at INTiBS also in a higher temperature range up to 550°C. The Laboratory of Temperature Standard at INTiBS acquired an accreditation from the Polish Centre for Accreditation. A management system according to EN ISO/IEC 17025:2005 was established at the Laboratory and presented on EURAMET QSM Forum.
Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.
Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao
2017-08-01
Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r 2 of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring.
Cappello, Carlo; Zonta, Daniele; Laasri, Hassan Ait; Glisic, Branko; Wang, Ming
2018-02-05
The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables' tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures.
Calibration of Elasto-Magnetic Sensors on In-Service Cable-Stayed Bridges for Stress Monitoring
Ait Laasri, Hassan; Glisic, Branko; Wang, Ming
2018-01-01
The recent developments in measurement technology have led to the installation of efficient monitoring systems on many bridges and other structures all over the world. Nowadays, more and more structures have been built and instrumented with sensors. However, calibration and installation of sensors remain challenging tasks. In this paper, we use a case study, Adige Bridge, in order to present a low-cost method for the calibration and installation of elasto-magnetic sensors on cable-stayed bridges. Elasto-magnetic sensors enable monitoring of cable stress. The sensor installation took place two years after the bridge construction. The calibration was conducted in two phases: one in the laboratory and the other one on site. In the laboratory, a sensor was built around a segment of cable that was identical to those of the cable-stayed bridge. Then, the sample was subjected to a defined tension force. The sensor response was compared with the applied load. Experimental results showed that the relationship between load and magnetic permeability does not depend on the sensor fabrication process except for an offset. The determination of this offset required in situ calibration after installation. In order to perform the in situ calibration without removing the cables from the bridge, vibration tests were carried out for the estimation of the cables’ tensions. At the end of the paper, we show and discuss one year of data from the elasto-magnetic sensors. Calibration results demonstrate the simplicity of the installation of these sensors on existing bridges and new structures. PMID:29401751
Li, Zhengqiang; Li, Kaitao; Li, Li; Xu, Hua; Xie, Yisong; Ma, Yan; Li, Donghui; Goloub, Philippe; Yuan, Yinlin; Zheng, Xiaobing
2018-02-10
Polarization observation of sky radiation is the frontier approach to improve the remote sensing of atmospheric components, e.g., aerosol and clouds. The polarization calibration of the ground-based Sun-sky radiometer is the basis for obtaining accurate degree of linear polarization (DOLP) measurement. In this paper, a DOLP calibration method based on a laboratory polarized light source (POLBOX) is introduced in detail. Combined with the CE318-DP Sun-sky polarized radiometer, a calibration scheme for DOLP measurement is established for the spectral range of 440-1640 nm. Based on the calibration results of the Sun-sky radiometer observation network, the polarization calibration coefficient and the DOLP calibration residual are analyzed statistically. The results show that the DOLP residual of the calibration scheme is about 0.0012, and thus it can be estimated that the final DOLP calibration accuracy of this method is about 0.005. Finally, it is verified that the accuracy of the calibration results is in accordance with the expected results by comparing the simulated DOLP with the vector radiative transfer calculations.
Evaluation of critical indicators in the process of acquiring supplies and services LAC-UFPE
NASA Astrophysics Data System (ADS)
Caetano, V. F.; Ferreira, C. V.; dos Santos, M. J.; Honorato, F. A.
2015-01-01
In laboratories linked to public universities and accredited by the NBR ISO/IEC 17025, to meet efficiently item 4.6 (procurement of supplies and services) is a challenge that can be accomplished by programming based on historical purchases and services. In this study, we evaluated the critical procurement items to meet the quality management system of the LAC-UFPE: reagents, certified reference material, of equipment parts, maintenance and calibration of equipment and instruments. It was found that the most critical item is the certified reference material, the purchase or repair of which must be expedited within 125 days prior to the receipt to occur within the desired period.
Greaves, Ronda F; Jolly, Lisa; Hartmann, Michaela F; Ho, Chung Shun; Kam, Richard K T; Joseph, John; Boyder, Conchita; Wudy, Stefan A
2017-03-01
Serum dihydrotestosterone (DHT) is an important analyte for the clinical assessment of disorders of sex development. It is also reportedly a difficult analyte to measure. Currently, there are significant gaps in the standardisation of this analyte, including no external quality assurance (EQA) program available worldwide to allow for peer review performance of DHT. We therefore proposed to establish a pilot EQA program for serum DHT. DHT was assessed in the 2015 Royal College of Pathologists of Australasia Quality Assurance Programs' Endocrine program material. The material's target (i.e. "true") values were established using a measurement procedure based on isotope dilution gas chromatography (GC) tandem mass spectrometry (MS/MS). DHT calibrator values were based on weighed values of pure DHT material (>97.5% purity) from Sigma. The allowable limits of performance (ALP) were established as ±0.1 up to 0.5 nmol/L and ±15% for targets >0.5 nmol/L. Target values for the six levels of RCPAQAP material for DHT ranged from 0.02 to 0.43 nmol/L (0.01-0.12 ng/mL). The material demonstrated linearity across the six levels. There were seven participating laboratories for this pilot study. Results of the liquid chromatography (LC) MS/MS methods were within the ALP; whereas the results from the immunoassay methods were consistently higher than the target values and outside the ALP. This report provides the first peer comparison of serum DHT measured by mass spectrometry (MS) and immunoassay laboratories. Establishment of this program provides one of the pillars to achieve method harmonisation. This supports accurate clinical decisions where DHT measurement is required.
The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron; Sengupta, Manajit; Andreas, Afshin
2016-07-01
Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibratedmore » indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.« less
The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7), March 1999
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McLean, Scott; Sherman, Jennifer; Small, Mark; Lazin, Gordana; Zibordi, Giuseppe; Brown, James W.; McClain, Charles R. (Technical Monitor)
2002-01-01
This report documents the scientific activities during the seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7) held at Satlantic, Inc. (Halifax, Canada). The overall objective of SIRREX-7 was to determine the uncertainties of radiometric calibrations and measurements at a single calibration facility. Specifically, this involved the estimation of the uncertainties in a) lamp standards, b) plaque standards (including the uncertainties associated with plaque illumination non-uniformity), c) radiance calibrations, and d) irradiance calibrations. The investigation of the uncertainties in lamp standards included a comparison between a calibration of a new FEL by the National Institute of Standards and Technology (NIST) and Optronic Laboratories, Inc. In addition, the rotation and polarization sensitivity of radiometers were determined, and a procedure for transferring an absolute calibration to portable light sources was defined and executed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, P.
The majority of general-purpose low-temperature handheld radiation thermometers are severely affected by the size-of-source effect (SSE). Calibration of these instruments is pointless unless the SSE is accounted for in the calibration process. Traditional SSE measurement techniques, however, are costly and time consuming, and because the instruments are direct-reading in temperature, traditional SSE results are not easily interpretable, particularly by the general user. This paper describes a simplified method for measuring the SSE, suitable for second-tier calibration laboratories and requiring no additional equipment, and proposes a means of reporting SSE results on a calibration certificate that should be easily understood bymore » the non-specialist user.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, A.; Basti, A.; Bedeschi, F.
We report the test of many of the key elements of the laser-based calibration system for muon g - 2 experiment E989 at Fermilab. The test was performed at the Laboratori Nazionali di Frascati's Beam Test Facility using a 450 MeV electron beam impinging on a small subset of the final g - 2 lead-fluoride crystal calorimeter system. The calibration system was configured as planned for the E989 experiment and uses the same type of laser and most of the final optical elements. We show results regarding the calorimeter's response calibration, the maximum equivalent electron energy which can be providedmore » by the laser and the stability of the calibration system components.« less
NASA Astrophysics Data System (ADS)
Matula, Svatopluk; Dolezal, Frantisek; Moreira Barradas, Joao Manuel
2015-04-01
The electromagnetic soil water content sensors are invaluable tools because of their selective sensitivity to water, versatility, ease of automation and large resolution. A common drawback of most their types is their preferential sensitivity to water near to their surfaces. The ways in which the drawback manifests itself were explored for the case of large Time-Domain Reflectometry (TDR) sensors Aqua-Tel-TDR (Automata, Inc., now McCrometer CONNECT). Their field performance was investigated and compared with the results of field and laboratory calibration. The field soil was loamy Chernozem on a carbonate-rich loess substrate, while the laboratory calibration was done in fine quartz sand. In the field, the sensors were installed horizontally into pre-bored holes after being wrapped in slurry of native soil or fine earth. Large sensor-to-sensor variability of readings was observed. It was partially removed by field calibration. The occurrence of percolation events could be easily recognised, because they made the TDR readings suddenly rising and sometimes considerably exceeding the saturated water content. After the events, the TDR readings fell, usually equally suddenly, remaining afterwards at the levels somewhat higher than those before the event. These phenomena can be explained by the preferential flow of water in natural and artificial soil macropores around the sensors. It is hypothesised that the percolating water which enters the gaps and other voids around the sensors accumulates there for short time, being hindered by the sensors themselves. This water also has a enlarged opportunity to get absorbed by the adjacent soil matrix. The variance of TDR readings obtained during the field calibration does not differ significantly from the variance of the corresponding gravimetric sampling data. This suggests that the slope of the field calibration equation is close to unity, in contrast to the laboratory calibration in quartz sand. This difference in slopes can be explained by the presence or absence, respectively, of gaps around the sensors. A typical percolation event and dry period records are presented and analysed. Sensors of this type can be used for qualitative detection of preferential flow and perhaps also for its quantification. The readings outside the percolation events indicate that the sensor environment imitates the native soil reasonably well and that the field-calibrated sensors can provide us with quantitative information about the actual soil water content.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas
2012-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration system for the reflected solar portion of CLARREO. SOLARIS provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections.
40 CFR 91.326 - Pre- and post-test analyzer calibration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Pre- and post-test analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.326 Pre- and post-test analyzer calibration. Calibrate the operating range of each analyzer...
Design of 50,000G Accelerometer Calibration System
1982-08-01
for High-Powered Electron Tubes", LAWRENCE RADIATION LABORATORY REPORT— UCRL - 3701 : August, 1957. 9. "The Electromagnetic Hammer...During 108 Watt Pulses", LAWRENCE RADIATION LABORATORY REPORT— UCRL -5687: June, 1960. 2. Kemp, E. L., and Putnam, T. M., "The Design...University of California, "Development of Switching Tubes for Controlled Fusion Research", LAWRENCE RADIATION LABORATORY REPORT— UCRL -5539
Quality Management and Calibration
NASA Astrophysics Data System (ADS)
Merkus, Henk G.
Good specification of a product’s performance requires adequate characterization of relevant properties. Particulate products are usually characterized by some PSD, shape or porosity parameter(s). For proper characterization, adequate sampling, dispersion, and measurement procedures should be available or developed and skilful personnel should use appropriate, well-calibrated/qualified equipment. The characterization should be executed, in agreement with customers, in a wellorganized laboratory. All related aspects should be laid down in a quality handbook. The laboratory should provide proof for its capability to perform the characterization of stated products and/or reference materials within stated confidence limits. This can be done either by internal validation and audits or by external GLP accreditation.
NASA Astrophysics Data System (ADS)
Cabral, TS; da Silva, CNM; Potiens, MPA; Soares, CMA; Silveira, RR; Khoury, H.; Saito, V.; Fernandes, E.; Cardoso, WF; de Oliveira, HPS; Pires, MA; de Amorim, AS; Balthar, M.
2018-03-01
The results of the comparison involving 9 laboratories in Brazil are reported. The measured quantity was the air kerma in 137Cs and 60Co, at the level of radioprotection. The comparison was conducted by the National Laboratory Metrology of Ionizing Radiation (LNMRI/IRD) from October 2016 to March 2017. The largest deviation between the calibration coefficients was 0.8% for 137Cs and 0.7% for 60Co. This proficiency exercise proved the technical capacity of the Brazilian calibration network in radiation monitors and the results were used by some in the implementation of the standard ISO/IEC 17025.
Metrological activity determination of 133Ba by sum-peak absolute method
NASA Astrophysics Data System (ADS)
da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.
2016-07-01
The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.
Laboratory Measurement of the Brighter-fatter Effect in an H2RG Infrared Detector
NASA Astrophysics Data System (ADS)
Plazas, A. A.; Shapiro, C.; Smith, R.; Huff, E.; Rhodes, J.
2018-06-01
The “brighter-fatter” (BF) effect is a phenomenon—originally discovered in charge coupled devices—in which the size of the detector point-spread function (PSF) increases with brightness. We present, for the first time, laboratory measurements demonstrating the existence of the effect in a Hawaii-2RG HgCdTe near-infrared (NIR) detector. We use JPL’s Precision Projector Laboratory, a facility for emulating astronomical observations with UV/VIS/NIR detectors, to project about 17,000 point sources onto the detector to stimulate the effect. After calibrating the detector for nonlinearity with flat-fields, we find evidence that charge is nonlinearly shifted from bright pixels to neighboring pixels during exposures of point sources, consistent with the existence of a BF-type effect. NASAs Wide Field Infrared Survey Telescope (WFIRST) will use similar detectors to measure weak gravitational lensing from the shapes of hundreds of million of galaxies in the NIR. The WFIRST PSF size must be calibrated to ≈0.1% to avoid biased inferences of dark matter and dark energy parameters; therefore further study and calibration of the BF effect in realistic images will be crucial.
NASA Astrophysics Data System (ADS)
Perini, Ana P.; Neves, Lucio P.; Maia, Ana F.; Caldas, Linda V. E.
2013-12-01
In this work, a new extended-length parallel-plate ionization chamber was tested in the standard radiation qualities for computed tomography established according to the half-value layers defined at the IEC 61267 standard, at the Calibration Laboratory of the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The experimental characterization was made following the IEC 61674 standard recommendations. The experimental results obtained with the ionization chamber studied in this work were compared to those obtained with a commercial pencil ionization chamber, showing a good agreement. With the use of the PENELOPE Monte Carlo code, simulations were undertaken to evaluate the influence of the cables, insulator, PMMA body, collecting electrode, guard ring, screws, as well as different materials and geometrical arrangements, on the energy deposited on the ionization chamber sensitive volume. The maximum influence observed was 13.3% for the collecting electrode, and regarding the use of different materials and design, the substitutions showed that the original project presented the most suitable configuration. The experimental and simulated results obtained in this work show that this ionization chamber has appropriate characteristics to be used at calibration laboratories, for dosimetry in standard computed tomography and diagnostic radiology quality beams.
A new model for bed load sampler calibration to replace the probability-matching method
Robert B. Thomas; Jack Lewis
1993-01-01
In 1977 extensive data were collected to calibrate six Helley-Smith bed load samplers with four sediment particle sizes in a flume at the St. Anthony Falls Hydraulic Laboratory at the University of Minnesota. Because sampler data cannot be collected at the same time and place as ""true"" trap measurements, the ""probability-matching...
ERIC Educational Resources Information Center
Volz, Tracy; Saterbak, Ann
2009-01-01
In engineering fields, students are expected to construct technical arguments that demonstrate a discipline's expected use of logic, evidence, and conventions. Many undergraduate bioengineering students struggle to enact the appropriate argument structures when they produce technical posters. To address this problem we implemented Calibrated Peer…
LPT. Shield test facility (TAN645 and 646). Calibration lab shield ...
LPT. Shield test facility (TAN-645 and -646). Calibration lab shield door. Ralph M. Parsons 1229-17 ANP/GE-6-645-MS-1. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-0645-40-693-107369 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ERIC Educational Resources Information Center
De Lorenzi Pezzolo, Alessandra
2013-01-01
Unlike most spectroscopic calibrations that are based on the study of well-separated features ascribable to the different components, this laboratory experience is especially designed to exploit spectral features that are nearly overlapping. The investigated system consists of a binary mixture of two commonly occurring minerals, calcite and…
NASA Astrophysics Data System (ADS)
Becerra, Luis Omar
2009-01-01
This SIM comparison on the calibration of high accuracy hydrometers was carried out within fourteen laboratories in the density range from 600 kg/m3 to 1300 kg/m3 in order to evaluate the degree of equivalence among participant laboratories. This key comparison anticipates the planned key comparison CCM.D-K4, and is intended to be linked with CCM.D-K4 when results are available. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Yoon, Howard W.; Bruce, Sally S.; Shaw, Ping-Shine; Thompson, Ambler; Hooker, Stanford B.; Barnes, Robert A.; Eplee, Robert E., Jr.;
1999-01-01
This report documents the fifth Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Intercalibration Round-Robin Experiment (SIRREX-5), which was held at the National Institute of Standards and Technology (NIST) on 23-30 July 1996. The agenda for SIRREX-5 was established based on recommendations made during SIRREX-4. For the first time in a SIRREX activity, instrument intercomparisons were performed at field sites, which were near NIST. The goals of SIRREX-5 were to continue the emphasis on training and the implementation of standard measurement practices, investigate the calibration methods and measurement chains in use by the oceanographic community, provide opportunities for discussion, and intercompare selected instruments. As at SIRREX-4, the day was divided between morning lectures and afternoon laboratory exercises. A set of core laboratory sessions were performed: 1) in-water radiant flux measurements; 2) in-air radiant flux measurements; 3) spectral radiance responsivity measurements using the plaque method; 4) device calibration or stability monitoring with portable field sources; and 5) various ancillary exercises designed to illustrate radiometric concepts. Before, during, and after SIRREX-5, NIST calibrated the SIRREX-5 participating radiometers for radiance and irradiance responsivity. The Facility for Automated Spectroradiometric Calibrations (FASCAL) was scheduled for spectral irradiance calibrations for standard lamps during SIRREX-5. Three lamps from the SeaWiFS community were submitted and two were calibrated.
Studying Reliability Using Identical Handheld Lactate Analyzers
ERIC Educational Resources Information Center
Stewart, Mark T.; Stavrianeas, Stasinos
2008-01-01
Accusport analyzers were used to generate lactate performance curves in an investigative laboratory activity emphasizing the importance of reliable instrumentation. Both the calibration and testing phases of the exercise provided students with a hands-on opportunity to use laboratory-grade instrumentation while allowing for meaningful connections…
2012-11-01
Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator...Laboratory, Stanford University, Stanford, CA 94305, USA; echarles@slac.stanford.edu 3 Department of Physics, Center for Cosmology and Astro-Particle Physics
CALIBRATION OF FULL-SCALE OZONATION SYSTEMS WITH CONSERVATIVE AND REACTIVE TRACERS
A full-scale ozonation reactor was characterized with respect to the overall oxidation budget by coupling laboratory kinetics with reactor hydraulics. The ozone decomposition kinetics and the ratio of the OH radical to the ozone concentration were determined in laboratory batch ...
The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and Parameter Estimation (UA/SA/PE API) tool development, here fore referred to as the Calibration, Optimization, and Sensitivity and Uncertainty Algorithms API (COSU-API), was initially d...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca
2015-04-15
Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measuredmore » over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring ADCL conformance with National Institute of Standards and Technology standards. This study shows that N{sub D,w} coefficients measured at different ADCLs are statistically equivalent, especially considering reasonable uncertainties. This analysis of N{sub D,w} coefficients also allows identification of chamber types that can be considered stable enough for accurate reference dosimetry.« less
Space Science at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Smith, Karl
2017-09-01
The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.
Optics-Only Calibration of a Neural-Net Based Optical NDE Method for Structural Health Monitoring
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A calibration process is presented that uses optical measurements alone to calibrate a neural-net based NDE method. The method itself detects small changes in the vibration mode shapes of structures. The optics-only calibration process confirms previous work that the sensitivity to vibration-amplitude changes can be as small as 10 nanometers. A more practical value in an NDE service laboratory is shown to be 50 nanometers. Both model-generated and experimental calibrations are demonstrated using two implementations of the calibration technique. The implementations are based on previously published demonstrations of the NDE method and an alternative calibration procedure that depends on comparing neural-net and point sensor measurements. The optics-only calibration method, unlike the alternative method, does not require modifications of the structure being tested or the creation of calibration objects. The calibration process can be used to test improvements in the NDE process and to develop a vibration-mode-independence of damagedetection sensitivity. The calibration effort was intended to support NASA s objective to promote safety in the operations of ground test facilities or aviation safety, in general, by allowing the detection of the gradual onset of structural changes and damage.
NASA Astrophysics Data System (ADS)
Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.
2016-12-01
The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.
Space Surveillance Tech Area Benefits From University Partnerships
NASA Astrophysics Data System (ADS)
Cole, K.; Voss, D.; Pietruszewski, A.; King, L.; Hohnstadt, P.; Feirstine, K.; Crassidis, J.; D'Angelo, M.; Linares, R.
2011-09-01
The University Nanosat Program (UNP) is a two year small satellite competition held among leading universities across the nation. In the past 12 years UNP has involved 27 universities and over 5000 students in a variety of engineering fields and other disciplines, in the process of designing and managing the development of a satellite. The UNP is a partnership between the Air Force Office of Scientific Research (AFOSR), the Air Force Research Laboratory (AFRL), and the American Institute of Aeronautics and Astronautics (AIAA). The program’s primary purpose is to help train engineering students in satellite design, fabrication, and testing by requiring them to build the satellite themselves through the mentorship of their Principle Investigator, industry mentors, and a series of six program reviews managed by the AFRL Program Office. Each university-built satellite attempts to further a specific technology or perform a scientific mission. Technologies advanced through the program include all aspects of small satellite designs including structures, propulsion, imaging, navigation and have helped further science payloads such as energetic particle detectors, plasma probes, photometers, and many others. This paper will discuss the educational impact on students involved in a hands-on, hardware focused program, with emphasis given to two UNP satellites relevant to Space Surveillance Technologies. The most recent winner of the UNP competition, Michigan Technological University’s Oculus-ASR, is a calibration instrument for AMOS’ telescopic non-resolved object characterization program. Another example is the University of Buffalo, which is calibrating with the AFRL MESSA program in the current competition cycle. The University of Buffalo’s nanosatellite is being designed to collect multi-band photometric data of glinting geostationary space objects. Both these satellites are excellent examples of the relevance and quality of innovation and technology that can be produced from an educational program. Finally, the paper will discuss how corporate and government sponsors are a critical part of launching a successful educational flight experiment, and are key benefactors from the data gleaned from a successful mission. These strong partnerships result in students working on relevant projects with mission driven requirements resulting in a better educational program and a greater return on the investment of external partners.
Laboratory for Atmospheres 2008 Technical Highlights
NASA Technical Reports Server (NTRS)
Cote, Charles E.
2009-01-01
The 2008 Technical Highlights describes the efforts of all members of the Laboratory for Atmospheres. Their dedication to advancing Earth Science through conducting research, developing and running models, designing instruments, managing projects, running field campaigns, and numerous other activities, is highlighted in this report. The Laboratory for Atmospheres (Code 613) is part of the Earth Sciences Division (Code 610), formerly the Earth Sun Exploration Division, under the Sciences and Exploration Directorate (Code 600) based at NASA s Goddard Space Flight Center in Greenbelt, Maryland. In line with NASA s Exploration Initiative, the Laboratory executes a comprehensive research and technology development program dedicated to advancing knowledge and understanding of the atmospheres of Earth and other planets. The research program is aimed at understanding the influence of solar variability on the Earth s climate; predicting the weather and climate of Earth; understanding the structure, dynamics, and radiative properties of precipitation, clouds, and aerosols; understanding atmospheric chemistry, especially the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and advancing our understanding of physical properties of Earth s atmosphere. The research program identifies problems and requirements for atmospheric observations via satellite missions. Laboratory scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology for remote sensing of the atmosphere. Laboratory members conduct field measurements for satellite data calibration and validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud-resolving models, and development of next-generation Earth system models. Interdisciplinary research is carried out in collaboration with other laboratories and research groups within the Earth Sciences Division, across the Sciences and Exploration Directorate, and with partners in universities and other Government agencies. The Laboratory for Atmospheres is a vital participant in NASA s research agenda. Our Laboratory often has relatively large programs, sizable satellite missions, and observational campaigns that require the cooperative and collaborative efforts of many scientists. We ensure an appropriate balance between our scientists responsibility for these large collaborative projects and their need for an active individual research agenda. This balance allows members of the Laboratory to continuously improve their scientific credentials. Members of the Laboratory interact with the general public to support a wide range of interests in the atmospheric sciences. Among other activities, the Laboratory raises the public s awareness of atmospheric science by presenting public lectures and demonstrations, by making scientific data available to wide audiences, by teaching, and by mentoring students and teachers. The Laboratory makes substantial efforts to attract new scientists to the various areas of atmospheric research. We strongly encourage the establishment of partnerships with Federal and state agencies that have operational responsibilities to promote the societal application of our science products. This report describes our role in NASA s mission, gives a broad description of our research, and summarizes our scientists major accomplishments during calendar year 2008. The report also contains useful information on human resources, scientific interactions, and outreach activities.
A new systematic calibration method of ring laser gyroscope inertial navigation system
NASA Astrophysics Data System (ADS)
Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu
2016-10-01
Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.
Improving integrity of on-line grammage measurement with traceable basic calibration.
Kangasrääsiö, Juha
2010-07-01
The automatic control of grammage (basis weight) in paper and board production is based upon on-line grammage measurement. Furthermore, the automatic control of other quality variables such as moisture, ash content and coat weight, may rely on the grammage measurement. The integrity of Kr-85 based on-line grammage measurement systems was studied, by performing basic calibrations with traceably calibrated plastic reference standards. The calibrations were performed according to the EN ISO/IEC 17025 standard, which is a requirement for calibration laboratories. The observed relative measurement errors were 3.3% in the first time calibrations at the 95% confidence level. With the traceable basic calibration method, however, these errors can be reduced to under 0.5%, thus improving the integrity of on-line grammage measurements. Also a standardised algorithm, based on the experience from the performed calibrations, is proposed to ease the adjustment of the different grammage measurement systems. The calibration technique can basically be applied to all beta-radiation based grammage measurements. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Uncertainty Analysis of Instrument Calibration and Application
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.
Millstone Angle Calibration 1989
1990-09-14
tiltmeter calibration models are examined, ("A A 1 GAccession For NTIS GP\\A&I o DTIC TAB 0] Unannounced 01 Justificatlo By Distribution/ Avnilitb lty...parameters. T. A. Cott kindly added the ability to retrieve tiltmeter data from SATCIT raw data tapes to his program SATSNR and provided the program for my...AZLCAL and Current Method 17 3. THE ELEVATION JUMP PHENOMENON 27 3.1 AZLCAL Modeling 27 3.2 Elevation Rate Dependence 27 4. TILTMETER CALIBRATION 29 5
Results of the 1994 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1994-01-01
The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1991 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1991-01-01
The 1991 solar cell calibration balloon flight was completed on August 1, 1991. All objectives of the flight program were met. Thirty-nine modules were carried to an altitude of 119,000 ft. (36.3 km). Data telemetered from the modules were corrected to 28 C and to 1 AU. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1992 NASA/JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1992-01-01
The 1992 solar cell calibration balloon flight was completed on August 1, 1992. All objectives of the flight program were met. Forty-one modules were carried to an altitude of 119,000 ft (36.3 km). Data telemetered from the modules was corrected to 28 C and 1 AU. The calibrated cells have been returned to 39 participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1993 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1993-01-01
The 1993 solar cell calibration balloon flight was completed on July 29, 1993. All objectives of the flight program were met. Forty modules were carried to an altitude of 120,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to 8 participants and can now be used as reference standards in simulator testing of cells and arrays.
Laboratory calibration of AAFE radiometer/scatterometer (RADSCAT)
NASA Technical Reports Server (NTRS)
Schroeder, L. C.; Jones, W. L., Jr.; Mitchell, J. L.
1976-01-01
A brief description of the electrical and mechanical instrument configuration, followed by an extensive discussion of laboratory tests and results are contained herein. This information is required to provide parameters for data reduction, and a basis for analysis of the measurement errors in data taken with this instrument.
NASA Astrophysics Data System (ADS)
Kaus, Rüdiger
This chapter gives the background on the accreditation of testing and calibration laboratories according to ISO/IEC 17025 and sets out the requirements of this international standard. ISO 15189 describes similar requirements especially tailored for medical laboratories. Because of these similarities ISO 15189 is not separately mentioned throughout this lecture.
The Analysis of Seawater: A Laboratory-Centered Learning Project in General Chemistry.
ERIC Educational Resources Information Center
Selco, Jodye I.; Roberts, Julian L., Jr.; Wacks, Daniel B.
2003-01-01
Describes a sea-water analysis project that introduces qualitative and quantitative analysis methods and laboratory methods such as gravimetric analysis, potentiometric titration, ion-selective electrodes, and the use of calibration curves. Uses a problem-based cooperative teaching approach. (Contains 24 references.) (YDS)
The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often it is used to measure total carbon (TC), organic carbon (OC), and eleme...
The EBIT Calorimeter Spectrometer: A New, Permanent User Facility at the LLNL EBIT
NASA Technical Reports Server (NTRS)
Porter, S.
2007-01-01
The EBIT Calorimeter Spectrometer (ECS) has recently been completed and is currently being installed at the EBIT facility at the Lawrence Livermore National Laboratory. The ECS will replace the smaller XRS/EBIT spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory. The new ECS spectrometer was built from the ground up to be a low maintenance, high performance microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 us event timing, and capable of uninterrupted acquisition sessions of over 70 hours at 50 mK. The XRSIEBIT program has been extremely successful, producing over two-dozen refereed publications on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility, with many more publications in preparation. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. This proposed future instrument would include a hybrid detector system with 0.8 eV resolution in the band from 0.1-1.0 keV, 2 eV from 0.1-10 keV, and 30 eV from 0.5-100 keV, with high quantum efficiency in each band. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES spectrometer.
Post-Coronagraph Wavefront Sensor for Gemini Planet Imager
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Burruss, Rick; Pueyo, Laurent; Soummer, Remi; Shelton, Chris; Bartos, Randall; Fregoso, Felipe; Nemati, Bijan; Best, Paul; Angione, John
2009-01-01
The calibration wavefront system for the Gemini Planet Imager (GPI) will measure the complex wavefront at the apodized pupil and provide slow phase errors to the AO system to mitigate against image plane speckles that would cause a loss in contrast. This talk describes both the low-order and high-order sensors in the calibration wavefront sensor and how the information is combined to form the wavefront estimate before the coronagraph. We will show laboratory results from our calibration testbed that demonstrate the subsystem performance at levels commensurate with those required on the final instrument.
Intercomparison of Laboratory Radiance Calibration Standards
NASA Technical Reports Server (NTRS)
Pavri, Betina; Chrien, Tom; Green, Robert; Williams, Orlesa
2000-01-01
Several standards for radiometric calibration were measured repeatedly with a spectroradiometer in order to understand how they compared in accuracy and stability. The tested radiance standards included a NIST 1000 W bulb and halon panel, two calibrated and stabilized integrating spheres, and a cavity blackbody. Results indicate good agreement between the blackbody and 1000 W bulb/spectralon panel, If these two radiance sources are assumed correct, then the integrating spheres did not conform. to their manufacturer-reported radiances in several regions of the spectrum. More detailed measurements am underway to investigate the discrepancy.
GPS Disciplined Oscillators for Traceability to the Italian Time Standard
NASA Technical Reports Server (NTRS)
Cordara, Franco; Pettiti, Valerio
1996-01-01
The Istituo Elettrotecnico Nazionale (IEN) is one of the Italian primary institutes which is responsible for the accreditation of secondary laboratories belong to the national calibration system (SNT) established by law in 1991. The Times and Frequency Department that has accredited in this frame 14 calibration centers for frequency, performs also the remote calibration of their reference oscillators by means of different synchronization systems. The problem of establishing the traceability of the national time standard of the Global Positioning System (GPS) disciplined oscillators has been investigated and the results obtained are reported.
Köppel, René; Eugster, Albert; Ruf, Jürg; Rentsch, Jürg
2012-01-01
The quantification of meat proportions in raw and boiled sausage according to the recipe was evaluated using three different calibrators. To measure the DNA contents from beef, pork, sheep (mutton), and horse, a tetraplex real-time PCR method was applied. Nineteen laboratories analyzed four meat products each made of different proportions of beef, pork, sheep, and horse meat. Three kinds of calibrators were used: raw and boiled sausages of known proportions ranging from 1 to 55% of meat, and a dilution series of DNA from muscle tissue. In general, results generated using calibration sausages were more accurate than those resulting from the use of DNA from muscle tissue, and exhibited smaller measurement uncertainties. Although differences between uses of raw and boiled calibration sausages were small, the most precise and accurate results were obtained by calibration with fine-textured boiled reference sausages.
Onsite Calibration of a Precision IPRT Based on Gallium and Gallium-Based Small-Size Eutectic Points
NASA Astrophysics Data System (ADS)
Sun, Jianping; Hao, Xiaopeng; Zeng, Fanchao; Zhang, Lin; Fang, Xinyun
2017-04-01
Onsite thermometer calibration with temperature scale transfer technology based on fixed points can effectively improve the level of industrial temperature measurement and calibration. The present work performs an onsite calibration of a precision industrial platinum resistance thermometer near room temperature. The calibration is based on a series of small-size eutectic points, including Ga-In (15.7°C), Ga-Sn (20.5°C), Ga-Zn (25.2°C), and a Ga fixed point (29.7°C), developed in a portable multi-point automatic realization apparatus. The temperature plateaus of the Ga-In, Ga-Sn, and Ga-Zn eutectic points and the Ga fixed point last for longer than 2 h, and their reproducibility was better than 5 mK. The device is suitable for calibrating non-detachable temperature sensors in advanced environmental laboratories and industrial fields.
Calibration-free optical chemical sensors
DeGrandpre, Michael D.
2006-04-11
An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.
NASA Technical Reports Server (NTRS)
Geng, Steven M.
1987-01-01
A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Reasonable agreement was obtained between the code prediction and the experimental data over a wide range of engine operating conditions.
NASA Technical Reports Server (NTRS)
Geng, Steven M.
1987-01-01
A free-piston Stirling engine performance code is being upgraded and validated at the NASA Lewis Research Center under an interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA Lewis. Many modifications were made to the free-piston code in an attempt to decrease the calibration effort. A procedure was developed that made the code calibration process more systematic. Engine-specific calibration parameters are often used to bring predictions and experimental data into better agreement. The code was calibrated to a matrix of six experimental data points. Predictions of the calibrated free-piston code are compared with RE-1000 free-piston Stirling engine sensitivity test data taken at NASA Lewis. Resonable agreement was obtained between the code predictions and the experimental data over a wide range of engine operating conditions.
A quality assurance program for clinical PDT
NASA Astrophysics Data System (ADS)
Dimofte, Andreea; Finlay, Jarod; Ong, Yi Hong; Zhu, Timothy C.
2018-02-01
Successful outcome of Photodynamic therapy (PDT) depends on accurate delivery of prescribed light dose. A quality assurance program is necessary to ensure that light dosimetry is correctly measured. We have instituted a QA program that include examination of long term calibration uncertainty of isotropic detectors for light fluence rate, power meter head intercomparison for laser power, stability of the light-emitting diode (LED) light source integrating sphere as a light fluence standard, laser output and calibration of in-vivo reflective fluorescence and absorption spectrometers. We examined the long term calibration uncertainty of isotropic detector sensitivity, defined as fluence rate per voltage. We calibrate the detector using the known calibrated light fluence rate of the LED light source built into an internally baffled 4" integrating sphere. LED light sources were examined using a 1mm diameter isotropic detector calibrated in a collimated beam. Wavelengths varying from 632nm to 690nm were used. The internal LED method gives an overall calibration accuracy of +/- 4%. Intercomparison among power meters was performed to determine the consistency of laser power and light fluence rate measured among different power meters. Power and fluence readings were measured and compared among detectors. A comparison of power and fluence reading among several power heads shows long term consistency for power and light fluence rate calibration to within 3% regardless of wavelength. The standard LED light source is used to calibrate the transmission difference between different channels for the diffuse reflective absorption and fluorescence contact probe as well as isotropic detectors used in PDT dose dosimeter.
A computer program for calculating relative-transmissivity input arrays to aid model calibration
Weiss, Emanuel
1982-01-01
A program is documented that calculates a transmissivity distribution for input to a digital ground-water flow model. Factors that are taken into account in the calculation are: aquifer thickness, ground-water viscosity and its dependence on temperature and dissolved solids, and permeability and its dependence on overburden pressure. Other factors affecting ground-water flow are indicated. With small changes in the program code, leakance also could be calculated. The purpose of these calculations is to provide a physical basis for efficient calibration, and to extend rational transmissivity trends into areas where model calibration is insensitive to transmissivity values.
GIADA: extended calibration activity: . the Electrostatic Micromanipulator
NASA Astrophysics Data System (ADS)
Sordini, R.; Accolla, M.; Della Corte, V.; Rotundi, A.
GIADA (Grain Impact Analyser and Dust Accumulator), one of the scientific instruments onboard Rosetta/ESA space mission, is devoted to study dynamical properties of dust particles ejected by the short period comet 67P/Churyumov-Gerasimenko. In preparation for the scientific phase of the mission, we are performing laboratory calibration activities on the GIADA Proto Flight Model (PFM), housed in a clean room in our laboratory. Aim of the calibration activity is to characterize the response curve of the GIADA measurement sub-systems. These curves are then correlated with the calibration curves obtained for the GIADA payload onboard the Rosetta S/C. The calibration activity involves two of three sub-systems constituting GIADA: Grain Detection System (GDS) and Impact Sensor (IS). To get reliable calibration curves, a statistically relevant number of grains have to be dropped or shot into the GIADA instrument. Particle composition, structure, size, optical properties and porosity have been selected in order to obtain realistic cometary dust analogues. For each selected type of grain, we estimated that at least one hundred of shots are needed to obtain a calibration curve. In order to manipulate such a large number of particles, we have designed and developed an innovative electrostatic system able to capture, manipulate and shoot particles with sizes in the range 20 - 500 μm. The electrostatic Micromanipulator (EM) is installed on a manual handling system composed by X-Y-Z micrometric slides with a 360o rotational stage along Z, and mounted on a optical bench. In the present work, we display the tests on EM using ten different materials with dimension in the range 50 - 500 μm: the experimental results are in compliance with the requirements.
Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis
NASA Technical Reports Server (NTRS)
Carpenter, P.
2006-01-01
Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to continue improvements of EPMA.
Hand-eye calibration for rigid laparoscopes using an invariant point.
Thompson, Stephen; Stoyanov, Danail; Schneider, Crispin; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J
2016-06-01
Laparoscopic liver resection has significant advantages over open surgery due to less patient trauma and faster recovery times, yet it can be difficult due to the restricted field of view and lack of haptic feedback. Image guidance provides a potential solution but one current challenge is in accurate "hand-eye" calibration, which determines the position and orientation of the laparoscope camera relative to the tracking markers. In this paper, we propose a simple and clinically feasible calibration method based on a single invariant point. The method requires no additional hardware, can be constructed by theatre staff during surgical setup, requires minimal image processing and can be visualised in real time. Real-time visualisation allows the surgical team to assess the calibration accuracy before use in surgery. In addition, in the laboratory, we have developed a laparoscope with an electromagnetic tracking sensor attached to the camera end and an optical tracking marker attached to the distal end. This enables a comparison of tracking performance. We have evaluated our method in the laboratory and compared it to two widely used methods, "Tsai's method" and "direct" calibration. The new method is of comparable accuracy to existing methods, and we show RMS projected error due to calibration of 1.95 mm for optical tracking and 0.85 mm for EM tracking, versus 4.13 and 1.00 mm respectively, using existing methods. The new method has also been shown to be workable under sterile conditions in the operating room. We have proposed a new method of hand-eye calibration, based on a single invariant point. Initial experience has shown that the method provides visual feedback, satisfactory accuracy and can be performed during surgery. We also show that an EM sensor placed near the camera would provide significantly improved image overlay accuracy.
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce
2001-01-01
The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.
Delivery of calibration workshops covering herbicide application equipment : final report.
DOT National Transportation Integrated Search
2014-03-31
Proper herbicide sprayer set-up and calibration are critical to the success of the Oklahoma Department of Transportation (ODOT) herbicide program. Sprayer system set-up and calibration training is provided in annual continuing education herbicide wor...
Wöstheinrich, K; Schmidt, P C
2000-06-01
The instrumentation and validation of a laboratory-scale fluidized bed apparatus is described. For continuous control of the process, the apparatus is instrumented with sensors for temperature, relative humidity (RH), and air velocity. Conditions of inlet air, fluidizing air, product, and exhaust air were determined. The temperature sensors were calibrated at temperatures of 0.0 degree C and 99.9 degrees C. The calibration of the humidity sensors covered the range from 12% RH to 98% RH using saturated electrolyte solutions. The calibration of the anemometer took place in a wind tunnel at defined air velocities. The calibrations led to satisfying results concerning sensitivity and precision. To evaluate the reproducibility of the process, 15 granules were prepared under identical conditions. The influence of the type of pump used for delivering the granulating liquid was investigated. Particle size distribution, bulk density, and tapped density were determined. Granules were tableted on a rotary press at four different compression force levels, followed by determination of tablet properties such as weight, crushing strength, and disintegration time. The apparatus was found to produce granules with good reproducibility concerning the granule and tablet properties.
The validation of the Z-Scan technique for the determination of plasma glucose
NASA Astrophysics Data System (ADS)
Alves, Sarah I.; Silva, Elaine A. O.; Costa, Simone S.; Sonego, Denise R. N.; Hallack, Maira L.; Coppini, Ornela L.; Rowies, Fernanda; Azzalis, Ligia A.; Junqueira, Virginia B. C.; Pereira, Edimar C.; Rocha, Katya C.; Fonseca, Fernando L. A.
2013-11-01
Glucose is the main energy source for the human body. The concentration of blood glucose is regulated by several hormones including both antagonists: insulin and glucagon. The quantification of glucose in the blood is used for diagnosing metabolic disorders of carbohydrates, such as diabetes, idiopathic hypoglycemia and pancreatic diseases. Currently, the methodology used for this determination is the enzymatic colorimetric with spectrophotometric. This study aimed to validate the use of measurements of nonlinear optical properties of plasma glucose via the Z-Scan technique. For this we used samples of calibrator patterns that simulate commercial samples of patients (ELITech ©). Besides calibrators, serum glucose levels within acceptable reference values (normal control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) and also overestimated (pathological control serum - Brazilian Society of Clinical Pathology and Laboratory Medicine) were used in the methodology proposal. Calibrator dilutions were performed and determined by the Z-Scan technique for the preparation of calibration curve. In conclusion, Z-Scan method can be used to determinate glucose levels in biological samples with enzymatic colorimetric reaction and also to apply the same quality control parameters used in biochemistry clinical.
Experiences in Automated Calibration of a Nickel Equation of State
NASA Astrophysics Data System (ADS)
Carpenter, John H.
2017-06-01
Wide availability of large computers has led to increasing incorporation of computational data, such as from density functional theory molecular dynamics, in the development of equation of state (EOS) models. Once a grid of computational data is available, it is usually left to an expert modeler to model the EOS using traditional techniques. One can envision the possibility of using the increasing computing resources to perform black-box calibration of EOS models, with the goal of reducing the workload on the modeler or enabling non-experts to generate good EOSs with such a tool. Progress towards building such a black-box calibration tool will be explored in the context of developing a new, wide-range EOS for nickel. While some details of the model and data will be shared, the focus will be on what was learned by automatically calibrating the model in a black-box method. Model choices and ensuring physicality will also be discussed. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Calibration approach and plan for the sea and land surface temperature radiometer
NASA Astrophysics Data System (ADS)
Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.; Coppo, Peter
2014-01-01
The sea and land surface temperature radiometer (SLSTR) to be flown on the European Space Agency's (ESA) Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21 year dataset of the along-track scanning radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of <0.3 K traced to international standards. To achieve, these low uncertainties require an end-to-end instrument calibration strategy that includes prelaunch calibration at subsystem and instrument level, on-board calibration systems, and sustained postlaunch activities. The authors describe the preparations for the prelaunch calibration activities, including the spectral response, the instrument level alignment tests, and the solar and infrared radiometric calibrations. A purpose built calibration rig has been designed and built at the Rutherford Appleton Laboratory space department (RAL Space) that will accommodate the SLSTR instrument, the infrared calibration sources, and the alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally, the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that the calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions and the deployment of ship-borne radiometers.
Calibration Methods for a 3D Triangulation Based Camera
NASA Astrophysics Data System (ADS)
Schulz, Ulrike; Böhnke, Kay
A sensor in a camera takes a gray level image (1536 x 512 pixels), which is reflected by a reference body. The reference body is illuminated by a linear laser line. This gray level image can be used for a 3D calibration. The following paper describes how a calibration program calculates the calibration factors. The calibration factors serve to determine the size of an unknown reference body.
The Berkeley extreme ultraviolet calibration facility
NASA Technical Reports Server (NTRS)
Welsh, Barry Y.; Jelinsky, Patrick; Malina, Roger F.
1988-01-01
The vacuum calibration facilities of the Space Sciences Laboratory, University of California at Berkeley are designed for the calibration and testing of EUV and FUV spaceborne instrumentation (spectral range 44-2500 A). The facility includes one large cylindrical vacuum chamber (3 x 5 m) containing two EUV collimators, and it is equipped with a 4-axis manipulator of angular-control resolution 1 arcsec for payloads weighing up to 500 kg. In addition, two smaller cylindrical chambers, each 0.9 x 1.2 m, are available for vacuum and thermal testing of UV detectors, filters, and space electronics hardware. All three chambers open into class-10,000 clean rooms, and all calibrations are referred to NBS secondary standards.
Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors
NASA Astrophysics Data System (ADS)
Thome, Kurtis; Wenny, Brian; Anderson, Nikolaus; McCorkel, Joel; Czapla-Myers, Jeffrey; Biggar, Stuart
2018-06-01
A small portable transfer radiometer has been developed as part of an effort to ensure the quality of upwelling radiance from test sites used for vicarious calibration in the solar reflective. The test sites are used to predict top-of-atmosphere reflectance relying on ground-based measurements of the atmosphere and surface. The portable transfer radiometer is designed for one-person operation for on-site field calibration of instrumentation used to determine ground-leaving radiance. The current work describes the detector- and source-based radiometric calibration of the transfer radiometer highlighting the expected accuracy and SI-traceability. The results indicate differences between the detector-based and source-based results greater than the combined uncertainties of the approaches. Results from recent field deployments of the transfer radiometer using a solar radiation based calibration agree with the source-based laboratory calibration within the combined uncertainties of the methods. The detector-based results show a significant difference to the solar-based calibration. The source-based calibration is used as the basis for a radiance-based calibration of the Landsat-8 Operational Land Imager that agrees with the OLI calibration to within the uncertainties of the methods.
Optical calibration of the Auger fluorescence telescopes
NASA Astrophysics Data System (ADS)
Matthews, John A. J.
2003-02-01
The Pierre Auger Observatory is optimized to study the cosmic ray spectrum in the region of the Greisen-Zatsepin-Kuz'min (GZK) cutoff, i.e.cosmic rays with energies of ~1020eV. Cosmic rays are detected as extensive air showers. To measure these showers each Auger site combines a 3000sq-km ground array with air fluorescence telescopes into a hybrid detector. Our design choice is motivated by the heightened importance of the energy scale, and related systematic uncertainties in shower energies, for experiments investigating the GZK cutoff. This paper focuses on the optical calibration of the Auger fluorescence telescopes. The optical calibration is done three independent ways: an absolute end-to-end calibration using a uniform, calibrated intensity, light-source at the telescope entrance aperture, a component by component calibration using both laboratory and in-situ measurements, and Rayleigh scattered light from external laser beams. The calibration concepts and related instrumentation are summarized. Results from the 5-month engineering array test are presented.
Solar Cell Calibration and Measurement Techniques
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave
1997-01-01
The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WDI 5387, 'Requirements for Measurement and Calibration Procedures for Space Solar Cells' was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and the international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.
Solar Cell Calibration and Measurement Techniques
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Brinker, Dave; Curtis, Henry; Jenkins, Phillip; Scheiman, Dave
2004-01-01
The increasing complexity of space solar cells and the increasing international markets for both cells and arrays has resulted in workshops jointly sponsored by NASDA, ESA and NASA. These workshops are designed to obtain international agreement on standardized values for the AMO spectrum and constant, recommend laboratory measurement practices and establish a set of protocols for international comparison of laboratory measurements. A working draft of an ISO standard, WD15387, "Requirements for Measurement and Calibration Procedures for Space Solar Cells" was discussed with a focus on the scope of the document, a definition of primary standard cell, and required error analysis for all measurement techniques. Working groups addressed the issues of Air Mass Zero (AMO) solar constant and spectrum, laboratory measurement techniques, and te international round robin methodology. A summary is presented of the current state of each area and the formulation of the ISO document.
Zamora, D; Torres, A
2014-01-01
Reliable estimations of the evolution of water quality parameters by using in situ technologies make it possible to follow the operation of a wastewater treatment plant (WWTP), as well as improving the understanding and control of the operation, especially in the detection of disturbances. However, ultraviolet (UV)-Vis sensors have to be calibrated by means of a local fingerprint laboratory reference concentration-value data-set. The detection of outliers in these data-sets is therefore important. This paper presents a method for detecting outliers in UV-Vis absorbances coupled to water quality reference laboratory concentrations for samples used for calibration purposes. Application to samples from the influent of the San Fernando WWTP (Medellín, Colombia) is shown. After the removal of outliers, improvements in the predictability of the influent concentrations using absorbance spectra were found.
Reference dosimeter system of the iaea
NASA Astrophysics Data System (ADS)
Mehta, Kishor; Girzikowsky, Reinhard
1995-09-01
Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.
Men'shikov, V V
2012-12-01
The article deals with the factors impacting the reliability of clinical laboratory information. The differences of qualities of laboratory analysis tools produced by various manufacturers are discussed. These characteristics are the causes of discrepancy of the results of laboratory analyses of the same analite. The role of the reference system in supporting the comparability of laboratory analysis results is demonstrated. The project of national standard is presented to regulate the requirements to standards and calibrators for analysis of qualitative and non-metrical characteristics of components of biomaterials.
Matthes, Wilbur J.; Sholar, Clyde J.; George, John R.
1992-01-01
This report describes procedures used by the Iowa District sediment laboratory of the U.S. Geological Survey to assure the quality of sediment-laboratory data. These procedures can be used by other U.S. Geological Survey laboratories regardless of size and type of operation for quality assurance and quality control of specific sediment-laboratory processes. Also described are the equipment, specifications, calibration and maintenance, and the protocol for methods used in the analyses of fluvial sediment for concentration or particle size.
Standardization for oxygen isotope ratio measurement - still an unsolved problem.
Kornexl; Werner; Gehre
1999-07-01
Numerous organic and inorganic laboratory standards were gathered from nine European and North American laboratories and were analyzed for their delta(18)O values with a new on-line high temperature pyrolysis system that was calibrated using Vienna standard mean ocean water (VSMOW) and standard light Antartic precipitation (SLAP) internationally distributed reference water samples. Especially for organic materials, discrepancies between reported and measured values were high, ranging up to 2 per thousand. The reasons for these discrepancies are discussed and the need for an exact and reliable calibration of existing reference materials, as well as for the establishment of additional organic and inorganic reference materials is stressed. Copyright 1999 John Wiley & Sons, Ltd.
Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre
2017-01-01
The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.
Two laboratory methods for the calibration of GPS speed meters
NASA Astrophysics Data System (ADS)
Bai, Yin; Sun, Qiao; Du, Lei; Yu, Mei; Bai, Jie
2015-01-01
The set-ups of two calibration systems are presented to investigate calibration methods of GPS speed meters. The GPS speed meter calibrated is a special type of high accuracy speed meter for vehicles which uses Doppler demodulation of GPS signals to calculate the measured speed of a moving target. Three experiments are performed: including simulated calibration, field-test signal replay calibration, and in-field test comparison with an optical speed meter. The experiments are conducted at specific speeds in the range of 40-180 km h-1 with the same GPS speed meter as the device under calibration. The evaluation of measurement results validates both methods for calibrating GPS speed meters. The relative deviations between the measurement results of the GPS-based high accuracy speed meter and those of the optical speed meter are analyzed, and the equivalent uncertainty of the comparison is evaluated. The comparison results justify the utilization of GPS speed meters as reference equipment if no fewer than seven satellites are available. This study contributes to the widespread use of GPS-based high accuracy speed meters as legal reference equipment in traffic speed metrology.
VIEW OF THE INTERIOR OF BUILDING 125, THE STANDARDS LABORATORY. ...
VIEW OF THE INTERIOR OF BUILDING 125, THE STANDARDS LABORATORY. THE PRIMARY FUNCTION OF THE STANDARDS LABORATORY WAS TO ENSURE AND IMPLEMENT A SYSTEM OF QUALITY CONTROL FOR INCOMING MATERIALS USED IN MANUFACTURING PROCESSES. SEVERAL ENGINEERING CONTROLS WERE USED TO ASSURE ACCURACY OF THE CALIBRATION PROCESSES INCLUDING: FLEX-FREE GRANITE TABLES, AIR LOCKED DOORS, TEMPERATURE CONTROLS, AND A SUPER-CLEAN ENVIRONMENT - Rocky Flats Plant, Standards Laboratory, Immediately north of 215A water tower & adjacent to Third Street, Golden, Jefferson County, CO
NASA Technical Reports Server (NTRS)
Podolske, James R.; Sachse, Glen W.; Diskin, Glenn S.; Hipskino, R. Stephen (Technical Monitor)
2002-01-01
This paper describes the procedures and algorithms for the laboratory calibration and the field data retrieval of the NASA Langley / Ames Diode Laser Hygrometer as implemented during the NASA Trace-P mission during February to April 2000. The calibration is based on a NIST traceable dewpoint hygrometer using relatively high humidity and short pathlength. Two water lines of widely different strengths are used to increase the dynamic range of the instrument in the course of a flight. The laboratory results are incorporated into a numerical model of the second harmonic spectrum for each of the two spectral window regions using spectroscopic parameters from the HITRAN database and other sources, allowing water vapor retrieval at upper tropospheric and lower stratospheric temperatures and humidity levels. The data retrieval algorithm is simple, numerically stable, and accurate. A comparison with other water vapor instruments on board the NASA DC-8 and ER-2 aircraft is presented.
Ibrahim, Imtiaz; Togola, Anne; Gonzalez, Catherine
2013-06-01
Polar organic chemical integrative samplers (POCIS) are useful for monitoring a wide range of chemicals, including polar pesticides, in water bodies. However, few calibration data are available, which limits the use of these samplers for time-weighted average concentration measurements in an aquatic medium. This work deals with the laboratory calibration of the pharmaceutical configuration of a polar organic chemical integrative sampler (pharm-POCIS) for calculating the sampling rates of 17 polar pesticides (1.15 ≤ logK(ow) ≤ 3.71) commonly found in water. The experiment, conducted for 21 days in a continuous water flow-through exposure system, showed an integrative accumulation of all studied pesticides for 15 days. Three compounds (metalaxyl, azoxystrobine, and terbuthylazine) remained integrative for the 21-day experiment. The sampling rates measured ranged from 67.9 to 279 mL day(-1) and increased with the hydrophobicity of the pesticides until reaching a plateau where no significant variation in sampling rate is observed when increasing the hydrophobicity.
Kalivas, John H; Georgiou, Constantinos A; Moira, Marianna; Tsafaras, Ilias; Petrakis, Eleftherios A; Mousdis, George A
2014-04-01
Quantitative analysis of food adulterants is an important health and economic issue that needs to be fast and simple. Spectroscopy has significantly reduced analysis time. However, still needed are preparations of analyte calibration samples matrix matched to prediction samples which can be laborious and costly. Reported in this paper is the application of a newly developed pure component Tikhonov regularization (PCTR) process that does not require laboratory prepared or reference analysis methods, and hence, is a greener calibration method. The PCTR method requires an analyte pure component spectrum and non-analyte spectra. As a food analysis example, synchronous fluorescence spectra of extra virgin olive oil samples adulterated with sunflower oil is used. Results are shown to be better than those obtained using ridge regression with reference calibration samples. The flexibility of PCTR allows including reference samples and is generic for use with other instrumental methods and food products. Copyright © 2013 Elsevier Ltd. All rights reserved.
Final report of the APMP water flow key comparison: APMP.M.FF-K1
NASA Astrophysics Data System (ADS)
Lee, Kwang-Bock; Chun, Sejong; Terao, Yoshiya; Thai, Nguyen Hong; Tsair Yang, Cheng; Tao, Meng; Gutkin, Mikhail B.
2011-01-01
The key comparison, APMP.M.FF-K1, was undertaken by APMP/TCFF, the Technical Committee for Fluid Flow (TCFF) under the Asia Pacific Metrology Program (APMP). One objective of the key comparison was to demonstrate the degree of equivalence among six participating laboratories (KRISS, NMIJ, VMI, CMS, NIM and VNIIM) in water flow rate metrology by comparing the results with the key comparison reference value (KCRV) determined from the CCM.FF-K1 key comparison. The other objective of this key comparison was to provide supporting evidence for the calibration and measurement capabilities (CMCs), which had been declared by the participating laboratories during this key comparison. The Transfer Standard Package (TSP) was a Coriolis mass flowmeter, which had been used in the CCM.FF-K1 key comparison. Because the K-factors in the APMP.M.FF-K1 key comparison were slightly lower than the K-factors of the CCM.FF-K1 key comparison due to long-term drifts of the TSP, a correction value D was introduced. The value of D was given by a weighted sum between two link laboratories (NMIJ and KRISS), which participated in both the CCM.FF-K1 and the APMP.M.FF-K1 key comparisons. By this correction, the K-factors were laid between 12.004 and 12.017 at either low (Re = 254 000) or high (Re = 561 000) flow rates. Most of the calibration data were within expected uncertainty bounds. However, some data showed undulations, which gave large fluctuations of the metering factor at Re = 561 000. Calculation of degrees of equivalence showed that all the participating laboratories had deviations between -0.009 and 0.007 pulses/kg from the CCM.FF-K1 KCRV at either the low or the high flow rates. In case of En calculation, all the participating laboratories showed values less than 1, indicating that the corrected K-factors of all the laboratories were equivalent with the KCRV at both Re = 254 000 and 561 000. When the corrected K-factors from two participating laboratories were compared, all the numbers of equivalence showed values less than 1, indicating equivalence. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickles, W.L.; McClure, J.W.; Howell, R.H.
1978-01-01
A sophisticated non-linear multiparameter fitting program has been used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantitiesmore » with a known error. Error estimates for the calibration curve parameters can be obtined from the curvature of the Chi-Squared Matrix or from error relaxation techniques. It has been shown that non-dispersive x-ray fluorescence analysis of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 sec.« less
Absolute flux density calibrations of radio sources: 2.3 GHz
NASA Technical Reports Server (NTRS)
Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.
1977-01-01
A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickles, W.L.; McClure, J.W.; Howell, R.H.
1978-05-01
A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities withmore » a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO/sub 3/ can have an accuracy of 0.2% in 1000 s.« less
Stennis Space Center Verification and Validation Capabilities
NASA Technical Reports Server (NTRS)
O'Neal, Duane; Daehler, Erik
2006-01-01
Topics covered include: Spatial Response; Reflectance Radiometry; Positional Accuracy; Stationary Atmospheric Monitoring; Laboratory Calibration; Thermal Radiometry; Hyperspectral Radiometry; and Portable Atmospheric Monitoring.
NASA Astrophysics Data System (ADS)
McLean, N. M.; Condon, D. J.; Bowring, S. A.; Schoene, B.; Dutton, A.; Rubin, K. H.
2015-12-01
The last two decades have seen a grassroots effort by the international geochronology community to "calibrate Earth history through teamwork and cooperation," both as part of the EARTHTIME initiative and though several daughter projects with similar goals. Its mission originally challenged laboratories "to produce temporal constraints with uncertainties approaching 0.1% of the radioisotopic ages," but EARTHTIME has since exceeded its charge in many ways. Both the U-Pb and Ar-Ar chronometers first considered for high-precision timescale calibration now regularly produce dates at the sub-per mil level thanks to instrumentation, laboratory, and software advances. At the same time new isotope systems, including U-Th dating of carbonates, have developed comparable precision. But the larger, inter-related scientific challenges envisioned at EARTHTIME's inception remain - for instance, precisely calibrating the global geologic timescale, estimating rates of change around major climatic perturbations, and understanding evolutionary rates through time - and increasingly require that data from multiple geochronometers be combined. To solve these problems, the next two decades of uranium-daughter geochronology will require further advances in accuracy, precision, and reproducibility. The U-Th system has much in common with U-Pb, in that both parent and daughter isotopes are solids that can easily be weighed and dissolved in acid, and have well-characterized reference materials certified for isotopic composition and/or purity. For U-Pb, improving lab-to-lab reproducibility has entailed dissolving precisely weighed U and Pb metals of known purity and isotopic composition together to make gravimetric solutions, then using these to calibrate widely distributed tracers composed of artificial U and Pb isotopes. To mimic laboratory measurements, naturally occurring U and Pb isotopes were also mixed in proportions to mimic samples of three different ages, to be run as internal standards and as measures of inter-laboratory reproducibility. The U-Th community is undertaking many of the same protocols, and has recently created publicly available gravimetric solutions, and large volumes of three age solutions for widespread distribution and inter-laboratory comparison.
van den Besselaar, A M H P; Chantarangkul, V; Angeloni, F; Binder, N B; Byrne, M; Dauer, R; Gudmundsdottir, B R; Jespersen, J; Kitchen, S; Legnani, C; Lindahl, T L; Manning, R A; Martinuzzo, M; Panes, O; Pengo, V; Riddell, A; Subramanian, S; Szederjesi, A; Tantanate, C; Herbel, P; Tripodi, A
2018-01-01
Essentials Two candidate International Standards for thromboplastin (coded RBT/16 and rTF/16) are proposed. International Sensitivity Index (ISI) of proposed standards was assessed in a 20-centre study. The mean ISI for RBT/16 was 1.21 with a between-centre coefficient of variation of 4.6%. The mean ISI for rTF/16 was 1.11 with a between-centre coefficient of variation of 5.7%. Background The availability of International Standards for thromboplastin is essential for the calibration of routine reagents and hence the calculation of the International Normalized Ratio (INR). Stocks of the current Fourth International Standards are running low. Candidate replacement materials have been prepared. This article describes the calibration of the proposed Fifth International Standards for thromboplastin, rabbit, plain (coded RBT/16) and for thromboplastin, recombinant, human, plain (coded rTF/16). Methods An international collaborative study was carried out for the assignment of International Sensitivity Indexes (ISIs) to the candidate materials, according to the World Health Organization (WHO) guidelines for thromboplastins and plasma used to control oral anticoagulant therapy with vitamin K antagonists. Results Results were obtained from 20 laboratories. In several cases, deviations from the ISI calibration model were observed, but the average INR deviation attributabled to the model was not greater than 10%. Only valid ISI assessments were used to calculate the mean ISI for each candidate. The mean ISI for RBT/16 was 1.21 (between-laboratory coefficient of variation [CV]: 4.6%), and the mean ISI for rTF/16 was 1.11 (between-laboratory CV: 5.7%). Conclusions The between-laboratory variation of the ISI for candidate material RBT/16 was similar to that of the Fourth International Standard (RBT/05), and the between-laboratory variation of the ISI for candidate material rTF/16 was slightly higher than that of the Fourth International Standard (rTF/09). The candidate materials have been accepted by WHO as the Fifth International Standards for thromboplastin, rabbit plain, and thromboplastin, recombinant, human, plain. © 2017 International Society on Thrombosis and Haemostasis.
Measurement uncertainty: Friend or foe?
Infusino, Ilenia; Panteghini, Mauro
2018-02-02
The definition and enforcement of a reference measurement system, based on the implementation of metrological traceability of patients' results to higher order reference methods and materials, together with a clinically acceptable level of measurement uncertainty, are fundamental requirements to produce accurate and equivalent laboratory results. The uncertainty associated with each step of the traceability chain should be governed to obtain a final combined uncertainty on clinical samples fulfilling the requested performance specifications. It is important that end-users (i.e., clinical laboratory) may know and verify how in vitro diagnostics (IVD) manufacturers have implemented the traceability of their calibrators and estimated the corresponding uncertainty. However, full information about traceability and combined uncertainty of calibrators is currently very difficult to obtain. Laboratory professionals should investigate the need to reduce the uncertainty of the higher order metrological references and/or to increase the precision of commercial measuring systems. Accordingly, the measurement uncertainty should not be considered a parameter to be calculated by clinical laboratories just to fulfil the accreditation standards, but it must become a key quality indicator to describe both the performance of an IVD measuring system and the laboratory itself. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Collinson, Glyn A.; Dorelli, John Charles; Avanov, Leon A.; Lewis, Gethyn R.; Moore, Thomas E.; Pollock, Craig; Kataria, Dhiren O.; Bedington, Robert; Arridge, Chris S.; Chornay, Dennis J.;
2012-01-01
We report our findings comparing the geometric factor (GF) as determined from simulations and laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission. Particle simulations are increasingly playing an essential role in the design and calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources of systematic error present in laboratory calibration. While equations for laboratory measurement of the Geometric Factpr (GF) have been described in the literature, these are not directly applicable to simulation since the two are carried out under substantially different assumptions and conditions, making direct comparison very challenging. Starting from first principles, we derive generalized expressions for the determination of the GF in simulation and laboratory, and discuss how we have estimated errors in both cases. Finally, we apply these equations to the new DES instrument and show that the results agree within errors. Thus we show that the techniques presented here will produce consistent results between laboratory and simulation, and present the first description of the performance of the new DES instrument in the literature.
One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.
Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz
2009-07-15
The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.
Workcell calibration for effective offline programming
NASA Technical Reports Server (NTRS)
Stiles, Roger D.; Jones, Clyde S.
1989-01-01
In the application of graphics systems for off-line programming (OLP) of robotic systems, the inevitability of errors in the model representation of real-world situations requires that a method to map these differences is incorporated as an integral part of the overall system progamming procedures. This paper discusses several proven robot-to-positioner calibration techniques necessary to reflect real-world parameters in a work-cell model. Particular attention is given to the procedures used to adjust a graphics model to an acceptable degree of accuracy for integration of OLP for the Space Shuttle Main Engine welding automation. Consideration is given to the levels of calibration, requirements, special considerations for coordinated motion, and calibration procedures.
NASA Astrophysics Data System (ADS)
Kluge, Tobias; John, Cédric M.; Jourdan, Anne-Lise; Davis, Simon; Crawshaw, John
2015-05-01
Many fields of Earth sciences benefit from the knowledge of mineral formation temperatures. For example, carbonates are extensively used for reconstruction of the Earth's past climatic variations by determining ocean, lake, and soil paleotemperatures. Furthermore, diagenetic minerals and their formation or alteration temperature may provide information about the burial history of important geological units and can have practical applications, for instance, for reconstructing the geochemical and thermal histories of hydrocarbon reservoirs. Carbonate clumped isotope thermometry is a relatively new technique that can provide the formation temperature of carbonate minerals without requiring a priori knowledge of the isotopic composition of the initial solution. It is based on the temperature-dependent abundance of the rare 13C-18O bonds in carbonate minerals, specified as a Δ47 value. The clumped isotope thermometer has been calibrated experimentally from 1 °C to 70 °C. However, higher temperatures that are relevant to geological processes have so far not been directly calibrated in the laboratory. In order to close this calibration gap and to provide a robust basis for the application of clumped isotopes to high-temperature geological processes we precipitated CaCO3 (mainly calcite) in the laboratory between 23 and 250 °C. We used two different precipitation techniques: first, minerals were precipitated from a CaCO3 supersaturated solution at atmospheric pressure (23-91 °C), and, second, from a solution resulting from the mixing of CaCl2 and NaHCO3 in a pressurized reaction vessel at a pressure of up to 80 bar (25-250 °C).
Refinement of pressure calibration for multi-anvil press experiments
NASA Astrophysics Data System (ADS)
Ono, S.
2016-12-01
Accurate characterization of the pressure and temperature environment in high-pressure apparatuses is of essential importance when we apply laboratory data to the study of the Earth's interior. Recently, the synchrotron X-ray source can be used for the high-pressure experiments, and the in situ pressure calibration has been a common technique. However, this technique cannot be used in the laboratory-based experiments. Even now, the conventional pressure calibration is of great interest to understand the Earth's interior. Several high-pressure phase transitions used as the pressure calibrants in the laboratory-based multi-anvil experiments have been investigated. Precise determinations of phase boundaries of CaGeO3 [1], Fe2SiO4 [2], SiO2, and Zr [3] were performed by the multi-anvil press or the diamond anvil cell apparatuses combined with the synchrotron X-ray diffraction technique. The transition pressures in CaGeO3 (garnet-perovskite), Fe2SiO4 (alfa-gamma), and SiO2 (coesite-stishovite) were in general agreement with those reported by previous studies. However, significant discrepancies for the slopes, dP/dT, of these transitions between our and previous studies were confirmed. In the case of Zr study [3], our experimental results elucidate the inconsistency in the transition pressure between omega and beta phase in Zr observed in previous studies. [1] Ono et al. (2011) Phys. Chem. Minerals, 38, 735-740.[2] Ono et al. (2013) Phys. Chem. Minerals, 40, 811-816.[3] Ono & Kikegawa (2015) J. Solid State Chem., 225, 110-113.
Results of the 1979 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1980-01-01
Calibration of solar cells to be used as reference standards in simulator testing of cells and arrays was accomplished. Thirty-eight modules were carried to an altitude of about 36 kilometers during the solar cell calibration balloon flight.
A computer model of solar panel-plasma interactions
NASA Technical Reports Server (NTRS)
Cooke, D. L.; Freeman, J. W.
1980-01-01
High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.
BOREAS Level-1B TIMS Imagery: At-sensor Radiance in BSQ Format
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.; Chernobieff, Sonia
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. For BOREAS, the Thermal Infrared Multispectral Scanner (TIMS) imagery, along with other aircraft images, was collected to provide spatially extensive information over the primary study areas. The Level-1b TIMS images cover the time periods of 16 to 20 Apr 1994 and 06 to 17 Sep 1994. The system calibrated images are stored in binary image format files. The TIMS images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Rapid and accurate assessment of the activity measurements in Brazilian hospitals and clinics.
de Oliveira, A E; Iwahara, A; da Cruz, P A L; da Silva, C J; de Araújo, E B; Mengatti, J; da Silva, R L; Trindade, O L
2018-04-01
Traceability in Nuclear Medicine Service (NMS) measurements was checked by the Institute of Radioprotection and Dosimetry (IRD) through the Institute of Energy and Nuclear Research (IPEN). In 2016, IRD ran an intercomparison program and invited Brazilian NMS authorized to administer 131 I to patients. Sources of 131 I were distributed to 33 NMSs. Three other sources from the same solution were sent to IRD, after measurement at IPEN. These sources were calibrated in the IRD reference system. A correction factor of 1.013 was obtained. Ninety percent of the NMS comparisons results are within ±10% of the National Laboratory of Metrology of Ionizing Radiation (LNMRI) value, the Brazilian legal requirement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fine PM measurements: personal and indoor air monitoring.
Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H
2002-12-01
This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.
Cline, James P; Mendenhall, Marcus H; Black, David; Windover, Donald; Henins, Albert
2015-01-01
The laboratory X-ray powder diffractometer is one of the primary analytical tools in materials science. It is applicable to nearly any crystalline material, and with advanced data analysis methods, it can provide a wealth of information concerning sample character. Data from these machines, however, are beset by a complex aberration function that can be addressed through calibration with the use of NIST Standard Reference Materials (SRMs). Laboratory diffractometers can be set up in a range of optical geometries; considered herein are those of Bragg-Brentano divergent beam configuration using both incident and diffracted beam monochromators. We review the origin of the various aberrations affecting instruments of this geometry and the methods developed at NIST to align these machines in a first principles context. Data analysis methods are considered as being in two distinct categories: those that use empirical methods to parameterize the nature of the data for subsequent analysis, and those that use model functions to link the observation directly to a specific aspect of the experiment. We consider a multifaceted approach to instrument calibration using both the empirical and model based data analysis methods. The particular benefits of the fundamental parameters approach are reviewed.
Delanghe, Joris R; Cobbaert, Christa; Galteau, Marie-Madeleine; Harmoinen, Aimo; Jansen, Rob; Kruse, Rolf; Laitinen, Päivi; Thienpont, Linda M; Wuyts, Birgitte; Weykamp, Cas; Panteghini, Mauro
2008-01-01
The European In Vitro Diagnostics (IVD) directive requires traceability to reference methods and materials of analytes. It is a task of the profession to verify the trueness of results and IVD compatibility. The results of a trueness verification study by the European Communities Confederation of Clinical Chemistry (EC4) working group on creatinine standardization are described, in which 189 European laboratories analyzed serum creatinine in a commutable serum-based material, using analytical systems from seven companies. Values were targeted using isotope dilution gas chromatography/mass spectrometry. Results were tested on their compliance to a set of three criteria: trueness, i.e., no significant bias relative to the target value, between-laboratory variation and within-laboratory variation relative to the maximum allowable error. For the lower and intermediate level, values differed significantly from the target value in the Jaffe and the dry chemistry methods. At the high level, dry chemistry yielded higher results. Between-laboratory coefficients of variation ranged from 4.37% to 8.74%. Total error budget was mainly consumed by the bias. Non-compensated Jaffe methods largely exceeded the total error budget. Best results were obtained for the enzymatic method. The dry chemistry method consumed a large part of its error budget due to calibration bias. Despite the European IVD directive and the growing needs for creatinine standardization, an unacceptable inter-laboratory variation was observed, which was mainly due to calibration differences. The calibration variation has major clinical consequences, in particular in pediatrics, where reference ranges for serum and plasma creatinine are low, and in the estimation of glomerular filtration rate.
Katz, B.G.; Collins, J.J.
1998-01-01
A cooperative study between the Florida Department of Environmental Protection (FDEP) and the U.S. Geological Survey was conducted to assess the integrity of selected water-quality data collected at 150 sites in the FDEP Surface-Water Ambient Monitoring Program (SWAMP) in Florida. The assessment included determining the consistency of the water-quality data collected statewide, including commonality of monitoring procedures and analytes, screening of the gross validity of a chemical analysis, and quality assurance and quality control (QA/QC) procedures. Four tests were used to screen data at selected SWAMP sites to estimate the gross validity of selected chemical data: (1) the ratio of dissolved solids (in milligrams per liter) to specific conductance (in microsiemens per centimeter); (2) the ratio of total cations (in milliequivalents per liter) multiplied by 100 to specific conductance (in microsiemens per centimeter); (3) the ratio of total anions (in milliequivalents per liter) multiplied by 100 to specific conductance (in microsiemens per centimeter); and (4) the ionic charge-balance error. Although the results of the four screening tests indicate that the chemical data generally are quite reliable, the extremely small number of samples (less than 5 percent of the total number of samples) with sufficient chemical information to run the tests may not provide a representative indication of the analytical accuracy of all laboratories in the program. In addition to the four screening tests, unusually low or high values were flagged for field and laboratory pH (less than 4.0 and greater than 9.0) and specific conductance (less than 10 and greater than 10,000 microsiemens per centimeter). The numbers of flagged data were less than 1 percent of the 19,937 water samples with pH values and less than 0.6 percent of the 16,553 water samples with specific conductance values. Thirty-four agencies responded to a detailed questionnaire that was sent to more than 60 agencies involved in the collection and analysis of surface-water-quality data for SWAMP. The purpose of the survey was to evaluate quality assurance methods and consistency of methods statewide. Information was compiled and summarized on monitoring network design, data review and upload procedures, laboratory and field sampling methods, and data practices. Currently, most agencies that responded to the survey follow FDEP-approved QA/QC protocol for sampling and have quality assurance practices for recording and reporting data. Also, most agencies responded that calibration procedures were followed in the laboratory for analysis of data, but no responses were given about the specific procedures. Approximately 50 percent of the respondents indicated that laboratory analysis methods have changed over time. With so many laboratories involved in analyzing samples for SWAMP, it is difficult to compare water quality from one site to another due to different reporting conventions for chemical constituents and different analytical methods over time. Most agencies responded that calibration methods are followed in the field, but no specific details were provided. Grab samples are the most common method of collection. Other data screening procedures are necessary to further evaluate the validity of chemical data collected at SWAMP sites. High variability in the concentration of targeted constituents may signal analytical problems, but more likely changes in concentration are related to hydrologic conditions. This underscores the need for accurate measurements of discharge, lake stage, tidal stage at the time of sampling so that changes in constituent concentrations can be properly evaluated and fluxes (loads) of nutrients or metals, for example, can be calculated and compared over time.
VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS
C. Warneke; J. M. Roberts; P. Veres; J. Gilman; W. C. Kuster; I. Burling; R. Yokelson; J. A. de Gouw
2011-01-01
Volatile organic compounds (VOCs) emitted from fires of biomass commonly found in the southeast and southwest U.S. were investigated with PTR-MS and PIT-MS, which are capable of fast measurements of a large number of VOCs. Both instruments were calibrated with gas standards and mass dependent calibration curves are determined. The sensitivity of the PIT-MS linearly...
The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
NASA Astrophysics Data System (ADS)
Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.
2014-10-01
Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study was also conducted to assess uncertainty estimates and sensor variability. In this study, 9 M-Pods were calibrated via collocation multiple times over 4 weeks, and sensor drift was analyzed, with the result being a calibration function that included baseline drift. Three pairs of M-Pods were deployed, while users individually carried the other three. The user study suggested that inter-M-Pod variability between paired units was on the same order as calibration uncertainty; however, it is difficult to make conclusions about the actual personal exposure levels due to the level of user engagement. The user study provided real-world sensor drift data, showing limited CO drift (under -0.05 ppm day-1), and higher for O3 (-2.6 to 2.0 ppb day-1), NO2 (-1.56 to 0.51 ppb day-1), and CO2 (-4.2 to 3.1 ppm day-1). Overall, the user study confirmed the utility of the M-Pod as a low-cost tool to assess personal exposure.
Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent
Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less
Method calibration of the model 13145 infrared target projectors
NASA Astrophysics Data System (ADS)
Huang, Jianxia; Gao, Yuan; Han, Ying
2014-11-01
The SBIR Model 13145 Infrared Target Projectors ( The following abbreviation Evaluation Unit ) used for characterizing the performances of infrared imaging system. Test items: SiTF, MTF, NETD, MRTD, MDTD, NPS. Infrared target projectors includes two area blackbodies, a 12 position target wheel, all reflective collimator. It provide high spatial frequency differential targets, Precision differential targets imaged by infrared imaging system. And by photoelectricity convert on simulate signal or digital signal. Applications software (IR Windows TM 2001) evaluate characterizing the performances of infrared imaging system. With regards to as a whole calibration, first differently calibration for distributed component , According to calibration specification for area blackbody to calibration area blackbody, by means of to amend error factor to calibration of all reflective collimator, radiance calibration of an infrared target projectors using the SR5000 spectral radiometer, and to analyze systematic error. With regards to as parameter of infrared imaging system, need to integrate evaluation method. According to regulation with -GJB2340-1995 General specification for military thermal imaging sets -testing parameters of infrared imaging system, the results compare with results from Optical Calibration Testing Laboratory . As a goal to real calibration performances of the Evaluation Unit.
NASA Astrophysics Data System (ADS)
Rimantho, Dino; Rahman, Tomy Abdul; Cahyadi, Bambang; Tina Hernawati, S.
2017-02-01
Calibration of instrumentation equipment in the pharmaceutical industry is an important activity to determine the true value of a measurement. Preliminary studies indicated that occur lead-time calibration resulted in disruption of production and laboratory activities. This study aimed to analyze the causes of lead-time calibration. Several methods used in this study such as, Six Sigma in order to determine the capability process of the calibration instrumentation of equipment. Furthermore, the method of brainstorming, Pareto diagrams, and Fishbone diagrams were used to identify and analyze the problems. Then, the method of Hierarchy Analytical Process (AHP) was used to create a hierarchical structure and prioritize problems. The results showed that the value of DPMO around 40769.23 which was equivalent to the level of sigma in calibration equipment approximately 3,24σ. This indicated the need for improvements in the calibration process. Furthermore, the determination of problem-solving strategies Lead Time Calibration such as, shortens the schedule preventive maintenance, increase the number of instrument Calibrators, and train personnel. Test results on the consistency of the whole matrix of pairwise comparisons and consistency test showed the value of hierarchy the CR below 0.1.
Inertial Sensor Error Reduction through Calibration and Sensor Fusion.
Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L
2016-02-17
This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.
Hoffmann, Uwe; Pfeifer, Frank; Hsuing, Chang; Siesler, Heinz W
2016-05-01
The aim of this contribution is to demonstrate the transfer of spectra that have been measured on two different laboratory Fourier transform near-infrared (FT-NIR) spectrometers to the format of a handheld instrument by measuring only a few samples with both spectrometer types. Thus, despite the extreme differences in spectral range and resolution, spectral data sets that have been collected and quantitative as well as qualitative calibrations that have been developed thereof, respectively, over a long period on a laboratory instrument can be conveniently transferred to the handheld system. Thus, the necessity to prepare completely new calibration samples and the effort required to develop calibration models when changing hardware platforms is minimized. The enabling procedure is based on piecewise direct standardization (PDS) and will be described for the data sets of a quantitative and a qualitative application case study. For this purpose the spectra measured on the FT-NIR laboratory spectrometers were used as "master" data and transferred to the "target" format of the handheld instrument. The quantitative test study refers to transmission spectra of three-component liquid solvent mixtures whereas the qualitative application example encompasses diffuse reflection spectra of six different current polymers. To prove the performance of the transfer procedure for quantitative applications, partial least squares (PLS-1) calibrations were developed for the individual components of the solvent mixtures with spectra transferred from the master to the target instrument and the cross-validation parameters were compared with the corresponding parameters obtained for spectra measured on the master and target instruments, respectively. To test the retention of the discrimination ability of the transferred polymer spectra sets principal component analyses (PCAs) were applied exemplarily for three of the six investigated polymers and their identification was demonstrated by Mahalanobis distance plots for all polymers. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Hussain, F.; Khairuddin, S.; Othman, H.
2017-01-01
An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.
Automatically calibrating admittances in KATE's autonomous launch operations model
NASA Technical Reports Server (NTRS)
Morgan, Steve
1992-01-01
This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).
NASA Astrophysics Data System (ADS)
Durgut, Yasin; Petrovski, Nenad; Kacarski, Vanco
2012-01-01
Interlaboratory comparisons are important for the laboratories to assess their own measurement capability. It is equally important for the accreditation bodies and assessors during the audit process of a laboratory to judge whether the laboratory is doing well. As per accreditation rules, it is mandatory for the testing and calibration laboratories to participate in such comparisons from time to time. In this report, results of the bilateral interlaboratory comparison in pressure area in hydraulic media up to 50 MPa gauge between UME (Turkey) and BOM (The FYR of Macedonia) are presented. The artefact used for the comparison was a digital pressure calibrator and its drift was taken into account in the calculation. Results show that all En values lie in acceptable limits. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Dynamic photogrammetric calibration of industrial robots
NASA Astrophysics Data System (ADS)
Maas, Hans-Gerd
1997-07-01
Today's developments in industrial robots focus on aims like gain of flexibility, improvement of the interaction between robots and reduction of down-times. A very important method to achieve these goals are off-line programming techniques. In contrast to conventional teach-in-robot programming techniques, where sequences of actions are defined step-by- step via remote control on the real object, off-line programming techniques design complete robot (inter-)action programs in a CAD/CAM environment. This poses high requirements to the geometric accuracy of a robot. While the repeatability of robot poses in the teach-in mode is often better than 0.1 mm, the absolute pose accuracy potential of industrial robots is usually much worse due to tolerances, eccentricities, elasticities, play, wear-out, load, temperature and insufficient knowledge of model parameters for the transformation from poses into robot axis angles. This fact necessitates robot calibration techniques, including the formulation of a robot model describing kinematics and dynamics of the robot, and a measurement technique to provide reference data. Digital photogrammetry as an accurate, economic technique with realtime potential offers itself for this purpose. The paper analyzes the requirements posed to a measurement technique by industrial robot calibration tasks. After an overview on measurement techniques used for robot calibration purposes in the past, a photogrammetric robot calibration system based on off-the- shelf lowcost hardware components will be shown and results of pilot studies will be discussed. Besides aspects of accuracy, reliability and self-calibration in a fully automatic dynamic photogrammetric system, realtime capabilities are discussed. In the pilot studies, standard deviations of 0.05 - 0.25 mm in the three coordinate directions could be achieved over a robot work range of 1.7 X 1.5 X 1.0 m3. The realtime capabilities of the technique allow to go beyond kinematic robot calibration and perform dynamic robot calibration as well as photogrammetric on-line control of a robot in action.
NASA Astrophysics Data System (ADS)
Lam, Brenda H. S.; Yang, Steven S. L.; Chau, Y. C.
2018-02-01
A multi-purpose detector based calibration system for luminous intensity, illuminance and luminance has been developed at the Government of the Hong Kong Special Administrative Region, Standards and Calibration Laboratory (SCL). In this paper, the measurement system and methods are described. The measurement models and contributory uncertainties were validated using the Guide to the Expression of Uncertainty in Measurement (GUM) framework and Supplement 1 to the GUM - Propagation of distributions using a Monte Carlo method in accordance with the JCGM 100:2008 and JCGM 101:2008 at the intended precision level.
Calibration of a portable HPGe detector using MCNP code for the determination of 137Cs in soils.
Gutiérrez-Villanueva, J L; Martín-Martín, A; Peña, V; Iniguez, M P; de Celis, B; de la Fuente, R
2008-10-01
In situ gamma spectrometry provides a fast method to determine (137)Cs inventories in soils. To improve the accuracy of the estimates, one can use not only the information on the photopeak count rates but also on the peak to forward-scatter ratios. Before applying this procedure to field measurements, a calibration including several experimental simulations must be carried out in the laboratory. In this paper it is shown that Monte Carlo methods are a valuable tool to minimize the number of experimental measurements needed for the calibration.
NASA Technical Reports Server (NTRS)
Yen, A. S.; Ming, D. W.; Gellert, R.; Vaniman, D.; Clark, B.; Morris, R. V.; Mittlefehldt, D. W.; Arvidson, R. E.
2014-01-01
The APXS instruments flown on the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Science Laboratory (MSL) Curiosity were based on the same fundamental design. The calibration effort of the MSL APXS used the same reference standards analyzed in the MER calibration which ensures that data produced by all three instruments provide the same compositional results for the same sample. This cross-calibration effort is unprecedented and allows direct comparisons and contrasts of samples analyzed at Gusev Crater by Spirit, Meridiani Planum by Opportunity, and Gale Crater by Curiosity.
Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source
NASA Technical Reports Server (NTRS)
Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.
2013-01-01
The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meghzifene, Ahmed; Czap, Ladislav; Shortt, Ken
2008-08-14
The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) established a Network of Secondary Standards Dosimetry Laboratories (IAEA/WHO SSDL Network) in 1976. Through SSDLs designated by Member States, the Network provides a direct link of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM). Within this structure and through the proper calibration of field instruments, the SSDLs disseminate S.I. quantities and units.To ensure that the services provided by SSDL members to end-users follow internationally accepted standards, the IAEA has set up two different comparison programmes. Onemore » programme relies on the IAEA/WHO postal TLD service and the other uses comparisons of calibrated ionization chambers to help the SSDLs verify the integrity of their national standards and the procedures used for the transfer of the standards to the end-users. The IAEA comparisons include {sup 60}Co air kerma (N{sub K}) and absorbed dose to water (N{sub D,W}) coefficients. The results of the comparisons are confidential and are communicated only to the participants. This is to encourage participation of the laboratories and their full cooperation in the reconciliation of any discrepancy.This work describes the results of the IAEA programme comparing calibration coefficients for radiotherapy dosimetry, using ionization chambers. In this programme, ionization chambers that belong to the SSDLs are calibrated sequentially at the SSDL, at the IAEA, and again at the SSDL. As part of its own quality assurance programme, the IAEA has participated in several regional comparisons organized by Regional Metrology Organizations.The results of the IAEA comparison programme show that the majority of SSDLs are capable of providing calibrations that fall inside the acceptance level of 1.5% compared to the IAEA.« less
Tunable laser techniques for improving the precision of observational astronomy
NASA Astrophysics Data System (ADS)
Cramer, Claire E.; Brown, Steven W.; Lykke, Keith R.; Woodward, John T.; Bailey, Stephen; Schlegel, David J.; Bolton, Adam S.; Brownstein, Joel; Doherty, Peter E.; Stubbs, Christopher W.; Vaz, Amali; Szentgyorgyi, Andrew
2012-09-01
Improving the precision of observational astronomy requires not only new telescopes and instrumentation, but also advances in observing protocols, calibrations and data analysis. The Laser Applications Group at the National Institute of Standards and Technology in Gaithersburg, Maryland has been applying advances in detector metrology and tunable laser calibrations to problems in astronomy since 2007. Using similar measurement techniques, we have addressed a number of seemingly disparate issues: precision flux calibration for broad-band imaging, precision wavelength calibration for high-resolution spectroscopy, and precision PSF mapping for fiber spectrographs of any resolution. In each case, we rely on robust, commercially-available laboratory technology that is readily adapted to use at an observatory. In this paper, we give an overview of these techniques.
An on-line calibration technique for improved blade by blade tip clearance measurement
NASA Astrophysics Data System (ADS)
Sheard, A. G.; Westerman, G. C.; Killeen, B.
A description of a capacitance-based tip clearance measurement system which integrates a novel technique for calibrating the capacitance probe in situ is presented. The on-line calibration system allows the capacitance probe to be calibrated immediately prior to use, providing substantial operational advantages and maximizing measurement accuracy. The possible error sources when it is used in service are considered, and laboratory studies of performance to ascertain their magnitude are discussed. The 1.2-mm diameter FM capacitance probe is demonstrated to be insensitive to variations in blade tip thickness from 1.25 to 1.45 mm. Over typical compressor blading the probe's range was four times the variation in blade to blade clearance encountered in engine run components.
A Review of Calibration Transfer Practices and Instrument Differences in Spectroscopy.
Workman, Jerome J
2018-03-01
Calibration transfer for use with spectroscopic instruments, particularly for near-infrared, infrared, and Raman analysis, has been the subject of multiple articles, research papers, book chapters, and technical reviews. There has been a myriad of approaches published and claims made for resolving the problems associated with transferring calibrations; however, the capability of attaining identical results over time from two or more instruments using an identical calibration still eludes technologists. Calibration transfer, in a precise definition, refers to a series of analytical approaches or chemometric techniques used to attempt to apply a single spectral database, and the calibration model developed using that database, for two or more instruments, with statistically retained accuracy and precision. Ideally, one would develop a single calibration for any particular application, and move it indiscriminately across instruments and achieve identical analysis or prediction results. There are many technical aspects involved in such precision calibration transfer, related to the measuring instrument reproducibility and repeatability, the reference chemical values used for the calibration, the multivariate mathematics used for calibration, and sample presentation repeatability and reproducibility. Ideally, a multivariate model developed on a single instrument would provide a statistically identical analysis when used on other instruments following transfer. This paper reviews common calibration transfer techniques, mostly related to instrument differences, and the mathematics of the uncertainty between instruments when making spectroscopic measurements of identical samples. It does not specifically address calibration maintenance or reference laboratory differences.
NASA Astrophysics Data System (ADS)
Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.
2017-12-01
Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.
Implementation of a Water Heat Pipe at CETIAT
NASA Astrophysics Data System (ADS)
Favreau, J. O.; Georgin, E.; Savanier, B.; Merlone, A.
2017-12-01
CETIAT's calibration laboratory, accredited by COFRAC, is a secondary thermometry laboratory. It uses overflow and stirred calibration baths (from - 80 {°}C up to + 215 {°}C), dry blocks and furnaces (from + 100 {°}C up to + 1050 {°}C) and thermostatic chambers (from - 30 {°}C up to + 160 {°}C). Typical calibration uncertainties that can be reached for platinum resistance thermometers in a thermostatic bath are between 0.03 {°}C and 0.06 {°}C. In order to improve its calibration capabilities, CETIAT is working on the implementation of a gas-controlled heat pipe (GCHP) temperature generator, used for industrial sensor calibrations. This article presents the results obtained during the characterization of water GCHP for industrial applications. This is a new approach to the use of a heat pipe as a temperature generator for industrial sensor calibrations. The objective of this work is to improve measurement uncertainties and daily productivity. Indeed, as has been shown in many studies (Dunn and Reay in Heat Pipes, Pergamon Press, Oxford, 1976; Merlone et al. 2012), the temperature of the system is pressure dependent and the response time, in temperature, follows the pressure accordingly. Thanks to this generator, it is possible to perform faster calibrations with smaller uncertainties. In collaboration with INRiM, the GCHP developed at CETIAT works with water and covers a temperature range from + 30 {°}C up to + 150 {°}C. This device includes some improvements such as a removable cover, which allows us to have different sets of thermometric wells adjustable according to the probe to be calibrated, and a pressure controller based on a temperature sensor. This article presents the metrological characterization in terms of homogeneity and stability in temperature. A rough investigation of the response time of the system is also presented in order to evaluate the time for reaching thermal equilibrium. The results obtained in this study concern stability and thermal homogeneity. The homogeneity on 200 mm is better than 5 mK and with a calibration uncertainty reduced by a factor of three.
NASA Astrophysics Data System (ADS)
O'Brien, Leela; Gruen, E.; Sternovsky, Z.; Horanyi, M.; Juhasz, A.; Eberhard, M.; Srama, R.
2013-10-01
The development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration are reported. The two STEREO spacecrafts have indicated that nanometer-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and accelerated outward by the solar wind. The temporal variability reveals the complex interaction with the solar wind magnetic field within 1 AU and provides the means to learn about solar wind conditions and can supply additional parameters or verification for heliospheric magnetic field models. The composition analysis will report on the processes that generated the nanometer-sized particle. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. The instrument is a linear time-of-flight mass analyzer that utilizes dust impact ionization and is modeled after the Cosmic Dust Analyzer (CDA) on Cassini. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed toward the solar direction. A laboratory prototype has been built, tested, and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with 1 to over 50 km/s velocity. NDA is unique in its requirement to operate with the Sun in its field-of-view. A light trap system has been designed and optimized in terms of geometry and surface optical properties to mitigate Solar UV contribution to detector noise. In addition, results from laboratory tests performed with a 1 keV ion beam at the University of New Hampshire’s Space Sciences Facility confirm the effectiveness of the instrument’s solar wind particle rejection system.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, A. K.; Woo, Sam Yong; Fitzgerald, Mark; Man, John; Ooiwa, Akira; Jescheck, M.; Jian, Wu; Fatt, Chen Soo; Chan, T. K.; Moore, Ken; El-Tawil, Alaaeldin A. E.
2003-01-01
This report summarizes the results of a regional key comparison (APMP-IC-2-97) under the aegis of the Asia Pacific Metrology Program (APMP) for pressure measurements in gas media and in gauge mode from 0.4 MPa to 4.0 MPa. The transfer standard was a pressure-balance with a piston-cylinder assembly with nominal effective area 8.4 mm2 (V-407) and was supplied by the National Metrology Institute of Japan [NMIJ]. Ten standard laboratories from the APMP region with one specially invited laboratory from the EUROMET region, namely Physikalisch-Technische Bundesanstalt (PTB), Germany, participated in this comparison. The comparison started in October 1998 and was completed in May 2001. The pilot laboratory prepared the calibration procedure [1] as per the guidelines of APMP and the International Bureau of Weights and Measures (BIPM) [2-4]. Detailed instructions for performing this key comparison were provided in the calibration protocol [1] and the required data were described in: (1) Annex 3 - characteristics of the laboratory standards, (2) Annex 4 - the effective area (A'p'/mm2) (the prime indicates values based on measured quantities) at 23°C of the travelling standard as a function of nominal pressure (p'/MPa) (five cycles both increasing and decreasing pressures at ten pre-determined pressure points) and (3) Annex 5 - the average effective area at 23°C (A'p'/mm2) obtained for each pressure p'/MPa with all uncertainty statements. The pilot laboratory processed the information and the data provided by the participants for these three annexes, starting with the information about the standards as provided in Annex 3. Based on this information, the participating laboratories are classified into two categories: (I) laboratories that are maintaining primary standards, and (II) laboratories that are maintaining standards loosely classified as secondary standards with a clear traceability as per norm of the BIPM. It is observed that out of these eleven laboratories, six laboratories have primary standards [Category (I)], the remaining five laboratories are placed in Category (II). The obtained data were compiled and processed under the same program as per the Consultative Committee for Mass and Related Quantities (CCM)/BIPM guidelines. From the data of Category (I), we evaluated the APMP reference value as a function of p'/MPa. Then, we estimated the relative difference of the A'p' values with reference to the APMP reference value for all participating laboratories and we observed that they agree well within their expanded uncertainties. We further estimated the effective area at null pressure and at 23°C (A'0/mm2) and the pressure distortion coefficient (lambda'/MPa-1) of the transfer standard for all the participating laboratories. We then estimated the relative deviation of the A'0/mm2 from the reference value for all eleven laboratories and compared this with their estimated expanded uncertainties. The result is once again extremely encouraging and all these eleven laboratories are agreeing within their estimated maximum expanded uncertainties. We also estimated the degree of equivalence between any two participating laboratories following a matrix mechanism. This once again agrees extremely well within the estimated relative standard uncertainty, which is derived for the two participating laboratories. Finally, a new method has been introduced to evaluate these results and establish a link to CCM.P-K1c and EUROMET.M.P-K2 at two nominal pressures, near 1 MPa and 4 MPa. Again the results show an agreement of all participating laboratories in the present comparison to within the estimated expanded uncertainties using a coverage factor k = 2. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the APMP, according to the provisions of the Mutual Recognition Arrangement (MRA).
Tershakovec, A M; Brannon, S D; Bennett, M J; Shannon, B M
1995-08-01
To measure the additional costs of office-based laboratory testing due to the implementation of the Clinical Laboratory Improvement Amendments of 1988 (CLIA '88), using cholesterol screening for children as an example. Four- to ten-year-old children who received their well child care at one of seven participating pediatric practices were screened for hypercholesterolemia. The average number of analyses per day and days per month were derived from the volume of testing completed by the practices. Nurses and technicians time in the screening process were measured and personnel costs were calculated based on salary and fringe benefit rates. Costs of supplies, analyzing control samples, instrument calibration, and instrument depreciation were included. Costs estimates of screening were then completed. CLIA '88 implementation costs were derived from appropriate proficiency testing and laboratory inspection programs. In six practices completing a low volume of testing, 2807 children (5 to 6 children per week) were screened during the observation period, while 414 (about 25 children per week) were screened in one high-volume practice implementing universal screening over a 4-month period. For the six low-volume practices, the cost of screening was $10.60 per child. This decreased to $5.47 for the high-volume practice. Estimated costs of CLIA '88 implementation, including additional proficiency testing and laboratory inspection, added $3.20 per test for the low-volume practices, and $0.71 per test for the high-volume testing. Implementation of CLIA adds significantly to the cost of office-based chemistry laboratory screening. Despite these additional expenses, the cost of testing is still within a reasonable charge for laboratory testing, and is highly sensitive to the volume of tests completed.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan
2016-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.
NASA Astrophysics Data System (ADS)
Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul
2018-01-01
Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.
NASA Astrophysics Data System (ADS)
Litorja, Maritoni; DeRose, Paul
2018-02-01
Fluorescence measurements are a staple in biomedicine, from research and discovery to more recently, for fluorescenceguided imaging systems for diagnostics and surgery. Measurement validation for clinical imagers is a challenge as it is applied to many different optical systems and probe through matrices with different optical properties in a demanding field environment. In this paper we will present approaches to fluorescence calibration for a field system, in comparison to those used in laboratory instruments for cell measurements or benchtop fluorometers. We will present the common challenges and differences, and lessons from the standardization effort of laboratory fluorescence measurements. We will discuss the conceptually different pathways to measurement traceability, between counting moles of substance and measuring light.
An automated calibration laboratory - Requirements and design approach
NASA Technical Reports Server (NTRS)
O'Neil-Rood, Nora; Glover, Richard D.
1990-01-01
NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.
Construction of 144, 565 keV and 5.0 MeV monoenergetic neutron calibration fields at JAERI.
Tanimura, Y; Yoshizawa, M; Saegusa, J; Fujii, K; Shimizu, S; Yoshida, M; Shibata, Y; Uritani, A; Kudo, K
2004-01-01
Monoenergetic neutron calibration fields of 144, 565 keV and 5.0 MeV have been developed at the Facility of Radiation Standards of JAERI using a 4 MV Pelletron accelerator. The 7Li(p,n)7Be and 2H(d,n)3He reactions are employed for neutron production. The neutron energy was measured by the time-of-flight method with a liquid scintillation detector and calculated with the MCNP-ANT code. A long counter is employed as a neutron monitor because of the flat response. The monitor is set up where the influence of inscattered neutrons from devices and their supporting materials at a calibration point is as small as possible. The calibration coefficients from the monitor counts to the neutron fluence at a calibration point were obtained from the reference fluence measured with the transfer instrument of the primary standard laboratory (AIST), a 24.13 cm phi Bonner sphere counter. The traceability of the fields to AIST was established through the calibration.
A robust approach to using of the redundant information in the temperature calibration
NASA Astrophysics Data System (ADS)
Strnad, R.; Kňazovická, L.; Šindelář, M.; Kukal, J.
2013-09-01
In the calibration laboratories are used standard procedures for calculating of the calibration model coefficients based on well described standards (EN 60751, ITS-90, EN 60584, etc.). In practice, sensors are mostly calibrated in more points and redundant information is used as a validation of the model. This paper will present the influence of including all measured points with respect to their uncertainties to the measured models using standard weighted least square methods. A special case with regards of the different level of the uncertainty of the measured points in case of the robust approach will be discussed. This will go to the different minimization criteria and different uncertainty propagation methodology. This approach also will eliminate of the influence of the outline measurements in the calibration. In practical part will be three cases of this approach presented, namely industrial calibration according to the standard EN 60751, SPRT according to the ITS-90 and thermocouple according to the standard EN 60584.
Investigating the Effects of Variable Water Type for VIIRS Calibration
NASA Astrophysics Data System (ADS)
Bowers, J.; Ladner, S.; Martinolich, P.; Arnone, R.; Lawson, A.; Crout, R. L.; Vandermeulen, R. A.
2016-02-01
The Naval Research Laboratory - Stennis Space Center (NRL-SSC) currently provides calibration and validation support for the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite ocean color products. NRL-SSC utilizes the NASA Ocean Biology Processing Group (OBPG) methodology for on-orbit vicarious calibration with in situ data collected in blue ocean water by the Marine Optical Buoy (MOBY). An acceptable calibration consists of 20-40 satellite to in situ matchups that establish the radiance correlation at specific points within the operating range of the VIIRS instrument. While the current method improves the VIIRS performance, the MOBY data alone does not represent the full range of radiance values seen in the coastal oceans. However, by utilizing data from the AERONET-OC coastal sites we expand our calibration matchups to cover a more realistic range of continuous values particularly in the green and red spectral regions of the sensor. Improved calibration will provide more accurate data to support daily operations and enable construction of valid climatology for future reference.
Precision Spectrophotometric Calibration System for Dark Energy Instruments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubnell, Michael S.
2015-06-30
For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that amore » complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.« less
Liquid Scintillation Counting - Packard Triple-Label Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torretto, P. A.
2017-03-23
The Radiological Measurements Laboratory (RML) maintains and operates nine Packard Liquid Scintillation Counters (LSCs). These counters were obtained through various sources and were generally purchased as 2500, 2700 or 3100 series counters. In 2004/2005 the software and firmware on the counters were upgraded. The counters are now designated as 3100 series counters running the Quantasmart software package. Thus, a single procedure can be used to calibrate and operate the Packard LSCs.
Portable precision dc voltage-current transfer standard for electrometer calibration
Landis, G.; Godwin, M.
1982-01-01
A circuit design is presented for an instrument providing a highly stable and fully adjustable voltage and current in the range of 0-1.999 V or 0-199.9 mV and 10-11-10-15 A. This instrument is used to verify the calibration and performance of dc and vibrating reed electrometers and chart recorders on mass spectrometers of the USGS Isotope Laboratories in Denver.
Polarimeter calibration error gets far out of control
NASA Astrophysics Data System (ADS)
Chipman, Russell A.
2015-09-01
This is a sad story about a polarization calibration error gone amuck. A simple laboratory mistake was mistaken for a new phenomena. Aggressive management did their job and sold the flawed idea very effectively and substantial funding followed. Questions were raised and a Government lab tried but couldn't to recreate the breakthrough. The results were unpleasant and the field of infrared polarimetry developed a bad reputation for several years.
Lear, Karissa O; Whitney, Nicholas M; Brewster, Lauran R; Morris, Jack J; Hueter, Robert E; Gleiss, Adrian C
2017-02-01
The ability to produce estimates of the metabolic rate of free-ranging animals is fundamental to the study of their ecology. However, measuring the energy expenditure of animals in the field has proved difficult, especially for aquatic taxa. Accelerometry presents a means of translating metabolic rates measured in the laboratory to individuals studied in the field, pending appropriate laboratory calibrations. Such calibrations have only been performed on a few fish species to date, and only one where the effects of temperature were accounted for. Here, we present calibrations between activity, measured as overall dynamic body acceleration (ODBA), and metabolic rate, measured through respirometry, for nurse sharks (Ginglymostoma cirratum), lemon sharks (Negaprion brevirostris) and blacktip sharks (Carcharhinus limbatus). Calibrations were made at a range of volitional swimming speeds and experimental temperatures. Linear mixed models were used to determine a predictive equation for metabolic rate based on measured ODBA values, with the optimal model using ODBA in combination with activity state and temperature to predict metabolic rate in lemon and nurse sharks, and ODBA and temperature to predict metabolic rate in blacktip sharks. This study lays the groundwork for calculating the metabolic rate of these species in the wild using acceleration data. © 2017. Published by The Company of Biologists Ltd.
Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF
NASA Astrophysics Data System (ADS)
Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.
2017-10-01
A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Maier, Barbara; Vogeser, Michael
2013-04-01
Isotope dilution LC-MS/MS methods used in the clinical laboratory typically involve multi-point external calibration in each analytical series. Our aim was to test the hypothesis that determination of target analyte concentrations directly derived from the relation of the target analyte peak area to the peak area of a corresponding stable isotope labelled internal standard compound [direct isotope dilution analysis (DIDA)] may be not inferior to conventional external calibration with respect to accuracy and reproducibility. Quality control samples and human serum pools were analysed in a comparative validation protocol for cortisol as an exemplary analyte by LC-MS/MS. Accuracy and reproducibility were compared between quantification either involving a six-point external calibration function, or a result calculation merely based on peak area ratios of unlabelled and labelled analyte. Both quantification approaches resulted in similar accuracy and reproducibility. For specified analytes, reliable analyte quantification directly derived from the ratio of peak areas of labelled and unlabelled analyte without the need for a time consuming multi-point calibration series is possible. This DIDA approach is of considerable practical importance for the application of LC-MS/MS in the clinical laboratory where short turnaround times often have high priority.
A Citizen Science Soil Moisture Sensor to Support SMAP Calibration/Validation
NASA Astrophysics Data System (ADS)
Podest, E.; Das, N. N.
2016-12-01
The Soil Moisture Active Passive (SMAP) satellite mission was launched in Jan. 2015 and is currently acquiring global measurements of soil moisture in the top 5 cm of the soil every 3 days. SMAP has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino-like microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Design and Calibration of a Dispersive Imaging Spectrometer Adaptor for a Fast IR Camera on NSTX-U
NASA Astrophysics Data System (ADS)
Reksoatmodjo, Richard; Gray, Travis; Princeton Plasma Physics Laboratory Team
2017-10-01
A dispersive spectrometer adaptor was designed, constructed and calibrated for use on a fast infrared camera employed to measure temperatures on the lower divertor tiles of the NSTX-U tokamak. This adaptor efficiently and evenly filters and distributes long-wavelength infrared photons between 8.0 and 12.0 microns across the 128x128 pixel detector of the fast IR camera. By determining the width of these separated wavelength bands across the camera detector, and then determining the corresponding average photon count for each photon wavelength, a very accurate measurement of the temperature, and thus heat flux, of the divertor tiles can be calculated using Plank's law. This approach of designing an exterior dispersive adaptor for the fast IR camera allows accurate temperature measurements to be made of materials with unknown emissivity. Further, the relative simplicity and affordability of this adaptor design provides an attractive option over more expensive, slower, dispersive IR camera systems. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.
BOREAS RSS-14 Level -3 Gridded Radiometer and Satellite Surface Radiation Images
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Hodges, Gary; Smith, Eric A.
2000-01-01
The BOREAS RSS-14 team collected and processed GOES-7 and -8 images of the BOREAS region as part of its effort to characterize the incoming, reflected, and emitted radiation at regional scales. This data set contains surface radiation parameters, such as net radiation and net solar radiation, that have been interpolated from GOES-7 images and AMS data onto the standard BOREAS mapping grid at a resolution of 5 km N-S and E-W. While some parameters are taken directly from the AMS data set, others have been corrected according to calibrations carried out during IFC-2 in 1994. The corrected values as well as the uncorrected values are included. For example, two values of net radiation are provided: an uncorrected value (Rn), and a value that has been corrected according to the calibrations (Rn-COR). The data are provided in binary image format data files. Some of the data files on the BOREAS CD-ROMs have been compressed using the Gzip program. See section 8.2 for details. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
POIS, a Low Cost Tilt and Position Sensor: Design and First Tests
Artese, Giuseppe; Perrelli, Michele; Artese, Serena; Meduri, Sebastiano; Brogno, Natale
2015-01-01
An integrated sensor for the measurement and monitoring of position and inclination, characterized by low cost, small size and low weight, has been designed, realized and calibrated at the Geomatics Lab of the University of Calabria. The design of the prototype, devoted to the monitoring of landslides and structures, was aiming at realizing a fully automated monitoring instrument, able to send the data acquired periodically or upon request by a control center through a bidirectional transmission protocol. The sensor can be released with different accuracy and range of measurement, by choosing bubble vials with different characteristics. The instrument is provided with a computer, which can be programmed so as to independently perform the processing of the data collected by a single sensor or a by a sensor network, and to transmit, consequently, alert signals if the thresholds determined by the monitoring center are exceeded. The bidirectional transmission also allows the users to vary the set of the monitoring parameters (time of acquisition, duration of satellite acquisitions, thresholds for the observed data). In the paper, hardware and software of the sensor are described, along with the calibration, the results of laboratory tests and of the first in field acquisitions. PMID:25961381
In the making: SA-PIV applied to swimming practice
NASA Astrophysics Data System (ADS)
van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman
2017-11-01
To understand and optimize the propulsion in human swimming, a deep understanding of the hydrodynamics of swimming is required. This is usually based on experiments and numerical simulations under laboratory conditions.. In this study, we bring basic fluid mechanics knowledge and experimental measurement techniques to analyze the flow towards the swimming practice itself. A flow visualization setup is build and placed in a regular swimming pool. The measurement volume contains five homogeneous air bubble curtains illuminated by ambient light. The bubbles in these curtains act as tracer particles. The bubble motion is captured by six cameras placed in the side wall of the pool. It is intended to apply SA-PIV (synthetic aperture PIV) for analyzing the flow structures on multiple planes in the measurement volume. The system has been calibrated and the calibration data are used to refocus on the planes of interest. Multiple preprocessing steps need to be executed to obtain the proper quality of images before applying PIV. With a specially programmed video card to process and analyze the images in real-time feedback about swimming performance will become possible. We report on the first experimental data obtained by this system.
O’Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn
2010-01-01
Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients. PMID:27134777
O'Brien, Michelle; Minniti, Ronaldo; Masinza, Stanslaus Alwyn
2010-01-01
Air kerma calibration coefficients for a reference class ionization chamber from narrow x-ray spectra and cesium 137 gamma-ray beams were compared between the National Institute of Standards and Technology (NIST) and the Kenya Bureau of Standards (KEBS). A NIST reference-class transfer ionization chamber was calibrated by each laboratory in terms of the quantity air kerma in four x-ray reference radiation beams of energies between 80 kV and 150 kV and in a cesium 137 gamma-ray beam. The reference radiation qualities used for this comparison are described in detail in the ISO 4037 publication.[1] The comparison began in September 2008 and was completed in March 2009. The results reveal the degree to which the participating calibration facility can demonstrate proficiency in transferring air kerma calibrations under the conditions of the said facility at the time of the measurements. The comparison of the calibration coefficients is based on the average ratios of calibration coefficients.
40 CFR 91.326 - Pre- and post-test analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Pre- and post-test analyzer... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.326 Pre- and post-test analyzer calibration. Calibrate the operating range of each analyzer...
40 CFR 91.326 - Pre- and post-test analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Pre- and post-test analyzer... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.326 Pre- and post-test analyzer calibration. Calibrate the operating range of each analyzer...
40 CFR 91.326 - Pre- and post-test analyzer calibration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Pre- and post-test analyzer... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.326 Pre- and post-test analyzer calibration. Calibrate the operating range of each analyzer...
40 CFR 91.326 - Pre- and post-test analyzer calibration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Pre- and post-test analyzer... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.326 Pre- and post-test analyzer calibration. Calibrate the operating range of each analyzer...
40 CFR 86.124-78 - Carbon dioxide analyzer calibration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Carbon dioxide analyzer calibration... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... Complete Heavy-Duty Vehicles; Test Procedures § 86.124-78 Carbon dioxide analyzer calibration. Prior to its...
DOT National Transportation Integrated Search
2016-10-01
The Georgia Department of Transportation (GDOT) has initiated a Georgia Long-Term Pavement Performance (GALTPP) monitoring program 1) to provide data for calibrating the prediction models in the AASHTO Mechanistic-Empirical Pavement Design Guide (MEP...
The purpose of this SOP is to describe the procedures used when calibrating and operating balances during the Arizona NHEXAS project and the Border study. Keywords: lab; equipment; balances.
The U.S.-Mexico Border Program is sponsored by the Environmental Health Workgroup of t...
Broadband interferometric characterisation of nano-positioning stages with sub-10 pm resolution
NASA Astrophysics Data System (ADS)
Li, Zhi; Brand, Uwe; Wolff, Helmut; Koenders, Ludger; Yacoot, Andrew; Puranto, Prabowo
2017-06-01
A traceable calibration setup for investigation of the quasi-static and the dynamic performance of nano-positioning stages is detailed, which utilizes a differential plane-mirror interferometer with double-pass configuration from the National Physical Laboratory (NPL). An NPL-developed FPGA-based interferometric data acquisition and decoding system has been used to enable traceable quasi-static calibration of nano-positioning stages with high resolution. A lockin based modulation technique is further introduced to quantitatively calibrate the dynamic response of moving stages with a bandwidth up to 100 kHz and picometer resolution. First experimental results have proven that the calibration setup can achieve under nearly open-air conditions a noise floor lower than 10 pm/sqrt(Hz). A pico-positioning stage, that is used for nanoindentation with indentation depths down to a few picometers, has been characterized with this calibration setup.
Calibration of erythemally weighted broadband instruments: A comparison between PMOD/WRC and MSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, Neil; Nield, Kathryn; Hamlin, John
A Yankee Environmental Systems (YES) UVB-1 ultraviolet pyranometer, designed to measure erythemally weighted total solar irradiance, was calibrated by the Measurement Standards Laboratory (MSL) in Lower Hutt, New Zealand during August 2010. The calibration was then repeated during July and August 2011 by the Physikalisch-Meteorologisches Obervatorium Davos, World Radiation Center (PMOD/WRC) located in Davos, Switzerland. Calibration results show that measurements of the relative spectral and angular response functions at the two institutes are in excellent agreement, thus providing a good degree of confidence in these measurement facilities. However, measurements to convert the relative spectral response into an absolute calibration disagreemore » significantly depending on whether an FEL lamp or solar spectra are used to perform this scaling. This is the first serious comparison of these scaling methods to formally explore the potential systematic errors which could explain the discrepancy.« less
Calibration of the Hubble Space Telescope polarimetric modes
NASA Technical Reports Server (NTRS)
Lupie, O. L.; Stockman, H. S.
1988-01-01
Stellar and galactic polarimetry from space is an unexplored observational regime and one which holds exciting promise for answering many fundamental astrophysical questions. The Hubble Space Telescope will be the first space observatory to provide a variety of polarimetric modes to astronomers including spectral, imaging, and single-aperture UV polarimetry. As part of the calibration program for these modes, the Space Telescope Science Institute has initiated a ground-based program to define faint standard fields and solicited community support to establish a temporal baseline for these potential standard targets. In this paper, the polarimetric capabilities of the Hubble Space Telescope, the philosophy and complications of in-flight calibration, and the status and direction of the standard targets program are discussed.
HEART: an automated beat-to-beat cardiovascular analysis package using Matlab.
Schroeder, M J Mark J; Perreault, Bill; Ewert, D L Daniel L; Koenig, S C Steven C
2004-07-01
A computer program is described for beat-to-beat analysis of cardiovascular parameters from high-fidelity pressure and flow waveforms. The Hemodynamic Estimation and Analysis Research Tool (HEART) is a post-processing analysis software package developed in Matlab that enables scientists and clinicians to document, load, view, calibrate, and analyze experimental data that have been digitally saved in ascii or binary format. Analysis routines include traditional hemodynamic parameter estimates as well as more sophisticated analyses such as lumped arterial model parameter estimation and vascular impedance frequency spectra. Cardiovascular parameter values of all analyzed beats can be viewed and statistically analyzed. An attractive feature of the HEART program is the ability to analyze data with visual quality assurance throughout the process, thus establishing a framework toward which Good Laboratory Practice (GLP) compliance can be obtained. Additionally, the development of HEART on the Matlab platform provides users with the flexibility to adapt or create study specific analysis files according to their specific needs. Copyright 2003 Elsevier Ltd.