Science.gov

Sample records for calibration phantom errors

  1. Ultrasonic Calibration Wire Test Phantom

    SciTech Connect

    Lehman, S K; Fisher, K A; Werve, M; Chambers, D H

    2004-09-24

    We designed and built a phantom consisting of vertical wires maintained under tension to be used as an ultrasonic test, calibration, and reconstruction object for the Lawrence Livermore National Laboratory annular array scanner. We provide a description of the phantom, present example data sets, preliminary reconstructions, example metadata, and MATLAB codes to read the data.

  2. Simultaneous calibration phantom commission and geometry calibration in cone beam CT

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-09-01

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  3. Simultaneous calibration phantom commission and geometry calibration in cone beam CT.

    PubMed

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-08-09

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm(-1). The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  4. Improving in vivo calibration phantoms

    SciTech Connect

    Lynch, T.P.; Olsen, P.C.

    1991-10-01

    Anthropomorphic phantoms have been the basis for quantification of radioactive material in the body using in vivo measurements. The types of phantoms used and the degree of anthropomorphic detail vary depending on the counting application, the radioactive material to be measured, phantom availability and cost. Consequently, measurement results for the same types of radioactive material from different facilities are not always comparable. At a February 1990 meeting at the National Institute of Standards and Technology (NIST) the need to develop the gold standards'' or primary reference standards for in vivo phantoms was discussed in detail. The consensus of the attendees at the meeting was that the state of the art in phantoms was adequate as a starting point and that there was no need to start phantom development from scratch. In particular, the torso phantom developed at the Lawrence Livermore National Laboratory (LLNL) and its commercial progeny, the bottle manikin absorption (BOMAB) phantom and the American National Standards Institute (ANSI) Standard N44.3 thyroid phantom, were identified as the starting points for the development of the primary reference standards. Working groups at the meeting subsequently recommended design improvements for the existing phantom designs. The implementation of these recommendations is the subject of this paper.

  5. Design and development of an ultrasound calibration phantom and system

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  6. Assessment of Random Error in Phantom Dosimetry with the Use of Error Simulation in Statistical Software.

    PubMed

    Hoogeveen, R C; Martens, E P; van der Stelt, P F; Berkhout, W E R

    2015-01-01

    To investigate if software simulation is practical for quantifying random error (RE) in phantom dosimetry. We applied software error simulation to an existing dosimetry study. The specifications and the measurement values of this study were brought into the software (R version 3.0.2) together with the algorithm of the calculation of the effective dose (E). Four sources of RE were specified: (1) the calibration factor; (2) the background radiation correction; (3) the read-out process of the dosimeters; and (4) the fluctuation of the X-ray generator. The amount of RE introduced by these sources was calculated on the basis of the experimental values and the mathematical rules of error propagation. The software repeated the calculations of E multiple times (n = 10,000) while attributing the applicable RE to the experimental values. A distribution of E emerged as a confidence interval around an expected value. Credible confidence intervals around E in phantom dose studies can be calculated by using software modelling of the experiment. With credible confidence intervals, the statistical significance of differences between protocols can be substantiated or rejected. This modelling software can also be used for a power analysis when planning phantom dose experiments.

  7. Assessment of Random Error in Phantom Dosimetry with the Use of Error Simulation in Statistical Software

    PubMed Central

    Hoogeveen, R. C.; Martens, E. P.; van der Stelt, P. F.; Berkhout, W. E. R.

    2015-01-01

    Objective. To investigate if software simulation is practical for quantifying random error (RE) in phantom dosimetry. Materials and Methods. We applied software error simulation to an existing dosimetry study. The specifications and the measurement values of this study were brought into the software (R version 3.0.2) together with the algorithm of the calculation of the effective dose (E). Four sources of RE were specified: (1) the calibration factor; (2) the background radiation correction; (3) the read-out process of the dosimeters; and (4) the fluctuation of the X-ray generator. Results. The amount of RE introduced by these sources was calculated on the basis of the experimental values and the mathematical rules of error propagation. The software repeated the calculations of E multiple times (n = 10,000) while attributing the applicable RE to the experimental values. A distribution of E emerged as a confidence interval around an expected value. Conclusions. Credible confidence intervals around E in phantom dose studies can be calculated by using software modelling of the experiment. With credible confidence intervals, the statistical significance of differences between protocols can be substantiated or rejected. This modelling software can also be used for a power analysis when planning phantom dose experiments. PMID:26881200

  8. Analysis of translational errors in frame-based and frameless cranial radiosurgery using an anthropomorphic phantom*

    PubMed Central

    Almeida, Taynná Vernalha Rocha; Cordova Junior, Arno Lotar; Piedade, Pedro Argolo; da Silva, Cintia Mara; Marins, Priscila; Almeida, Cristiane Maria; Brincas, Gabriela R. Baseggio; Soboll, Danyel Scheidegger

    2016-01-01

    Objective To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used. PMID:27141132

  9. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement.

    PubMed

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-07

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAM_S phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  10. Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement

    NASA Astrophysics Data System (ADS)

    Chen, Yizheng; Qiu, Rui; Li, Chunyan; Wu, Zhen; Li, Junli

    2016-03-01

    In vivo measurement is a main method of internal contamination evaluation, particularly for large numbers of people after a nuclear accident. Before the practical application, it is necessary to obtain the counting efficiency of the detector by calibration. The virtual calibration based on Monte Carlo simulation usually uses the reference human computational phantom, and the morphological difference between the monitored personnel with the calibrated phantom may lead to the deviation of the counting efficiency. Therefore, a phantom library containing a wide range of heights and total body masses is needed. In this study, a Chinese reference adult male polygon surface (CRAM_S) phantom was constructed based on the CRAM voxel phantom, with the organ models adjusted to match the Chinese reference data. CRAMS phantom was then transformed to sitting posture for convenience in practical monitoring. Referring to the mass and height distribution of the Chinese adult male, a phantom library containing 84 phantoms was constructed by deforming the reference surface phantom. Phantoms in the library have 7 different heights ranging from 155 cm to 185 cm, and there are 12 phantoms with different total body masses in each height. As an example of application, organ specific and total counting efficiencies of Ba-133 were calculated using the MCNPX code, with two series of phantoms selected from the library. The influence of morphological variation on the counting efficiency was analyzed. The results show only using the reference phantom in virtual calibration may lead to an error of 68.9% for total counting efficiency. Thus the influence of morphological difference on virtual calibration can be greatly reduced using the phantom library with a wide range of masses and heights instead of a single reference phantom.

  11. Anisotropic phantom to calibrate high-q diffusion MRI methods

    NASA Astrophysics Data System (ADS)

    Komlosh, M. E.; Benjamini, D.; Barnett, A. S.; Schram, V.; Horkay, F.; Avram, A. V.; Basser, P. J.

    2017-02-01

    A silicon oil-filled glass capillary array is proposed as an anisotropic diffusion MRI phantom. Together with a computational/theoretical pipeline these provide a gold standard for calibrating and validating high-q diffusion MRI experiments. The phantom was used to test high angular resolution diffusion imaging (HARDI) and double pulsed-field gradient (d-PFG) MRI acquisition schemes. MRI-based predictions of microcapillary diameter using both acquisition schemes were compared with results from optical microscopy. This phantom design can be used for quality control and quality assurance purposes and for testing and validating proposed microstructure imaging experiments and the processing pipelines used to analyze them.

  12. Design of a novel digital phantom for EIT system calibration.

    PubMed

    Li, Nan; Wang, Wei; Xu, Hui

    2011-01-01

    This paper presented the design method of a novel digital phantom for electrical impedance tomography system calibration. By current sensing, voltage generating circuitry and digital processing algorithms implemented in FPGA, the digital phantom can simulate different impedances of tissues. The hardware of the digital phantom mainly consists of current sensing section, voltage generating section, electrodes switching section and a FPGA. Concerning software, the CORDIC algorithm is implemented in the FPGA to realize direct digital synthesis (DDS) technique and related algorithms. Simulation results show that the suggested system exhibits sufficient accuracy in the frequency range 10 Hz to 2 MHz. With the advantages offered by digital techniques, our approach has the potential of speed, accuracy and flexibility of the EIT system calibration process.

  13. CREATION OF FEMALE COMPUTATIONAL PHANTOMS FOR CALIBRATION OF LUNG COUNTERS.

    PubMed

    Lombardo, Pasquale Alessandro; Lebacq, Anne Laure; Vanhavere, Filip

    2016-09-01

    Plutonium isotopes are of high concern because they lead to high doses. In case of contamination, the activity burden inside the lungs should be assessed accurately. Many studies showed that the presence of breasts has a substantial influence on lung counting efficiencies. Currently, the calibration of most lung counting systems is done by means of physical phantoms representing only male chests. A set of female computational phantoms has been developed in order to provide gender-specific efficiency calibrations for the (241)Am gamma emission (59.54 keV). The phantoms were created starting from a library of female chest phantoms provided by Institut de radioprotection et de sûreté nucléaire (IRSN) (Farah, J. Amélioration des mesures anthroporadiamétriques personnalisées assistées par calcul Monte Carlo: optimisation des temps de calculs et méthodologie de mesure pour l'établissement de la répartition d'activite. PhD Thesis, 2011). While the IRSN phantoms represent a supine measurement position, the SCK•CEN lung counter set-up requires the persons to be sitting in a chair. Using open-source software, the breast shapes of the original phantoms have been recreated to simulate the drooping of breasts in vertical sitting position. A Monte Carlo approach was chosen for calculating calibration coefficients for female lung counting. The results obtained with MCNPx 2.7 simulations showed a significant decrease in the detection efficiency. For bigger bust and breast sizes, the detection efficiency showed to be up to 10 times lower than the ones measured with the Livermore male torso phantom. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Unintended attenuation in the Leksell Gamma Knife registered Perfexion trade mark sign calibration-phantom adaptor and its effect on dose calibration

    SciTech Connect

    Bhatnagar, Jagdish P.; Novotny, Josef Jr.; Quader, Mubina A.; Bednarz, Greg; Huq, M. Saiful

    2009-04-15

    The calibration of Leksell Gamma Knife Perfexion (LGK PFX) is performed using a spherical polystyrene phantom 160 mm in diameter, which is provided by the manufacturer. This is the same phantom that has been used with LGK models U, B, C, and 4C. The polystyrene phantom is held in irradiation position by an aluminum adaptor, which has stainless steel side-fixation screws. The phantom adaptor partially attenuates the beams from sectors 3 and 7 by 3.2% and 4.6%, respectively. This unintended attenuation introduces a systematic error in dose calibration. The overall effect of phantom-adaptor attenuation on output calibration of the LGK PFX unit is to underestimate output by about 1.0%.

  15. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  16. Regression calibration with heteroscedastic error variance.

    PubMed

    Spiegelman, Donna; Logan, Roger; Grove, Douglas

    2011-01-01

    The problem of covariate measurement error with heteroscedastic measurement error variance is considered. Standard regression calibration assumes that the measurement error has a homoscedastic measurement error variance. An estimator is proposed to correct regression coefficients for covariate measurement error with heteroscedastic variance. Point and interval estimates are derived. Validation data containing the gold standard must be available. This estimator is a closed-form correction of the uncorrected primary regression coefficients, which may be of logistic or Cox proportional hazards model form, and is closely related to the version of regression calibration developed by Rosner et al. (1990). The primary regression model can include multiple covariates measured without error. The use of these estimators is illustrated in two data sets, one taken from occupational epidemiology (the ACE study) and one taken from nutritional epidemiology (the Nurses' Health Study). In both cases, although there was evidence of moderate heteroscedasticity, there was little difference in estimation or inference using this new procedure compared to standard regression calibration. It is shown theoretically that unless the relative risk is large or measurement error severe, standard regression calibration approximations will typically be adequate, even with moderate heteroscedasticity in the measurement error model variance. In a detailed simulation study, standard regression calibration performed either as well as or better than the new estimator. When the disease is rare and the errors normally distributed, or when measurement error is moderate, standard regression calibration remains the method of choice.

  17. Fabrication of a set of realistic torso phantoms for calibration of transuranic nuclide lung counting facilities

    SciTech Connect

    Griffith, R.V.; Anderson, A.L.; Sundbeck, C.W.; Alderson, S.W.

    1983-10-26

    A set of 16 tissue equivalent torso phantoms has been fabricated for use by major laboratories involved in counting transuranic nuclides in the lung. These phantoms, which have bone equivalent plastic rib cages, duplicate the performance of the DOE Realistic Phantom set. The new phantoms (and their successors) provide the user laboratories with a highly realistic calibration tool. Moreover, use of these phantoms will allow participating laboratories to intercompare calibration information, both on formal and informal bases. 3 refs., 2 figs.

  18. Interpolation Errors in Thermistor Calibration Equations

    NASA Astrophysics Data System (ADS)

    White, D. R.

    2017-04-01

    Thermistors are widely used temperature sensors capable of measurement uncertainties approaching those of standard platinum resistance thermometers. However, the extreme nonlinearity of thermistors means that complicated calibration equations are required to minimize the effects of interpolation errors and achieve low uncertainties. This study investigates the magnitude of interpolation errors as a function of temperature range and the number of terms in the calibration equation. Approximation theory is used to derive an expression for the interpolation error and indicates that the temperature range and the number of terms in the calibration equation are the key influence variables. Numerical experiments based on published resistance-temperature data confirm these conclusions and additionally give guidelines on the maximum and minimum interpolation error likely to occur for a given temperature range and number of terms in the calibration equation.

  19. Calibration phantoms for accurate water and lipid density quantification using dual energy mammography

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Ding, H.; Kumar, N.; Sennung, D.; Molloi, S.

    2017-06-01

    The aim of this study is to investigate the feasibility of water and lipid as calibration phantoms for accurate dual energy breast density quantification. Dual energy calibration was performed on a mammography system based on scanning multi-slit Si strip photon-counting detectors using plastic water and adipose-equivalent phantoms as the basis materials. Two different methods were used to convert the dual energy decomposition measurements in plastic phantom thicknesses into the true water and lipid basis materials. The first method was based entirely on the theoretically calculated effective attenuation coefficients of the investigated materials in the mammographic energy range. The conversion matrix was determined through the linear least-squares fitting of the target material using the calculated effective attenuation coefficients of water and lipid. The second method was based on experimental calibration with plastic water phantom, adipose-equivalent phantom, and its correlation to known water and lipid thicknesses. These two methods were then validated by using an independent measurement of water and lipid mixture phantoms and postmortem breasts. The correlation between the dual energy decomposition measurements and the known values was evaluated using linear regression analysis. The averaged root-mean-square errors for water density quantification derived from the theoretical and experimental conversions were 8.6% and 1.6%, respectively. The postmortem breast tissue study also indicates that the experimentally acquired conversion coefficient improved the accuracy in water density quantification, in comparison with that from the theoretical conversion. The results show that conversion of the dual energy measurements into water and lipid thicknesses improves the accuracy in breast tissue decomposition.

  20. Photometer calibration error using extended standard sources

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Hays, P. B.; Kennedy, B. C.; Torr, D. G.

    1976-01-01

    As part of a project to compare measurements of the night airglow made by the visible airglow experiment on the Atmospheric Explorer-C satellite, the standard light sources of several airglow observatories were compared with the standard source used in the absolute calibration of the satellite photometer. In the course of the comparison, it has been found that serious calibration errors (up to a factor of two) can arise when a calibration source with a reflecting surface is placed close to an interference filter. For reliable absolute calibration, the source should be located at a distance of at least five filter radii from the interference filter.

  1. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  2. Lambertian nature of tissue phantoms for use as calibrators in near infrared fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Litorja, Maritoni; Lorenzo, Simón; Zhu, Banghe; Sevick Muraca, Eva

    2016-03-01

    The use of tissue phantoms as calibrators to transfer SI-referenced scale to an imager offers convenience, compared to other methods of calibration. The tissue phantoms are calibrated separately for radiance at emission wavelength per irradiance at excitation wavelength. This calibration is only performed at a single geometric configuration, typically with the detector normal to the sample. In the clinic however, the imager can be moved around, resulting in a geometric configuration different from the calibration configuration. In this study, radiometric measurements are made at different sample-imager angles to test whether the tissue phantoms are Lambertian and the angular limits to which the calibration values hold true.

  3. Calibration Errors in Interferometric Radio Polarimetry

    NASA Astrophysics Data System (ADS)

    Hales, Christopher A.

    2017-08-01

    Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.

  4. Assessment of variation in Elekta plastic spherical-calibration phantom and its impact on the Leksell Gamma Knife calibration

    SciTech Connect

    Novotny, Josef Jr.; Bhatnagar, Jagdish P.; Chung, Hyun-Tai; Johansson, Jonas; Bednarz, Greg; Ma, Lijun; Saiful Huq, M.

    2010-09-15

    Purpose: Traditionally, the dose-rate calibration (output) of the Leksell Gamma Knife (LGK) unit is performed using a 160 mm diameter plastic spherical phantom provided by the vendor of the LGK, Elekta Instrument AB. The purpose of this study was to evaluate variations in the Elekta spherical phantom and to assess its impact and use for the LGK calibration. Methods: Altogether, 13 phantoms from six different centers were acquired, 10 of these phantoms were manufactured within the past 10 years and the last 3 approximately 15-20 years ago. To assess variation in phantoms, the diameter and mass densities were measured. To assess the impact on LGK calibration, the output of two models of LGK (LGK Perfexion and LGK 4C) were measured under identical irradiation conditions using all 13 phantoms for each LGK model. Results: The mean measured deviation in diameter from expected nominal 160 mm for 13 phantoms was 0.51 mm (range of 0.09-1.51 mm). The mean measured phantom mass density for 13 phantoms was 1.066{+-}0.019 g/cm{sup 3} (range of 1.046-1.102 g/cm{sup 3}). The percentage deviation of output for individual phantom from mean of 13 phantom outputs ranged from -0.37% to 0.55% for LGK Perfexion. Similarly, the percentage deviation of output for individual phantom from mean of 13 phantom outputs ranged from -0.72% to 0.47% for LGK 4C. Conclusions: This study demonstrated that small variations in terms of phantom size and mass density of the phantom material do not have a significant impact on dose-rate measurements of the Leksell Gamma Knife. Also, date of manufacture of the phantom did not show up to be a significant factor in this study.

  5. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    NASA Astrophysics Data System (ADS)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  6. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  7. A phantom-based calibration method for digital x-ray tomosynthesis

    PubMed Central

    Miao, Hui; Wu, Xizeng; Zhao, Huijuan; Liu, Hong

    2012-01-01

    Objective The purpose of this study was to develop a phantom-based experimental calibration method to minimize the reconstruction artifacts for the geometric misalignments of the digital tomosynthesis prototype. Methods A calibration phantom with ten fiducial markers was designed. Using this calibration phantom, the projection matrices of an experimental digital tomosynthesis prototype were acquired from each projection view under a series of misalignment conditions. The American College of Radiology mammography phantom was imaged and reconstructed with and without using the correction of the corresponding calibration projection matrices. The effectiveness of the calibration technique was then quantitatively analyzed through comparison of the calibrated and uncalibrated images. Results As the isocenter horizontal-shift increases, the reconstruction artifacts become clearly distinguishable. Using the calibration technique, the reconstruction artifacts resulting from the isocenter horizontal-shift were effectively minimized for the prototype. Conclusions For the specific experimental conditions utilized in this study, the phantom-based calibration method effectively reduced reconstruction artifacts for the prototype investigated in this study. The calibration method holds potential to benefit other tomosynthesis applications. PMID:22398585

  8. Quantification of breast density using dual-energy mammography with liquid phantom calibration.

    PubMed

    Lam, Alfonso R; Ding, Huanjun; Molloi, Sabee

    2014-07-21

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (∼1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material.

  9. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    NASA Astrophysics Data System (ADS)

    Lam, Alfonso R.; Ding, Huanjun; Molloi, Sabee

    2014-07-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (˜1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material.

  10. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our

  11. INFLUENCE OF DIFFERENT TYPES OF PHANTOMS ON THE CALIBRATION OF DOSEMETERS FOR EYE LENS DOSIMETRY.

    PubMed

    Yoshitomi, H; Kowatari, M

    2016-09-01

    Both a cylinder and a slab phantom have been recommended to be used as calibration phantoms for eye lens dosimetry in the International Atomic Energy Agency TECDOC. This study describes investigations on the influence of the type of phantom on the calibration of dosemeters. In order to fulfil the purpose, backscatter radiation from practically used water-filled phantoms was evaluated by calculations and experiments. For photons, the calculations showed that the cylinder phantom had 10 % lower backscattered effect at maximum than a slab phantom, and simulated well the backscattered effect of the human head or neck to within ±10 %. The irradiation results of non-filtered optically stimulated luminescence and radio-photoluminescence glass dosemeters indicated that the differences of the calibration factors between the two types of phantoms were up to 20 and 10 %, respectively, reflecting the response to backscattered photons. For electrons, no difference was found between the two types of phantoms. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Organ-specific SPECT activity calibration using 3D printed phantoms for molecular radiotherapy dosimetry.

    PubMed

    Robinson, Andrew P; Tipping, Jill; Cullen, David M; Hamilton, David; Brown, Richard; Flynn, Alex; Oldfield, Christopher; Page, Emma; Price, Emlyn; Smith, Andrew; Snee, Richard

    2016-12-01

    Patient-specific absorbed dose calculations for molecular radiotherapy require accurate activity quantification. This is commonly derived from Single-Photon Emission Computed Tomography (SPECT) imaging using a calibration factor relating detected counts to known activity in a phantom insert. A series of phantom inserts, based on the mathematical models underlying many clinical dosimetry calculations, have been produced using 3D printing techniques. SPECT/CT data for the phantom inserts has been used to calculate new organ-specific calibration factors for (99m) Tc and (177)Lu. The measured calibration factors are compared to predicted values from calculations using a Gaussian kernel. Measured SPECT calibration factors for 3D printed organs display a clear dependence on organ shape for (99m) Tc and (177)Lu. The observed variation in calibration factor is reproduced using Gaussian kernel-based calculation over two orders of magnitude change in insert volume for (99m) Tc and (177)Lu. These new organ-specific calibration factors show a 24, 11 and 8 % reduction in absorbed dose for the liver, spleen and kidneys, respectively. Non-spherical calibration factors from 3D printed phantom inserts can significantly improve the accuracy of whole organ activity quantification for molecular radiotherapy, providing a crucial step towards individualised activity quantification and patient-specific dosimetry. 3D printed inserts are found to provide a cost effective and efficient way for clinical centres to access more realistic phantom data.

  13. Sensitivity of planetary cruise navigation to earth orientation calibration errors

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Folkner, W. M.

    1995-01-01

    A detailed analysis was conducted to determine the sensitivity of spacecraft navigation errors to the accuracy and timeliness of Earth orientation calibrations. Analyses based on simulated X-band (8.4-GHz) Doppler and ranging measurements acquired during the interplanetary cruise segment of the Mars Pathfinder heliocentric trajectory were completed for the nominal trajectory design and for an alternative trajectory with a longer transit time. Several error models were developed to characterize the effect of Earth orientation on navigational accuracy based on current and anticipated Deep Space Network calibration strategies. The navigational sensitivity of Mars Pathfinder to calibration errors in Earth orientation was computed for each candidate calibration strategy with the Earth orientation parameters included as estimated parameters in the navigation solution. In these cases, the calibration errors contributed 23 to 58% of the total navigation error budget, depending on the calibration strategy being assessed. Navigation sensitivity calculations were also performed for cases in which Earth orientation calibration errors were not adjusted in the navigation solution. In these cases, Earth orientation calibration errors contributed from 26 to as much as 227% of the total navigation error budget. The final analysis suggests that, not only is the method used to calibrate Earth orientation vitally important for precision navigation of Mars Pathfinder, but perhaps equally important is the method for inclusion of the calibration errors in the navigation solutions.

  14. A suitability study of the fission product phantom and the bottle manikin absorption phantom for calibration of in vivo bioassay equipment for the DOELAP accreditation testing program

    SciTech Connect

    Olsen, P.C.; Lynch, T.P.

    1991-08-01

    Pacific Northwest laboratory (PNL) conducted an intercomparison study of the Fission Product phantom and the bottle manikin absorption (BOMAB) phantom for the US Department of Energy (DOE) to determine the consistency of calibration response of the two phantoms and their suitability for certification and use under a planned bioassay laboratory accreditation program. The study was initiated to determine calibration factors for both types of phantoms and to evaluate the suitability of their use in DOE Laboratory Accreditation Program (DOELAP) round-robin testing. The BOMAB was found to be more appropriate for the DOELAP testing program. 9 refs., 9 figs., 9 tabs.

  15. Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method.

    PubMed

    Bouchard, Jean-Pierre; Veilleux, Israël; Jedidi, Rym; Noiseux, Isabelle; Fortin, Michel; Mermut, Ozzy

    2010-05-24

    Development, production quality control and calibration of optical tissue-mimicking phantoms require a convenient and robust characterization method with known absolute accuracy. We present a solid phantom characterization technique based on time resolved transmittance measurement of light through a relatively small phantom sample. The small size of the sample enables characterization of every material batch produced in a routine phantoms production. Time resolved transmittance data are pre-processed to correct for dark noise, sample thickness and instrument response function. Pre-processed data are then compared to a forward model based on the radiative transfer equation solved through Monte Carlo simulations accurately taking into account the finite geometry of the sample. The computational burden of the Monte-Carlo technique was alleviated by building a lookup table of pre-computed results and using interpolation to obtain modeled transmittance traces at intermediate values of the optical properties. Near perfect fit residuals are obtained with a fit window using all data above 1% of the maximum value of the time resolved transmittance trace. Absolute accuracy of the method is estimated through a thorough error analysis which takes into account the following contributions: measurement noise, system repeatability, instrument response function stability, sample thickness variation refractive index inaccuracy, time correlated single photon counting system time based inaccuracy and forward model inaccuracy. Two sigma absolute error estimates of 0.01 cm(-1) (11.3%) and 0.67 cm(-1) (6.8%) are obtained for the absorption coefficient and reduced scattering coefficient respectively.

  16. Contrast-Medium-Enhanced Digital Mammography: Contrast vs. Iodine Concentration Phantom Calibration

    SciTech Connect

    Rosado-Mendez, I.; Brandan, M. E.; Villasenor, Y.; Benitez-Bribiesca, L.

    2008-08-11

    This work deals with the application of the contrast-medium-enhanced digital subtraction mammography technique in order to calibrate the contrast level in subtracted phantom images as function of iodine concentration to perform dynamic studies of the contrast-medium uptake in the breast. Previously optimized dual-energy temporal subtraction modalities were used (a) to determine radiological parameters for a dynamic clinical study composed of 1 mask+3 post-contrast images limiting the total mean glandular dose to 2.5 mGy, and (b) to perform a contrast vs iodine concentration calibration using a custom-made phantom. Calculated exposure values were applied using a commercial full-field digital mammography unit. Contrast in subtracted phantom images (one mask and one post-CM) is linear as function of iodine concentration, although the sensitivity (contrast per iodine concentration) decreases beyond 8 mg/mL. This calibration seems to apply only to thin and normal thickness breasts.

  17. A low-cost, easy-to-handle calibration phantom for MR thermometry in HIFU fields

    NASA Astrophysics Data System (ADS)

    Haller, Julian; Jenderka, Klaus-Vitold; Koch, Christian; Seifert, Frank; Klepsch, Tobias; Shaw, Adam

    2012-10-01

    In this work, a calibration phantom based on an electrical resistor heating rod is presented, which creates a temperature distribution similar to those in typical HIFU fields (diameter ˜2 mm, heating rate ˜10 K/s). The temperature distribution is measured first with a calibrated reference device and then with MR thermometry. Equal conditions for both measurements can be ensured by monitoring the voltage and current across the resistor during the heating. From the comparison of both measurements, the accuracy of the MR measurement can be assessed. The calibration phantom is MR compatible, and it has high reproducibility and low production costs. A wide variety of possible heating sequences can be employed and the phantom has a compact and easy setup. Thus, it can be used to quickly verify the results from newly developed MR thermometry sequences as well as to evaluate the uncertainties of existing sequences.

  18. Development of a calibration phantom set for MRI temperature imaging system quality assurance.

    PubMed

    Xin, Xuegang; Han, Jijun; Wang, Di; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2012-06-01

    Magnetic resonance imaging (MRI) temperature imaging systems need to be routinely calibrated to guarantee accurate temperature results and qualified MRI. No independent physical temperature calibration phantom (TCP) set is currently available. An economical TCP set was developed to routinely ensure the quality of MRI temperature imaging system. The novel TCP was constructed using a heating unit, temperature sensor, and MRI phantom liquid. A specialized heating unit was developed using carbon fibers. The TCP set design was an integration of the TCP, temperature measurement unit, display unit, and control unit. The proposed MRI calibration kit, which is a combination of the TCP set and standard MRI phantom, was used in the MRI thermometry calibration and MRI quality calibration. The TCP set provided an efficient, accurate, and homogeneous temperature map as the reference standard temperature for calibration. Accuracy and heating efficiency of the TCP set were 1°C and 1°C/minute, respectively. Calibration of the MRI thermometry and MRI quality were implemented successfully. The proposed TCP set is completely compatible with the MRI system and can be used to calibrate MRI thermometry and MRI quality to ensure the quality performance of the MRI temperature imaging system. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  19. Variability in the calibration error of the goldmann applanation tonometer.

    PubMed

    Choudhari, Nikhil Shreeram; Jadhav, Vaishali; George, Ronnie; Vijaya, Lingam

    2011-10-01

    To investigate the variability in the measured calibration error with continued usage of Goldmann applanation tonometers (GATs) having unacceptable calibration error. The study included 132 slit-lamp mounted Goldmann tonometers (Model AT 900 C/M; Haag-Streit, Switzerland). A single observer twice checked a randomly selected set of 25 instruments on 2 consecutive days to determine the intraobserver agreement in the measurement of GAT calibration error. The same observer prospectively checked all the instruments between 8 and 9 AM on any given day at all testing levels namely 0, 20, and 60 mm Hg and rechecked the faulty instruments (calibration error more than ± 2 mm Hg at any testing level) 2 times more on the same day between 12 noon and 1 PM and 4 and 5 PM. The single measures intraclass correlation coefficients for the intraobserver agreement at the 20 mm Hg testing level were 0.78 for positive error and 0.83 for negative error. Twenty-eight (21%) instruments were faulty at any testing level. Nineteen (14%) were faulty at the clinically most important 20 mm Hg testing level. The maximum observed variability in the positive and negative calibration error at any testing level was +4 and -23 mm Hg, respectively. Fifteen (53%) faulty instruments had high variability (≥ 2 mm Hg) in the calibration error at any testing level. The calibration error of faulty GATs can frequently have a high variability. One should avoid estimating the true intraocular pressure from a faulty GAT by instinct.

  20. Dose calibration optimization and error propagation in polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Hilts, M.

    2014-02-01

    This study reports on the relative precision, relative error, and dose differences observed when using a new full-image calibration technique in NIPAM-based x-ray CT polymer gel dosimetry. The effects of calibration parameters (e.g. gradient thresholding, dose bin size, calibration fit function, and spatial remeshing) on subsequent errors in calibrated gel images are reported. It is found that gradient thresholding, dose bin size, and fit function all play a primary role in affecting errors in calibrated images. Spatial remeshing induces minimal reductions or increases in errors in calibrated images. This study also reports on a full error propagation throughout the CT gel image pre-processing and calibration procedure thus giving, for the first time, a realistic view of the errors incurred in calibrated CT polymer gel dosimetry. While the work is based on CT polymer gel dosimetry, the formalism is valid for and easily extended to MRI or optical CT dosimetry protocols. Hence, the procedures developed within the work are generally applicable to calibration of polymer gel dosimeters.

  1. Research on calibration error of carrier phase against antenna arraying

    NASA Astrophysics Data System (ADS)

    Sun, Ke; Hou, Xiaomin

    2016-11-01

    It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.

  2. Calibration of the Gamma Knife Perfexion using TG-21 and the solid water Leksell dosimetry phantom.

    PubMed

    McDonald, Daniel; Yount, Caroline; Koch, Nicholas; Ashenafi, Michael; Peng, Jean; Vanek, Kenneth

    2011-03-01

    To calibrate a Gamma Knife (GK) Perfexion using TG-21 with updated chamber-dependent values for modern microionization chambers in the new solid water Leksell dosimetry phantom. This work illustrates a calibration method using commercially available equipment, instruments, and an established dosimetry protocol that may be adopted at any GK center, thus reducing the interinstitutional variation in GK calibration. The calibration was verified by three third-party dosimetry checks. In addition, measurements of the relative output factors are presented and compared to available data and the new manufacturer-provided relative output factors yet to be released. An absolute dose calibration based on the TG-21 formalism, utilizing recently reported phantom material and chamber-dependent factors, was performed using a microionization chamber in a spherical solid water phantom. The result was compared to other calibration protocols based on TG-51. Independent verification of the machine output was conducted through M.D. Anderson Dosimetry Services (MDADS), using thermoluminescent dosimeters (TLDs) in an anthropomorphic head phantom; the Radiological Physics Center (RPC), using TLDs in the standard Elekta ABS plastic calibration phantom (gray phantom), included with the GK; and through a collaborative international calibration survey by the University of Pittsburgh Medical Center (UPMC) using alanine dosimeters, also in the gray phantom. The alanine dosimeters were read by the National Institute of Standards and Technology. Finally, Gafchromic EBT film was used to measure relative output factors and these factors were compared to values reported in the literature as well as new values announced for release by Elekta. The films were exposed in the solid water phantom using an included film insert accessory. Compared to the TG-21 protocol in the solid water phantom, the modified and unmodified TG-51 calibrations resulted in dose rates which were 1.8% and 1.3% lower

  3. Calibration of the Gamma Knife Perfexion using TG-21 and the solid water Leksell dosimetry phantom

    SciTech Connect

    McDonald, Daniel; Yount, Caroline; Koch, Nicholas; Ashenafi, Michael; Peng, Jean; Vanek, Kenneth

    2011-03-15

    Purpose: To calibrate a Gamma Knife (GK) Perfexion using TG-21 with updated chamber-dependent values for modern microionization chambers in the new solid water Leksell dosimetry phantom. This work illustrates a calibration method using commercially available equipment, instruments, and an established dosimetry protocol that may be adopted at any GK center, thus reducing the interinstitutional variation in GK calibration. The calibration was verified by three third-party dosimetry checks. In addition, measurements of the relative output factors are presented and compared to available data and the new manufacturer-provided relative output factors yet to be released. Methods: An absolute dose calibration based on the TG-21 formalism, utilizing recently reported phantom material and chamber-dependent factors, was performed using a microionization chamber in a spherical solid water phantom. The result was compared to other calibration protocols based on TG-51. Independent verification of the machine output was conducted through M.D. Anderson Dosimetry Services (MDADS), using thermoluminescent dosimeters (TLDs) in an anthropomorphic head phantom; the Radiological Physics Center (RPC), using TLDs in the standard Elekta ABS plastic calibration phantom (gray phantom), included with the GK; and through a collaborative international calibration survey by the University of Pittsburgh Medical Center (UPMC) using alanine dosimeters, also in the gray phantom. The alanine dosimeters were read by the National Institute of Standards and Technology. Finally, Gafchromic EBT film was used to measure relative output factors and these factors were compared to values reported in the literature as well as new values announced for release by Elekta. The films were exposed in the solid water phantom using an included film insert accessory. Results: Compared to the TG-21 protocol in the solid water phantom, the modified and unmodified TG-51 calibrations resulted in dose rates which were 1

  4. Air data position-error calibration using state reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.

    1984-01-01

    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.

  5. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  6. Calibration of the Gamma Knife using a new phantom following the AAPM TG51 and TG21 protocols

    SciTech Connect

    Drzymala, R. E.; Wood, R. C.; Levy, J.

    2008-02-15

    Purpose: To compare calibration of the Leksell Gamma Knife according to the American Association of Physicists in Medicine Task Groups 21 and 51 protocols. A new phantom was fabricated for this purpose. Its design, physical properties, and composition are described. Materials and methods: The Gamma Knife TG-51 calibration phantom is designed to be filled with water and support an ionization chamber positioned at its center. The phantom is thimble-shaped, with a 2 mm plastic wall to contain water. The phantom and chamber assembly was mounted in a LeksellTM stereotactic frame. The location of the chamber's sensitive volume was determined using computed tomography. The chamber-phantom assembly was attached to the 18 mm helmet in the Gamma Knife by the stereotactic frame. The phantom's geometry allowed radiation beams from each of the 201 Gamma Knife cobalt-60 sources to converge after an 8 cm path to the ionization chamber's sensitive volume. This is similar to the arrangement by which one calibrates the Gamma Knife using the manufacturer-supplied polystyrene phantom. Results: The phantom was attached to the Gamma Knife so that the ionization chamber was reproducibly positioned at the convergence of the radiation beams. Because of the phantom's design, the phantom could be affixed to either trunnions or the automatic patient positioning system, once mounted in the LeksellTM stereotectic frame. Comparisons using different phantoms and protocols resulted in the following calibration ratios for TG-21 in the polystyrene sphere phantom, TG-21 in the water phantom, and TG-51 in the water phantom, respectively: 1.000, 1.008, 0.986, when corrected for transmission through the plastic water reservoir wall and using the same ionization chamber. Transmission measurements using a 1 cm thickness of the same material in the Co-60 beam determined that the phantom's 2 mm plastic wall resulted in a reduction in the measured the output by 0.5%. Conclusions: Calibration of the Gamma

  7. Tissue-equivalent torso phantom for calibration of transuranic-nuclide counting facilities

    SciTech Connect

    Griffith, R.V.; Anderson, A.L.; Dean, P.N.; Fisher, J.C.; Sundbeck, C.W.

    1986-01-16

    Several tissue-equivalent human-torso phantoms have been constructed for the calibration of counting systems used for in-vivo measurement of transuranic radionuclides. The phantoms contain a simulated human rib cage (in some cases, real bone) and removable model organs, and they include tissue-equivalent chest plates that can be placed over the torso to simulate people with a wide range of statures. The organs included are the lungs, liver, and tracheobronchial lymph nodes. Polyurethane with varying concentrations of added calcium was used to simulate the linear photon-attenuation properties of various human tissues, including lean muscle, adipose-muscle mixtures, cartilage, and bone. Foamed polyurethane was used to simulate lung tissue. Organs have been loaded with highly pure /sup 238/Pu, /sup 239/Pu, /sup 241/Am, and other radionuclides of interest. The validity of the phantom as a calibration standard has been checked in separate intercomparison studies using human subjects whose lungs contained a plutonium simulant. The resulting phantom calibration factors generally compared to within +-20% of the average calibration factors obtained for the human subjects.

  8. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    SciTech Connect

    HICKMAN, DAVE

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided by MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.

  9. SU-E-T-114: Analysis of MLC Errors On Gamma Pass Rates for Patient-Specific and Conventional Phantoms

    SciTech Connect

    Sterling, D; Ehler, E

    2015-06-15

    Purpose: To evaluate whether a 3D patient-specific phantom is better able to detect known MLC errors in a clinically delivered treatment plan than conventional phantoms. 3D printing may make fabrication of such phantoms feasible. Methods: Two types of MLC errors were introduced into a clinically delivered, non-coplanar IMRT, partial brain treatment plan. First, uniformly distributed random errors of up to 3mm, 2mm, and 1mm were introduced into the MLC positions for each field. Second, systematic MLC-bank position errors of 5mm, 3.5mm, and 2mm due to simulated effects of gantry and MLC sag were introduced. The original plan was recalculated with these errors on the original CT dataset as well as cylindrical and planar IMRT QA phantoms. The original dataset was considered to be a perfect 3D patient-specific phantom. The phantoms were considered to be ideal 3D dosimetry systems with no resolution limitations. Results: Passing rates for Gamma Index (3%/3mm and no dose threshold) were calculated on the 3D phantom, cylindrical phantom, and both on a composite and field-by-field basis for the planar phantom. Pass rates for 5mm systematic and 3mm random error were 86.0%, 89.6%, 98% and 98.3% respectively. For 3.5mm systematic and 2mm random error the pass rates were 94.7%, 96.2%, 99.2% and 99.2% respectively. For 2mm systematic error with 1mm random error the pass rates were 99.9%, 100%, 100% and 100% respectively. Conclusion: A 3D phantom with the patient anatomy is able to discern errors, both severe and subtle, that are not seen using conventional phantoms. Therefore, 3D phantoms may be beneficial for commissioning new treatment machines and modalities, patient-specific QA and end-to-end testing.

  10. A new phantom for image quality, geometric destortion, and HU calibration in MSCT and CBCT

    NASA Astrophysics Data System (ADS)

    Voigt, Johannes M.; Blendl, Christian; Selbach, Markus; Uphoff, Clemens; Fiebich, Martin

    2012-03-01

    Flat panel cone-beam computed tomography (CBCT) is developing to the state-of-the-art technique in several medical disciplines such as dental and otorhinolaryngological imaging. Dental and otorhinolaryngological CBCT systems offer a variety of different field-of-view sizes from 6.0 to 17.0 cm. Standard phantoms are only designed for the use in multi-slices CT (MSCT) and there is no phantom which provides detail structures for all common characteristic values and Hounsfield calibration. In this study we present a new phantom specially designed for use with MSCT and CBCT systems providing detail structures for MTF, 3D MTF, NPS, SNR, geometric distortion and HU calibration. With this phantom you'll only need one acquisition for image quality investigation and assurance. Materials and methods: The phantom design is shown in figure 1. To investigate the practicability, the phantom was scanned using dedicated MSCT-scanners, 3D C-arms und digital volume tomographs. The acquired axial image stacks were analyzed using a dedicated computer program, which is provided as an ImageJ plugin. The MTF was compared to other methodologies such as a thin wire, a sphere or noise response [10, 13, 14]. The HU values were also computed using other common methods. Results: These results are similar to the results of others studies [10, 13, 14]. The method has proven to be stable and delivers comparable results to other methodologies such as using a thin wire. The NPS was calculated for all materials. Furthermore, CT numbers for all materials were computed and compared to the desired values. The measurement of geometric deformation has proven to be accurate. Conclusion: A unique feature of this phantom is to compute the geometric deformation of the 3D-volume image. This offers the chance to improve accuracy, e.g. in dental implant planning. Another convenient feature is that the phantom needs to be scanned only once with otorhinolaryngological volume tomographs to be fully displayed. It is

  11. Effect of the Scattering Radiation in Air and Two Type of Slap Phantom between PMMA and the ISO Water Phantom for Personal Dosimeters Calibration

    NASA Astrophysics Data System (ADS)

    Kamwang, N.; Rungseesumran, T.; Saengchantr, D.; Monthonwattana, S.; Pungkun, V.

    2017-06-01

    The calibration of personal dosimeter to determine the quantities of the personal dose equivalent, Hp(d), is required to be placed on a suitable phantom in order to provide a reasonable approximation to the radiation backscattering properties as equivalent as part of body. The dosimeter which is worn on the trunk usually calibrated with slap phantom which recommended in ICRU 47 with dimension of 30 cm (w) x 30 cm (h) x 15 cm (t) PMMA slab phantom to achieve uniformity in calibration procedures, on the other hand the International Organization for Standardization (ISO), ISO 4037-3, proposed the ISO water slap phantom, with PMMA walls, same dimension but different wall thickness (front wall 2.5 mm and other side wall 10 mm thick) and fill with water. However, some laboratories are still calibrating a personal dosimeter in air in term of ambient dose equivalent, H*(d). This research study the effect of the scattering radiation in two type of those slap phantoms and in air, to calibrate two type of OSL (XA and LA) and electronic personal dosimeters. The X-ray and Cs-137 radiation field with the energy range from 33 to 662 keV were used. The results of this study will be discussed.

  12. Creation and Characterization of an Ultrasound and CT Phantom for Non-invasive Ultrasound Thermometry Calibration

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Ferrara, Katherine W.; Caskey, Charles F.

    2014-01-01

    Ultrasound thermometry provides noninvasive two-dimensional (2-D) temperature monitoring, and in this paper, we have investigated the use of computed tomography (CT) radiodensity to characterize tissues to improve the accuracy of ultrasound thermometry. Agarose-based tissue-mimicking phantoms were created with glyceryl trioleate (a fat-mimicking material) concentration of 0, 10, 20, 30, 40, and 50%. The speed of sound (SOS) of the phantoms was measured over a temperature range of 22.1–41.1°C. CT images of the phantoms were acquired by a clinical dedicated breast CT scanner, followed by calculation of the Hounsfield units (HU). The phantom was heated with a therapeutic acoustic pulse (1.54 MHz), while RF data were acquired with a 10-MHz linear-array transducer. 2-D speckle tracking was used to calculate the thermal strain offline. The tissue dependent thermal strain parameter required for ultrasound thermometry was analyzed and correlated with CT radiodensity, followed by validation of the temperature prediction. Results showed that the change in SOS with the temperature increase was opposite in sign between the 0–10% and 20–50% trioleate phantoms. The inverse of the tissue dependent thermal strain parameter of the phantoms was correlated with the CT radiodensity (R2 = 0.99). A blinded ultrasound thermometry study on phantoms with a trioleate range of 5–35% demonstrated the capability to estimate the tissue dependent thermal strain parameter and estimate temperature with error less than ~1°C. In conclusion, CT radiodensity may provide a method for improving ultrasound thermometry in heterogeneous tissues. PMID:24107918

  13. Creation and characterization of an ultrasound and CT phantom for noninvasive ultrasound thermometry calibration.

    PubMed

    Chun-Yen Lai; Kruse, Dustin E; Ferrara, Katherine W; Caskey, Charles F

    2014-02-01

    Ultrasound thermometry provides noninvasive 2-D temperature monitoring, and in this paper, we have investigated the use of computed tomography (CT) radiodensity to characterize tissues to improve the accuracy of ultrasound thermometry. Agarose-based tissue-mimicking phantoms were created with glyceryl trioleate (a fat-mimicking material) concentration of 0%, 10%, 20%, 30%, 40%, and 50%. The speed of sound (SOS) of the phantoms was measured over a temperature range of 22.1-41.1 °C. CT images of the phantoms were acquired by a clinical dedicated breast CT scanner, followed by calculation of the Hounsfield units (HU). The phantom was heated with a therapeutic acoustic pulse (1.54 MHz), while RF data were acquired with a 10-MHz linear-array transducer. Two-dimensional speckle tracking was used to calculate the thermal strain offline. The tissue-dependent thermal strain parameter required for ultrasound thermometry was analyzed and correlated with CT radiodensity, followed by the validation of the temperature prediction. Results showed that the change in SOS with the temperature increase was opposite in sign between the 0%-10% and 20%-50% trioleate phantoms. The inverse of the tissue-dependent thermal strain parameter of the phantoms was correlated with the CT radiodensity (R(2) = 0.99). A blinded ultrasound thermometry study on phantoms with a trioleate range of 5%-35% demonstrated the capability to estimate the tissue-dependent thermal strain parameter and estimate temperature with error less than ~1 °C. In conclusion, CT radiodensity may provide a method for improving ultrasound thermometry in heterogeneous tissues.

  14. Calibration of phoswich-based lung counting system using realistic chest phantom.

    PubMed

    Manohari, M; Mathiyarasu, R; Rajagopal, V; Meenakshisundaram, V; Indira, R

    2011-03-01

    A phoswich detector, housed inside a low background steel room, coupled with a state-of-art pulse shape discrimination (PSD) electronics is recently established at Radiological Safety Division of IGCAR for in vivo monitoring of actinides. The various parameters of PSD electronics were optimised to achieve efficient background reduction in low-energy regions. The PSD with optimised parameters has reduced steel room background from 9.5 to 0.28 cps in the 17 keV region and 5.8 to 0.3 cps in the 60 keV region. The Figure of Merit for the timing spectrum of the system is 3.0. The true signal loss due to PSD was found to be less than 2 %. The phoswich system was calibrated with Lawrence Livermore National Laboratory realistic chest phantom loaded with (241)Am activity tagged lung set. Calibration factors for varying chest wall composition and chest wall thickness in terms of muscle equivalent chest wall thickness were established. (241)Am activity in the JAERI phantom which was received as a part of IAEA inter-comparison exercise was estimated. This paper presents the optimisation of PSD electronics and the salient results of the calibration.

  15. Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom

    PubMed Central

    Hyttel-Sorensen, Simon; Kleiser, Stefan; Wolf, Martin; Greisen, Gorm

    2013-01-01

    In a blood-lipid liquid phantom the prototype near-infrared spectroscopy oximeter OxyPrem was calibrated against the INVOS® 5100c adult sensor in respect to values of regional tissue oxygen haemoglobin saturation (rStO2) for possible inclusion in the randomised clinical trial - SafeBoosC. In addition different commercial NIRS oximeters were compared on changing haemoglobin oxygen saturation and compared against co-oximetry. The best calibration was achieved with a simple offset and a linear scaling of the OxyPrem rStO2 values. The INVOS adult and pediatric sensor gave systematically different values, while the difference between the NIRO® 300 and the two INVOS sensors were magnitude dependent. The co-oximetry proved unreliable on such low haemoglobin and high Intralipid levels. PMID:24049687

  16. Error analysis for NMR polymer microstructure measurement without calibration standards.

    PubMed

    Qiu, XiaoHua; Zhou, Zhe; Gobbi, Gian; Redwine, Oscar D

    2009-10-15

    We report an error analysis method for primary analytical methods in the absence of calibration standards. Quantitative (13)C NMR analysis of ethylene/1-octene (E/O) copolymers is given as an example. Because the method is based on a self-calibration scheme established by counting, it is a measure of accuracy rather than precision. We demonstrate it is self-consistent and neither underestimate nor excessively overestimate the experimental errors. We also show the method identified previously unknown systematic biases in a NMR instrument. The method can eliminate unnecessary data averaging to save valuable NMR resources. The accuracy estimate proposed is not unique to (13)C NMR spectroscopy of E/O but should be applicable to all other measurement systems where the accuracy of a subset of the measured responses can be established.

  17. Polarimeter calibration error gets far out of control

    NASA Astrophysics Data System (ADS)

    Chipman, Russell A.

    2015-09-01

    This is a sad story about a polarization calibration error gone amuck. A simple laboratory mistake was mistaken for a new phenomena. Aggressive management did their job and sold the flawed idea very effectively and substantial funding followed. Questions were raised and a Government lab tried but couldn't to recreate the breakthrough. The results were unpleasant and the field of infrared polarimetry developed a bad reputation for several years.

  18. Application of variance components estimation to calibrate geoid error models.

    PubMed

    Guo, Dong-Mei; Xu, Hou-Ze

    2015-01-01

    The method of using Global Positioning System-leveling data to obtain orthometric heights has been well studied. A simple formulation for the weighted least squares problem has been presented in an earlier work. This formulation allows one directly employing the errors-in-variables models which completely descript the covariance matrices of the observables. However, an important question that what accuracy level can be achieved has not yet to be satisfactorily solved by this traditional formulation. One of the main reasons for this is the incorrectness of the stochastic models in the adjustment, which in turn allows improving the stochastic models of measurement noises. Therefore the issue of determining the stochastic modeling of observables in the combined adjustment with heterogeneous height types will be a main focus point in this paper. Firstly, the well-known method of variance component estimation is employed to calibrate the errors of heterogeneous height data in a combined least square adjustment of ellipsoidal, orthometric and gravimetric geoid. Specifically, the iterative algorithms of minimum norm quadratic unbiased estimation are used to estimate the variance components for each of heterogeneous observations. Secondly, two different statistical models are presented to illustrate the theory. The first method directly uses the errors-in-variables as a priori covariance matrices and the second method analyzes the biases of variance components and then proposes bias-corrected variance component estimators. Several numerical test results show the capability and effectiveness of the variance components estimation procedure in combined adjustment for calibrating geoid error model.

  19. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    New densitometer installation requires cross-calibration for accurate longitudinal assessment. When replacing a unit with the same model, the International Society for Clinical Densitometry recommends cross-calibrating by scanning phantoms 10 times on each instrument and states that spine bone mineral density (BMD) should be within 1%, whereas total body lean, fat, and %fat mass should be within 2% of the prior instrument. However, there is limited validation that these recommendations provide adequate total body cross-calibration. Here, we report a total body cross-calibration experience with phantoms and humans. Cross-calibration between an existing and new Lunar iDXA was performed using 3 encapsulated spine phantoms (GE [GE Lunar, Madison, WI], BioClinica [BioClinica Inc, Princeton, NJ], and Hologic [Hologic Inc, Bedford, MA]), 1 total body composition phantom (BioClinica), and 30 human volunteers. Thirty scans of each phantom and a total body scan of human volunteers were obtained on each instrument. All spine phantom BMD means were similar (within 1%; <-0.010 g/cm2 bias) between the existing and new dual-energy X-ray absorptiometry unit. The BioClinica body composition phantom (BBCP) BMD and bone mineral content (BMC) values were within 2% with biases of 0.005 g/cm2 and -3.4 g. However, lean and fat mass and %fat differed by 4.6%-7.7% with biases of +463 g, -496 g, and -2.8%, respectively. In vivo comparison supported BBCP data; BMD and BMC were within ∼2%, but lean and fat mass and %fat differed from 1.6% to 4.9% with biases of +833 g, -860 g, and -1.1%. As all body composition comparisons exceeded the recommended 2%, the new densitometer was recalibrated. After recalibration, in vivo bias was lower (<0.05%) for lean and fat; -23 and -5 g, respectively. Similarly, BBCP lean and fat agreement improved. In conclusion, the BBCP behaves similarly, but not identical, to human in vivo measurements for densitometer cross-calibration. Spine phantoms, despite good

  20. SU-E-T-550: Range Effects in Proton Therapy Caused by Systematic Errors in the Stoichiometric Calibration

    SciTech Connect

    Doolan, P; Dias, M; Collins Fekete, C; Seco, J

    2014-06-01

    Purpose: The procedure for proton treatment planning involves the conversion of the patient's X-ray CT from Hounsfield units into relative stopping powers (RSP), using a stoichiometric calibration curve (Schneider 1996). In clinical practice a 3.5% margin is added to account for the range uncertainty introduced by this process and other errors. RSPs for real tissues are calculated using composition data and the Bethe-Bloch formula (ICRU 1993). The purpose of this work is to investigate the impact that systematic errors in the stoichiometric calibration have on the proton range. Methods: Seven tissue inserts of the Gammex 467 phantom were imaged using our CT scanner. Their known chemical compositions (Watanabe 1999) were then used to calculate the theoretical RSPs, using the same formula as would be used for human tissues in the stoichiometric procedure. The actual RSPs of these inserts were measured using a Bragg peak shift measurement in the proton beam at our institution. Results: The theoretical calculation of the RSP was lower than the measured RSP values, by a mean/max error of - 1.5/-3.6%. For all seven inserts the theoretical approach underestimated the RSP, with errors variable across the range of Hounsfield units. Systematic errors for lung (average of two inserts), adipose and cortical bone were - 3.0/-2.1/-0.5%, respectively. Conclusion: There is a systematic underestimation caused by the theoretical calculation of RSP; a crucial step in the stoichiometric calibration procedure. As such, we propose that proton calibration curves should be based on measured RSPs. Investigations will be made to see if the same systematic errors exist for biological tissues. The impact of these differences on the range of proton beams, for phantoms and patient scenarios, will be investigated. This project was funded equally by the Engineering and Physical Sciences Research Council (UK) and Ion Beam Applications (Louvain-La-Neuve, Belgium)

  1. Calibration of a total body potassium monitor with an anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Hansen, R. D.; Allen, B. J.

    1996-11-01

    An anthropomorphic phantom was used to calibrate a supine geometry sodium iodide total body potassium monitor. Correction factors accommodating variability in subject size were empirically determined. Measurements on 12 males of weight 45 - 96 kg, height 161 - 184 cm and 18 females of weight 48 - 89 kg, height 153 - 175 cm, showed that the calibration factor was significantly correlated (r = 0.88, p < 0.0001) to subject , indicating comparable accuracy to -based calibration procedures. Fat-free mass determined from the potassium measurements of 16 subjects correlated significantly with fat-free mass estimated from skinfold thickness (r = 0.98, p < 0.0001), dual-energy x-ray absorptiometry (r = 0.99, p < 0.0001) and bioimpedance analysis (r = 0.98, p < 0.0001). These data, together with the precision (coefficient of variation, CV = 1.5%) and accuracy (CV = 4.5%) of the system, indicate that this calibration procedure represents a relatively low-cost, non-invasive alternative to -based methods of calibrating total body potassium monitors.

  2. Monte Carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes.

    PubMed

    Bhati, S; Patni, H K; Ghare, V P; Singh, I S; Nadar, M Y

    2012-03-01

    Internal contamination due to high-energy photon (HEP) emitters is assessed using a scanning bed whole-body monitor housed in a steel room at the Bhabha Atomic Research Centre (BARC). The monitor consists of a (203 mm diameter × 102 mm thickness) NaI(Tl) detector and is calibrated using a Reference BOMAB phantom representative of an average Indian radiation worker. However, a series of different size physical phantoms are required to account for size variability in workers, which is both expensive and time consuming. Therefore, a theoretical approach based on Monte Carlo techniques has been employed to calibrate the system in scanning geometry with BOMAB phantoms of different sizes characterised by their weight (W) and height (H) for several radionuclides of interest ((131)I, (137)Cs, (60)Co and (40)K). A computer program developed for this purpose generates the detector response and the detection efficiencies (DEs) for the BARC Reference phantom (63 kg/168 cm), ICRP Reference male phantom (70 kg/170 cm) and several of its scaled versions. The results obtained for different size phantoms indicated a decreasing trend of DEs with the increase in W/H values of the phantoms. The computed DEs for uniform distribution of (137)Cs in BOMAB phantom varied from 3.52 × 10(-3) to 2.88 × 10(-3) counts per photon as the W/H values increased from 0.26 to 0.50. The theoretical results obtained for the BARC Reference phantom have been verified with experimental measurements. The Monte Carlo results from this study will be useful for in vivo assessment of HEP emitters in radiation workers of different physiques.

  3. Ionosphere Delay Calibration and Calibration Errors for Satellite Navigation of Aircraft

    NASA Technical Reports Server (NTRS)

    Harris, Ian; Manucci, Anthony; Iijima, Byron; Lindqwister, Ulf; Muna, Demitri; Pi, Xiaoqing; Wilson, Brian

    2000-01-01

    The Federal Aviation Administration (FAA) is implementing a satellite-based navigation system for aircraft using the Global Positioning System (GPS). Positioning accuracy of a few meters will be achieved by broadcasting corrections to the direct GPS signal. These corrections are derived using the wide-area augmentation system (WAAS), which includes a ground network of at least 24 GPS receivers across the Continental US (CONUS). WAAS will provide real-time total electron content (TEC) measurements that can be mapped to fixed grid points using a real-time mapping algorithm. These TECs will be converted into vertical delay corrections for the GPS L1 frequency and broadcast to users every five minutes via geosynchronous satellite. Users will convert these delays to slant calibrations along their own lines-of-sight (LOS) to GPS satellites. Uncertainties in the delay calibrations will also be broadcast, allowing users to estimate the uncertainty of their position. To maintain user safety without reverting to excessive safety margins an empirical model of user calibration errors has been developed. WAAS performance depends on factors that include geographic location (errors increase near WAAS borders), and ionospheric conditions, such as the enhanced spatial electron density gradients found during ionospheric storms.

  4. Evaluation of two water-equivalent phantom materials for output calibration of photon and electron beams.

    PubMed

    Liu, Lizhong; Prasad, Satish C; Bassano, Daniel A

    2003-01-01

    Two commercially available water-equivalent solid phantom materials were evaluated for output calibration in both photon (6-15 MV) and electron (6-20 MeV) beams. The solid water 457 and virtual water materials have the same chemical composition but differ in manufacturing process and density. A Farmer-type ionization chamber was used for measuring the output of the photon beams at 5- and 10-cm depth and electron beams at maximum buildup depth in the solid phantoms and in natural water. The water-equivalency correction factor for the solid materials is defined as the ratio of the chamber reading in natural water to that in the solid at the same linear depth. For photon beams, the correction factor was found to be independent of depth and was 0.987 and 0.993 for 6- and 15-MV beams, respectively, for solid water. For virtual water, the corresponding correction factors were 0.993 and 0.998 for 6- and 15-MV beams, respectively. For electron beams, the correction factors ranged from 1.013 to 1.007 for energies of 6 to 20 MeV for both solid materials. This indicated that the water-equivalency of these materials is within +/- 1.3%, making them suitable substitutes for natural water in both photon and electron beam output measurements over a wide energy range. These correction factors are slightly larger than the manufacturers' advertised values (+/- 1.0% for solid water and +/- 0.5% for virtual water). We suggest that these corrections are large enough in most cases and should be applied in the calculation of beam outputs.

  5. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data.

    PubMed

    Shypailo, R J; Ellis, K J

    2011-05-21

    During construction of the whole body counter (WBC) at the Children's Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of (40)K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Carlo n-particle simulation program was used to describe the WBC (54 detectors plus shielding), test individual detector counting response, and create a series of virtual anthropomorphic phantoms based on national reference anthropometric data. Each phantom included an outer layer of adipose tissue and an inner core of lean tissue. Phantoms were designed for both genders representing ages 3.5 to 18.5 years with body sizes from the 5th to the 95th percentile based on body weight. In addition, a spherical surface source surrounding the WBC was modeled in order to measure the effects of subject mass on room background interference. Individual detector measurements showed good agreement with the MCNP model. The background source model came close to agreement with empirical measurements, but showed a trend deviating from unity with increasing subject size. Results from the MCNP simulation of the CNRC WBC agreed well with empirical measurements using BOMAB phantoms. Individual detector efficiency corrections were used to improve the accuracy of the model. Nonlinear multiple regression efficiency calibration equations were derived for each gender. Room background correction is critical in improving the accuracy of the WBC calibration.

  6. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    NASA Astrophysics Data System (ADS)

    Shypailo, R. J.; Ellis, K. J.

    2011-05-01

    During construction of the whole body counter (WBC) at the Children's Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Carlo n-particle simulation program was used to describe the WBC (54 detectors plus shielding), test individual detector counting response, and create a series of virtual anthropomorphic phantoms based on national reference anthropometric data. Each phantom included an outer layer of adipose tissue and an inner core of lean tissue. Phantoms were designed for both genders representing ages 3.5 to 18.5 years with body sizes from the 5th to the 95th percentile based on body weight. In addition, a spherical surface source surrounding the WBC was modeled in order to measure the effects of subject mass on room background interference. Individual detector measurements showed good agreement with the MCNP model. The background source model came close to agreement with empirical measurements, but showed a trend deviating from unity with increasing subject size. Results from the MCNP simulation of the CNRC WBC agreed well with empirical measurements using BOMAB phantoms. Individual detector efficiency corrections were used to improve the accuracy of the model. Nonlinear multiple regression efficiency calibration equations were derived for each gender. Room background correction is critical in improving the accuracy of the WBC calibration.

  7. Propagation of calibration errors in prospective motion correction using external tracking.

    PubMed

    Zahneisen, Benjamin; Keating, Brian; Ernst, Thomas

    2014-08-01

    Prospective motion correction of MRI scans using an external tracking device (such as a camera) is becoming increasingly popular, especially for imaging of the head. In order for external tracking data to be transformed into the MR scanner reference frame, the pose (i.e., position and orientation) of the camera relative to the scanner--or cross-calibration--must be accurate. In this study, we investigated how errors in cross-calibration affect the accuracy of motion correction feedback in MRI. An operator equation is derived describing how calibration errors relate to errors in applied motion compensation. By taking advantage of spherical symmetry and performing a Taylor approximation for small rotation angles, a closed form expression and upper limit for the residual tracking error is provided. Experiments confirmed theoretical predictions of a bilinear dependence of the residual rotational component on the calibration error and the motion performed, modulated by a sinusoidal dependence on the angle between the calibration error axis and motion axis. The residual translation error is bounded by the sum of the rotation angle multiplied by the translational calibration error plus the linear head displacement multiplied by the calibration error angle. The results make it possible to calculate the required cross-calibration accuracy for external tracking devices for a range of motions. Scans with smaller expected movements require less accuracy in cross-calibration than scans involving larger movements. Typical clinical applications require that the calibration accuracy is substantially below 1 mm and 1°. Copyright © 2013 Wiley Periodicals, Inc.

  8. Error analysis and method of calibration for linear time grating displacement sensor

    NASA Astrophysics Data System (ADS)

    Gao, Zhonghua; Zheng, Fangyan; Chen, Xihou; Chen, Ziran; Peng, Donglin

    2013-01-01

    A combination method for calibrating the errors of linear time grating displacement sensor is presented. Based on further analysis of time grating, periodic errors, Abbe errors and thermal expansion errors are integrated to obtain error curve for setting up error model, which is adopted to compensate errors using Fourier harmonic analysis and the principle of liner expansion, respectively. Results prove that this method solves the difficult issues about error separation in the linear measurement, and significantly improves the accuracy of linear time grating. Furthermore, this method also solves the issues about continuous automatic sampling with computer, so that the calibration efficiency has been greatly enhanced.

  9. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms.

    PubMed

    Cao, Haihui; Ackerman, Jerome L; Hrovat, Mirko I; Graham, Lila; Glimcher, Melvin J; Wu, Yaotang

    2008-12-01

    The density of the organic matrix of bone substance is a critical parameter necessary to clinically evaluate and distinguish structural and metabolic pathological conditions such as osteomalacia in adults and rickets in growing children. Water- and fat-suppressed proton projection MRI (WASPI) was developed as a noninvasive means to obtain this information. In this study, a density calibration phantom was developed to convert WASPI intensity to true bone matrix density. The phantom contained a specifically designed poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA) blend, whose MRI properties (T(1), T(2), and resonance linewidth) were similar to those of solid bone matrix (collagen, tightly bound water, and other immobile molecules), minimizing the need to correct for differences in T(1) and/or T(2) relaxation between the phantom and the subject. Cortical and trabecular porcine bone specimens were imaged using WASPI with the calibration phantom in the field of view (FOV) as a stable intensity reference. Gravimetric and amino acid analyses were carried out on the same specimens after WASPI, and the chemical results were found to be highly correlated (r(2) = 0.98 and 0.95, respectively) to the WASPI intensity. By this procedure the WASPI intensity can be used to obtain the true bone matrix mass density in g cm(-3).

  10. Pure hydroxyapatite phantoms for the calibration of in vivo X-ray fluorescence systems of bone lead and strontium quantification.

    PubMed

    Da Silva, Eric; Kirkham, Brian; Heyd, Darrick V; Pejović-Milić, Ana

    2013-10-01

    Plaster of Paris [poP, CaSO4·(1)/(2) H2O] is the standard phantom material used for the calibration of in vivo X-ray fluorescence (IVXRF)-based systems of bone metal quantification (i.e bone strontium and lead). Calibration of IVXRF systems of bone metal quantification employs the use of a coherent normalization procedure which requires the application of a coherent correction factor (CCF) to the data, calculated as the ratio of the relativistic form factors of the phantom material and bone mineral. Various issues have been raised as to the suitability of poP for the calibration of IVXRF systems of bone metal quantification which include its chemical purity and its chemical difference from bone mineral (a calcium phosphate). This work describes the preparation of a chemically pure hydroxyapatite phantom material, of known composition and stoichiometry, proposed for the purpose of calibrating IVXRF systems of bone strontium and lead quantification as a replacement for poP. The issue with contamination by the analyte was resolved by preparing pure Ca(OH)2 by hydroxide precipitation, which was found to bring strontium and lead levels to <0.7 and <0.3 μg/g Ca, respectively. HAp phantoms were prepared from known quantities of chemically pure Ca(OH)2, CaHPO4·2H2O prepared from pure Ca(OH)2, the analyte, and a HPO4(2-) containing setting solution. The final crystal structure of the material was found to be similar to that of the bone mineral component of NIST SRM 1486 (bone meal), as determined by powder X-ray diffraction spectrometry.

  11. Study of the influence of phantom material and size on the calibration of ionization chambers in terms of absorbed dose to water.

    PubMed

    Arib, Mehenna; Medjadj, Toufik; Boudouma, Youcef

    2006-08-24

    In the International Atomic Energy Agency's (IAEA) code of practice (TRS 398) and the American Association of Physicists in Medicine's dosimetry protocol (TG-51), full-scatter water phantoms are recommended for the determination of the absorbed dose for both photon and electron beams and, consequently, for the calibration of the user's ionization chambers. This procedure is applied in the Secondary Standard Dosimetry Laboratory, where the calibration is performed on a 60Co gamma beam, in comparison with reference chambers whose absorbed dose-to-water calibration coefficients, ND,w, are known. In this work, we present the results of the calibration of 10 Farmer-like ionization chambers calibrated in three water phantoms (sizes 20 x 20 x 15 cm3, 30 x 30 x 30 cm3, and 35 x 35 x 37 cm3) and two plastic phantoms (size 20 x 20 x 20 cm3) polymethyl methacrlyate (PMMA) and polystyrene). Calibrations are performed by the substitution method using an ionization chamber whose ND,w has been supplied by the IAEA's reference laboratory. It is shown that the results, expressed as the percentage ratio of the calibration coefficient in a given phantom to that of the standard IAEA phantom, is less than 0.35% for all investigated chambers, and that the standard deviation of the mean of the ND,w calibration coefficients determined in all five phantoms is less than 0.06%, except for one nylon-walled ionization chamber, where the observed 0.34% value could be explained by the hygroscopic properties of nylon. Furthermore, a chamber-to-chamber dependence of the calibration coefficient has been shown to vary by up to 2.8%. These results emphasize that the phantom dimensions and its material are not sensitive criteria for the calibration of cylindrical ionization chambers in terms of absorbed dose to water. The results also show that generic calibration coefficients could not be considered for a given type of chamber.

  12. Refractive errors and corrections for OCT images in an inflated lung phantom

    PubMed Central

    Golabchi, Ali; Faust, J.; Golabchi, F. N.; Brooks, D. H.; Gouldstone, A.; DiMarzio, C. A.

    2012-01-01

    Visualization and correct assessment of alveolar volume via intact lung imaging is important to study and assess respiratory mechanics. Optical Coherence Tomography (OCT), a real-time imaging technique based on near-infrared interferometry, can image several layers of distal alveoli in intact, ex vivo lung tissue. However optical effects associated with heterogeneity of lung tissue, including the refraction caused by air-tissue interfaces along alveoli and duct walls, and changes in speed of light as it travels through the tissue, result in inaccurate measurement of alveolar volume. Experimentally such errors have been difficult to analyze because of lack of ’ground truth,’ as the lung has a unique microstructure of liquid-coated thin walls surrounding relatively large airspaces, which is difficult to model with cellular foams. In addition, both lung and foams contain airspaces of highly irregular shape, further complicating quantitative measurement of optical artifacts and correction. To address this we have adapted the Bragg-Nye bubble raft, a crystalline two-dimensional arrangement of elements similar in geometry to alveoli (up to several hundred μm in diameter with thin walls) as an inflated lung phantom in order to understand, analyze and correct these errors. By applying exact optical ray tracing on OCT images of the bubble raft, the errors are predicted and corrected. The results are validated by imaging the bubble raft with OCT from one edge and with a charged coupled device (CCD) camera in transillumination from top, providing ground truth for the OCT. PMID:22567599

  13. Accuracy enhancement of dual rotating mueller matrix imaging polarimeter by diattenuation and retardance error calibration approach

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustav; Serrano-García, David Ignacio; Otani, Yukitoshi

    2017-06-01

    We present a new calibration method to minimize the errors due to non-ideal retarders of a dual rotating Mueller matrix polarimeter. To increase the accuracy of the dual rotating retarder polarimeter, it is necessary to compensate the errors caused by the inaccuracy of retarders. Although calibration method for retardance already exists, limitations on the accuracy have been obtained by considering only the retardance errors. In the proposed model we added the calibration of diattenuation error of the retarder along with retardance error on the standard model. An enhancement in the accuracy of the system is obtained. The proposed model is described with equations and supporting experimental results are presented.

  14. Monte Carlo simulation of an anthropometric phantom used for calibrating in vivo K-XRF spectroscopy measurements of stable lead in bone.

    PubMed

    Lodwick, Camille J; Spitz, Henry B

    2008-12-01

    An anthropometric surrogate (phantom) of the human leg was defined in the constructs of the Monte Carlo N Particle (MCNP) code to predict the response when used in calibrating K x-ray fluorescence (K-XRF) spectrometry measurements of stable lead in bone. The predicted response compared favorably with measurements using the anthropometric phantom containing a tibia with increasing stable lead content. These benchmark measurements confirmed the validity of a modified MCNP code to accurately simulate K-XRF spectrometry measurements of stable lead in bone. A second, cylindrical leg phantom was simulated to determine whether the shape of the calibration phantom is a significant factor in evaluating K-XRF performance. Simulations of the cylindrical and anthropometric calibration phantoms suggest that a cylindrical calibration standard overestimates lead content of a human leg up to 4%. A two-way analysis of variance determined that phantom shape is a statistically significant factor in predicting the K-XRF response. These results suggest that an anthropometric phantom provides a more accurate calibration standard compared to the conventional cylindrical shape, and that a cylindrical shape introduces a 4% positive bias in measured lead values.

  15. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  16. Calibration of remotely sensed proportion or area estimates for misclassification error

    Treesearch

    Raymond L. Czaplewski; Glenn P. Catts

    1992-01-01

    Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...

  17. Estimating breast thickness for dual-energy subtraction in contrast-enhanced digital mammography using calibration phantoms

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Kwon, Young Joon; Aziz, Moez Karim; Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2016-04-01

    Dual-energy contrast-enhanced digital mammography (DE CE-DM) uses an iodinated contrast agent to image the perfusion and vasculature of the breast. DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. We hypothesized that the optimal DE subtraction weighting factor is thickness-dependent, and developed a method for determining breast tissue composition and thickness in DE CE-DM. Phantoms were constructed using uniform blocks of 100% glandular-equivalent and 100% adipose-equivalent material. The thickness of the phantoms ranged from 3 to 8 cm, in 1 cm increments. For a given thickness, the glandular-adipose composition of the phantom was varied using different combinations of blocks. The logarithmic LE and logarithmic HE signal intensities were measured; they decrease linearly with increasing glandularity for a given thickness. The signals decrease with increasing phantom thickness and the x-ray signal decreases linearly with thickness for a given glandularity. As the thickness increases, the attenuation difference per additional glandular block decreases, indicating beam hardening. From the calibration mapping, we have demonstrated that we can predict percent glandular tissue and thickness when given two distinct signal intensities. Our results facilitate the subtraction of tissue at the boundaries of the breast, and aid in discriminating between contrast agent uptake in glandular tissue and subtraction artifacts.

  18. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  19. Radiometric error and re-calibration of the MGS TES spectra

    NASA Astrophysics Data System (ADS)

    Pankine, Alexey A.

    2016-12-01

    Several sources of systematic error were identified in the spectra of the Thermal Emission Spectrometer (TES) onboard the Mars Global Surveyor (MGS) spacecraft during its mission. Some of these errors were corrected, some still remain and contaminate spectra. One of the most significant remaining errors is a time-variable systematic radiometric error. This error significantly affects nighttime and polar spectra, and spectra of the Mars' limb. The existence of this error hampered analysis of roughly half of the data collected by TES spectrometer. The error arises due to a periodic sampling error of TES interferograms, which is a common problem in Fourier-transform interferometers. The error negatively affects calibrated TES spectra in two ways: it introduces an error into estimates of the Instrument Response Functions (IRF) and instrument's radiances that are used to calibrate TES spectra, and it introduces an error into TES spectra themselves. This paper presents a new approach to calibrating TES spectra that enables removing the error from the calibration functions. The new approach utilizes long-term averages of uncalibrated TES spectra of deep space to estimate the true shape of the TES IRF and its dependence on instrument temperature. This, and parameterization of the radiometric error spectral shape, enables removing the error from calibration. Examples of re-calibrated spectra are presented. The largest improvement in the quality of the spectra is observed for nighttime and polar spectra, and spectra of the Mars' limb. Re-calibration would significantly improve retrievals of aerosol abundances and surface temperatures from these spectra.

  20. Inertial Sensor Error Reduction through Calibration and Sensor Fusion.

    PubMed

    Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L

    2016-02-17

    This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.

  1. Inertial Sensor Error Reduction through Calibration and Sensor Fusion

    PubMed Central

    Lambrecht, Stefan; Nogueira, Samuel L.; Bortole, Magdo; Siqueira, Adriano A. G.; Terra, Marco H.; Rocon, Eduardo; Pons, José L.

    2016-01-01

    This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking. PMID:26901198

  2. CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.

    PubMed

    Hawkes, N P; Thomas, D J; Taylor, G C

    2016-09-01

    The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.

  3. Biological consequences of MLC calibration errors in IMRT delivery and QA

    SciTech Connect

    Moiseenko, Vitali; LaPointe, Vincent; James, Kerry; Yin Lingshu; Liu, Mitchell; Pawlicki, Todd

    2012-04-15

    Purpose: The purpose of this work is threefold: (1) to explore biological consequences of the multileaf collimator (MLC) calibration errors in intensity modulated radiotherapy (IMRT) of prostate and head and neck cancers, (2) to determine levels of planning target volume (PTV) and normal tissue under- or overdose flagged with clinically used QA action limits, and (3) to provide biologically based input for MLC QA and IMRT QA action limits. Methods: Ten consecutive prostate IMRT cases and ten consecutive head and neck IMRT cases were used. Systematic MLC offsets (i.e., calibration error) were introduced for each control point of the plan separately for X1 and X2 leaf banks. Offsets were from - 2 to 2 mm with a 0.5 mm increment. The modified files were imported into the planning system for forward dose recalculation. The original plan served as the reference. The generalized equivalent uniform dose (gEUD) was used as the biological index for the targets, rectum, parotid glands, brainstem, and spinal cord. Each plan was recalculated on a CT scan of a 27 cm diameter cylindrical phantom with a contoured 0.6 cc ion chamber. Dose to ion chamber and 3D gamma analysis were compared to the reference plan. QA pass criteria: (1) at least 95% of voxels with a dose cutoff of 50% of maximum dose have to pass at 3 mm/3% and (2) dose to chamber within 2% of the reference dose. Results: For prostate cases, differences in PTV and rectum gEUD greater than 2% were identified. However, a larger proportion of plans leading to greater than 2% difference in prostate PTV gEUD passed the ion chamber QA but not 3D gamma QA. A similar trend was found for the rectum gEUD. For head and neck IMRT, the QA pass criteria flagged plans leading to greater than 4% differences in PTV gEUD and greater than 5% differences in the maximum dose to brainstem. If pass criteria were relaxed to 90% for gamma and 3% for ion chamber QA, plans leading to a 5% difference in PTV gEUD and a 5%-8% difference in

  4. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using X-ray fluorescence

    SciTech Connect

    Spitz, H.; Jenkins, M.; Lodwick, J.; Bornschein, R.

    2000-02-01

    A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometric phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.

  5. SU-E-I-22: Dependence On Calibration Phantom and Field Area of the Conversion Factor Used to Calculate Skin Dose During Neuro-Interventional Fluoroscopic Procedures

    SciTech Connect

    Rana, V K; Vijayan, S; Rudin, S R; Bednarek, D R

    2014-06-01

    Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thick PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different

  6. Velocity prediction errors related to flow model calibration uncertainty

    SciTech Connect

    Stephenson, D.E. ); Duffield, G.M.; Buss, D.R. )

    1990-01-01

    At the Savannah River Site (SRS), a United States Department of Energy facility in South Carolina, a three-dimensional, steady-state numerical model has been developed for a four aquifer, three aquitard groundwater flow system. This model has been used for numerous predictive simulation applications at SRS, and since the initial calibration, the model has been refined several times. Originally, calibration of the model was accomplished using a nonlinear least-squares inverse technique for a set of 50 water-level calibration targets non-uniformly distributed in the four aquifers. The estimated hydraulic properties from this calibration generally showed reasonable agreement with values estimated from field tests. Subsequent model refinements and application of this model to field problems have shown that uncertainties in the model parameterization become much more apparent in the prediction of the velocity field than in the simulation of the distribution of hydraulic heads. The combined use of three types of information (hydraulic head distributions, geologic framework models, and velocity field monitoring) provide valuable calibration data for flow modeling investigations; however, calibration of a flow model typically relies upon measured water levels. For a given set of water-level calibration targets, the uncertainties associated with imperfect knowledge of physical system parameters or groundwater velocities may not be discernable in the calibrated hydraulic head distribution. In this paper, modeling results from studies at SRS illustrate examples of model inadequacy resulting from calibrating only on observed water levels, and the effects of these inadequacies on velocity field prediction are discussed. 14 refs., 6 figs.

  7. Improvement of the WBC calibration of the Internal Dosimetry Laboratory of the CDTN/CNEN using the physical phantom BOMAB and MCNPX code.

    PubMed

    Paiva, Fernanda Guerra; Oliveira, Arno Heeren de; Mendes, Bruno Melo; Pinto, Jacqueline Rosária; Filho, Nelson do Nascimento A; Dantas, Bernardo Maranhão; Dantas, Ana Letícia A; Silva, Teógenes Augusto da; Lacerda, Marco Aurélio de Sousa; Fonseca, Telma Cristina Ferreira

    2016-11-01

    The Laboratory of Internal Dosimetry of the Center for Development of Nuclear Technology (LDI/CDTN) is responsible for routine internal monitoring of occupationally exposed individuals. The determination of photon emitting radionuclides in the human body requires calibration of the detector in specific counting geometries. The calibration process uses physical phantoms containing certified activities of the radionuclides of interest. The objective of this work was to obtain calibration efficiency curves of the Whole Body Counter in operation at the LDI/CDTN using a BOMAB physical phantom and Monte Carlo simulations.

  8. Power Doppler signal calibration in the finger joint between two models of ultrasound machine: a pilot study using a phantom and joints in patients with rheumatoid arthritis.

    PubMed

    Sakano, Ryosuke; Saito, Katsumi; Kamishima, Tamotsu; Nishida, Mutsumi; Horie, Tatsunori; Noguchi, Atsushi; Kono, Michihito; Sutherland, Kenneth; Atsumi, Tatsuya

    2017-01-01

    Background Despite the advantages of ultrasound (US) in the management of rheumatoid arthritis (RA) patients, power Doppler (PD) US may be highly dependent on the type of US machine used. Purpose To present a method to calibrate the PD signal of two models of US machines by use of a flow phantom and finger joints of patients with RA. Material and Methods For the phantom study, the PD signal count was measured in the flow phantom perfusing blood mimicking fluid at various injection rates and pulse repetition frequencies (PRFs). The quantitative PD index was calculated with ImageJ. For the clinical study, the second and third metacarpophalangeal joints of five consecutive patients with RA were examined. The quantitative PD index was measured at various PRFs by use of two models of machine (the same models as the phantom study). Results For the phantom and clinical studies, negative correlations were found between the PRF and the quantitative PD index when the flow velocity was constant and positive correlations between flow velocity and the quantitative PD index at constant PRF. There was a significant difference in the depiction performance of synovial blood flow between the two models, which can be calibrated by adjusting the PRF values derived from the phantom study in each model. Conclusion Signal calibration of pannus vascularity between US machines may be possible by adjusting the PRF value according to flow phantom data. Different US machines can thus provide equivalent examination results concerning the pannus vascularity.

  9. A MCNP-based calibration method and a voxel phantom for in vivo monitoring of 241Am in skull

    NASA Astrophysics Data System (ADS)

    Moraleda, M.; Gómez-Ros, J. M.; López, M. A.; Navarro, T.; Navarro, J. F.

    2004-07-01

    Whole body counter (WBC) facilities are currently used for assessment of internal radionuclide body burdens by directly measuring the radiation emitted from the body. Previous calibration of the detection devices requires the use of specific anthropomorphic phantoms. This paper describes the MCNP-based Monte Carlo technique developed for calibration of the germanium detectors (Canberra LE Ge) used in the CIEMAT WBC for in vivo measurements of 241Am in skull. The proposed method can also be applied for in vivo counting of different radionuclides distributed in other anatomical regions as well as for other detectors. A computer software was developed to automatically generate the input files for the MCNP code starting from any segmented human anatomy data. A specific model of a human head for the assessment of 241Am was built based on the tomographic phantom VOXELMAN of Yale University. The germanium detectors were carefully modelled from data provided by the manufacturer. This numerical technique has been applied to investigate the best counting geometry and the uncertainty due to improper positioning of the detectors.

  10. Cross-calibration of the Siemens mMR: easily acquired accurate PET phantom measurements, long-term stability and reproducibility.

    PubMed

    Keller, Sune H; Jakoby, Björn; Svalling, Susanne; Kjaer, Andreas; Højgaard, Liselotte; Klausen, Thomas L

    2016-12-01

    We present a quick and easy method to perform quantitatively accurate PET scans of typical water-filled PET plastic shell phantoms on the Siemens Biograph mMR PET/MR system. We perform regular cross-calibrations (Xcal) of our PET systems, including the PET/MR, using a Siemens mCT water phantom. The mMR calibration stability was evaluated over a 3-year period where 54 cross-calibrations were acquired, showing that the mMR on average underestimated the concentration by 16 %, consistently due to the use of MR-based μ-maps. The mMR produced the narrowest calibration ratio range with the lowest standard deviation, implying it is the most stable of the six systems in the study over a 3-year period. MMR ACCURACY WITH PREDEFINED μ-MAPS: With the latest mMR software version, VB20P, it is possible to utilize predefined phantom μ-maps. We evaluated both the system-integrated, predefined μ-map of the long mMR water phantom and our own user-defined CT-based μ-map of the mCT water phantom, which is used for cross-calibration. For seven scans, which were reconstructed with correctly segmented μ-maps, the mMR produced cross-calibration ratios of 1.00-1.02, well within the acceptance range [0.95-1.05], showing high accuracy. The mMR is the most stable PET system in this study, and the mean underestimation is no longer an issue with the easily accessible μ-map, which resulted in correct cross-calibration ratios in all seven tests. We will share the user-defined μ-map of the mCT phantom and the protocol with interested mMR users.

  11. Consequences of leaf calibration errors on IMRT delivery

    NASA Astrophysics Data System (ADS)

    Sastre-Padro, M.; Welleweerd, J.; Malinen, E.; Eilertsen, K.; Olsen, D. R.; van der Heide, U. A.

    2007-02-01

    IMRT treatments using multi-leaf collimators may involve a large number of segments in order to spare the organs at risk. When a large proportion of these segments are small, leaf positioning errors may become relevant and have therapeutic consequences. The performance of four head and neck IMRT treatments under eight different cases of leaf positioning errors has been studied. Systematic leaf pair offset errors in the range of ±2.0 mm were introduced, thus modifying the segment sizes of the original IMRT plans. Thirty-six films were irradiated with the original and modified segments. The dose difference and the gamma index (with 2%/2 mm criteria) were used for evaluating the discrepancies between the irradiated films. The median dose differences were linearly related to the simulated leaf pair errors. In the worst case, a 2.0 mm error generated a median dose difference of 1.5%. Following the gamma analysis, two out of the 32 modified plans were not acceptable. In conclusion, small systematic leaf bank positioning errors have a measurable impact on the delivered dose and may have consequences for the therapeutic outcome of IMRT.

  12. Treatment Planning System Calculation Errors Are Present in Most Imaging and Radiation Oncology Core-Houston Phantom Failures.

    PubMed

    Kerns, James R; Stingo, Francesco; Followill, David S; Howell, Rebecca M; Melancon, Adam; Kry, Stephen F

    2017-08-01

    The anthropomorphic phantom program at the Houston branch of the Imaging and Radiation Oncology Core (IROC-Houston) is an end-to-end test that can be used to determine whether an institution can accurately model, calculate, and deliver an intensity modulated radiation therapy dose distribution. Currently, institutions that do not meet IROC-Houston's criteria have no specific information with which to identify and correct problems. In the present study, an independent recalculation system was developed to identify treatment planning system (TPS) calculation errors. A recalculation system was commissioned and customized using IROC-Houston measurement reference dosimetry data for common linear accelerator classes. Using this system, 259 head and neck phantom irradiations were recalculated. Both the recalculation and the institution's TPS calculation were compared with the delivered dose that was measured. In cases in which the recalculation was statistically more accurate by 2% on average or 3% at a single measurement location than was the institution's TPS, the irradiation was flagged as having a "considerable" institutional calculation error. The error rates were also examined according to the linear accelerator vendor and delivery technique. Surprisingly, on average, the reference recalculation system had better accuracy than the institution's TPS. Considerable TPS errors were found in 17% (n=45) of the head and neck irradiations. Also, 68% (n=13) of the irradiations that failed to meet the IROC-Houston criteria were found to have calculation errors. Nearly 1 in 5 institutions were found to have TPS errors in their intensity modulated radiation therapy calculations, highlighting the need for careful beam modeling and calculation in the TPS. An independent recalculation system can help identify the presence of TPS errors and pass on the knowledge to the institution. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Force calibration using errors-in-variables regression and Monte Carlo uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Bartel, Thomas; Stoudt, Sara; Possolo, Antonio

    2016-06-01

    An errors-in-variables regression method is presented as an alternative to the ordinary least-squares regression computation currently employed for determining the calibration function for force measuring instruments from data acquired during calibration. A Monte Carlo uncertainty evaluation for the errors-in-variables regression is also presented. The corresponding function (which we call measurement function, often called analysis function in gas metrology) necessary for the subsequent use of the calibrated device to measure force, and the associated uncertainty evaluation, are also derived from the calibration results. Comparisons are made, using real force calibration data, between the results from the errors-in-variables and ordinary least-squares analyses, as well as between the Monte Carlo uncertainty assessment and the conventional uncertainty propagation employed at the National Institute of Standards and Technology (NIST). The results show that the errors-in-variables analysis properly accounts for the uncertainty in the applied calibrated forces, and that the Monte Carlo method, owing to its intrinsic ability to model uncertainty contributions accurately, yields a better representation of the calibration uncertainty throughout the transducer’s force range than the methods currently in use. These improvements notwithstanding, the differences between the results produced by the current and by the proposed new methods generally are small because the relative uncertainties of the inputs are small and most contemporary load cells respond approximately linearly to such inputs. For this reason, there will be no compelling need to revise any of the force calibration reports previously issued by NIST.

  14. Calibration of a large hyperpure germanium array for in-vivo detection of the actinides with a tissue-equivalent torso phantom

    SciTech Connect

    Berger, C.D.; Lane, B.H.

    1983-01-01

    For calibration of the array for internally deposited /sup 238/Pu, /sup 239/Pu, and /sup 241/Am, a tissue-equivalent anthropomorphic phantom, was used for efficiency determinations at the ORNL facility. This phantom consists of a tissue-equivalent torso into which is imbedded an adult male skeleton, interchangeable organs containing a homogeneous distribution of various radionuclides, and two sets of chest overlay plates for simulation of progressively thicker tissue over the chest, as well as differing thoracic fat contents. (PSB)

  15. Oximetry system performance assessment with POM (acetal) phantoms incorporating hemoglobin calibration standards and customized saturation levels

    NASA Astrophysics Data System (ADS)

    Jang, Hyounguk; Singh, Karam; Wang, Hsing-Wen; Pfefer, T. J.; Chen, Yu

    2015-03-01

    Standardized approaches for performance assessment of biophotonic devices have the potential to facilitate system development and intercomparison, clinical trial standardization, recalibration, manufacturing quality control and quality assurance during clinical use. Evaluation of devices based on near-infrared spectroscopy (NIRS) for detection of hemoglobin (Hb) content and oxygenation have often involved tissue-simulating phantoms incorporating artificial dyes or flow systems. Towards the development of simple, effective techniques for objective, quantitative evaluation of basic NIRS system performance, we have developed and evaluated two test methods. These methods are based on cuvette inserts in solid turbid phantoms for measuring commercially-available Hb oximetry standards and custom-formulated oxy/deoxy-Hb solutions. Both approaches incorporate solid acetal, or polyoxymethylene (POM), as a tissue-simulating matrix material. First, inverse-adding-doubling (IAD) based on measurements with a spectrophotometer and an integrating sphere was used to measure POM optical properties and their stability over time. Second, two fiberopticprobe- based NIRS systems were used to measure concentration change of oxy- and deoxy-Hb in standard Hb solutions and customized Hb solutions by adding yeast. Differences in system performance were likely due to differences in light source outputs and fiberoptic probe design. Our preliminary results indicate that simple phantom-based approaches based on commercially available polymers and inclusions containing Hb standards, or controlled oxygenation levels may be useful for benchtop assessment of NIRS device quality for a variety of biophotonic devices.

  16. Measurement Error Calibration in Mixed-Mode Sample Surveys

    ERIC Educational Resources Information Center

    Buelens, Bart; van den Brakel, Jan A.

    2015-01-01

    Mixed-mode surveys are known to be susceptible to mode-dependent selection and measurement effects, collectively referred to as mode effects. The use of different data collection modes within the same survey may reduce selectivity of the overall response but is characterized by measurement errors differing across modes. Inference in sample surveys…

  17. Optical system error analysis and calibration method of high-accuracy star trackers.

    PubMed

    Sun, Ting; Xing, Fei; You, Zheng

    2013-04-08

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers.

  18. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  19. Scalable in situ qubit calibration during repetitive error detection

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Barends, R.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Lucero, E.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, John M.

    2016-09-01

    We present a method to optimize qubit control parameters during error detection which is compatible with large-scale qubit arrays. We demonstrate our method to optimize single or two-qubit gates in parallel on a nine-qubit system. Additionally, we show how parameter drift can be compensated for during computation by inserting a frequency drift and using our method to remove it. We remove both drift on a single qubit and independent drifts on all qubits simultaneously. We believe this method will be useful in keeping error rates low on all physical qubits throughout the course of a computation. Our method is O (1 ) scalable to systems of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant quantum computer.

  20. Neural network calibration of a snapshot birefringent Fourier transform spectrometer with periodic phase errors.

    PubMed

    Luo, David; Kudenov, Michael W

    2016-05-16

    Systematic phase errors in Fourier transform spectroscopy can severely degrade the calculated spectra. Compensation of these errors is typically accomplished using post-processing techniques, such as Fourier deconvolution, linear unmixing, or iterative solvers. This results in increased computational complexity when reconstructing and calibrating many parallel interference patterns. In this paper, we describe a new method of calibrating a Fourier transform spectrometer based on the use of artificial neural networks (ANNs). In this way, it is demonstrated that a simpler and more straightforward reconstruction process can be achieved at the cost of additional calibration equipment. To this end, we provide a theoretical model for general systematic phase errors in a polarization birefringent interferometer. This is followed by a discussion of our experimental setup and a demonstration of our technique, as applied to data with and without phase error. The technique's utility is then supported by comparison to alternative reconstruction techniques using fast Fourier transforms (FFTs) and linear unmixing.

  1. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  2. European semi-anthropomorphic phantom for the cross-calibration of peripheral bone densitometers: assessment of precision accuracy and stability.

    PubMed

    Pearson, J; Ruegsegger, P; Dequeker, J; Henley, M; Bright, J; Reeve, J; Kalender, W; Felsenberg, D; Laval-Jeantet, A M; Adams, J E

    1994-11-01

    A semi-anthropomorphic 'distal radius like' phantom, developed by Kalender and Ruegsegger for use in peripheral bone densitometry using single photon (DPA) dual X-ray (DXA) and quantitative computed tomography (QCT) machines, has been studied with a view to cross-calibrating different types and brands of densitometers in current use. In the context of an EU 'Concerted Action' (second Framework Programme) the phantom was repeatedly measured on six SPA machines, three DXA machines and nine QCT machines (545 measurements). Linear regression equations were derived, individual to each machine, which allowed the derivation of 'standardized densities'. In this way we converted measurements made by machines of the same modality to a common scale of measurements. Two machines (one DXA, one SPA) showed statistically significant instability over time emphasising the need for rigorous quality control in the application of densitometry. In other respects these results provide an encouraging basis for the derivation of standardized normative ranges and the more effective use of peripheral densitometry in future clinical and epidemiological studies.

  3. Modeling and calibration of pointing errors with alt-az telescope

    NASA Astrophysics Data System (ADS)

    Huang, Long; Ma, Wenli; Huang, Jinlong

    2016-08-01

    This paper presents a new model for improving the pointing accuracy of a telescope. The Denavit-Hartenberg (D-H) convention was used to perform an error analysis of the telescope's kinematics. A kinematic model was used to relate pointing errors to mechanical errors and the parameters of the kinematic model were estimated with a statistical model fit using data from two large astronomical telescopes. The model illustrates the geometric errors caused by imprecision in manufacturing and assembly processes and their effects on the pointing accuracy of the telescope. A kinematic model relates pointing error to axis position when certain geometric errors are assumed to be present in a telescope. In the parameter estimation portion, the semi-parametric regression model was introduced to compensate for remaining nonlinear errors. The experimental results indicate that the proposed semi-parametric regression model eliminates both geometric and nonlinear errors, and that the telescope's pointing accuracy significantly improves after this calibration.

  4. A novel separation and calibration method for DVL and compass error in dead reckoning navigation systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yanshun; Guo, Yajing; Yang, Tao; Li, Chunyu; Wang, Zhanqing

    2016-06-01

    The scale factor error δ C of the Doppler velocity log (DVL) and the heading angle error δ \\psi of a compass are so integrated in dead reckoning (DR) navigation systems that it is difficult to separate them. This paper aims to solve this problem by putting forward an online separation and calibration method for δ C and δ \\psi based on an ‘arc and linear’ trajectory. This method introduces the high-accuracy location information of a long base line (LBL) acoustic positioning system. At first, the relationship between the displacements on the ‘arc’ trajectory in directions of east and north, output by the LBL and DR systems, serves to judge the carrier direction and calibrate δ C . And then by compensating δ C , the displacement on the ‘linear’ trajectory is used to calibrate δ \\psi . Finally, a semi-physical simulation experiment is conducted to test and verify this calibration method to see how effective and accurate it is. Experimental results show that after calibration the residual error ratios of δ C and δ \\psi are 8.24% and 3.70% respectively. Therefore, online calibration of δ C and δ \\psi is realized effectively. What’s more, when the DR system is working alone in 400 s, this method reduces position error by up to 93.39%, from 18.91 m to 1.25 m.

  5. Evaluation of Cross-Calibrated 68Ge/68Ga Phantoms for Assessing PET/CT Measurement Bias in Oncology Imaging for Single- and Multicenter Trials

    PubMed Central

    Byrd, Darrin W.; Doot, Robert K.; Allberg, Keith C.; MacDonald, Lawrence R.; McDougald, Wendy A.; Elston, Brian F.; Linden, Hannah M.; Kinahan, Paul E.

    2016-01-01

    Quantitative PET imaging is an important tool for clinical trials evaluating the response of cancers to investigational therapies. The standardized uptake value, used as a quantitative imaging biomarker, is dependent on multiple parameters that may contribute bias and variability. The use of long-lived, sealed PET calibration phantoms offers the advantages of known radioactivity activity concentration and simpler use than aqueous phantoms. We evaluated scanner and dose calibrator sources from two batches of commercially available kits, together at a single site and distributed across a local multicenter PET imaging network. We found that radioactivity concentration was uniform within the phantoms. Within the regions of interest drawn in the phantom images, coefficients of variation of voxel values were less than 2%. Across phantoms, coefficients of variation for mean signal were close to 1%. Biases of the standardized uptake value estimated with the kits varied by site and were seen to change in time by approximately ±5%. We conclude that these biases cannot be assumed constant over time. The kits provide a robust method to monitor PET scanner and dose calibrator biases, and resulting biases in standardized uptake values. PMID:28066807

  6. Calibration for the errors resulted from aberration in long focal length measurement

    NASA Astrophysics Data System (ADS)

    Yao, Jiang; Luo, Jia; He, Fan; Bai, Jian; Wang, Kaiwei; Hou, Xiyun; Hou, Changlun

    2014-09-01

    In this paper, a high-accuracy calibration method for errors resulted from aberration in long focal length measurement, is presented. Generally, Gaussian Equation is used for calculation without consideration of the errors caused by aberration. However, the errors are the key factor affecting the accuracy in the measurement system of a large aperture and long focal length lens. We creatively introduce an effective way to calibrate the errors, with detailed analysis of the long focal length measurement based on divergent light and Talbot interferometry. Aberration errors are simulated by Zemax. Then, we achieve auto-correction with the help of Visual C++ software and the experimental results reveal that the relative accuracy is better than 0.01%.By comparing modified values with experimental results obtained in knife-edge testing measurement, the proposed method is proved to be highly effective and reliable.

  7. Scalable in-situ qubit calibration during repetitive error detection

    NASA Astrophysics Data System (ADS)

    Kelly, J.; Barends, R.; Fowler, A.; Mutus, J.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Lucero, E.; Megrant, A.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Quintana, C.; Vainsencher, A.; Wenner, J.; White, T.; Martinis, J. M.

    A quantum computer protects a quantum state from the environment through the careful manipulations of thousands or millions of physical qubits. However, operating such quantities of qubits at the necessary level of precision is an open challenge, as optimal control parameters can vary between qubits and drift in time. We present a method to optimize physical qubit parameters while error detection is running using a nine qubit system performing the bit-flip repetition code. We demonstrate how gate optimization can be parallelized in a large-scale qubit array and show that the presented method can be used to simultaneously compensate for independent or correlated qubit parameter drifts. Our method is O(1) scalable to systems of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant quantum computer.

  8. Calibration/Validation Error Budgets, Uncertainties, Traceability and Their Importance to Imaging Spectrometry

    NASA Technical Reports Server (NTRS)

    Thome, K.

    2016-01-01

    Knowledge of uncertainties and errors are essential for comparisons of remote sensing data across time, space, and spectral domains. Vicarious radiometric calibration is used to demonstrate the need for uncertainty knowledge and to provide an example error budget. The sample error budget serves as an example of the questions and issues that need to be addressed by the calibrationvalidation community as accuracy requirements for imaging spectroscopy data will continue to become more stringent in the future. Error budgets will also be critical to ensure consistency between the range of imaging spectrometers expected to be launched in the next five years.

  9. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges

    NASA Astrophysics Data System (ADS)

    Shedekar, Vinayak S.; King, Kevin W.; Fausey, Norman R.; Soboyejo, Alfred B. O.; Harmel, R. Daren; Brown, Larry C.

    2016-09-01

    Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd.), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm·h- 1 to 250 mm·h- 1) and three different volumetric settings. Instantaneous and cumulative values of simulated rainfall were recorded at 1, 2, 5, 10 and 20-min intervals. All three TBR models showed a substantial deviation (α = 0.05) in measurements from actual rainfall depths, with increasing underestimation errors at greater rainfall intensities. Simple linear regression equations were developed for each TBR to correct the TBR readings based on measured intensities (R2 > 0.98). Additionally, two dynamic calibration techniques, viz. quadratic model (R2 > 0.7) and T vs. 1/Q model (R2 = > 0.98), were tested and found to be useful in situations when the volumetric settings of TBRs are unknown. The correction models were successfully applied to correct field-collected rainfall data from respective TBR models. The calibration parameters of correction models were found to be highly sensitive to changes in volumetric calibration of TBRs. Overall, the HS-TB3 model (with a better protected tipping bucket mechanism, and consistent measurement errors across a range of rainfall intensities) was found to be the most reliable and consistent for rainfall measurements, followed by the ISCO-674 (with susceptibility to clogging and relatively smaller measurement errors across a range of rainfall intensities) and the TR-525 (with high susceptibility to clogging and frequent changes in volumetric calibration, and highly intensity-dependent measurement errors). The study demonstrated that corrections based on dynamic and volumetric calibration can only help minimize-but not completely eliminate the measurement errors. The findings from this study will be useful for correcting field data from TBRs; and may have major

  10. Geometry calibration for x-ray equipment in radiation treatment devices and estimation of remaining patient alignment errors

    NASA Astrophysics Data System (ADS)

    Selby, Boris P.; Sakas, Georgios; Walter, Stefan; Stilla, Uwe

    2008-03-01

    Positioning a patient accurately in treatment devices is crucial for radiological treatment, especially if accuracy vantages of particle beam treatment are exploited. To avoid sub-millimeter misalignments, X-ray images acquired from within the device are compared to a CT to compute respective alignment corrections. Unfortunately, deviations of the underlying geometry model for the imaging system degrade the achievable accuracy. We propose an automatic calibration routine, which bases on the geometry of a phantom and its automatic detection in digital radiographs acquired for various geometric device settings during the calibration. The results from the registration of the phantom's X-ray projections and its known geometry are used to update the model of the respective beamlines, which is used to compute the patient alignment correction. The geometric calibration of a beamline takes all nine relevant degrees of freedom into account, including detector translations in three directions, detector tilt by three axes and three possible translations for the X-ray tube. Introducing a stochastic model for the calibration we are able to predict the patient alignment deviations resulting from inaccuracies inherent to the phantom design and the calibration. Comparisons of the alignment results for a treatment device without calibrated imaging systems and a calibrated device show that an accurate calibration can enhance alignment accuracy.

  11. A field calibration method to eliminate the error caused by relative tilt on roll angle measurement

    NASA Astrophysics Data System (ADS)

    Qi, Jingya; Wang, Zhao; Huang, Junhui; Yu, Bao; Gao, Jianmin

    2016-11-01

    The roll angle measurement method based on a heterodyne interferometer is an efficient technique for its high precision and environmental noise immunity. The optical layout bases on a polarization-assisted conversion of the roll angle into an optical phase shift, read by a beam passing through the objective plate actuated by the roll rotation. The measurement sensitivity or the gain coefficient G is calibrated before. However, a relative tilt between the laser and objective plate always exist due to the tilt of the laser and the roll of the guide in the field long rail measurement. The relative tilt affect the value of G, thus result in the roll angle measurement error. In this paper, a method for field calibration of G is presented to eliminate the measurement error above. The field calibration layout turns the roll angle into an optical path change (OPC) by a rotary table. Thus, the roll angle can be obtained from the OPC read by a two-frequency interferometer. Together with the phase shift, an accurate G in field measurement can be obtained and the measurement error can be corrected. The optical system of the field calibration method is set up and the experiment results are given. Contrasted with the Renishaw XL-80 for calibration, the proposed field calibration method can obtain the accurate G in the field rail roll angle measurement.

  12. Absolute Time Error Calibration of GPS Receivers Using Advanced GPS Simulators

    DTIC Science & Technology

    1997-12-01

    29th Annual Precise Time a d Time Interval (PTTI) Meeting ABSOLUTE TIME ERROR CALIBRATION OF GPS RECEIVERS USING ADVANCED GPS SIMULATORS E.D...DC 20375 USA Abstract Preche time transfer eq)er&nen& using GPS with t h e stabd?v’s under ten nanoseconh are common& being reported willrbr the... time transfer communily. Relarive calibrations are done by naeasurhg the time error of one GPS receiver versus a “known master refmence receiver.” Z?t

  13. [Measurement Error Analysis and Calibration Technique of NTC - Based Body Temperature Sensor].

    PubMed

    Deng, Chi; Hu, Wei; Diao, Shengxi; Lin, Fujiang; Qian, Dahong

    2015-11-01

    A NTC thermistor-based wearable body temperature sensor was designed. This paper described the design principles and realization method of the NTC-based body temperature sensor. In this paper the temperature measurement error sources of the body temperature sensor were analyzed in detail. The automatic measurement and calibration method of ADC error was given. The results showed that the measurement accuracy of calibrated body temperature sensor is better than ± 0.04 degrees C. The temperature sensor has high accuracy, small size and low power consumption advantages.

  14. The impact of modelling errors on interferometer calibration for 21 cm power spectra

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Dillon, Joshua S.; Liu, Adrian; Hewitt, Jacqueline

    2017-09-01

    We study the impact of sky-based calibration errors from source mismodelling on 21 cm power spectrum measurements with an interferometer and propose a method for suppressing their effects. While emission from faint sources that are not accounted for in calibration catalogues is believed to be spectrally smooth, deviations of true visibilities from model visibilities are not, due to the inherent chromaticity of the interferometer's sky response (the 'wedge'). Thus, unmodelled foregrounds, below the confusion limit of many instruments, introduce frequency structure into gain solutions on the same line-of-sight scales on which we hope to observe the cosmological signal. We derive analytic expressions describing these errors using linearized approximations of the calibration equations and estimate the impact of this bias on measurements of the 21 cm power spectrum during the epoch of reionization. Given our current precision in primary beam and foreground modelling, this noise will significantly impact the sensitivity of existing experiments that rely on sky-based calibration. Our formalism describes the scaling of calibration with array and sky-model parameters and can be used to guide future instrument design and calibration strategy. We find that sky-based calibration that downweights long baselines can eliminate contamination in most of the region outside of the wedge with only a modest increase in instrumental noise.

  15. A revised 5 minute gravimetric geoid and associated errors for the North Atlantic calibration area

    NASA Technical Reports Server (NTRS)

    Mader, G. L.

    1979-01-01

    A revised 5 minute gravimetric geoid and its errors were computed for the North Atlantic calibration area using GEM-8 potential coefficients and the latest gravity data available from the Defense Mapping Agency. This effort was prompted by a number of inconsistencies and small errors found in previous calculations of this geoid. The computational method and constants used are given in detail to serve as a reference for future work.

  16. Sparse Auto-Calibration for Radar Coincidence Imaging with Gain-Phase Errors

    PubMed Central

    Zhou, Xiaoli; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2015-01-01

    Radar coincidence imaging (RCI) is a high-resolution staring imaging technique without the limitation of relative motion between target and radar. The sparsity-driven approaches are commonly used in RCI, while the prior knowledge of imaging models needs to be known accurately. However, as one of the major model errors, the gain-phase error exists generally, and may cause inaccuracies of the model and defocus the image. In the present report, the sparse auto-calibration method is proposed to compensate the gain-phase error in RCI. The method can determine the gain-phase error as part of the imaging process. It uses an iterative algorithm, which cycles through steps of target reconstruction and gain-phase error estimation, where orthogonal matching pursuit (OMP) and Newton’s method are used, respectively. Simulation results show that the proposed method can improve the imaging quality significantly and estimate the gain-phase error accurately. PMID:26528981

  17. Local error calibration of EGM08 geoid using GNSS/levelling data

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Zoghi, Sedigheh

    2016-07-01

    The geoid error, computed from EGM08, is unrealistically large due to the continuation of the spherical harmonic coefficient errors down to the surface of the reference ellipsoid. In this study, we try to calibrate such an error by the differences between the EGM08 and GNSS/levelling geoids over Fennoscandia. We use the variance component estimation procedure through combined adjustments of the geoid and GNSS/levelling heights using corrector surfaces of 4-, 5- and 7-parameter. We also develop a simple iterative method to calibrate the geoid error from the a posteriori variance factor and the errors of GNSS/levelling geoid. Our numerical investigations show that performing the separate adjustment and variance component estimation for each country with a two-component stochastic model is more successful than performing it in the whole area with a five-component model. The number of GNSS/levelling data over Sweden and Norway are much larger than those in Denmark and Finland. This causes that the corrector surfaces are fitted better in these countries and consequently the estimated errors for the geoid become larger than what they should be in the others. Based on a 7-parameter corrector surface model, the average error of the EGM08 geoid becomes 12, 17, 51 and 34 mm, in Sweden, Denmark, Norway and Finland, respectively. If the two-component stochastic model is used in a combined adjustment over Fennoscandia this average error will be 48 mm.

  18. Uncertainty quantification for radiation measurements: Bottom-up error variance estimation using calibration information.

    PubMed

    Burr, T; Croft, S; Krieger, T; Martin, K; Norman, C; Walsh, S

    2016-02-01

    One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors

  19. Calibration of the straightness and orthogonality error of a laser feedback high-precision stage using self-calibration methods

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Kim, Kihyun; Park, Sang Hyun; Jang, Sangdon

    2014-12-01

    An ultra high-precision 3-DOF air-bearing stage is developed and calibrated in this study. The stage was developed for the transportation of a glass or wafer with x and y following errors in the nanometer regime. To apply the proposed stage to display or semiconductor fabrication equipment, x and y straightness errors should be at the sub-micron level and the x-y orthogonality error should be in the region of several arcseconds with strokes of several hundreds of mm. Our system was designed to move a 400 mm stroke on the x axis and a 700 mm stroke on the y axis. To do this, 1000 mm and 550 mm bar-type mirrors were adopted for real time Δx and Δy laser measurements and feedback control. In this system, with the laser wavelength variation and instability being kept to a minimum through environmental control, the straightness and orthogonality become purely dependent upon the surface shape of the bar mirrors. Compensation for the distortion of the bar mirrors is accomplished using a self-calibration method. The successful application of the method nearly eliminated the straightness and orthogonality errors of the stage, allowing their specifications to be fully satisfied. As a result, the straightness and orthogonality errors of the stage were successfully decreased from 4.4 μm to 0.8 μm and from 0.04° to 2.48 arcsec, respectively.

  20. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges

    USDA-ARS?s Scientific Manuscript database

    Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm.h-1 to 250 mm.h-1) and three di...

  1. Calibration method of the time synchronization error of many data acquisition nodes in the chained system

    NASA Astrophysics Data System (ADS)

    Jiang, Jia-jia; Duan, Fa-jie; Chen, Jin; Zhang, Chao; Wang, Kai; Chang, Zong-jie

    2012-08-01

    Time synchronization is very important in a distributed chained seismic acquisition system with a large number of data acquisition nodes (DANs). The time synchronization error has two causes. On the one hand, there is a large accumulated propagation delay when commands propagate from the analysis and control system to multiple distant DANs, which makes it impossible for different DANs to receive the same command synchronously. Unfortunately, the propagation delay of commands (PDCs) varies in different application environments. On the other hand, the phase jitter of both the master clock and the clock recovery phase-locked loop, which is designed to extract the timing signal, may also cause the time synchronization error. In this paper, in order to achieve accurate time synchronization, a novel calibration method is proposed which can align the PDCs of all of the DANs in real time and overcome the time synchronization error caused by the phase jitter. Firstly, we give a quantitative analysis of the time synchronization error caused by both the PDCs and the phase jitter. Secondly, we propose a back and forth model (BFM) and a transmission delay measurement method (TDMM) to overcome these difficulties. Furthermore, the BFM is designed as the hardware configuration to measure the PDCs and calibrate the time synchronization error. The TDMM is used to measure the PDCs accurately. Thirdly, in order to overcome the time synchronization error caused by the phase jitter, a compression and mapping algorithm (CMA) is presented. Finally, based on the proposed BFM, TDMM and CMA, a united calibration algorithm is developed to overcome the time synchronization error caused by both the PDCs and the phase jitter. The simulation experiment results show the effectiveness of the calibration method proposed in this paper.

  2. Error analyses and calibration methods with accelerometers for optical angle encoders in rotational inertial navigation systems.

    PubMed

    Liu, Fang; Wang, Wei; Wang, Lei; Feng, Peide

    2013-11-10

    By rotating a strapdown inertial navigation system (INS) over one or more axes, a number of error sources originating from the employed sensors cancel out during the integration process. Rotary angle accuracy has an effect on the performance of rotational INS (RINS). The application of existing calibration methods based on gyroscope measurements is restricted by the structure of the inertial measurement unit (IMU) and scale factor stability of the gyroscope. The multireadhead method has problems in miniaturization and cost. Hence, optical angle encoder calibration methods using accelerometers are proposed, on the basis of navigation error and accuracy requirement analyses for a single-axis RINS. The test results show that the accuracy of calibration methods proposed is higher than 4 arcsec (1σ).

  3. Modelling, calibration, and error analysis of seven-hole pressure probes

    NASA Technical Reports Server (NTRS)

    Zillac, G. G.

    1993-01-01

    This report describes the calibration of a nonnulling, conical, seven-hole pressure probe over a large range of flow onset angles. The calibration procedure is based on the use of differential pressures to determine the three components of velocity. The method allows determination of the flow angle and velocity magnitude to within an average error of 1.0 deg and 1.0 percent, respectively. Greater accuracy can be achieved by using high-quality pressure transducers. Also included is an examination of the factors which limit the use of the probe, a description of the measurement chain, an error analysis, and a typical experimental result. In addition, a new general analytical model of pressure probe behavior is described, and the validity of the model is demonstrated by comparing it with experimentally measured calibration data for a three-hole yaw meter and a seven-hole probe.

  4. Calibrating system errors of large scale three-dimensional profile measurement instruments by subaperture stitching method.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Feng, Yunpeng; Su, Jingshi; Wu, Hengyu; Tam, Hon-Yuen

    2015-07-01

    This study presents a subaperture stitching method to calibrate system errors of several ∼2  m large scale 3D profile measurement instruments (PMIs). The calibration process was carried out by measuring a Φ460  mm standard flat sample multiple times at different sites of the PMI with a length gauge; then the subaperture data were stitched together using a sequential or simultaneous stitching algorithm that minimizes the inconsistency (i.e., difference) of the discrete data in the overlapped areas. The system error can be used to compensate the measurement results of not only large flats, but also spheres and aspheres. The feasibility of the calibration was validated by measuring a Φ1070  mm aspheric mirror, which can raise the measurement accuracy of PMIs and provide more reliable 3D surface profiles for guiding grinding, lapping, and even initial polishing processes.

  5. Errors from Rayleigh-Jeans approximation in satellite microwave radiometer calibration systems.

    PubMed

    Weng, Fuzhong; Zou, Xiaolei

    2013-01-20

    The advanced technology microwave sounder (ATMS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite is a total power radiometer and scans across the track within a range of ±52.77° from nadir. It has 22 channels and measures the microwave radiation at either quasi-vertical or quasi-horizontal polarization from the Earth's atmosphere. The ATMS sensor data record algorithm employed a commonly used two-point calibration equation that derives the earth-view brightness temperature directly from the counts and temperatures of warm target and cold space, and the earth-scene count. This equation is only valid under Rayleigh-Jeans (RJ) approximation. Impacts of RJ approximation on ATMS calibration biases are evaluated in this study. It is shown that the RJ approximation used in ATMS radiometric calibration results in errors on the order of 1-2 K. The error is also scene count dependent and increases with frequency.

  6. Use of a realistic breathing lung phantom to evaluate dose delivery errors

    SciTech Connect

    Court, Laurence E.; Seco, Joao; Lu Xingqi; Ebe, Kazuyu; Mayo, Charles; Ionascu, Dan; Winey, Brian; Giakoumakis, Nikos; Aristophanous, Michalis; Berbeco, Ross; Rottman, Joerg; Bogdanov, Madeleine; Schofield, Deborah; Lingos, Tania

    2010-11-15

    Purpose: To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. Methods: A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated arc therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. Results: After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU

  7. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    SciTech Connect

    Lee, Y; Fullerton, G; Goins, B

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  8. A Bayesian approach to improved calibration and prediction of groundwater models with structural error

    NASA Astrophysics Data System (ADS)

    Xu, Tianfang; Valocchi, Albert J.

    2015-11-01

    Numerical groundwater flow and solute transport models are usually subject to model structural error due to simplification and/or misrepresentation of the real system, which raises questions regarding the suitability of conventional least squares regression-based (LSR) calibration. We present a new framework that explicitly describes the model structural error statistically in an inductive, data-driven way. We adopt a fully Bayesian approach that integrates Gaussian process error models into the calibration, prediction, and uncertainty analysis of groundwater flow models. We test the usefulness of the fully Bayesian approach with a synthetic case study of the impact of pumping on surface-ground water interaction. We illustrate through this example that the Bayesian parameter posterior distributions differ significantly from parameters estimated by conventional LSR, which does not account for model structural error. For the latter method, parameter compensation for model structural error leads to biased, overconfident prediction under changing pumping condition. In contrast, integrating Gaussian process error models significantly reduces predictive bias and leads to prediction intervals that are more consistent with validation data. Finally, we carry out a generalized LSR recalibration step to assimilate the Bayesian prediction while preserving mass conservation and other physical constraints, using a full error covariance matrix obtained from Bayesian results. It is found that the recalibrated model achieved lower predictive bias compared to the model calibrated using conventional LSR. The results highlight the importance of explicit treatment of model structural error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification.

  9. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-12-12

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  10. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    PubMed Central

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-01-01

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously. PMID:26703599

  11. On Inertial Body Tracking in the Presence of Model Calibration Errors.

    PubMed

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-07-22

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments-the IMU-to-segment calibrations, subsequently called I2S calibrations-to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and

  12. Quantifying model structural error: Efficient Bayesian calibration of a regional groundwater flow model using surrogates and a data-driven error model

    NASA Astrophysics Data System (ADS)

    Xu, Tianfang; Valocchi, Albert J.; Ye, Ming; Liang, Feng

    2017-05-01

    Groundwater model structural error is ubiquitous, due to simplification and/or misrepresentation of real aquifer systems. During model calibration, the basic hydrogeological parameters may be adjusted to compensate for structural error. This may result in biased predictions when such calibrated models are used to forecast aquifer responses to new forcing. We investigate the impact of model structural error on calibration and prediction of a real-world groundwater flow model, using a Bayesian method with a data-driven error model to explicitly account for model structural error. The error-explicit Bayesian method jointly infers model parameters and structural error and thereby reduces parameter compensation. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models (based on machine learning techniques) as a substitute for the computationally expensive groundwater model. We demonstrate that with explicit treatment of model structural error, the Bayesian method yields parameter posterior distributions that are substantially different from those derived using classical Bayesian calibration that does not account for model structural error. We also found that the error-explicit Bayesian method gives significantly more accurate prediction along with reasonable credible intervals. Finally, through variance decomposition, we provide a comprehensive assessment of prediction uncertainty contributed from parameter, model structure, and measurement uncertainty. The results suggest that the error-explicit Bayesian approach provides a solution to real-world modeling applications for which data support the presence of model structural error, yet model deficiency cannot be specifically identified or corrected.

  13. Calibration error for dual-camera digital image correlation at microscale

    NASA Astrophysics Data System (ADS)

    Li, Kai; Wang, Qiang; Wu, Jia; Yu, Haiyang; Zhang, Dongsheng

    2012-07-01

    Digital image correlation (DIC) has been widely conducted in many engineering applications. This paper describes a dual-camera system which is mounted on a stereo light microscope to achieve 3D displacement measurement at microscale. A glass plate etched with precision grids was used as the calibration plate and a translation calibration procedure was introduced to obtain the intrinsic and extrinsic parameters of the cameras as well as the aberration of the imaging system. Two main error sources, including grid positioning and stage translation, were discussed. It was found that the subpixel positioning errors had limited influences on displacement measurement, while the incorrect grid positioning can be avoided by analyzing the standard deviation between the grid spacing. The systematic translation error of the stage must be eliminated to achieve accurate displacement measurement. Based on the above analysis, a precisely controlled motorized calibration stage was developed to fulfill fully automatic calibration for the microscopic dual-camera system. An application for measuring the surface texture of the human incisor has been presented. It is concluded that the microscopic dual-camera system is an economic, precise system for 3D profilometry and deformation measurement.

  14. A statistical study of the performance of a heat-flow calorimeter: Calibration and error analysis

    SciTech Connect

    Axelrod, M.C.

    1991-10-01

    From an analysis of more than three years of calibration data we derived a new calibration data for the ``small` calorimeter. Using this calibration we should be able to measure the thermal output power of unknown radiological sample to better than 0.3% of the true value (based on one standard deviation) when the unknown lies in the power range 0.25 - 4.0 watt. We learned that the calibration data taken before August 1987 showed considerably more variability than data collected subsequently. We also detected a long-term periodic fluctuation in the data on the scale of about one year. The cause of this fluctuation is unknown. This fluctuation does significantly reduce the accuracy of our measurements. The accuracy of the calorimeter is degraded by the random error of the entire measurment system, the periodic fluctuation, and the statistical error in estimating the calibration coefficients. We recommend that the cause of the periodic fluctuation be determined by monitoring the environmental conditions of the calorimeter laboratory, and a continuous program of recalibration to assure continued accuracy of these measurements.

  15. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  16. On Inertial Body Tracking in the Presence of Model Calibration Errors

    PubMed Central

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-01-01

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and

  17. New error calibration tests for gravity models using subset solutions and independent data - Applied to GEM-T3

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.

    1993-01-01

    A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.

  18. New error calibration tests for gravity models using subset solutions and independent data - Applied to GEM-T3

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.

    1993-01-01

    A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.

  19. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the

  20. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the

  1. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the

  2. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the

  3. Procedures to validate/correct calibration error in solar backscattered ultraviolet instruments

    NASA Technical Reports Server (NTRS)

    Taylor, Steven L.; Mcpeters, R. D.; Bhartia, P. K.

    1994-01-01

    The Nimbus 7 SBUV measures the same latitude ozone at widely different sun angle conditions at the ascent and descent part of the orbit during the summer solstice. This situation is used in a particular procedure (Ascent/Descent) to obtain the relative channel-to-channel calibration error for channels 273 nm to 306 nm. These estimated errors are combined with results from the Pair Justification procedure to correct the sun-view diffuser drift in calibration from November 1978 to February 1987 for the shorter wavelength channels that measure upper stratospheric ozone. Some preliminary re-calirated Nimbus 7 SBUV data in 1989 is compared with the first set of SBUV measurements flown on the Space Shuttle.

  4. The effect of error in theoretical Earth tide on calibration of borehole strainmeters

    USGS Publications Warehouse

    Langbein, John

    2010-01-01

    Since the installation of borehole strainmeters into the ground locally distorts the strain in the rock, these strainmeters require calibration from a known source which typically is the Earth tide. Consequently, the accuracy of the observed strain changes from borehole strainmeters depends upon the calibration derived from modeling the Earth tide. Previous work from the mid-1970s, which is replicated here, demonstrate that the theoretical tide can differ by 30% from the tide observed at surface-mounted, long-baseline strainmeters. In spite of possible inaccurate tidal models, many of the 74 borehole strainmeters installed since 2005 can be “calibrated”. However, inaccurate tidal models affect the amplitude and phase of observed transient strain changes which needs to be considered along with the precision of the data from the inherent drift of these borehole instruments. In particular, the error from inaccurate tidal model dominates the error budget in the observation of impulsive, sub-daily, strain-transients.

  5. A GPS-Based Pitot-Static Calibration Method Using Global Output-Error Optimization

    NASA Technical Reports Server (NTRS)

    Foster, John V.; Cunningham, Kevin

    2010-01-01

    Pressure-based airspeed and altitude measurements for aircraft typically require calibration of the installed system to account for pressure sensing errors such as those due to local flow field effects. In some cases, calibration is used to meet requirements such as those specified in Federal Aviation Regulation Part 25. Several methods are used for in-flight pitot-static calibration including tower fly-by, pacer aircraft, and trailing cone methods. In the 1990 s, the introduction of satellite-based positioning systems to the civilian market enabled new inflight calibration methods based on accurate ground speed measurements provided by Global Positioning Systems (GPS). Use of GPS for airspeed calibration has many advantages such as accuracy, ease of portability (e.g. hand-held) and the flexibility of operating in airspace without the limitations of test range boundaries or ground telemetry support. The current research was motivated by the need for a rapid and statistically accurate method for in-flight calibration of pitot-static systems for remotely piloted, dynamically-scaled research aircraft. Current calibration methods were deemed not practical for this application because of confined test range size and limited flight time available for each sortie. A method was developed that uses high data rate measurements of static and total pressure, and GPSbased ground speed measurements to compute the pressure errors over a range of airspeed. The novel application of this approach is the use of system identification methods that rapidly compute optimal pressure error models with defined confidence intervals in nearreal time. This method has been demonstrated in flight tests and has shown 2- bounds of approximately 0.2 kts with an order of magnitude reduction in test time over other methods. As part of this experiment, a unique database of wind measurements was acquired concurrently with the flight experiments, for the purpose of experimental validation of the

  6. Bayesian correction for covariate measurement error: A frequentist evaluation and comparison with regression calibration.

    PubMed

    Bartlett, Jonathan W; Keogh, Ruth H

    2016-09-19

    Bayesian approaches for handling covariate measurement error are well established and yet arguably are still relatively little used by researchers. For some this is likely due to unfamiliarity or disagreement with the Bayesian inferential paradigm. For others a contributory factor is the inability of standard statistical packages to perform such Bayesian analyses. In this paper, we first give an overview of the Bayesian approach to handling covariate measurement error, and contrast it with regression calibration, arguably the most commonly adopted approach. We then argue why the Bayesian approach has a number of statistical advantages compared to regression calibration and demonstrate that implementing the Bayesian approach is usually quite feasible for the analyst. Next, we describe the closely related maximum likelihood and multiple imputation approaches and explain why we believe the Bayesian approach to generally be preferable. We then empirically compare the frequentist properties of regression calibration and the Bayesian approach through simulation studies. The flexibility of the Bayesian approach to handle both measurement error and missing data is then illustrated through an analysis of data from the Third National Health and Nutrition Examination Survey. © The Author(s) 2016.

  7. Calibration of the 125I-induced X-ray fluorescence spectrometry-based system of in vivo bone strontium determinations using hydroxyapatite as a phantom material: A simulation study.

    PubMed

    Da Silva, Eric; Pejovic-Milic, Ana

    2017-03-01

    The calibration of in vivo X-ray fluorescence systems of bone strontium quantification, based on 125I excitation, is dependent on a coherent normalization procedure. Application of this procedure with the use of plaster of Paris (poP) as a phantom material requires the application of a coherent conversion factor (CCF) to make the calibration functions transferable between the phantom material and human bone. In this work we evaluate, with the use of Monte Carlo simulation, the potential benefit of employing a newly developed hydroxyapatite phantom material into the calibration protocol. Simulations being performed on bare bone phantoms, as the emission spectrum in this case is equivalent to an emission spectrum of an adequately corrected measurement for soft tissue attenuation of emitted strontium signal. We report that the application of hydroxyapatite phantoms does in fact remove the need for a coherent correction factor (CCF). The newly developed phantoms can thus be used for the calibration of in vivo bone strontium systems removing one step of the calibration protocol. Calibration is however limited to cases in which the concentration is relative to the amount of calcium in the specimen, which is, the most useful quantity in a clinical sense. Determining concentrations on a per-mass-of-material basis, that is, a concentration not normalized to the calcium content of the phantom/bone, results in large biases in estimated bone strontium content. The use of an HAp phantom material was found to remove the need for a CCF. It was also found that in the case of an incomplete conversion ratio when preparing the phantom material that there would be little effect on the differential coherent cross-section and thereby the coherent normalization-based calibration protocol.

  8. Direct reference air-kerma rate calibration of 192Ir for a thimble-type ionization chamber in a cylindrical solid phantom

    NASA Astrophysics Data System (ADS)

    Kaulich, Theodor W.; Quast, Ulrich; Bamberg, Michael; Selbach, Hans-Joachim

    2012-10-01

    International and national reports strongly recommend experimental verification of the calibration of new HDR 192Ir sources prior to their clinical application for afterloading brachytherapy. To guarantee traceability, calibrated transfer standards are used, e.g. the recommended well-type ionization chambers (WIC) or certain detector-phantom arrangements (DPA) consisting of a thimble-type ionization chamber with a solid phantom. In Germany, direct calibrations for 192Ir were only provided for WICs. In June 2010, the PTB directly calibrated a DPA-transfer standard in the quantity reference air-kerma rate (RAKR) for 192Ir photons for the University Hospital Tübingen. This direct calibration provides the advantage that the comprehensive RAKR 192Ir calibration coefficient already takes all influence quantities into account—their correction factors are thus unified—except for the air-density correction kρ. The DPA-transfer standard described above and a WIC used as a reference were compared for acceptance tests of three GammaMedplus HDR 192Ir afterloading sources. The measurement uncertainty of the WIC and of the DPA-transfer standard were ±2.6%(k = 2) and ±2.8%(k = 2) respectively. A strong correlation was found between these measurement results with a coefficient of determination of r2 = 0.9998. Determining the RAKR of an HDR 192Ir afterloading source is as simple with the DPA as it is with WIC. The direct 192Ir calibrated DPA-transfer standard can therefore be used alternatively in future with the same measurement uncertainty if no WIC is available.

  9. Analysis and Calibration of Sources of Electronic Error in PSD Sensor Response

    PubMed Central

    Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Tsirigotis, Georgios

    2016-01-01

    In order to obtain very precise measurements of the position of agents located at a considerable distance using a sensor system based on position sensitive detectors (PSD), it is necessary to analyze and mitigate the factors that generate substantial errors in the system’s response. These sources of error can be divided into electronic and geometric factors. The former stem from the nature and construction of the PSD as well as the performance, tolerances and electronic response of the system, while the latter are related to the sensor’s optical system. Here, we focus solely on the electrical effects, since the study, analysis and correction of these are a prerequisite for subsequently addressing geometric errors. A simple calibration method is proposed, which considers PSD response, component tolerances, temperature variations, signal frequency used, signal to noise ratio (SNR), suboptimal operational amplifier parameters, and analog to digital converter (ADC) quantitation SNRQ, etc. Following an analysis of these effects and calibration of the sensor, it was possible to correct the errors, thus rendering the effects negligible, as reported in the results section. PMID:27136562

  10. Analysis and Calibration of Sources of Electronic Error in PSD Sensor Response.

    PubMed

    Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Tsirigotis, Georgios

    2016-04-29

    In order to obtain very precise measurements of the position of agents located at a considerable distance using a sensor system based on position sensitive detectors (PSD), it is necessary to analyze and mitigate the factors that generate substantial errors in the system's response. These sources of error can be divided into electronic and geometric factors. The former stem from the nature and construction of the PSD as well as the performance, tolerances and electronic response of the system, while the latter are related to the sensor's optical system. Here, we focus solely on the electrical effects, since the study, analysis and correction of these are a prerequisite for subsequently addressing geometric errors. A simple calibration method is proposed, which considers PSD response, component tolerances, temperature variations, signal frequency used, signal to noise ratio (SNR), suboptimal operational amplifier parameters, and analog to digital converter (ADC) quantitation SNRQ, etc. Following an analysis of these effects and calibration of the sensor, it was possible to correct the errors, thus rendering the effects negligible, as reported in the results section.

  11. Estimating pole/zero errors in GSN-IRIS/USGS network calibration metadata

    USGS Publications Warehouse

    Ringler, A.T.; Hutt, C.R.; Aster, R.; Bolton, H.; Gee, L.S.; Storm, T.

    2012-01-01

    Mapping the digital record of a seismograph into true ground motion requires the correction of the data by some description of the instrument's response. For the Global Seismographic Network (Butler et al., 2004), as well as many other networks, this instrument response is represented as a Laplace domain pole–zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. This Laplace representation assumes that the seismometer behaves as a linear system, with any abrupt changes described adequately via multiple time-invariant epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We present an iterative three-step method to estimate the instrument response parameters (poles and zeros) and their associated errors using random calibration signals. First, we solve a coarse nonlinear inverse problem using a least-squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records and enhances algorithm convergence. Second, we iteratively solve a nonlinear parameter estimation problem to obtain the least-squares best-fit Laplace pole–zero–gain model. Third, by applying the central limit theorem, we estimate the errors in this pole–zero model by solving the inverse problem at each frequency in a two-thirds octave band centered at each best-fit pole–zero frequency. This procedure yields error estimates of the 99% confidence interval. We demonstrate the method by applying it to a number of recent Incorporated Research Institutions in Seismology/United States Geological Survey (IRIS/USGS) network calibrations (network code IU).

  12. Estimating Pole/Zero Errors in GSN-IU Network Calibration Metadata

    NASA Astrophysics Data System (ADS)

    Ringler, A. T.; Hutt, C. R.; Bolton, H. F.; Storm, T.; Gee, L. S.

    2010-12-01

    Converting the voltage output of a seismometer into ground motion requires correction of the data using a description of the instrument’s response. For the Global Seismographic Network (GSN), as well as many other networks, this instrument response is represented as a Laplace pole/zero model and published in the Standard for the Exchange of Earthquake Data (SEED) format. (Many GSN stations are operated by IRIS and USGS with network code “IU”.) This Laplace representation assumes that the seismometer behaves as a perfectly linear system, with temporal changes described adequately through multiple epochs. The SEED format allows for published instrument response errors as well, but these typically have not been estimated or provided to users. We developed an iterative three-step method to estimate instrument response model parameters (poles, zeros, and sensitivity and normalization parameters) and their associated errors using random calibration signals. First, we solve a coarse non-linear inverse problem using a least squares grid search to yield a first approximation to the solution. This approach reduces the likelihood of poorly estimated parameters (a local-minimum solution) caused by noise in the calibration records. Second, we solve a non-linear parameter estimation problem by an iterative method to obtain the least squares best-fit Laplace pole/zero model. Third, by applying the central limit theorem we estimate the errors in this pole/zero model by solving the inverse problem at each frequency in a 2/3rds-octave band centered at each best-fit pole/zero frequency. This procedure yields error estimates of the >99% confidence interval. We demonstrate this method by applying it to a number of recent IU network calibration records.

  13. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    SciTech Connect

    Lee, C; Badal, A

    2014-06-15

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. We also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.

  14. GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm

    NASA Technical Reports Server (NTRS)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-01-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.

  15. GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm

    NASA Technical Reports Server (NTRS)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-01-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.

  16. GOME total ozone and calibration error derived using Version 8 TOMS Algorithm

    NASA Astrophysics Data System (ADS)

    Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.

    2003-04-01

    The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local structure as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The 1b detector appears to be quite well behaved throughout this time period.

  17. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 (Goddard Earth Model, 36x36 spherical harmonic field) were employed toward application of this technique for gravity field parameters. Also, GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized here. The method employs subset solutions of the data associated with the complete solution and uses an algorithm to adjust the data weights by requiring the differences of parameters between solutions to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting as compared to the nominal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  18. Array error calibration methods in downward-looking linear-array three-dimensional synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Tan, Weixian; Huang, Pingping; Han, Kuoye; Liu, Qi; Peng, Xueming

    2016-04-01

    In order to achieve high-precision three-dimensional (3-D) imaging with an airborne downward-looking linear-array 3-D synthetic aperture radar (LA-3D-SAR), a uniform virtual antenna array can be obtained by aperture synthesis of the cross-track sparse multiple-input-multiple-output array. However, the actual 3-D imaging quality is unavoidably degraded by array errors such as the multichannel amplitude-phase errors due to the nonideal antenna characteristics, and the virtual element position errors due to vibrations and motion measurement deviations. We investigate the effects of these errors on the forms and the degrees of image quality degradation and consider the use of corresponding calibration methods to eliminate the effects of errors. For the multichannel amplitude-phase errors, the target response is subject to an integrated sidelobe level increase introduced by the phase error, which can be calibrated based on external (parallel or point target) calibrators, as proposed in the paper. For the virtual element position errors, they mainly the result of contrast degradation and noise in the image along the cross-track direction and have little impact on the range and along-track directions. The imaging performance is more sensitive to the error component in the height direction as compared to other components, the precision requirement of which should be established as the calibration reference. A calibration method based on time-divided active calibrators is proposed to estimate and correct the virtual element position errors. Both numerical simulations and real data experiments have shown the validity of the analyses as well as the effectiveness of the proposed calibration methods.

  19. Effect of Correlated Precision Errors on Uncertainty of a Subsonic Venturi Calibration

    NASA Technical Reports Server (NTRS)

    Hudson, S. T.; Bordelon, W. J., Jr.; Coleman, H. W.

    1996-01-01

    An uncertainty analysis performed in conjunction with the calibration of a subsonic venturi for use in a turbine test facility produced some unanticipated results that may have a significant impact in a variety of test situations. Precision uncertainty estimates using the preferred propagation techniques in the applicable American National Standards Institute/American Society of Mechanical Engineers standards were an order of magnitude larger than precision uncertainty estimates calculated directly from a sample of results (discharge coefficient) obtained at the same experimental set point. The differences were attributable to the effect of correlated precision errors, which previously have been considered negligible. An analysis explaining this phenomenon is presented. The article is not meant to document the venturi calibration, but rather to give a real example of results where correlated precision terms are important. The significance of the correlated precision terms could apply to many test situations.

  20. Multiplicative errors in the galaxy power spectrum: self-calibration of unknown photometric systematics for precision cosmology

    NASA Astrophysics Data System (ADS)

    Shafer, Daniel L.; Huterer, Dragan

    2015-03-01

    We develop a general method to `self-calibrate' observations of galaxy clustering with respect to systematics associated with photometric calibration errors. We first point out the danger posed by the multiplicative effect of calibration errors, where large-angle error propagates to small scales and may be significant even if the large-scale information is cleaned or not used in the cosmological analysis. We then propose a method to measure the arbitrary large-scale calibration errors and use these measurements to correct the small-scale (high-multipole) power which is most useful for constraining the majority of cosmological parameters. We demonstrate the effectiveness of our approach on synthetic examples and briefly discuss how it may be applied to real data.

  1. Power Pattern Sensitivity to Calibration Errors and Mutual Coupling in Linear Arrays through Circular Interval Arithmetics

    PubMed Central

    Anselmi, Nicola; Salucci, Marco; Rocca, Paolo; Massa, Andrea

    2016-01-01

    The sensitivity to both calibration errors and mutual coupling effects of the power pattern radiated by a linear array is addressed. Starting from the knowledge of the nominal excitations of the array elements and the maximum uncertainty on their amplitudes, the bounds of the pattern deviations from the ideal one are analytically derived by exploiting the Circular Interval Analysis (CIA). A set of representative numerical results is reported and discussed to assess the effectiveness and the reliability of the proposed approach also in comparison with state-of-the-art methods and full-wave simulations. PMID:27258274

  2. Error Analysis and Calibration Method of a Multiple Field-of-View Navigation System

    PubMed Central

    Shi, Shuai; Zhao, Kaichun; You, Zheng; Ouyang, Chenguang; Cao, Yongkui; Wang, Zhenzhou

    2017-01-01

    The Multiple Field-of-view Navigation System (MFNS) is a spacecraft subsystem built to realize the autonomous navigation of the Spacecraft Inside Tiangong Space Station. This paper introduces the basics of the MFNS, including its architecture, mathematical model and analysis, and numerical simulation of system errors. According to the performance requirement of the MFNS, the calibration of both intrinsic and extrinsic parameters of the system is assumed to be essential and pivotal. Hence, a novel method based on the geometrical constraints in object space, called checkerboard-fixed post-processing calibration (CPC), is proposed to solve the problem of simultaneously obtaining the intrinsic parameters of the cameras integrated in the MFNS and the transformation between the MFNS coordinate and the cameras’ coordinates. This method utilizes a two-axis turntable and a prior alignment of the coordinates is needed. Theoretical derivation and practical operation of the CPC method are introduced. The calibration experiment results of the MFNS indicate that the extrinsic parameter accuracy of the CPC reaches 0.1° for each Euler angle and 0.6 mm for each position vector component (1σ). A navigation experiment verifies the calibration result and the performance of the MFNS. The MFNS is found to work properly, and the accuracy of the position vector components and Euler angle reaches 1.82 mm and 0.17° (1σ) respectively. The basic mechanism of the MFNS may be utilized as a reference for the design and analysis of multiple-camera systems. Moreover, the calibration method proposed has practical value for its convenience for use and potential for integration into a toolkit. PMID:28327538

  3. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.

    PubMed

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J

    2014-08-25

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.

  4. A gamma ray observatory ground attitude error analysis study using the generalized calibration system

    NASA Technical Reports Server (NTRS)

    Ketchum, E.

    1988-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) will be responsible for performing ground attitude determination for Gamma Ray Observatory (GRO) support. The study reported in this paper provides the FDD and the GRO project with ground attitude determination error information and illustrates several uses of the Generalized Calibration System (GCS). GCS, an institutional software tool in the FDD, automates the computation of the expected attitude determination uncertainty that a spacecraft will encounter during its mission. The GRO project is particularly interested in the uncertainty in the attitude determination using Sun sensors and a magnetometer when both star trackers are inoperable. In order to examine the expected attitude errors for GRO, a systematic approach was developed including various parametric studies. The approach identifies pertinent parameters and combines them to form a matrix of test runs in GCS. This matrix formed the basis for this study.

  5. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT

  6. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study.

    PubMed

    Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-05-07

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and

  7. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT

  8. Error modeling and calibration of a 4ṞRR redundant positioning system

    NASA Astrophysics Data System (ADS)

    Yao, Sheng; Zhang, Xianmin; Yu, Jing; Zhu, Benliang

    2017-09-01

    Using the macro-micro combination positioning system for nanomanipulating can fulfill the requirements of large workspace, high precision and multi-degrees of freedom. As a macro part of the macro-micro combination positioning system, a redundantly actuated three degrees-of-freedom (DOF) parallel kinematic mechanism (4ṞRR) with a directly driven system is studied in this paper. Firstly, the error sensitivity of the 4ṞRR planar parallel mechanism is analyzed with global errors sensitive index (GESI) based on the error model of the positioning system. Then, a novel and practical calibration method combined with an error compensation strategy is proposed for the 4ṞRR positioning system. Finally, in order to verify the proposed method, a series of experiments are conducted with the laser measurement system in creditable conditions, and the data are illustrated for comparisons. The experimental results show that the positioning accuracy of the 4ṞRR positioning system is improved, and the performances of the end-effector are enhanced based on the proposed method.

  9. On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System

    PubMed Central

    Lan, Kun-Chan; Shih, Wen-Yuah

    2013-01-01

    Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared) to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR) for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope) are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user's moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user's step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user's change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user's walking distance, with an overall location error of about 0.48 m. PMID:23575036

  10. On calibrating the sensor errors of a PDR-based indoor localization system.

    PubMed

    Lan, Kun-Chan; Shih, Wen-Yuah

    2013-04-10

    Many studies utilize the signal strength of short-range radio systems (such as WiFi, ultrasound and infrared) to build a radio map for indoor localization, by deploying a large number of beacon nodes within a building. The drawback of such an infrastructure-based approach is that the deployment and calibration of the system are costly and labor-intensive. Some prior studies proposed the use of Pedestrian Dead Reckoning (PDR) for indoor localization, which does not require the deployment of beacon nodes. In a PDR system, a small number of sensors are put on the pedestrian. These sensors (such as a G-sensor and gyroscope) are used to estimate the distance and direction that a user travels. The effectiveness of a PDR system lies in its success in accurately estimating the user's moving distance and direction. In this work, we propose a novel waist-mounted based PDR that can measure the user's step lengths with a high accuracy. We utilize vertical acceleration of the body to calculate the user's change in height during walking. Based on the Pythagorean Theorem, we can then estimate each step length using this data. Furthermore, we design a map matching algorithm to calibrate the direction errors from the gyro using building floor plans. The results of our experiment show that we can achieve about 98.26% accuracy in estimating the user's walking distance, with an overall location error of about 0.48 m.

  11. Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy.

    PubMed

    Zechner, A; Stock, M; Kellner, D; Ziegler, I; Keuschnigg, P; Huber, P; Mayer, U; Sedlmayer, F; Deutschmann, H; Steininger, P

    2016-11-21

    Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imager's deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated. In order to ensure accurate automated marker detection, as many uniformly distributed markers as possible should be used with a minimum projected inter-marker distance of 10 mm. Three different marker distributions on the phantom cylinder surface were simulated. First, a fixed number of markers are selected and their coordinates are randomly generated. Second, the quasi-random method is represented by setting a constraint on the marker distances in the projections. The third approach generates the ball coordinates helically based on the Golden ratio, ϕ. Projection images of the phantom incorporating the CBCT scanner's geometry were simulated and analysed with respect to uniform distribution and intra-marker distance. Based on the evaluations a phantom prototype was manufactured and validated by a series of flexmap calibration measurements and analyses. The simulation with randomly distributed markers as well as the quasi-random approach showed an insufficient uniformity of the distribution over the detector area. The best compromise between uniform distribution and a high packing fraction of balls is provided by the Golden section approach. A prototype was manufactured accordingly. The phantom was validated for 9-DOF geometric calibrations of the CBCT scanner with independently moveable source and detector arms. A novel flexmap calibration phantom intended for 9-DOF was developed. The ball bearing distribution based on the Golden section was found to be highly advantageous. The phantom showed

  12. Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy

    NASA Astrophysics Data System (ADS)

    Zechner, A.; Stock, M.; Kellner, D.; Ziegler, I.; Keuschnigg, P.; Huber, P.; Mayer, U.; Sedlmayer, F.; Deutschmann, H.; Steininger, P.

    2016-11-01

    Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imager’s deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated. In order to ensure accurate automated marker detection, as many uniformly distributed markers as possible should be used with a minimum projected inter-marker distance of 10 mm. Three different marker distributions on the phantom cylinder surface were simulated. First, a fixed number of markers are selected and their coordinates are randomly generated. Second, the quasi-random method is represented by setting a constraint on the marker distances in the projections. The third approach generates the ball coordinates helically based on the Golden ratio, ϕ. Projection images of the phantom incorporating the CBCT scanner’s geometry were simulated and analysed with respect to uniform distribution and intra-marker distance. Based on the evaluations a phantom prototype was manufactured and validated by a series of flexmap calibration measurements and analyses. The simulation with randomly distributed markers as well as the quasi-random approach showed an insufficient uniformity of the distribution over the detector area. The best compromise between uniform distribution and a high packing fraction of balls is provided by the Golden section approach. A prototype was manufactured accordingly. The phantom was validated for 9-DOF geometric calibrations of the CBCT scanner with independently moveable source and detector arms. A novel flexmap calibration phantom intended for 9-DOF was developed. The ball bearing distribution based on the Golden section was found to be highly advantageous. The phantom showed

  13. Correlation between projector calibration error and depth expression range for autostereoscopic optical display system using laser beam scanning projector

    NASA Astrophysics Data System (ADS)

    Kim, Yeo Hun; Kang, Min Koo; Yoon, Ki Hyuk; Sohn, Kwang Hoon; Kim, Sung Kyu

    2017-05-01

    In autostereoscopic display using LASER beam scanning type of multiple projectors, accurate projector calibration is essential to alleviate optical distortions such as keystone distortion. However, calibrating hundreds of projectors with high accuracy takes too much time and effort. Moreover, there exist a limited range where viewers can percept correct depth with respect to human visual system (HVS) although the ideal projector calibration is possible. After fine projector calibration, we explored its accuracy with a brute-force technique, and analyzed depth expression ranges (DER) in the given accuracy with respect to HVS. We set five error conditions for projector calibration accuracy. And then we derive correlation between projector calibration error (PCE) and DER, and determine accuracy of projector calibration affect DER. And we determine that there is no problem in that the observer can perceive the depth of 3D object up to a certain accuracy of projector calibration. From this result, we proposed a perceptive threshold for acceptable projector calibration accuracy for whole system's efficiency eventually.

  14. A computer simulated phantom study of tomotherapy dose optimization based on probability density functions (PDF) and potential errors caused by low reproducibility of PDF.

    PubMed

    Sheng, Ke; Cai, Jing; Brookeman, James; Molloy, Janelle; Christopher, John; Read, Paul

    2006-09-01

    Lung tumor motion trajectories measured by four-dimensional CT or dynamic MRI can be converted to a probability density function (PDF), which describes the probability of the tumor at a certain position, for PDF based treatment planning. Using this method in simulated sequential tomotherapy, we study the dose reduction of normal tissues and more important, the effect of PDF reproducibility on the accuracy of dosimetry. For these purposes, realistic PDFs were obtained from two dynamic MRI scans of a healthy volunteer within a 2 week interval. The first PDF was accumulated from a 300 s scan and the second PDF was calculated from variable scan times from 5 s (one breathing cycle) to 300 s. Optimized beam fluences based on the second PDF were delivered to the hypothetical gross target volume (GTV) of a lung phantom that moved following the first PDF The reproducibility between two PDFs varied from low (78%) to high (94.8%) when the second scan time increased from 5 s to 300 s. When a highly reproducible PDF was used in optimization, the dose coverage of GTV was maintained; phantom lung receiving 10%-20% prescription dose was reduced by 40%-50% and the mean phantom lung dose was reduced by 9.6%. However, optimization based on PDF with low reproducibility resulted in a 50% underdosed GTV. The dosimetric error increased nearly exponentially as the PDF error increased. Therefore, although the dose of the tumor surrounding tissue can be theoretically reduced by PDF based treatment planning, the reliability and applicability of this method highly depend on if a reproducible PDF exists and is measurable. By correlating the dosimetric error and PDF error together, a useful guideline for PDF data acquisition and patient qualification for PDF based planning can be derived.

  15. Expected Estimating Equation using Calibration Data for Generalized Linear Models with a Mixture of Berkson and Classical Errors in Covariates

    PubMed Central

    de Dieu Tapsoba, Jean; Lee, Shen-Ming; Wang, Ching-Yun

    2013-01-01

    Data collected in many epidemiological or clinical research studies are often contaminated with measurement errors that may be of classical or Berkson error type. The measurement error may also be a combination of both classical and Berkson errors and failure to account for both errors could lead to unreliable inference in many situations. We consider regression analysis in generalized linear models when some covariates are prone to a mixture of Berkson and classical errors and calibration data are available only for some subjects in a subsample. We propose an expected estimating equation approach to accommodate both errors in generalized linear regression analyses. The proposed method can consistently estimate the classical and Berkson error variances based on the available data, without knowing the mixture percentage. Its finite-sample performance is investigated numerically. Our method is illustrated by an application to real data from an HIV vaccine study. PMID:24009099

  16. Flight Test Results of an Angle of Attack and Angle of Sideslip Calibration Method Using Output-Error Optimization

    NASA Technical Reports Server (NTRS)

    Siu, Marie-Michele; Martos, Borja; Foster, John V.

    2013-01-01

    As part of a joint partnership between the NASA Aviation Safety Program (AvSP) and the University of Tennessee Space Institute (UTSI), research on advanced air data calibration methods has been in progress. This research was initiated to expand a novel pitot-static calibration method that was developed to allow rapid in-flight calibration for the NASA Airborne Subscale Transport Aircraft Research (AirSTAR) facility. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. Subscale flight tests demonstrated small 2-s error bounds with significant reduction in test time compared to other methods. Recent UTSI full scale flight tests have shown airspeed calibrations with the same accuracy or better as the Federal Aviation Administration (FAA) accepted GPS 'four-leg' method in a smaller test area and in less time. The current research was motivated by the desire to extend this method for inflight calibration of angle of attack (AOA) and angle of sideslip (AOS) flow vanes. An instrumented Piper Saratoga research aircraft from the UTSI was used to collect the flight test data and evaluate flight test maneuvers. Results showed that the output-error approach produces good results for flow vane calibration. In addition, maneuvers for pitot-static and flow vane calibration can be integrated to enable simultaneous and efficient testing of each system.

  17. Effect of non-invasive calibration of radial waveforms on error in transfer-function-derived central aortic waveform characteristics.

    PubMed

    Hope, Sarah A; Meredith, Ian T; Cameron, James D

    2004-08-01

    Transfer function techniques are increasingly used for non-invasive estimation of central aortic waveform characteristics. Non-invasive radial waveforms must be calibrated for this purpose. Most validation studies have used invasive pressures for calibration, with little data on the impact of non-invasive calibration on transfer-function-derived aortic waveform characteristics. In the present study, simultaneous invasive central aortic (Millar Mikro-tip catheter transducer) and non-invasive radial (Millar Mikro-tip tonometer) pressure waveforms and non-invasive brachial pressures (Dinamap) were measured in 42 subjects. In this cohort, radial waveforms were calibrated to both invasive and non-invasive mean and diastolic pressures. From each of these, central waveforms were reconstructed using a generalized transfer function obtained by us from a previous cohort [Hope, Tay, Meredith and Cameron (2002) Am. J. Physiol. Heart Circ. Physiol. 283, H1150-H1156]. Waveforms were analysed for parameters of potential clinical interest. For calibrated radial and reconstructed central waveforms, different methods of calibration were associated with differences in pressure (P<0.001), but not time parameters or augmentation index. Whereas invasive calibration resulted in little error in transfer function estimation of central systolic pressure (difference -1+/-8 mmHg; P=not significant), non-invasive calibration resulted in significant underestimation (7+/-12 mmHg; P<0.001). Errors in estimated aortic parameters differed with non-invasively calibrated untransformed radial and transfer-function-derived aortic waveforms (all P<0.01), with smaller absolute errors with untransformed radial waveforms for most pressure parameters [systolic pressure, 5+/-16 and 7+/-12 mmHg; pulse pressure, 0+/-16 and 4+/-12 mmHg (radial and derived aortic respectively)]. When only non-invasive pressures are accessible, analysis of untransformed radial waveforms apparently produces smaller errors in the

  18. Non-parametric error distribution analysis from the laboratory calibration of various rainfall intensity gauges.

    PubMed

    Lanza, L G; Stagi, L

    2012-01-01

    The analysis of counting and catching errors of both catching and non-catching types of rain intensity gauges was recently possible over a wide variety of measuring principles and instrument design solutions, based on the work performed during the recent Field Intercomparison of Rainfall Intensity Gauges promoted by World Meteorological Organization (WMO). The analysis reported here concerns the assessment of accuracy and precision of various types of instruments based on extensive calibration tests performed in the laboratory during the first phase of this WMO Intercomparison. The non-parametric analysis of relative errors allowed us to conclude that the accuracy of the investigated RI gauges is generally high, after assuming that it should be at least contained within the limits set forth by WMO in this respect. The measuring principle exploited by the instrument is generally not very decisive in obtaining such good results in the laboratory. Rather, the attention paid by the manufacturer to suitably accounting and correcting for systematic errors and time-constant related effects was demonstrated to be influential. The analysis of precision showed that the observed frequency distribution of relative errors around their mean value is not indicative of an underlying Gaussian population, being much more peaked in most cases than can be expected from samples extracted from a Gaussian distribution. The analysis of variance (one-way ANOVA), assuming the instrument model as the only potentially affecting factor, does not confirm the hypothesis of a single common underlying distribution for all instruments. Pair-wise multiple comparison analysis revealed cases in which significant differences could be observed.

  19. Theoretic Studies of Full Constraints on a Star Tracker's Influential Error Sources for In-orbit Calibration

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Cai Hao, Yun; Wang, Li; Long, Ye

    2016-03-01

    To collect star transits data qualified for in-orbit calibration, this study derives the full error constraints to limit star tracker's influential error sources and computes their error boundaries from a theoretical perspective. The full constraints, including not only the minimum variance estimation of position but also the error bound prediction of scale and intensity of Gaussian-shaped starspots, are studied based on the Cramér-Rao Lower Bound (CRLB) theorem. By imposing these constraints on motion, drift in focal length, and other factors, their boundaries could be determined before launch. Therefore, the in-orbit correction accuracy is expected to be close to CRLB through suitable implementation of these constraints. The correctness of the theoretical position error of motion is demonstrated by the data-fitting procedure against test results of star tracker on dynamic performance. The simulation result shows that the drift in focal length can generate an error with the same magnitude as detector noise and thus might be the dominant error source when star tracker is working under stationary circumstance. Using the accuracy performance of some typical star trackers, this study shows that the CRLB constraint may be very effective to estimate the overall position error of a starspot or one axis, valuable data that can be used for online calibration. The overall position uncertainty analysis shows that a weighted method can be employed for calibration, a process where star data can be given a weight in inverse proportion to the CRLB value.

  20. Regression Calibration When Foods (Measured With Error) Are the Variables of Interest: Markedly Non-Gaussian Data With Many Zeroes

    PubMed Central

    Fraser, Gary E.; Stram, Daniel O.

    2012-01-01

    Regression calibration has been described as a means of correcting effects of measurement error for normally distributed dietary variables. When foods are the items of interest, true distributions of intake are often positively skewed, may contain many zeroes, and are usually not described by well-known statistical distributions. The authors considered the validity of regression calibration assumptions where data are non-Gaussian. Such data (including many zeroes) were simulated, and use of the regression calibration algorithm was evaluated. An example used data from Adventist Health Study 2 (2002–2008). In this special situation, a linear calibration model does (as usual) at least approximately correct the parameter that captures the exposure-disease association in the “disease” model. Poor fit in the calibration model does not produce biased calibrated estimates when the “disease” model is linear, and it produces little bias in a nonlinear “disease” model if the model is approximately linear. Poor fit will adversely affect statistical power, but more complex linear calibration models can help here. The authors conclude that non-Gaussian data with many zeroes do not invalidate regression calibration. Irrespective of fit, linear regression calibration in this situation at least approximately corrects bias. More complex linear calibration equations that improve fit may increase power over that of uncalibrated regressions. PMID:22268227

  1. Regression calibration when foods (measured with error) are the variables of interest: markedly non-Gaussian data with many zeroes.

    PubMed

    Fraser, Gary E; Stram, Daniel O

    2012-02-15

    Regression calibration has been described as a means of correcting effects of measurement error for normally distributed dietary variables. When foods are the items of interest, true distributions of intake are often positively skewed, may contain many zeroes, and are usually not described by well-known statistical distributions. The authors considered the validity of regression calibration assumptions where data are non-Gaussian. Such data (including many zeroes) were simulated, and use of the regression calibration algorithm was evaluated. An example used data from Adventist Health Study 2 (2002-2008). In this special situation, a linear calibration model does (as usual) at least approximately correct the parameter that captures the exposure-disease association in the "disease" model. Poor fit in the calibration model does not produce biased calibrated estimates when the "disease" model is linear, and it produces little bias in a nonlinear "disease" model if the model is approximately linear. Poor fit will adversely affect statistical power, but more complex linear calibration models can help here. The authors conclude that non-Gaussian data with many zeroes do not invalidate regression calibration. Irrespective of fit, linear regression calibration in this situation at least approximately corrects bias. More complex linear calibration equations that improve fit may increase power over that of uncalibrated regressions.

  2. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    NASA Technical Reports Server (NTRS)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  3. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  4. COMPARISON OF COMPUTATIONAL PHANTOMS AND INVESTIGATION OF THE EFFECT OF BIODISTRIBUTION ON ACTIVITY ESTIMATIONS.

    PubMed

    Cartemo, Petty; Nilsson, Jenny; Isaksson, Mats; Nordlund, Anders

    2016-11-01

    A comparison was made between two computational phantoms, modelled from the unified phantom UPh-08 T, for whole-body counting applications. One of these was further compared with the International Commission on Radiological Protection reference adult male computational phantom. The simulations that were performed for the comparison of all three voxel phantoms use various distributions of (60)Co. The two voxel phantoms of the UPh-08 T showed good agreement, despite different methods of phantom modelling. Also, effects on efficiency of the inhomogeneous distribution of a radionuclide in the computational UPh-08 T phantom were studied, using the realistic biodistribution of (140)La. The results show that the activity estimation of radionuclides, which are inhomogeneously distributed in the human body, will be in error if a homogeneous distribution is assumed for the calibration of whole-body counting systems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Error Modeling and Confidence Interval Estimation for Inductively Coupled Plasma Calibration Curves.

    DTIC Science & Technology

    1987-02-01

    confidence interval estimation for multiple use of the calibration curve is...calculate weights for the calibration curve fit. Multiple and single-use confidence interval estimates are obtained and results along the calibration curve are

  6. Maximum likelihood, multiple imputation and regression calibration for measurement error adjustment.

    PubMed

    Messer, Karen; Natarajan, Loki

    2008-12-30

    In epidemiologic studies of exposure-disease association, often only a surrogate measure of exposure is available for the majority of the sample. A validation sub-study may be conducted to estimate the relation between the surrogate measure and true exposure levels. In this article, we discuss three methods of estimation for such a main study/validation study design: (i) maximum likelihood (ML), (ii) multiple imputation (MI) and (iii) regression calibration (RC). For logistic regression, we show how each method depends on a different numerical approximation to the likelihood, and we adapt standard software to compute both MI and ML estimates. We use simulation to compare the performance of the estimators for both realistic and extreme settings, and for both internal and external validation designs. Our results indicate that with large measurement error or large enough sample sizes, ML performs as well as or better than MI and RC. However, for smaller measurement error and small sample sizes, either ML or RC may have the advantage. Interestingly, in most cases the relative advantage of RC versus ML was determined by the relative variance rather than the bias of the estimators. Software code for all three methods in SAS is provided.

  7. Calibration of an instrumented treadmill using a precision-controlled device with artificial neural network-based error corrections.

    PubMed

    Hsieh, Hong-Jung; Lin, Hsiu-Chen; Lu, Hsuan-Lun; Chen, Ting-Yi; Lu, Tung-Wu

    2016-03-01

    Instrumented treadmills (ITs) are used to measure reaction forces (RF) and center of pressure (COP) movements for gait and balance assessment. Regular in situ calibration is essential to ensure their accuracy and to identify conditions when a factory re-calibration is needed. The current study aimed to develop and calibrate in situ an IT using a portable, precision-controlled calibration device with an artificial neural network (ANN)-based correction method. The calibration device was used to apply static and dynamic calibrating loads to the surface of the IT at 189 and 25 grid-points, respectively, at four belt speeds (0, 4, 6 and 8 km/h) without the need of a preset template. Part of the applied and measured RF and COP were used to train a threelayered, back-propagation ANN model while the rest of the data were used to evaluate the performance of the ANN. The percent errors of Fz and errors of the Px and Py were significantly decreased from a maximum of -1.15%, -1.64 mm and -0.73 mm to 0.02%, 0.02 mm and 0.03 mm during static calibration, respectively. During dynamic calibration, the corresponding values were decreasing from -3.65%, 2.58 mm and -4.92 mm to 0.30%, -0.14 mm and -0.47 mm, respectively. The results suggest that the calibration device and associated ANN will be useful for correcting measurement errors in vertical loads and COP for ITs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Empirical calibrated radiocarbon sampler: a tool for incorporating radiocarbon-date and calibration error into Bayesian phylogenetic analyses of ancient DNA.

    PubMed

    Molak, Martyna; Suchard, Marc A; Ho, Simon Y W; Beilman, David W; Shapiro, Beth

    2015-01-01

    Studies of DNA from ancient samples provide a valuable opportunity to gain insight into past evolutionary and demographic processes. Bayesian phylogenetic methods can estimate evolutionary rates and timescales from ancient DNA sequences, with the ages of the samples acting as calibrations for the molecular clock. Sample ages are often estimated using radiocarbon dating, but the associated measurement error is rarely taken into account. In addition, the total uncertainty quantified by converting radiocarbon dates to calendar dates is typically ignored. Here, we present a tool for incorporating both of these sources of uncertainty into Bayesian phylogenetic analyses of ancient DNA. This empirical calibrated radiocarbon sampler (ECRS) integrates the age uncertainty for each ancient sequence over the calibrated probability density function estimated for its radiocarbon date and associated error. We use the ECRS to analyse three ancient DNA data sets. Accounting for radiocarbon-dating and calibration error appeared to have little impact on estimates of evolutionary rates and related parameters for these data sets. However, analyses of other data sets, particularly those with few or only very old radiocarbon dates, might be more sensitive to using artificially precise sample ages and should benefit from use of the ECRS.

  9. A PHANTOM FOR DETERMINATION OF CALIBRATION COEFFICIENTS AND MINIMUM DETECTABLE ACTIVITIES USING A DUAL-HEAD GAMMA CAMERA FOR INTERNAL CONTAMINATION MONITORING FOLLOWING RADIATION EMERGENCY SITUATIONS.

    PubMed

    Ören, Ünal; Andersson, Martin; Rääf, Christopher L; Mattsson, Sören

    2016-06-01

    The purpose of this study was to derive calibration coefficients (in terms of cps kBq(-1)) and minimum detectable activities, MDA, (in terms of kBq and corresponding dose rate) for the dual head gamma camera part of an SPECT/CT-instrument when used for in vivo internal contamination measurements in radiation emergency situations. A cylindrical-conical PMMA phantom with diameters in the range of 7-30 cm was developed in order to simulate different body parts and individuals of different sizes. A series of planar gamma camera investigations were conducted using an SPECT/CT modality with the collimators removed for (131)I and (137)Cs, radionuclides potentially associated with radiation emergencies. Energy windows of 337-391 and 490-690 keV were selected for (131)I and (137)Cs, respectively. The measurements show that the calibration coefficients for (137)Cs range from 10 to 19 cps kBq(-1) with MDA values in the range of 0.29-0.55 kBq for phantom diameters of 10-30 cm. The corresponding values for (131)I are 12-37 cps kBq(-1) with MDA values of 0.08-0.26 kBq. An internal dosimetry computer program was used for the estimation of minimum detectable dose rates. A thyroid uptake of 0.1 kBq (131)I (representing MDA) corresponds to an effective dose rate of 0.6 µSv d(-1) A (137)Cs source position representing the colon with an MDA of 0.55 kBq corresponds to an effective dose rate was 1 µSv y(-1) This method using a simple phantom for the determination of calibration coefficients, and MDA levels can be implemented within the emergency preparedness plans in hospitals with nuclear medicine departments. The derived data will help to quickly estimate the internal contamination of humans following radiation emergencies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials

    PubMed Central

    Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis

    2015-01-01

    This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890

  11. Phantom Effects in School Composition Research: Consequences of Failure to Control Biases Due to Measurement Error in Traditional Multilevel Models

    ERIC Educational Resources Information Center

    Televantou, Ioulia; Marsh, Herbert W.; Kyriakides, Leonidas; Nagengast, Benjamin; Fletcher, John; Malmberg, Lars-Erik

    2015-01-01

    The main objective of this study was to quantify the impact of failing to account for measurement error on school compositional effects. Multilevel structural equation models were incorporated to control for measurement error and/or sampling error. Study 1, a large sample of English primary students in Years 1 and 4, revealed a significantly…

  12. Phantom Effects in School Composition Research: Consequences of Failure to Control Biases Due to Measurement Error in Traditional Multilevel Models

    ERIC Educational Resources Information Center

    Televantou, Ioulia; Marsh, Herbert W.; Kyriakides, Leonidas; Nagengast, Benjamin; Fletcher, John; Malmberg, Lars-Erik

    2015-01-01

    The main objective of this study was to quantify the impact of failing to account for measurement error on school compositional effects. Multilevel structural equation models were incorporated to control for measurement error and/or sampling error. Study 1, a large sample of English primary students in Years 1 and 4, revealed a significantly…

  13. Sentinel lymph node scintigraphy in cutaneous melanoma using a planar calibration phantom filled with Tc-99m pertechnetate solution for body contouring.

    PubMed

    Peştean, Claudiu; Bărbuş, Elena; Piciu, Andra; Larg, Maria Iulia; Sabo, Alexandrina; Moisescu-Goia, Cristina; Piciu, Doina

    2016-01-01

    Melanoma is a disease that has an increasing incidence worldwide. Sentinel lymph node scintigraphy is a diagnostic tool that offers important information regarding the localization of the sentinel lymph nodes offering important input data to establish a pertinent and personalized therapeutic strategy. The golden standard in body contouring for sentinel lymph node scintigraphy is to use a planar flood source of Cobalt-57 (Co-57) placed behind the patients, against the gamma camera. The purpose of the study was to determine the performance of the procedure using a flood calibration planar phantom filled with aqueous solution of Technetion-99m (Tc-99m) in comparison with the published data in literature where the gold standard was used. The study was conducted in the Department of Nuclear Medicine of Oncology Institute "Prof. Dr. Ion Chiricuţă" Cluj-Napoca in 95 patients, 31 males and 64 females. The localization of the lesions was grouped by anatomical regions as follows: 23 on lower limbs, 17 on upper limbs, 45 on thorax and 10 on abdomen. The calibration flood phantom containing aqueous solution of Tc-99m pertechnetate was used as planar source to visualize the body contour of the patients for a proper anatomic localization of detected sentinel lymph nodes. The radiopharmaceutical uptake in sentinel lymph nodes has been recorded in serial images following peritumoral injection of 1 ml solution of Tc-99m albumin nanocolloids with an activity of 1 mCi (37 MBq). The used protocol consisted in early acquired planar images within 15 minutes post-injection and delayed images at 2-3 hours and when necessary, additional images at 6-7 hours. The acquisition matrix used was 128×128 pixels for an acquisition time of 5 - 7 minutes. The skin projection of the sentinel lymph nodes was marked on the skin and surgical removal of detected sentinel lymph nodes was performed the next day using a gamma probe for detection and measurements. The sentinel lymph nodes were detected in

  14. Sentinel lymph node scintigraphy in cutaneous melanoma using a planar calibration phantom filled with Tc-99m pertechnetate solution for body contouring

    PubMed Central

    PEŞTEAN, CLAUDIU; BĂRBUŞ, ELENA; PICIU, ANDRA; LARG, MARIA IULIA; SABO, ALEXANDRINA; MOISESCU-GOIA, CRISTINA; PICIU, DOINA

    2016-01-01

    Background and aims Melanoma is a disease that has an increasing incidence worldwide. Sentinel lymph node scintigraphy is a diagnostic tool that offers important information regarding the localization of the sentinel lymph nodes offering important input data to establish a pertinent and personalized therapeutic strategy. The golden standard in body contouring for sentinel lymph node scintigraphy is to use a planar flood source of Cobalt-57 (Co-57) placed behind the patients, against the gamma camera. The purpose of the study was to determine the performance of the procedure using a flood calibration planar phantom filled with aqueous solution of Technetion-99m (Tc-99m) in comparison with the published data in literature where the gold standard was used. Methods The study was conducted in the Department of Nuclear Medicine of Oncology Institute “Prof. Dr. Ion Chiricuţă” Cluj-Napoca in 95 patients, 31 males and 64 females. The localization of the lesions was grouped by anatomical regions as follows: 23 on lower limbs, 17 on upper limbs, 45 on thorax and 10 on abdomen. The calibration flood phantom containing aqueous solution of Tc-99m pertechnetate was used as planar source to visualize the body contour of the patients for a proper anatomic localization of detected sentinel lymph nodes. The radiopharmaceutical uptake in sentinel lymph nodes has been recorded in serial images following peritumoral injection of 1 ml solution of Tc-99m albumin nanocolloids with an activity of 1 mCi (37 MBq). The used protocol consisted in early acquired planar images within 15 minutes post-injection and delayed images at 2–3 hours and when necessary, additional images at 6–7 hours. The acquisition matrix used was 128×128 pixels for an acquisition time of 5 – 7 minutes. The skin projection of the sentinel lymph nodes was marked on the skin and surgical removal of detected sentinel lymph nodes was performed the next day using a gamma probe for detection and measurements

  15. Comparing Hp(3) evaluated from the conversion coefficients from air kerma to personal dose equivalent for eye lens dosimetry calibrated on a new cylindrical PMMA phantom

    NASA Astrophysics Data System (ADS)

    Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.

    2017-06-01

    Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.

  16. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    USDA-ARS?s Scientific Manuscript database

    During construction of the whole body counter (WBC) at the Children’s Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Car...

  17. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  18. A Simultaneously Calibration Approach for Installation and Attitude Errors of an INS/GPS/LDS Target Tracker

    PubMed Central

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-01-01

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method. PMID:25658391

  19. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    PubMed

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.

  20. Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations

    DOE PAGES

    Gonçalves, Fabio; Treuhaft, Robert; Law, Beverly; ...

    2017-01-07

    Mapping and monitoring of forest carbon stocks across large areas in the tropics will necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass for calibration and validation purposes. Here, we used field plot data collected in a tropical moist forest in the central Amazon to gain a better understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements. In addition to accounting for sources of error that would be normally expected in conventional biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertaintymore » that are specific to the calibration process and should be taken into account in most remote sensing studies: the error resulting from spatial disagreement between field and remote sensing measurements (i.e., co-location error), and the error introduced when accounting for temporal differences in data acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted for a large fraction of the total variance (>65%) and were identified as important targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement and allometric errors were relatively unimportant when considered alone, combined they accounted for roughly 30% of the total variance on average and should not be ignored. Lastly, our results suggest that a thorough understanding of the sources of error associated with field-measured plot-level biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote sensing approaches.« less

  1. Parameterizations for reducing camera reprojection error for robot-world hand-eye calibration

    USDA-ARS?s Scientific Manuscript database

    Accurate robot-world, hand-eye calibration is crucial to automation tasks. In this paper, we discuss the robot-world, hand-eye calibration problem which has been modeled as the linear relationship AX equals ZB, where X and Z are the unknown calibration matrices composed of rotation and translation ...

  2. Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions

    NASA Astrophysics Data System (ADS)

    Demissie, Yonas K.; Valocchi, Albert J.; Minsker, Barbara S.; Bailey, Barbara A.

    2009-01-01

    SummaryPhysically-based groundwater models (PBMs), such as MODFLOW, contain numerous parameters which are usually estimated using statistically-based methods, which assume that the underlying error is white noise. However, because of the practical difficulties of representing all the natural subsurface complexity, numerical simulations are often prone to large uncertainties that can result in both random and systematic model error. The systematic errors can be attributed to conceptual, parameter, and measurement uncertainty, and most often it can be difficult to determine their physical cause. In this paper, we have developed a framework to handle systematic error in physically-based groundwater flow model applications that uses error-correcting data-driven models (DDMs) in a complementary fashion. The data-driven models are separately developed to predict the MODFLOW head prediction errors, which were subsequently used to update the head predictions at existing and proposed observation wells. The framework is evaluated using a hypothetical case study developed based on a phytoremediation site at the Argonne National Laboratory. This case study includes structural, parameter, and measurement uncertainties. In terms of bias and prediction uncertainty range, the complementary modeling framework has shown substantial improvements (up to 64% reduction in RMSE and prediction error ranges) over the original MODFLOW model, in both the calibration and the verification periods. Moreover, the spatial and temporal correlations of the prediction errors are significantly reduced, thus resulting in reduced local biases and structures in the model prediction errors.

  3. Error budget for a calibration demonstration system for the reflected solar instrument for the climate absolute radiance and refractivity observatory

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-09-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  4. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  5. How Often the Goldmann Applanation Tonometer Should be Checked for Calibration Error?

    PubMed

    Choudhari, Nikhil S; Rao, Harsha L; Ramavath, Suresh; Rekha, Gunturu; Rao, Aparna; Senthil, Sirisha; Garudadri, Chandra S

    2016-11-01

    To evaluate the frequency of Goldmann applanation tonometer (GAT) calibration error (CE) check. One observer at each of the 3 tertiary care ophthalmic centers was involved. The tonometers were checked at baseline for CE. A tonometer was defined as faulty when CE exceeded 2 mm Hg at any testing level. Faulty GATs were repaired in-house. Subsequent CE check was done once per month for 6 months. GATs were divided into 3 groups: group 1 (G1)≤1 year, group 2 (G2)>1 to 10 years, and group 3 (G3)>10 years of usage. In total, 76 slit-lamp mounted GATs were included. The number of GATs in groups 1 to 3 was 19, 36, and 21, respectively. Seven (9.2%) tonometers were faulty at the baseline. None in G1, 5 in G2, and 16 in G3 demonstrated unacceptable CE over the study course (P<0.01). The survival function of G1 tonometers was 1.0 throughout, whereas that (95% confidence interval) of the G2 and G3 tonometers were 0.97 (0.81-0.99) and 0.76 (0.51-0.89) at 1 month, and 0.86 (0.69-0.93) and 0.23 (0.08-0.43) at 6 months, respectively. The probability of CE development increased with increasing age of the tonometer. The frequency of use of the tonometer was not associated with the development of CE (odds ratio=1.00). CE occurs more frequently in older tonometers. Although newer GATs (<1 y old) can be checked twice yearly, GATs older than a year should be checked at least monthly.

  6. Line fiducial material and thickness considerations for ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; McLeod, A. J.; Baxter, John S. H.; Chen, Elvis C. S.; Peters, Terry M.

    2015-03-01

    Ultrasound calibration is a necessary procedure in many image-guided interventions, relating the position of tools and anatomical structures in the ultrasound image to a common coordinate system. This is a necessary component of augmented reality environments in image-guided interventions as it allows for a 3D visualization where other surgical tools outside the imaging plane can be found. Accuracy of ultrasound calibration fundamentally affects the total accuracy of this interventional guidance system. Many ultrasound calibration procedures have been proposed based on a variety of phantom materials and geometries. These differences lead to differences in representation of the phantom on the ultrasound image which subsequently affect the ability to accurately and automatically segment the phantom. For example, taut wires are commonly used as line fiducials in ultrasound calibration. However, at large depths or oblique angles, the fiducials appear blurred and smeared in ultrasound images making it hard to localize their cross-section with the ultrasound image plane. Intuitively, larger diameter phantoms with lower echogenicity are more accurately segmented in ultrasound images in comparison to highly reflective thin phantoms. In this work, an evaluation of a variety of calibration phantoms with different geometrical and material properties for the phantomless calibration procedure was performed. The phantoms used in this study include braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. Conventional B-mode and synthetic aperture images of the phantoms at different positions were obtained. The phantoms were automatically segmented from the ultrasound images using an ellipse fitting algorithm, the centroid of which is subsequently used as a fiducial for calibration. Calibration accuracy was evaluated for these procedures based on the leave-one-out target registration error. It was shown that larger diameter phantoms with lower

  7. Global calibration of terrestrial reference cells and errors involved in using different irradiance monitoring techniques

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.

    1980-01-01

    The feasibility of global calibration of terrestrial reference cells is discussed. A simple, accurate 'secondary' calibration technique based on ratios of test to reference cell currents measured in natural sunlight is described. Different techniques for monitoring incident irradiance during solar cell performance measurements are also examined and assessed, including the techniques of black-body detectors, calibrated reference cells, and the convolution of spectral response with solar irradiance.

  8. The Calibration and error analysis of Shallow water (less than 100m) Multibeam Echo-Sounding System

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2016-12-01

    Multibeam echo-sounders(MBES) have been developed to gather bathymetric and acoustic data for more efficient and more exact mapping of the oceans. This gain in efficiency does not come without drawbacks. Indeed, the finer the resolution of remote sensing instruments, the harder they are to calibrate. This is the case for multibeam echo-sounding systems (MBES). We are no longer dealing with sounding lines where the bathymetry must be interpolated between them to engender consistent representations of the seafloor. We now need to match together strips (swaths) of totally ensonified seabed. As a consequence, misalignment and time lag problems emerge as artifacts in the bathymetry from adjacent or overlapping swaths, particularly when operating in shallow water. More importantly, one must still verify that bathymetric data meet the accuracy requirements. This paper aims to summarize the system integration involved with MBES and identify the various source of error pertaining to shallow water survey (100m and less). A systematic method for the calibration of shallow water MBES is proposed and presented as a set of field procedures. The procedures aim at detecting, quantifying and correcting systematic instrumental and installation errors. Hence, calibrating for variations of the speed of sound in the water column, which is natural in origin, is not addressed in this document. The data which used in calibration will reference International Hydrographic Organization(IHO) and other related standards to compare. This paper aims to set a model in the specific area which can calibrate the error due to instruments. We will construct a procedure in patch test and figure out all the possibilities may make sounding data with error then calculate the error value to compensate. In general, the problems which have to be solved is the patch test's 4 correction in the Hypack system 1.Roll 2.GPS Latency 3.Pitch 4.Yaw. Cause These 4 correction affect each others, we run each survey line

  9. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall-runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error-based weighting of observation and prior information data, local sensitivity analysis, and single-objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  10. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, M.C.; Mehl, S.W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall-runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error-based weighting of observation and prior information data, local sensitivity analysis, and single-objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models. Copyright 2009 by the American Geophysical Union.

  11. Analysis of Calibration Errors for Both Short and Long Stroke White Light Experiments

    NASA Technical Reports Server (NTRS)

    Pan, Xaiopei

    2006-01-01

    This work will analyze focusing and tilt variations introduced by thermal changes in calibration processes. In particular the accuracy limits are presented for common short- and long-stroke experiments. A new, simple, practical calibration scheme is proposed and analyzed based on the SIM PlanetQuest's Micro-Arcsecond Metrology (MAM) testbed experiments.

  12. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors.

    PubMed

    Brousmiche, Sébastien; Souris, Kevin; Orban de Xivry, Jonathan; Lee, John Aldo; Macq, Benoit; Seco, Joao

    2017-08-17

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5\\% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1\\% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations. © 2017 Institute of Physics and Engineering in Medicine.

  13. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters-Part II: Observability/Estimability Analysis.

    PubMed

    Silva, Felipe O; Hemerly, Elder M; Leite Filho, Waldemar C

    2017-02-23

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions.

  14. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis

    PubMed Central

    Silva, Felipe O.; Hemerly, Elder M.; Leite Filho, Waldemar C.

    2017-01-01

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions. PMID:28241494

  15. Weighted partial least squares based on the error and variance of the recovery rate in calibration set

    NASA Astrophysics Data System (ADS)

    Yu, Shaohui; Xiao, Xue; Ding, Hong; Xu, Ge; Li, Haixia; Liu, Jing

    2017-08-01

    The quantitative analysis is very difficult for the emission-excitation fluorescence spectroscopy of multi-component mixtures whose fluorescence peaks are serious overlapping. As an effective method for the quantitative analysis, partial least squares can extract the latent variables from both the independent variables and the dependent variables, so it can model for multiple correlations between variables. However, there are some factors that usually affect the prediction results of partial least squares, such as the noise, the distribution and amount of the samples in calibration set etc. This work focuses on the problems in the calibration set that are mentioned above. Firstly, the outliers in the calibration set are removed by leave-one-out cross-validation. Then, according to two different prediction requirements, the EWPLS method and the VWPLS method are proposed. The independent variables and dependent variables are weighted in the EWPLS method by the maximum error of the recovery rate and weighted in the VWPLS method by the maximum variance of the recovery rate. Three organic matters with serious overlapping excitation-emission fluorescence spectroscopy are selected for the experiments. The step adjustment parameter, the iteration number and the sample amount in the calibration set are discussed. The results show the EWPLS method and the VWPLS method are superior to the PLS method especially for the case of small samples in the calibration set.

  16. Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo - Markov Chain sampling.

    PubMed

    Seichter, Felicia; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris

    2017-01-25

    The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The 'calibration transfer' approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time.

  17. Phantom Pain

    MedlinePlus

    ... horizon Newer approaches to relieve phantom pain include virtual reality goggles. The computer program for the goggles mirrors ... Pain Medicine. In press. Accessed Sept. 15, 2014. Virtual reality therapies for phantom limb pain. European Journal of ...

  18. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources

    SciTech Connect

    Mahadevan, Suvrath; Halverson, Samuel; Ramsey, Lawrence; Venditti, Nick

    2014-05-01

    Modal noise in optical fibers imposes limits on the signal-to-noise ratio (S/N) and velocity precision achievable with the next generation of astronomical spectrographs. This is an increasingly pressing problem for precision radial velocity spectrographs in the near-infrared (NIR) and optical that require both high stability of the observed line profiles and high S/N. Many of these spectrographs plan to use highly coherent emission-line calibration sources like laser frequency combs and Fabry-Perot etalons to achieve precision sufficient to detect terrestrial-mass planets. These high-precision calibration sources often use single-mode fibers or highly coherent sources. Coupling light from single-mode fibers to multi-mode fibers leads to only a very low number of modes being excited, thereby exacerbating the modal noise measured by the spectrograph. We present a commercial off-the-shelf solution that significantly mitigates modal noise at all optical and NIR wavelengths, and which can be applied to spectrograph calibration systems. Our solution uses an integrating sphere in conjunction with a diffuser that is moved rapidly using electrostrictive polymers, and is generally superior to most tested forms of mechanical fiber agitation. We demonstrate a high level of modal noise reduction with a narrow bandwidth 1550 nm laser. Our relatively inexpensive solution immediately enables spectrographs to take advantage of the innate precision of bright state-of-the art calibration sources by removing a major source of systematic noise.

  19. Errors in measurements of 222Rn in methane and carbon dioxide using scintillation cells calibrated for 222Rn in air.

    PubMed

    Jenkins, Phillip H; Burkhart, James F; Camley, Robert E

    2014-03-01

    Scintillation cells are used typically for measuring the concentration of (222)Rn in air and are calibrated for that purpose. However, scintillation cells are sometimes used for measuring (222)Rn in natural gas or carbon dioxide. The counting efficiencies of scintillation cells for measurements of (222)Rn in these gases should be different from those for measuring (222)Rn in air because the ranges of alpha particles emitted by (222)Rn and its progeny are greater in methane and smaller in carbon dioxide than in air. If these effects are not taken into consideration, measurements of (222)Rn in natural gas will be biased high and in carbon dioxide will be biased low. The authors previously investigated the effects of barometric pressure on measurements of (222)Rn in air using scintillation cells. A modeling technique was used in a previous study to calculate theoretical errors that would result if atmospheric pressure were not considered. In the current study, the same modeling technique was used to calculate theoretical errors that would be made for measurements of (222)Rn in methane and carbon dioxide if the calibration for (222)Rn in air were used. Results are presented for four types of scintillation cells of varying geometries and for barometric pressures representative of four elevations ranging from sea level to 1,963 m (6,440 feet). These results indicate that the errors introduced by the ranges of the alpha particles in gases different from air can be significant. Depending on the type of cell and the local pressure, a measurement of (222)Rn in methane may be biased high by 2-7%, while a measurement of (222)Rn in CO2 may be biased low by 15-20% if the calibration for (222)Rn in air is used.

  20. Achromatic-phase-shifting low-coherence digital holography: theoretical analyses of zero-phase-shifting error condition and linear and nonlinear calibrations

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio

    2015-10-01

    Some methods for decreasing a measurement error derived from a phase-shifting error for broadband light in phase-shifting low-coherence digital holography are proposed based on theoretical analysis and numerical calculations. It is well-known that an achromatic-phase shifter based on a rotating polarizer drastically decreases the error, but it is found that a small error remains according to the imperfection of the achromatic-phase shifter. It is also found that an ideal achromatic-phase shifter perfectly eliminates the error only when the light source has a symmetrical spectrum. Furthermore, it is demonstrated that a simple linear calibration method decreases the error in a narrow range of optical path differences if a light source with an asymmetrical spectrum is used. Finally, a nonlinear calibration method that can further decrease the error in a wide range of optical path differences is discussed.

  1. Variation in the calibrated response of LiF, Al2O3, and silicon dosimeters when used for in-phantom measurements of source photons with energies between 30 KeV AND 300 KeV.

    PubMed

    Poudel, Sashi; Currier, Blake; Medich, David C

    2015-04-01

    The MCNP5 radiation transport code was used to quantify changes in the absorbed dose conversion factor for LiF, Al2O3, and silicon-based electronic dosimeters calibrated in-air using standard techniques and summarily used to measure absorbed dose to water when placed in a water phantom. A mono-energetic photon source was modeled at energies between 30 keV and 300 keV for a point-source placed at the center of a water phantom, a point-source placed at the surface of the phantom, and for a 10-cm radial field geometry. Dosimetric calculations were obtained for water, LiF, Al2O3, and silicon at depths of 0.2 cm and 10 cm from the source. These results were achieved using the MCNP5 *FMESH photon energy-fluence tally, which was coupled with the appropriate DE/DF card for each dosimetric material studied to convert energy-fluence into the absorbed dose. The dosimeter's absorbed dose conversion factor was calculated as a ratio of the absorbed dose to water to that of the dosimeter measured at a specified phantom depth. The dosimeter's calibration value also was obtained. Based on these results, the absorbed dose conversion factor for a LiF dosimeter was found to deviate from its calibration value by up to 9%, an Al2O3 dosimeter by 43%, and a silicon dosimeter by 61%. These data therefore can be used to obtain LiF, Al2O3, and silicon dosimeter correction factors for mono-energetic and poly-energetic sources at measurement depths up to 10 cm under the irradiation geometries investigated herein.

  2. Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors

    NASA Astrophysics Data System (ADS)

    Khodja, Mohamed; Belouchrani, Adel; Abed-Meraim, Karim

    2012-12-01

    This article deals with the application of Spatial Time-Frequency Distribution (STFD) to the direction finding problem using the Multiple Signal Classification (MUSIC)algorithm. A comparative performance analysis is performed for the method under consideration with respect to that using data covariance matrix when the received array signals are subject to calibration errors in a non-stationary environment. An unified analytical expression of the Direction Of Arrival (DOA) error estimation is derived for both methods. Numerical results show the effect of the parameters intervening in the derived expression on the algorithm performance. It is particularly observed that for low Signal to Noise Ratio (SNR) and high Signal to sensor Perturbation Ratio (SPR) the STFD method gives better performance, while for high SNR and for the same SPR both methods give similar performance.

  3. Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study

    PubMed Central

    Agogo, George O.; van der Voet, Hilko; Veer, Pieter van’t; Ferrari, Pietro; Leenders, Max; Muller, David C.; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A.; Boshuizen, Hendriek

    2014-01-01

    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model. PMID:25402487

  4. The Influence of Item Calibration Error on Variable-Length Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2013-01-01

    Variable-length computerized adaptive testing (VL-CAT) allows both items and test length to be "tailored" to examinees, thereby achieving the measurement goal (e.g., scoring precision or classification) with as few items as possible. Several popular test termination rules depend on the standard error of the ability estimate, which in turn depends…

  5. The Influence of Item Calibration Error on Variable-Length Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2013-01-01

    Variable-length computerized adaptive testing (VL-CAT) allows both items and test length to be "tailored" to examinees, thereby achieving the measurement goal (e.g., scoring precision or classification) with as few items as possible. Several popular test termination rules depend on the standard error of the ability estimate, which in turn depends…

  6. An automated construction of error models for uncertainty quantification and model calibration

    NASA Astrophysics Data System (ADS)

    Josset, L.; Lunati, I.

    2015-12-01

    To reduce the computational cost of stochastic predictions, it is common practice to rely on approximate flow solvers (or «proxy»), which provide an inexact, but computationally inexpensive response [1,2]. Error models can be constructed to correct the proxy response: based on a learning set of realizations for which both exact and proxy simulations are performed, a transformation is sought to map proxy into exact responses. Once the error model is constructed a prediction of the exact response is obtained at the cost of a proxy simulation for any new realization. Despite its effectiveness [2,3], the methodology relies on several user-defined parameters, which impact the accuracy of the predictions. To achieve a fully automated construction, we propose a novel methodology based on an iterative scheme: we first initialize the error model with a small training set of realizations; then, at each iteration, we add a new realization both to improve the model and to evaluate its performance. More specifically, at each iteration we use the responses predicted by the updated model to identify the realizations that need to be considered to compute the quantity of interest. Another user-defined parameter is the number of dimensions of the response spaces between which the mapping is sought. To identify the space dimensions that optimally balance mapping accuracy and risk of overfitting, we follow a Leave-One-Out Cross Validation. Also, the definition of a stopping criterion is central to an automated construction. We use a stability measure based on bootstrap techniques to stop the iterative procedure when the iterative model has converged. The methodology is illustrated with two test cases in which an inverse problem has to be solved and assess the performance of the method. We show that an iterative scheme is crucial to increase the applicability of the approach. [1] Josset, L., and I. Lunati, Local and global error models for improving uncertainty quantification, Math

  7. The solar vector error within the SNPP Common GEO code, the correction, and the effects on the VIIRS SDR RSB calibration

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon; Anderson, Samuel; Lei, Ning; Efremova, Boryana; Wang, Zhipeng; McIntire, Jeffrey; Chiang, Kwofu; Xiong, Xiaoxiong

    2014-11-01

    Due to a software error, the solar and lunar vectors reported in the on-board calibrator intermediate product (OBC-IP) files for SNPP VIIRS are incorrect. The magnitude of the error is about 0.2 degree, and the magnitude is increasing by about 0.01 degree per year. This error, although small, has an effect on the radiometric calibration of the reflective solar bands (RSB) because accurate solar angles are required for calculating the screen transmission functions and for calculating the illumination of the Solar Diffuser panel. In this paper, we describe the error in the Common GEO code, and how it may be fixed. We present evidence for the error from within the OBC-IP data. We also describe the effects of the solar vector error on the RSB calibration and the Sensor Data Record (SDR). In order to perform this evaluation, we have reanalyzed the yaw-maneuver data to compute the vignetting functions required for the on-orbit SD RSB radiometric calibration. After the reanalysis, we find effect of up to 0.5% on the shortwave infrared (SWIR) RSB calibration.

  8. Heat flux sensor calibration using noninteger system identification: Theory, experiment, and error analysis

    SciTech Connect

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Loehle, Stefan

    2009-02-15

    This paper concerns the improvement of the calibration technique of null point calorimeters generally used in high enthalpy plasma flows. Based on the linearity assumption, this technique leads to calculate the impulse response that relates the heat flux at the tip of the sensor according to the temperature at the embedded thermocouple close to the heated surface. The noninteger system identification (NISI) procedure is applied. The NISI technique had been well described in previous study. The present work focuses on the accuracy of the identified system in terms of absorbed heat flux during the calibration experiment and of the estimated parameters in the model. The impulse response is thus calculated along with its associated standard deviation. Furthermore, this response is compared with that of the one-dimensional semi-infinite medium, which is classically used in practical applications. The asymptotic behavior of the identified system at the short times is analyzed for a better understanding of the noninteger identified system. Finally, the technique was applied to a new sensor geometry that has been developed particularly for high enthalpy plasma flows and it is shown that the method can be applied to any geometry suitable for a certain test configuration.

  9. Assessment of Technical and Biological Parameters of Volumetric Quantitative Computed Tomography in the Foot: A Phantom Study

    PubMed Central

    Smith, Kirk E.; Whiting, Bruce R.; Reiker, Gregory G.; Commean, Paul K.; Sinacore, David R.; Prior, Fred W.

    2012-01-01

    Few studies exist for bone densitometry of the whole foot. A phantom study demonstrated the sources of error and necessary controls for accurate quantitative computed tomography of the foot. A loss in bone mineral density in the small foot bones may be an early indicator of diabetic foot complications. Purpose Volumetric quantitative computed tomography (vQCT) facilitates assessment of pedal bone osteopenia, which in the presence of peripheral neuropathy may well be an early sign of diabetic foot deformity. To date, sources and magnitudes of error in foot vQCT measurements have not been reported. Methods Foot phantoms were scanned using a 64-slice CT scanner. Energy (kVp), table height, phantom size and orientation, location of “bone” inserts, insert material, location of calibration phantom, and reconstruction kernel were systematically varied during scan acquisition. Results Energy (kVp) and distance from the isocenter (table height) resulted in relative attenuation changes from −5% to 22% and −5% to 0%, respectively, and average bone mineral density (BMD) changes from −0.9% to 0.0% and −1.1% to 0.3%, respectively, compared to a baseline 120 kVp scan performed at the isocenter. BMD compared to manufacturer specified values ranged on average from −2.2% to 0.9%. Phantom size and location of bone-equivalent material inserts resulted in relative attenuation changes of −1.2% to 1.4% compared to the medium sized phantom. Conclusion This study demonstrated that variations in kVp and table height can be controlled using a calibration phantom scanned at the same energy and height as a foot phantom; however, error due to soft tissue thickness and location of bones within a foot cannot be controlled using a calibration phantom alone. PMID:22147208

  10. Backward-gazing method for heliostats shape errors measurement and calibration

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-06-01

    The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.

  11. SU-E-I-24: Design and Fabrication of a Multi-Functional Neck and Thyroid Phantom for Medical Dosimetry and Calibration

    SciTech Connect

    Mehdizadeh, S; Sina, S; Karimipourfard, M; Lotfalizadeh, F; Faghihi, R; Babaei, A

    2014-06-01

    Purpose: The purpose of this study is the design and fabrication of a multipurpose anthropomorphic neck and thyroid phantom for use in medical applications (i.e. quality control of images in nuclear medicine, and dosimetry). Methods: The designed neck phantom is composed of seven elliptic cylindrical slices with semi-major axis of 14 and semi-minor axis of 12.5 cm, each having the thickness of 2cm. Thyroid gland, bony part of the neck, and the wind pipe were also built inside the neck phantom. Results: The phantom contains some removable plugs,inside and at its surface to accommodate the TLD chips with different shapes and dimensions, (i.e. rod, cylindrical and cubical TLD chips)for the purpose of medical dosimetry (i.e. in radiology, radiotherapy, and nuclear medicine). For the purpose of quality control of images in nuclear medicine, the removable thyroid gland was built to accommodate the radioactive iodine. The female and male thyroid glands were built in two sizes separately. Conclusion: The designed phantom is a multi-functional phantom which is applicable for dosimetry in diagnostic radiology, radiotherapy, and quality control of images in nuclear medicine.

  12. Novel anthropomorphic hip phantom corrects systemic interscanner differences in proximal femoral vBMD

    NASA Astrophysics Data System (ADS)

    Bonaretti, S.; Carpenter, R. D.; Saeed, I.; Burghardt, A. J.; Yu, L.; Bruesewitz, M.; Khosla, S.; Lang, T.

    2014-12-01

    Quantitative computed tomography (QCT) is increasingly used in osteoporosis studies to assess volumetric bone mineral density (vBMD), bone quality and strength. However, QCT is confronted by technical issues in the clinical research setting, such as potentially confounding effects of body size on vBMD measurements and lack of standard approaches to scanner cross-calibration, which affects measurements of vBMD in multicenter settings. In this study, we addressed systematic inter-scanner differences and subject-dependent body size errors using a novel anthropomorphic hip phantom, containing a calibration hip to estimate correction equations, and a contralateral test hip to assess the quality of the correction. We scanned this phantom on four different scanners and we applied phantom-derived corrections to in vivo images of 16 postmenopausal women scanned on two scanners. From the phantom study, we found that vBMD decreased with increasing phantom size in three of four scanners and that inter-scanner variations increased with increasing phantom size. In the in vivo study, we observed that inter-scanner corrections reduced systematic inter-scanner mean vBMD differences but that the inter-scanner precision error was still larger than expected from known intra-scanner precision measurements. In conclusion, inter-scanner corrections and body size influence should be considered when measuring vBMD from QCT images.

  13. Radio metric errors due to mismatch and offset between a DSN antenna beam and the beam of a troposphere calibration instrument

    NASA Technical Reports Server (NTRS)

    Linfield, R. P.; Wilcox, J. Z.

    1993-01-01

    Two components of the error of a troposphere calibration measurement were quantified by theoretical calculations. The first component is a beam mismatch error, which occurs when the calibration instrument senses a conical volume different from the cylindrical volume sampled by a Deep Space Network (DSN) antenna. The second component is a beam offset error, which occurs if the calibration instrument is not mounted on the axis of the DSN antenna. These two error sources were calculated for both delay (e.g., VLBI) and delay rate (e.g., Doppler) measurements. The beam mismatch error for both delay and delay rate drops rapidly as the beamwidth of the troposphere calibration instrument (e.g., a water vapor radiometer or an infrared Fourier transform spectrometer) is reduced. At a 10-deg elevation angle, the instantaneous beam mismatch error is 1.0 mm for a 6-deg beamwidth and 0.09 mm for a 0.5-deg beam (these are the full angular widths of a circular beam with uniform gain out to a sharp cutoff). Time averaging for 60-100 sec will reduce these errors by factors of 1.2-2.2. At a 20-deg elevation angle, the lower limit for current Doppler observations, the beam-mismatch delay rate error is an Allan standard deviation over 100 sec of 1.1 x 10(exp -14) with a 4-deg beam and 1.3 x 10(exp -l5) for a 0.5-deg beam. A 50-m beam offset would result in a fairly modest (compared to other expected error sources) delay error (less than or equal to 0.3 mm for 60-sec integrations at any elevation angle is greater than or equal to 6 deg). However, the same offset would cause a large error in delay rate measurements (e.g., an Allan standard deviation of 1.2 x 10(exp -14) over 100 sec at a 20-deg elevation angle), which would dominate over other known error sources if the beamwidth is 2 deg or smaller. An on-axis location is essential for accurate troposphere calibration of delay rate measurements. A half-power beamwidth (for a beam with a tapered gain profile) of 1.2 deg or smaller is

  14. Calibration and Systematic Error Analysis for the COBE DMR 4 Year Sky Maps

    NASA Astrophysics Data System (ADS)

    Kogut, A.; Banday, A. J.; Bennett, C. L.; Gorski, K. M.; Hinshaw, G.; Jackson, P. D.; Keegstra, P.; Lineweaver, C.; Smoot, G. F.; Tenorio, L.; Wright, E. L.

    1996-10-01

    The Differential Microwave Radiometers (DMR) instrument aboard the Cosmic Background Explorer (CO BE) has mapped the full microwave sky to mean sensitivity 26 μK per 7° field of view. The absolute calibration is determined to 0.7% with drifts smaller than 0.2% per year. We have analyzed both the raw differential data and the pixelized sky maps for evidence of contaminating sources such as solar system foregrounds, instrumental susceptibilities, and artifacts from data recovery and processing. Most systematic effects couple only weakly to the sky maps. The largest uncertainties in the maps result from the instrument susceptibility to Earth's magnetic field, microwave emission from Earth, and upper limits to potential effects at the spacecraft spin period. Systematic effects in the maps are small compared to either the noise or the celestial signal: the 95% confidence upper limit for the pixel-pixel rms from all identified systematics is less than 6 μK in the worst channel. A power spectrum analysis of the (A - B)/2 difference maps shows no evidence for additional undetected systematic effects.

  15. Calibration and systematic error analysis for the COBE(1) DMR 4year sky maps

    SciTech Connect

    Kogut, A.; Banday, A.J.; Bennett, C.L.; Gorski, K.M.; Hinshaw,G.; Jackson, P.D.; Keegstra, P.; Lineweaver, C.; Smoot, G.F.; Tenorio,L.; Wright, E.L.

    1996-01-04

    The Differential Microwave Radiometers (DMR) instrument aboard the Cosmic Background Explorer (COBE) has mapped the full microwave sky to mean sensitivity 26 mu K per 7 degrees held of view. The absolute calibration is determined to 0.7 percent with drifts smaller than 0.2 percent per year. We have analyzed both the raw differential data and the pixelized sky maps for evidence of contaminating sources such as solar system foregrounds, instrumental susceptibilities, and artifacts from data recovery and processing. Most systematic effects couple only weakly to the sky maps. The largest uncertainties in the maps result from the instrument susceptibility to Earth's magnetic field, microwave emission from Earth, and upper limits to potential effects at the spacecraft spin period. Systematic effects in the maps are small compared to either the noise or the celestial signal: the 95 percent confidence upper limit for the pixel-pixel rms from all identified systematics is less than 6 mu K in the worst channel. A power spectrum analysis of the (A-B)/2 difference maps shows no evidence for additional undetected systematic effects.

  16. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  17. Synthetic aperture imaging in ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.

    2014-03-01

    Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica­ tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu­ rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.

  18. Multi-Modality Phantom Development

    SciTech Connect

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  19. Using a Blackbody to Calculate Net-longwave Responsivity of Shortwave Solar Pyranometers to Correct for Their Thermal Offset Error During Outdoor Calibration Using the Component Sum Method

    SciTech Connect

    Reda, I.; Hickey, J. R.; Long, Charles N.; Myers, D.; Stoffel, T.; Wilcox, S.; Michalsky, Joseph J.; Dutton, Ellsworth G.; Nelson, D. W.

    2005-10-10

    Thermopile pyranometers’ thermal offset has been recognized since the pyranometer’s inception. This offset is often overlooked or ignored because its magnitude is small compared to the overall solar signal at higher irradiance. With the demand of smaller uncertainty in measuring solar radiation, recent publications have described a renewed interest in this offset, its magnitude, and its effect on solar measurement networks for atmospheric science and solar energy applications. Recently, it was suggested that the magnitude of the pyranometer thermal offset is the same if the pyranometer is shaded or unshaded. Therefore, calibrating a pyranometer using a method known as the shade/unshade method would result in accurate responsivity calculations, because the thermal offset error is canceled. When using the common summation calibration method, or component sum, for the pyranometer calibration, the thermal offset error, which is typically negative when the sky is cloudless, does not cancel, resulting in an underestimated shortwave responsivity. Most operational pyranometers that are in use for solar radiation measuring networks are calibrated using the summation method since it is possible to calibrate many pyranometers simultaneously. From this arises the importance of correcting the summation method results to account for the thermal offset error. In this article, we describe a method of using a blackbody system to calculate the net-longwave responsivity of pyranometers, which is largely responsible for the offset error. This longwave responsivity is then used to correct the pyranometer’s shortwave responsivity during the summation method calibrations and thereby substantially reduces the effect of the offset error on the final pyranometer responsivity. Practical procedures for performing this calibration procedure along with its limitations and remaining uncertainties are given.

  20. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  1. Calibration of symmetric and non-symmetric errors for interferometry of ultra-precise imaging systems

    SciTech Connect

    Phillion, D W; Sommargren, G E; Johnson, M A; Decker, T A; Taylor, J S; Gomie, Y; Kakuchi, O; Takeuchi, S

    2005-06-29

    The azimuthal Zernike coefficients for shells of Zernike functions with shell numbers nerrors would then be known. Physically, the measurements in circles A and B are accomplished by rotating each pinhole aligner about an aligned axis, then about an oblique axis. Absolute measurement accuracies better than 0.2 nm were achieved.

  2. A zero-augmented generalized gamma regression calibration to adjust for covariate measurement error: A case of an episodically consumed dietary intake.

    PubMed

    Agogo, George O

    2017-01-01

    Measurement error in exposure variables is a serious impediment in epidemiological studies that relate exposures to health outcomes. In nutritional studies, interest could be in the association between long-term dietary intake and disease occurrence. Long-term intake is usually assessed with food frequency questionnaire (FFQ), which is prone to recall bias. Measurement error in FFQ-reported intakes leads to bias in parameter estimate that quantifies the association. To adjust for bias in the association, a calibration study is required to obtain unbiased intake measurements using a short-term instrument such as 24-hour recall (24HR). The 24HR intakes are used as response in regression calibration to adjust for bias in the association. For foods not consumed daily, 24HR-reported intakes are usually characterized by excess zeroes, right skewness, and heteroscedasticity posing serious challenge in regression calibration modeling. We proposed a zero-augmented calibration model to adjust for measurement error in reported intake, while handling excess zeroes, skewness, and heteroscedasticity simultaneously without transforming 24HR intake values. We compared the proposed calibration method with the standard method and with methods that ignore measurement error by estimating long-term intake with 24HR and FFQ-reported intakes. The comparison was done in real and simulated datasets. With the 24HR, the mean increase in mercury level per ounce fish intake was about 0.4; with the FFQ intake, the increase was about 1.2. With both calibration methods, the mean increase was about 2.0. Similar trend was observed in the simulation study. In conclusion, the proposed calibration method performs at least as good as the standard method.

  3. A zero-augmented generalized gamma regression calibration to adjust for covariate measurement error: A case of an episodically consumed dietary intake

    PubMed Central

    Agogo, George O.

    2017-01-01

    Measurement error in exposure variables is a serious impediment in epidemiological studies that relate exposures to health outcomes. In nutritional studies, interest could be in the association between long-term dietary intake and disease occurrence. Long-term intake is usually assessed with food frequency questionnaire (FFQ), which is prone to recall bias. Measurement error in FFQ-reported intakes leads to bias in parameter estimate that quantifies the association. To adjust for bias in the association, a calibration study is required to obtain unbiased intake measurements using a short-term instrument such as 24-hour recall (24HR). The 24HR intakes are used as response in regression calibration to adjust for bias in the association. For foods not consumed daily, 24HR-reported intakes are usually characterized by excess zeroes, right skewness, and heteroscedasticity posing serious challenge in regression calibration modeling. We proposed a zero-augmented calibration model to adjust for measurement error in reported intake, while handling excess zeroes, skewness, and heteroscedasticity simultaneously without transforming 24HR intake values. We compared the proposed calibration method with the standard method and with methods that ignore measurement error by estimating long-term intake with 24HR and FFQ-reported intakes. The comparison was done in real and simulated datasets. With the 24HR, the mean increase in mercury level per ounce fish intake was about 0.4; with the FFQ intake, the increase was about 1.2. With both calibration methods, the mean increase was about 2.0. Similar trend was observed in the simulation study. In conclusion, the proposed calibration method performs at least as good as the standard method. PMID:27704599

  4. Influence of peak-broadening and interdetector volume error on size-exclusive chromatographic analysis with dual viscometric-concentration detection using the universal calibration method.

    PubMed

    Netopilík, M

    2001-04-27

    The effect of peak-broadening and error in interdetector volume on the local calibration curve and experimental molecular-mass averages obtained by size-exclusion chromatography (SEC) with dual concentration/viscosity detection, and determination of molecular mass using the universal calibration (UC) method, is theoretically examined using a polymer sample with a molecular-mass distribution (MMD) approximated by the log-normal function. Although peak-broadening is often neglected, its effect on the slope of the local calibration curve and, consequently, on the experimentally obtained values of the weight-to-number average ratio is large. To obtain the right values of these parameters, a numerical correction is usually recommended. While using the UC method, the relationships between the extent of peak broadening, calibration slopes and interdetector volume are complex and can contribute to the occurrence of undiscovered errors. For this reason, an understanding of this problem, using a model, is necessary. The results of the UC method are compared with those obtained using dual-detection with known Mark-Houwink-Kuhn-Sakurada parameters (MHKS method), light-scattering (LS)/concentration detection as well as with the results obtained using conventional calibration. Due to peak-broadening, the slope of a local calibration curve and the weight-to-number average ratio, (Mw/Mn)", obtained using the UC method, increase compared to the theoretical values, whereas they decrease using the MHKS or LS methods. The increase when using the UC method is even larger compared to evaluation using conventional calibration. The effect of the error in interdetector volume on the slopes of local calibrations and the weight-to-number average ratios is opposite in the UC method to that found using the MHKS and LS methods.

  5. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  6. A Full-Envelope Air Data Calibration and Three-Dimensional Wind Estimation Method Using Global Output-Error Optimization and Flight-Test Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2012-01-01

    A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.

  7. Geometric calibration using bundle adjustment for cone-beam computed tomography devices

    NASA Astrophysics Data System (ADS)

    Ladikos, Alexander; Wein, Wolfgang

    2012-03-01

    In this paper we present a novel geometric calibration procedure for cone-beam computed tomography (CBCT) devices with arbitrary geometry using a calibration phantom containing steel beads. In contrast to typical calibration procedures the position of the beads does not have to be known precisely as it is also recovered during calibration. In addition, the arrangement of the beads inside the phantom is very flexible and does not have to follow hard constraints. The bead centers are extracted with subpixel precision from the projection images while taking the absorption properties of the calibration phantom into account. Based on the recovered center positions and phantom geometry, the projection geometry is computed for every projection image. This geometry can be arbitrary and does not have to lie on a specific path, e.g. a circle. This allows to calibrate devices with reproducible mechanical errors in the gantry movement. We present an evaluation of the point extraction and the calibration procedure on ground-truth data and show reconstruction results on a device calibrated using the proposed calibration method.

  8. An anatomically realistic brain phantom for quantification with positron tomography

    SciTech Connect

    Wong, D.F.; Links, J.M.; Molliver, M.E.; Hengst, T.C.; Clifford, C.M.; Buhle, L.; Bryan, M.; Stumpf, M.; Wagner, H.N. Jr.

    1984-01-01

    Phantom studies are useful in assessing and maximizing the accuracy and precision of quantification of absolute activity, assessing errors associated with patient positioning, and dosimetry. Most phantoms are limited by the use of simple shapes, which do not adequately reflect real anatomy. The authors have constructed an anatomically realistic life-size brain phantom for positron tomography studies. The phantom consists of separately fillable R + L caudates, R + L putamens, R + L globus passidus and cerebellum. These structures are contained in proper anatomic orientation within a fillable cerebrum. Solid ventricles are also present. The entire clear vinyl cerebrum is placed in a human skull. The internal brain structures were fabricated from polyester resin, with dimensions, shapes and sizes of the structures obtained from digitized contours of brain slices in the U.C.S.D. computerized brain atlas. The structures were filled with known concentrations of Ga-68 in water and scanned with our NeuroECAT. The phantom was aligned in the scanner for each structure, such that the tomographic slice passed through that structure's center. After calibration of the scanner with a standard phantom for counts/pixel uCi/cc conversion, the measured activity concentrations were compared with the actual concentrations. The ratio of measured to actual activity concentration (''recovery coefficient'') for the caudate was 0.33; for the putamen 0.42. For comparison, the ratio for spheres of diameters 9.5, 16,19 and 25.4 mm was 0.23, 0.54, 0.81, and 0.93. This phantom provides more realistic assessment of performance and allows calculation of correction factors.

  9. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  10. Tissue-like phantoms

    DOEpatents

    Frangioni, John V.; De Grand, Alec M.

    2007-10-30

    The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.

  11. Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Kiszely, Paul; Foster, John V.

    2011-01-01

    As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.

  12. Measuring water vapor isotopes using Cavity Ring-Down Spectroscopy: improving data quality by understanding systematic errors and calibration techniques

    NASA Astrophysics Data System (ADS)

    Dennis, Kate J.; Jacobson, Gloria

    2014-05-01

    do exist when making ambient water vapor isotope measurements via CRDS and these should be addressed to ensure data integrity. Here we review a number of systematic errors introduced when making ambient water vapor measurements using CRDS, and where appropriate, provide suggestions for how to correct for them. These include: the dependence of reported delta values on water vapor concentration, the interference of CH4 on water spectra, achieving reliable low humidity measurements ([H2O] < 5,000 ppm), and calibration for both absolute accuracy and instrument drift. We will also demonstrate the relationship between calibration frequency and precision, and make recommendations for ongoing calibration and maintenance. Our aim is to improve the quality of data collected and support the continued use of water vapor isotope measurements by the research community. [1] Noone, D., Galewsky, J., et al. (2011), JGR, 116, D22113. [2] Galewsky, J., Rella, C., et al. (2011), GRL, 38, L17803. [3] Tremoy, G., Vimeux, F., et al. (2012), GRL, 39, L08805. [4] Sturm, C., Zhang, Q. and Noone, D. (2010), Clim. Past, 6, 115-129.

  13. Automating quality assurance of digital linear accelerators using a radioluminescent phosphor coated phantom and optical imaging

    NASA Astrophysics Data System (ADS)

    Jenkins, Cesare H.; Naczynski, Dominik J.; Yu, Shu-Jung S.; Yang, Yong; Xing, Lei

    2016-09-01

    Performing mechanical and geometric quality assurance (QA) tests for medical linear accelerators (LINAC) is a predominantly manual process that consumes significant time and resources. In order to alleviate this burden this study proposes a novel strategy to automate the process of performing these tests. The autonomous QA system consists of three parts: (1) a customized phantom coated with radioluminescent material; (2) an optical imaging system capable of visualizing the incidence of the radiation beam, light field or lasers on the phantom; and (3) software to process the captured signals. The radioluminescent phantom, which enables visualization of the radiation beam on the same surface as the light field and lasers, is placed on the couch and imaged while a predefined treatment plan is delivered from the LINAC. The captured images are then processed to self-calibrate the system and perform measurements for evaluating light field/radiation coincidence, jaw position indicators, cross-hair centering, treatment couch position indicators and localizing laser alignment. System accuracy is probed by intentionally introducing errors and by comparing with current clinical methods. The accuracy of self-calibration is evaluated by examining measurement repeatability under fixed and variable phantom setups. The integrated system was able to automatically collect, analyze and report the results for the mechanical alignment tests specified by TG-142. The average difference between introduced and measured errors was 0.13 mm. The system was shown to be consistent with current techniques. Measurement variability increased slightly from 0.1 mm to 0.2 mm when the phantom setup was varied, but no significant difference in the mean measurement value was detected. Total measurement time was less than 10 minutes for all tests as a result of automation. The system’s unique features of a phosphor-coated phantom and fully automated, operator independent self-calibration offer the

  14. The DOE in-vivo phantom library program

    SciTech Connect

    Olsen, P.C.

    1993-12-31

    The use of improved in vivo bioassay calibration phantoms in recent years has led to significant advances in the detection capabilities of in vivo counting laboratories, and increased ability to cross-calibrate various systems and laboratories for standardization purposes in DOE programs. The cost of these phantoms are significant, though, and this inhibits successful intercomparisons for improving calibrations. A recent CIRRPC Workshop on Internal Dosimetry in April 1992 recommended establishing intercomparison programs for in vivo measurements and improved phantom designs. Improved phantoms, developed at PNL with NIST-traceable source reference material loadings, proven solid tissue substitutes, and extensive documentation on construction, activity, and physical and chemical composition are available through a newly operational library. These phantoms use original LLNL molds and existing BOMAB phantom shells, but with improved tissue substitutes. All phantom materials have been extensively tested for their chemical, physical, and radiation transmission properties, and are tailored for identical transmission characteristics at the photon energies of concern. PNL has been pursuing approval from NIST for {open_quotes}certification{close_quotes} of these phantoms. The DOE Phantom Library loans organ, whole-body, and through cooperation with USTR, an Am-241 skeletal phantom to DOE contractor laboratories without cost. Only the price of shipping the phantom is requested. This paper will discuss the operation of the library, the current and planned holdings, the quality of phantom construction, and planning for NIST cooperation in certifying these phantoms.

  15. Cumulative sum quality control for calibrated breast density measurements

    SciTech Connect

    Heine, John J.; Cao Ke; Beam, Craig

    2009-12-15

    Purpose: Breast density is a significant breast cancer risk factor. Although various methods are used to estimate breast density, there is no standard measurement for this important factor. The authors are developing a breast density standardization method for use in full field digital mammography (FFDM). The approach calibrates for interpatient acquisition technique differences. The calibration produces a normalized breast density pixel value scale. The method relies on first generating a baseline (BL) calibration dataset, which required extensive phantom imaging. Standardizing prospective mammograms with calibration data generated in the past could introduce unanticipated error in the standardized output if the calibration dataset is no longer valid. Methods: Sample points from the BL calibration dataset were imaged approximately biweekly over an extended timeframe. These serial samples were used to evaluate the BL dataset reproducibility and quantify the serial calibration accuracy. The cumulative sum (Cusum) quality control method was used to evaluate the serial sampling. Results: There is considerable drift in the serial sample points from the BL calibration dataset that is x-ray beam dependent. Systematic deviation from the BL dataset caused significant calibration errors. This system drift was not captured with routine system quality control measures. Cusum analysis indicated that the drift is a sign of system wear and eventual x-ray tube failure. Conclusions: The BL calibration dataset must be monitored and periodically updated, when necessary, to account for sustained system variations to maintain the calibration accuracy.

  16. New polymer-based phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yasushi; Iwazaki, Hideaki; Ida, Taiichiro; Nishi, Taiji; Tanikawa, Yukari; Nitta, Naotaka

    2014-03-01

    We will report newly developed polymer-based phantom for photoacoustic (PA) imaging systems. Phantoms are important for performance evaluation and calibration of new modalities; however, there is no established method for making phantoms with no long-term change. We have developed skin mimicking phantoms simulating both optical and acoustic properties (i.e. optical scattering and absorption coefficients, and sound velocity). Furthermore, the phantoms are able to give accurate simulation of blood vessels by Inkjet-printing. Newly developed phantoms are consisted of castor oil included acrylic block copolymer and we can fabricate 0.8mm or less thick sheets and pile them using their self-adhesiveness.

  17. Error estimates for ocean surface winds: Applying Desroziers diagnostics to the Cross-Calibrated, Multi-Platform analysis of wind speed

    NASA Astrophysics Data System (ADS)

    Hoffman, Ross N.; Ardizzone, Joseph V.; Leidner, S. Mark; Smith, Deborah K.; Atlas, Robert M.

    2013-04-01

    The cross-calibrated, multi-platform (CCMP) ocean surface wind project [Atlas et al., 2011] generates high-quality, high-resolution, vector winds over the world's oceans beginning with the 1987 launch of the SSM/I F08, using Remote Sensing Systems (RSS) microwave satellite wind retrievals, as well as in situ observations from ships and buoys. The variational analysis method [VAM, Hoffman et al., 2003] is at the center of the CCMP project's analysis procedures for combining observations of the wind. The VAM was developed as a smoothing spline and so implicitly defines the background error covariance by means of several constraints with adjustable weights, and does not provide an explicit estimate of the analysis error. Here we report on our research to develop uncertainty estimates for wind speed for the VAM inputs and outputs, i.e., for the background (B), the observations (O) and the analysis (A) wind speed, based on the Desroziers et al. [2005] diagnostics (DD hereafter). The DD are applied to the CCMP ocean surface wind data sets to estimate wind speed errors of the ECMWF background, the microwave satellite observations and the resulting CCMP analysis. The DD confirm that the ECMWF operational surface wind speed error standard deviations vary with latitude in the range 0.7-1.5 m/s and that the cross-calibrated Remote Sensing Systems (RSS) wind speed retrievals standard deviations are in the range 0.5-0.8 m/s. Further the estimated CCMP analysis wind speed standard deviations are in the range 0.2-0.4 m/s. The results suggests the need to revise the parameterization of the errors due to the FGAT (first guess at the appropriate time) procedure. Errors for wind speeds < 16 m/s are homogeneous, but for the relatively rare, but critical higher wind speed situations, errors are much larger. Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, A cross-calibrated, multi-platform ocean surface wind velocity product for

  18. A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study.

    PubMed

    Ferrari, P; Roddam, A; Fahey, M T; Jenab, M; Bamia, C; Ocké, M; Amiano, P; Hjartåker, A; Biessy, C; Rinaldi, S; Huybrechts, I; Tjønneland, A; Dethlefsen, C; Niravong, M; Clavel-Chapelon, F; Linseisen, J; Boeing, H; Oikonomou, E; Orfanos, P; Palli, D; Santucci de Magistris, M; Bueno-de-Mesquita, H B; Peeters, P H M; Parr, C L; Braaten, T; Dorronsoro, M; Berenguer, T; Gullberg, B; Johansson, I; Welch, A A; Riboli, E; Bingham, S; Slimani, N

    2009-11-01

    Within the European Prospective Investigation into Cancer and Nutrition (EPIC) study, the performance of 24-h dietary recall (24-HDR) measurements as reference measurements in a linear regression calibration model is evaluated critically at the individual (within-centre) and aggregate (between-centre) levels by using unbiased estimates of urinary measurements of nitrogen and potassium intakes. Between 1995 and 1999, 1072 study subjects (59% women) from 12 EPIC centres volunteered to collect 24-h urine samples. Log-transformed questionnaire, 24-HDR and urinary measurements of nitrogen and potassium intakes were analysed in a multivariate measurement error model to estimate the validity of coefficients and error correlations in self-reported dietary measurements. In parallel, correlations between means of 24-HDR and urinary measurements were computed. Linear regression calibration models were used to estimate the regression dilution (attenuation) factors. After adjustment for sex, centre, age, body mass index and height, the validity coefficients for 24-HDRs were 0.285 (95% confidence interval: 0.194, 0.367) and 0.371 (0.291, 0.446) for nitrogen and potassium intakes, respectively. The attenuation factors estimated in a linear regression calibration model were 0.368 (0.228, 0.508) for nitrogen and 0.500 (0.361, 0.639) for potassium intakes; only the former was different from the estimate obtained using urinary measurements in the measurement error model. The aggregate-level correlation coefficients between means of urinary and 24-HDR measurements were 0.838 (0.637, 0.932) and 0.756 (0.481, 0.895) for nitrogen and potassium intakes, respectively. This study suggests that 24-HDRs can be used as reference measurements at the individual and aggregate levels for potassium intake, whereas, for nitrogen intake, good performance is observed for between-centre calibration, but some limitations are apparent at the individual level.

  19. Evaluating accuracy of structural geometry by DXA methods with an anthropometric proximal femur phantom.

    PubMed

    Khoo, B C C; Beck, T J; Brown, K; Price, R I

    2013-09-01

    DXA-derived bone structural geometry has been reported extensively but lacks an accuracy standard. In this study, we describe a novel anthropometric structural geometry phantom that simulates the proximal femur for use in assessing accuracy of geometry measurements by DXA or other X-ray methods. The phantom consists of seven different interchangeable neck modules with geometries that span the range of dimensions in an adult human proximal femur, including those representing osteoporosis. Ten repeated hip scans of each neck module using two current DXA scanner models were performed without repositioning. After scanner specific calibration, hip structure analysis was used to derive structural geometry. Scanner performance was similar for the two manufacturers. DXA-derived HSA geometric measurements were highly correlated with values derived directly from phantom geometry and position; R² between DXA and phantom measures were greater than 94% for all parameters, while precision error ranged between 0.3 and 3.9%. Despite high R² there were some systematic geometry errors for both scanners that were small for outer diameter, but increasing with complexity of geometrical parameter; e.g. buckling ratio. In summary, the anthropometric phantom and its fabrication concept were shown to be appropriate for evaluating proximal femoral structural geometry in two different DXA systems.

  20. Efficient gradient calibration based on diffusion MRI

    PubMed Central

    Teh, Irvin; Maguire, Mahon L.

    2016-01-01

    Purpose To propose a method for calibrating gradient systems and correcting gradient nonlinearities based on diffusion MRI measurements. Methods The gradient scaling in x, y, and z were first offset by up to 5% from precalibrated values to simulate a poorly calibrated system. Diffusion MRI data were acquired in a phantom filled with cyclooctane, and corrections for gradient scaling errors and nonlinearity were determined. The calibration was assessed with diffusion tensor imaging and independently validated with high resolution anatomical MRI of a second structured phantom. Results The errors in apparent diffusion coefficients along orthogonal axes ranged from −9.2% ± 0.4% to + 8.8% ± 0.7% before calibration and −0.5% ± 0.4% to + 0.8% ± 0.3% after calibration. Concurrently, fractional anisotropy decreased from 0.14 ± 0.03 to 0.03 ± 0.01. Errors in geometric measurements in x, y and z ranged from −5.5% to + 4.5% precalibration and were likewise reduced to −0.97% to + 0.23% postcalibration. Image distortions from gradient nonlinearity were markedly reduced. Conclusion Periodic gradient calibration is an integral part of quality assurance in MRI. The proposed approach is both accurate and efficient, can be setup with readily available materials, and improves accuracy in both anatomical and diffusion MRI to within ±1%. Magn Reson Med 77:170–179, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:26749277

  1. Analysis of calibration data for the uranium active neutron coincidence counting collar with attention to errors in the measured neutron coincidence rate

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Burr, Tom; Favalli, Andrea; Nicholson, Andrew

    2016-03-01

    The declared linear density of 238U and 235U in fresh low enriched uranium light water reactor fuel assemblies can be verified for nuclear safeguards purposes using a neutron coincidence counter collar in passive and active mode, respectively. The active mode calibration of the Uranium Neutron Collar - Light water reactor fuel (UNCL) instrument is normally performed using a non-linear fitting technique. The fitting technique relates the measured neutron coincidence rate (the predictor) to the linear density of 235U (the response) in order to estimate model parameters of the nonlinear Padé equation, which traditionally is used to model the calibration data. Alternatively, following a simple data transformation, the fitting can also be performed using standard linear fitting methods. This paper compares performance of the nonlinear technique to the linear technique, using a range of possible error variance magnitudes in the measured neutron coincidence rate. We develop the required formalism and then apply the traditional (nonlinear) and alternative approaches (linear) to the same experimental and corresponding simulated representative datasets. We find that, in this context, because of the magnitude of the errors in the predictor, it is preferable not to transform to a linear model, and it is preferable not to adjust for the errors in the predictor when inferring the model parameters.

  2. Quadrature phase interferometer used to calibrate dial indicator calibrators

    NASA Astrophysics Data System (ADS)

    Huang, Shau-Chi; Liou, Huay-Chung; Peng, Gwo-Sheng; Lu, Ming-Feng

    2001-10-01

    To calibrate dial indicators, gage blocks or dial indicator calibrators are usually used. For better accuracy and resolution, interferometers are used to calibrate dial indicator calibrators. Systematic errors of laser interferometers can be classified into three categories of intrinsic errors, environment errors and installation errors. Intrinsic errors include laser wavelength error, electronic error and optics nonlinearity. In order to achieve nanometer accuracy, minimizing intrinsic error is crucial. In this paper, we will address the problems of minimizing the optics nonlinearity error and describe the discrete-time signal processing method to minimize the electronic error, nonlinearity error and drift by simply using quadrature phase interferometer for nanometer accuracy and linearity.

  3. Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: Implications for isocenter localization accuracy

    PubMed Central

    Chetley Ford, J.; Zheng, Dandan; Williamson, Jeffrey F.

    2011-01-01

    Purpose: Mechanical instabilities that occur during gantry rotation of on-board cone-beam computed tomography (CBCT) imaging systems limit the efficacy of image-guided radiotherapy. Various methods for calibrating the CBCT geometry and correcting errors have been proposed, including some that utilize dedicated fiducial phantoms. The purpose of this work was to investigate the role of phantom fabrication imprecision on the accuracy of a particular CT cone-beam geometry estimate and to test a new method to mitigate errors in beam geometry arising from imperfectly fabricated phantoms. Methods: The authors implemented a fiducial phantom-based beam geometry estimation following the one described by Cho et al. [Med Phys 32(4), 968–983 (2005)]. The algorithm utilizes as input projection images of the phantom at various gantry angles and provides a full nine parameter beam geometry characterization of the source and detector position and detector orientation versus gantry angle. A method was developed for recalculating the beam geometry in a coordinate system with origin at the source trajectory center and aligned with the axis of gantry rotation, thus making the beam geometry estimation independent of the placement of the phantom. A second CBCT scan with the phantom rotated 180° about its long axis was averaged with the first scan to mitigate errors from phantom imprecision. Computer simulations were performed to assess the effect of 2D fiducial marker positional error on the projections due to image discretization, as well as 3D fiducial marker position error due to phantom fabrication imprecision. Experimental CBCT images of a fiducial phantom were obtained and the algorithm used to measure beam geometry for a Varian Trilogy with an on-board CBCT. Results: Both simulations and experimental results reveal large sinusoidal oscillations in the calculated beam geometry parameters with gantry angle due to displacement of the phantom from CBCT isocenter and misalignment

  4. Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: implications for isocenter localization accuracy.

    PubMed

    Ford, J Chetley; Zheng, Dandan; Williamson, Jeffrey F

    2011-06-01

    Mechanical instabilities that occur during gantry rotation of on-board cone-beam computed tomography (CBCT) imaging systems limit the efficacy of image-guided radiotherapy. Various methods for calibrating the CBCT geometry and correcting errors have been proposed, including some that utilize dedicated fiducial phantoms. The purpose of this work was to investigate the role of phantom fabrication imprecision on the accuracy of a particular CT cone-beam geometry estimate and to test a new method to mitigate errors in beam geometry arising from imperfectly fabricated phantoms. The authors implemented a fiducial phantom-based beam geometry estimation following the one described by Cho et al. [Med Phys 32(4), 968-983 (2005)]. The algorithm utilizes as input projection images of the phantom at various gantry angles and provides a full nine parameter beam geometry characterization of the source and detector position and detector orientation versus gantry angle. A method was developed for recalculating the beam geometry in a coordinate system with origin at the source trajectory center and aligned with the axis of gantry rotation, thus making the beam geometry estimation independent of the placement of the phantom. A second CBCT scan with the phantom rotated 180 degrees about its long axis was averaged with the first scan to mitigate errors from phantom imprecision. Computer simulations were performed to assess the effect of 2D fiducial marker positional error on the projections due to image discretization, as well as 3D fiducial marker position error due to phantom fabrication imprecision. Experimental CBCT images of a fiducial phantom were obtained and the algorithm used to measure beam geometry for a Varian Trilogy with an on-board CBCT. Both simulations and experimental results reveal large sinusoidal oscillations in the calculated beam geometry parameters with gantry angle due to displacement of the phantom from CBCT isocenter and misalignment with the gantry axis

  5. LLNL Torso Phantom Assembly and Disassembly

    SciTech Connect

    Hickman, D P

    2005-10-05

    This document from the LLNL In Vivo measurement Facility archives provides important historical as well as current methods for the proper handling of the LLNL Torso Phantom. This document was written circa 1980 and is intended for use by in vivo measurement facilities that perform calibrations using the LLNL Torso Phantom. Proper care and use of the LLNL Torso Phantom will greatly extend the useful lifetime of the phantom. The assembly, and disassembly of the Realistic Phantom are simple tasks and are, for the most part, self evident. However, there are some considerations that will make these tasks easier and assure long life of the parts. The assembly process is presented in Figures 1 through 9 while disassembly suggestions are illustrated in Figures 10 and 11.

  6. Reduction of Systematic Errors in Diagnostic Receivers Through the Use of Balanced Dicke-Switching and Y-Factor Noise Calibrations

    SciTech Connect

    John Musson, Trent Allison, Roger Flood, Jianxun Yan

    2009-05-01

    Receivers designed for diagnostic applications range from those having moderate sensitivity to those possessing large dynamic range. Digital receivers have a dynamic range which are a function of the number of bits represented by the ADC and subsequent processing. If some of this range is sacrificed for extreme sensitivity, noise power can then be used to perform two-point load calibrations. Since load temperatures can be precisely determined, the receiver can be quickly and accurately characterized; minute changes in system gain can then be detected, and systematic errors corrected. In addition, using receiver pairs in a balanced approach to measuring X+, X-, Y+, Y-, reduces systematic offset errors from non-identical system gains, and changes in system performance. This paper describes and demonstrates a balanced BPM-style diagnostic receiver, employing Dicke-switching to establish and maintain real-time system calibration. Benefits of such a receiver include wide bandwidth, solid absolute accuracy, improved position accuracy, and phase-sensitive measurements. System description, static and dynamic modelling, and measurement data are presented.

  7. Filter-based infrared detectors for high temperature size exclusion chromatography analysis of polyolefins: calibration with a small number of standards and error analysis.

    PubMed

    Ortín, A; López, E; Monrabal, B; Torres-Lapasió, J R; García-Álvarez-Coque, M C

    2012-09-28

    Infrared detection has been shown to be very appropriate for high temperature analysis of polyolefins. After some early reports in which dispersive or single-band filter-based detectors were applied, Fourier transform detectors have been described for this application, in order to improve the method sensitivity. Modern simple filter-based detectors prove, however, comparable sensitivity while providing a number of practical advantages when coupled to chromatographic systems: reduced cell volume, simplified hardware, continuous generation of absorbance chromatograms, as well as simpler data collection and processing. A practical method for calibration, using multiple-band signals obtained with filter-based detectors and a small number of reference materials, is here discussed. Calibration data are used to compare the performance of detectors based on different opto-electronic technologies and filter designs. A procedure for estimation of errors in the slice-by-slice measured methyl frequency, based on signal-to-noise ratio considerations, is described. The good accuracy provided by the filter-based IR detectors was noticeable, considering that it was obtained using a small set of reference materials. A minimal concentration of 0.009 mg/mL was estimated to be required at the detector cell, in order to keep the errors below one unit of methyl per one thousand total carbons. This low minimal concentration requirement allows using standard SEC conditions, without compromising the molar mass distribution accuracy and resolution.

  8. New ANSI standard for thyroid phantom

    SciTech Connect

    Mallett, Michael W.; Bolch, Wesley E.; Fulmer, Philip C.; Jue, Tracy M.; McCurdy, David E.; Pillay, Mike; Xu, X. George

    2015-08-01

    Here, a new ANSI standard titled “Thyroid Phantom Used in Occupational Monitoring” (Health Physics Society 2014) has been published. The standard establishes the criteria for acceptable design, fabrication, or modeling of a phantom suitable for calibrating in vivo monitoring systems to measure photon-emitting radionuclides deposited in the thyroid. The current thyroid phantom standard was drafted in 1973 (ANSI N44.3-1973), last reviewed in 1984, and a revision of the standard to cover a more modern approach was deemed warranted.

  9. Automated intraoperative calibration for prostate cancer brachytherapy

    SciTech Connect

    Kuiran Chen, Thomas; Heffter, Tamas; Lasso, Andras; Pinter, Csaba; Abolmaesumi, Purang; Burdette, E. Clif; Fichtinger, Gabor

    2011-11-15

    Purpose: Prostate cancer brachytherapy relies on an accurate spatial registration between the implant needles and the TRUS image, called ''calibration''. The authors propose a new device and a fast, automatic method to calibrate the brachytherapy system in the operating room, with instant error feedback. Methods: A device was CAD-designed and precision-engineered, which mechanically couples a calibration phantom with an exact replica of the standard brachytherapy template. From real-time TRUS images acquired from the calibration device and processed by the calibration system, the coordinate transformation between the brachytherapy template and the TRUS images was computed automatically. The system instantly generated a report of the target reconstruction accuracy based on the current calibration outcome. Results: Four types of validation tests were conducted. First, 50 independent, real-time calibration trials yielded an average of 0.57 {+-} 0.13 mm line reconstruction error (LRE) relative to ground truth. Second, the averaged LRE was 0.37 {+-} 0.25 mm relative to ground truth in tests with six different commercial TRUS scanners operating at similar imaging settings. Furthermore, testing with five different commercial stepper systems yielded an average of 0.29 {+-} 0.16 mm LRE relative to ground truth. Finally, the system achieved an average of 0.56 {+-} 0.27 mm target registration error (TRE) relative to ground truth in needle insertion tests through the template in a water tank. Conclusions: The proposed automatic, intraoperative calibration system for prostate cancer brachytherapy has achieved high accuracy, precision, and robustness.

  10. A phantom design for validating colonoscopy tracking

    NASA Astrophysics Data System (ADS)

    Liu, Jianfei; Subramanian, Kalpathi R.; Yoo, Terry S.

    2012-03-01

    Phantom experiments are useful and frequently used in validating algorithms or techniques in applications where it is difficult or impossible to generate accurate ground-truth. In this work we present a phantom design and experiments to validate our colonoscopy tracking algorithms, that serve to keep both virtual colonoscopy and optical colonoscopy images aligned (in location and orientation). We describe the construction of two phantoms, capable of respectively moving along a straight and a curved path. The phantoms are motorized so as to be able to move at a near constant speed. Experiments were performed at three speeds: 10, 15 and 20mm/sec, to simulate motion velocities during colonoscopy procedures. The average velocity error was within 3mm/sec in both straight and curved phantoms. Displacement error was within 7mm over a total distance of 288mm in the straight phantom, and less than 7mm over 287mm in the curved phantom. Multiple trials were performed of each experiment(and their errors averaged) to ensure repeatability.

  11. Effect of dependent scattering on the optical properties of Intralipid tissue phantoms.

    PubMed

    Di Ninni, Paola; Martelli, Fabrizio; Zaccanti, Giovanni

    2011-08-01

    The calibration of optical tissue-simulating phantoms remains an open question in spite of the many techniques proposed for accurate measurements of optical properties. As a consequence, a reference phantom with well known optical properties is still missing. As a first step towards a reference phantom we have recently proposed to use dilutions of Intralipid 20%. In this paper we discuss a matter that is commonly ignored when dilutions are prepared, i.e., the possibility of deviations from the simple linear relationships between the optical properties of the dilution and the Intralipid concentration due to the effects of dependent scattering. The results of an experimental investigation showed that dependent scattering does not affect absorption. As for the reduced scattering coefficient the effect can be described adding a term proportional to the square of the concentration. However, for concentrations of interest for tissue optics deviations from linearity remain within about 2%. The experimental investigation also showed that the microphysical properties of Intralipid are not affected by dilution. These results show the possibility to easily obtain a liquid diffusive phantom whose optical properties are known with error smaller than about 1%. Due to the intrinsic limitations of the different techniques proposed for measuring the optical properties it seems difficult to obtain a similar accuracy for solid phantoms.

  12. Reverse-polynomial dilution calibration methodology extends lower limit of quantification and reduces relative residual error in targeted peptide measurements in blood plasma.

    PubMed

    Yau, Yunki Y; Duo, Xizi; Leong, Rupert W L; Wasinger, Valerie C

    2015-02-01

    Matrix effect is the alteration of an analyte's concentration-signal response caused by co-existing ion components. With electrospray ionization (ESI), matrix effects are believed to be a function of the relative concentrations, ionization efficiency, and solvation energies of the analytes within the electrospray ionization droplet. For biological matrices such as plasma, the interactions between droplet components is immensely complex and the effect on analyte signal response not well elucidated. This study comprised of three sequential quantitative analyses: we investigated whether there is a generalizable correlation between the range of unique ions in a sample matrix (complexity); the amount of matrix components (concentration); and matrix effect, by comparing an E. coli digest matrix (∼2600 protein proteome) with phospholipid depleted human blood plasma, and unfractionated, nondepleted human plasma matrices (∼10(7) proteome) for six human plasma peptide multiple reaction monitoring assays. Our data set demonstrated analyte-specific interactions with matrix complexity and concentration properties resulting in significant ion suppression for all peptides (p < 0.01), with nonuniform effects on the ion signals of the analytes and their stable-isotope analogs. These matrix effects were then assessed for translation into relative residual error and precision effects in a low concentration (∼0-250 ng/ml) range across no-matrix, complex matrix, and highly complex matrix, when a standard addition stable isotope dilution calibration method was used. Relative residual error (%) and precision (CV%) by stable isotope dilution were within <20%; however, error in phospholipid-depleted and nondepleted plasma matrices were significantly higher compared with no-matrix (p = 0.006). Finally a novel reverse-polynomial dilution calibration method with and without phospholipid-depletion was compared with stable isotope dilution for relative residual error and precision

  13. Vetting Galactic Leavitt Law Calibrators Using Radial Velocities: On the Variability, Binarity, and Possible Parallax Error of 19 Long-period Cepheids

    NASA Astrophysics Data System (ADS)

    Anderson, R. I.; Casertano, S.; Riess, A. G.; Melis, C.; Holl, B.; Semaan, T.; Papics, P. I.; Blanco-Cuaresma, S.; Eyer, L.; Mowlavi, N.; Palaversa, L.; Roelens, M.

    2016-10-01

    We investigate the radial velocity (RV) variability and spectroscopic binarity of 19 Galactic long-period ({P}{puls} ≳ 10 days) classical Cepheid variable stars whose trigonometric parallaxes are being measured using the Hubble Space Telescope and Gaia. Our primary objective is to constrain possible parallax error due to undetected orbital motion. Using over 1600 high-precision RVs measured between 2011 and 2016, we find no indication of orbital motion on ≲5 year timescales for 18 Cepheids and determine upper limits on allowed configurations for a range of input orbital periods. The results constrain the unsigned parallax error due to orbital motion to <2% for 16 stars, and <4% for 18. We improve the orbital solution of the known binary YZ Carinae and show that the astrometric model must take into account orbital motion to avoid significant error (∼±100 μarcsec). We further investigate long-timescale ({P}{orb} > 10 years) variations in pulsation-averaged velocity v γ via a template fitting approach using both new and literature RVs. We discover the spectroscopic binarity of XZ Car and CD Cyg, find first tentative evidence for AQ Car, and reveal KN Cen’s orbital signature. Further (mostly tentative) evidence of time-variable v γ is found for SS CMa, VY Car, SZ Cyg, and X Pup. We briefly discuss considerations regarding a vetting process of Galactic Leavitt law calibrators and show that light contributions by companions are insignificant for most distance scale applications.

  14. A SVD-based method to assess the uniqueness and accuracy of SPECT geometrical calibration.

    PubMed

    Ma, Tianyu; Yao, Rutao; Shao, Yiping; Zhou, Rong

    2009-12-01

    Geometrical calibration is critical to obtaining high resolution and artifact-free reconstructed image for SPECT and CT systems. Most published calibration methods use analytical approach to determine the uniqueness condition for a specific calibration problem, and the calibration accuracy is often evaluated through empirical studies. In this work, we present a general method to assess the characteristics of both the uniqueness and the quantitative accuracy of the calibration. The method uses a singular value decomposition (SVD) based approach to analyze the Jacobian matrix from a least-square cost function for the calibration. With this method, the uniqueness of the calibration can be identified by assessing the nonsingularity of the Jacobian matrix, and the estimation accuracy of the calibration parameters can be quantified by analyzing the SVD components. A direct application of this method is that the efficacy of a calibration configuration can be quantitatively evaluated by choosing a figure-of-merit, e.g., the minimum required number of projection samplings to achieve desired calibration accuracy. The proposed method was validated with a slit-slat SPECT system through numerical simulation studies and experimental measurements with point sources and an ultra-micro hot-rod phantom. The predicted calibration accuracy from the numerical studies was confirmed by the experimental point source calibrations at approximately 0.1 mm for both the center of rotation (COR) estimation of a rotation stage and the slit aperture position (SAP) estimation of a slit-slat collimator by an optimized system calibration protocol. The reconstructed images of a hot rod phantom showed satisfactory spatial resolution with a proper calibration and showed visible resolution degradation with artificially introduced 0.3 mm COR estimation error. The proposed method can be applied to other SPECT and CT imaging systems to analyze calibration method assessment and calibration protocol

  15. Characterization of errors in the use of integrating-sphere systems in the calibration of scanning radiometers.

    PubMed

    Gatebe, Charles K; Butler, James J; Cooper, John W; Kowalewski, Matthew; King, Michael D

    2007-11-01

    Laboratory measurements were performed to characterize the geometrical effects in the calibration of the NASA's cloud absorption radiometer (CAR). The measurements involved three integrating sphere sources (ISSs) operated at different light levels and experimental setups to determine radiance variability. The radiance gradients across the three ISS apertures were 0.2%-2.6% for different visible, near-infrared, and shortwave infrared illumination levels but <15% in the UV. Change in radiance with distance was determined to be 2%-20%, being highest in the UV. Radiance variability due to the edge effects was found to be significant; as much as 70% due to the sphere aperture and <10% due to the CAR telescope's secondary mirror.

  16. Segmentation and quantification of materials with energy discriminating computed tomography: A phantom study

    PubMed Central

    Le, Huy Q.; Molloi, Sabee

    2011-01-01

    Purpose: To experimentally investigate whether a computed tomography (CT) system based on CdZnTe (CZT) detectors in conjunction with a least-squares parameter estimation technique can be used to decompose four different materials. Methods: The material decomposition process was divided into a segmentation task and a quantification task. A least-squares minimization algorithm was used to decompose materials with five measurements of the energy dependent linear attenuation coefficients. A small field-of-view energy discriminating CT system was built. The CT system consisted of an x-ray tube, a rotational stage, and an array of CZT detectors. The CZT array was composed of 64 pixels, each of which is 0.8×0.8×3 mm. Images were acquired at 80 kVp in fluoroscopic mode at 50 ms per frame. The detector resolved the x-ray spectrum into energy bins of 22–32, 33–39, 40–46, 47–56, and 57–80 keV. Four phantoms were constructed from polymethylmethacrylate (PMMA), polyethylene, polyoxymethylene, hydroxyapatite, and iodine. Three phantoms were composed of three materials with embedded hydroxyapatite (50, 150, 250, and 350 mg∕ml) and iodine (4, 8, 12, and 16 mg∕ml) contrast elements. One phantom was composed of four materials with embedded hydroxyapatite (150 and 350 mg∕ml) and iodine (8 and 16 mg∕ml). Calibrations consisted of PMMA phantoms with either hydroxyapatite (100, 200, 300, 400, and 500 mg∕ml) or iodine (5, 15, 25, 35, and 45 mg∕ml) embedded. Filtered backprojection and a ramp filter were used to reconstruct images from each energy bin. Material segmentation and quantification were performed and compared between different phantoms. Results: All phantoms were decomposed accurately, but some voxels in the base material regions were incorrectly identified. Average quantification errors of hydroxyapatite∕iodine were 9.26∕7.13%, 7.73∕5.58%, and 12.93∕8.23% for the three-material PMMA, polyethylene, and polyoxymethylene phantoms, respectively. The

  17. Segmentation and quantification of materials with energy discriminating computed tomography: A phantom study

    SciTech Connect

    Le, Huy Q.; Molloi, Sabee

    2011-01-15

    Purpose: To experimentally investigate whether a computed tomography (CT) system based on CdZnTe (CZT) detectors in conjunction with a least-squares parameter estimation technique can be used to decompose four different materials. Methods: The material decomposition process was divided into a segmentation task and a quantification task. A least-squares minimization algorithm was used to decompose materials with five measurements of the energy dependent linear attenuation coefficients. A small field-of-view energy discriminating CT system was built. The CT system consisted of an x-ray tube, a rotational stage, and an array of CZT detectors. The CZT array was composed of 64 pixels, each of which is 0.8x0.8x3 mm. Images were acquired at 80 kVp in fluoroscopic mode at 50 ms per frame. The detector resolved the x-ray spectrum into energy bins of 22-32, 33-39, 40-46, 47-56, and 57-80 keV. Four phantoms were constructed from polymethylmethacrylate (PMMA), polyethylene, polyoxymethylene, hydroxyapatite, and iodine. Three phantoms were composed of three materials with embedded hydroxyapatite (50, 150, 250, and 350 mg/ml) and iodine (4, 8, 12, and 16 mg/ml) contrast elements. One phantom was composed of four materials with embedded hydroxyapatite (150 and 350 mg/ml) and iodine (8 and 16 mg/ml). Calibrations consisted of PMMA phantoms with either hydroxyapatite (100, 200, 300, 400, and 500 mg/ml) or iodine (5, 15, 25, 35, and 45 mg/ml) embedded. Filtered backprojection and a ramp filter were used to reconstruct images from each energy bin. Material segmentation and quantification were performed and compared between different phantoms. Results: All phantoms were decomposed accurately, but some voxels in the base material regions were incorrectly identified. Average quantification errors of hydroxyapatite/iodine were 9.26/7.13%, 7.73/5.58%, and 12.93/8.23% for the three-material PMMA, polyethylene, and polyoxymethylene phantoms, respectively. The average errors for the four

  18. Tissue-mimicking gel phantoms for thermal therapy studies.

    PubMed

    Dabbagh, Ali; Abdullah, Basri Johan Jeet; Ramasindarum, Chanthiriga; Abu Kasim, Noor Hayaty

    2014-10-01

    Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies. © The Author(s) 2014.

  19. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research.

    PubMed

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I; Patterson, Michael S; Wong, John W

    2015-04-01

    simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.

  20. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    SciTech Connect

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-04-15

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.

  1. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems. PMID:25832060

  2. Phantom limb pain

    MedlinePlus

    Amputation - phantom limb ... Bang MS, Jung SH. Phantom limb pain. In: Frontera, WR, Silver JK, Rizzo TD, eds. Essentials of Physical Medicine and Rehabilitation . 3rd ed. Philadelphia, PA: Elsevier ...

  3. On the Photometric Error Calibration for the Differential Light Curves of Point-like Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Goyal, Arti; Mhaskey, Mukul; Gopal-Krishna; Wiita, Paul J.; Stalin, C. S.; Sagar, Ram

    2013-09-01

    It is important to quantify the underestimation of rms photometric errors returned by the commonly used APPHOT algorithm in the IRAF software, in the context of differential photometry of point-like AGN, because of the crucial role it plays in evaluating their variability properties. Published values of the underestimation factor, η, using several different telescopes, lie in the range 1.3-1.75. The present study aims to revisit this question by employing an exceptionally large data set of 262 differential light curves (DLCs) derived from 262 pairs of non-varying stars monitored under our ARIES AGN monitoring program for characterizing the intra-night optical variability (INOV) of prominent AGN classes. The bulk of these data were taken with the 1-m Sampurnanad Telescope (ST). We find η = 1.54±0.05 which is close to our recently reported value of η = 1.5. Moreover, this consistency holds at least up to a brightness mismatch of 1.5 mag between the paired stars. From this we infer that a magnitude difference of at least up to 1.5 mag between a point-like AGN and comparison star(s) monitored simultaneously is within the same CCD chip acceptable, as it should not lead to spurious claims of INOV.

  4. Active point out-of-plane ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Guo, Xiaoyu; Zhang, Haichong K.; Kang, Hyunjae; Etienne-Cummings, Ralph; Boctor, Emad M.

    2015-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common intraoperative medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the transducer and the ultrasound image. Point-based phantoms are considered to be accurate, but their calibration framework assumes that the point is in the image plane. In this work, we present the use of an active point phantom and a calibration framework that accounts for the elevational uncertainty of the point. Given the lateral and axial position of the point in the ultrasound image, we approximate a circle in the axial-elevational plane with a radius equal to the axial position. The standard approach transforms all of the imaged points to be a single physical point. In our approach, we minimize the distances between the circular subsets of each image, with them ideally intersecting at a single point. We simulated in noiseless and noisy cases, presenting results on out-of-plane estimation errors, calibration estimation errors, and point reconstruction precision. We also performed an experiment using a robot arm as the tracker, resulting in a point reconstruction precision of 0.64mm.

  5. Geometric calibration using line fiducials for cone-beam CT with general, non-circular source-detector trajectories

    NASA Astrophysics Data System (ADS)

    Jacobson, M. W.; Ketcha, M.; Uneri, A.; Goerres, J.; De Silva, T.; Reaungamornrat, S.; Vogt, S.; Kleinszig, G.; Siewerdsen, J. H.

    2017-03-01

    Purpose: Traditional BB-based geometric calibration methods for cone-beam CT (CBCT) rely strongly on foreknowledge of the scan trajectory shape. This is a hindrance to the implementation of variable trajectory CBCT systems, normally requiring a dedicated calibration phantom or software algorithm for every scan orbit of interest. A more flexible method of calibration is proposed here that accommodates multiple orbit types - including strongly noncircular trajectories - with a single phantom and software routine. Methods: The proposed method uses a calibration phantom consisting of multiple line-shaped wire segments. Geometric models relating the 3D line equations of the wires to the 2D line equations of their projections are used as the basis for system geometry estimation. This method was tested using a mobile C-arm CT system and comparisons were made to standard BB-based calibrations. Simulation studies were also conducted using a sinusoid-on-sphere orbit. Calibration performance was quantified in terms of Point Spread Function (PSF) width and back projection error. Visual image quality was assessed with respect to spatial resolution in trabecular bone in an anthropomorphic head phantom. Results: The wire-based calibration method performed equal to or better than BB-based calibrations in all evaluated metrics. For the sinusoidal scans, the method provided reliable calibration, validating its application to non-circular trajectories. Furthermore, the ability to improve image quality using non-circular orbits in conjunction with this calibration method was demonstrated. Conclusion: The proposed method has been shown feasible for conventional circular CBCT scans and offers a promising tool for non-circular scan orbits that can improve image quality, reduce dose, and extend field of view.

  6. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study.

    PubMed

    Gear, J I; Charles-Edwards, E; Partridge, M; Flux, G D

    2011-11-21

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  7. Monte Carlo verification of polymer gel dosimetry applied to radionuclide therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Charles-Edwards, E.; Partridge, M.; Flux, G. D.

    2011-11-01

    This study evaluates the dosimetric performance of the polymer gel dosimeter 'Methacrylic and Ascorbic acid in Gelatin, initiated by Copper' and its suitability for quality assurance and analysis of I-131-targeted radionuclide therapy dosimetry. Four batches of gel were manufactured in-house and sets of calibration vials and phantoms were created containing different concentrations of I-131-doped gel. Multiple dose measurements were made up to 700 h post preparation and compared to equivalent Monte Carlo simulations. In addition to uniformly filled phantoms the cross-dose distribution from a hot insert to a surrounding phantom was measured. In this example comparisons were made with both Monte Carlo and a clinical scintigraphic dosimetry method. Dose-response curves generated from the calibration data followed a sigmoid function. The gels appeared to be stable over many weeks of internal irradiation with a delay in gel response observed at 29 h post preparation. This was attributed to chemical inhibitors and slow reaction rates of long-chain radical species. For this reason, phantom measurements were only made after 190 h of irradiation. For uniformly filled phantoms of I-131 the accuracy of dose measurements agreed to within 10% when compared to Monte Carlo simulations. A radial cross-dose distribution measured using the gel dosimeter compared well to that calculated with Monte Carlo. Small inhomogeneities were observed in the dosimeter attributed to non-uniform mixing of monomer during preparation. However, they were not detrimental to this study where the quantitative accuracy and spatial resolution of polymer gel dosimetry were far superior to that calculated using scintigraphy. The difference between Monte Carlo and gel measurements was of the order of a few cGy, whilst with the scintigraphic method differences of up to 8 Gy were observed. A manipulation technique is also presented which allows 3D scintigraphic dosimetry measurements to be compared to polymer

  8. Phantom domain walls

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Ferreira, V. M. C.; Menezes, J.; Sousa, L.

    2017-08-01

    We consider a model with two real scalar fields which admits phantom domain wall solutions. We investigate the structure and evolution of these phantom domain walls in an expanding homogeneous and isotropic universe. In particular, we show that the increase of the tension of the domain walls with cosmic time, associated to the evolution of the phantom scalar field, is responsible for an additional damping term in their equations of motion. We describe the macroscopic dynamics of phantom domain walls, showing that extended phantom defects whose tension varies on a cosmological time scale cannot be the dark energy.

  9. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    USDA-ARS?s Scientific Manuscript database

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  10. Influence of Manufacturing Processes on the Performance of Phantom Lungs

    SciTech Connect

    Traub, Richard J.

    2008-10-01

    Chest counting is an important tool for estimating the radiation dose to individuals who have inhaled radioactive materials. Chest counting systems are calibrated by counting the activity in the lungs of phantoms where the activity in the phantom lungs is known. In the United States a commonly used calibration phantom was developed at the Lawrence Livermore National Laboratory and is referred to as the Livermore Torso Phantom. An important feature of this phantom is that the phantom lungs can be interchanged so that the counting system can be challenged by different combinations of radionuclides and activity. Phantom lungs are made from lung tissue substitutes whose constituents are foaming plastics and various adjuvants selected to make the lung tissue substitute similar to normal healthy lung tissue. Some of the properties of phantom lungs cannot be readily controlled by phantom lung manufacturers. Some, such as density, are a complex function of the manufacturing process, while others, such as elemental composition of the bulk plastic are controlled by the plastics manufacturer without input, or knowledge of the phantom manufacturer. Despite the fact that some of these items cannot be controlled, they can be measured and accounted for. This report describes how manufacturing processes can influence the performance of phantom lungs. It is proposed that a metric that describes the brightness of the lung be employed by the phantom lung manufacturer to determine how well the phantom lung approximates the characteristics of a human lung. For many purposes, the linear attenuation of the lung tissue substitute is an appropriate surrogate for the brightness.

  11. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    PubMed Central

    Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-01-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability. PMID:26633914

  12. Three-dimensional printed optical phantoms with customized absorption and scattering properties.

    PubMed

    Diep, Phuong; Pannem, Sanjana; Sweer, Jordan; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren

    2015-11-01

    Three-dimensional (3D) printing offers the promise of fabricating optical phantoms with arbitrary geometry, but commercially available thermoplastics provide only a small range of physiologically relevant absorption (µa) and reduced scattering (µs`) values. Here we demonstrate customizable acrylonitrile butadiene styrene (ABS) filaments for dual extrusion 3D printing of tissue mimicking optical phantoms. µa and µs` values were adjusted by incorporating nigrosin and titanium dioxide (TiO2) in the filament extrusion process. A wide range of physiologically relevant optical properties was demonstrated with an average repeatability within 11.5% for µa and 7.71% for µs`. Additionally, a mouse-simulating phantom, which mimicked both the geometry and optical properties of a hairless mouse with an implanted xenograft tumor, was printed using dual extrusion methods. 3D printed tumor optical properties matched the live tumor with less than 3% error at a wavelength of 659 nm. 3D printing with user defined optical properties may provide a viable method for durable optically diffusive phantoms for instrument characterization and calibration.

  13. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  14. Three-dimensional printed optical phantoms with customized absorption and scattering properties

    PubMed Central

    Diep, Phuong; Pannem, Sanjana; Sweer, Jordan; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren

    2015-01-01

    Three-dimensional (3D) printing offers the promise of fabricating optical phantoms with arbitrary geometry, but commercially available thermoplastics provide only a small range of physiologically relevant absorption (µa) and reduced scattering (µs`) values. Here we demonstrate customizable acrylonitrile butadiene styrene (ABS) filaments for dual extrusion 3D printing of tissue mimicking optical phantoms. µa and µs` values were adjusted by incorporating nigrosin and titanium dioxide (TiO2) in the filament extrusion process. A wide range of physiologically relevant optical properties was demonstrated with an average repeatability within 11.5% for µa and 7.71% for µs`. Additionally, a mouse-simulating phantom, which mimicked both the geometry and optical properties of a hairless mouse with an implanted xenograft tumor, was printed using dual extrusion methods. 3D printed tumor optical properties matched the live tumor with less than 3% error at a wavelength of 659 nm. 3D printing with user defined optical properties may provide a viable method for durable optically diffusive phantoms for instrument characterization and calibration. PMID:26600987

  15. Establishing a standard calibration methodology for MOSFET detectors in computed tomography dosimetry

    SciTech Connect

    Brady, S. L.; Kaufman, R. A.

    2012-06-15

    coefficients for the eventual use for phantom dosimetry, a measurement error {approx}12% will be reflected in the dosimetry results. The calibration process must emulate the eventual CT dosimetry process by matching or excluding scatter when calibrating the MOSFETs. Finally, the authors recommend that the MOSFETs are energy calibrated approximately every 2500-3000 mV.

  16. MO-C-17A-05: A Three-Dimensional Head-And-Neck Phantom for Validation of Kilovoltage- and Megavoltage-Based Deformable Image Registration

    SciTech Connect

    Kirby, N; Singhrao, K; Pouliot, J

    2014-06-15

    Purpose: To develop a three-dimensional (3D) deformable head-and-neck (H and N) phantom with realistic tissue contrast for both kilovoltage and megavoltage computed tomography and use it to objectively evaluate deformable image registration (DIR) algorithms. Methods: The phantom represents H and N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kilovoltage (kV) and megavoltage (MV) imaging. The phantom opened along a sagittal midsection to reveal nonradiopaque markers, which were used to characterize the phantom deformation. The deformed and undeformed phantom was scanned with kV and MV computed tomography. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and MIM Software. Results: The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV-kV registration, MIM made the lowest mean error, and Velocity made the lowest maximum error. For MV-MV, kV-MV, and kV-MC Velocity produced both the lowest mean and lowest maximum errors. Conclusion: The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H and N phantom is an effective tool for this purpose.

  17. Predictive sensor based x-ray calibration using a physical model

    SciTech Connect

    Fuente, Matias de la; Lutz, Peter; Wirtz, Dieter C.; Radermacher, Klaus

    2007-04-15

    Many computer assisted surgery systems are based on intraoperative x-ray images. To achieve reliable and accurate results these images have to be calibrated concerning geometric distortions, which can be distinguished between constant distortions and distortions caused by magnetic fields. Instead of using an intraoperative calibration phantom that has to be visible within each image resulting in overlaying markers, the presented approach directly takes advantage of the physical background of the distortions. Based on a computed physical model of an image intensifier and a magnetic field sensor, an online compensation of distortions can be achieved without the need of an intraoperative calibration phantom. The model has to be adapted once to each specific image intensifier through calibration, which is based on an optimization algorithm systematically altering the physical model parameters, until a minimal error is reached. Once calibrated, the model is able to predict the distortions caused by the measured magnetic field vector and build an appropriate dewarping function. The time needed for model calibration is not yet optimized and takes up to 4 h on a 3 GHz CPU. In contrast, the time needed for distortion correction is less than 1 s and therefore absolutely acceptable for intraoperative use. First evaluations showed that by using the model based dewarping algorithm the distortions of an XRII with a 21 cm FOV could be significantly reduced. The model was able to predict and compensate distortions by approximately 80% to a remaining error of 0.45 mm (max) (0.19 mm rms)

  18. The GSF family of voxel phantoms

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Zankl, Maria; Fill, Ute; Regulla, Dieter

    2002-01-01

    Voxel phantoms are human models based on computed tomographic or magnetic resonance images obtained from high-resolution scans of a single individual. They consist of a huge number of volume elements (voxels) and are at the moment the most precise representation of the human anatomy. The purpose of this paper is to introduce the GSF voxel phantoms, with emphasis on the new ones and highlight their characteristics and limitations. The GSF voxel family includes at the moment two paediatric and five adult phantoms of both sexes, different ages and stature and several others are under construction. Two phantoms made of physical calibration phantoms are also available to be used for validation purposes. The GSF voxel phantoms tend to cover persons of individual anatomy and were developed to be used for numerical dosimetry of radiation transport but other applications are also possible. Examples of applications in patient dosimetry in diagnostic radiology and in nuclear medicine as well as for whole-body irradiations from idealized external exposures are given and discussed.

  19. "Phantom" carpal tunnel syndrome.

    PubMed

    Braverman, D L; Root, B C

    1997-10-01

    Phantom sensation is ubiquitous among persons who have had amputation; however, if it develops into phantom pain, a thorough clinical investigation must ensue. We illustrate this with the case of a 49-year-old woman, 14 years after traumatic amputation of her left 2nd through 5th fingers, and 10 years after traumatic left transfemoral amputation. She had had phantom sensation in her absent fingers for years and developed progressive pain in her phantom fingers 3 months before presentation. Nerve conduction study revealed a high-normal distal motor latency of the left median nerve and a positive Bactrian test (sensitivity 87%). She was diagnosed with "phantom" carpal tunnel syndrome and treated with a resting wrist splint, decreased weight bearing on the left upper limb, and two corticosteroid carpal tunnel injections with marked improvement. Clinicians should recognize that phantom pain may be referred from a more proximal region and may be amenable to conservative management.

  20. [Phantom limb pain].

    PubMed

    Steffen, Peter

    2006-06-01

    Almost everyone who has amputated a limb will experience a phantom limb. They have the vivid impression, that the limb is still present. 60 to 70% of these amputees will suffer from phantom limb pain. The present paper gives an overview of the incidence and the characteristics of the so called "post amputation syndrome". Possible mechanism of this phenomena are presented, including peripheral, spinal, and central theories. Treatment of phantom limb pain is sometimes very difficult. It includes drug therapy, psychological therapy, physiotherapy as well as the prevention of phantom limb pain with regional analgesia techniques.

  1. Calibration and Evaluation of Ultrasound Thermography using Infrared Imaging

    PubMed Central

    Hsiao, Yi-Sing; Deng, Cheri X.

    2015-01-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared (IR) thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound (HIFU) heating, we simultaneously acquired ultrasound and IR imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with IR-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (− 0.59 ± 0.08) and cardiac tissue (− 0.69 ± 0.18 °C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the IR measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45 – 50 °C in cardiac tissues. Unlike previous studies where thermocouples or water-bath techniques were used to evaluate the performance of ultrasound thermography, our results show that high resolution IR thermography provides a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods. PMID:26547634

  2. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  3. An anthropomorphic phantom for quantitative evaluation of breast MRI.

    PubMed

    Freed, Melanie; de Zwart, Jacco A; Loud, Jennifer T; El Khouli, Riham H; Myers, Kyle J; Greene, Mark H; Duyn, Jeff H; Badano, Aldo

    2011-02-01

    In this study, the authors aim to develop a physical, tissue-mimicking phantom for quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the need for improved standardization in breast MRI and provide a platform for evaluating the influence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons between patient and phantom image properties are presented. The phantom is constructed using a mixture of lard and egg whites, resulting in a random structure with separate adipose- and glandular-mimicking components. T1 and T2 relaxation times of the lard and egg components of the phantom were estimated at 1.5 T from inversion recovery and spin-echo scans, respectively, using maximum-likelihood methods. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of phantom and patient images. A static, enhancing lesion was introduced by creating a hollow mold with stereolithography and filling it with a gadolinium-doped water solution. Measured phantom relaxation values fall within 2 standard errors of human values from the literature and are reasonably stable over 9 months of testing. Comparison of the covariance matrices of phantom and patient data demonstrates that the phantom and patient data have similar image structure. Their covariance matrices are the same to within error bars in the anterior-posterior direction and to within about two error bars in the right-left direction. The signal from the phantom's adipose-mimicking material can be suppressed using active fat-suppression protocols. A static, enhancing lesion can also be included with the ability to change morphology and contrast agent concentration. The authors have constructed a phantom and demonstrated its ability to mimic human breast images in terms of key physical properties that are relevant to breast MRI. This phantom provides a platform for the optimization and standardization of

  4. Imaging CDMAM phantom with tomosynthesis

    NASA Astrophysics Data System (ADS)

    Ren, Baorui; Smith, Andy; Ruth, Chris; Jing, Zhenxue

    2008-03-01

    We studied the use of the mammography contrast detail phantom (CDMAM) with tomosynthesis to evaluate the performance of our system as well as to explore the application of CDMAM in 3D breast imaging. The system was Hologic's 1st generation tomosynthesis machine. CDMAM phantom plus PMMA slabs were imaged at 3 cm, 5 cm, 7 cm, and 9 cm PMMA-equivalent thickness with 11 projections per scan and the scan angle selected from 0, 15 and 28 degrees. CDMAM images were reconstructed using the back projection method, and were scored with the CDCOM automatic analysis program. The threshold thickness of each disk size was obtained with psychometric curve fitting. We first studied errors and variability associated with the results when different numbers of images were used in contrast detail analysis, then studied factors that affected CDMAM results in tomosynthesis, including the x-ray dose, the scan angle, the in-plane reconstruction pixel size, the slice-to-slice step size, the location of the CDMAM inside the PMMA slabs, and the scatter effect. This paper will present results of CDMAM performance of our tomosynthesis system, as well as their dependence on the various factors, and the comparison with 2D mammography. Additionally we will discuss the novel processing and analysis methods developed during this study, and make proposals to modify the CDMAM phantom and the CDCOM analysis program to optimize the method for 3D tomosynthesis.

  5. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe

    PubMed Central

    Yu, Bing; Fu, Henry; Bydlon, Torre; Bender, Janelle E.; Ramanujam, Nirmala

    2009-01-01

    Calibration of the diffuse reflectance spectrum for instrument response and time-dependent fluctuation as well as interdevice variations is complicated, time consuming, and potentially inaccurate. We describe a novel fiber optic probe with a real-time self-calibration capability that can be used for tissue optical spectroscopy. The probe was tested in a number of liquid phantoms over a relevant range of tissue optical properties. Absorption and scattering coefficients are extracted with an average absolute error and standard deviation of 6.9% ± 7.2% and 3.5% ± 1.5%, respectively. PMID:18709086

  6. Phantom Torso model

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Phantom Torso is a tissue-muscle plastic anatomical model of a torso and head. It contains over 350 radiation measuring devices to calculate the radiation that penetrates internal organs in space travel. The Phantom Torso is one of three radiation experiments in Expedition Two including the Borner Ball Neutron Detector and Dosimetric Mapping.

  7. Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model

    NASA Astrophysics Data System (ADS)

    Bennett, James C.; Wang, Q. J.; Li, Ming; Robertson, David E.; Schepen, Andrew

    2016-10-01

    We present a new streamflow forecasting system called forecast guided stochastic scenarios (FoGSS). FoGSS makes use of ensemble seasonal precipitation forecasts from a coupled ocean-atmosphere general circulation model (CGCM). The CGCM forecasts are post-processed with the method of calibration, bridging and merging (CBaM) to produce ensemble precipitation forecasts over river catchments. CBaM corrects biases and removes noise from the CGCM forecasts, and produces highly reliable ensemble precipitation forecasts. The post-processed CGCM forecasts are used to force the Wapaba monthly rainfall-runoff model. Uncertainty in the hydrological modeling is accounted for with a three-stage error model. Stage 1 applies the log-sinh transformation to normalize residuals and homogenize their variance; Stage 2 applies a conditional bias-correction to correct biases and help remove negative forecast skill; Stage 3 applies an autoregressive model to improve forecast accuracy at short lead-times and propagate uncertainty through the forecast. FoGSS generates ensemble forecasts in the form of time series for the coming 12 months. In a case study of two catchments, FoGSS produces reliable forecasts at all lead-times. Forecast skill with respect to climatology is evident to lead-times of about 3 months. At longer lead-times, forecast skill approximates that of climatology forecasts; that is, forecasts become like stochastic scenarios. Because forecast skill is virtually never negative at long lead-times, forecasts of accumulated volumes can be skillful. Forecasts of accumulated 12 month streamflow volumes are significantly skillful in several instances, and ensembles of accumulated volumes are reliable. We conclude that FoGSS forecasts could be highly useful to water managers.

  8. Comprehensive phantom for interventional fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Anastasopoulou, Maria; Koch, Maximilian; Gorpas, Dimitris; Karlas, Angelos; Klemm, Uwe; Garcia-Allende, Pilar Beatriz; Ntziachristos, Vasilis

    2016-09-01

    Fluorescence imaging has been considered for over a half-century as a modality that could assist surgical guidance and visualization. The administration of fluorescent molecules with sensitivity to disease biomarkers and their imaging using a fluorescence camera can outline pathophysiological parameters of tissue invisible to the human eye during operation. The advent of fluorescent agents that target specific cellular responses and molecular pathways of disease has facilitated the intraoperative identification of cancer with improved sensitivity and specificity over nonspecific fluorescent dyes that only outline the vascular system and enhanced permeability effects. With these new abilities come unique requirements for developing phantoms to calibrate imaging systems and algorithms. We briefly review herein progress with fluorescence phantoms employed to validate fluorescence imaging systems and results. We identify current limitations and discuss the level of phantom complexity that may be required for developing a universal strategy for fluorescence imaging calibration. Finally, we present a phantom design that could be used as a tool for interlaboratory system performance evaluation.

  9. Surface layering properties of Intralipid phantoms.

    PubMed

    Bodenschatz, Nico; Krauter, Philipp; Foschum, Florian; Nothelfer, Steffen; Liemert, André; Simon, Emanuel; Kröner, Sabrina; Kienle, Alwin

    2015-02-07

    Intralipid has become an extensively studied and widely used reference and calibration phantom for diffuse optical imaging technologies. In this study we call attention to the layering properties of Intralipid emulsions, which are commonly assumed to have homogeneous optical properties. By measurement of spatial frequency domain reflectance in combination with an analytical solution of the radiative transfer equation for two-layered media, we make quantitative investigations on the formation of a surface layer on different dilutions of Intralipid. Our findings are verified by an independent spatially resolved reflectance setup giving evidence of a time dependent, thin and highly scattering surface layer on top of Intralipid-water emulsions. This layer should be considered when using Intralipid as an optical calibration or reference phantom.

  10. Surface layering properties of Intralipid phantoms

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Nico; Krauter, Philipp; Foschum, Florian; Nothelfer, Steffen; Liemert, André; Simon, Emanuel; Kröner, Sabrina; Kienle, Alwin

    2015-02-01

    Intralipid has become an extensively studied and widely used reference and calibration phantom for diffuse optical imaging technologies. In this study we call attention to the layering properties of Intralipid emulsions, which are commonly assumed to have homogeneous optical properties. By measurement of spatial frequency domain reflectance in combination with an analytical solution of the radiative transfer equation for two-layered media, we make quantitative investigations on the formation of a surface layer on different dilutions of Intralipid. Our findings are verified by an independent spatially resolved reflectance setup giving evidence of a time dependent, thin and highly scattering surface layer on top of Intralipid-water emulsions. This layer should be considered when using Intralipid as an optical calibration or reference phantom.

  11. An anthropomorphic phantom for quantitative evaluation of breast MRI

    PubMed Central

    Freed, Melanie; de Zwart, Jacco A.; Loud, Jennifer T.; El Khouli, Riham H.; Myers, Kyle J.; Greene, Mark H.; Duyn, Jeff H.; Badano, Aldo

    2011-01-01

    Purpose: In this study, the authors aim to develop a physical, tissue-mimicking phantom for quantitative evaluation of breast MRI protocols. The objective of this phantom is to address the need for improved standardization in breast MRI and provide a platform for evaluating the influence of image protocol parameters on lesion detection and discrimination. Quantitative comparisons between patient and phantom image properties are presented. Methods: The phantom is constructed using a mixture of lard and egg whites, resulting in a random structure with separate adipose- and glandular-mimicking components. T1 and T2 relaxation times of the lard and egg components of the phantom were estimated at 1.5 T from inversion recovery and spin-echo scans, respectively, using maximum-likelihood methods. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of phantom and patient images. A static, enhancing lesion was introduced by creating a hollow mold with stereolithography and filling it with a gadolinium-doped water solution. Results: Measured phantom relaxation values fall within 2 standard errors of human values from the literature and are reasonably stable over 9 months of testing. Comparison of the covariance matrices of phantom and patient data demonstrates that the phantom and patient data have similar image structure. Their covariance matrices are the same to within error bars in the anterior-posterior direction and to within about two error bars in the right-left direction. The signal from the phantom’s adipose-mimicking material can be suppressed using active fat-suppression protocols. A static, enhancing lesion can also be included with the ability to change morphology and contrast agent concentration. Conclusions: The authors have constructed a phantom and demonstrated its ability to mimic human breast images in terms of key physical properties that are relevant to breast MRI. This phantom provides a platform for

  12. A three-dimensional head-and-neck phantom for validation of multimodality deformable image registration for adaptive radiotherapy

    SciTech Connect

    Singhrao, Kamal; Kirby, Neil; Pouliot, Jean

    2014-12-15

    Purpose: To develop a three-dimensional (3D) deformable head-and-neck (H and N) phantom with realistic tissue contrast for both kilovoltage (kV) and megavoltage (MV) imaging modalities and use it to objectively evaluate deformable image registration (DIR) algorithms. Methods: The phantom represents H and N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kV and MV imaging. The phantom opens along a sagittal midsection to reveal radiotransparent markers, which were used to characterize the phantom deformation. The deformed and undeformed phantoms were scanned with kV and MV imaging modalities. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and MIM software. Results: The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able to represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV–kV registration, MIM produced mean and maximum errors of 1.8 and 11.5 mm, respectively. These same numbers for Velocity were 2.4 and 7.1 mm, respectively. For MV–MV, kV–MV, and kV–MC Velocity produced similar mean and maximum error values. MIM, however, produced gross errors for all three of these scenarios, with maximum errors ranging from 33.4 to 41.6 mm. Conclusions: The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H and N phantom is an effective tool

  13. A three-dimensional head-and-neck phantom for validation of multimodality deformable image registration for adaptive radiotherapy.

    PubMed

    Singhrao, Kamal; Kirby, Neil; Pouliot, Jean

    2014-12-01

    To develop a three-dimensional (3D) deformable head-and-neck (H&N) phantom with realistic tissue contrast for both kilovoltage (kV) and megavoltage (MV) imaging modalities and use it to objectively evaluate deformable image registration (DIR) algorithms. The phantom represents H&N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kV and MV imaging. The phantom opens along a sagittal midsection to reveal radiotransparent markers, which were used to characterize the phantom deformation. The deformed and undeformed phantoms were scanned with kV and MV imaging modalities. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and mim software. The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able to represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV-kV registration, mim produced mean and maximum errors of 1.8 and 11.5 mm, respectively. These same numbers for Velocity were 2.4 and 7.1 mm, respectively. For MV-MV, kV-MV, and kV-MC Velocity produced similar mean and maximum error values. mim, however, produced gross errors for all three of these scenarios, with maximum errors ranging from 33.4 to 41.6 mm. The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H&N phantom is an effective tool for this purpose.

  14. Effect of fat content on single- and dual-energy CT measurements of bone mineral: determination using a new system of tissue-mimicking phantom materials

    NASA Astrophysics Data System (ADS)

    Westmore, Michael S.; Sato, Masahjiko

    2000-04-01

    The effects of fat content on single- and dual-energy CT measurements of bone mineral were quantified using a set of tissue-mimicking phantoms which more accurately represents the in-vivo situation than previous phantoms. The key to performing these measurements in CT is to have a mixture of tissue types within each image voxel, a condition which is not satisfied with standard phantoms. The phantoms used in these studies were solid materials which mimicked 17 different homogeneous mixtures of bone, muscle, and fat. The concept of creating phantoms to mimic different mixtures of these tissues is new. The materials are epoxy-resin based and have different mixtures of phenolic microspheres, polyethylene, and calcium carbonate suspended in them. Single- and dual-energy CT were used to image the phantom materials, and the effects of fat content on bone-mineral measurements were determined. The single-energy CT measurements show how fat content causes an underestimation of the amount of bone mineral present in a specimen, with the underestimation increasing as a function of fat content. With 25% and 50% fat by volume, the single-energy measurements underestimated bone volume percentage by 2.7% and 3.6% respectively. With dual-energy CT, fat content has no effect on the measurement of bone mineral. These results are not surprising. In fact, the effects of fat content on single- and dual-energy CT measurements have been studied many times previously. However, a system of accurately measuring these effects using a set of phantom measurements with physiologically accurate tissue-mimicking materials has not been developed previously. Using these phantoms, dual-energy CT measurements can be accurately calibrated for measurements of bone mineral while the errors possible while measuring bone mineral with single-energy CT can be quantified for any given imaging parameters.

  15. A novel breast software phantom for biomechanical modeling of elastography.

    PubMed

    Bhatti, Syeda Naema; Sridhar-Keralapura, Mallika

    2012-04-01

    found within the phantom while errors were elevated (around 10-30 KPa) at tumor and lobule boundaries. From our FEM analysis, the breast phantom generated a superior CTE in both 2D and in 3D over the block phantom. It also showed differences in CTE values and strain contrast for deep and shallow tumors and showed significant change in CTE when 3D modeling was used. These changes were not significant in the block phantom. Both phantoms, however, showed worsened CTE values for increased input tumor-background modulus contrast. Block phantoms serve as a starting tool but a next level phantom, like the proposed breast phantom, will serve as a valuable intermediate for elastography simulation before clinical testing. Further, given the CTE metrics for the breast phantom are superior to the block phantom, and vary for tumor shape, location, and stiffness, these phantoms would enhance the study of elastography contrast. Further, the use of 2D phantoms with plane strain approximations overestimates the CTE value when compared to the true CTE achieved with 3D models. Thus, the use of 3D phantoms, like the breast phantom, with no approximations, will assist in more accurate estimation of modulus, especially valuable for 3D elastography systems.

  16. Lung pair phantom

    DOEpatents

    Olsen, Peter C.; Gordon, N. Ross; Simmons, Kevin L.

    1993-01-01

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an "authentic lung tissue" or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  17. Lung pair phantom

    DOEpatents

    Olsen, P.C.; Gordon, N.R.; Simmons, K.L.

    1993-11-30

    The present invention is a material and method of making the material that exhibits improved radiation attenuation simulation of real lungs, i.e., an ``authentic lung tissue`` or ALT phantom. Specifically, the ALT phantom is a two-part polyurethane medium density foam mixed with calcium carbonate, potassium carbonate if needed for K-40 background, lanthanum nitrate, acetone, and a nitrate or chloride form of a radionuclide. This formulation is found to closely match chemical composition and linear attenuation of real lungs. The ALT phantom material is made according to established procedures but without adding foaming agents or preparing thixotropic concentrate and with a modification for ensuring uniformity of density of the ALT phantom that is necessary for accurate simulation. The modification is that the polyurethane chemicals are mixed at a low temperature prior to pouring the polyurethane mixture into the mold.

  18. Patient-specific stopping power calibration for proton therapy planning based on single-detector proton radiography.

    PubMed

    Doolan, P J; Testa, M; Sharp, G; Bentefour, E H; Royle, G; Lu, H-M

    2015-03-07

    A simple robust optimizer has been developed that can produce patient-specific calibration curves to convert x-ray computed tomography (CT) numbers to relative stopping powers (HU-RSPs) for proton therapy treatment planning. The difference between a digitally reconstructed radiograph water-equivalent path length (DRRWEPL) map through the x-ray CT dataset and a proton radiograph (set as the ground truth) is minimized by optimizing the HU-RSP calibration curve. The function of the optimizer is validated with synthetic datasets that contain no noise and its robustness is shown against CT noise. Application of the procedure is then demonstrated on a plastic and a real tissue phantom, with proton radiographs produced using a single detector. The mean errors using generic/optimized calibration curves between the DRRWEPL map and the proton radiograph were 1.8/0.4% for a plastic phantom and -2.1/ - 0.2% for a real tissue phantom. It was then demonstrated that these optimized calibration curves offer a better prediction of the water equivalent path length at a therapeutic depth. We believe that these promising results are suggestive that a single proton radiograph could be used to generate a patient-specific calibration curve as part of the current proton treatment planning workflow.

  19. Surface refraction of sound waves affects calibration of three-dimensional ultrasound.

    PubMed

    Ballhausen, Hendrik; Ballhausen, Bianca Désirée; Lachaine, Martin; Li, Minglun; Parodi, Katia; Belka, Claus; Reiner, Michael

    2015-05-27

    .12 mm/° were recorded in agreement with the first experiment at about room temperature. The difference to the theoretical expectation of 0.07 mm/° was not significant (p = 0.09). The surface refraction of sound waves my affect the calibration of three-dimensional ultrasound. The temperature dependence of the effect rules out alternative explanations for the observed shifts in calibration. At room temperature and for a structure that is 10 cm below the water-phantom interface, a tilt of the ultrasound probe of 10° may result in a position reading that is off by more than half a millimeter. Such errors are of the order of other relevant errors typically encountered during the calibration of a 3D-US system. Hence, care must be taken not to tilt the ultrasound probe during calibration.

  20. Statistical errors and systematic biases in the calibration of the convective core overshooting with eclipsing binaries. A case study: TZ Fornacis

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2017-03-01

    Context. Recently published work has made high-precision fundamental parameters available for the binary system TZ Fornacis, making it an ideal target for the calibration of stellar models. Aims: Relying on these observations, we attempt to constrain the initial helium abundance, the age and the efficiency of the convective core overshooting. Our main aim is in pointing out the biases in the results due to not accounting for some sources of uncertainty. Methods: We adopt the SCEPtER pipeline, a maximum likelihood technique based on fine grids of stellar models computed for various values of metallicity, initial helium abundance and overshooting efficiency by means of two independent stellar evolutionary codes, namely FRANEC and MESA. Results: Beside the degeneracy between the estimated age and overshooting efficiency, we found the existence of multiple independent groups of solutions. The best one suggests a system of age 1.10 ± 0.07 Gyr composed of a primary star in the central helium burning stage and a secondary in the sub-giant branch (SGB). The resulting initial helium abundance is consistent with a helium-to-metal enrichment ratio of ΔY/ ΔZ = 1; the core overshooting parameter is β = 0.15 ± 0.01 for FRANEC and fov = 0.013 ± 0.001 for MESA. The second class of solutions, characterised by a worse goodness-of-fit, still suggest a primary star in the central helium-burning stage but a secondary in the overall contraction phase, at the end of the main sequence (MS). In this case, the FRANEC grid provides an age of Gyr and a core overshooting parameter , while the MESA grid gives 1.23 ± 0.03 Gyr and fov = 0.025 ± 0.003. We analyse the impact on the results of a larger, but typical, mass uncertainty and of neglecting the uncertainty in the initial helium content of the system. We show that very precise mass determinations with uncertainty of a few thousandths of solar mass are required to obtain reliable determinations of stellar parameters, as mass errors

  1. Spectroscopic measurements and characterization of soft tissue phantoms

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Ipus, Erick

    2013-02-01

    Tissue phantoms are important tools to calibrate and validate light propagation effects, measurements and diagnostic test in real biological soft tissue. We produce low cost phantoms using standard commercial jelly, distillated water, glycerol and a 20% lipid emulsion (Oliclinomel N7-1000 ®) was used in place of the usual Intralipid®. In a previous work we designed a protocol to elaborate high purity phantoms which can be used over months. We produced three different types of phantoms regarding the lipid emulsion - glycerol - gelatin - water composition: Pure gelatin phantoms, lipid in glycerol, and lipid in gelatin phantoms were produced and different concentrations of the lipid emulsion were used to study optical propagation properties of diffusive mixtures. Besides, 1.09 μm poly latex spheres in distilled water were used to produce reference phantoms. In order to use all the phantom sides, the phantoms were produced in disposable spectrometer cuvettes, designed for fluorescence studies. Measurements were performed using an OceanOptics 4000 channels spectrophotometer and integrating spheres. For the scattering measurements a homemade goniometer with a high resolution angular scale was used and the scattering detector was a linear array of optical fibers, with an angular collimator, connected to the spectrophotometer. White LED was used as light source, and the 6328.8 nm HeNe Laser was used for calibration. In this work we present characterization measurements for gelatin and microspheres phantoms using spectral reflectance, diffuse and direct spectral transmittance, and angle scattering measurements. The results of these measurements and their comparison are presented.

  2. Stability of phantom wormholes

    SciTech Connect

    Lobo, Francisco S.N.

    2005-06-15

    It has recently been shown that traversable wormholes may be supported by phantom energy. In this work phantom wormhole geometries are modeled by matching an interior traversable wormhole solution, governed by the equation of state p={omega}{rho} with {omega}<-1, to an exterior vacuum spacetime at a finite junction interface. The stability analysis of these phantom wormholes to linearized spherically symmetric perturbations about static equilibrium solutions is carried out. A master equation dictating the stability regions is deduced, and by separating the cases of a positive and a negative surface energy density, it is found that the respective stable equilibrium configurations may be increased by strategically varying the wormhole throat radius. The first model considered, in the absence of a thin shell, is that of an asymptotically flat phantom wormhole spacetime. The second model constructed is that of an isotropic pressure phantom wormhole, which is of particular interest, as the notion of phantom energy is that of a spatially homogeneous cosmic fluid, although it may be extended to inhomogeneous spherically symmetric spacetimes.

  3. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    SciTech Connect

    Johnson, Perry B.; Geyer, Amy; Borrego, David; Ficarrotta, Kayla; Johnson, Kevin; Bolch, Wesley E.

    2011-02-15

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences

  4. Stable phantoms for characterization of photoacoustic tomography (PAT) systems

    NASA Astrophysics Data System (ADS)

    Bohndiek, Sarah E.; Van de Sompel, Dominique; Bodapati, Sandhya; Kothapalli, Sri Rajasekhar; Gambhir, Sanjiv S.

    2013-02-01

    Photoacoustic tomography (PAT) is an emerging modality that combines the high contrast of optical imaging, with the spatial resolution and penetration depth of ultrasound, by exploiting the photoacoustic effect. As with any new imaging modality, reliable physical phantoms are needed to: calibrate instruments; validate performance; optimize signal-to-noise; perform routine quality control; and compare systems. Phantom materials for testing small animal PAT systems should also mimic both the optical and acoustic properties of soft tissue, while for calibration purposes should be resistant to degradation over long time periods. We show here that polyvinyl chloride plastisol (PVCP) phantoms enable calibration and performance validation using two PAT systems with distinct designs (Visualsonics Vevo LAZR and Endra Nexus 128) across a wavelength range of 680 nm - 950 nm. Inclusions between 2 and 3.2 mm in diameter were fabricated from PVCP using a range of dye concentrations (0 % to 0.256 % Black Plastic Color, BPC) in a custom mold. A calibration phantom was imaged repeatedly on both systems, over time scales of minutes, hours and days, to assess system stability. Both systems demonstrated good reproducibility over time, with the coefficient of variation in the measured signal-to-noise ratio (SNR) being less than 15% over the course of 30 days. Imaging performance was optimized by plotting SNR as a function of different system parameters. The visualization of objects embedded in optically absorbing and scattering backgrounds was also assessed. PVCP is easy to work with and provides stable phantoms for assessing PAT system performance.

  5. Is Your System Calibrated? MRI Gradient System Calibration for Pre-Clinical, High-Resolution Imaging

    PubMed Central

    O’Callaghan, James; Wells, Jack; Richardson, Simon; Holmes, Holly; Yu, Yichao; Walker-Samuel, Simon

    2014-01-01

    High-field, pre-clinical MRI systems are widely used to characterise tissue structure and volume in small animals, using high resolution imaging. Both applications rely heavily on the consistent, accurate calibration of imaging gradients, yet such calibrations are typically only performed during maintenance sessions by equipment manufacturers, and potentially with acceptance limits that are inadequate for phenotyping. To overcome this difficulty, we present a protocol for gradient calibration quality assurance testing, based on a 3D-printed, open source, structural phantom that can be customised to the dimensions of individual scanners and RF coils. In trials on a 9.4 T system, the gradient scaling errors were reduced by an order of magnitude, and displacements of greater than 100 µm, caused by gradient non-linearity, were corrected using a post-processing technique. The step-by-step protocol can be integrated into routine pre-clinical MRI quality assurance to measure and correct for these errors. We suggest that this type of quality assurance is essential for robust pre-clinical MRI experiments that rely on accurate imaging gradients, including small animal phenotyping and diffusion MR. PMID:24804737

  6. Improving self-calibration.

    PubMed

    Enßlin, Torsten A; Junklewitz, Henrik; Winderling, Lars; Greiner, Maksim; Selig, Marco

    2014-10-01

    Response calibration is the process of inferring how much the measured data depend on the signal one is interested in. It is essential for any quantitative signal estimation on the basis of the data. Here, we investigate self-calibration methods for linear signal measurements and linear dependence of the response on the calibration parameters. The common practice is to augment an external calibration solution using a known reference signal with an internal calibration on the unknown measurement signal itself. Contemporary self-calibration schemes try to find a self-consistent solution for signal and calibration by exploiting redundancies in the measurements. This can be understood in terms of maximizing the joint probability of signal and calibration. However, the full uncertainty structure of this joint probability around its maximum is thereby not taken into account by these schemes. Therefore, better schemes, in sense of minimal square error, can be designed by accounting for asymmetries in the uncertainty of signal and calibration. We argue that at least a systematic correction of the common self-calibration scheme should be applied in many measurement situations in order to properly treat uncertainties of the signal on which one calibrates. Otherwise, the calibration solutions suffer from a systematic bias, which consequently distorts the signal reconstruction. Furthermore, we argue that nonparametric, signal-to-noise filtered calibration should provide more accurate reconstructions than the common bin averages and provide a new, improved self-calibration scheme. We illustrate our findings with a simplistic numerical example.

  7. Phantom energy traversable wormholes

    SciTech Connect

    Lobo, Francisco S.N.

    2005-04-15

    It has been suggested that a possible candidate for the present accelerated expansion of the Universe is 'phantom energy'. The latter possesses an equation of state of the form {omega}{identical_to}p/{rho}<-1, consequently violating the null energy condition. As this is the fundamental ingredient to sustain traversable wormholes, this cosmic fluid presents us with a natural scenario for the existence of these exotic geometries. 'Note, however, that the notion of phantom energy is that of a homogeneously distributed fluid. Nevertheless, it can be extended to inhomogeneous spherically symmetric spacetimes, and it is shown that traversable wormholes may be supported by phantom energy. Because of the fact of the accelerating Universe, macroscopic wormholes could naturally be grown from the submicroscopic constructions that originally pervaded the quantum foam. One could also imagine an advanced civilization mining the cosmic fluid for phantom energy necessary to construct and sustain a traversable wormhole. In this context, we investigate the physical properties and characteristics of traversable wormholes constructed using the equation of state p={omega}{rho}, with {omega}<-1. We analyze specific wormhole geometries, considering asymptotically flat spacetimes and imposing an isotropic pressure. We also construct a thin shell around the interior wormhole solution, by imposing the phantom energy equation of state on the surface stresses. Using the 'volume integral quantifier' we verify that it is theoretically possible to construct these geometries with vanishing amounts of averaged null energy condition violating phantom energy. Specific wormhole dimensions and the traversal velocity and time are also deduced from the traversability conditions for a particular wormhole geometry. These phantom energy traversable wormholes have far-reaching physical and cosmological implications. For instance, an advanced civilization may use these geometries to induce closed timelike

  8. Sensitivity analysis of a geometric calibration method using projection matrices for digital tomosynthesis systems

    SciTech Connect

    Li Xinhua; Zhang Da; Liu, Bob

    2011-01-15

    Purpose: To study the sensitivity of a geometric calibration method using projection matrices for digital tomosynthesis systems. Methods: A generic geometric calibration method for tomographic imaging systems has been presented in our previous work. The method involves a scan of a calibration phantom with multiple markers. Their locations in projection images are detected and are associated with their 3D coordinates to compute 3x4 projection matrices, which can be used in subsequent image reconstruction. The accuracy of geometric calibration may be affected by errors in the input data of marker positions. The effects of errors may depend on the number of markers and the volume surrounded by them in 3D space. This work analyzed the sensitivity of the calibration method to the above factors. A 6 cm CIRS breast research phantom and a prototype breast tomosynthesis system were used for our tests. A high contrast ring and two small speck groups were reconstructed in various testing cases for comparison. To achieve quantitative assessment, a 15x15 point detection mask was adopted for detecting signals and for computing changes between testing cases and the regular geometric calibration. Results: When 3D coordinates and 2D projections of markers were accurate, all tested numbers of markers, 6-44, provided similar high quality reconstructions of the ring and the two speck groups. Errors in marker positions resulted in image degradations and signal changes, which increased with fewer markers and smaller volume surrounded by markers in the 3D object space. Signal changes of small specks were more significant than those of the ring. Errors in marker projections produced drastic image degradations. Coplanar marker placement caused a failure in projection matrix computation. Conclusions: For practical geometric calibration phantom design, ample markers are desired. They need to have a large volumetric coverage in the 3D space and be far from being coplanar. Precise

  9. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  10. Single-view geometric calibration for C-arm inverse geometry CT.

    PubMed

    Slagowski, Jordan M; Dunkerley, David A P; Hatt, Charles R; Speidel, Michael A

    2017-01-01

    Accurate and artifact-free reconstruction of tomographic images requires precise knowledge of the imaging system geometry. A projection matrix-based calibration method to enable C-arm inverse geometry CT (IGCT) is proposed. The method is evaluated for scanning-beam digital x-ray (SBDX), a C-arm mounted inverse geometry fluoroscopic technology. A helical configuration of fiducials is imaged at each gantry angle in a rotational acquisition. For each gantry angle, digital tomosynthesis is performed at multiple planes and a composite image analogous to a cone-beam projection is generated from the plane stack. The geometry of the C-arm, source array, and detector array is determined at each angle by constructing a parameterized three-dimensional-to-two-dimensional projection matrix that minimizes the sum-of-squared deviations between measured and projected fiducial coordinates. Simulations were used to evaluate calibration performance with translations and rotations of the source and detector. The relative root-mean-square error in a reconstruction of a numerical thorax phantom was 0.4% using the calibration method versus 7.7% without calibration. In phantom studies, reconstruction of SBDX projections using the proposed method eliminated artifacts present in noncalibrated reconstructions. The proposed IGCT calibration method reduces image artifacts when uncertainties exist in system geometry.

  11. Developing multifunctional tissue simulating phantoms for quantitative biomedical optical imaging

    NASA Astrophysics Data System (ADS)

    Xu, Ronald; Xu, Jeff; Qin, Ruogu; Huang, Jiwei

    2010-02-01

    Many advantages of biomedical optical imaging modalities include low cost, portability, no radiation hazard, molecular sensitivity, and real-time non-invasive measurements of multiple tissue parameters. However, clinical acceptance of optical imaging is hampered by the lack of calibration standards and validation techniques. In this context, developing phantoms that simulate tissue structural, functional, and molecular properties is important for reliable performance and successful translation of biomedical optical imaging techniques to clinical applications. Over the years, we have developed various tissue simulating phantoms to validate imaging algorithms, to optimize instrument performance, to test contrast agents, and to calibrate acquisition systems. We also developed phantoms with multimodal contrasts for co-registration between different imaging modalities. In order to study tissue dynamic changes during medical intervention, we develop gel wax phantoms to simulate tissue optical and mechanical dynamics in response to compression load. We also dispersed heat sensitive microbubbles in agar agar gel phantoms to simulate heatinduced tissue coagulative necrosis in a cancer ablation procedure. The phantom systems developed in our lab have the potential to provide standardized traceable tools for multimodal imaging and image-guided intervention.

  12. Precision measurements of the RSA method using a phantom model of hip prosthesis.

    PubMed

    Mäkinen, Tatu J; Koort, Jyri K; Mattila, Kimmo T; Aro, Hannu T

    2004-04-01

    Radiostereometric analysis (RSA) has become one of the recommended techniques for pre-market evaluation of new joint implant designs. In this study we evaluated the effect of repositioning of X-ray tubes and phantom model on the precision of the RSA method. In precision measurements, we utilized mean error of rigid body fitting (ME) values as an internal control for examinations. ME value characterizes relative motion among the markers within each rigid body and is conventionally used to detect loosening of a bone marker. Three experiments, each consisting of 10 double examinations, were performed. In the first experiment, the X-ray tubes and the phantom model were not repositioned between one double examination. In experiments two and three, the X-ray tubes were repositioned between one double examination. In addition, the position of the phantom model was changed in experiment three. Results showed that significant differences could be found in 2 of 12 comparisons when evaluating the translation and rotation of the prosthetic components. Repositioning procedures increased ME values mimicking deformation of rigid body segments. Thus, ME value seemed to be a more sensitive parameter than migration values in this study design. These results confirmed the importance of standardized radiographic technique and accurate patient positioning for RSA measurements. Standardization and calibration procedures should be performed with phantom models in order to avoid unnecessary radiation dose of the patients. The present model gives the means to establish and to follow the intra-laboratory precision of the RSA method. The model is easily applicable in any research unit and allows the comparison of the precision values in different laboratories of multi-center trials.

  13. Optical phantoms with variable properties and geometries for diffuse and fluorescence optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Leh, Barbara; Siebert, Rainer; Hamzeh, Hussein; Menard, Laurent; Duval, Marie-Alix; Charon, Yves; Abi Haidar, Darine

    2012-10-01

    Growing interest in optical instruments for biomedical applications has increased the use of optically calibrated phantoms. Often associated with tissue modeling, phantoms allow the characterization of optical devices for clinical purposes. Fluorescent gel phantoms have been developed, mimicking optical properties of healthy and tumorous brain tissues. Specific geometries of dedicated molds offer multiple-layer phantoms with variable thicknesses and monolayer phantoms with cylindrical inclusions at various depths and diameters. Organic chromophores are added to allow fluorescence spectroscopy. These phantoms are designed to be used with 405 nm as the excitation wavelength. This wavelength is then adapted to excite large endogenous molecules. The benefits of these phantoms in understanding fluorescence tissue analysis are then demonstrated. In particular, detectability aspects as a function of geometrical and optical parameters are presented and discussed.

  14. Jamitons: Phantom Traffic Jams

    ERIC Educational Resources Information Center

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  15. Jamitons: Phantom Traffic Jams

    ERIC Educational Resources Information Center

    Kowszun, Jorj

    2013-01-01

    Traffic on motorways can slow down for no apparent reason. Sudden changes in speed by one or two drivers can create a chain reaction that causes a traffic jam for the vehicles that are following. This kind of phantom traffic jam is called a "jamiton" and the article discusses some of the ways in which traffic engineers produce…

  16. The Phantom brane revisited

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2016-07-01

    The Phantom brane is based on the normal branch of the DGP braneworld. It possesses a phantom-like equation of state at late times, but no big-rip future singularity. In this braneworld, the cosmological constant is dynamically screened at late times. Consequently it provides a good fit to SDSS DR11 measurements of H(z) at high redshifts. We obtain a closed system of equations for scalar perturbations on the brane. Perturbations of radiation, matter and the Weyl fluid are self-consistently evolved until the present epoch. We find that the late time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials φ, Ψ evolve differently on the brane than in ΛCDM, for which φ = Ψ. On the Brane, by contrast, the ratio φ/Ψ exceeds unity during the late matter dominated epoch (z ≤ 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large scale structure. The phantom brane also displays a pole in its equation of state, which provides a key test of this dark energy model.

  17. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    PubMed

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV.

  18. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    PubMed

    Curtis, Tyler E; Roeder, Ryan K

    2017-07-06

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in

  19. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    SciTech Connect

    Dr. X. Geroge Xu

    2011-01-28

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  20. Egg White Phantoms for HIFU

    SciTech Connect

    Divkovic, Gabriela; Jenne, Juergen W.

    2005-03-28

    We used fresh egg white and polyacrylamide to create a transparent tissue mimicking phantom. Heating of phantoms by HIFU leads to egg white protein denaturation and creation of visible white lesions. We measured the acoustical and thermal properties and investigated the possibility to use such phantoms to study the lesion formation during the HIFU therapy.

  1. Calibration and evaluation of a magnetically tracked ICE probe for guidance of left atrial ablation therapy

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.

    2012-02-01

    The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical

  2. Assessment of target volume doses in radiotherapy based on the standard and measured calibration curves.

    PubMed

    Mohammadi, Gholamreza Fallah; Alam, Nader Riyahi; Rezaeejam, Hamed; Pourfallah, Tayyeb Allahverdi; Zakariaee, Seyed Salman

    2015-01-01

    In radiation treatments, estimation of the dose distribution in the target volume is one of the main components of the treatment planning procedure. To estimate the dose distribution, the information of electron densities is necessary. The standard curves determined by computed tomography (CT) scanner that may be different from that of other oncology centers. In this study, the changes of dose calculation due to the different calibration curves (HU-ρel) were investigated. Dose values were calculated based on the standard calibration curve that was predefined for the treatment planning system (TPS). The calibration curve was also extracted from the CT images of the phantom, and dose values were calculated based on this curve. The percentage errors of the calculated values were determined. The statistical analyses of the mean differences were performed using the Wilcoxon rank-sum test for both of the calibration curves. The results show no significant difference for both of the measured and standard calibration curves (HU-ρel) in 6, 15, and 18 MeV energies. In Wilcoxon ranked sum nonparametric test for independent samples with P<0.05, the equality of monitor units for both of the curves to transfer 200 cGy doses to reference points was resulted. The percentage errors of the calculated values were lower than 2% and 1.5% in 6 and 15 MeV, respectively. From the results, it could be concluded that the standard calibration curve could be used in TPS dose calculation accurately.

  3. SU-D-204-01: Dual-Energy Calibration for Breast Density Measurement Using Spectral Mammography

    SciTech Connect

    Ding, H; Cho, H; Kumar, N; Sennung, D; Molloi, S

    2015-06-15

    Purpose: To investigate the feasibility of minimizing the systematic errors in dual-energy breast density quantification induced by the use of tissue-equivalent plastic phantoms as the calibration basis materials. Methods: Dual-energy calibration using tissue-equivalent plastic phantoms was performed on a spectral mammography system based on scanning multi-slit Si strip photon-counting detectors. The plastic phantom calibration used plastic water and adipose-equivalent phantoms as the basis materials, which have different x-ray attenuation properties compared to water and lipid in actual breast tissue. Two methods were used to convert the dual-energy decomposition measurements in plastic phantom thicknesses into true water and lipid basis. The first method was based entirely on the theoretical x-ray attenuation coefficients of the investigated materials in the mammographic energy range. The conversion matrix was determined from least-squares fitting of the target material using the reported attenuation coefficients of water and lipid. The second method was developed based on experimental calibrations, which measured the low-and high-energy signals of pure water and lipid of known thicknesses. A non-linear rational function was used to correlate the decomposed thicknesses to the known values, so that the conversion coefficients can be determined. Both methods were validated using independent measurements of water and lipid mixture phantoms. The correlation of the dual-energy decomposition measurements and the known values were studied with linear regression analysis. Results: There was an excellent linear correlation between the converted water thicknesses and the known values. The slopes of the linear fits were determined to be 0.63 and 1.03 for the simulation and experimental results, respectively. The non-linear fitting in the experimental approach reduced the root-mean-square (RMS) errors from approximately 3.4 mm to 1.5 mm. Conclusion: The results suggested

  4. Calibration and Evaluation of Ultrasound Thermography Using Infrared Imaging.

    PubMed

    Hsiao, Yi-Sing; Deng, Cheri X

    2016-02-01

    Real-time monitoring of the spatiotemporal evolution of tissue temperature is important to ensure safe and effective treatment in thermal therapies including hyperthermia and thermal ablation. Ultrasound thermography has been proposed as a non-invasive technique for temperature measurement, and accurate calibration of the temperature-dependent ultrasound signal changes against temperature is required. Here we report a method that uses infrared thermography for calibration and validation of ultrasound thermography. Using phantoms and cardiac tissue specimens subjected to high-intensity focused ultrasound heating, we simultaneously acquired ultrasound and infrared imaging data from the same surface plane of a sample. The commonly used echo time shift-based method was chosen to compute ultrasound thermometry. We first correlated the ultrasound echo time shifts with infrared-measured temperatures for material-dependent calibration and found that the calibration coefficient was positive for fat-mimicking phantom (1.49 ± 0.27) but negative for tissue-mimicking phantom (-0.59 ± 0.08) and cardiac tissue (-0.69 ± 0.18°C-mm/ns). We then obtained the estimation error of the ultrasound thermometry by comparing against the infrared-measured temperature and revealed that the error increased with decreased size of the heated region. Consistent with previous findings, the echo time shifts were no longer linearly dependent on temperature beyond 45°C-50°C in cardiac tissues. Unlike previous studies in which thermocouples or water bath techniques were used to evaluate the performance of ultrasound thermography, our results indicate that high-resolution infrared thermography is a useful tool that can be applied to evaluate and understand the limitations of ultrasound thermography methods.

  5. Microfluidics based phantoms of superficial vascular network

    PubMed Central

    Luu, Long; Roman, Patrick A.; Mathews, Scott A.; Ramella-Roman, Jessica C.

    2012-01-01

    Several new bio-photonic techniques aim to measure flow in the human vasculature non-destructively. Some of these tools, such as laser speckle imaging or Doppler optical coherence tomography, are now reaching the clinical stage. Therefore appropriate calibration and validation techniques dedicated to these particular measurements are therefore of paramount importance. In this paper we introduce a fast prototyping technique based on laser micromachining for the fabrication of dynamic flow phantoms. Micro-channels smaller than 20 µm in width can be formed in a variety of materials such as epoxies, plastics, and household tape. Vasculature geometries can be easily and quickly modified to accommodate a particular experimental scenario. PMID:22741081

  6. Regular phantom black holes.

    PubMed

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  7. Comparison of the accuracy of the calibration model on the double and single integrating sphere systems

    NASA Astrophysics Data System (ADS)

    Singh, A.; Karsten, A.

    2011-06-01

    The accuracy of the calibration model for the single and double integrating sphere systems are compared for a white light system. A calibration model is created from a matrix of samples with known absorption and reduced scattering coefficients. In this instance the samples are made using different concentrations of intralipid and black ink. The total and diffuse transmittance and reflectance is measured on both setups and the accuracy of each model compared by evaluating the prediction errors of the calibration model for the different systems. Current results indicate that the single integrating sphere setup is more accurate than the double system method. This is based on the low prediction errors of the model for the single sphere system for a He-Ne laser as well as a white light source. The model still needs to be refined for more absorption factors. Tests on the prediction accuracies were then determined by extracting the optical properties of solid resin based phantoms for each system. When these properties of the phantoms were used as input to the modeling software excellent agreement between measured and simulated data was found for the single sphere systems.

  8. Self-calibration of cone-beam CT geometry using 3D-2D image registration.

    PubMed

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-04-07

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a 'self-calibration' of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM-e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE-e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  9. The Phantom SPH code

    NASA Astrophysics Data System (ADS)

    Price, Daniel; Wurster, James; Nixon, Chris

    2016-05-01

    I will present the capabilities of the Phantom SPH code for global simulations of dust and gas in protoplanetary discs. I will present our new algorithms for simulating both small and large grains in discs, as well as our progress towards simulating evolving grain populations and coupling with radiation. Finally, I will discuss our recent applications to HL Tau and the physics of dust gap opening.

  10. Monte Carlo dose calculations for phantoms with hip prostheses

    NASA Astrophysics Data System (ADS)

    Bazalova, M.; Coolens, C.; Cury, F.; Childs, P.; Beaulieu, L.; Verhaegen, F.

    2008-02-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses.

  11. Crossing the phantom divide

    SciTech Connect

    Kunz, Martin; Sapone, Domenico

    2006-12-15

    We consider fluid perturbations close to the 'phantom divide' characterized by p=-{rho} and discuss the conditions under which divergencies in the perturbations can be avoided. We find that the behavior of the perturbations depends crucially on the prescription for the pressure perturbation {delta}p. The pressure perturbation is usually defined using the dark energy rest-frame, but we show that this frame becomes unphysical at the divide. If the pressure perturbation is kept finite in any other frame, then the phantom divide can be crossed. Our findings are important for generalized fluid dark energy used in data analysis (since current cosmological data sets indicate that the dark energy is characterized by p{approx_equal}-{rho} so that p<-{rho} cannot be excluded) as well as for any models crossing the phantom divide, like some modified gravity, coupled dark energy, and braneworld models. We also illustrate the results by an explicit calculation for the 'Quintom' case with two scalar fields.

  12. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  13. Calibration of pneumotachographs using a calibrated syringe.

    PubMed

    Tang, Yongquan; Turner, Martin J; Yem, Johnny S; Baker, A Barry

    2003-08-01

    Pneumotachograph require frequent calibration. Constant-flow methods allow polynomial calibration curves to be derived but are time consuming. The iterative syringe stroke technique is moderately efficient but results in discontinuous conductance arrays. This study investigated the derivation of first-, second-, and third-order polynomial calibration curves from 6 to 50 strokes of a calibration syringe. We used multiple linear regression to derive first-, second-, and third-order polynomial coefficients from two sets of 6-50 syringe strokes. In part A, peak flows did not exceed the specified linear range of the pneumotachograph, whereas flows in part B peaked at 160% of the maximum linear range. Conductance arrays were derived from the same data sets by using a published algorithm. Volume errors of the calibration strokes and of separate sets of 70 validation strokes (part A) and 140 validation strokes (part B) were calculated by using the polynomials and conductance arrays. Second- and third-order polynomials derived from 10 calibration strokes achieved volume variability equal to or better than conductance arrays derived from 50 strokes. We found that evaluation of conductance arrays using the calibration syringe strokes yields falsely low volume variances. We conclude that accurate polynomial curves can be derived from as few as 10 syringe strokes, and the new polynomial calibration method is substantially more time efficient than previously published conductance methods.

  14. Photoacoustic microscopy of bilirubin in tissue phantoms

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zhang, Chi; Yao, Da-Kang; Wang, Lihong V.

    2012-12-01

    Determining both bilirubin's concentration and its spatial distribution are important in disease diagnosis. Here, for the first time, we applied quantitative multiwavelength photoacoustic microscopy (PAM) to detect bilirubin concentration and distribution simultaneously. By measuring tissue-mimicking phantoms with different bilirubin concentrations, we showed that the root-mean-square error of prediction has reached 0.52 and 0.83 mg/dL for pure bilirubin and for blood-mixed bilirubin detection (with 100% oxygen saturation), respectively. We further demonstrated the capability of the PAM system to image bilirubin distribution both with and without blood. Finally, by underlaying bilirubin phantoms with mouse skins, we showed that bilirubin can be imaged with consistent accuracy down to >400 μm in depth. Our results show that PAM has potential for noninvasive bilirubin monitoring in vivo, as well as for further clinical applications.

  15. Study of the optical properties of solid tissue phantoms using single and double integrating sphere systems

    NASA Astrophysics Data System (ADS)

    Monem, S.; Singh, A.; Karsten, A. E.; Amin, R.; Harith, M. A.

    2015-12-01

    Tissue simulators, the so-called tissue phantoms, have been used to mimic human tissue for spectroscopic applications. Phantoms' design depends on patterning the optical properties, namely absorption and scattering coefficients which characterize light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere measurement results were fed into the calibration models using the multiple polynomial regression method and Newton-Raphson algorithm. The third-order polynomials have been used for optical properties predictions. Good agreement between the two models has been obtained. Role of solid phantoms' components, namely titanium dioxide as a scatterer and black carbon as an absorber, has been discussed. Both of the two components showed observable effects on the absorption and scattering of light inside the solid tissue phantoms.

  16. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  17. Evaluation of phantom-based education system for acupuncture manipulation.

    PubMed

    Lee, In-Seon; Lee, Ye-Seul; Park, Hi-Joon; Lee, Hyejung; Chae, Younbyoung

    2015-01-01

    Although acupuncture manipulation has been regarded as one of the important factors in clinical outcome, it has been difficult to train novice students to become skillful experts due to a lack of adequate educational program and tools. In the present study, we investigated whether newly developed phantom acupoint tools would be useful to practice-naïve acupuncture students for practicing the three different types of acupuncture manipulation to enhance their skills. We recruited 12 novice students and had them practice acupuncture manipulations on the phantom acupoint (5% agarose gel). We used the Acusensor 2 and compared their acupuncture manipulation techniques, for which the target criteria were depth and time factors, at acupoint LI11 in the human body before and after 10 training sessions. The outcomes were depth of needle insertion, depth error from target criterion, time of rotating, lifting, and thrusting, time error from target criteria and the time ratio. After 10 training sessions, the students showed significantly improved outcomes in depth of needle, depth error (rotation, reducing lifting/thrusting), thumb-forward time error, thumb-backward time error (rotation), and lifting time (reinforcing lifting/thrusting). The phantom acupoint tool could be useful in a phantom-based education program for acupuncture-manipulation training for students. For advanced education programs for acupuncture manipulation, we will need to collect additional information, such as patient responses, acupoint-specific anatomical characteristics, delicate tissue-like modeling, haptic and visual feedback, and data from an acupuncture practice simulator.

  18. Factors for converting dose measured in polystyrene phantoms to dose reported in water phantoms for incident proton beams.

    PubMed

    Moyers, M F; Vatnitsky, A S; Vatnitsky, S M

    2011-10-01

    Previous dosimetry protocols allowed calibrations of proton beamline dose monitors to be performed in plastic phantoms. Nevertheless, dose determinations were referenced to absorbed dose-to-muscle or absorbed dose-to-water. The IAEA Code of Practice TRS 398 recommended that dose calibrations be performed with ionization chambers only in water phantoms because plastic-to-water dose conversion factors were not available with sufficient accuracy at the time of its writing. These factors are necessary, however, to evaluate the difference in doses delivered to patients if switching from calibration in plastic to a protocol that only allows calibration in water. This work measured polystyrene-to-water dose conversion factors for this purpose. Uncertainties in the results due to temperature, geometry, and chamber effects were minimized by using special experimental set-up procedures. The measurements were validated by Monte Carlo simulations. At the peak of non-range-modulated beams, measured polystyrene-to-water factors ranged from 1.015 to 1.024 for beams with ranges from 36 to 315 mm. For beams with the same ranges and medium sized modulations, the factors ranged from 1.005 to 1.019. The measured results were used to generate tables of polystyrene-to-water dose conversion factors. The dose conversion factors can be used at clinical proton facilities to support beamline and patient specific dose per monitor unit calibrations performed in polystyrene phantoms.

  19. Factors for converting dose measured in polystyrene phantoms to dose reported in water phantoms for incident proton beams

    SciTech Connect

    Moyers, M. F.; Vatnitsky, A. S.; Vatnitsky, S. M.

    2011-10-15

    Purpose: Previous dosimetry protocols allowed calibrations of proton beamline dose monitors to be performed in plastic phantoms. Nevertheless, dose determinations were referenced to absorbed dose-to-muscle or absorbed dose-to-water. The IAEA Code of Practice TRS 398 recommended that dose calibrations be performed with ionization chambers only in water phantoms because plastic-to-water dose conversion factors were not available with sufficient accuracy at the time of its writing. These factors are necessary, however, to evaluate the difference in doses delivered to patients if switching from calibration in plastic to a protocol that only allows calibration in water. Methods: This work measured polystyrene-to-water dose conversion factors for this purpose. Uncertainties in the results due to temperature, geometry, and chamber effects were minimized by using special experimental set-up procedures. The measurements were validated by Monte Carlo simulations. Results: At the peak of non-range-modulated beams, measured polystyrene-to-water factors ranged from 1.015 to 1.024 for beams with ranges from 36 to 315 mm. For beams with the same ranges and medium sized modulations, the factors ranged from 1.005 to 1.019. The measured results were used to generate tables of polystyrene-to-water dose conversion factors. Conclusions: The dose conversion factors can be used at clinical proton facilities to support beamline and patient specific dose per monitor unit calibrations performed in polystyrene phantoms.

  20. The standfast whole body counter and the sliced BOMAB phantom: efficiency as a function of number of sources and energy modeled by MCNP5.

    PubMed

    Kramer, Gary H; Capello, Kevin

    2007-02-01

    Previously, using Monte Carlo simulations, this laboratory conceptualized a new phantom: the sliced Bottle Manikin Absorber (BOMAB) phantom. It was intended for calibration or performance testing of whole body counters and the HML subsequently built and tested that phantom. Also, this laboratory tested another phantom used for the calibration of the StandFast whole body counter and identified some deficiencies. This paper investigates the use of the sliced BOMAB phantom as an alternative for the calibration of the StandFast and shows how the 165 sources required for a full loading of the sliced BOMAB can be reduced to a much smaller number without compromising the calibration. The agreement of the sliced BOMAB with eight sources is approximately 1% when compared with a conventional BOMAB phantom.

  1. Self-calibration of cone-beam CT geometry using 3D–2D image registration

    PubMed Central

    Ouadah, S; Stayman, J W; Gang, G J; Ehtiati, T; Siewerdsen, J H

    2016-01-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM = 0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p < 0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE = 0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p < 0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is applicable to situations where conventional

  2. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  3. A Study of the Optimization Problem for Calibrating a Lacoste and Romberg ’G’ Gravity Meter to Determine Circular Errors,

    DTIC Science & Technology

    1985-09-01

    Lacoste-Romberg (LCR) model "G" and model "D" gravity meters ( Torge and Kanngieser, 1979, Kanngieser and Torge , 1981, Lambert and Liard, 1981, Becker, 1981...The magnitudes of the errors range from a few Ugal for short wavelengths to hundreds of ugal for long wavelengths (Kanngieser and Torge , 1981). It...The accuracy of determination of phase lag In the "G" gravity meter has ranged from 30 to 290, 140 in the mean value (Kanngieser and Torge , 1981). As

  4. Evaluation of Multiple-Sampling Function used with a Microtek flatbed scanner for Radiation Dosimetry Calibration of EBT2 Film

    NASA Astrophysics Data System (ADS)

    Chang, Liyun; Ho, Sheng-Yow; Ding, Hueisch-Jy; Hwang, Ing-Ming; Chen, Pang-Yu; Lee, Tsair-Fwu

    2016-10-01

    The radiochromic EBT2 film is a widely used quality assurance device for radiation therapy. This study evaluated the film calibration performance of the multiple-sampling function, a function of the ScanWizard Pro scanning software provided by the manufacturer, when used with Microtek 9800XL plus (9800XL+) flatbed scanner. By using the PDD method, each one of the eight EBT2 films, four delivered by 290 monitor unit (MU) and four by 88 MU via 6-MV photon beams, was tightly sandwiched in a 303-cm3 water equivalent polystyrene phantom prior to irradiation. Before and after irradiation, all films were scanned using the Microtek 9800XL+ scanner with five different modes of the multiple-sampling function, which could generate the image with the averaged result of multiple-sampling. The net optical densities (netOD) on the beam central axis of film were assigned to corresponding depth doses for calibration. For each sampling mode with either delivered MU, the depth-dose uncertainty of a single film from repeated scans and that of a single scan of the four films were analyzed. Finally, the calibration error and the combined calibration uncertainty between film determined depth-doses and delivered depth-doses were calculated and evaluated for each sampling mode. All standard deviations and the calibration error were demonstrated to be unrelated to the number of sampling lines. The calibration error of the 2-line and 16-line mode was within 3 cGy and better than that of the other modes. The combined uncertainty of the 2-line mode was the lowest, which was generally less than 6 cGy except for the delivered dose around 100 cGy. The evaluation described herein revealed that the EBT2 film calibrated with the 2-line mode has relatively lower error, scanning time and combined uncertianty. Therefore, it is recommended for routine EBT2 film calibration and verification of treatment plans.

  5. The phantom illusion.

    PubMed

    Galmonte, Alessandra; Soranzo, Alessandro; Rudd, Michael E; Agostini, Tiziano

    2015-12-01

    It is well known that visible luminance gradients may generate contrast effects. In this work we present a new paradoxical illusion in which the luminance range of gradual transitions has been reduced to make them invisible. By adopting the phenomenological method proposed by Kanizsa, we have found that unnoticeable luminance gradients still generate contrast effects. But, most interestingly, we have found that when their width is narrowed, rather than generating contrast effects on the surrounded surfaces, they generate an assimilation effect. Both high- and low-level interpretations of this "phantom" illusion are critically evaluated.

  6. View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Giang

    2016-04-01

    Geometric parameters that define the geometry of imaging systems are crucial for image reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is considered. To accurately and rapidly find the geometric parameters for each projection view, we use the projection matrix method and design a dedicated phantom that is partially visible in all projection views. The phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing the projection matrix into actual geometric parameters that are manually corrected before being used in reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in projection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of the proposed method with a real offset flat-panel CBCT system in dental imaging.

  7. In-phantom dose verification of prostate IMRT and VMAT deliveries using plastic scintillation detectors

    PubMed Central

    Klein, David; Briere, Tina Marie; Kudchadker, Rajat; Archambault, Louis; Beaulieu, Luc; Lee, Andrew; Beddar, Sam

    2012-01-01

    The goal of this work was to demonstrate the feasibility of using a plastic scintillation detector (PSD) incorporated into a prostate immobilization device to verify doses in vivo delivered during intensity-modulated radiation therapy (IMRT) and volumetric modulated-arc therapy (VMAT) for prostate cancer. The treatment plans for both modalities had been developed for a patient undergoing prostate radiation therapy. First, a study was performed to test the dependence, if any, of PSD accuracy on the number and type of calibration conditions. This study included PSD measurements of each treatment plan being delivered under quality assurance (QA) conditions using a rigid QA phantom. PSD results obtained under these conditions were compared to ionization chamber measurements. After an optimal set of calibration factors had been found, the PSD was combined with a commercial endorectal balloon used for rectal distension and prostate immobilization during external beam radiotherapy. This PSD-enhanced endorectal balloon was placed inside of a deformable anthropomorphic phantom designed to simulate male pelvic anatomy. PSD results obtained under these so-called “simulated treatment conditions” were compared to doses calculated by the treatment planning system (TPS). With the PSD still inserted in the pelvic phantom, each plan was delivered once again after applying a shift of 1 cm anterior to the original isocenter to simulate a treatment setup error. The mean total accumulated dose measured using the PSD differed the TPS-calculated doses by less than 1% for both treatment modalities simulated treatment conditions using the pelvic phantom. When the isocenter was shifted, the PSD results differed from the TPS calculations of mean dose by 1.2% (for IMRT) and 10.1% (for VMAT); in both cases, the doses were within the dose range calculated over the detector volume for these regions of steep dose gradient. Our results suggest that the system could benefit prostate cancer

  8. Evaluation of the Lawrence Livermore National Laboratory (LLNL) torso phantom by bone densitometry and x-ray.

    PubMed

    Kramer, G H; Webber, C E

    1992-06-01

    The recent Workshop on Standard Phantoms recommended that the LLNL torso phantom be adopted as a calibration standard for the quantitation of in vivo radioactivity. This phantom was designed for the calibration of systems for the detection of x-rays of less than 20 keV. The anthropomorphic characteristics and tissue substitute composition of the phantom were assessed with techniques using photons of higher energy. Dual photon absorptometry at 42 and 100 keV showed that the phantom was representative of in vivo tissue composition. Chest radiography showed that the phantom was representative of a human even though the stomach, GI tract and the scapulae were not present and air gaps were observed at organ boundaries.

  9. Reference Phantom Method for Acoustic Backscatter Coefficient and Attenuation Coefficient Measurements.

    NASA Astrophysics Data System (ADS)

    Yao, Linxin

    1990-08-01

    In previous work in our laboratory accurate backscatter coefficient measurements were obtained with a data reduction method that explicitly accounts for experimental factors involved in recording echo data. An alternative, relative processing method for determining the backscatter coefficient and the attenuation coefficient is presented here. This method involves comparison of echo data from a sample with data recorded from a reference phantom whose backscatter and attenuation coefficients are known. The ratio of the signals cancels depth-dependent instrumentation factors. This saves the efforts of beam profile computation and various calibrations. The attenuation coefficient and backscatter coefficient of the sample are found from these ratios and the known acoustic properties of the reference phantom. This method is tested using tissue-mimicking phantoms with known scattering and attenuation properties. Various experiments have been done using clinical scanners with different transducers to compute attenuation coefficients and backscatter coefficients, and to make quantitative images. This method has been found to be accurate for media containing Rayleigh scatterers, as well as samples containing intermediate-size scatterers. Accuracy was maintained over different frequency bands and for a wide range of transducer-to-ROI distances. Measurements were done in vivo for human livers, kidneys and dog myocardium. The results have shown that the reference phantom method simplifies the measurement procedure as well as keeps the accuracy, and therefore is practical clinically. Statistical uncertainties propagated in the data reduction have been analyzed in detail. Formulae are deduced to predict statistical errors in the attenuation and backscatter coefficients measured with the reference phantom method. Spatial correlations of the echo signals are also considered. A 2-dimensional lateral correlation matrix is introduced to compute the number of effective independent

  10. Video-guided calibration of an augmented reality mobile C-arm.

    PubMed

    Chen, Xin; Naik, Hemal; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-11-01

    The augmented reality (AR) fluoroscope augments an X-ray image by video and provides the surgeon with a real-time in situ overlay of the anatomy. The overlay alignment is crucial for diagnostic and intra-operative guidance, so precise calibration of the AR fluoroscope is required. The first and most complex step of the calibration procedure is the determination of the X-ray source position. Currently, this is achieved using a biplane phantom with movable metallic rings on its top layer and fixed X-ray opaque markers on its bottom layer. The metallic rings must be moved to positions where at least two pairs of rings and markers are isocentric in the X-ray image. The current "trial and error" calibration process currently requires acquisition of many X-ray images, a task that is both time consuming and radiation intensive. An improved process was developed and tested for C-arm calibration. Video guidance was used to drive the calibration procedure to minimize both X-ray exposure and the time involved. For this, a homography between X-ray and video images is estimated. This homography is valid for the plane at which the metallic rings are positioned and is employed to guide the calibration procedure. Eight users having varying calibration experience (i.e., 2 experts, 2 semi-experts, 4 novices) were asked to participate in the evaluation. The video-guided technique reduced the number of intra-operative X-ray calibration images by 89% and decreased the total time required by 59%. A video-based C-arm calibration method has been developed that improves the usability of the AR fluoroscope with a friendlier interface, reduced calibration time and clinically acceptable radiation doses.

  11. Definition of the limit of quantification in the presence of instrumental and non-instrumental errors. Comparison among various definitions applied to the calibration of zinc by inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Badocco, Denis; Lavagnini, Irma; Mondin, Andrea; Favaro, Gabriella; Pastore, Paolo

    2015-12-01

    The limit of quantification (LOQ) in the presence of instrumental and non-instrumental errors was proposed. It was theoretically defined combining the two-component variance regression and LOQ schemas already present in the literature and applied to the calibration of zinc by the ICP-MS technique. At low concentration levels, the two-component variance LOQ definition should be always used above all when a clean room is not available. Three LOQ definitions were accounted for. One of them in the concentration and two in the signal domain. The LOQ computed in the concentration domain, proposed by Currie, was completed by adding the third order terms in the Taylor expansion because they are of the same order of magnitude of the second ones so that they cannot be neglected. In this context, the error propagation was simplified by eliminating the correlation contributions by using independent random variables. Among the signal domain definitions, a particular attention was devoted to the recently proposed approach based on at least one significant digit in the measurement. The relative LOQ values resulted very large in preventing the quantitative analysis. It was found that the Currie schemas in the signal and concentration domains gave similar LOQ values but the former formulation is to be preferred as more easily computable.

  12. Self-calibration of cone-beam CT geometry using 3D-2D image registration: development and application to tasked-based imaging with a robotic C-arm

    NASA Astrophysics Data System (ADS)

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods: Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting "self-calibration" was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results: The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard ("true") calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the "self" and "true" calibration methods were on the order of 10-3 mm-1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion: The proposed geometric "self" calibration provides a means for 3D imaging on general noncircular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced "task-based" 3D imaging methods now in development for robotic C-arms.

  13. Phantom vision: a graphic description.

    PubMed

    Maloof, Anthony J

    2004-01-01

    An 80-year-old man, who is an experienced artist, underwent orbital exenteration for invasive squamous cell carcinoma. After exenteration, the patient noted a persistent, colored visual phenomenon. The phantom vision continued unchanged to 9 months after surgery (the time of writing), when the patient presented a graphic and written description of phantom vision.

  14. Multimodal Phantom of Liver Tissue

    PubMed Central

    Chmarra, Magdalena K.; Hansen, Rune; Mårvik, Ronald; Langø, Thomas

    2013-01-01

    Medical imaging plays an important role in patients' care and is continuously being used in managing health and disease. To obtain the maximum benefit from this rapidly developing technology, further research is needed. Ideally, this research should be done in a patient-safe and environment-friendly manner; for example, on phantoms. The goal of this work was to develop a protocol and manufacture a multimodal liver phantom that is suitable for ultrasound, computed tomography, and magnetic resonance imaging modalities. The proposed phantom consists of three types of mimicked soft tissues: liver parenchyma, tumors, and portal veins, that are made of six ingredients: candle gel, sephadex®, agarose, glycerol, distilled water, and silicone string. The entire procedure is advantageous, since preparation of the phantom is simple, rather cost-effective, and reasonably quick – it takes around 2 days. Besides, most of the phantom's parts can be reused to manufacture a new phantom. Comparison of ultrasound images of real patient's liver and the developed phantom shows that the phantom's liver tissue and its structures are well simulated. PMID:23691165

  15. A Careful Consideration of the Calibration Concept

    PubMed Central

    Phillips, S. D.; Estler, W. T.; Doiron, T.; Eberhardt, K. R.; Levenson, M. S.

    2001-01-01

    This paper presents a detailed discussion of the technical aspects of the calibration process with emphasis on the definition of the measurand, the conditions under which the calibration results are valid, and the subsequent use of the calibration results in measurement uncertainty statements. The concepts of measurement uncertainty, error, systematic error, and reproducibility are also addressed as they pertain to the calibration process. PMID:27500027

  16. Conjoint recognition and phantom recollection.

    PubMed

    Brainerd, C J; Wright, R; Reyna, V F; Mojardin, A H

    2001-03-01

    A new methodology for measuring illusory conscious experience of the "presentation" of unstudied material (phantom recollection) is evaluated that extracts measurements directly from recognition responses, rather than indirectly from introspective reports. Application of this methodology in the Deese-Roediger-McDermott (DRM) paradigm (Experiments 1 and 2) and in a more conventional paradigm (Experiment 3) showed that 2 processes (phantom recollection and familiarity) contribute to false recognition of semantically related distractors. Phantom recollection was the larger contributor to false recognition of critical distractors in the DRM paradigm, but surprisingly, it was also the larger contributor to false recognition of other types of distractors. Variability in false recognition was tied to variability in phantom recollection. Experimental control of phantom recollection was achieved with manipulations that were motivated by fuzzy-trace theory's hypothesis that the phenomenon is gist-based.

  17. [Therapy of phantom limb pain].

    PubMed

    Schwarzer, Andreas; Zenz, Michael; Maier, Christoph

    2009-03-01

    About 80 % of all extremity amputations suffer from phantom limb pain following the operation. In this context, it is important to differentiate between painful phantom limb sensations, non-painful phantom limb sensations and residual limb pain. The pathophysiology of phantom limb pain is not fully understood. Current research findings ascribe a major pathophysiological role to cortical changes as well as a disturbed body perception. Peripheral and spinal mechanisms appear less relevant in the development of phantom limb pain. An essential part of the therapy is the pharmacological treatment with antidepressants, anticonvulsives and opioids. Another significant aspect of therapy is senso-motory training, important to mention here would be mirror therapy, lateralisation and motor imaging. In case of an elective amputation, an epidural or axiliar plexus catheter should be considered prior to the amputation. The perioperative treatment with ketamine is debated.

  18. Reusable heat-sensitive phantom for precise estimation of thermal profile in hyperthermia application.

    PubMed

    Dabbagh, Ali; Abdullah, Basri Johan Jeet; Abu Kasim, Noor Hayaty; Ramasindarum, Chanthiriga

    2014-02-01

    The emergence of thermal modalities has promoted the use of heat-sensitive phantoms for calibration, measurement, and verification purposes. However, development of durable phantoms with high precision ability to represent the temperature distribution remains a challenge. This study aims to introduce a reusable phantom that provides an accurate assessment of the heated region in various thermal modalities. The phantom contains a thermochromic dye that is transparent blue at room temperature and becomes colourless after exceeding a threshold temperature. In order to determine the threshold temperature of the phantom, spectrophotometry analysis was performed. The various thermal (specific heat, thermal conductivity, melting point and latent heat of melting) and acoustic (sound speed, attenuation) properties of this phantom were measured and compared with those of the reference phantom without dye. The application of this phantom for radio-frequency and magnetic resonance guided focused ultrasound modalities was also examined. The spectrophotometry analysis showed a threshold temperature of 50 ± 3 °C for this phantom. The results also demonstrated a 6 °C difference between the onset and ending temperatures of the discolouration process. Moreover, the starting temperature of colouration during cooling was found to be 4 °C lower than the ending temperature of discolouration. The sound speed, attenuation, specific heat, thermal conductivity and melting point of the heat-sensitive phantom were statistically equal to those of the reference phantom; however, the latent heat, and onset temperature of the melting of the heat-sensitive phantom were decreased by addition of the dye. The developed phantom is applicable for accurate evaluation of temperature variations in various thermal modalities.

  19. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  20. MO-E-17A-12: Direct Realization of the CT Dose to Phantom: Energy to Heat Conversion in Polyethylene Using Calorimetry

    SciTech Connect

    Chen-Mayer, H; Tosh, R

    2014-06-15

    Purpose: To develop a primary reference standard for absorbed dose to phantom for medical CT dosimetry. CT dosimetry relies on the implementation of the CTDI standard based on air kerma. We are taking a step toward an absorbed dose to water standard by first investigating the dose in a solid phantom. By directly measuring the heat converted from the incident radiation, the absorbed dose in the phantom at a point can be assessed with primary methods without relying on indirect conversions. Methods: The calorimeter contains two small thermistors embedded in a removable PE “core” inserted into the cylindrical HDPE phantom. A core made with polystyrene (PS) was also tested because of its purportedly negligible heat defect. Measurements were made using the two cores and with a calibrated ionization chamber in a CT beam. The air chamber values were converted to the dose to medium using appropriate stopping-power ratios from the literature, and then compared to the thermal data. Results: The PS core data yielded a dose of 1.3 times (4-run average, 3% std. dev.) higher than the converted chamber value, whereas the PE core data were inexplicably higher. The possible systematic errors include 1) excess heat from the thermistors, 2) in PE the exothermic chemical reactions, 3) uncertainties of the specific heat capacities of the materials, 4) thermal drift, and 5) theoretical conversion of chamber values. Monte Carlo simulations and finite element heat transfer calculations were performed to address some of these issues. The general validity was assessed in a 6 MV photon beam with an entirely different calibration scheme. Conclusion: This study demonstrates the feasibility but also revealed the difficulty in developing a new primary reference standard for absorbed dose to material for CT. Additional experimental and theoretical work is planned to achieve our goal.

  1. Dosimetric comparison between three dimensional treatment planning system, Monte Carlo simulation and gel dosimetry in nasopharynx phantom for high dose rate brachytherapy.

    PubMed

    Fazli, Zeynab; Sadeghi, Mahdi; Zahmatkesh, M H; Mahdavi, Seied Rabei; Tenreiro, Claudio

    2013-01-01

    For the treatment of nasopharnx carcinoma (NPC) using brachytherapy methods and high-energy photon sources are common techniques. In the common three dimensional (3D) treatments planning, all of the computed tomography images are assumed homogeneous. This study presents the results of Monte Carlo calculations for non-homogeneous nasopharynx phantom, MAGICA normoxic gel dosimetry and 3D treatment planning system (TPS). The head phantom was designed with Plexiglas cylinder, head bone, and nasopharynx brachytherapy silicon applicator. For the simulations, version 5 of the Monte Carlo N-particle transport code (MCNP5) was used. 3D treatment planning was performed in Flexiplan software. A normoxic radiosensitive polymer gel was fabricated under normal atmospheric conditions and poured into test tubes (for calibration curve) and the head phantom. In addition, the head phantom was irradiated with Flexitron afterloader brachytherapy machine with (192)Ir source. To obtain calibration curves, 11 dosimeters were irradiated with dose range of 0-2000 cGy. Evaluations of dosimeters were performed on 1.5T scanner. Two-dimensional iso-dose in coronal plan at distances of z = +0.3, -0.3 cm was calculated. There was a good accordance between 3D TPS and MCNP5 simulation and differences in various distances were between 2.4% and 6.1%. There was a predictable accordance between MAGICA gel dosimetry and MCNP5 simulation and differences in various distances were between 5.7% and 7.4%. Moreover, there was an acceptable accordance between MAGICA gel dosimetry and MCNP5 data and differences in various distances were between 5.2% and 9.4%. The sources of differences in this comparison are divided to calculations variation and practical errors that was added in experimental dosimetry. The result of quality assurance of nasopharynx high dose rate brachytherapy is consistent with international standards.

  2. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance.

    PubMed

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-12-07

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s(-1)) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s(-1)) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s(-1)) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm(-1) of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will

  3. Birefringence phantoms for polarization sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Villiger, Martin; Beaudette, Kathy; Liu, Linbo; Bouma, Brett E.

    2017-02-01

    Polarization sensitive optical coherence tomography (PS-OCT) is increasingly used in a range of applications, both in bench-top and catheter-based imaging configurations. Reconstruction of tissue birefringence is subject to many system and processing-dependent artifacts. However, methods for the calibration and validation of PS-OCT are missing. Here, we report on a method to fabricate tissue-like imaging phantoms exhibiting clearly defined regions with controllable amounts of birefringence. We employed the photoelastic effect to enable the generation of controllable amounts of stress-induced birefringence in rubber samples, verified with polarized light microscopy. Pigmented ink was added to liquid latex solution to mold and cure rubber bands with controlled backscattering and transparency. Differently stretched segments were embedded in a stress-free background matrix to generate clearly defined areas with high birefringence contrast in an area of homogenous backscatter intensity. Arranged in planar geometry or on the outside of a glass capillary, the stretched rubber bands defined phantoms for bench-top and catheter-based imaging, respectively. Segmentation of the defined regions of interest in the reconstructed volumetric birefringence tomograms enabled assessing measurement consistency, between repeated imaging with a single system, or between independent imaging systems. Consistent and durable imaging phantoms are crucial for advancing PS-OCT imaging technology. Our tissue-like imaging phantoms exhibit clearly defined regions with controlled amounts of birefringence and facilitate testing, calibration, and validation of imaging systems and reconstruction strategies.

  4. Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols

    SciTech Connect

    Seuntjens, Jan; Olivares, Marina; Evans, Michael; Podgorsak, Ervin

    2005-09-15

    For reasons of phantom material reproducibility, the absorbed dose protocols of the American Association of Physicists in Medicine (AAPM) (TG-51) and the International Atomic Energy Agency (IAEA) (TRS-398) have made the use of liquid water as a phantom material for reference dosimetry mandatory. In this work we provide a formal framework for the measurement of absorbed dose to water using ionization chambers calibrated in terms of absorbed dose to water but irradiated in solid phantoms. Such a framework is useful when there is a desire to put dose measurements using solid phantoms on an absolute basis. Putting solid phantom measurements on an absolute basis has distinct advantages in verification measurements and quality assurance. We introduce a phantom dose conversion factor that converts a measurement made in a solid phantom and analyzed using an absorbed dose calibration protocol into absorbed dose to water under reference conditions. We provide techniques to measure and calculate the dose transfer from solid phantom to water. For an Exradin A12 ionization chamber, we measured and calculated the phantom dose conversion factor for six Solid Water{sup TM} phantoms and for a single Lucite phantom for photon energies between {sup 60}Co and 18 MV photons. For Solid Water{sup TM} of certified grade, the difference between measured and calculated factors varied between 0.0% and 0.7% with the average dose conversion factor being low by 0.4% compared with the calculation whereas for Lucite, the agreement was within 0.2% for the one phantom examined. The composition of commercial plastic phantoms and their homogeneity may not always be reproducible and consistent with assumed composition. By comparing measured and calculated phantom conversion factors, our work provides methods to verify the consistency of a given plastic for the purpose of clinical reference dosimetry.

  5. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    SciTech Connect

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.

  6. SU-E-J-193: Gamma Knife Perfexion End-To-End Testing with a Commercial Stereotactic Phantom.

    PubMed

    Yount, C; Lyons, K; Rahnema, S; McDonald, D; Peng, J; Vanek, K

    2012-06-01

    To investigate the use of the Lucy ® Stereotactic Phantom (Standard Imaging, Inc.) for Gamma Knife Perfexion radiosurgery quality assurance of the imaging, treatment planning, and dose delivery processes. End-to-end testing of the Perfexion and Gamma Plan version 10.1 has not been previously examined in literature. The phantom was imaged using both the CT and T1- and T2-weighted MR sequences used for treatment planning. For imaging, the isocentric volume insert and fiducial markers were positioned within the phantom. Scans were transferred to the Gamma Plan treatment planning system and were evaluated for geometric and fusion accuracy. A plan was created to deliver 12Gy to the 50% isodose line to the 5.25cm(3) volume. During dose delivery, Gafchromic EBT2 film was positioned in the film insert to replicate the position of the target volume. Dose results were analyzed using RIT software (Radiologic Imaging Technology, Inc.). Image fusion integrity was inspected by overlaying the MR and CT markers (5 fiducial markers spaced 5mm apart) and visually examining the resulting volume insert overlap between the three scans. Geometric accuracy was evaluated by contouring three volumes using Gamma Plan contouring tools. Agreement within 1.1%, 6.7% and 12.2% of the actual volumes was seen with the T1-weighted, T2-weighted, and CT images, respectively. The volume-based acquisition and 1mm slice thickness of the T1-weighted sequence resulted in the most accurate measurement. Geometric measurements along two dimensions showed acceptable accuracy for all imaging modalities within 1.6%. Dosimetry results agreed well with the planned dose. The EBT2 film was calibrated for absolute dose measurements using a dose calibration curve for 0.1-30 Gy and the calibration curve was verified to have <3% error above 1Gy. The Lucy phantom allows for comprehensive quality assurance testing of the Gamma Knife Perfexion radiosurgery process. © 2012 American Association of Physicists in Medicine.

  7. Calibration Under Uncertainty.

    SciTech Connect

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  8. Calibration-free device sizing using an inverse geometry x-ray system

    PubMed Central

    Tomkowiak, Michael T.; Speidel, Michael A.; Raval, Amish N.; Van Lysel, Michael S.

    2011-01-01

    Purpose: Quantitative coronary angiography (QCA) can be used to support device size selection for cardiovascular interventions. The accuracy of QCA measurements using conventional x-ray fluoroscopy depends on proper calibration using a reference object and avoiding vessel foreshortening. The authors have developed a novel interventional device sizing method using the inverse geometry scanning-beam digital x-ray (SBDX) fluoroscopy system. The proposed method can measure the diameter and length of vessel segments without imaging a reference object and when vessels appear foreshortened. Methods: SBDX creates multiple tomosynthetic x-ray images corresponding to planes through the patient volume. The structures that lie in the plane are in focus and the features above and below the plane are blurred. Three-dimensional localization of the vessel edges was performed by examining the degree of blurring at each image plane. A 3D vessel centerline was created and used to determine vessel magnification and angulation relative to the image planes. Diameter measurements were performed using a model-based method and length measurements were calculated from the 3D centerline. Phantom validation was performed by measuring the diameter and length of vessel segments with nominal diameters ranging from 0.5 to 2.8 mm and nominal lengths of 42 mm. The phantoms were imaged at a range of positions between the source and the detector (±16 cm relative to isocenter) and with a range of foreshortening angles (0°–75°). Results: Changes in vessel phantom position created magnifications ranging from 87% to 118% relative to isocenter magnification. Average diameter errors were less than 0.15 mm. Average length measurements were within 1% (0.3 mm) of the true length. No trends were observed between measurement accuracy and magnification. Changes in vessel phantom orientation resulted in decreased apparent length down to 28% of the original nonforeshortened length. Average diameter errors

  9. Improved Regression Calibration

    ERIC Educational Resources Information Center

    Skrondal, Anders; Kuha, Jouni

    2012-01-01

    The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration…

  10. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    NASA Astrophysics Data System (ADS)

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-01

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  11. Dosimetry in Mammography: Average Glandular Dose Based on Homogeneous Phantom

    SciTech Connect

    Benevides, Luis A.; Hintenlang, David E.

    2011-05-05

    The objective of this study was to demonstrate that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 and 46 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. The clinical dosimetry protocol developed in this study can reliably predict the AGD imparted to an individual patient during a routine screening mammogram.

  12. A stoichiometric calibration method for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo

    2014-04-01

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic

  13. A geometric calibration method for inverse geometry computed tomography using P-matrices.

    PubMed

    Slagowski, Jordan M; Dunkerley, David A P; Hatt, Charles R; Speidel, Michael A

    2016-02-27

    Accurate and artifact free reconstruction of tomographic images requires precise knowledge of the imaging system geometry. This work proposes a novel projection matrix (P-matrix) based calibration method to enable C-arm inverse geometry CT (IGCT). The method is evaluated for scanning-beam digital x-ray (SBDX), a C-arm mounted inverse geometry fluoroscopic technology. A helical configuration of fiducials is imaged at each gantry angle in a rotational acquisition. For each gantry angle, digital tomosynthesis is performed at multiple planes and a composite image analogous to a cone-beam projection is generated from the plane stack. The geometry of the C-arm, source array, and detector array is determined at each angle by constructing a parameterized 3D-to-2D projection matrix that minimizes the sum-of-squared deviations between measured and projected fiducial coordinates. Simulations were used to evaluate calibration performance with translations and rotations of the source and detector. In a geometry with 1 mm translation of the central ray relative to the axis-of-rotation and 1 degree yaw of the detector and source arrays, the maximum error in the recovered translational parameters was 0.4 mm and maximum error in the rotation parameter was 0.02 degrees. The relative root-mean-square error in a reconstruction of a numerical thorax phantom was 0.4% using the calibration method, versus 7.7% without calibration. Changes in source-detector-distance were the most challenging to estimate. Reconstruction of experimental SBDX data using the proposed method eliminated double contour artifacts present in a non-calibrated reconstruction. The proposed IGCT geometric calibration method reduces image artifacts when uncertainties exist in system geometry.

  14. A geometric calibration method for inverse geometry computed tomography using P-matrices

    NASA Astrophysics Data System (ADS)

    Slagowski, Jordan M.; Dunkerley, David A. P.; Hatt, Charles R.; Speidel, Michael A.

    2016-03-01

    Accurate and artifact free reconstruction of tomographic images requires precise knowledge of the imaging system geometry. This work proposes a novel projection matrix (P-matrix) based calibration method to enable C-arm inverse geometry CT (IGCT). The method is evaluated for scanning-beam digital x-ray (SBDX), a C-arm mounted inverse geometry fluoroscopic technology. A helical configuration of fiducials is imaged at each gantry angle in a rotational acquisition. For each gantry angle, digital tomosynthesis is performed at multiple planes and a composite image analogous to a cone-beam projection is generated from the plane stack. The geometry of the C-arm, source array, and detector array is determined at each angle by constructing a parameterized 3D-to-2D projection matrix that minimizes the sum-of-squared deviations between measured and projected fiducial coordinates. Simulations were used to evaluate calibration performance with translations and rotations of the source and detector. In a geometry with 1 mm translation of the central ray relative to the axis-of-rotation and 1 degree yaw of the detector and source arrays, the maximum error in the recovered translational parameters was 0.4 mm and maximum error in the rotation parameter was 0.02 degrees. The relative rootmean- square error in a reconstruction of a numerical thorax phantom was 0.4% using the calibration method, versus 7.7% without calibration. Changes in source-detector-distance were the most challenging to estimate. Reconstruction of experimental SBDX data using the proposed method eliminated double contour artifacts present in a non-calibrated reconstruction. The proposed IGCT geometric calibration method reduces image artifacts when uncertainties exist in system geometry.

  15. A geometric calibration method for inverse geometry computed tomography using P-matrices

    PubMed Central

    Slagowski, Jordan M.; Dunkerley, David A. P.; Hatt, Charles R.; Speidel, Michael A.

    2016-01-01

    Accurate and artifact free reconstruction of tomographic images requires precise knowledge of the imaging system geometry. This work proposes a novel projection matrix (P-matrix) based calibration method to enable C-arm inverse geometry CT (IGCT). The method is evaluated for scanning-beam digital x-ray (SBDX), a C-arm mounted inverse geometry fluoroscopic technology. A helical configuration of fiducials is imaged at each gantry angle in a rotational acquisition. For each gantry angle, digital tomosynthesis is performed at multiple planes and a composite image analogous to a cone-beam projection is generated from the plane stack. The geometry of the C-arm, source array, and detector array is determined at each angle by constructing a parameterized 3D-to-2D projection matrix that minimizes the sum-of-squared deviations between measured and projected fiducial coordinates. Simulations were used to evaluate calibration performance with translations and rotations of the source and detector. In a geometry with 1 mm translation of the central ray relative to the axis-of-rotation and 1 degree yaw of the detector and source arrays, the maximum error in the recovered translational parameters was 0.4 mm and maximum error in the rotation parameter was 0.02 degrees. The relative root-mean-square error in a reconstruction of a numerical thorax phantom was 0.4% using the calibration method, versus 7.7% without calibration. Changes in source-detector-distance were the most challenging to estimate. Reconstruction of experimental SBDX data using the proposed method eliminated double contour artifacts present in a non-calibrated reconstruction. The proposed IGCT geometric calibration method reduces image artifacts when uncertainties exist in system geometry. PMID:27375313

  16. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    NASA Astrophysics Data System (ADS)

    Wydra, A.; Maev, R. Gr

    2013-11-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us.

  17. The use of a virtual reality simulator to explore and understand the impact of Linac mis-calibrations

    NASA Astrophysics Data System (ADS)

    Beavis, Andrew W.; Ward, James W.

    2014-03-01

    Purpose: In recent years there has been interest in using Computer Simulation within Medical training. The VERT (Virtual Environment for Radiotherapy Training) system is a Flight Simulator for Radiation Oncology professionals, wherein fundamental concepts, techniques and problematic scenarios can be safely investigated. Methods: The system provides detailed simulations of several Linacs and the ability to display DICOM treatment plans. Patients can be mis-positioned with 'set-up errors' which can be explored visually, dosimetrically and using IGRT. Similarly, a variety of Linac calibration and configuration parameters can be altered manually or randomly via controlled errors in the simulated 3D Linac and its component parts. The implication of these can be investigated by following through a treatment scenario or using QC devices available within a Physics software module. Results: One resultant exercise is a systematic mis-calibration of 'lateral laser height' by 2mm. The offset in patient alignment is easily identified using IGRT and once corrected by reference to the 'in-room monitor'. The dosimetric implication is demonstrated to be 0.4% by setting a dosimetry phantom by the lasers (and ignoring TSD information). Finally, the need for recalibration can be shown by the Laser Alignment Phantom or by reference to the front pointer. Conclusions: The VERT system provides a realistic environment for training and enhancing understanding of radiotherapy concepts and techniques. Linac error conditions can be explored in this context and valuable experience gained in a controlled manner in a compressed period of time.

  18. Preventing eternality in phantom inflation

    SciTech Connect

    Feng Chaojun; Li Xinzhou; Saridakis, Emmanuel N.

    2010-07-15

    We have investigated the necessary conditions that prevent phantom inflation from being eternal. Allowing additionally for a nonminimal coupling between the phantom field and gravity, we present the slow-climb requirements, perform an analysis of the fluctuations, and finally we extract the overall conditions that are necessary in order to prevent eternality. Furthermore, we verify our results by solving explicitly the cosmological equations in a simple example of an exponential potential, formulating the classical motion plus the stochastic effect of the fluctuations through Langevin equations. Our analysis shows that phantom inflation can be finite without the need of additional exotic mechanisms.

  19. Investigating potential physicochemical errors in polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Sedaghat, Mahbod; Bujold, Rachel; Lepage, Martin

    2011-09-01

    Measurement errors in polymer gel dosimetry can originate either during irradiation or scanning. One concern related to the exothermic nature of polymerization reaction was that the heat released in polymer gel dosimeters during irradiation modifies their dose response. In this paper, the effect of heat released from the exothermal polymerization reaction on the dose response of a number of dosimeters was studied. In addition, we investigated whether heat-generated geometric distortion existed in newly proposed gel dosimeters that contain highly thermoresponsive polymers. Our results suggest that despite a significant internal temperature increase in some gel compositions, their dose responses are not affected when oxygen is well expelled mechanically from the gel mixture. We also report on significant pre-irradiation instability in some recently developed polymer gel dosimeters but that geometric distortions were not observed. Data obtained by a set of small calibration vials are compared to those obtained from larger phantoms, and potential physicochemical causes of deviations between them are identified.

  20. A C-arm calibration method with application to fluoroscopic image-guided procedures

    NASA Astrophysics Data System (ADS)

    Rai, Lav; Gibbs, Jason D.; Wibowo, Henky

    2012-02-01

    C-arm fluoroscopy units provide continuously updating X-ray video images during surgical procedure. The modality is widely adopted for its low cost, real-time imaging capabilities, and its ability to display radio-opaque tools in the anatomy. It is, however, important to correct for fluoroscopic image distortion and estimate camera parameters, such as focal length and camera center, for registration with 3D CT scans in fluoroscopic imageguided procedures. This paper describes a method for C-arm calibration and evaluates its accuracy in multiple C-arm units and in different viewing orientations. The proposed calibration method employs a commerciallyavailable unit to track the C-arm and a calibration plate. The method estimates both the internal calibration parameters and the transformation between the coordinate systems of tracker and C-arm. The method was successfully tested on two C-arm units (GE OEC 9800 and GE OEC 9800 Plus) of different image intensifier sizes and verified with a rigid airway phantom model. The mean distortion-model error was found to be 0.14 mm and 0.17 mm for the respective C-arms. The mean overall system reprojection error (which measures the accuracy of predicting an image using tracker coordinates) was found to be 0.63 mm for the GE OEC 9800.

  1. The dependence of computed tomography number to relative electron density conversion on phantom geometry and its impact on planned dose.

    PubMed

    Inness, Emma K; Moutrie, Vaughan; Charles, Paul H

    2014-06-01

    A computed tomography number to relative electron density (CT-RED) calibration is performed when commissioning a radiotherapy CT scanner by imaging a calibration phantom with inserts of specified RED and recording the CT number displayed. In this work, CT-RED calibrations were generated using several commercially available phantoms to observe the effect of phantom geometry on conversion to electron density and, ultimately, the dose calculation in a treatment planning system. Using an anthropomorphic phantom as a gold standard, the CT number of a material was found to depend strongly on the amount and type of scattering material surrounding the volume of interest, with the largest variation observed for the highest density material tested, cortical bone. Cortical bone gave a maximum CT number difference of 1,110 when a cylindrical insert of diameter 28 mm scanned free in air was compared to that in the form of a 30 × 30 cm(2) slab. The effect of using each CT-RED calibration on planned dose to a patient was quantified using a commercially available treatment planning system. When all calibrations were compared to the anthropomorphic calibration, the largest percentage dose difference was 4.2 % which occurred when the CT-RED calibration curve was acquired with heterogeneity inserts removed from the phantom and scanned free in air. The maximum dose difference observed between two dedicated CT-RED phantoms was ±2.1 %. A phantom that is to be used for CT-RED calibrations must have sufficient water equivalent scattering material surrounding the heterogeneous objects that are to be used for calibration.

  2. Characterization of tracked radiofrequency ablation in phantom

    SciTech Connect

    Chen, Chun-Cheng R.; Miga, Michael I.; Galloway, Robert L.

    2007-10-15

    In radiofrequency ablation (RFA), successful therapy requires accurate, image-guided placement of the ablation device in a location selected by a predictive treatment plan. Current planning methods rely on geometric models of ablations that are not sensitive to underlying physical processes in RFA. Implementing plans based on computational models of RFA with image-guided techniques, however, has not been well characterized. To study the use of computational models of RFA in planning needle placement, this work compared ablations performed with an optically tracked RFA device with corresponding models of the ablations. The calibration of the tracked device allowed the positions of distal features of the device, particularly the tips of the needle electrodes, to be determined to within 1.4{+-}0.6 mm of uncertainty. Ablations were then performed using the tracked device in a phantom system based on an agarose-albumin mixture. Images of the sliced phantom obtained from the ablation experiments were then compared with the predictions of a bioheat transfer model of RFA, which used the positional data of the tracked device obtained during ablation. The model was demonstrated to predict 90% of imaged pixels classified as being ablated. The discrepancies between model predictions and observations were analyzed and attributed to needle tracking inaccuracy as well as to uncertainties in model parameters. The results suggest the feasibility of using finite element modeling to plan ablations with predictable outcomes when implemented using tracked RFA.

  3. Self-Calibration of Cone-Beam CT Geometry Using 3D-2D Image Registration: Development and Application to Task-Based Imaging with a Robotic C-Arm

    PubMed Central

    Ouadah, S.; Stayman, J. W.; Gang, G.; Uneri, A.; Ehtiati, T.; Siewerdsen, J. H.

    2015-01-01

    Purpose Robotic C-arm systems are capable of general noncircular orbits whose trajectories can be driven by the particular imaging task. However obtaining accurate calibrations for reconstruction in such geometries can be a challenging problem. This work proposes a method to perform a unique geometric calibration of an arbitrary C-arm orbit by registering 2D projections to a previously acquired 3D image to determine the transformation parameters representing the system geometry. Methods Experiments involved a cone-beam CT (CBCT) bench system, a robotic C-arm, and three phantoms. A robust 3D-2D registration process was used to compute the 9 degree of freedom (DOF) transformation between each projection and an existing 3D image by maximizing normalized gradient information with a digitally reconstructed radiograph (DRR) of the 3D volume. The quality of the resulting “self-calibration” was evaluated in terms of the agreement with an established calibration method using a BB phantom as well as image quality in the resulting CBCT reconstruction. Results The self-calibration yielded CBCT images without significant difference in spatial resolution from the standard (“true”) calibration methods (p-value >0.05 for all three phantoms), and the differences between CBCT images reconstructed using the “self” and “true” calibration methods were on the order of 10−3 mm−1. Maximum error in magnification was 3.2%, and back-projection ray placement was within 0.5 mm. Conclusion The proposed geometric “self” calibration provides a means for 3D imaging on general non-circular orbits in CBCT systems for which a geometric calibration is either not available or not reproducible. The method forms the basis of advanced “task-based” 3D imaging methods now in development for robotic C-arms. PMID:26388661

  4. Variations in backscatter observed in PMMA whole-body dosimetry slab phantoms.

    PubMed

    Schwahn, Scott O; Gesell, Thomas F

    2008-01-01

    Polymethyl methacrylate (PMMA) is a useful material for dosimetry phantoms in many ways including approximate tissue equivalence, stability, accessibility and ease of use. However, recent studies indicate that PMMA may have some unanticipated variation in backscatter from one phantom to another. While the reasons behind the variations have not been identified, it has been demonstrated that the backscatter from one phantom to another may vary by as much as 15%, resulting in a dosemeter response variation of as much as 5%. This unexpected contribution to uncertainty in delivered dose to a dosemeter may be quite large compared to the normally estimated uncertainty, potentially causing problems with calibration and performance testing. This paper includes data supporting the differences in backscatter among phantoms, and results from tests on the phantoms performed in an effort to identify possible causes.

  5. The use of fluorescent tissue phantoms (as a light source) to standardize responsivity of different imaging systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Litorja, Maritoni

    2017-02-01

    Fluorescent tissue phantoms are useful constructs in tracking the daily performance of a fluorescence imaging system. However, fluorescence imaging systems vary according to intended use, such as with an endoscope, or a camera with wide field optics. They also vary in terms of spectral bandwidth, or the sensor. We present a method on how the fluorescence measurement results of a calibrated tissue phantom from two different fluorescence imaging systems can be compared. This demonstrates how tissue phantoms, when calibrated with units of optical radiance, can be used beyond a single optical system.

  6. Phantom pain after eye amputation.

    PubMed

    Rasmussen, Marie L R; Prause, Jan U; Toft, Peter B

    2011-02-01

    To characterize the quality of phantom pain, its intensity and frequency following eye amputation. Possible triggers and relievers of phantom pain are investigated. The hospital database was searched using surgery codes for patients who received ocular evisceration, enucleation, orbital exenteration or secondary implantation of an orbital implant in the period between 1993 and 2003. A total of 267 patients were identified and invited to participate; of these, 173 agreed to participate. These patients' medical records were reviewed. A structured interview focusing on pain was conducted by a trained interviewer. Of the 173 patients in the study, 39 experienced phantom pain. The median age of patients who had experienced phantom pain was 45 years (range: 19-88). Follow-up time from eye amputation to participation in the investigation was 4 years (range: 2-46). Phantom pain was reported to be of three different qualities: (i) cutting, penetrating, gnawing or oppressive (n = 19); (ii) radiating, zapping or shooting (n = 8); (iii) superficial burning or stinging (n = 5); or a mixture of these different pain qualities (n = 7). The median intensity on a visual analogue scale, ranging from 0 to 100, was 36 (range: 1-89). One-third of the patients experienced phantom pain every day. Chilliness, windy weather and psychological stress/fatigue were the most commonly reported triggers for pain.   Phantom pain after eye amputation is relatively common. The pain appears to be similar to the phantom pain suffered by limb amputees. Patients should be informed about this potential complication before surgery. © 2010 The Authors. Acta Ophthalmologica © 2010 Acta Ophthalmologica Scandinavica Foundation.

  7. Investigating a compact phantom and setup for testing body sound transducers

    PubMed Central

    Mansy, Hansen A; Grahe, Joshua; Royston, Thomas J; Sandler, Richard H

    2011-01-01

    Contact transducers are a key element in experiments involving body sounds. The characteristics of these devices are often not known with accuracy. There are no standardized calibration setups or procedures for testing these sensors. This study investigated the characteristics of a new computer-controlled sound source phantom for testing sensors. Results suggested that sensors with different sizes require special phantom requirements. The effectiveness of certain approaches on increasing the spatial and spectral uniformity of the phantom surface signal was studied. Non-uniformities >20 dB were removable, which can be particularly helpful in comparing the characteristics of different size sensors more accurately. PMID:21496795

  8. Organosilicon phantom for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-to-noise ratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  9. Phantom stars and topology change

    SciTech Connect

    DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.

    2008-11-15

    In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence of a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.

  10. Organosilicon phantom for photoacoustic imaging.

    PubMed

    Avigo, Cinzia; Di Lascio, Nicole; Armanetti, Paolo; Kusmic, Claudia; Cavigli, Lucia; Ratto, Fulvio; Meucci, Sandro; Masciullo, Cecilia; Cecchini, Marco; Pini, Roberto; Faita, Francesco; Menichetti, Luca

    2015-04-01

    Photoacoustic imaging is an emerging technique. Although commercially available photoacoustic imaging systems currently exist, the technology is still in its infancy. Therefore, the design of stable phantoms is essential to achieve semiquantitative evaluation of the performance of a photoacoustic system and can help optimize the properties of contrast agents. We designed and developed a polydimethylsiloxane (PDMS) phantom with exceptionally fine geometry; the phantom was tested using photoacoustic experiments loaded with the standard indocyanine green dye and compared to an agar phantom pattern through polyethylene glycol-gold nanorods. The linearity of the photoacoustic signal with the nanoparticle number was assessed. The signal-tonoiseratio and contrast were employed as image quality parameters, and enhancements of up to 50 and up to 300%, respectively, were measured with the PDMS phantom with respect to the agar one. A tissue-mimicking (TM)-PDMS was prepared by adding TiO2 and India ink; photoacoustic tests were performed in order to compare the signal generated by the TM-PDMS and the biological tissue. The PDMS phantom can become a particularly promising tool in the field of photoacoustics for the evaluation of the performance of a PA system and as a model of the structure of vascularized soft tissues.

  11. Realistic Analytical Polyhedral MRI Phantoms

    PubMed Central

    Ngo, Tri M.; Fung, George S. K.; Han, Shuo; Chen, Min; Prince, Jerry L.; Tsui, Benjamin M. W.; McVeigh, Elliot R.; Herzka, Daniel A.

    2015-01-01

    Purpose Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing 3D analytical phantoms are unable to accurately model shapes of biomedical interest. It is demonstrated that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. Theory The derivations of the Fourier transform of a polygon and polyhedron are presented. Methods The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D/2D MRI acquisitions was described. Results Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D/2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing as compared to equivalent voxelized/rasterized phantoms. Conclusion Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. PMID:26479724

  12. Realistic analytical polyhedral MRI phantoms.

    PubMed

    Ngo, Tri M; Fung, George S K; Han, Shuo; Chen, Min; Prince, Jerry L; Tsui, Benjamin M W; McVeigh, Elliot R; Herzka, Daniel A

    2016-08-01

    Analytical phantoms have closed form Fourier transform expressions and are used to simulate MRI acquisitions. Existing three-dimensional (3D) analytical phantoms are unable to accurately model shapes of biomedical interest. The goal of this study was to demonstrate that polyhedral analytical phantoms have closed form Fourier transform expressions and can accurately represent 3D biomedical shapes. The Fourier transform of a polyhedron was implemented and its accuracy in representing faceted and smooth surfaces was characterized. Realistic anthropomorphic polyhedral brain and torso phantoms were constructed and their use in simulated 3D and two-dimensional (2D) MRI acquisitions was described. Using polyhedra, the Fourier transform of faceted shapes can be computed to within machine precision. Smooth surfaces can be approximated with increasing accuracy by increasing the number of facets in the polyhedron; the additional accumulated numerical imprecision of the Fourier transform of polyhedra with many faces remained small. Simulations of 3D and 2D brain and 2D torso cine acquisitions produced realistic reconstructions free of high frequency edge aliasing compared with equivalent voxelized/rasterized phantoms. Analytical polyhedral phantoms are easy to construct and can accurately simulate shapes of biomedical interest. Magn Reson Med 76:663-678, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Analysis of anomalous variation in the backscatter response of whole body dosimetry phantoms

    NASA Astrophysics Data System (ADS)

    Schwahn, Scott O.

    2007-10-01

    Polymethyl methacrylate (PMMA) has useful properties for dosimetry phantoms including approximate tissue equivalence, stability, accessibility, and ease of use. However, recent studies indicate that PMMA may have some unanticipated variation in backscatter from one phantom to another. While the reasons behind the variations have not been identified, it has been demonstrated that the backscatter from one phantom to another may vary by as much as 15%, resulting in a total dosimeter response variation of as much as 5%. This unexpected contribution to uncertainty in delivered dose to a dosimeter may be quite large compared to the normally estimated uncertainty, potentially causing problems with calibration and performance testing. This dissertation presents data supporting the differences in backscatter among phantoms and results from tests on the phantoms performed in an effort to identify possible causes. New calculations on the backscatter from other materials are performed, updating published data. Comparisons are made of the effectiveness of PMMA versus other materials for simulation of human tissue; a recommendation is made that PMMA no longer be used as a routine phantom material for calibration and performance testing. It is recommended that the water phantom proposed by the International Organization for Standardization (ISO) be used as a more suitable substitute for International Commission on Radiation Units and Measurements (ICRU) tissue.

  14. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and

  15. The contemporary JAEA Japanese voxel phantoms.

    PubMed

    Sato, Kaoru; Takahashi, Fumiaki

    2012-03-01

    Average adult Japanese male (JM-103 phantom) and female (JF-103 phantom) voxel (volume pixel) phantoms were newly constructed by modifying the JM and JF phantoms previously developed at Japan Atomic Energy Agency. The JM-103 and JF-103 have average characteristics with respect to organ masses and body sizes. Their tissue segmentations were based on International Commission on Radiological Protection (ICRP) Publication 103. The anatomical and dosimetric characteristics of JM-103 and JF-103 were compared with those of ICRP adult reference male (AM phantom) and female (AF phantoms) phantoms. This study discusses their anatomical and dosimetric characteristics, and applications to the dose assessment of the atomic bomb survivors.

  16. Calibration methods influence quantitative material decomposition in photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Curtis, Tyler E.; Roeder, Ryan K.

    2017-03-01

    Photon-counting detectors and nanoparticle contrast agents can potentially enable molecular imaging and material decomposition in computed tomography (CT). Material decomposition has been investigated using both simulated and acquired data sets. However, the effect of calibration methods on material decomposition has not been systematically investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on quantitative material decomposition. A commerciallyavailable photon-counting spectral micro-CT (MARS Bioimaging) was used to acquire images with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material basis matrix values were determined using multiple linear regression models and material decomposition was performed using a maximum a posteriori estimator. The accuracy of quantitative material decomposition was evaluated by the root mean squared error (RMSE), specificity, sensitivity, and area under the curve (AUC). An increased maximum concentration (range) in the calibration significantly improved RMSE, specificity and AUC. The effects of an increased number of concentrations in the calibration were not statistically significant for the conditions in this study. The overall results demonstrated that the accuracy of quantitative material decomposition in spectral CT is significantly influenced by calibration methods, which must therefore be carefully considered for the intended diagnostic imaging application.

  17. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications

    NASA Astrophysics Data System (ADS)

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-01

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  18. Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3M lucite head phantom in eye dosimetry applications.

    PubMed

    Homolka, Peter; Figl, Michael; Wartak, Andreas; Glanzer, Mathias; Dünkelmeyer, Martina; Hojreh, Azadeh; Hummel, Johann

    2017-04-21

    An anthropomorphic head phantom including eye inserts allowing placement of TLDs 3 mm below the cornea has been produced on a 3D printer using a photo-cured acrylic resin to best allow tissue equivalence. Thus Hp(3) can be determined in radiological and interventional photon radiation fields. Eye doses and doses to the forehead have been compared to an Alderson RANDO head and a 3M Lucite skull phantom in terms of surface dose per incident air kerma for frontal irradiation since the commercial phantoms do not allow placement of TLDs 3 mm below the corneal surface. A comparison of dose reduction factors (DRFs) of a common lead glasses model has also been performed. Eye dose per incident air kerma were comparable between all three phantoms (printed phantom: 1.40, standard error (SE) 0.04; RANDO: 1.36, SE 0.03; 3M: 1.37, SE 0.03). Doses to the forehead were identical to eye surface doses for the printed phantom and the RANDO head (ratio 1.00 SE 0.04, and 0.99 SE 0.03, respectively). In the 3M Lucite skull phantom dose on the forehead was 15% lower than dose to the eyes attributable to phantom properties. DRF of a sport frame style leaded glasses model with 0.75 mm lead equivalence measured were 6.8 SE 0.5, 9.3 SE 0.4 and 10.5 SE 0.5 for the RANDO head, the printed phantom, and the 3M Lucite head phantom, respectively, for frontal irradiation. A comparison of doses measured in 3 mm depth and on the surface of the eyes in the printed phantom revealed no difference larger than standard errors from TLD dosimetry. 3D printing offers an interesting opportunity for phantom design with increasing potential as printers allowing combinations of tissue substitutes will become available. Variations between phantoms may provide a useful indication of uncertainty budgets when using phantom measurements to estimate individual personnel doses.

  19. High-resolution computed microtomography for the characterization of a diffusion tensor imaging phantom

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Wejrzanowski, Tomasz; Skibiński, Jakub; Maksimczuk, Michał; Krzyżak, Artur

    2017-03-01

    This paper addresses the issue of the quantitative characterization of the structure of the calibration model (phantom) for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI) scanners. The aim of this study was to verify manufacturing assumptions of the structure of materials, since phantoms are used for BSD-DTI calibration directly after manufacturing. Visualization of the phantoms' structure was achieved through optical microscopy and high-resolution computed microtomography (µCT). Using µCT images, a numerical model of the materials structure was developed for further quantitative analysis. 3D image characterization was performed to determine crucial structural parameters of the phantom: porosity, uniformity and distribution of equivalent diameter of capillary bundles. Additionally calculations of hypothetical flow streamlines were also performed based on the numerical model that was developed. The results obtained in this study can be used in the calibration of DTI-BST measurements. However, it was found that the structure of the phantom exhibits flaws and discrepancies from the assumed geometry which might affect BSD-DTI calibration.

  20. Evaluation of Phantom-Based Education System for Acupuncture Manipulation

    PubMed Central

    Lee, In-Seon; Lee, Ye-Seul; Park, Hi-Joon; Lee, Hyejung; Chae, Younbyoung

    2015-01-01

    Background Although acupuncture manipulation has been regarded as one of the important factors in clinical outcome, it has been difficult to train novice students to become skillful experts due to a lack of adequate educational program and tools. Objectives In the present study, we investigated whether newly developed phantom acupoint tools would be useful to practice-naïve acupuncture students for practicing the three different types of acupuncture manipulation to enhance their skills. Methods We recruited 12 novice students and had them practice acupuncture manipulations on the phantom acupoint (5% agarose gel). We used the Acusensor 2 and compared their acupuncture manipulation techniques, for which the target criteria were depth and time factors, at acupoint LI11 in the human body before and after 10 training sessions. The outcomes were depth of needle insertion, depth error from target criterion, time of rotating, lifting, and thrusting, time error from target criteria and the time ratio. Results After 10 training sessions, the students showed significantly improved outcomes in depth of needle, depth error (rotation, reducing lifting/thrusting), thumb-forward time error, thumb-backward time error (rotation), and lifting time (reinforcing lifting/thrusting). Conclusions The phantom acupoint tool could be useful in a phantom-based education program for acupuncture-manipulation training for students. For advanced education programs for acupuncture manipulation, we will need to collect additional information, such as patient responses, acupoint-specific anatomical characteristics, delicate tissue-like modeling, haptic and visual feedback, and data from an acupuncture practice simulator. PMID:25689598

  1. Phantom black holes and sigma models

    SciTech Connect

    Azreg-Aienou, Mustapha; Clement, Gerard; Fabris, Julio C.; Rodrigues, Manuel E.

    2011-06-15

    We construct static multicenter solutions of phantom Einstein-Maxwell-dilaton theory from null geodesics of the target space, leading to regular black holes without spatial symmetry for certain discrete values of the dilaton coupling constant. We also discuss the three-dimensional gravitating sigma models obtained by reduction of phantom Einstein-Maxwell, phantom Kaluza-Klein and phantom Einstein-Maxwell-dilaton-axion theories. In each case, we generate by group transformations phantom charged black hole solutions from a neutral seed.

  2. Image-guided small animal radiation research platform: calibration of treatment beam alignment

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Ford, Eric; Iordachita, Iulian; Wong, John; Kazanzides, Peter

    2009-02-01

    Small animal research allows detailed study of biological processes, disease progression and response to therapy with the potential to provide a natural bridge to the clinical environment. The small animal radiation research platform (SARRP) is a portable system for precision irradiation with beam sizes down to approximately 0.5 mm and optimally planned radiation with on-board cone-beam CT (CBCT) guidance. This paper focuses on the geometric calibration of the system for high-precision irradiation. A novel technique for the calibration of the treatment beam is presented, which employs an x-ray camera whose precise positioning need not be known. Using the camera system we acquired a digitally reconstructed 3D 'star shot' for gantry calibration and then developed a technique to align each beam to a common isocenter with the robotic animal positioning stages. The calibration incorporates localization by cone-beam CT guidance. Uncorrected offsets of the beams with respect to the calibration origin ranged from 0.4 mm to 5.2 mm. With corrections, these alignment errors can be reduced to the sub-millimeter range. The calibration technique was used to deliver a stereotactic-like arc treatment to a phantom constructed with EBT Gafchromic films. All beams were shown to intersect at a common isocenter with a measured beam (FWHM) of approximately 1.07 mm using the 0.5 mm collimated beam. The desired positioning accuracy of the SARRP is 0.25 mm and the results indicate an accuracy of 0.2 mm. To fully realize the radiation localization capabilities of the SARRP, precise geometric calibration is required, as with any such system. The x-ray camera-based technique presented here provides a straightforward and semi-automatic method for system calibration.

  3. Angle interferometer cross axis errors

    NASA Astrophysics Data System (ADS)

    Bryan, J. B.; Carter, D. L.; Thompson, S. L.

    1994-01-01

    Angle interferometers are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them.

  4. Angle interferometer cross axis errors

    SciTech Connect

    Bryan, J.B.; Carter, D.L.; Thompson, S.L.

    1994-01-01

    Angle interferometers are commonly used to measure surface plate flatness. An error can exist when the centerline of the double comer cube mirror assembly is not square to the surface plate and the guide bar for the mirror sled is curved. Typical errors can be one to two microns per meter. A similar error can exist in the calibration of rotary tables when the centerline of the double comer cube mirror assembly is not square to the axes of rotation of the angle calibrator and the calibrator axis is not parallel to the rotary table axis. Commercial double comer cube assemblies typically have non-parallelism errors of ten milli-radians between their centerlines and their sides and similar values for non-squareness between their centerlines and end surfaces. The authors have developed a simple method for measuring these errors and correcting them by remachining the reference surfaces.

  5. Temperature insensitive prediction of glucose concentration in turbid medium using multivariable calibration based on external parameter orthogonalization

    NASA Astrophysics Data System (ADS)

    Han, Tongshuai; Zhang, Ziyang; Sun, Cuiying; Guo, Chao; Sun, Di; Liu, Jin

    2016-10-01

    The measurement accuracy of non-invasive blood glucose concentration (BGC) sensing with near-infrared spectroscopy is easily affected by the temperature variation in tissue because it would induce an unacceptable spectrum variation and the consequent prediction deviation. We use a multivariable correction method based on external parameter orthogonalization (EPO) to calibrate the spectral data recorded at different temperature values to reduce the spectral variation. The tested medium is a kind of tissue phantom, the Intralipid aqueous solution. The calibration uses a projection matrix to get the orthogonal spectral space to the variable of external parameter, i.e. temperature, and then the useful spectral information relative to glucose concentration has been reserved. Even more, training the projection matrix can be separated to building the calibration matrix for the prediction of glucose concentration as it only uses the representative samples' data with temperature variation. The method presents a lower complexity than modeling a robust prediction matrix, which can be built from comprehensive spectral data involved the all variables both of BGC and temperature. In our test, the calibrated spectra with the same glucose concentration but different temperature values show a significantly improved repeatability. And then the glucose concentration prediction results show a lower root mean squared error of prediction (RMSEP) than that using the robust calibration model, which has considered the two variables. We also discuss the rationality of the representative samples chosen by EPO. This research may be referenced to the temperature calibration for in vivo BGC sensing.

  6. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging.

    PubMed

    Freed, Melanie; Badal, Andreu; Jennings, Robert J; de las Heras, Hugo; Myers, Kyle J; Badano, Aldo

    2011-06-21

    The purpose of this study is to characterize the x-ray properties of a dual-modality, anthropomorphic breast phantom whose MRI properties have been previously evaluated. The goal of this phantom is to provide a platform for optimization and standardization of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and discrimination. The phantom is constructed using a mixture of lard and egg whites, resulting in a variable, tissue-mimicking structure with separate adipose- and glandular-mimicking components. The phantom can be produced with either a compressed or uncompressed shape. Mass attenuation coefficients of the phantom materials were estimated using elemental compositions from the USDA National Nutrient Database for Standard Reference and the atomic interaction models from the Monte Carlo code PENELOPE and compared with human values from the literature. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of the phantom and patient mammography images. Finally, a computerized version of the phantom was created by segmenting a computed tomography scan and used to simulate x-ray scatter of the phantom in a mammography geometry. Mass attenuation coefficients of the phantom materials were within 20% and 15% of the values for adipose and glandular tissues, respectively, which is within the estimation error of these values. Matching was improved at higher energies (>20 keV). Tissue structures in the phantom have a size similar to those in the patient data, but are slightly larger on average. Correlations in the patient data appear to be longer than those in the phantom data in the anterior-posterior direction; however, they are within the error bars of the measurement. Simulated scatter-to-primary ratio values of the phantom images were as high as 85% in some areas and were strongly affected by the heterogeneous nature of the phantom. Key physical x-ray properties of

  7. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging

    NASA Astrophysics Data System (ADS)

    Freed, Melanie; Badal, Andreu; Jennings, Robert J.; de las Heras, Hugo; Myers, Kyle J.; Badano, Aldo

    2011-06-01

    The purpose of this study is to characterize the x-ray properties of a dual-modality, anthropomorphic breast phantom whose MRI properties have been previously evaluated. The goal of this phantom is to provide a platform for optimization and standardization of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and discrimination. The phantom is constructed using a mixture of lard and egg whites, resulting in a variable, tissue-mimicking structure with separate adipose- and glandular-mimicking components. The phantom can be produced with either a compressed or uncompressed shape. Mass attenuation coefficients of the phantom materials were estimated using elemental compositions from the USDA National Nutrient Database for Standard Reference and the atomic interaction models from the Monte Carlo code PENELOPE and compared with human values from the literature. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of the phantom and patient mammography images. Finally, a computerized version of the phantom was created by segmenting a computed tomography scan and used to simulate x-ray scatter of the phantom in a mammography geometry. Mass attenuation coefficients of the phantom materials were within 20% and 15% of the values for adipose and glandular tissues, respectively, which is within the estimation error of these values. Matching was improved at higher energies (>20 keV). Tissue structures in the phantom have a size similar to those in the patient data, but are slightly larger on average. Correlations in the patient data appear to be longer than those in the phantom data in the anterior-posterior direction; however, they are within the error bars of the measurement. Simulated scatter-to-primary ratio values of the phantom images were as high as 85% in some areas and were strongly affected by the heterogeneous nature of the phantom. Key physical x-ray properties of

  8. Low abundances of synthetics lipids in phantoms

    NASA Astrophysics Data System (ADS)

    Villanueva-Luna, A. E.; Santiago-Alvarado, A.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Aguilar-Soto, J.; Delgado-Atencio, J. A.

    2012-03-01

    Phantoms simulate optical characteristics of tissues. Phantoms use to mimic light distributions in living tissue. Several Phantoms compositions made of silicone, polyester, polyurethane, and epoxy resin have been described in the literature. These kinds of phantoms have the problem of long time preservation. In this work, we describe the fabrication and characterization of phantoms with low concentrations of synthetic lipid using Raman spectroscopy. We fabricate four phantoms made of Polydimethylsiloxane (PDMS). These phantoms have synthetic lipid content of cholesterol and triglycerides. The size of our phantoms is 1 x 1 cm and 5 mm of thickness.We used the point-to-point mapping technique. Finally, we compared advantages and performance of made PDMS and gelatin phantoms.

  9. Control volume based hydrocephalus research; a phantom study

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  10. A rotating torus phantom for assessing color Doppler accuracy.

    PubMed

    Stewart, S F

    1999-10-01

    A rotating torus phantom was designed to assess the accuracy of color Doppler ultrasound. A thin rubber tube was filled with blood analog fluid and joined at the ends to form a torus, then mounted on a disk submerged in water and rotated at constant speeds by a motor. Flow visualization experiments and finite element analyses demonstrated that the fluid accelerates quickly to the speed of the torus and spins as a solid body. The actual fluid velocity was found to be dependent only on the motor speed and location of the sample volume. The phantom was used to assess the accuracy of Doppler-derived velocities during two-dimensional (2-D) color imaging using a commercial ultrasound system. The Doppler-derived velocities averaged 0.81 +/- 0.11 of the imposed velocity, with the variations significantly dependent on velocity, pulse-repetition frequency and wall filter frequency (p < 0.001). The torus phantom was found to have certain advantages over currently available Doppler accuracy phantoms: 1. It has a high maximum velocity; 2. it has low velocity gradients, simplifying the calibration of 2-D color Doppler; and 3. it uses a real moving fluid that gives a realistic backscatter signal.

  11. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    SciTech Connect

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio

    2015-07-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed dose after

  12. Needle deflection estimation: prostate brachytherapy phantom experiments.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2014-11-01

    The performance of a fusion-based needle deflection estimation method was experimentally evaluated using prostate brachytherapy phantoms. The accuracy of the needle deflection estimation was determined. The robustness of the approach with variations in needle insertion speed and soft tissue biomechanical properties was investigated. A needle deflection estimation method was developed to determine the amount of needle bending during insertion into deformable tissue by combining a kinematic deflection model with measurements taken from two electromagnetic trackers placed at the tip and the base of the needle. Experimental verification of this method for use in prostate brachytherapy needle insertion procedures was performed. A total of 21 beveled tip, 18 ga, 200 mm needles were manually inserted at various speeds through a template and toward different targets distributed within 3 soft tissue mimicking polyvinyl chloride prostate phantoms of varying stiffness. The tracked positions of both the needle tip and base were recorded, and Kalman filters were applied to fuse the sensory information. The estimation results were validated using ground truth obtained from fluoroscopy images. The manual insertion speed ranged from 8 to 34 mm/s, needle deflection ranged from 5 to 8 mm at an insertion depth of 76 mm, and the elastic modulus of the soft tissue ranged from 50 to 150 kPa. The accuracy and robustness of the estimation method were verified within these ranges. When compared to purely model-based estimation, we observed a reduction in needle tip position estimation error by [Formula: see text] % (mean [Formula: see text] SD) and the cumulative deflection error by [Formula: see text] %. Fusion of electromagnetic sensors demonstrated significant improvement in estimating needle deflection compared to model-based methods. The method has potential clinical applicability in the guidance of needle placement medical interventions, particularly prostate brachytherapy.

  13. The Limit of Resolution and Detectability of the ArcCHECK QA Phantom in small field Volumetric Modulated Arc Therapy and Stereotactic Radiosurgery Quality Assurance

    NASA Astrophysics Data System (ADS)

    Gray, Tara

    gamma criteria analysis in SNC to catch errors. A point dose calibration pertaining to each field size at each photon energy of the TrueBeam and Edge linear accelerators (Varian Medical Systems, Palo Alto, CA) was calculated by measuring a point dose at a range of field sizes at each energy (6 MV, 6 FFF and 10FFF for the Edge and 6 MV, 6FFF, 10 MV, and 18 MV for the TrueBeam) and dividing this number by the treatment planning system calculated point dose (calculated in Pinnacle) to obtain a cGy/MU dose calibration. An Extradin A16 Micropoint chamber (Extradin A1SL, Standard Imaging, Inc., Middleton WI) was placed in the center of the plug insert in the center of the ArcCheck phantom and a CNMC 206 electrometer (CNMC Instruments, Nashville, Tn) reading pertaining to a beam of 200 MU at different field sizes for each energy. The dose calibration factor for each energy was calculated and applied to six different patient-specific point dose QA analyses in order to determine the field size dependence of the dose calibration and to determine if the calibration improved the overall QA pass rate as well as the pass rate for individual fields for SRS QA. Finally, MLC errors were induced into three different patient-specific QA procedures performed on the Edge and TrueBeam linear accelerators. Two opposing MLC leaves were extended into the middle of the field (leaf position 30) at each control point of the first 180-180 degree clockwise field in each of the two patient QAs on the Edge and TrueBeam linear accelerators. The effect of extending the MLC leaves was analyzed using gamma analysis in SNC patient software. A point dose analysis of each QA was also taken into account and compared with the result measured using gamma criteria. Results: Examination of results in SNC patient software between measured normal fields and those with induced jaw field size errors indicate that the gamma criteria percent pass rates decrease significantly when errors are induced in the quality

  14. Eigenbreasts for statistical breast phantoms

    NASA Astrophysics Data System (ADS)

    Sturgeon, Gregory M.; Tward, Daniel J.; Ketcha, M.; Ratnanather, J. T.; Miller, M. I.; Park, Subok; Segars, W. P.; Lo, Joseph Y.

    2016-03-01

    To facilitate rigorous virtual clinical trials using model observers for breast imaging optimization and evaluation, we demonstrated a method of defining statistical models, based on 177 sets of breast CT patient data, in order to generate tens of thousands of unique digital breast phantoms. In order to separate anatomical texture from variation in breast shape, each training set of breast phantoms were deformed to a consistent atlas compressed geometry. Principal component analysis (PCA) was then performed on the shape-matched breast CT volumes to capture the variation of patient breast textures. PCA decomposes the training set of N breast CT volumes into an N-1-dimensional space of eigenvectors, which we call eigenbreasts. By summing weighted combinations of eigenbreasts, a large ensemble of different breast phantoms can be newly created. Different training sets can be used in eigenbreast analysis for designing basis models to target sub-populations defined by breast characteristics, such as size or density. In this work, we plan to generate ensembles of 30,000 new phantoms based on glandularity for an upcoming virtual trial of lesion detectability in digital breast tomosynthesis. Our method extends our series of digital and physical breast phantoms based on human subject anatomy, providing the capability to generate new, unique ensembles consisting of tens of thousands or more virtual subjects. This work represents an important step towards conducting future virtual trials for tasks-based assessment of breast imaging, where it is vital to have a large ensemble of realistic phantoms for statistical power as well as clinical relevance.

  15. GPI Calibrations

    NASA Astrophysics Data System (ADS)

    Rantakyrö, Fredrik T.

    2017-09-01

    "The Gemini Planet Imager requires a large set of Calibrations. These can be split into two major sets, one set associated with each observation and one set related to biweekly calibrations. The observation set is to optimize the correction of miscroshifts in the IFU spectra and the latter set is for correction of detector and instrument cosmetics."

  16. A teaching phantom for sonographers.

    PubMed

    Zagzebski, J A; Madsen, E L; Frank, G R

    1991-01-01

    An anthropomorphic torso section phantom is described that is intended for use during initial stages of ultrasonographer training. The phantom represents a section of the upper abdomen, with simulated ribs, liver, kidney with fat pad, gallbladder, aorta, and bowel gas. Positioned in the liver are ten simulated soft tissue masses, which produce a variety of typical echographic patterns. All simulated soft tissue components are formed of tissue-mimicking materials that match their corresponding tissue counterparts in terms of speed of sound, ultrasonic attenuation, and density. Construction details are presented and examples of images are shown.

  17. Portable TL dosemeter--ESD phantom combination for chest and lumbar spine radiography.

    PubMed

    Niittymäki, Henri; Hakanen, Arvi; Rautio, Simo; Järvinen, Hannu

    2008-01-01

    A thermoluminescence dosemeter (TLD)-entrance surface dose (ESD) phantom combination was calibrated in terms of air-kerma in IEC RQR X-ray radiation qualities between 50 and 150 kV. The ESD phantom was designed and constructed as a part of the work. With the combination, air-kermas were measured for four radiological examinations (two chest and two lumbar spine examinations in two hospitals), and converted to ESDa using Monte-Carlo calculated BSF data tabulated for different tube voltages, filtrations and beam diameters at 1 m distance. The results agreed with the ionisation-chamber measurements within the reported overall uncertainty of the TLD method. In the calibration, the ESD phantom can be replaced by the ISO water slab phantom unaffecting the reported overall uncertainty. Backscatter-related parameters for the ISO water slab phantom and the newly designed ESD phantom were determined for the IEC RQR qualities used in the secondary standard dosimetry laboratory of STUK at 1 m distance, including an approximate Hp(10)/Hp(0.07) ratio.

  18. Monte Carlo simulation of skull and knee voxel phantoms for the assessment of skeletal burden of low-energy photon emitters.

    PubMed

    Nadar, M Y; Akar, D K; Patni, H K; Singh, I S; Mishra, L; Rao, D D; Pradeepkumar, K S

    2014-12-01

    In case of internal contamination due to long-lived actinides by inhalation or injection pathway, a major portion of activity will be deposited in the skeleton and liver over a period of time. In this study, calibration factors (CFs) of Phoswich and an array of HPGe detectors are estimated using skull and knee voxel phantoms. These phantoms are generated from International Commission of Radiation Protection reference male voxel phantom. The phantoms as well as 20 cm diameter phoswich, having 1.2 cm thick NaI (Tl) primary and 5cm thick CsI (Tl) secondary detector and an array of three HPGe detectors (each of diameter of 7 cm and thickness of 2.5 cm) are incorporated in Monte Carlo code 'FLUKA'. Biokinetic models of Pu, Am, U and Th are solved using default parameters to identify different parts of the skeleton where activity will accumulate after an inhalation intake of 1 Bq. Accordingly, CFs are evaluated for the uniform source distribution in trabecular bone and bone marrow (TBBM), cortical bone (CB) as well as in both TBBM and CB regions for photon energies of 18, 60, 63, 74, 93, 185 and 238 keV describing sources of (239)Pu, (241)Am, (238)U, (235)U and (232)Th. The CFs are also evaluated for non-uniform distribution of activity in TBBM and CB regions. The variation in the CFs for source distributed in different regions of the bones is studied. The assessment of skeletal activity of actinides from skull and knee activity measurements is discussed along with the errors.

  19. Comparison of six phantoms for entrance skin dose evaluation in 11 standard X-ray examinations.

    PubMed