Sample records for calibration response function

  1. End-to-end test of the electron-proton spectrometer

    NASA Technical Reports Server (NTRS)

    Cash, B. L.

    1972-01-01

    A series of end-to-end tests were performed to demonstrate the proper functioning of the complete Electron-Proton Spectrometer (EPS). The purpose of the tests was to provide experimental verification of the design and to provide a complete functional performance check of the instrument from the excitation of the sensors to and including the data processor and equipment test set. Each of the channels of the EPS was exposed to a calibrated beam of energetic particles, and counts were accumulated for a predetermined period of time for each of several energies. The counts were related to the known flux of particles to give a monodirectional response function for each channel. The measured response function of the test unit was compared to the response function determined for the calibration sensors from the data taken from the calibration program.

  2. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin

    2016-06-02

    This study addresses the effect of calibration methodologies on calibration responsivities and the resulting impact on radiometric measurements. The calibration responsivities used in this study are provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides outdoor calibration responsivity of pyranometers and pyrheliometers at a 45 degree solar zenith angle and responsivity as a function of solar zenith angle determined by clear-sky comparisons to reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturersmore » are performed using a stable artificial light source in a side-by-side comparison of the test radiometer under calibration to a reference radiometer of the same type. These different methods of calibration demonstrated 1percent to 2 percent differences in solar irradiance measurement. Analyzing these values will ultimately enable a reduction in radiometric measurement uncertainties and assist in developing consensus on a standard for calibration.« less

  3. Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, I.; Myers, D.; Stoffel, T.

    2008-12-01

    Pyranometers are used outdoors to measure solar irradiance. By design, this type of radiometer can measure the; total hemispheric (global) or diffuse (sky) irradiance when the detector is unshaded or shaded from the sun disk, respectively. These measurements are used in a variety of applications including solar energy conversion, atmospheric studies, agriculture, and materials science. Proper calibration of pyranometers is essential to ensure measurement quality. This paper describes a step-by-step method for calculating and reporting the uncertainty of the calibration, using the guidelines of the ISO 'Guide to the Expression of Uncertainty in Measurement' or GUM, that is applied tomore » the pyranometer; calibration procedures used at the National Renewable Energy Laboratory (NREL). The NREL technique; characterizes a responsivity function of a pyranometer as a function of the zenith angle, as well as reporting a single; calibration responsivity value for a zenith angle of 45 ..deg... The uncertainty analysis shows that a lower uncertainty can be achieved by using the response function of a pyranometer determined as a function of zenith angle, in lieu of just using; the average value at 45..deg... By presenting the contribution of each uncertainty source to the total uncertainty; users will be able to troubleshoot and improve their calibration process. The uncertainty analysis method can also be used to determine the uncertainty of different calibration techniques and applications, such as deriving the uncertainty of field measurements.« less

  4. The Adaptive Calibration Model of stress responsivity

    PubMed Central

    Ellis, Bruce J.; Shirtcliff, Elizabeth A.

    2010-01-01

    This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism’s allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism’s social and physical environment, mediating the organism’s openness to environmental inputs; and (3) to regulate the organism’s physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. PMID:21145350

  5. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    NASA Astrophysics Data System (ADS)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  6. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions.

    PubMed

    Doria, D; Kar, S; Ahmed, H; Alejo, A; Fernandez, J; Cerchez, M; Gray, R J; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Romagnani, L; Ruiz, J A; Sarri, G; Scullion, C; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  7. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    NASA Astrophysics Data System (ADS)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  8. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  9. Prospects of second generation artificial intelligence tools in calibration of chemical sensors.

    PubMed

    Braibanti, Antonio; Rao, Rupenaguntla Sambasiva; Ramam, Veluri Anantha; Rao, Gollapalli Nageswara; Rao, Vaddadi Venkata Panakala

    2005-05-01

    Multivariate data driven calibration models with neural networks (NNs) are developed for binary (Cu++ and Ca++) and quaternary (K+, Ca++, NO3- and Cl-) ion-selective electrode (ISE) data. The response profiles of ISEs with concentrations are non-linear and sub-Nernstian. This task represents function approximation of multi-variate, multi-response, correlated, non-linear data with unknown noise structure i.e. multi-component calibration/prediction in chemometric parlance. Radial distribution function (RBF) and Fuzzy-ARTMAP-NN models implemented in the software packages, TRAJAN and Professional II, are employed for the calibration. The optimum NN models reported are based on residuals in concentration space. Being a data driven information technology, NN does not require a model, prior- or posterior- distribution of data or noise structure. Missing information, spikes or newer trends in different concentration ranges can be modeled through novelty detection. Two simulated data sets generated from mathematical functions are modeled as a function of number of data points and network parameters like number of neurons and nearest neighbors. The success of RBF and Fuzzy-ARTMAP-NNs to develop adequate calibration models for experimental data and function approximation models for more complex simulated data sets ensures AI2 (artificial intelligence, 2nd generation) as a promising technology in quantitation.

  10. Calibration of the ROSAT HRI Spectral Response

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea

    1998-01-01

    The ROSAT High Resolution Imager has a limited (2-band) spectral response. This spectral capability can give X-ray hardness ratios on spatial scales of 5 arcseconds. The spectral response of the center of the detector was calibrated before the launch of ROSAT, but the gain decreases-with time and also is a function of position on the detector. To complicate matters further, the satellite is "wobbled", possibly moving a source across several spatial gain states. These difficulties have prevented the spectral response of the ROSAT HRI from being used for scientific measurements. We have used Bright Earth data and in-flight calibration sources to map the spatial and temporal gain changes, and written software which will allow ROSAT users to generate a calibrated XSPEC response matrix and hence determine a calibrated hardness ratio. In this report, we describe the calibration procedure and show how to obtain a response matrix. In Section 2 we give an overview of the calibration procedure, in Section 3 we give a summary of HRI spatial and temporal gain variations. Section 4 describes the routines used to determine the gain distribution of a source. In Sections 5 and 6, we describe in detail how the Bright Earth database and calibration sources are used to derive a corrected response matrix for a given observation. Finally, Section 7 describes how to use the software.

  11. Calibration of the ROSAT HRI Spectral Response

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Silverman, John; McDowell, Jonathan; Callanan, Paul; Snowden, Steve

    2000-01-01

    The ROSAT High Resolution Imager has a limited (2-band) spectral response. This spectral capability can give X-ray hardness ratios on spatial scales of 5 arcseconds. The spectral response of the center of the detector was calibrated before the launch of ROSAT, but the gain decreases with time and also is a function of position on the detector. To complicate matters further, the satellite is 'wobbled', possibly moving a source across several spatial gain states. These difficulties have prevented the spectral response of the ROSAT High Resolution Imager (HRI) from being used for scientific measurements. We have used Bright Earth data and in-flight calibration sources to map the spatial and temporal gain changes, and written software which will allow ROSAT users to generate a calibrated XSPEC (an x ray spectral fitting package) response matrix and hence determine a calibrated hardness ratio. In this report, we describe the calibration procedure and show how to obtain a response matrix. In Section 2 we give an overview of the calibration procedure, in Section 3 we give a summary of HRI spatial and temporal gain variations. Section 4 describes the routines used to determine the gain distribution of a source. In Sections 5 and 6, we describe in detail how, the Bright Earth database and calibration sources are used to derive a corrected response matrix for a given observation. Finally, Section 7 describes how to use the software.

  12. A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer

    PubMed Central

    Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie

    2014-01-01

    Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727

  13. Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation

    DOE PAGES

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...

    2017-08-17

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  14. The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. I. Linearity, radiometry, and geometry calibrations.

    PubMed

    Filacchione, Gianrico; Capaccioni, Fabrizio; Altieri, Francesca; Carli, Cristian; Ficai Veltroni, Iacopo; Dami, Michele; Tommasi, Leonardo; Aroldi, Gianluca; Borrelli, Donato; Barbis, Alessandra; Baroni, Marco; Pastorini, Guia; Mugnuolo, Raffaele

    2017-09-01

    Before integration aboard European Space Agency BepiColombo mission to Mercury, the visible and near infrared hyperspectral imager underwent an intensive calibration campaign. We report in Paper I about the radiometric and linearity responses of the instrument including the optical setups used to perform them. Paper II [F. Altieri et al., Rev. Sci. Instrum. 88, 094503 (2017)] will describe complementary spectral response calibration. The responsivity is used to calculate the expected instrumental signal-to-noise ratio for typical observation scenarios of the BepiColombo mission around Mercury. A description is provided of the internal calibration unit that will be used to verify the relative response during the instrument's lifetime. The instrumental spatial response functions as measured along and across the spectrometer's slit direction were determined by means of spatial scans performed with illuminated test slits placed at the focus of a collimator. The dedicated optical setup used for these measurements is described together with the methods used to derive the instrumental spatial responses at different positions within the 3.5 ° field of view and at different wavelengths in the 0.4-2.0 μm spectral range. Finally, instrument imaging capabilities and Modulated Transfer Function are tested by using a standard mask as a target.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  16. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  17. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  18. CERES ERBE-like Level 3 Edition 3

    Atmospheric Science Data Center

    2013-07-10

    ... calibration information collected up to this point. The primary goal of this edition is to provide the most accurate and consistent ... for ground to flight beginning-of-mission spectral response function and radiometric gains calibration coefficients. Establishment of a ...

  19. Responsivity calibration of the LoWEUS spectrometer

    DOE PAGES

    Lepson, J. K.; Beiersdorfer, P.; Kaita, R.; ...

    2016-09-02

    We performed an in situ calibration of the relative responsivity function of the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), while operating on the Lithium Tokamak Experiment (LTX) at Princeton Plasma Physics Laboratory. The calibration was accomplished by measuring oxygen lines, which are typically present in LTX plasmas. The measured spectral line intensities of each oxygen charge state were then compared to the calculated emission strengths given in the CHIANTI atomic database. Normalizing the strongest line in each charge state to the CHIANTI predictions, we obtained the differences between the measured and predicted values for the relative strengths of the other linesmore » of a given charge state. We find that a 3rd degree polynomial function provides a good fit to the data points. Lastly, our measurements show that the responsivity between about 120 and 300 Å varies by factor of ~30.« less

  20. The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.

    2017-07-01

    The response of high explosives (HEs), due to mechanical and/or thermal insults, is of great importance for both safety and performance. A major component of how an HE responds to these stimuli stems from its reactant equation of state (EOS). Here, the tri-amino-tri-nitro-benzene based explosive PBX 9502 is investigated by examining recent experiments. Furthermore, a complete thermal EOS is calibrated based on the functional form devised by Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. It is found, by comparing to earlier calibrations, that a variety of thermodynamic data are needed to sufficiently constrain the EOS response over a wide range of thermodynamic state space. Included in the calibration presented here is the specific heat as a function of temperature, isobaric thermal expansion, and shock Hugoniot response. As validation of the resulting model, isothermal compression and isentropic compression are compared with recent experiments.

  1. Laboratory calibration of pyrgeometers with known spectral responsivities.

    PubMed

    Gröbner, Julian; Los, Alexander

    2007-10-20

    A methodology is presented to calibrate pyrgeometers measuring atmospheric long-wave radiation, if their spectral dome transmission is known. The new calibration procedure is based on a black-body cavity to retrieve the sensitivity of the pyrgeometer, combined with calculated atmospheric long-wave spectra to determine a correction function in dependence of the integrated atmospheric water vapor to convert Planck radiation spectra to atmospheric long-wave spectra. The methodology was validated with two custom CG4 pyrgeometers with known dome transmissions by a comparison to the World Infrared Standard Group of Pyrgeometers at the World Radiation Center-Infrared Radiometry Section. The responses retrieved using the new laboratory calibration agree to within 1% with the responses determined by a comparison to the WISG, which is well within the uncertainties of both methodologies.

  2. On Calibrations Using the Crab Nebula as a Standard Candle

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Guainazzi, Matteo; Jahoda, Keith; Shaposhnikov, Nikolai; ODell, Stephen; Zavlin, Vyacheslav; Wilson-Hodge, Colleen; Elsner, Ronald

    2009-01-01

    Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.

  3. Updates in the IR responsivity of VIR, the spectrometer of the Dawn mission.

    NASA Astrophysics Data System (ADS)

    Ammannito, Eleonora; Mc Cord, Thomas B.; De Sanctis, Maria Cristina.; Combe, Jean-Philippe

    VIR-MS (Visual and Infrared Mapping Spectrometer) is the imaging spectrometer of the Dawn mission (1,2). Here, first we describe the computation of a new instrument responsivity based on the internal calibration data acquired during the operations at Vesta, and then we describe its effect on the dataset and on the results published so far. VIR-MS was built in Italy by a scientific-industrial (IAPS/INAF in Rome (Italy) and Selex ES in Campi Bisenzio (Fi, Italy)) consortium financially supported by the Italian Space Agency. VIR-MS is an high spatial resolution spectrometer (FOV of 64mrad, IFOV of 250 µrad) in the 0.25-5 µm range with an IFOV of 250 µrad and a spectral sampling of about 2 nm in the visible range and 10 nm in the IR range. The results of the on-ground calibration held in the Selex calibration facility in September 2005 were already presented and discussed in a paper (2). This version has been used to calibrate the data available on the Planetary Data System (PDS) Small Bodies Node, dataset used in all the papers published so far. However, after the operations at the asteroid Vesta, we have identified some artifacts in the instrument responsivity in the 2.5-3.5 µm region, which is where several absorption bands of OH and H2O occur. Those artifacts were systematic, and therefore they did not prevent the detection of relative spectral variations associated to OH and H2O. Actually, the only paper published in which are discussed spectra in this range (3) used a different calibration method described in the paper itself. This method used a simple correction of the response function based on an empirical calibration correction that is appropriate to recover the signal in that specific range. However, the absolute absorption band depth of OH and H2O could not be calculated. To compute a new instrument responsivity we used the internal lamp of the spectrometer. This lamp, made of a tungsten filament, is characterized by a blackbody-like emission at about 2400K (4). Since the spectrum of the infrared radiation emitted by the tungsten filaments is featureless, a polystyrene filter was inserted for a wavelength calibration of the IR channel. The idea was to use the black body radiation of this lamp to retrieve a relative Instrument Responsivity in the 2.5-3.5 µm region. First we calibrated the signal from internal calibration lamp with the on-ground responsivity, and then we retrieved the equivalent temperature of the radiation fitting a Planck curve. The next step was to compute the Planck function at the equivalent temperature. The new Instrument Responsivity is the result of the ratio between the raw signal of the lamp and the Planck function. This ratio must be multiplied by a factor to take into account the integration time used to acquire the signal, the transmittance of the polystyrene filter, and the viewing geometry. The new instrument responsivity function minimizes most calibration residuals that was showing as artifact peaks between 2.5 and 2.9 µm in the previous calibration. It now allows the use of VIR spectra to identify absorption bands of OH and H2O, without requiring additional empirical corrections. As calibration is always an on-going process, we are looking forward to enable the interpretation of absolute absorption band depths, which is a required step for the calculation of surface material abundances. References: (1) C.T. Russell & C.A. Raymond, Space Sci. Rev., 163, 3 2011 (2) M.C. De Sanctis, A. Coradini, E. Ammannito, E., et al. Space Sci. Rev.,163, 329, 2011 (3) M.C. DeSanctis, J-Ph. Combe et al APJL 758:L36, 2013 (4)R. Melchiorri, G. Piccioni, A. Mazzoni, Rev. Sci. Instrum. 74(8), 3796-3801 2003

  4. CERES ERBE-like Level 2 ES-8 Edition3

    Atmospheric Science Data Center

    2013-07-10

    ... calibration information collected up to this point. The primary goal of this edition is to provide the most accurate and consistent ... the ground to flight beginning-of-mission spectral response function and radiometric gains calibration coefficients. Establishment of a ...

  5. Calibration of an Item Bank for the Assessment of Basque Language Knowledge

    ERIC Educational Resources Information Center

    Lopez-Cuadrado, Javier; Perez, Tomas A.; Vadillo, Jose A.; Gutierrez, Julian

    2010-01-01

    The main requisite for a functional computerized adaptive testing system is the need of a calibrated item bank. This text presents the tasks carried out during the calibration of an item bank for assessing knowledge of Basque language. It has been done in terms of the 3-parameter logistic model provided by the item response theory. Besides, this…

  6. Performance assessment of FY-3C/MERSI on early orbit

    NASA Astrophysics Data System (ADS)

    Hu, Xiuqing; Xu, Na; Wu, Ronghua; Chen, Lin; Min, Min; Wang, Ling; Xu, Hanlie; Sun, Ling; Yang, Zhongdong; Zhang, Peng

    2014-11-01

    FY-3C/MERSI has some remarkable improvements compared to the previous MERSIs including better spectral response function (SRF) consistency of different detectors within one band, increasing the capability of lunar observation by space view (SV) and the improvement of radiometric response stability of solar bands. During the In-orbit verification (IOV) commissioning phase, early results that indicate the MERSI representative performance were derived, including the signal noise ratio (SNR), dynamic range, MTF, B2B registration, calibration bias and instrument stability. The SNRs at the solar bands (Bands 1-4 and 6-20) was largely beyond the specifications except for two NIR bands. The in-flight calibration and verification for these bands are also heavily relied on the vicarious techniques such as China radiometric calibration sites(CRCS), cross-calibration, lunar calibration, DCC calibration, stability monitoring using Pseudo Invariant Calibration Sites (PICS) and multi-site radiance simulation. This paper will give the results of the above several calibration methods and monitoring the instrument degradation in early on-orbit time.

  7. Calibration techniques for a fast duo-spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, J.T.; Den Hartog, D.J.

    1996-06-01

    The authors have completed the upgrade and calibration of the Ion Dynamics Spectrometer (IDS), a high-speed Doppler duo-spectrometer which measures ion flow and temperature in the MST Reversed-field Pinch. This paper describes an in situ calibration of the diagnostic`s phase and frequency response. A single clock was employed to generate both a digital test signal and a digitizer trigger thus avoiding frequency drift and providing a highly resolved measurement over the system bandwidth. Additionally, they review the measurement of the spectrometer instrument function and absolute intensity response. This calibration and subsequent performance demonstrate the IDS to be one of themore » fastest, highest throughput diagnostics of its kind. Typical measurements are presented.« less

  8. The Calibration of AVHRR/3 Visible Dual Gain Using Meteosat-8 as a MODIS Calibration Transfer Medium

    NASA Technical Reports Server (NTRS)

    Avey, Lance; Garber, Donald; Nguyen, Louis; Minnis, Patrick

    2007-01-01

    This viewgraph presentation reviews the NOAA-17 AVHRR visible channels calibrated against MET-8/MODIS using dual gain regression methods. The topics include: 1) Motivation; 2) Methodology; 3) Dual Gain Regression Methods; 4) Examples of Regression methods; 5) AVHRR/3 Regression Strategy; 6) Cross-Calibration Method; 7) Spectral Response Functions; 8) MET8/NOAA-17; 9) Example of gain ratio adjustment; 10) Effect of mixed low/high count FOV; 11) Monitor dual gains over time; and 12) Conclusions

  9. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  10. Along-track calibration of SWIR push-broom hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2016-05-01

    Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.

  11. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  12. Theoretical relationship between vibration transmissibility and driving-point response functions of the human body.

    PubMed

    Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W; Wu, John Z

    2013-11-25

    The relationship between the vibration transmissibility and driving-point response functions (DPRFs) of the human body is important for understanding vibration exposures of the system and for developing valid models. This study identified their theoretical relationship and demonstrated that the sum of the DPRFs can be expressed as a linear combination of the transmissibility functions of the individual mass elements distributed throughout the system. The relationship is verified using several human vibration models. This study also clarified the requirements for reliably quantifying transmissibility values used as references for calibrating the system models. As an example application, this study used the developed theory to perform a preliminary analysis of the method for calibrating models using both vibration transmissibility and DPRFs. The results of the analysis show that the combined method can theoretically result in a unique and valid solution of the model parameters, at least for linear systems. However, the validation of the method itself does not guarantee the validation of the calibrated model, because the validation of the calibration also depends on the model structure and the reliability and appropriate representation of the reference functions. The basic theory developed in this study is also applicable to the vibration analyses of other structures.

  13. Generation of the neutron response function of an NE213 scintillator for fusion applications

    NASA Astrophysics Data System (ADS)

    Binda, F.; Eriksson, J.; Ericsson, G.; Hellesen, C.; Conroy, S.; Nocente, M.; Sundén, E. Andersson; JET Contributors

    2017-09-01

    In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gamma-rays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results.

  14. Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development

    NASA Astrophysics Data System (ADS)

    Aspinall, Michael D.; Jones, Ashley R.

    2018-01-01

    Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.

  15. CW (Continuous Wave) Measurement System. Operating Manual

    DTIC Science & Technology

    1982-08-02

    A probe calibration program for probes with analyti- cal transfer functions . Such probes include the EG&G MGL series of B-dot field sensors. Non ...response to the SIGNAL PROBE> prompt in the primary menu which appears during calibration of a non -analytic probe (see Section 5-3.2 for more...OPERATION AND CALIBRATION .......... 107 4-2.1 Operation in the Primary Configu- ration .............................. 107 4-2.2 Operation in the Secondary

  16. Methodology for the development and calibration of the SCI-QOL item banks

    PubMed Central

    Tulsky, David S.; Kisala, Pamela A.; Victorson, David; Choi, Seung W.; Gershon, Richard; Heinemann, Allen W.; Cella, David

    2015-01-01

    Objective To develop a comprehensive, psychometrically sound, and conceptually grounded patient reported outcomes (PRO) measurement system for individuals with spinal cord injury (SCI). Methods Individual interviews (n = 44) and focus groups (n = 65 individuals with SCI and n = 42 SCI clinicians) were used to select key domains for inclusion and to develop PRO items. Verbatim items from other cutting-edge measurement systems (i.e. PROMIS, Neuro-QOL) were included to facilitate linkage and cross-population comparison. Items were field tested in a large sample of individuals with traumatic SCI (n = 877). Dimensionality was assessed with confirmatory factor analysis. Local item dependence and differential item functioning were assessed, and items were calibrated using the item response theory (IRT) graded response model. Finally, computer adaptive tests (CATs) and short forms were administered in a new sample (n = 245) to assess test-retest reliability and stability. Participants and Procedures A calibration sample of 877 individuals with traumatic SCI across five SCI Model Systems sites and one Department of Veterans Affairs medical center completed SCI-QOL items in interview format. Results We developed 14 unidimensional calibrated item banks and 3 calibrated scales across physical, emotional, and social health domains. When combined with the five Spinal Cord Injury – Functional Index physical function banks, the final SCI-QOL system consists of 22 IRT-calibrated item banks/scales. Item banks may be administered as CATs or short forms. Scales may be administered in a fixed-length format only. Conclusions The SCI-QOL measurement system provides SCI researchers and clinicians with a comprehensive, relevant and psychometrically robust system for measurement of physical-medical, physical-functional, emotional, and social outcomes. All SCI-QOL instruments are freely available on Assessment CenterSM. PMID:26010963

  17. Methodology for the development and calibration of the SCI-QOL item banks.

    PubMed

    Tulsky, David S; Kisala, Pamela A; Victorson, David; Choi, Seung W; Gershon, Richard; Heinemann, Allen W; Cella, David

    2015-05-01

    To develop a comprehensive, psychometrically sound, and conceptually grounded patient reported outcomes (PRO) measurement system for individuals with spinal cord injury (SCI). Individual interviews (n=44) and focus groups (n=65 individuals with SCI and n=42 SCI clinicians) were used to select key domains for inclusion and to develop PRO items. Verbatim items from other cutting-edge measurement systems (i.e. PROMIS, Neuro-QOL) were included to facilitate linkage and cross-population comparison. Items were field tested in a large sample of individuals with traumatic SCI (n=877). Dimensionality was assessed with confirmatory factor analysis. Local item dependence and differential item functioning were assessed, and items were calibrated using the item response theory (IRT) graded response model. Finally, computer adaptive tests (CATs) and short forms were administered in a new sample (n=245) to assess test-retest reliability and stability. A calibration sample of 877 individuals with traumatic SCI across five SCI Model Systems sites and one Department of Veterans Affairs medical center completed SCI-QOL items in interview format. We developed 14 unidimensional calibrated item banks and 3 calibrated scales across physical, emotional, and social health domains. When combined with the five Spinal Cord Injury--Functional Index physical function banks, the final SCI-QOL system consists of 22 IRT-calibrated item banks/scales. Item banks may be administered as CATs or short forms. Scales may be administered in a fixed-length format only. The SCI-QOL measurement system provides SCI researchers and clinicians with a comprehensive, relevant and psychometrically robust system for measurement of physical-medical, physical-functional, emotional, and social outcomes. All SCI-QOL instruments are freely available on Assessment CenterSM.

  18. Error-in-variables models in calibration

    NASA Astrophysics Data System (ADS)

    Lira, I.; Grientschnig, D.

    2017-12-01

    In many calibration operations, the stimuli applied to the measuring system or instrument under test are derived from measurement standards whose values may be considered to be perfectly known. In that case, it is assumed that calibration uncertainty arises solely from inexact measurement of the responses, from imperfect control of the calibration process and from the possible inaccuracy of the calibration model. However, the premise that the stimuli are completely known is never strictly fulfilled and in some instances it may be grossly inadequate. Then, error-in-variables (EIV) regression models have to be employed. In metrology, these models have been approached mostly from the frequentist perspective. In contrast, not much guidance is available on their Bayesian analysis. In this paper, we first present a brief summary of the conventional statistical techniques that have been developed to deal with EIV models in calibration. We then proceed to discuss the alternative Bayesian framework under some simplifying assumptions. Through a detailed example about the calibration of an instrument for measuring flow rates, we provide advice on how the user of the calibration function should employ the latter framework for inferring the stimulus acting on the calibrated device when, in use, a certain response is measured.

  19. The on-orbit calibration of the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-09-06

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here in this work, we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be describedmore » in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. Lastly, these results have been used to calibrate the LAT datasets to be publicly released in August 2009.« less

  20. Calibration of erythemally weighted broadband instruments: A comparison between PMOD/WRC and MSL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Neil; Nield, Kathryn; Hamlin, John

    A Yankee Environmental Systems (YES) UVB-1 ultraviolet pyranometer, designed to measure erythemally weighted total solar irradiance, was calibrated by the Measurement Standards Laboratory (MSL) in Lower Hutt, New Zealand during August 2010. The calibration was then repeated during July and August 2011 by the Physikalisch-Meteorologisches Obervatorium Davos, World Radiation Center (PMOD/WRC) located in Davos, Switzerland. Calibration results show that measurements of the relative spectral and angular response functions at the two institutes are in excellent agreement, thus providing a good degree of confidence in these measurement facilities. However, measurements to convert the relative spectral response into an absolute calibration disagreemore » significantly depending on whether an FEL lamp or solar spectra are used to perform this scaling. This is the first serious comparison of these scaling methods to formally explore the potential systematic errors which could explain the discrepancy.« less

  1. Shortwave Radiometer Calibration Methods Comparison and Resulting Solar Irradiance Measurement Differences: A User Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin

    Banks financing solar energy projects require assurance that these systems will produce the energy predicted. Furthermore, utility planners and grid system operators need to understand the impact of the variable solar resource on solar energy conversion system performance. Accurate solar radiation data sets reduce the expense associated with mitigating performance risk and assist in understanding the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of different calibration methods provided by radiometric calibrationmore » service providers, such as NREL and manufacturers of radiometers, on the resulting calibration responsivity. Some of these radiometers are calibrated indoors and some outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The BORCAL method provides the outdoor calibration responsivity of pyranometers and pyrheliometers at 45 degree solar zenith angle, and as a function of solar zenith angle determined by clear-sky comparisons with reference irradiance. The BORCAL method also employs a thermal offset correction to the calibration responsivity of single-black thermopile detectors used in pyranometers. Indoor calibrations of radiometers by their manufacturers are performed using a stable artificial light source in a side-by-side comparison between the test radiometer under calibration and a reference radiometer of the same type. In both methods, the reference radiometer calibrations are traceable to the World Radiometric Reference (WRR). These different methods of calibration demonstrated +1% to +2% differences in solar irradiance measurement. Analyzing these differences will ultimately help determine the uncertainty of the field radiometer data and guide the development of a consensus standard for calibration. Further advancing procedures for precisely calibrating radiometers to world reference standards that reduce measurement uncertainty will allow more accurate prediction of solar output and improve the bankability of solar projects.« less

  2. Dynamic calibration approach for determining catechins and gallic acid in green tea using LC-ESI/MS.

    PubMed

    Bedner, Mary; Duewer, David L

    2011-08-15

    Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.

  3. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations

    PubMed Central

    Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.

    2016-01-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354

  4. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.

    PubMed

    Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B

    2016-04-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  6. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  7. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.

    2016-05-15

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less

  8. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  9. Calibrating Item Families and Summarizing the Results Using Family Expected Response Functions

    ERIC Educational Resources Information Center

    Sinharay, Sandip; Johnson, Matthew S.; Williamson, David M.

    2003-01-01

    Item families, which are groups of related items, are becoming increasingly popular in complex educational assessments. For example, in automatic item generation (AIG) systems, a test may consist of multiple items generated from each of a number of item models. Item calibration or scoring for such an assessment requires fitting models that can…

  10. Empirical transfer functions for stations in the Central California seismological network

    USGS Publications Warehouse

    Bakun, W.H.; Dratler, Jay

    1976-01-01

    A sequence of calibration signals composed of a station identification code, a transient from the release of the seismometer mass at rest from a known displacement from the equilibrium position, and a transient from a known step in voltage to the amplifier input are generated by the automatic daily calibration system (ADCS) now operational in the U.S. Geological Survey central California seismographic network. Documentation of a sequence of interactive programs to compute, from the calibration data, the complex transfer functions for the seismographic system (ground motion through digitizer) the electronics (amplifier through digitizer), and the seismometer alone are presented. The analysis utilizes the Fourier transform technique originally suggested by Espinosa et al (1962). Section I is a general description of seismographic calibration. Section II contrasts the 'Fourier transform' and the 'least-squares' techniques for analyzing transient calibration signals. Theoretical consideration for the Fourier transform technique used here are described in Section III. Section IV is a detailed description of the sequence of calibration signals generated by the ADCS. Section V is a brief 'cookbook description' of the calibration programs; Section VI contains a detailed sample program execution. Section VII suggests the uses of the resultant empirical transfer functions. Supplemental interactive programs by which smooth response functions, suitable for reducing seismic data to ground motion, are also documented in Section VII. Appendices A and B contain complete listings of the Fortran source Codes while Appendix C is an update containing preliminary results obtained from an analysis of some of the calibration signals from stations in the seismographic network near Oroville, California.

  11. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earths surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  12. Response Versus Scan-Angle Corrections for MODIS Reflective Solar Bands Using Deep Convective Clouds

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-01-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the performance of the SD over time, provides the absolute reference for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the zero input radiance, respectively. The MODIS instrument views the Earth's surface through a two-sided scan mirror, whose reflectance is a function of angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different assigned RVS positions. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two RVS positions. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for selected short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent in the left side Earth-view scans.

  13. Response versus scan-angle corrections for MODIS reflective solar bands using deep convective clouds

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajendra; Angal, Amit; Doelling, David R.; Xiong, Xiaoxiong; Wu, Aisheng; Haney, Conor O.; Scarino, Benjamin R.; Gopalan, Arun

    2016-05-01

    The absolute radiometric calibration of the reflective solar bands (RSBs) of Aqua- and Terra-MODIS is performed using on-board calibrators. A solar diffuser (SD) panel along with a solar diffuser stability monitor (SDSM) system, which tracks the degradation of the SD over time, provides the baseline for calibrating the MODIS sensors. MODIS also views the moon and deep space through its space view (SV) port for lunar-based calibration and computing the background, respectively. The MODIS instrument views the Earth's surface using a two-sided scan mirror, whose reflectance is a function of the angle of incidence (AOI) and is described by response versus scan-angle (RVS). The RVS for both MODIS instruments was characterized prior to launch. MODIS also views the SD and the moon at two different AOIs. There is sufficient evidence that the RVS is changing on orbit over time and as a function of wavelength. The SD and lunar observation scans can only track the RVS variation at two AOIs. Consequently, the MODIS Characterization Support Team (MCST) developed enhanced approaches that supplement the onboard calibrator measurements with responses from the pseudo-invariant desert sites. This approach has been implemented in Level 1B (L1B) Collection 6 (C6) for select short-wavelength bands. This paper presents an alternative approach of characterizing the mirror RVS to derive the time-dependent RVS correction factors for MODIS RSBs using tropical deep convective cloud (DCC) targets. An initial assessment of the DCC response from Aqua-MODIS band 1 C6 data indicates evidence of RVS artifacts, which are not uniform across the scans and are more prevalent at the beginning of the earth-view scan.

  14. Finite Element Model Calibration Approach for Area I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  15. Finite Element Model Calibration Approach for Ares I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  16. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    NASA Astrophysics Data System (ADS)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-02-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  17. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    NASA Astrophysics Data System (ADS)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-06-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  18. A Comparison of Linking and Concurrent Calibration under the Graded Response Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho; Cohen, Allan S.

    Applications of item response theory to practical testing problems including equating, differential item functioning, and computerized adaptive testing, require that item parameter estimates be placed onto a common metric. In this study, two methods for developing a common metric for the graded response model under item response theory were…

  19. Absolute Calibration of the AXAF Telescope Effective Area

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Cohen, L.; Edgar, R.; Evans, I.; Freeman, M.; Gaetz, T.; Jerius, D.; McDermott, W. C.; McKinnon, P.; Murray, S.; hide

    1997-01-01

    The prelaunch calibration of AXAF encompasses many aspects of the telescope. In principle, all that is needed is the complete point response function. This is, however, a function of energy, off-axis angle of the source, and operating mode of the facility. No single measurement would yield the entire result. Also, any calibration made prior to launch will be affected by changes in conditions after launch, such as the change from one g to zero g. The reflectivity of the mirror and perhaps even the detectors can change as well, for example by addition or removal of small amounts of material deposited on their surfaces. In this paper, we give a broad view of the issues in performing such a calibration, and discuss how they are being addressed in prelaunch preparation of AXAF. As our title indicates, we concentrate here on the total throughput of the observatory. This can be thought of as the integral of the point response function, i.e. the encircled energy, out ot the largest practical solid angle for an observation. Since there is no standard x-ray source in the sky whose flux is known to the -1% accuracy we are trying to achieve, we must do this calibration on the ground. we also must provide a means for monitoring any possible changes in this calibration from pre-launch until on-orbit operation can transfer the calibration to a celestial x-ray source whose emission is stable. In this paper, we analyze the elements of the absolute throughput calibration, which we call Effective Area. We review the requirements for calibrations of components or subsystems of the AXAF facility, including mirror, detectors, and gratings. We show how it is necessary to calibrate this ground-based detection system at standard man-made x-ray sources, such as electron storage rings. We present the status of all these calibrations, with indications of the measurements remaining to be done, even though the measurements on the AXAF flight optics and detectors will have been completed by the time this paper is presented. We evaluate progress toward the goal of making 1% measurements of the absolute x-ray flux from astrophysical sources, so that comparisons can be made with their emission at other wavelengths, in support of observations such as the Sunyaev-Zeldovitch effect, which can give absolute distance measurements independent of the traditional distance measuring techniques in astronomy.

  20. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  1. Calibrated fMRI in the Medial Temporal Lobe During a Memory Encoding Task

    PubMed Central

    Restom, Khaled; Perthen, Joanna E.; Liu, Thomas T.

    2008-01-01

    Prior measures of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses to a memory encoding task within the medial temporal lobe have suggested that the coupling between functional changes in CBF and changes in the cerebral metabolic rate of oxgyen (CMRO2) may be tighter in the medial temporal lobe as compared to the primary sensory areas. In this study, we used a calibrated functional magnetic resonance imaging (fMRI) approach to directly estimate memory-encoding-related changes in CMRO2 and to assess the coupling between CBF and CMRO2 in the medial temporal lobe. The CBF-CMRO2 coupling ratio was estimated using a linear fit to the flow and metabolism changes observed across subjects. In addition, we examined the effect of region-of-interest (ROI) selection on the estimates. In response to the memory encoding task, CMRO2 increased by 23.1% ± 8.8 to 25.3% ± 5.7 (depending upon ROI), with an estimated CBF-CMRO2 coupling ratio of 1.66 ± 0.07 to 1.75± 0.16. There was not a significant effect of ROI selection on either the CMRO2 or coupling ratio estimates. The observed coupling ratios were significantly lower than the values (2 to 4.5) that have been reported in previous calibrated fMRI studies of the visual and motor cortices. In addition, the estimated coupling ratio was found to be less sensitive to the calibration procedure for functional responses in the medial temporal lobe as compared to the primary sensory areas. PMID:18329291

  2. Cross-Calibration of Ground and Airborne TIR and VSWIR Instruments for NASA's SnowEx 2017 Grand Mesa Campaign

    NASA Astrophysics Data System (ADS)

    Crawford, C. J.; Chickadel, C. C.; Hall, D. K.; Jennings, D. E.; Jhabvala, M. D.; Kim, E. J.; Jessica, L.; Lunsford, A.

    2017-12-01

    The NASA Terrestrial Hydrology Program sponsored a ground and airborne snow experiment (SnowEx) to the Grand Mesa area and Senator Beck Basin in western Colorado during February 2017. This communication summarizes efforts to develop traceable instrument calibration requirements for SnowEx Grand Mesa in support of thermal infrared (TIR) and visible-to-shortwave infrared (VSWIR) snow measurement science. Cross-calibration outcomes for TIR instruments (7-10 µm and 8-14 µm response functions) indicate that an at-sensor measurement accuracy of within 1.5 degrees Celsius was achieved across ground and airborne sensors using laboratory and field blackbody sources. A cross-calibration assessment of VSWIR spectrometers (0.35 to 2.5 µm response functions) using a National Institutes of Standard Technology (NIST) traceable source indicates an at-sensor measurement accuracy of within 5% for visible-near infrared spectral radiance (W/cm-2/sr-1/nm) and irradiance (W/m-2/nm), and within 20% for shortwave infrared measurements before a radiometric cross-calibration correction was applied. Additional validation is undertaken to assess the ground and airborne SnowEx Grand Mesa TIR and VSWIR instrument cross-calibration quality by benchmarking against on-orbit image acquisitions of the snow surface on February 14th and 15th, 2017 from Landsat Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Sentinel-2A Multi-Spectral Instrument (MSI).

  3. Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; DeLoach, Richard

    2005-01-01

    A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings.

  4. On-orbit characterizations of Earth Radiation Budget Experiment broadband shortwave active cavity radiometer sensor responses

    NASA Astrophysics Data System (ADS)

    Lee, Robert B., III; Wilson, Robert S.; Smith, G. Louis; Bush, Kathryn A.; Thomas, Susan; Pandey, Dhirendra K.; Paden, Jack

    2004-12-01

    The NASA Earth Radiation Budget Experiment (ERBE) missions were designed to monitor long-term changes in the earth radiation budget components which may cause climate changes. During the October 1984 through September 2004 period, the NASA Earth Radiation Budget Satellite (ERBS)/ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). The earth-reflected total solar irradiances were measured using broadband shortwave fused, waterless quartz (Suprasil) filters and ACR"s that were covered with a black paint absorbing surface. Using on-board calibration systems, 1984 through 1999, long-term ERBS/ERBE ACR sensor response changes were determined from direct observations of the incoming TSI in the 0.2-5 micrometer shortwave broadband spectral region. During the October 1984 through September 1999 period, the ERBS shortwave sensor responses were found to decrease as much as 8.8% when the quartz filter transmittances decreased due to direct exposure to TSI. On October 6, 1999, the on-board ERBS calibration systems failed. To estimate the 1999-2004, ERBS sensor response changes, the 1984-1997 NOAA-9, and 1986-1995 NOAA-10 Spacecraft ERBE ACR responses were used to characterize response changes as a function of exposure time. The NOAA-9 and NOAA-10 ACR responses decreased as much as 10% due to higher integrated TSI exposure times. In this paper, for each of the ERBS, NOAA-9, and NOAA-10 Spacecraft platforms, the solar calibrations of the ERBE sensor responses are described as well as the derived ERBE sensor response changes as a function of TSI exposure time. For the 1984-2003 ERBS data sets, it is estimated that the calibrated ERBE earth-reflected TSI measurements have precisions approaching 0.2 Watts-per-squared-meter at satellite altitudes.

  5. Calibration of Herschel SPIRE FTS observations at different spectral resolutions

    NASA Astrophysics Data System (ADS)

    Marchili, N.; Hopwood, R.; Fulton, T.; Polehampton, E. T.; Valtchanov, I.; Zaretski, J.; Naylor, D. A.; Griffin, M. J.; Imhof, P.; Lim, T.; Lu, N.; Makiwa, G.; Pearson, C.; Spencer, L.

    2017-01-01

    The SPIRE Fourier Transform Spectrometer on-board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A comparison of the HR and LR resolution spectra taken in this sequential mode revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing demonstrates that the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions using housekeeping data from the instrument subsystems, the calibration cannot be corrected analytically. Therefore, an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions.

  6. Theoretical foundation, methods, and criteria for calibrating human vibration models using frequency response functions

    PubMed Central

    Dong, Ren G.; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    While simulations of the measured biodynamic responses of the whole human body or body segments to vibration are conventionally interpreted as summaries of biodynamic measurements, and the resulting models are considered quantitative, this study looked at these simulations from a different angle: model calibration. The specific aims of this study are to review and clarify the theoretical basis for model calibration, to help formulate the criteria for calibration validation, and to help appropriately select and apply calibration methods. In addition to established vibration theory, a novel theorem of mechanical vibration is also used to enhance the understanding of the mathematical and physical principles of the calibration. Based on this enhanced understanding, a set of criteria was proposed and used to systematically examine the calibration methods. Besides theoretical analyses, a numerical testing method is also used in the examination. This study identified the basic requirements for each calibration method to obtain a unique calibration solution. This study also confirmed that the solution becomes more robust if more than sufficient calibration references are provided. Practically, however, as more references are used, more inconsistencies can arise among the measured data for representing the biodynamic properties. To help account for the relative reliabilities of the references, a baseline weighting scheme is proposed. The analyses suggest that the best choice of calibration method depends on the modeling purpose, the model structure, and the availability and reliability of representative reference data. PMID:26740726

  7. Calibrating page sized Gafchromic EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, W.; Maes, F.; Heide, U. A. van der

    2013-01-15

    Purpose: The purpose is the development of a novel calibration method for dosimetry with Gafchromic EBT3 films. The method should be applicable for pretreatment verification of volumetric modulated arc, and intensity modulated radiotherapy. Because the exposed area on film can be large for such treatments, lateral scan errors must be taken into account. The correction for the lateral scan effect is obtained from the calibration data itself. Methods: In this work, the film measurements were modeled using their relative scan values (Transmittance, T). Inside the transmittance domain a linear combination and a parabolic lateral scan correction described the observed transmittancemore » values. The linear combination model, combined a monomer transmittance state (T{sub 0}) and a polymer transmittance state (T{sub {infinity}}) of the film. The dose domain was associated with the observed effects in the transmittance domain through a rational calibration function. On the calibration film only simple static fields were applied and page sized films were used for calibration and measurements (treatment verification). Four different calibration setups were considered and compared with respect to dose estimation accuracy. The first (I) used a calibration table from 32 regions of interest (ROIs) spread on 4 calibration films, the second (II) used 16 ROIs spread on 2 calibration films, the third (III), and fourth (IV) used 8 ROIs spread on a single calibration film. The calibration tables of the setups I, II, and IV contained eight dose levels delivered to different positions on the films, while for setup III only four dose levels were applied. Validation was performed by irradiating film strips with known doses at two different time points over the course of a week. Accuracy of the dose response and the lateral effect correction was estimated using the dose difference and the root mean squared error (RMSE), respectively. Results: A calibration based on two films was the optimal balance between cost effectiveness and dosimetric accuracy. The validation resulted in dose errors of 1%-2% for the two different time points, with a maximal absolute dose error around 0.05 Gy. The lateral correction reduced the RMSE values on the sides of the film to the RMSE values at the center of the film. Conclusions: EBT3 Gafchromic films were calibrated for large field dosimetry with a limited number of page sized films and simple static calibration fields. The transmittance was modeled as a linear combination of two transmittance states, and associated with dose using a rational calibration function. Additionally, the lateral scan effect was resolved in the calibration function itself. This allows the use of page sized films. Only two calibration films were required to estimate both the dose and the lateral response. The calibration films were used over the course of a week, with residual dose errors Less-Than-Or-Slanted-Equal-To 2% or Less-Than-Or-Slanted-Equal-To 0.05 Gy.« less

  8. Does Your Optical Particle Counter Measure What You Think it Does? Calibration and Refractive Index Correction Methods.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Phil; Dean, Angela; Williams, Paul; Dorsey, James; Minikin, Andreas; Pickering, Martyn; Petzold, Andreas

    2013-04-01

    Optical Particle Counters (OPCs) are the de-facto standard for in-situ measurements of airborne aerosol size distributions and small cloud particles over a wide size range. This is particularly the case on airborne platforms where fast response is important. OPCs measure scattered light from individual particles and generally bin particles according to the measured peak amount of light scattered (the OPC's response). Most manufacturers provide a table along with their instrument which indicates the particle diameters which represent the edges of each bin. It is important to correct the particle size reported by OPCs for the refractive index of the particles being measured, which is often not the same as for those used during calibration. However, the OPC's response is not a monotonic function of particle diameter and obvious problems occur when refractive index corrections are attempted, but multiple diameters correspond to the same OPC response. Here we recommend that OPCs are calibrated in terms of particle scattering cross section as this is a monotonic (usually linear) function of an OPC's response. We present a method for converting a bin's boundaries in terms of scattering cross section into a bin centre and bin width in terms of diameter for any aerosol species for which the scattering properties are known. The relationship between diameter and scattering cross section can be arbitrarily complex and does not need to be monotonic; it can be based on Mie-Lorenz theory or any other scattering theory. Software has been provided on the Sourceforge open source repository for scientific users to implement such methods in their own measurement and calibration routines. As a case study data is presented showing data from Passive Cavity Aerosol Spectrometer Probe (PCASP) and a Cloud Droplet Probe (CDP) calibrated using polystyrene latex spheres and glass beads before being deployed as part of the Fennec project to measure airborne dust in the inaccessible regions of the Sahara.

  9. Radiometric analysis of photographic data by the effective exposure method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantine, B J

    1972-04-01

    The effective exposure method provides for radiometric analysis of photographic data. A three-dimensional model, where density is a function of energy and wavelength, is postulated to represent the film response function. Calibration exposures serve to eliminate the other factors which affect image density. The effective exposure causing an image can be determined by comparing the image density with that of a calibration exposure. If the relative spectral distribution of the source is known, irradiance and/or radiance can be unfolded from the effective exposure expression.

  10. Quantifying uncertainties in streamflow predictions through signature based inference of hydrological model parameters

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Reichert, Peter; Kavetski, Dmitri; Albert, Calro

    2016-04-01

    The calibration of hydrological models based on signatures (e.g. Flow Duration Curves - FDCs) is often advocated as an alternative to model calibration based on the full time series of system responses (e.g. hydrographs). Signature based calibration is motivated by various arguments. From a conceptual perspective, calibration on signatures is a way to filter out errors that are difficult to represent when calibrating on the full time series. Such errors may for example occur when observed and simulated hydrographs are shifted, either on the "time" axis (i.e. left or right), or on the "streamflow" axis (i.e. above or below). These shifts may be due to errors in the precipitation input (time or amount), and if not properly accounted in the likelihood function, may cause biased parameter estimates (e.g. estimated model parameters that do not reproduce the recession characteristics of a hydrograph). From a practical perspective, signature based calibration is seen as a possible solution for making predictions in ungauged basins. Where streamflow data are not available, it may in fact be possible to reliably estimate streamflow signatures. Previous research has for example shown how FDCs can be reliably estimated at ungauged locations based on climatic and physiographic influence factors. Typically, the goal of signature based calibration is not the prediction of the signatures themselves, but the prediction of the system responses. Ideally, the prediction of system responses should be accompanied by a reliable quantification of the associated uncertainties. Previous approaches for signature based calibration, however, do not allow reliable estimates of streamflow predictive distributions. Here, we illustrate how the Bayesian approach can be employed to obtain reliable streamflow predictive distributions based on signatures. A case study is presented, where a hydrological model is calibrated on FDCs and additional signatures. We propose an approach where the likelihood function for the signatures is derived from the likelihood for streamflow (rather than using an "ad-hoc" likelihood for the signatures as done in previous approaches). This likelihood is not easily tractable analytically and we therefore cannot apply "simple" MCMC methods. This numerical problem is solved using Approximate Bayesian Computation (ABC). Our result indicate that the proposed approach is suitable for producing reliable streamflow predictive distributions based on calibration to signature data. Moreover, our results provide indications on which signatures are more appropriate to represent the information content of the hydrograph.

  11. Asteroids as Calibration Standards in the Thermal Infrared -- Applications and Results from ISO

    NASA Astrophysics Data System (ADS)

    Müller, T. G.; Lagerros, J. S. V.

    Asteroids have been used extensively as calibration sources for ISO. We summarise the asteroid observational parameters in the thermal infrared and explain the important modelling aspects. Ten selected asteroids were extensively used for the absolute photometric calibration of ISOPHOT in the far-IR. Additionally, the point-like and bright asteroids turned out to be of great interest for many technical tests and calibration aspects. They have been used for testing the calibration for SWS and LWS, the validation of relative spectral response functions of different bands, for colour correction and filter leak tests. Currently, there is a strong emphasis on ISO cross-calibration, where the asteroids contribute in many fields. Well known asteroids have also been seen serendipitously in the CAM Parallel Mode and the PHT Serendipity Mode, allowing for validation and improvement of the photometric calibration of these special observing modes.

  12. An efficient multistage algorithm for full calibration of the hemodynamic model from BOLD signal responses.

    PubMed

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2017-11-01

    We propose a computational strategy that falls into the category of prediction/correction iterative-type approaches, for calibrating the hemodynamic model. The proposed method is used to estimate consecutively the values of the two sets of model parameters. Numerical results corresponding to both synthetic and real functional magnetic resonance imaging measurements for a single stimulus as well as for multiple stimuli are reported to highlight the capability of this computational methodology to fully calibrate the considered hemodynamic model. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas

    2018-07-01

    This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.

  14. The Characterization of Deep Convective Clouds as an Invariant Calibration Target and as a Visible Calibration Technique

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Morstad, Daniel; Scarino, Benjamin R.; Bhatt, Rajendra; Gopalan, Arun

    2012-01-01

    Deep convective clouds (DCCs) are ideal visible calibration targets because they are bright nearly isotropic solar reflectors located over the tropics and they can be easily identified using a simple infrared threshold. Because all satellites view DCCs, DCCs provide the opportunity to uniformly monitor the stability of all operational sensors, both historical and present. A collective DCC anisotropically corrected radiance calibration approach is used to construct monthly probability distribution functions (PDFs) to monitor sensor stability. The DCC calibration targets were stable to within 0.5% and 0.3% per decade when the selection criteria were optimized based on Aqua MODerate Resolution Imaging Spectroradiometer 0.65-micrometer-band radiances. The Tropical Western Pacific (TWP), African, and South American regions were identified as the dominant DCC domains. For the 0.65-micrometer band, the PDF mode statistic is preferable, providing 0.3%regional consistency and 1%temporal uncertainty over land regions. It was found that the DCC within the TWP had the lowest radiometric response and DCC over land did not necessarily have the highest radiometric response. For wavelengths greater than 1 micrometer, the mean statistic is preferred, and land regions provided a regional variability of 0.7%with a temporal uncertainty of 1.1% where the DCC land response was higher than the response over ocean. Unlike stratus and cirrus clouds, the DCC spectra were not affected by water vapor absorption.

  15. The calibration methods for Multi-Filter Rotating Shadowband Radiometer: a review

    NASA Astrophysics Data System (ADS)

    Chen, Maosi; Davis, John; Tang, Hongzhao; Ownby, Carolyn; Gao, Wei

    2013-09-01

    The continuous, over two-decade data record from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) is ideal for climate research which requires timely and accurate information of important atmospheric components such as gases, aerosols, and clouds. Except for parameters derived from MFRSR measurement ratios, which are not impacted by calibration error, most applications require accurate calibration factor(s), angular correction, and spectral response function(s) from calibration. Although a laboratory lamp (or reference) calibration can provide all the information needed to convert the instrument readings to actual radiation, in situ calibration methods are implemented routinely (daily) to fill the gaps between lamp calibrations. In this paper, the basic structure and the data collection and pretreatment of the MFRSR are described. The laboratory lamp calibration and its limitations are summarized. The cloud screening algorithms for MFRSR data are presented. The in situ calibration methods, the standard Langley method and its variants, the ratio-Langley method, the general method, Alexandrov's comprehensive method, and Chen's multi-channel method, are outlined. The reason that all these methods do not fit for all situations is that they assume some properties, such as aerosol optical depth (AOD), total optical depth (TOD), precipitable water vapor (PWV), effective size of aerosol particles, or angstrom coefficient, are invariant over time. These properties are not universal and some of them rarely happen. In practice, daily calibration factors derived from these methods should be smoothed to restrain error.

  16. Calibrated FMRI.

    PubMed

    Hoge, Richard D

    2012-08-15

    Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Stormwater quality modelling in combined sewers: calibration and uncertainty analysis.

    PubMed

    Kanso, A; Chebbo, G; Tassin, B

    2005-01-01

    Estimating the level of uncertainty in urban stormwater quality models is vital for their utilization. This paper presents the results of application of a Monte Carlo Markov Chain method based on the Bayesian theory for the calibration and uncertainty analysis of a storm water quality model commonly used in available software. The tested model uses a hydrologic/hydrodynamic scheme to estimate the accumulation, the erosion and the transport of pollutants on surfaces and in sewers. It was calibrated for four different initial conditions of in-sewer deposits. Calibration results showed large variability in the model's responses in function of the initial conditions. They demonstrated that the model's predictive capacity is very low.

  18. Calibration of X-Ray diffractometer by the experimental comparison method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudka, A. P., E-mail: dudka@ns.crys.ras.ru

    2015-07-15

    A software for calibrating an X-ray diffractometer with area detector has been developed. It is proposed to search for detector and goniometer calibration models whose parameters are reproduced in a series of measurements on a reference crystal. Reference (standard) crystals are prepared during the investigation; they should provide the agreement of structural models in repeated analyses. The technique developed has been used to calibrate Xcalibur Sapphire and Eos, Gemini Ruby (Agilent) and Apex x8 and Apex Duo (Bruker) diffractometers. The main conclusions are as follows: the calibration maps are stable for several years and can be used to improve structuralmore » results, verified CCD detectors exhibit significant inhomogeneity of the efficiency (response) function, and a Bruker goniometer introduces smaller distortions than an Agilent goniometer.« less

  19. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  20. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography.

    PubMed

    Kim, Sangmin; Raphael, Patrick D; Oghalai, John S; Applegate, Brian E

    2016-04-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms.

  1. High-speed spectral calibration by complex FIR filter in phase-sensitive optical coherence tomography

    PubMed Central

    Kim, Sangmin; Raphael, Patrick D.; Oghalai, John S.; Applegate, Brian E.

    2016-01-01

    Swept-laser sources offer a number of advantages for Phase-sensitive Optical Coherence Tomography (PhOCT). However, inter- and intra-sweep variability leads to calibration errors that adversely affect phase sensitivity. While there are several approaches to overcoming this problem, our preferred method is to simply calibrate every sweep of the laser. This approach offers high accuracy and phase stability at the expense of a substantial processing burden. In this approach, the Hilbert phase of the interferogram from a reference interferometer provides the instantaneous wavenumber of the laser, but is computationally expensive. Fortunately, the Hilbert transform may be approximated by a Finite Impulse-Response (FIR) filter. Here we explore the use of several FIR filter based Hilbert transforms for calibration, explicitly considering the impact of filter choice on phase sensitivity and OCT image quality. Our results indicate that the complex FIR filter approach is the most robust and accurate among those considered. It provides similar image quality and slightly better phase sensitivity than the traditional FFT-IFFT based Hilbert transform while consuming fewer resources in an FPGA implementation. We also explored utilizing the Hilbert magnitude of the reference interferogram to calculate an ideal window function for spectral amplitude calibration. The ideal window function is designed to carefully control sidelobes on the axial point spread function. We found that after a simple chromatic correction, calculating the window function using the complex FIR filter and the reference interferometer gave similar results to window functions calculated using a mirror sample and the FFT-IFFT Hilbert transform. Hence, the complex FIR filter can enable accurate and high-speed calibration of the magnitude and phase of spectral interferograms. PMID:27446666

  2. SeaWiFS technical report series. Volume 23: SeaWiFS prelaunch radiometric calibration and spectral characterization

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Holmes, Alan W.; Barnes, William L.; Esaias, Wayne E.; Mcclain, Charles R.; Svitek, Tomas; Hooker, Stanford B.; Firestone, Elaine R.; Acker, James G.

    1994-01-01

    Based on the operating characteristics of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), calibration equations have been developed that allow conversion of the counts from the radiometer into Earth-existing radiances. These radiances are the geophysical properties the instrument has been designed to measure. SeaWiFS uses bilinear gains to allow high sensitivity measurements of ocean-leaving radiances and low sensitivity measurements of radiances from clouds, which are much brighter than the ocean. The calculation of these bilinear gains is central to the calibration equations. Several other factors within these equations are also included. Among these are the spectral responses of the eight SeaWiFS bands. A band's spectral response includes the ability of the band to isolate a portion of the electromagnetic spectrum and the amount of light that lies outside of that region. The latter is termed out-of-band response. In the calibration procedure, some of the counts from the instrument are produced by radiance in the out-of-band region. The number of those counts for each band is a function of the spectral shape of the source. For the SeaWiFS calibration equations, the out-of-band responses are converted from those for the laboratory source into those for a source with the spectral shape of solar flux. The solar flux, unlike the laboratory calibration, approximates the spectral shape of the Earth-existing radiance from the oceans. This conversion modifies the results from the laboratory radiometric calibration by 1-4 percent, depending on the band. These and other factors in the SeaWiFS calibration equations are presented here, both for users of the SeaWiFS data set and for researchers making ground-based radiance measurements in support of Sea WiFS.

  3. A technique for verifying the input response function of neutron time-of-flight scintillation detectors using cosmic rays.

    PubMed

    Bonura, M A; Ruiz, C L; Fehl, D L; Cooper, G W; Chandler, G; Hahn, K D; Nelson, A J; Styron, J D; Torres, J A

    2014-11-01

    An accurate interpretation of DD or DT fusion neutron time-of-flight (nTOF) signals from current mode detectors employed at the Z-facility at Sandia National Laboratories requires that the instrument response functions (IRF's) be deconvolved from the measured nTOF signals. A calibration facility that produces detectable sub-ns radiation pulses is typically used to measure the IRF of such detectors. This work, however, reports on a simple method that utilizes cosmic radiation to measure the IRF of nTOF detectors, operated in pulse-counting mode. The characterizing metrics reported here are the throughput delay and full-width-at-half-maximum. This simple approach yields consistent IRF results with the same detectors calibrated in 2007 at a LINAC bremsstrahlung accelerator (Idaho State University). In particular, the IRF metrics from these two approaches and their dependence on the photomultipliers bias agree to within a few per cent. This information may thus be used to verify if the IRF for a given nTOF detector employed at Z has changed since its original current-mode calibration and warrants re-measurement.

  4. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE PAGES

    Gregor, M. C.; Boni, R.; Sorce, A.; ...

    2016-11-29

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  5. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregor, M. C.; Boni, R.; Sorce, A.

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  6. Estimation of k-ε parameters using surrogate models and jet-in-crossflow data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan

    2014-11-01

    We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of themore » calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal values of the turbulence model parameters, was parametric uncertainty, which was rectified by calibration. Post-calibration, the dominant contribution to model inaccuraries are due to the structural errors in RANS.« less

  7. Infrasound Sensor Calibration and Response

    DTIC Science & Technology

    2012-09-01

    infrasound calibration chamber. Under separate funding a number of upgrades were made to the chamber. These include a Geotech Smart24 digitizer and...of upgrades were made to the chamber. These include a Geotech Smart24 digitizer and workstation, an LVDT sensor for piston phone phase measurement, a...20 samples per second on a GeoTech Instruments DL 24 digitizer. Fifty cycles of data were fit with the Matlab function NLINFIT that gave the peak

  8. SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, S; Tomic, N; DeBlois, F

    2016-06-15

    Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less

  9. Digital Signal Processing Techniques for the GIFTS SM EDU

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Reisse, Robert A.; Gazarik, Michael J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes several digital signal processing (DSP) techniques involved in the development of the calibration model. In the first stage, the measured raw interferograms must undergo a series of processing steps that include filtering, decimation, and detector nonlinearity correction. The digital filtering is achieved by employing a linear-phase even-length FIR complex filter that is designed based on the optimum equiripple criteria. Next, the detector nonlinearity effect is compensated for using a set of pre-determined detector response characteristics. In the next stage, a phase correction algorithm is applied to the decimated interferograms. This is accomplished by first estimating the phase function from the spectral phase response of the windowed interferogram, and then correcting the entire interferogram based on the estimated phase function. In the calibration stage, we first compute the spectral responsivity based on the previous results and the ideal Planck blackbody spectra at the given temperatures, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. In the post-calibration stage, we estimate the Noise Equivalent Spectral Radiance (NESR) from the calibrated ABB and HBB spectra. The NESR is generally considered as a measure of the instrument noise performance, and can be estimated as the standard deviation of calibrated radiance spectra from multiple scans. To obtain an estimate of the FPA performance, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is developed based on the pixel performance evaluation. This would allow us to perform the calibration procedures on a random pixel population that is a good statistical representation of the entire FPA. The design and implementation of each individual component will be discussed in details.

  10. Development of a calibration equipment for spectrometer qualification

    NASA Astrophysics Data System (ADS)

    Michel, C.; Borguet, B.; Boueé, A.; Blain, P.; Deep, A.; Moreau, V.; François, M.; Maresi, L.; Myszkowiak, A.; Taccola, M.; Versluys, J.; Stockman, Y.

    2017-09-01

    With the development of new spectrometer concepts, it is required to adapt the calibration facilities to characterize correctly their performances. These spectro-imaging performances are mainly Modulation Transfer Function, spectral response, resolution and registration; polarization, straylight and radiometric calibration. The challenge of this calibration development is to achieve better performance than the item under test using mostly standard items. Because only the subsystem spectrometer needs to be calibrated, the calibration facility needs to simulate the geometrical "behaviours" of the imaging system. A trade-off study indicates that no commercial devices are able to fulfil completely all the requirements so that it was necessary to opt for an in home telecentric achromatic design. The proposed concept is based on an Offner design. This allows mainly to use simple spherical mirrors and to cover the spectral range. The spectral range is covered with a monochromator. Because of the large number of parameters to record the calibration facility is fully automatized. The performances of the calibration system have been verified by analysis and experimentally. Results achieved recently on a free-form grating Offner spectrometer demonstrate the capacities of this new calibration facility. In this paper, a full calibration facility is described, developed specifically for a new free-form spectro-imager.

  11. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and another blackbody, the ABI on-board calibrator. Using the detector-level SRFs reduces the structure across the arrays but leaves some residual bias. Further understanding of this bias could lead to refinements of the blackbody thermal model. This work shows the calibration impacts of using an average SRF across many detectors instead of accounting for each detector SRF independently in the TEB calibration. Note that these impacts neglect effects from the spectral sampling of Earth scene radiances that include atmospheric effects, which may further contribute to artifacts post-launch and cannot be mitigated by processing with detector-level SRFs. This study enhances the ability to diagnose anomalies on-orbit and reduce calibration uncertainty for improved system performance.

  12. Frequency analysis of a step dynamic pressure calibrator.

    PubMed

    Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon

    2012-09-01

    A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.

  13. Frequency analysis of a step dynamic pressure calibrator

    NASA Astrophysics Data System (ADS)

    Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon

    2012-09-01

    A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.

  14. Development of a low background test facility for the SPICA-SAFARI on-ground calibration

    NASA Astrophysics Data System (ADS)

    Dieleman, P.; Laauwen, W. M.; Ferrari, L.; Ferlet, M.; Vandenbussche, B.; Meinsma, L.; Huisman, R.

    2012-09-01

    SAFARI is a far-infrared camera to be launched in 2021 onboard the SPICA satellite. SAFARI offers imaging spectroscopy and imaging photometry in the wavelength range of 34 to 210 μm with detector NEP of 2•10-19 W/√Hz. A cryogenic test facility for SAFARI on-ground calibration and characterization is being developed. The main design driver is the required low background of a few attoWatts per pixel. This prohibits optical access to room temperature and hence all test equipment needs to be inside the cryostat at 4.5K. The instrument parameters to be verified are interfaces with the SPICA satellite, sensitivity, alignment, image quality, spectral response, frequency calibration, and point spread function. The instrument sensitivity is calibrated by a calibration source providing a spatially homogeneous signal at the attoWatt level. This low light intensity is achieved by geometrical dilution of a 150K source to an integrating sphere. The beam quality and point spread function is measured by a pinhole/mask plate wheel, back-illuminated by a second integrating sphere. This sphere is fed by a stable wide-band source, providing spectral lines via a cryogenic etalon.

  15. A comparison of scope for growth (SFG) and dynamic energy budget (DEB) models applied to the blue mussel ( Mytilus edulis)

    NASA Astrophysics Data System (ADS)

    Filgueira, Ramón; Rosland, Rune; Grant, Jon

    2011-11-01

    Growth of Mytilus edulis was simulated using individual based models following both Scope For Growth (SFG) and Dynamic Energy Budget (DEB) approaches. These models were parameterized using independent studies and calibrated for each dataset by adjusting the half-saturation coefficient of the food ingestion function term, XK, a common parameter in both approaches related to feeding behavior. Auto-calibration was carried out using an optimization tool, which provides an objective way of tuning the model. Both approaches yielded similar performance, suggesting that although the basis for constructing the models is different, both can successfully reproduce M. edulis growth. The good performance of both models in different environments achieved by adjusting a single parameter, XK, highlights the potential of these models for (1) producing prospective analysis of mussel growth and (2) investigating mussel feeding response in different ecosystems. Finally, we emphasize that the convergence of two different modeling approaches via calibration of XK, indicates the importance of the feeding behavior and local trophic conditions for bivalve growth performance. Consequently, further investigations should be conducted to explore the relationship of XK to environmental variables and/or to the sophistication of the functional response to food availability with the final objective of creating a general model that can be applied to different ecosystems without the need for calibration.

  16. Energy dependent calibration of XR-QA2 radiochromic film with monochromatic and polychromatic x-ray beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Lillo, F.; Mettivier, G., E-mail: mettivier@na.infn.it; Sarno, A.

    2016-01-15

    Purpose: This work investigates the energy response and dose-response curve determinations for XR-QA2 radiochromic film dosimetry system used for synchrotron radiation work and for quality assurance in diagnostic radiology, in the range of effective energies 18–46.5 keV. Methods: Pieces of XR-QA2 films were irradiated, in a plane transverse to the beam axis, with a monochromatic beam of energy in the range 18–40 keV at the ELETTRA synchrotron radiation facility (Trieste, Italy) and with a polychromatic beam from a laboratory x-ray tube operated at 80, 100, and 120 kV. The film calibration curve was expressed as air kerma (measured free-in-air withmore » an ionization chamber) versus the net optical reflectance change (netΔR) derived from the red channel of the RGB scanned film image. Four functional relationships (rational, linear exponential, power, and logarithm) were tested to evaluate the best curve for fitting the calibration data. The adequacy of the various fitting functions was tested by using the uncertainty analysis and by assessing the average of the absolute air kerma error calculated as the difference between calculated and delivered air kerma. The sensitivity of the film was evaluated as the ratio of the change in net reflectance to the corresponding air kerma. Results: The sensitivity of XR-QA2 films increased in the energy range 18–39 keV, with a maximum variation of about 170%, and decreased in the energy range 38–46.5 keV. The present results confirmed and extended previous findings by this and other groups, as regards the dose response of the radiochromic film XR-QA2 to monochromatic and polychromatic x-ray beams, respectively. Conclusions: The XR-QA2 radiochromic film response showed a strong dependence on beam energy for both monochromatic and polychromatic beams in the range of half value layer values from 0.55 to 6.1 mm Al and corresponding effective energies from 18 to 46.5 keV. In this range, the film response varied by 170%, from a minimum sensitivity of 0.0127 to a maximum sensitivity of 0.0219 at 10 mGy air kerma in air. The more suitable function for air kerma calibration of the XR-QA2 radiochromic film was the power function. A significant batch-to-batch variation, up to 55%, in film response at 120 kV (46.5 keV effective energy) was observed in comparison with published data.« less

  17. Earth Radiation Budget Experiment scanner radiometric calibration results

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, M. A.; Thomas, Susan; Meekins, Jeffrey L.; Mahan, J. R.

    1990-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers are producing measurements of the incoming solar, earth/atmosphere-reflected solar, and earth/atmosphere-emitted radiation fields with measurement precisions and absolute accuracies, approaching 1 percent. ERBE uses thermistor bolometers as the detection elements in the narrow-field-of-view scanning radiometers. The scanning radiometers can sense radiation in the shortwave, longwave, and total broadband spectral regions of 0.2 to 5.0, 5.0 to 50.0, and 0.2 to 50.0 micrometers, respectively. Detailed models of the radiometers' response functions were developed in order to design the most suitable calibration techniques. These models guided the design of in-flight calibration procedures as well as the development and characterization of a vacuum-calibration chamber and the blackbody source which provided the absolute basis upon which the total and longwave radiometers were characterized. The flight calibration instrumentation for the narror-field-of-view scanning radiometers is presented and evaluated.

  18. Calibration of neutron detectors on the Joint European Torus.

    PubMed

    Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L

    2017-10-01

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  19. On-Orbit Operation and Performance of MODIS Blackbody

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Chang, T.; Barnes, W.

    2009-01-01

    MODIS collects data in 36 spectral bands, including 20 reflective solar bands (RSB) and 16 thermal emissive bands (TES). The TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic algorithm that relates the detector response with the calibration radiance from the sensor on-board blackbody (BB). The calibration radiance is accurately determined each scan from the BB temperature measured using a set of 12 thermistors. The BB thermistors were calibrated pre-launch with traceability to the NIST temperature standard. Unlike many heritage sensors, the MODIS BB can be operated at a constant temperature or with the temperature continuously varying between instrument ambient (about 270K) and 315K. In this paper, we provide an overview of both Terra and Aqua MODIS on-board BB operations, functions, and on-orbit performance. We also examine the impact of key calibration parameters, such as BB emissivity and temperature (stability and gradient) determined from its thermistors, on the TEB calibration and Level I (LIB) data product uncertainty.

  20. Photometric Calibration and Image Stitching for a Large Field of View Multi-Camera System

    PubMed Central

    Lu, Yu; Wang, Keyi; Fan, Gongshu

    2016-01-01

    A new compact large field of view (FOV) multi-camera system is introduced. The camera is based on seven tiny complementary metal-oxide-semiconductor sensor modules covering over 160° × 160° FOV. Although image stitching has been studied extensively, sensor and lens differences have not been considered in previous multi-camera devices. In this study, we have calibrated the photometric characteristics of the multi-camera device. Lenses were not mounted on the sensor in the process of radiometric response calibration to eliminate the influence of the focusing effect of uniform light from an integrating sphere. Linearity range of the radiometric response, non-linearity response characteristics, sensitivity, and dark current of the camera response function are presented. The R, G, and B channels have different responses for the same illuminance. Vignetting artifact patterns have been tested. The actual luminance of the object is retrieved by sensor calibration results, and is used to blend images to make panoramas reflect the objective luminance more objectively. This compensates for the limitation of stitching images that are more realistic only through the smoothing method. The dynamic range limitation of can be resolved by using multiple cameras that cover a large field of view instead of a single image sensor with a wide-angle lens. The dynamic range is expanded by 48-fold in this system. We can obtain seven images in one shot with this multi-camera system, at 13 frames per second. PMID:27077857

  1. Pattern-Based Inverse Modeling for Characterization of Subsurface Flow Models with Complex Geologic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.

    2017-12-01

    Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.

  2. Cross-calibration of MODIS with ETM+ and ALI sensors for long-term monitoring of land surface processes

    USGS Publications Warehouse

    Meyer, D.; Chander, G.

    2006-01-01

    Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.

  3. Alternative Method of On-Orbit Response-Versus-Scan-Angle Characterization for MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-01-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 microns, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard responses are fit first as a function of AOI before fitting temporally in order to eliminate the dependence on the stability of the desert site. Comprehensive comparisons are performed with current C6 RVS results for both Terra and Aqua MODIS. Results demonstrate that this alternative method provides a supplemental means to monitor the on-orbit RVS for MODIS RSB.

  4. Alternative method of on-orbit response-versus-scan-angle characterization for MODIS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-04-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 μm, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard responses are fit first as a function of AOI before fitting temporally in order to eliminate the dependence on the stability of the desert site. Comprehensive comparisons are performed with current C6 RVS results for both Terra and Aqua MODIS. Results demonstrate that this alternative method provides a supplemental means to monitor the on-orbit RVS for MODIS RSB.

  5. Cross-calibration of A.M. constellation sensors for long term monitoring of land surface processes

    USGS Publications Warehouse

    Meyer, D.; Chander, G.

    2006-01-01

    Data from multiple sensors must be used together to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products derived from different sensors (e.g., vegetation cover, albedo, surface temperature) can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectro-radiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Cross-calibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study extends on a previous study of Terra/MODIS and Landsat/ETM+ cross calibration by including the Terra/ASTER and EO-1/ALI sensors, exploring the impacts of cross-calibrating sensors when conditions described above are met to some degree but not perfectly. Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. Due to problems with direct calibration of ASTER data, linear fits were developed between ASTER and ETM+ to assess the impacts of spectral bandpass differences between the two systems. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.

  6. Item response theory, computerized adaptive testing, and PROMIS: assessment of physical function.

    PubMed

    Fries, James F; Witter, James; Rose, Matthias; Cella, David; Khanna, Dinesh; Morgan-DeWitt, Esi

    2014-01-01

    Patient-reported outcome (PRO) questionnaires record health information directly from research participants because observers may not accurately represent the patient perspective. Patient-reported Outcomes Measurement Information System (PROMIS) is a US National Institutes of Health cooperative group charged with bringing PRO to a new level of precision and standardization across diseases by item development and use of item response theory (IRT). With IRT methods, improved items are calibrated on an underlying concept to form an item bank for a "domain" such as physical function (PF). The most informative items can be combined to construct efficient "instruments" such as 10-item or 20-item PF static forms. Each item is calibrated on the basis of the probability that a given person will respond at a given level, and the ability of the item to discriminate people from one another. Tailored forms may cover any desired level of the domain being measured. Computerized adaptive testing (CAT) selects the best items to sharpen the estimate of a person's functional ability, based on prior responses to earlier questions. PROMIS item banks have been improved with experience from several thousand items, and are calibrated on over 21,000 respondents. In areas tested to date, PROMIS PF instruments are superior or equal to Health Assessment Questionnaire and Medical Outcome Study Short Form-36 Survey legacy instruments in clarity, translatability, patient importance, reliability, and sensitivity to change. Precise measures, such as PROMIS, efficiently incorporate patient self-report of health into research, potentially reducing research cost by lowering sample size requirements. The advent of routine IRT applications has the potential to transform PRO measurement.

  7. Stochastic isotropic hyperelastic materials: constitutive calibration and model selection

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain

    2018-03-01

    Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.

  8. Calibration Challenges and Improvements for Terra and Aqua MODIS Level-1B Data Product Qualit

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Angal, A.; Chen, H.; Geng, X.; Li, Y.; Link, D.; Salomonson, V.; Twedt, K.; Wang, Z.; Wilson, T.; Wu, A.

    2017-12-01

    Terra and Aqua MODIS instruments launched in 1999 and 2002, respectively, have provided the remote sensing community and users worldwide a series of high quality long-term data records. They have enabled a broad range of scientific studies of the Earth's system and changes in its key geophysical and environmental parameters. To date, both MODIS instruments continue to operate nominally with all on-board calibrators (OBC) functioning properly. MODIS reflective solar bands (RSB) are currently calibrated by a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system, coupled with regularly scheduled lunar observations and trending results from selected ground reference targets. The thermal emissive bands (TEB) calibration is performed using an on-board blackbody (BB) on a scan-by-scan basis. The sensor's spectral and spatial characteristics are periodically tracked by the on-board spectroradiometric calibration assembly (SRCA). On-orbit changes in sensor responses or performance characteristics, often in non-deterministic ways, underscore the need for dedicated calibration efforts to be made over the course of the sensor's entire mission. For MODIS instruments, this task has been undertaken by the MODIS Characterization Support Team (MCST). In this presentation, we provide an overview of MODIS instrument operation and calibration activities with a focus on recent challenging issues. We describe the efforts made and methodologies developed to address various challenging issues, including on-orbit characterization of sensor response versus scan angle (RVS) and polarization sensitives in the reflective solar spectral region, and electronic crosstalk impact on sensor calibration. Also discussed are the latest improvements made into the MODIS Level-1B data products as well as lessons that could benefit other instruments (e.g. VIIRS) for their on-orbit calibration and characterization.

  9. On-ground calibration of the BEPICOLOMBO/SIMBIO-SYS at instrument level

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ferreira, J.; Poulet, F.; Eng, P.; Longval, Y.; Dassas, K.; Arondel, A.; Langevin, Y.; Capaccioni, F.; Filacchione, G.; Palumbo, P.; Cremonese, G.; Dami, M.

    2012-04-01

    The Mercury Planetary Orbiter/BepiColombo carries an integrated suite of instruments, the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS has 3 channels: a stereo imaging system (STC), a high-resolution imager (HRIC) and a visible-near-infrared imaging spectrometer (VIHI). SIMBIO-SYS will scan the surface of Mercury with these three channels and determine the physical, morphological and compositional properties of the entire planet. Before integration on the S/C, an on-ground calibration at the channels and at the instrument levels will be performed so as to describe the instrumental responses as a function of various parameters that might evolve while the instruments will be operating [1]. The Institut d'Astrophysique Spatiale (IAS) is responsible for the on-ground instrument calibration at the instrument level. During the 4 weeks of calibration campaign planned for June 2012, the instrument will be maintained in a mechanical and thermal environment simulating the space conditions. Four Optical stimuli (QTH lamp, Integrating Sphere, BlackBody with variable temperature from 50 to 1200°C and Monochromator), are placed over an optical bench to illuminate the four channels so as to make the radiometric calibration, straylight monitoring, as well as spectral proofing based on laboratory mineral samples. The instrument will be mounted on a hexapod placed inside a thermal vacuum chamber during the calibration campaign. The hexapod will move the channels within the well-characterized incoming beam. We will present the key activities of the preparation of this calibration: the derivation of the instrument radiometric model, the implementation of the optical, mechanical and software interfaces of the calibration assembly, the characterization of the optical bench and the definition of the calibration procedures.

  10. SeaWiFS long-term solar diffuser reflectance trend analysis

    NASA Astrophysics Data System (ADS)

    Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.

    2006-08-01

    The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) Team implemented daily solar calibrations of SeaWiFS to look for step-function changes in the instrument response and has used these calibrations to supplement the monthly lunar calibrations in monitoring the radiometric stability of SeaWiFS during its first year of on-orbit operations. The Team has undertaken an analysis of the mission-long solar calibration time series, with the lunar-derived radiometric corrections over time applied, to assess the long-term degradation of the solar diffuser reflectance over nine years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val Team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength-dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The degradation of diffuser reflctance is similar to that observed for SeaWiFS radiometric response itself from lunar calibration time series for bands 1-5 (412-555 nm), though the magnitude of the change is four times larger for the diffuser. Evidently, the same optical degradation process has affected both the telescope optics and the solar diffuser in the blue and green. The Cal/Val Team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series. The on-orbit change in the SNR for each band over the nine-year mission is less than 7%. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as MODIS, VIIRS, and ABI.

  11. Landsat-4/5 Band 6 relative radiometry

    USGS Publications Warehouse

    Chander, Gyanesh; Helder, D.L.; Boncyk, Wayne C.

    2002-01-01

    Relative radiometric responses for the thematic mapper (TM) band 6 data from Landsat-4 and Landsat-5 were analyzed, and an algorithm has been developed that significantly reduces the striping in Band 6 images due to detector mismatch. The TM internal calibration system as originally designed includes a DC restore circuit, which acts as a feedback system designed to keep detector bias at a constant value. There is a strong indication that the DC restore circuitry implemented in Band 6 does not function as it had been designed to. It operates as designed only during a portion of the calibration interval and not at all during acquisition of scene data. This renders the data acquired during the calibration shutter interval period virtually useless for correction of the individual responses of the four detectors in Band 6. It was observed and statistically quantified that the relative response of each of the detectors to the band average is stable over the dynamic range and throughout the lifetime of the instrument. This allows an alternate approach to relative radiometric correction of TM Band 6 images

  12. Traceable calibration and demonstration of a portable dynamic force transfer standard

    NASA Astrophysics Data System (ADS)

    Vlajic, Nicholas; Chijioke, Ako

    2017-08-01

    In general, the dynamic sensitivity of a force transducer depends upon the mechanical system in which it is used. This dependence serves as motivation to develop a dynamic force transfer standard, which can be used to calibrate an application transducer in situ. In this work, we SI-traceably calibrate a hand-held force transducer, namely an impact hammer, by using a mass suspended from a thin line which is cut to produce a known dynamic force in the form of a step function. We show that this instrument is a promising candidate as a transfer standard, since its dynamic response has small variance between different users. This calibrated transfer standard is then used to calibrate a secondary force transducer in an example application setting. The combined standard uncertainty (k  =  2) in the calibration of the transfer standard was determined to be 2.1% or less, up to a bandwidth of 5 kHz. The combined standard uncertainty (k  =  2) in the performed transfer calibration was less than 4%, up to 3 kHz. An advantage of the transfer calibration framework presented here, is that the transfer standard can be used to transfer SI-traceable calibrations without the use of any SI-traceable voltage metrology instrumentation.

  13. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  14. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  15. Hydrophone calibration for MERMAID seismic network

    NASA Astrophysics Data System (ADS)

    Joubert, C.; Nolet, G.; Sukhovich, A.; Ogé, A.; Argentino, J.; Hello, Y.

    2013-12-01

    The MERMAID float (Mobile Earthquake Recorder in Marine Areas by Independent Divers) is a new oceanic seismometer which has already successfully recorded P-waves from teleseismic events, when deployed in the Mediterranean Sea and the Indian Ocean. The frequency band of teleseismic acquisition is for frequencies up to 2 Hz. The P-waves are recorded with a Rafos II hydrophone. The hydrophone has a flat frequency response from 5 Hz to 10 kHz but its behavior below 5 Hz is not documented. In this work we determine the Rafos II response with the electronic card used for MERMAID in the frequency band of 0.1 to 2 Hz. A simple and low-cost calibration method at low frequencies was developed and applied to the Rafos II but can be used for any hydrophone. In this calibration method a brief pressure increase of 1000 Pa is applied to the hydrophone. We record response after filtering and digitizing by the electronic card. To create the pressure increase, the hydrophone is placed in a calibration chamber filled with water and making sure no air bubbles are present. By opening a solenoid valve connected to a tube with 10 cm extra water on top of the chamber, an abrupt pressure of 1000 Pa is applied. The output signal is fitted to an empirical response function, that characterizes it with four parameters: A, B, α and τ which control the shape of the signal: h(t) = t^(ατ) e^(-αt) (A + Bt). A represents the magnification, α defines the exponential relaxation of the signal, B models the overshoot and τ allows for a slightly delayed response due to the low-pass filtering in the electronics. A set of 20 experiments is used to characterize the Rafos II instrumental response in association with the electronic card. The method developed here offers a good and simple way to estimate the response at low frequencies. The MERMAID hydrophone response to the step function input of 1000 Pa can be defined by A = 0.36 × 0.02 mV/Pa, B = - 0.08 × 0.01 mV Pa^(-1) s^(-1), α = 0.28 × 0.02 s^(-1) and τ = 0.41 × 0.14 s.

  16. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.

    PubMed

    Shao, Yiping; Yao, Rutao; Ma, Tianyu

    2008-12-01

    The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detection condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.

  17. A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao Yiping; Yao Rutao; Ma Tianyu

    The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detectionmore » condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.« less

  18. Use of Numerical Groundwater Model and Analytical Empirical Orthogonal Function for Calibrating Spatiotemporal pattern of Pumpage, Recharge and Parameter

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Hsu, F. C.; Liu, H. J.

    2016-12-01

    This study develops a novel methodology for the spatiotemporal groundwater calibration of mega-quantitative recharge and parameters by coupling a specialized numerical model and analytical empirical orthogonal function (EOF). The actual spatiotemporal patterns of groundwater pumpage are estimated by an originally developed back propagation neural network-based response matrix with the electrical consumption analysis. The spatiotemporal patterns of the recharge from surface water and hydrogeological parameters (i.e. horizontal hydraulic conductivity and vertical leakance) are calibrated by EOF with the simulated error hydrograph of groundwater storage, in order to qualify the multiple error sources and quantify the revised volume. The objective function of the optimization model is minimizing the root mean square error of the simulated storage error percentage across multiple aquifers, meanwhile subject to mass balance of groundwater budget and the governing equation in transient state. The established method was applied on the groundwater system of Chou-Shui River Alluvial Fan. The simulated period is from January 2012 to December 2014. The total numbers of hydraulic conductivity, vertical leakance and recharge from surface water among four aquifers are 126, 96 and 1080, respectively. Results showed that the RMSE during the calibration process was decreased dramatically and can quickly converse within 6th iteration, because of efficient filtration of the transmission induced by the estimated error and recharge across the boundary. Moreover, the average simulated error percentage according to groundwater level corresponding to the calibrated budget variables and parameters of aquifer one is as small as 0.11%. It represent that the developed methodology not only can effectively detect the flow tendency and error source in all aquifers to achieve accurately spatiotemporal calibration, but also can capture the peak and fluctuation of groundwater level in shallow aquifer.

  19. Importance of land use update during the calibration period and simulation of water balance response to land use change in the upper Rio das Mortes Catchment (Cerrado Biome, Central-Western Brazil)

    NASA Astrophysics Data System (ADS)

    Lamparter, Gabriele; Kovacs, Kristof; Nobrega, Rodolfo; Gerold, Gerhard

    2015-04-01

    Changes in the hydrological balance and following degradation of the water ecosystem services due to large scale land use changes are reported from agricultural frontiers all over the world. Traditionally, hydrological models including vegetation and land use as a part of the hydrological cycle use a fixed distribution of land use for the calibration period. We believe that a meaningful calibration - especially when investigating the effects of land use change on hydrology - demands the inclusion of land use change during the calibration period into the calibration procedure. The SWAT (Soil and Water Assessment Tool) model is a process-based, semi-distributed model calculating the different components of the water balance. The model bases on the definition of hydrological response units (HRUs) which are based on soil, vegetation and slope distribution. It specifically emphasises the role of land use and land management on the water balance. The Central-Western region of Brazil is one of the leading agricultural frontiers, which experienced rapid and radical deforestation and agricultural intensification in the last 40 years (from natural Cerrado savannah to cattle grazing to intensive corn and soya cropland). The land use history of the upper Rio das Mortes catchment (with 17500 km²) is reasonably well documented since the 1970th. At the same time there are almost continuous climate and runoff data available for the period between 1988 and 2011. Therefore, the work presented here shows the model calibration and validation of the SWAT model with the land use update function for three different periods (1988 to 1998, 1998 to 2007 and 2007 to 2011) in comparison with the same calibration periods using a steady state land use distribution. The use of the land use update function allows a clearer identification which changes in the discharge are due to climatic variability and which are due to changes in the vegetation cover. With land use update included into the calibration procedure, the impact of land use change on overall modelled runoff was more pronounced. For example, the accordance of modelled peak discharge improved for the period from 1988 to 1998 (with a decrease of primary Cerrado from 60 to 30 %) with the use of the land use update function compared to the steady state calibration. The effect for the following two periods 1998 to 2007 and 2007 to 2011 (with a decrease of primary Cerrado from 30 to 24 % and 24 to 19 % respectively) show only a small improvement of the model fit.

  20. TOGA/COARE AMMR 1992 data processing

    NASA Technical Reports Server (NTRS)

    Kunkee, D. B.

    1994-01-01

    The complete set of Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean Atmosphere Response Experiment (COARE) flight data for the 91.65 GHz Airborne Meteorological Radiometer (AMMR92) contains data from nineteen flights: two test flights, four transit flights, and thirteen experimental flights. The data flight occurred between December 16, 1992 and February 28, 1993. Data collection from the AMMR92 during the first ten flights of TOGA/COARE was performed using the executable code TSK30041. These are IBM PC/XT programs used by the NASA Goddard Space Flight Center (GSFC). During one flight, inconsistencies were found during the operation of the AMMR92 using the GSFC data acquisition system. Consequently, the Georgia Tech (GT) data acquisition system was used during all successive TOGA/COARE flights. These inconsistencies were found during the data processing to affect the recorded data as well. Errors are caused by an insufficient pre- and post-calibration setting period for the splash-plate mechanism. The splash-plate operates asynchronusly with the data acquisition system (there is no position feedback to the GSFC or GT data system). This condition caused both the calibration and the post-calibration scene measurement to be corrupted on a randomly occurring basis when the GSFC system was used. This problem did not occur with the GT data acquisition system due to sufficient allowance for splash-plate settling. After TOGA/COARE it was determined that calibration of the instrument was a function of the scene brightness temperature. Therefore, the orientation error in the main antenna beam of the AMMR92 is hypothesized to be caused by misalignment of the internal 'splash-plate' responsible for directing the antenna beam toward the scene or toward the calibration loads. Misalignment of the splash-plate is responsible for 'scene feedthrough' during calibration. Laboratory investigation at Georgia Tech found that each polarization is affected differently by the splash-plate alignment error. This is likely to cause significant and unique errors in the absolute calibration of each channel.

  1. TOGA/COARE AMMR 1992 data processing

    NASA Astrophysics Data System (ADS)

    Kunkee, D. B.

    1994-05-01

    The complete set of Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean Atmosphere Response Experiment (COARE) flight data for the 91.65 GHz Airborne Meteorological Radiometer (AMMR92) contains data from nineteen flights: two test flights, four transit flights, and thirteen experimental flights. The data flight occurred between December 16, 1992 and February 28, 1993. Data collection from the AMMR92 during the first ten flights of TOGA/COARE was performed using the executable code TSK30041. These are IBM PC/XT programs used by the NASA Goddard Space Flight Center (GSFC). During one flight, inconsistencies were found during the operation of the AMMR92 using the GSFC data acquisition system. Consequently, the Georgia Tech (GT) data acquisition system was used during all successive TOGA/COARE flights. These inconsistencies were found during the data processing to affect the recorded data as well. Errors are caused by an insufficient pre- and post-calibration setting period for the splash-plate mechanism. The splash-plate operates asynchronusly with the data acquisition system (there is no position feedback to the GSFC or GT data system). This condition caused both the calibration and the post-calibration scene measurement to be corrupted on a randomly occurring basis when the GSFC system was used. This problem did not occur with the GT data acquisition system due to sufficient allowance for splash-plate settling. After TOGA/COARE it was determined that calibration of the instrument was a function of the scene brightness temperature. Therefore, the orientation error in the main antenna beam of the AMMR92 is hypothesized to be caused by misalignment of the internal 'splash-plate' responsible for directing the antenna beam toward the scene or toward the calibration loads. Misalignment of the splash-plate is responsible for 'scene feedthrough' during calibration. Laboratory investigation at Georgia Tech found that each polarization is affected differently by the splash-plate alignment error. This is likely to cause significant and unique errors in the absolute calibration of each channel.

  2. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Xiong, Xiaoxiong (Jack); Butler, James J.

    2010-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed, Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-hy-wavelength basis. From these monochromatic ASRs. the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor.

  3. Responsivity-based criterion for accurate calibration of FTIR emission spectra: theoretical development and bandwidth estimation.

    PubMed

    Rowe, Penny M; Neshyba, Steven P; Walden, Von P

    2011-03-14

    An analytical expression for the variance of the radiance measured by Fourier-transform infrared (FTIR) emission spectrometers exists only in the limit of low noise. Outside this limit, the variance needs to be calculated numerically. In addition, a criterion for low noise is needed to identify properly calibrated radiances and optimize the instrument bandwidth. In this work, the variance and the magnitude of a noise-dependent spectral bias are calculated as a function of the system responsivity (r) and the noise level in its estimate (σr). The criterion σr/r<0.3, applied to downwelling and upwelling FTIR emission spectra, shows that the instrument bandwidth is specified properly for one instrument but needs to be restricted for another.

  4. Ground calibration of the spatial response and quantum efficiency of the CdZnTe hard x-ray detectors for NuSTAR

    NASA Astrophysics Data System (ADS)

    Grefenstette, Brian W.; Bhalerao, Varun; Cook, W. Rick; Harrison, Fiona A.; Kitaguchi, Takao; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram

    2017-08-01

    Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Telescope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≍ 605 μm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. The sub-pixel spatial location allows us to finely oversample the point spread function of the optics and reduces imaging artifacts due to pixelation. In this paper we demonstrate how the sub-pixel information is obtained, how the detectors were calibrated, and provide ground verification of the quantum efficiency of our Monte Carlo model of the detector response.

  5. Imaging plates calibration to X-rays

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  6. Imaging workflow and calibration for CT-guided time-domain fluorescence tomography

    PubMed Central

    Tichauer, Kenneth M.; Holt, Robert W.; El-Ghussein, Fadi; Zhu, Qun; Dehghani, Hamid; Leblond, Frederic; Pogue, Brian W.

    2011-01-01

    In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates. PMID:22076264

  7. SeaWiFS Technical Report Series. Volume 41; Case Studies for SeaWiFS Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Yeh, Eueng-nan; Barnes, Robert A.; Darzi, Michael; Kumar, Lakshmi; Early, Edward A.; Johnson, B. Carol; Mueller, James L.; Trees, Charles C.

    1997-01-01

    This document provides brief reports, or case studies, on a number of investigations sponsored by the Calibration and Validation Team (CVT) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter I describes the calibration and characterization of the GSFC sphere, which was used in the recent recalibration of the SeaWiFS instrument. Chapter 2 presents a revision of the diffuse attenuation coefficient, K(490), algorithm based on the SeaWiFS wavelengths. Chapter 3 provides an implementation scheme for an algorithm to remove out-of-band radiance when using a sensor calibration based on a finite width (truncated) spectral response function, e.g., between the 1% transmission points. Chapter 4 describes the implementation schemes for the stray light quality flag (local area coverage [LAC] and global area coverage [GAC]) and the LAC stray light correction.

  8. A novel piezo vibration platform for probe dynamic performance calibration

    NASA Astrophysics Data System (ADS)

    Liang, Rong; Jusko, Otto; Lüdicke, Frank; Neugebauer, Michael

    2001-09-01

    A novel piezo vibration platform of compact size (120×120×120 mm3) for probe dynamic performance calibration has been developed. A piezo tube is employed to generate movement which is measured in real time by a miniature fibre interferometer and close-loop controlled by a fast digital signal processor, thus the calibration can be made traceable to the national length standard. 20 kHz control-loop frequency with 1.71 nm uncertainty has been achieved. The maximum calibration range is 20 µm with 0.3 nm resolution. The piezo vibration platform can generate up to 300 Hz sinusoidal signal and various other waveforms, such as square, triangle and saw tooth. It can also work in sweep mode to shift the frequency up to 100 Hz continuously, which is a very useful function when the amplitude-frequency response of the probe is to be investigated.

  9. The Ascension Island hydroacoustic experiment: purpose, data set features and plans for future analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harben, P E; Rock, D; Rodgers, A J

    1999-07-23

    Calibration of hydroacoustic and T-phase stations for Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring will be an important element in establishing new operational stations and upgrading existing stations. Calibration of hydroacoustic stations is herein defined as precision location of the hydrophones and determination of the amplitude response from a known source energy. T-phase station calibration is herein defined as a determination of station site attenuation as a function of frequency, bearing, and distance for known impulsive energy sources in the ocean. To understand how to best conduct calibration experiments for both hydroacoustic and T-phase stations, an experiment was conducted in May, 1999more » at Ascension Island in the South Atlantic Ocean. The experiment made use of a British oceanographic research vessel and collected data that will be used for CTBT issues and for fundamental understanding of the Ascension Island volcanic edifice.« less

  10. Configuration and calibration of a flat field grating spectrometer in the wavelength range 7-60 Å with a Manson ultrasoft x-ray source

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Shi, Z.; Fei, Z.; Jin, X.; Xiao, J.; Hutton, R.; Zou, Y.

    2011-06-01

    An ultrasoft x-ray and extreme ultraviolet spectrometer built and calibrated in the wavelength range of 7-60 Å is reported here. Details of the alignment of this flat field spectrometer with both a laser and a telescope are presented. The light path function rather than a standard calibration function, i.e. a polynomial function, is introduced as the fit function, which gives good agreement with the spectrometer design values and makes the calibration more reliable when extended to the region outside the points used for calibration, compared with a standard calibration function. The calibration results of a Manson ultrasoft x-ray source (model 2) with source targets of Cu, Fe and Ti are presented with all the peaks marked.

  11. Directional Unfolded Source Term (DUST) for Compton Cameras.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  12. A reference tristimulus colorimeter

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.

    2002-06-01

    A reference tristimulus colorimeter has been developed at NIST with a transmission-type silicon trap detector (1) and four temperature-controlled filter packages to realize the Commission Internationale de l'Eclairage (CIE) x(λ), y(λ) and z(λ) color matching functions (2). Instead of lamp standards, high accuracy detector standards are used for the colorimeter calibration. A detector-based calibration procedure is being suggested for tristimulus colorimeters wehre the absolute spectral responsivity of the tristimulus channels is determined. Then, color (spectral) correct and peak (amplitude) normalization are applied to minimize uncertainties caused by the imperfect realizations of the CIE functions. As a result of the corrections, the chromaticity coordinates of stable light sources with different spectral power distributions can be measured with uncertainties less than 0.0005 (k=1).

  13. The Fermi Large Area Telescope on Orbit: Event Classification, Instrument Response Functions, and Calibration

    DTIC Science & Technology

    2012-11-01

    Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology , Department of Physics and SLAC National Accelerator...Laboratory, Stanford University, Stanford, CA 94305, USA; echarles@slac.stanford.edu 3 Department of Physics, Center for Cosmology and Astro-Particle Physics

  14. Standardization of UV LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  15. Upper-extremity and mobility subdomains from the Patient-Reported Outcomes Measurement Information System (PROMIS) adult physical functioning item bank.

    PubMed

    Hays, Ron D; Spritzer, Karen L; Amtmann, Dagmar; Lai, Jin-Shei; Dewitt, Esi Morgan; Rothrock, Nan; Dewalt, Darren A; Riley, William T; Fries, James F; Krishnan, Eswar

    2013-11-01

    To create upper-extremity and mobility subdomain scores from the Patient-Reported Outcomes Measurement Information System (PROMIS) physical functioning adult item bank. Expert reviews were used to identify upper-extremity and mobility items from the PROMIS item bank. Psychometric analyses were conducted to assess empirical support for scoring upper-extremity and mobility subdomains. Data were collected from the U.S. general population and multiple disease groups via self-administered surveys. The sample (N=21,773) included 21,133 English-speaking adults who participated in the PROMIS wave 1 data collection and 640 Spanish-speaking Latino adults recruited separately. Not applicable. We used English- and Spanish-language data and existing PROMIS item parameters for the physical functioning item bank to estimate upper-extremity and mobility scores. In addition, we fit graded response models to calibrate the upper-extremity items and mobility items separately, compare separate to combined calibrations, and produce subdomain scores. After eliminating items because of local dependency, 16 items remained to assess upper extremity and 17 items to assess mobility. The estimated correlation between upper extremity and mobility was .59 using existing PROMIS physical functioning item parameters (r=.60 using parameters calibrated separately for upper-extremity and mobility items). Upper-extremity and mobility subdomains shared about 35% of the variance in common, and produced comparable scores whether calibrated separately or together. The identification of the subset of items tapping these 2 aspects of physical functioning and scored using the existing PROMIS parameters provides the option of scoring these subdomains in addition to the overall physical functioning score. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Daily Spouse Responsiveness Predicts Longer-Term Trajectories of Physical Function

    PubMed Central

    Wilson, Stephanie J.; Martire, Lynn M.; Sliwinski, Martin J.

    2017-01-01

    Everyday interpersonal experiences may underlie the well-established link between close relationships and physical health, but multitemporal designs necessary for strong conclusions about temporal sequence are rare. The current study of 145 knee osteoarthritis patients and their spouses focused on a novel pattern in everyday interactions, daily spouse responsiveness—the degree to which spouse responses are calibrated to changes in patients’ everyday verbal pain expression. Using couple-level slopes, multilevel latent-variable growth models tested associations between three types of daily spouse responsiveness (empathic, solicitous, and punishing), as measured during a 3-week experience-sampling study, and change in patient physical function across 18 months. As predicted, patients whose spouses were more empathically responsive to their pain expression showed better physical function over time compared to those whose spouses were less empathically responsive. This study points to daily responsiveness, a theoretically rooted operationalization of spouse sensitivity, as important for long-term changes in objective physical function. PMID:28459650

  17. A nonlinear propagation model-based phase calibration technique for membrane hydrophones.

    PubMed

    Cooling, Martin P; Humphrey, Victor F

    2008-01-01

    A technique for the phase calibration of membrane hydrophones in the frequency range up to 80 MHz is described. This is achieved by comparing measurements and numerical simulation of a nonlinearly distorted test field. The field prediction is obtained using a finite-difference model that solves the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation in the frequency domain. The measurements are made in the far field of a 3.5 MHz focusing circular transducer in which it is demonstrated that, for the high drive level used, spatial averaging effects due to the hydrophone's finite-receive area are negligible. The method provides a phase calibration of the hydrophone under test without the need for a device serving as a phase response reference, but it requires prior knowledge of the amplitude sensitivity at the fundamental frequency. The technique is demonstrated using a 50-microm thick bilaminar membrane hydrophone, for which the results obtained show functional agreement with predictions of a hydrophone response model. Further validation of the results is obtained by application of the response to the measurement of the high amplitude waveforms generated by a modern biomedical ultrasonic imaging system. It is demonstrated that full deconvolution of the calculated complex frequency response of a nonideal hydrophone results in physically realistic measurements of the transmitted waveforms.

  18. Determining Concentration of Nanoparticles from Ellipsometry

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa; Kempen, Lothar U.; Chipman, Russell

    2008-01-01

    A method of using ellipsometry or polarization analysis of light in total internal reflection of a surface to determine the number density of gold nanoparticles on a smooth substrate has been developed. The method can be modified to enable determination of densities of sparse distributions of nanoparticles in general, and is expected to be especially useful for measuring gold-nanoparticle-labeled biomolecules on microarrays. The method is based on theoretical calculations of the ellipsometric responses of gold nanoparticles. Elements of the calculations include the following: For simplicity, the gold nanoparticles are assumed to be spherical and to have the same radius. The distribution of gold nanoparticles is assumed to be a sub-monolayer (that is, sparser than a monolayer). The optical response of the sub-monolayer is modeled by use of a thin-island-film theory, according to which the polarizabilities parallel and perpendicular to the substrate are functions of the wavelength of light, the dielectric functions (permittivities expressed as complex functions of frequency or wavelength) of the gold and the suspending medium (in this case, the suspending medium is air), the fraction of the substrate area covered by the nanoparticles, and the radius of the nanoparticles. For the purpose of the thin-island-film theory, the dielectric function of the gold nanoparticles is modeled as the known dielectric function of bulk gold plus a correction term that is necessitated by the fact that the mean free path length for electrons in gold decreases with decreasing radius, in such a manner as to cause the imaginary part of the dielectric function to increase with decreasing radius (see figure). The correction term is a function of the nanoparticle radius, the wavelength of light, the mean free path and the Fermi speed of electrons in bulk gold, the plasma frequency of gold, and the speed of light in a vacuum. These models are used to calculate ellipsometric responses for various concentrations of gold nanoparticles having an assumed radius. The modeled data indicates distinct spectral features for both the real and the imaginary part of the dielectric function. An ellipsometric measurement would determine this distinct feature and thus can be used to measure nanoparticle concentration. By "ellipsometric responses" is meant the intensities of light measured in various polarization states as functions of the angle of incidence and the polarization states of the incident light. These calculated ellipsometric responses are used as calibration curves: Data from subsequent ellipsometric measurements on real specimens are compared with the calibration curves. The concentration of the nanoparticles on a specimen is assumed to be that of the calibration curve that most closely matches the data pertaining to that specimen.

  19. Multispectral scanner flight model (F-1) radiometric calibration and alignment handbook

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This handbook on the calibration of the MSS-D flight model (F-1) provides both the relevant data and a summary description of how the data were obtained for the system radiometric calibration, system relative spectral response, and the filter response characteristics for all 24 channels of the four band MSS-D F-1 scanner. The calibration test procedure and resulting test data required to establish the reference light levels of the MSS-D internal calibration system are discussed. The final set of data ("nominal" calibration wedges for all 24 channels) for the internal calibration system is given. The system relative spectral response measurements for all 24 channels of MSS-D F-1 are included. These data are the spectral response of the complete scanner, which are the composite of the spectral responses of the scan mirror primary and secondary telescope mirrors, fiber optics, optical filters, and detectors. Unit level test data on the measurements of the individual channel optical transmission filters are provided. Measured performance is compared to specification values.

  20. Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors.

    PubMed

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-10-16

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.

  1. The pre-launch characterization of SIMBIO-SYS/VIHI imaging spectrometer for the BepiColombo mission to Mercury. II. Spectral calibrations.

    PubMed

    Altieri, F; Filacchione, G; Capaccioni, F; Carli, C; Dami, M; Tommasi, L; Aroldi, G; Borrelli, D; Barbis, A; Baroni, M; Pastorini, G; Ficai Veltroni, I; Mugnuolo, R

    2017-09-01

    The Visible and near Infrared Hyperspectral Imager (VIHI) is the VIS-IR spectrometer with imaging capabilities aboard the ESA BepiColombo mission to Mercury. In this second paper, we report the instrument spectral characterization derived by the calibration campaign carried out before spacecraft integration. Complementary measurements concerning radiometric and linearity responses, as well as geometric performances, are described in Paper I [G. Filacchione et al., Rev. Sci. Instrum. 88, 094502 (2017)]. We have verified the VIHI spectral range, spectral dispersion, spectral response function, and spectral uniformity along the whole slit. Instrumental defects and optical aberrations due to smiling and keystone effects have been evaluated, and they are lower than the design requirement (<1/3 pixel). The instrumental response is uniform along the whole slit, while spectral dispersion is well represented by a second order curve, rather than to be constant along the spectral dimension.

  2. Robust Online Monitoring for Calibration Assessment of Transmitters and Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Coble, Jamie B.; Shumaker, Brent

    Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this article, we discuss an overview of research being performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or moremore » sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation • Virtual sensing • Sensor response-time assessment These algorithms incorporate, at their base, a Gaussian Process-based uncertainty quantification (UQ) method. Various plant models (using kernel regression, GP, or hierarchical models) may be used to predict sensor responses under various plant conditions. These predicted responses can then be applied in fault detection (sensor output and response time) and in computing the correct value (virtual sensing) of a failing physical sensor. The methods being evaluated in this work can compute confidence levels along with the predicted sensor responses, and as a result, may have the potential for compensating for sensor drift in real-time (online recalibration). Evaluation was conducted using data from multiple sources (laboratory flow loops and plant data). Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less

  3. Assessments and Applications of Terra and Aqua MODIS On-Orbit Electronic Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, Na; Li, Yonghong; Wilson, Truman

    2016-01-01

    MODIS has 36 spectral bands located on four focal plane assemblies (FPAs), covering wavelengths from 0.41 to 14.4 micrometers. MODIS bands 1-30 collect data using photovoltaic (PV) detectors and, therefore, are referred to as the PV bands. Similarly, bands 31-36 using photoconductive (PC) detectors are referred to as the PC bands.The MODIS instrument was built with a set of on-board calibrators (OBCs) in order to track on-orbit changes of its radiometric, spatial, and spectral characteristics. In addition, an electronic calibration (ECAL) function can be used to monitor on-orbit changes of its electronic responses (gains). This is accomplished via a series of stair step signals generated by the ECAL function. These signals, in place of the FPA detector signals, are amplified and digitized just like the detector signals. Over the entire mission of both Terra and Aqua MODIS,the ECAL has been performed for the PV bands and used to assess their on-orbit performance. This paper provides an overview of MODIS on-orbit calibration activities with a focus on the PV ECAL, including its calibration process and approaches used to monitor the electronic performance. It presents the results derived and lessons learned from Terra and Aqua MODIS on-orbit ECAL. Also discussed are some of the applications performed with the information provided by the ECAL data.

  4. Calibration of Sudbury Neutrino Observatory for the detection of boron-8 neutrinos

    NASA Astrophysics Data System (ADS)

    Ford, Richard James

    1999-08-01

    The Sudbury Neutrino Observatory (SNO) is a second generation water Čerenkov detector using 1000 tonnes of heavy water to study neutrino astrophysics. Using deuterium neutrino reactions, SNO will measure the flux and energy spectrum of solar electron neutrinos, and will measure the flavour-blind flux of neutrinos. A nitrogen/multi-dye laser diffuser ball has been designed and installed in SNO for calibration of the electronics, photomultiplier tubes (PMTs) and optical parameters. The laser provides pulsed radiation at 337.1 nm with a 600 psec width and pulse rate up to 50 Hz. The laser can be used directly or as a pump for one of four dye laser resonators, which provides five wavelength selections from 337-500 nm. The light is delivered to a pseudo-isotropic diffuser ball (the laserball) by a 100 μm UV-VIS fibre bundle with less than 1 nsec dispersion at 337 nm. The laserball can be deployed throughout the detector with the rope manipulator system. The laserball output is adjustable from 0.01 to 1000 photo-electrons (PE) and has a pulsewidth of 0.90 nsec at 386 nm and 1.18 nsec at 337.1 nm. A method has been developed for measuring the optical attenuation and scattering in SNO using the laserball and single photo-electron (SPE) PMT time histograms. At SPE intensity the nanosecond PMT timing can be used to separate direct and scattered light, and the extinction coefficients determined using varying path lengths from the source. A calibration function has been developed that accounts for the position and direction dependence of the response for electrons and gamma rays. The calibration function uses simplified or parameterized distributions for the Čerenkov output and detector geometry. The function is fast enough to be built in to neutrino spectrum analysis and can be used to evaluate the uncertainties in the position response. The laserball system has been tested and used to provide a PMT and electronics calibration of the detector for analysis of the airfill commissioning runs. The electronics channels were calibrated for charge pedestals and slopes, time offsets and slopes and discriminator walk (slewing). The PMT occupancies were measured and a method was developed for measuring the mean SPE gain. Finally, event reconstruction was studied for the airfill data, and a time biased reconstruction algorithm was created for cutting flashing PMT events.

  5. Optical Calibration Process Developed for Neural-Network-Based Optical Nondestructive Evaluation Method

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation table in the presence of various sources of laboratory noise is shown. The output of the neural network is called the degradable classification index. The curve was generated by a simultaneous comparison of means, and it shows a peak-to-peak sensitivity of about 100 nm. The following graph uses model generated data from a compressor blade to show that much higher sensitivities are possible when the environment can be controlled better. The peak-to-peak sensitivity here is about 20 nm. The training procedure was modified for the second graph, and the data were subjected to an intensity-dependent transformation called folding. All the measurements for this approach to calibration were optical. The peak-to-peak amplitudes of the vibration modes were measured using heterodyne interferometry, and the modes themselves were recorded using television (electronic) holography.

  6. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  7. Direct calibration of a reference standard against the air kerma strength primary standard, at 192Ir HDR energy.

    PubMed

    Rajan, K N Govinda; Selvam, T Palani; Bhatt, B C; Vijayam, M; Patki, V S; Vinatha; Pendse, A M; Kannan, V

    2002-04-07

    The primary standard of low air kerma rate sources or beams, maintained at the Radiological Standards Laboratory (RSL) of the Bhabha Atomic Research Centre (BARC), is a 60 cm3 spherical graphite ionization chamber. A 192Ir HDR source was standardized at the hospital site in units of air kerma strength (AKS) using this primary standard. A 400 cm3 bakelite chamber, functioning as a reference standard at the RSL for a long period, at low air kerma rates (compared to external beam dose rates), was calibrated against the primary standard. It was seen that the primary standard and the reference standard, both being of low Z, showed roughly the same scatter response and yielded the same calibration factor for the 400 cm3 reference chamber, with or without room scatter. However, any likelihood of change in the reference chamber calibration factor would necessitate the re-transport of the primary standard to the hospital site for re-calibration. Frequent transport of the primary standard can affect the long-term stability of the primary standard, due to its movement or other extraneous causes. The calibration of the reference standard against the primary standard at the RSL, for an industrial type 192Ir source maintained at the laboratory, showed excellent agreement with the hospital calibration, making it possible to check the reference chamber calibration at RSL itself. Further calibration procedures have been developed to offer traceable calibration of the hospital well ionization chambers.

  8. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser".

    PubMed

    Boutoux, G; Batani, D; Burgy, F; Ducret, J-E; Forestier-Colleoni, P; Hulin, S; Rabhi, N; Duval, A; Lecherbourg, L; Reverdin, C; Jakubowska, K; Szabo, C I; Bastiani-Ceccotti, S; Consoli, F; Curcio, A; De Angelis, R; Ingenito, F; Baggio, J; Raffestin, D

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  9. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the "PETawatt Aquitaine Laser"

    NASA Astrophysics Data System (ADS)

    Boutoux, G.; Batani, D.; Burgy, F.; Ducret, J.-E.; Forestier-Colleoni, P.; Hulin, S.; Rabhi, N.; Duval, A.; Lecherbourg, L.; Reverdin, C.; Jakubowska, K.; Szabo, C. I.; Bastiani-Ceccotti, S.; Consoli, F.; Curcio, A.; De Angelis, R.; Ingenito, F.; Baggio, J.; Raffestin, D.

    2016-04-01

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolute response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.

  10. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the “PETawatt Aquitaine Laser”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutoux, G., E-mail: boutoux@celia.u-bordeaux1.fr; Batani, D.; Burgy, F.

    2016-04-15

    Thanks to their high dynamic range and ability to withstand electromagnetic pulse, imaging plates (IPs) are commonly used as passive detectors in laser-plasma experiments. In the framework of the development of the diagnostics for the Petawatt Aquitaine Laser facility, we present an absolute calibration and spatial resolution study of five different available types of IP (namely, MS-SR-TR-MP-ND) performed by using laser-induced K-shell X-rays emitted by a solid silver target irradiated by the laser ECLIPSE at CEntre Lasers Intenses et Applications. In addition, IP sensitivity measurements were performed with a 160 kV X-ray generator at CEA DAM DIF, where the absolutemore » response of IP SR and TR has been calibrated to X-rays in the energy range 8-75 keV with uncertainties of about 15%. Finally, the response functions have been modeled in Monte Carlo GEANT4 simulations in order to reproduce experimental data. Simulations enable extrapolation of the IP response functions to photon energies from 1 keV to 1 GeV, of interest, e.g., for laser-driven radiography.« less

  11. Pre-Launch Radiometric Performance Characterization of the Advanced Technology Microwave Sounder on the Joint Polar Satellite System-1 Satellite

    NASA Technical Reports Server (NTRS)

    Smith, Craig K.; Kim, Edward; Leslie, R. Vincent; Lyu, Joseph; McCormick, Lisa M.; Anderson, Kent

    2017-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a space-based, cross-track radiometer for operational atmospheric temperature and humidity sounding, utilizing 22 channels over a frequency range from 23 to 183 gigahertz. The ATMS for the Joint Polar Satellite System-1 has undergone two rounds of re-work in 2014-2015 and 2016, following performance issues discovered during and following thermal vacuum chamber (TVAC) testing at the instrument and observatory level. Final shelf-level testing, including measurement of pass band characteristics and spectral response functions, was completed in December 2016. Final instrument-level TVAC testing and calibration occurred during February 2017. Here we will describe the instrument-level TVAC calibration process, and illustrate with results from the final TVAC calibration effort.

  12. Reproducibility and calibration of MMC-based high-resolution gamma detectors

    DOE PAGES

    Bates, C. R.; Pies, C.; Kempf, S.; ...

    2016-07-15

    Here, we describe a prototype γ-ray detector based on a metallic magnetic calorimeter with an energy resolution of 46 eV at 60 keV and a reproducible response function that follows a simple second-order polynomial. The simple detector calibration allows adding high-resolution spectra from different pixels and different cool-downs without loss in energy resolution to determine γ-ray centroids with high accuracy. As an example of an application in nuclear safeguards enabled by such a γ-ray detector, we discuss the non-destructive assay of 242Pu in a mixed-isotope Pu sample.

  13. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures

    NASA Astrophysics Data System (ADS)

    Sun, Limin; Chen, Lin

    2017-10-01

    Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.

  14. The use of deep convective clouds to uniformly calibrate the next generation of geostationary reflective solar imagers

    NASA Astrophysics Data System (ADS)

    Doelling, David R.; Bhatt, Rajendra; Haney, Conor O.; Gopalan, Arun; Scarino, Benjamin R.

    2017-09-01

    The new 3rd generation geostationary (GEO) imagers will have many of the same NPP-VIIRS imager spectral bands, thereby offering the opportunity to apply the VIIRS cloud, aerosol, and land use retrieval algorithms on the new GEO imager measurements. Climate quality retrievals require multi-channel calibrated radiances that are stable over time. The deep convective cloud calibration technique (DCCT) is a large ensemble statistical technique that assumes that the DCC reflectance is stable over time. Because DCC are found in sufficient numbers across all GEO domains, they provide a uniform calibration stability evaluation across the GEO constellation. The baseline DCCT has been successful in calibrating visible and near-infrared channels. However, for shortwave infrared (SWIR) channels the DCCT is not as effective to monitor radiometric stability. The DCCT was optimized as a function wavelength in this paper. For SWIR bands, the greatest reduction of the DCC response trend standard error was achieved through deseasonalization. This is effective because the DCC reflectance exhibits small regional seasonal cycles that can be characterized on a monthly basis. On the other hand, the inter-annually variability in DCC response was found to be extremely small. The Met-9 0.65-μm channel DCC response was found to have a 3% seasonal cycle. Deseasonalization reduced the trend standard error from 1% to 0.4%. For the NPP-VIIRS SWIR bands, deseasonalization reduced the trend standard error by more than half. All VIIRS SWIR band trend standard errors were less than 1%. The DCCT should be able to monitor the stability of all GEO imager solar reflective bands across the tropical domain with the same uniform accuracy.

  15. A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part 2 ; Validation

    NASA Technical Reports Server (NTRS)

    Doelling, David R.; Bhatt, Rajendra; Scarino, Benjamin R.; Gopalan, Arun; Haney, Conor O.; Minnis, Patrick; Bedka, Kristopher M.

    2016-01-01

    Consistent cross-sensor Advanced Very High Resolution Radiometer (AVHRR) calibration coefficients are determined using desert, polar ice, and deep convective cloud (DCC) invariant Earth targets. The greatest AVHRR calibration challenge is the slow orbit degradation of the host satellite, which precesses toward a terminator orbit. This issue is solved by characterizing the invariant targets with NOAA-16 AVHRR observed radiances that have been referenced to the Aqua Moderate Resolution Imaging Spectrometer (MODIS) calibration using simultaneous nadir overpass (SNO) observations. Another benefit of the NOAA-16 invariant target-modeled reflectance method is that, because of the similarities among the AVHRR spectral response functions, a smaller spectral band adjustment factor is required than when establishing calibrations relative to a non-AVHRR reference instrument. The sensor- and band-specific calibration uncertainties, with respect to the calibration reference, are, on average, 2 percent and 3 percent for channels 1 and 2, respectively. The uncertainties are smaller for sensors that are in afternoon orbits, have longer records, and spend less time in terminator conditions. The multiple invariant targets referenced to Aqua MODIS (MITRAM) AVHRR calibration coefficients are evaluated for individual target consistency, compared against Aqua MODIS/AVHRR SNOs, and selected published calibration gains. The MITRAM and SNO relative calibration biases mostly agree to within 1 percent for channels 1 and 2, respectively. The individual invariant target and MITRAM sensor relative calibration biases are mostly consistent to within 1 percent and 2 percent for channels 1 and 2, respectively. The differences between the MITRAM and other published calibrations are mostly attributed to the reference instrument calibration differences.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee, E-mail: symolloi@uci.edu

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diametermore » of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector.« less

  17. Status of use of lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Anderson, J.M.; ,

    2002-01-01

    Routine observations of the Moon have been acquired by the Robotic Lunar Observatory (ROLO) for over four years. The ROLO instruments measure lunar radiance in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands every month when the Moon is at phase angle less than 90 degrees. These are converted to exoatmospheric values at standard distances using an atmospheric extinction model based on observations of standard stars and a NIST-traceable absolute calibration source. Reduction of the stellar images also provides an independent pathway for absolute calibration. Comparison of stellar-based and lamp-based absolute calibrations of the lunar images currently shows unacceptably large differences. An analytic model of lunar irradiance as a function of phase angle and viewing geometry is derived from the calibrated lunar images. Residuals from models which fit hundreds of observations at each wavelength average less than 2%. Comparison with SeaWiFS observations over three years reveals a small quasi-periodic change in SeaWiFS responsivity that correlates with distance from the Sun for the first two years, then departs from this correlation.

  18. Cross-Calibration between ASTER and MODIS Visible to Near-Infrared Bands for Improvement of ASTER Radiometric Calibration

    PubMed Central

    Tsuchida, Satoshi; Thome, Kurtis

    2017-01-01

    Radiometric cross-calibration between the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) has been partially used to derive the ASTER radiometric calibration coefficient (RCC) curve as a function of date on visible to near-infrared bands. However, cross-calibration is not sufficiently accurate, since the effects of the differences in the sensor’s spectral and spatial responses are not fully mitigated. The present study attempts to evaluate radiometric consistency across two sensors using an improved cross-calibration algorithm to address the spectral and spatial effects and derive cross-calibration-based RCCs, which increases the ASTER calibration accuracy. Overall, radiances measured with ASTER bands 1 and 2 are on averages 3.9% and 3.6% greater than the ones measured on the same scene with their MODIS counterparts and ASTER band 3N (nadir) is 0.6% smaller than its MODIS counterpart in current radiance/reflectance products. The percentage root mean squared errors (%RMSEs) between the radiances of two sensors are 3.7, 4.2, and 2.3 for ASTER band 1, 2, and 3N, respectively, which are slightly greater or smaller than the required ASTER radiometric calibration accuracy (4%). The uncertainty of the cross-calibration is analyzed by elaborating the error budget table to evaluate the International System of Units (SI)-traceability of the results. The use of the derived RCCs will allow further reduction of errors in ASTER radiometric calibration and subsequently improve interoperability across sensors for synergistic applications. PMID:28777329

  19. Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients

    NASA Astrophysics Data System (ADS)

    Yu, Mingbiao; Cai, Tijing

    2018-05-01

    The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.

  20. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique offers an accurate and efficient way to calibrate the energy response of a photon-counting detector. PMID:25471962

  1. Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts.

    PubMed

    Das, R K; Li, Z; Perera, H; Williamson, J F

    1996-06-01

    Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.

  2. Calibration-free optical chemical sensors

    DOEpatents

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  3. Absolute Effective Area of the Chandra High-Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.

    2000-01-01

    The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.

  4. Radiometric and spectral stray light correction for the portable remote imaging spectrometer (PRISM) coastal ocean sensor

    NASA Astrophysics Data System (ADS)

    Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.

    2017-09-01

    The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.

  5. Calibration Designs for Non-Monolithic Wind Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas H.; Parker, Peter A.; Landman, Drew

    2010-01-01

    This research paper investigates current experimental designs and regression models for calibrating internal wind tunnel force balances of non-monolithic design. Such calibration methods are necessary for this class of balance because it has an electrical response that is dependent upon the sign of the applied forces and moments. This dependency gives rise to discontinuities in the response surfaces that are not easily modeled using traditional response surface methodologies. An analysis of current recommended calibration models is shown to lead to correlated response model terms. Alternative modeling methods are explored which feature orthogonal or near-orthogonal terms.

  6. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.

  7. Beyond allostatic load: rethinking the role of stress in regulating human development.

    PubMed

    Ellis, Bruce J; Del Giudice, Marco

    2014-02-01

    How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.

  8. Thematic Mapper. Volume 1: Calibration report flight model, LANDSAT 5

    NASA Technical Reports Server (NTRS)

    Cooley, R. C.; Lansing, J. C.

    1984-01-01

    The calibration of the Flight 1 Model Thematic Mapper is discussed. Spectral response, scan profile, coherent noise, line spread profiles and white light leaks, square wave response, radiometric calibration, and commands and telemetry are specifically addressed.

  9. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  10. Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors

    PubMed Central

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-01-01

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient. PMID:26501287

  11. Muon Energy Calibration of the MINOS Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagawa, Paul S.

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized tomore » calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.« less

  12. Calibration of the NPL secondary standard radionuclide calibrator for 32P, 89Sr and 90Y

    NASA Astrophysics Data System (ADS)

    Woods, M. J.; Munster, A. S.; Sephton, J. P.; Lucas, S. E. M.; Walsh, C. Paton

    1996-02-01

    Pure beta particle emitting radionuclides have many therapeutic applications in nuclear medicine. The response of the NPL secondary standard radionuclide calibrator to 32P, 89Sr and 90Y has been measured using accurately calibrated solutions. For this purpose, high efficiency solid sources were prepared gravimetrically from dilute solutions of each radionuclide and assayed in a 4π proportional counter; the source activities were determined using known detection efficiency factors. Measurements were made of the current response (pA/MBq) of the NPL secondary standard radionuclide calibrator using the original concentrated solutions. Calibration figures have been derived for 2 and 5 ml British Standard glass ampoules and Amersham International plc P6 vials. Volume correction factors have also been determined. Gamma-ray emitting contaminants can have a disproportionate effect on the calibrator response and particular attention has been paid to this.

  13. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    PubMed

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

  14. Accuracy of rapid radiographic film calibration for intensity‐modulated radiation therapy verification

    PubMed Central

    Kulasekere, Ravi; Moran, Jean M.; Fraass, Benedick A.; Roberson, Peter L.

    2006-01-01

    A single calibration film method was evaluated for use with intensity‐modulated radiation therapy film quality assurance measurements. The single‐film method has the potential advantages of exposure simplicity, less media consumption, and improved processor quality control. Potential disadvantages include cross contamination of film exposure, implementation effort to document delivered dose, and added complication of film response analysis. Film response differences were measured between standard and single‐film calibration methods. Additional measurements were performed to help trace causes for the observed discrepancies. Kodak X‐OmatV (XV) film was found to have greater response variability than extended dose range (EDR) film. We found it advisable for XV film to relate the film response calibration for the single‐film method to a user‐defined optimal calibration geometry. Using a single calibration film exposed at the time of experiment, the total uncertainty of film response was estimated to be <2% (1%) for XV (EDR) film at 50 (100) cGy and higher, respectively. PACS numbers: 87.53.‐j, 87.53.Dq PMID:17533325

  15. In-Flight Calibration of the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Esposito, J. A.; Bertsch, D. L.; Chen, A. W.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; hide

    1998-01-01

    The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory has been operating for over seven years since its launch in 1991 April. This span of time far exceeds the design lifetime of two years. As the instrument has aged, several changes have occurred due to spark chamber gas exchanges as well as some hardware degradation and failures, all of which have an influence on the instrument sensitivity. This paper describes post-launch measurements and analysis that are done to calibrate the instrument response functions. The updated instrument characteristics are incorporated into the analysis software.

  16. MODIS On-Board Blackbody Function and Performance

    NASA Technical Reports Server (NTRS)

    Xiaoxiong, Xiong; Wenny, Brian N.; Wu, Aisheng; Barnes, William

    2009-01-01

    Two MODIS instruments are currently in orbit, making continuous global observations in visible to long-wave infrared wavelengths. Compared to heritage sensors, MODIS was built with an advanced set of on-board calibrators, providing sensor radiometric, spectral, and spatial calibration and characterization during on-orbit operation. For the thermal emissive bands (TEB) with wavelengths from 3.7 m to 14.4 m, a v-grooved blackbody (BB) is used as the primary calibration source. The BB temperature is accurately measured each scan (1.47s) using a set of 12 temperature sensors traceable to NIST temperature standards. The onboard BB is nominally operated at a fixed temperature, 290K for Terra MODIS and 285K for Aqua MODIS, to compute the TEB linear calibration coefficients. Periodically, its temperature is varied from 270K (instrument ambient) to 315K in order to evaluate and update the nonlinear calibration coefficients. This paper describes MODIS on-board BB functions with emphasis on on-orbit operation and performance. It examines the BB temperature uncertainties under different operational conditions and their impact on TEB calibration and data product quality. The temperature uniformity of the BB is also evaluated using TEB detector responses at different operating temperatures. On-orbit results demonstrate excellent short-term and long-term stability for both the Terra and Aqua MODIS on-board BB. The on-orbit BB temperature uncertainty is estimated to be 10mK for Terra MODIS at 290K and 5mK for Aqua MODIS at 285K, thus meeting the TEB design specifications. In addition, there has been no measurable BB temperature drift over the entire mission of both Terra and Aqua MODIS.

  17. Comparison of global optimization approaches for robust calibration of hydrologic model parameters

    NASA Astrophysics Data System (ADS)

    Jung, I. W.

    2015-12-01

    Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  18. Vestibular Function Measurement Devices

    PubMed Central

    Miles, Richard D.; Zapala, David A.

    2015-01-01

    Vestibular function laboratories utilize a multitude of diagnostic instruments to evaluate a dizzy patient. Caloric irrigators, oculomotor stimuli, and rotational chairs produce a stimulus whose accuracy is required for the patient response to be accurate. Careful attention to everything from cleanliness of equipment to threshold adjustments determine on a daily basis if patient data are going to be correct and useful. Instrumentation specifications that change with time such as speed and temperature must periodically be checked using calibrated instruments. PMID:27516710

  19. Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis.

    PubMed

    Scholten, K; Collin, W R; Fan, X; Zellers, E T

    2015-05-28

    A vapor sensor comprising a nanoparticle-coated microfabricated optofluidic ring resonator (μOFRR) is introduced. A multilayer film of polyether functionalized, thiolate-monolayer-protected gold nanoparticles (MPN) was solvent cast on the inner wall of the hollow cylindrical SiOxμOFRR resonator structure, and whispering gallery mode (WGM) resonances were generated with a 1550 nm tunable laser via an optical fiber taper. Reversible shifts in the WGM resonant wavelength upon vapor exposure were detected with a photodetector. The μOFRR chip was connected to a pair of upstream etched-Si chips containing PDMS-coated separation μcolumns and calibration curves were generated from the peak-area responses to five volatile organic compounds (VOCs). Calibration curves were linear, and the sensitivities reflected the influence of analyte volatility and analyte-MPN functional group affinity. Sorption-induced changes in film thickness apparently dominate over changes in the refractive index of the film as the determinant of responses for all VOCs. Peaks from the MPN-coated μOFRR were just 20-50% wider than those from a flame ionization detector for similar μcolumn separation conditions, reflecting the rapid response of the sensor for VOCs. The five VOCs were baseline separated in <1.67 min, with detection limits as low as 38 ng.

  20. Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis

    NASA Astrophysics Data System (ADS)

    Scholten, K.; Collin, W. R.; Fan, X.; Zellers, E. T.

    2015-05-01

    A vapor sensor comprising a nanoparticle-coated microfabricated optofluidic ring resonator (μOFRR) is introduced. A multilayer film of polyether functionalized, thiolate-monolayer-protected gold nanoparticles (MPN) was solvent cast on the inner wall of the hollow cylindrical SiOx μOFRR resonator structure, and whispering gallery mode (WGM) resonances were generated with a 1550 nm tunable laser via an optical fiber taper. Reversible shifts in the WGM resonant wavelength upon vapor exposure were detected with a photodetector. The μOFRR chip was connected to a pair of upstream etched-Si chips containing PDMS-coated separation μcolumns and calibration curves were generated from the peak-area responses to five volatile organic compounds (VOCs). Calibration curves were linear, and the sensitivities reflected the influence of analyte volatility and analyte-MPN functional group affinity. Sorption-induced changes in film thickness apparently dominate over changes in the refractive index of the film as the determinant of responses for all VOCs. Peaks from the MPN-coated μOFRR were just 20-50% wider than those from a flame ionization detector for similar μcolumn separation conditions, reflecting the rapid response of the sensor for VOCs. The five VOCs were baseline separated in <1.67 min, with detection limits as low as 38 ng.

  1. Position reconstruction in LUX

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-02-01

    The (x, y) position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessed with calibration data including 83mKr (releasing a total energy of 41.5 keV) and 3H (β- with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV) . Within the detector's fiducial volume, the reconstruction has achieved an (x, y) position uncertainty of σ = 0.82 cm and σ = 0.17 cm for events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are associated with electron recoils of energies ~0.25 keV and ~10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface (22 detected photons) has a horizontal (x, y) uncertainty of 2.13 cm.

  2. Calibrating the Medical Council of Canada's Qualifying Examination Part I using an integrated item response theory framework: a comparison of models and designs.

    PubMed

    De Champlain, Andre F; Boulais, Andre-Philippe; Dallas, Andrew

    2016-01-01

    The aim of this research was to compare different methods of calibrating multiple choice question (MCQ) and clinical decision making (CDM) components for the Medical Council of Canada's Qualifying Examination Part I (MCCQEI) based on item response theory. Our data consisted of test results from 8,213 first time applicants to MCCQEI in spring and fall 2010 and 2011 test administrations. The data set contained several thousand multiple choice items and several hundred CDM cases. Four dichotomous calibrations were run using BILOG-MG 3.0. All 3 mixed item format (dichotomous MCQ responses and polytomous CDM case scores) calibrations were conducted using PARSCALE 4. The 2-PL model had identical numbers of items with chi-square values at or below a Type I error rate of 0.01 (83/3,499 or 0.02). In all 3 polytomous models, whether the MCQs were either anchored or concurrently run with the CDM cases, results suggest very poor fit. All IRT abilities estimated from dichotomous calibration designs correlated very highly with each other. IRT-based pass-fail rates were extremely similar, not only across calibration designs and methods, but also with regard to the actual reported decision to candidates. The largest difference noted in pass rates was 4.78%, which occurred between the mixed format concurrent 2-PL graded response model (pass rate= 80.43%) and the dichotomous anchored 1-PL calibrations (pass rate= 85.21%). Simpler calibration designs with dichotomized items should be implemented. The dichotomous calibrations provided better fit of the item response matrix than more complex, polytomous calibrations.

  3. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  4. Development and psychometric evaluation of the PROMIS Pediatric Life Satisfaction item banks, child-report, and parent-proxy editions.

    PubMed

    Forrest, Christopher B; Devine, Janine; Bevans, Katherine B; Becker, Brandon D; Carle, Adam C; Teneralli, Rachel E; Moon, JeanHee; Tucker, Carole A; Ravens-Sieberer, Ulrike

    2018-01-01

    To describe the psychometric evaluation and item response theory calibration of the PROMIS Pediatric Life Satisfaction item banks, child-report, and parent-proxy editions. A pool of 55 life satisfaction items was administered to 1992 children 8-17 years old and 964 parents of children 5-17 years old. Analyses included descriptive statistics, reliability, factor analysis, differential item functioning, and assessment of construct validity. Thirteen items were deleted because of poor psychometric performance. An 8-item short form was administered to a national sample of 996 children 8-17 years old, and 1294 parents of children 5-17 years old. The combined sample (2988 children and 2258 parents) was used in item response theory (IRT) calibration analyses. The final item banks were unidimensional, the items were locally independent, and the items were free from impactful differential item functioning. The 8-item and 4-item short form scales showed excellent reliability, convergent validity, and discriminant validity. Life satisfaction decreased with declining socio-economic status, presence of a special health care need, and increasing age for girls, but not boys. After IRT calibration, we found that 4- and 8-item short forms had a high degree of precision (reliability) across a wide range (>4 SD units) of the latent variable. The PROMIS Pediatric Life Satisfaction item banks and their short forms provide efficient, precise, and valid assessments of life satisfaction in children and youth.

  5. Development and Evaluation of the PROMIS® Pediatric Positive Affect Item Bank, Child-Report and Parent-Proxy Editions.

    PubMed

    Forrest, Christopher B; Ravens-Sieberer, Ulrike; Devine, Janine; Becker, Brandon D; Teneralli, Rachel; Moon, JeanHee; Carle, Adam; Tucker, Carole A; Bevans, Katherine B

    2018-03-01

    The purpose of this study is to describe the psychometric evaluation and item response theory calibration of the PROMIS Pediatric Positive Affect item bank, child-report and parent-proxy editions. The initial item pool comprising 53 items, previously developed using qualitative methods, was administered to 1,874 children 8-17 years old and 909 parents of children 5-17 years old. Analyses included descriptive statistics, reliability, factor analysis, differential item functioning, and construct validity. A total of 14 items were deleted, because of poor psychometric performance, and an 8-item short form constructed from the remaining 39 items was administered to a national sample of 1,004 children 8-17 years old, and 1,306 parents of children 5-17 years old. The combined sample was used in item response theory (IRT) calibration analyses. The final item bank appeared unidimensional, the items appeared locally independent, and the items were free from differential item functioning. The scales showed excellent reliability and convergent and discriminant validity. Positive affect decreased with children's age and was lower for those with a special health care need. After IRT calibration, we found that 4 and 8 item short forms had a high degree of precision (reliability) across a wide range of the latent trait (>4 SD units). The PROMIS Pediatric Positive Affect item bank and its short forms provide an efficient, precise, and valid assessment of positive affect in children and youth.

  6. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  7. Comparison of two methodologies for calibrating satellite instruments in the visible and near infrared

    PubMed Central

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher

    2016-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861

  8. On-orbit performance of the Landsat-7 ETM+ radiometric calibrators

    USGS Publications Warehouse

    Markham, Brian L; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    2003-01-01

    The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) incorporates two new devices to improve its absolute radiometric calibration: a Full Aperture Solar Calibrator (FASC) and a Partial Aperture Solar Calibrator (PASC). The FASC is a diffuser panel, typically deployed once per month. Initial FASC absolute calibration results were within 5% of the pre-launch calibrations. Over time, the responses of the ETM+ to the FASC have varied with the location viewed on the panel, suggesting a localized degradation or contamination of the panel. On the best part of the panel, the trends in response range from m 1.4% y m 1 (band 4) to +0.6% y m 1 (band 7), with band 5 showing the least change at m 0.4% y m 1 . Changes in the panel reflectance due to UV exposure are believed to be the origin of these trends. The PASC is a set of auxiliary optics that allows the ETM+ to image the Sun through reduced apertures. PASC data have normally been acquired on a daily basis. Unlike the FASC, the PASC has exhibited significant anomalies. During the first six months of operation, responses to the PASC increased up to 60%, sending bands 2, 3 and 8 into saturation (band 1 was saturated at launch). The short-wave infrared (SWIR) band individual detectors have shown variations up to - 20% in response to the PASC. The variation is different for each detector. After the first six months, the responses to the PASC have become more stable, with much of the variation related to the within-scan position of the solar image. Overall results to date for all calibrators and comparisons with vicarious calibrations indicate that most of the response variations have been due to the calibrators themselves and suggest that the instrument has been stable with changes in response of less than 0.5% y m 1 .

  9. First Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Data Processing Methods and Systematic Errors Limits

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.

    2003-01-01

    We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

  10. Comparison of Calibration Methods for Tristimulus Colorimeters.

    PubMed

    Gardner, James L

    2007-01-01

    Uncertainties in source color measurements with a tristimulus colorimeter are estimated for calibration factors determined, based on a known source spectral distribution or on accurate measurements of the spectral responsivities of the colorimeter channels. Application is to the National Institute of Standards and Technology (NIST) colorimeter and an International Commission on Illumination (CIE) Illuminant A calibration. Detector-based calibration factors generally have lower uncertainties than source-based calibration factors. Uncertainties are also estimated for calculations of spectral mismatch factors. Where both spectral responsivities of the colorimeter channels and the spectral power distributions of the calibration and test sources are known, uncertainties are lowest if the colorimeter calibration factors are recalculated for the test source; this process also avoids correlations between the CIE Source A calibration factors and the spectral mismatch factors.

  11. Comparison of Calibration Methods for Tristimulus Colorimeters

    PubMed Central

    Gardner, James L.

    2007-01-01

    Uncertainties in source color measurements with a tristimulus colorimeter are estimated for calibration factors determined, based on a known source spectral distribution or on accurate measurements of the spectral responsivities of the colorimeter channels. Application is to the National Institute of Standards and Technology (NIST) colorimeter and an International Commission on Illumination (CIE) Illuminant A calibration. Detector-based calibration factors generally have lower uncertainties than source-based calibration factors. Uncertainties are also estimated for calculations of spectral mismatch factors. Where both spectral responsivities of the colorimeter channels and the spectral power distributions of the calibration and test sources are known, uncertainties are lowest if the colorimeter calibration factors are recalculated for the test source; this process also avoids correlations between the CIE Source A calibration factors and the spectral mismatch factors. PMID:27110460

  12. Stable Local Volatility Calibration Using Kernel Splines

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas F.; Li, Yuying; Wang, Cheng

    2010-09-01

    We propose an optimization formulation using L1 norm to ensure accuracy and stability in calibrating a local volatility function for option pricing. Using a regularization parameter, the proposed objective function balances the calibration accuracy with the model complexity. Motivated by the support vector machine learning, the unknown local volatility function is represented by a kernel function generating splines and the model complexity is controlled by minimizing the 1-norm of the kernel coefficient vector. In the context of the support vector regression for function estimation based on a finite set of observations, this corresponds to minimizing the number of support vectors for predictability. We illustrate the ability of the proposed approach to reconstruct the local volatility function in a synthetic market. In addition, based on S&P 500 market index option data, we demonstrate that the calibrated local volatility surface is simple and resembles the observed implied volatility surface in shape. Stability is illustrated by calibrating local volatility functions using market option data from different dates.

  13. Ground-based x-ray calibration of the Astro-H/Hitomi soft x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Izumiya, Takanori; Minami, Sari

    2018-01-01

    We present the summary of the on-ground calibration of two soft x-ray telescopes (SXT-I and SXT-S), developed by NASA's Goddard Space Flight Center (GSFC), onboard Astro-H/Hitomi. After the initial x-ray measurements with a diverging beam at the GSFC 100-m beamline, we performed the full calibration of the x-ray performance, using the 30-m x-ray beamline facility at the Institute of Space and Astronautical Science of Japan Aerospace Exploration Agency in Japan. We adopted a raster scan method with a narrow x-ray pencil beam with a divergence of ˜15″. The on-axis effective area (EA), half-power diameter, and vignetting function were measured at several energies between 1.5 and 17.5 keV. The detailed results appear in tables and figures in this paper. We measured and evaluated the performance of the SXT-S and the SXT-I with regard to the detector-limited field-of-view and the pixel size of the paired flight detector, i.e., SXS and the SXI, respectively. The primary items measured are the EA, image quality, and stray light for on-axis and off-axis sources. The accurate measurement of these parameters is vital to make the precise response function of the ASTRO-H SXTs. This paper presents the definitive results of the ground-based calibration of the ASTRO-H SXTs.

  14. Multi-parameter Nonlinear Gain Correction of X-ray Transition Edge Sensors for the X-ray Integral Field Unit

    NASA Astrophysics Data System (ADS)

    Cucchetti, E.; Eckart, M. E.; Peille, P.; Porter, F. S.; Pajot, F.; Pointecouteau, E.

    2018-04-01

    With its array of 3840 Transition Edge Sensors (TESs), the Athena X-ray Integral Field Unit (X-IFU) will provide spatially resolved high-resolution spectroscopy (2.5 eV up to 7 keV) from 0.2 to 12 keV, with an absolute energy scale accuracy of 0.4 eV. Slight changes in the TES operating environment can cause significant variations in its energy response function, which may result in systematic errors in the absolute energy scale. We plan to monitor such changes at pixel level via onboard X-ray calibration sources and correct the energy scale accordingly using a linear or quadratic interpolation of gain curves obtained during ground calibration. However, this may not be sufficient to meet the 0.4 eV accuracy required for the X-IFU. In this contribution, we introduce a new two-parameter gain correction technique, based on both the pulse-height estimate of a fiducial line and the baseline value of the pixels. Using gain functions that simulate ground calibration data, we show that this technique can accurately correct deviations in detector gain due to changes in TES operating conditions such as heat sink temperature, bias voltage, thermal radiation loading and linear amplifier gain. We also address potential optimisations of the onboard calibration source and compare the performance of this new technique with those previously used.

  15. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  16. Self-calibration techniques of underwater gamma ray spectrometers.

    PubMed

    Vlachos, D S

    2005-01-01

    In situ continuous monitoring of radioactivity in the water environment has many advantages compared to sampling and analysis techniques but a few shortcomings as well. Apart from the problems encountered in the assembly of the carrying autonomous systems, continuous operation some times alters the response function of the detectors. For example, the continuous operation of a photomultiplier tube results in a shift in the measured spectrum towards lower energies, making thus necessary the re-calibration of the detector. In this work, it is proved, that when measuring radioactivity in seawater, a photo peak around 50 keV will be always present in the measured spectrum. This peak is stable, depends only on the scattering rates of photons in seawater and, when it is detectable, can be used in conjunction with other peaks (40K and/or 208Tl) as a reference peak for the continuous calibration of the detector.

  17. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  18. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    PubMed

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various types of spectroscopy data.

  19. 40 CFR 1065.303 - Summary of required calibration and verifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: FID calibrationTHC FID optimization, and THC FID verification Calibrate all FID analyzers: upon initial installation and after major maintenance.Optimize and determine CH4 response for THC FID analyzers: upon initial installation and after major maintenance. Verify CH4 response for THC FID analyzers: upon...

  20. Automated response matching for organic scintillation detector arrays

    NASA Astrophysics Data System (ADS)

    Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.

    2017-07-01

    This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.

  1. Augmenting understanding of the relationship between situation awareness and confidence using calibration analysis.

    PubMed

    Lichacz, Frederick M J

    2008-10-01

    The present study represents a preliminary examination of the relationship between situation awareness (SA) and confidence within a distributed information-sharing environment using the calibration methodology. The calibration methodology uses the indices of calibration, resolution and over/under-confidence to examine the relationship between the accuracy of the responses and the degree of confidence that one has in these responses, which leads to a measure of an operator's meta-SA. The results of this study revealed that, although the participants were slightly overconfident in their responses, overall they demonstrated good meta-SA. That is, the participants' subjective probability judgements corresponded to their pattern of SA response accuracy. It is concluded that the use of calibration analysis represents a better methodology for expanding our understanding of the relationship between SA and confidence and ultimately how this relationship can impact decision-making and performance in applied settings than can be achieved by examining SA measures alone.

  2. Calibration and prediction of removal function in magnetorheological finishing.

    PubMed

    Dai, Yifan; Song, Ci; Peng, Xiaoqiang; Shi, Feng

    2010-01-20

    A calibrated and predictive model of the removal function has been established based on the analysis of a magnetorheological finishing (MRF) process. By introducing an efficiency coefficient of the removal function, the model can be used to calibrate the removal function in a MRF figuring process and to accurately predict the removal function of a workpiece to be polished whose material is different from the spot part. Its correctness and feasibility have been validated by simulations. Furthermore, applying this model to the MRF figuring experiments, the efficiency coefficient of the removal function can be identified accurately to make the MRF figuring process deterministic and controllable. Therefore, all the results indicate that the calibrated and predictive model of the removal function can improve the finishing determinacy and increase the model applicability in a MRF process.

  3. Regional estimation of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.

    2015-04-01

    Reducing the number of calibration parameters is of a considerable advantage when area distributed hydrological models are to be calibrated, both due to equifinality and over-parameterization of the model in general, and for making the calibration process more efficient. A simple non-threshold response model for drainage in natural catchments based on among others Kirchner's article in WRR 2009 is implemented in the gridded hydrological model in the ENKI framework. This response model takes only the hydrogram into account; it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. In former analyses of natural discharge series from a large number of catchments in different regions of Norway, we found that these response model parameters can be calculated from some known catchment characteristics, as catchment area and lake percentage, found in maps or data bases, meaning that the parameters can easily be found also for ungauged catchments. In the presented work from the EU project COMPLEX a large region in Mid-Norway containing 27 simulated catchments of different sizes and characteristics is calibrated. Results from two different calibration strategies are compared: 1) removing the response parameters from the calibration by calculating them in advance, based on the results from our former studies, and 2) including the response parameters in the calibration, both as maps with different values for each catchment, and as a constant number for the total region. The resulting simulation performances are compared and discussed.

  4. GIADA: extended calibration activities before the comet encounter

    NASA Astrophysics Data System (ADS)

    Accolla, Mario; Sordini, Roberto; Della Corte, Vincenzo; Ferrari, Marco; Rotundi, Alessandra

    2014-05-01

    The Grain Impact Analyzer and Dust Accumulator - GIADA - is one of the payloads on-board Rosetta Orbiter. Its three detection sub-systems are able to measure the speed, the momentum, the mass, the optical cross section of single cometary grains and the dust flux ejected by the periodic comet 67P Churyumov-Gerasimenko. During the Hibernation phase of the Rosetta mission, we have performed a dedicated extended calibration activity on the GIADA Proto Flight Model (accommodated in a clean room in our laboratory) involving two of three sub-systems constituting GIADA, i.e. the Grain Detection System (GDS) and the Impact Sensor (IS). Our aim is to carry out a new set of response curves for these two subsystems and to correlate them with the calibration curves obtained in 2002 for the GIADA payload onboard the Rosetta spacecraft, in order to improve the interpretation of the forthcoming scientific data. For the extended calibration we have dropped or shot into GIADA PFM a statistically relevant number of grains (i.e. about 1 hundred), acting as cometary dust analogues. We have studied the response of the GDS and IS as a function of grain composition, size and velocity. Different terrestrial materials were selected as cometary analogues according to the more recent knowledge gained through the analyses of Interplanetary Dust Particles and cometary samples returned from comet 81P/Wild 2 (Stardust mission). Therefore, for each material, we have produced grains with sizes ranging from 20-500 μm in diameter, that were characterized by FESEM and micro IR spectroscopy. Therefore, the grains were shot into GIADA PFM with speed ranging between 1 and 100 ms-1. Indeed, according to the estimation reported in Fink & Rubin (2012), this range is representative of the dust particle velocity expected at the comet scenario and lies within the GIADA velocity sensitivity (i.e. 1-100 ms-1 for GDSand 1-300 ms-1for GDS+IS 1-300 ms-1). The response curves obtained using the data collected during the GIADA PFM extended calibration will be linked to the on-ground calibration data collected during the instrument qualification campaign (performed both on Flight and Spare Models, in 2002). The final aim is to rescale the Extended Calibration data obtained with the GIADA PFM to GIADA presently onboard the Rosetta spacecraft. In this work we present the experimental procedures and the setup used for the calibration activities, particularly focusing on the new response curves of GDS and IS sub-systems obtained for the different cometary dust analogues. These curves will be critical for the future interpretation of scientific data. Fink, U. & Rubin, M. (2012), The calculation of Afρ and mass loss rate for comets, Icarus, Volume 221, issue 2, p. 721-734

  5. Direct Reading Particle Counters: Calibration Verification and Multiple Instrument Agreement via Bump Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovic, John; Zontek, Tracy L.; Ogle, Burton R.

    We examined the calibration records of two direct reading instruments designated as condensation particle counters in order to determine the number of times they were found to be out of tolerance at annual manufacturer's recalibration. For both instruments were found to be out of tolerance more times than within tolerance. And, it was concluded that annual calibration alone was insufficient to provide operational confidence in an instrument's response. Thus, a method based on subsequent agreement with data gathered from a newly calibrated instrument was developed to confirm operational readiness between annual calibrations, hereafter referred to as bump testing. The methodmore » consists of measuring source particles produced by a gas grille spark igniter in a gallon-size jar. Sampling from this chamber with a newly calibrated instrument to determine the calibrated response over the particle concentration range of interest serves as a reference. Agreement between this reference response and subsequent responses at later dates implies that the instrument is performing as it was at the time of calibration. Side-by-side sampling allows the level of agreement between two or more instruments to be determined. This is useful when simultaneously collected data are compared for differences, i.e., background with process aerosol concentrations. A reference set of data was obtained using the spark igniter. The generation system was found to be reproducible and suitable to form the basis of calibration verification. Finally, the bump test is simple enough to be performed periodically throughout the calibration year or prior to field monitoring.« less

  6. Direct Reading Particle Counters: Calibration Verification and Multiple Instrument Agreement via Bump Testing

    DOE PAGES

    Jankovic, John; Zontek, Tracy L.; Ogle, Burton R.; ...

    2015-01-27

    We examined the calibration records of two direct reading instruments designated as condensation particle counters in order to determine the number of times they were found to be out of tolerance at annual manufacturer's recalibration. For both instruments were found to be out of tolerance more times than within tolerance. And, it was concluded that annual calibration alone was insufficient to provide operational confidence in an instrument's response. Thus, a method based on subsequent agreement with data gathered from a newly calibrated instrument was developed to confirm operational readiness between annual calibrations, hereafter referred to as bump testing. The methodmore » consists of measuring source particles produced by a gas grille spark igniter in a gallon-size jar. Sampling from this chamber with a newly calibrated instrument to determine the calibrated response over the particle concentration range of interest serves as a reference. Agreement between this reference response and subsequent responses at later dates implies that the instrument is performing as it was at the time of calibration. Side-by-side sampling allows the level of agreement between two or more instruments to be determined. This is useful when simultaneously collected data are compared for differences, i.e., background with process aerosol concentrations. A reference set of data was obtained using the spark igniter. The generation system was found to be reproducible and suitable to form the basis of calibration verification. Finally, the bump test is simple enough to be performed periodically throughout the calibration year or prior to field monitoring.« less

  7. (Mis)use of (133)Ba as a calibration surrogate for (131)I in clinical activity calibrators.

    PubMed

    Zimmerman, B E; Bergeron, D E

    2016-03-01

    Using NIST-calibrated solutions of (131)Ba and (131)I in the 5mL NIST ampoule geometry, measurements were made in three NIST-maintained Capintec activity calibrators and the NIST Vinten 671 ionization chamber to evaluate the suitability of using (133)Ba as a calibration surrogate for (131)I. For the Capintec calibrators, the (133)Ba response was a factor of about 300% higher than that of the same amount of (131)I. For the Vinten 671, the Ba-133 response was about 7% higher than that of (131)I. These results demonstrate that (133)Ba is a poor surrogate for (131)I. New calibration factors for these radionuclides in the ampoule geometry for the Vinten 671 and Capintec activity calibrators were also determined. Published by Elsevier Ltd.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad

    Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to testmore » the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also found that criteria of 3%/3 mm for an IMRT QA plan and 3%/2 mm for a brachytherapy QA plan are passing 95% gamma function points. Conclusions: In this paper, we demonstrate the use of functional argument to linearize the inherently nonlinear response of a radiochromic film based reference dosimetry system. In this way, relative dosimetry can be conveniently performed using radiochromic film dosimetry system without the need of establishing calibration curve.« less

  9. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    DOE PAGES

    Duarte, Henrique F.; Raczka, Brett M.; Ricciuto, Daniel M.; ...

    2017-09-28

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site ormore » at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C: 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball–Berry stomatal conductance slope ( m bb) at Wind River aligned with findings from recent CLM experiments at sites characterized by the same plant functional type (needleleaf evergreen temperate forest), despite significant differences in stand composition and age and climatology, suggesting that CLM could benefit from a revised m bb value of 6, rather than the default value of 9, for this plant functional type. Conversely, Wind River required a unique calibration of the hydrology submodel to simulate soil moisture, suggesting that the default hydrology has a more limited applicability. Here, this study demonstrates that carbon isotope data can be used to constrain stomatal conductance and intrinsic water use efficiency in CLM, as an alternative to eddy covariance flux measurements. It also demonstrates that carbon isotopes can expose structural weaknesses in the model and provide a key constraint that may guide future model development.« less

  10. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, Henrique F.; Raczka, Brett M.; Ricciuto, Daniel M.

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site ormore » at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C: 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball–Berry stomatal conductance slope ( m bb) at Wind River aligned with findings from recent CLM experiments at sites characterized by the same plant functional type (needleleaf evergreen temperate forest), despite significant differences in stand composition and age and climatology, suggesting that CLM could benefit from a revised m bb value of 6, rather than the default value of 9, for this plant functional type. Conversely, Wind River required a unique calibration of the hydrology submodel to simulate soil moisture, suggesting that the default hydrology has a more limited applicability. Here, this study demonstrates that carbon isotope data can be used to constrain stomatal conductance and intrinsic water use efficiency in CLM, as an alternative to eddy covariance flux measurements. It also demonstrates that carbon isotopes can expose structural weaknesses in the model and provide a key constraint that may guide future model development.« less

  11. Evaluating the Community Land Model (CLM4.5) at a coniferous forest site in northwestern United States using flux and carbon-isotope measurements

    NASA Astrophysics Data System (ADS)

    Duarte, Henrique F.; Raczka, Brett M.; Ricciuto, Daniel M.; Lin, John C.; Koven, Charles D.; Thornton, Peter E.; Bowling, David R.; Lai, Chun-Ta; Bible, Kenneth J.; Ehleringer, James R.

    2017-09-01

    Droughts in the western United States are expected to intensify with climate change. Thus, an adequate representation of ecosystem response to water stress in land models is critical for predicting carbon dynamics. The goal of this study was to evaluate the performance of the Community Land Model (CLM) version 4.5 against observations at an old-growth coniferous forest site in the Pacific Northwest region of the United States (Wind River AmeriFlux site), characterized by a Mediterranean climate that subjects trees to water stress each summer. CLM was driven by site-observed meteorology and calibrated primarily using parameter values observed at the site or at similar stands in the region. Key model adjustments included parameters controlling specific leaf area and stomatal conductance. Default values of these parameters led to significant underestimation of gross primary production, overestimation of evapotranspiration, and consequently overestimation of photosynthetic 13C discrimination, reflected in reduced 13C : 12C ratios of carbon fluxes and pools. Adjustments in soil hydraulic parameters within CLM were also critical, preventing significant underestimation of soil water content and unrealistic soil moisture stress during summer. After calibration, CLM was able to simulate energy and carbon fluxes, leaf area index, biomass stocks, and carbon isotope ratios of carbon fluxes and pools in reasonable agreement with site observations. Overall, the calibrated CLM was able to simulate the observed response of canopy conductance to atmospheric vapor pressure deficit (VPD) and soil water content, reasonably capturing the impact of water stress on ecosystem functioning. Both simulations and observations indicate that stomatal response from water stress at Wind River was primarily driven by VPD and not soil moisture. The calibration of the Ball-Berry stomatal conductance slope (mbb) at Wind River aligned with findings from recent CLM experiments at sites characterized by the same plant functional type (needleleaf evergreen temperate forest), despite significant differences in stand composition and age and climatology, suggesting that CLM could benefit from a revised mbb value of 6, rather than the default value of 9, for this plant functional type. Conversely, Wind River required a unique calibration of the hydrology submodel to simulate soil moisture, suggesting that the default hydrology has a more limited applicability. This study demonstrates that carbon isotope data can be used to constrain stomatal conductance and intrinsic water use efficiency in CLM, as an alternative to eddy covariance flux measurements. It also demonstrates that carbon isotopes can expose structural weaknesses in the model and provide a key constraint that may guide future model development.

  12. 40 CFR 1065.360 - FID optimization and verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FID that measures THC, perform the following steps: (1) Optimize the response to various hydrocarbons... for off-site calibration. For a FID that measures THC, calibrate using C3H8 calibration gases that... concentration of 200 µmol/mol, span the FID to respond with a value of 200 µmol/mol. (c) THC FID response...

  13. 40 CFR 1065.360 - FID optimization and verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FID that measures THC, perform the following steps: (1) Optimize the response to various hydrocarbons... for off-site calibration. For a FID that measures THC, calibrate using C3H8 calibration gases that... concentration of 200 µmol/mol, span the FID to respond with a value of 200 µmol/mol. (c) THC FID response...

  14. 40 CFR 1065.360 - FID optimization and verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FID that measures THC, perform the following steps: (1) Optimize the response to various hydrocarbons... for off-site calibration. For a FID that measures THC, calibrate using C3H8 calibration gases that... of 200 µmol/mol, span the FID to respond with a value of 200 µmol/mol. (c) THC FID response...

  15. 40 CFR 1065.360 - FID optimization and verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FID that measures THC, perform the following steps: (1) Optimize the response to various hydrocarbons... for off-site calibration. For a FID that measures THC, calibrate using C3H8 calibration gases that... concentration of 200 µmol/mol, span the FID to respond with a value of 200 µmol/mol. (c) THC FID response...

  16. 40 CFR 1065.360 - FID optimization and verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FID that measures THC, perform the following steps: (1) Optimize the response to various hydrocarbons... for off-site calibration. For a FID that measures THC, calibrate using C3H8 calibration gases that... concentration of 200 µmol/mol, span the FID to respond with a value of 200 µmol/mol. (c) THC FID response...

  17. The Phoenix TECP Relative Humidity Sensor: Revised Results

    NASA Technical Reports Server (NTRS)

    Zent, Aaron

    2014-01-01

    The original calibration function of the RH sensor on the Phoenix mission's Thermal and Electrical Conductivity Sensor (TECP), has been revised to correct the erroneously-published original calibration equation, to demonstrate the value of this unique data set, and to improve characterization of H2O exchange between the martian regolith and atmosphere. TECP returned two data streams, the temperature of the electronics analog board (Tb) and the digital 12-bit output of the RH sensor (DN), both of which are required to uniquely specify the H2O abundance. Because the original flight instrument calibration was performed against a pair of hygrometers that measured frost point (Tf), the revised calibration equation is also cast in terms of frost point. The choice of functional form for the calibration function is minimally constrained. A series of profiles across the calibration data cloud at constant DN and Tb does not reveal any evidence of a complex functional form. Therefore, a series of polynomials in both DN and Tb was investigated, along with several non-linear functions of DN and Tb.

  18. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this "SD degradation nonuniformity effect" with respect to angles relies on a "hybrid methodology" using lunar-based calibration to set the reliable long-term baseline. For MODIS, the use of earth targets in the major release Collection 6 to improve calibration coefficients and time-dependent response-versus-scan-angle characterization inherently averts the use of SD and its associated issues. The work further supports that having an open-close operational capability for the space view door can minimize SD degradation and its associated effects due to solar exposure, and thus provide long-term benefits for maintaining calibration and science data accuracy.

  19. The worth of data to reduce predictive uncertainty of an integrated catchment model by multi-constraint calibration

    NASA Astrophysics Data System (ADS)

    Koch, J.; Jensen, K. H.; Stisen, S.

    2017-12-01

    Hydrological models that integrate numerical process descriptions across compartments of the water cycle are typically required to undergo thorough model calibration in order to estimate suitable effective model parameters. In this study, we apply a spatially distributed hydrological model code which couples the saturated zone with the unsaturated zone and the energy portioning at the land surface. We conduct a comprehensive multi-constraint model calibration against nine independent observational datasets which reflect both the temporal and the spatial behavior of hydrological response of a 1000km2 large catchment in Denmark. The datasets are obtained from satellite remote sensing and in-situ measurements and cover five keystone hydrological variables: discharge, evapotranspiration, groundwater head, soil moisture and land surface temperature. Results indicate that a balanced optimization can be achieved where errors on objective functions for all nine observational datasets can be reduced simultaneously. The applied calibration framework was tailored with focus on improving the spatial pattern performance; however results suggest that the optimization is still more prone to improve the temporal dimension of model performance. This study features a post-calibration linear uncertainty analysis. This allows quantifying parameter identifiability which is the worth of a specific observational dataset to infer values to model parameters through calibration. Furthermore the ability of an observation to reduce predictive uncertainty is assessed as well. Such findings determine concrete implications on the design of model calibration frameworks and, in more general terms, the acquisition of data in hydrological observatories.

  20. Mars Exploration Rover Navigation Camera in-flight calibration

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Bell, James F.; Johnson, Jeffrey R.; Joseph, Jonathan; Wolff, Michael J.

    2008-06-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.

  1. Angular response calibration of the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1988-01-01

    The Gamma Ray Observatory includes four experiments designed to observe the gamma-ray universe. Laboratory measurements to test the response the Burst and Transient Source Experiment (BATSE) modules to gamma-ray sources that are non-axial were recently completed. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in Earth orbit. The launch is planned for March, 1900. Preliminary analyses of these test data show the presence of a radial dependence to the detector's light collection efficiency. It is proposed to evaluate the importance of this radial response, analyze future experimental data to derive the actual functional dependence on radius, and calculate the net effect on the output spectrum as a function of the angle of incidence.

  2. [On-orbit response variation analysis of FY-3 MERSI reflective solar bands based on Dunhuang site calibration].

    PubMed

    Sun, Ling; Guo, Mao-Hua; Xu, Na; Zhang, Li-Jun; Liu, Jing-Jing; Hu, Xiu-Qing; Li, Yuan; Rong, Zhi-Guo; Zhao, Ze-Hui

    2012-07-01

    MERSI is the keystone payload of FengYun-3 and there have been two sensors operating on-orbit since 2008. The on-orbit response changes obviously at reflective solar bands (RSBs) and must be effectively monitored and corrected. However MERSI can not realize the RSBs onboard absolute radiometric calibration. This paper presents a new vicarious calibration (VC) method for RSBs based on in-situ BRDF model, and vector radiometric transfer model 6SV with gaseous absorption correction using MOTRAN. The results of synchronous VC experiments in 4 years show that the calibration uncertainties are within 5% except for band at the center of water vapor absorption, and 3% for most bands. Aqua MODIS was taken as the radiometric reference to evaluate the accuracy of this VC method. By comparison of the simulated radiation at top of atmosphere (TOA) with MODIS measurement, it was revealed that the average relative differences are within 3% for window bands with wavelengths less than 1 microm, and 5% for bands with wavelengths larger than 1 microm (except for band 7 at 2.1 microm). Besides, the synchronous nadir observation cross analysis shows the excellent agreement between re-calibrated MERSI TOA apparent reflectance and MODIS measurements. Based on the multi-year site calibration results, it was found that the calibration coefficients could be fitted with two-order polynomials, thus the daily calibration updates could be realized and the response variation between two calibration experiments could be corrected timely; there are large response changes at bands with wavelengths less than 0.6 microm, the degradation rate of the first year at band 8 (0.41 microm) is about 14%; the on-orbit response degradation is maximum at the beginning, the degradation rates slow down after one year in operation, and after two years the responses even increase at some band with wavelengths larger than 0.6 microm.

  3. Comparison of dose response functions for EBT3 model GafChromic™ film dosimetry system.

    PubMed

    Aldelaijan, Saad; Devic, Slobodan

    2018-05-01

    Different dose response functions of EBT3 model GafChromic™ film dosimetry system have been compared in terms of sensitivity as well as uncertainty vs. error analysis. We also made an assessment of the necessity of scanning film pieces before and after irradiation. Pieces of EBT3 film model were irradiated to different dose values in Solid Water (SW) phantom. Based on images scanned in both reflection and transmission mode before and after irradiation, twelve different response functions were calculated. For every response function, a reference radiochromic film dosimetry system was established by generating calibration curve and by performing the error vs. uncertainty analysis. Response functions using pixel values from the green channel demonstrated the highest sensitivity in both transmission and reflection mode. All functions were successfully fitted with rational functional form, and provided an overall one-sigma uncertainty of better than 2% for doses above 2 Gy. Use of pre-scanned images to calculate response functions resulted in negligible improvement in dose measurement accuracy. Although reflection scanning mode provides higher sensitivity and could lead to a more widespread use of radiochromic film dosimetry, it has fairly limited dose range and slightly increased uncertainty when compared to transmission scan based response functions. Double-scanning technique, either in transmission or reflection mode, shows negligible improvement in dose accuracy as well as a negligible increase in dose uncertainty. Normalized pixel value of the images scanned in transmission mode shows linear response in a dose range of up to 11 Gy. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Aerosol optical depth determination in the UV using a four-channel precision filter radiometer

    NASA Astrophysics Data System (ADS)

    Carlund, Thomas; Kouremeti, Natalia; Kazadzis, Stelios; Gröbner, Julian

    2017-03-01

    The determination of aerosol properties, especially the aerosol optical depth (AOD) in the ultraviolet (UV) wavelength region, is of great importance for understanding the climatological variability of UV radiation. However, operational retrievals of AOD at the biologically most harmful wavelengths in the UVB are currently only made at very few places. This paper reports on the UVPFR (UV precision filter radiometer) sunphotometer, a stable and robust instrument that can be used for AOD retrievals at four UV wavelengths. Instrument characteristics and results of Langley calibrations at a high-altitude site were presented. It was shown that due to the relatively wide spectral response functions of the UVPFR, the calibration constants (V0) derived from Langley plot calibrations underestimate the true extraterrestrial signals. Accordingly, correction factors were introduced. In addition, the instrument's spectral response functions also result in an apparent air-mass-dependent decrease in ozone optical depth used in the AOD determinations. An adjusted formula for the calculation of AOD, with a correction term dependent on total column ozone amount and ozone air mass, was therefore introduced. Langley calibrations performed 13-14 months apart resulted in sensitivity changes of ≤ 1.1 %, indicating good instrument stability. Comparison with a high-accuracy standard precision filter radiometer, measuring AOD at 368-862 nm wavelengths, showed consistent results. Also, very good agreement was achieved by comparing the UVPFR with AOD at UVB wavelengths derived with a Brewer spectrophotometer, which was calibrated against the UVPFR at an earlier date. Mainly due to non-instrumental uncertainties connected with ozone optical depth, the total uncertainty of AOD in the UVB is higher than that reported from AOD instruments measuring in UVA and visible ranges. However, the precision can be high among instruments using harmonized algorithms for ozone and Rayleigh optical depth as well as for air mass terms. For 4 months of comparison measurements with the UVPFR and a Brewer, the root mean squared AOD differences were found < 0.01 at all the 306-320 nm Brewer wavelengths.

  5. Research on vacuum utraviolet calibration technology

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Gao, Shumin; Sun, Hongsheng; Chen, Yinghang; Wei, Jianqiang

    2014-11-01

    Importance of extreme ultraviolet (EUV) and far ultraviolet (FUV) calibration is growing fast as vacuum ultraviolet payloads are wildly used in national space plan. A calibration device is established especially for the requirement of EUV and FUV metrology and measurement. Spectral radiation and detector relative spectral response at EUV and FUV wavelengths can be calibrated with accuracy of 26% and 20%, respectively. The setup of the device, theoretical model and value retroactive method are introduced and measurement of detector relative spectral response from 30 nm to 200 nm is presented in this paper. The calibration device plays an important role in national space research.

  6. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, Daniel A.; Moss, William C.; Valk, Theodore C.; Conder, Alan D.

    1995-01-01

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch.

  7. The AgroEcoSystem (AgES) response-function model simulates layered soil water dynamics in semi-arid Colorado: sensitivity and calibration

    USDA-ARS?s Scientific Manuscript database

    Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...

  8. Physics of the atmosphere: Response of the water vapor channel of the Meteosat satellite

    NASA Technical Reports Server (NTRS)

    Roulleau, M.; Poc, M. M.; Scott, N.; Chedin, A.

    1980-01-01

    An accurate model of the atmospheric transmission function is used to obtain the relationship between the cloudless radiances measured by the 6-7 microns Meteosat radiometer (water vapor channel) and the numerical parameters associated to each point of an image. This relationship is compared to the temporary calibration curve published by the European Space Agency.

  9. Experimental investigation of the response of an amorphous silicon EPID to intensity modulated radiotherapy beams.

    PubMed

    Greer, Peter B; Vial, Philip; Oliver, Lyn; Baldock, Clive

    2007-11-01

    The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open beam calibration factor only. Accounting for the difference in EPID response to open and MLCtr radiation should improve IMRT dosimetry with a-Si EPIDs.

  10. Multiple frequency method for operating electrochemical sensors

    DOEpatents

    Martin, Louis P [San Ramon, CA

    2012-05-15

    A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

  11. Estimation of ion competition via correlated responsivity offset in linear ion trap mass spectrometry analysis: theory and practical use in the analysis of cyanobacterial hepatotoxin microcystin-LR in extracts of food additives.

    PubMed

    Urban, Jan; Hrouzek, Pavel; Stys, Dalibor; Martens, Harald

    2013-01-01

    Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations.

  12. Estimation of Ion Competition via Correlated Responsivity Offset in Linear Ion Trap Mass Spectrometry Analysis: Theory and Practical Use in the Analysis of Cyanobacterial Hepatotoxin Microcystin-LR in Extracts of Food Additives

    PubMed Central

    Hrouzek, Pavel; Štys, Dalibor; Martens, Harald

    2013-01-01

    Responsivity is a conversion qualification of a measurement device given by the functional dependence between the input and output quantities. A concentration-response-dependent calibration curve represents the most simple experiment for the measurement of responsivity in mass spectrometry. The cyanobacterial hepatotoxin microcystin-LR content in complex biological matrices of food additives was chosen as a model example of a typical problem. The calibration curves for pure microcystin and its mixtures with extracts of green alga and fish meat were reconstructed from the series of measurement. A novel approach for the quantitative estimation of ion competition in ESI is proposed in this paper. We define the correlated responsivity offset in the intensity values using the approximation of minimal correlation given by the matrix to the target mass values of the analyte. The estimation of the matrix influence enables the approximation of the position of a priori unknown responsivity and was easily evaluated using a simple algorithm. The method itself is directly derived from the basic attributes of the theory of measurements. There is sufficient agreement between the theoretical and experimental values. However, some theoretical issues are discussed to avoid misinterpretations and excessive expectations. PMID:23586036

  13. Calibration and Validation of the Dutch-Flemish PROMIS Pain Interference Item Bank in Patients with Chronic Pain

    PubMed Central

    Crins, Martine H. P.; Roorda, Leo D.; Smits, Niels; de Vet, Henrica C. W.; Westhovens, Rene; Cella, David; Cook, Karon F.; Revicki, Dennis; van Leeuwen, Jaap; Boers, Maarten; Dekker, Joost; Terwee, Caroline B.

    2015-01-01

    The Dutch-Flemish PROMIS Group translated the adult PROMIS Pain Interference item bank into Dutch-Flemish. The aims of the current study were to calibrate the parameters of these items using an item response theory (IRT) model, to evaluate the cross-cultural validity of the Dutch-Flemish translations compared to the original English items, and to evaluate their reliability and construct validity. The 40 items in the bank were completed by 1085 Dutch chronic pain patients. Before calibrating the items, IRT model assumptions were evaluated using confirmatory factor analysis (CFA). Items were calibrated using the graded response model (GRM), an IRT model appropriate for items with more than two response options. To evaluate cross-cultural validity, differential item functioning (DIF) for language (Dutch vs. English) was examined. Reliability was evaluated based on standard errors and Cronbach’s alpha. To evaluate construct validity correlations with scores on legacy instruments (e.g., the Disabilities of the Arm, Shoulder and Hand Questionnaire) were calculated. Unidimensionality of the Dutch-Flemish PROMIS Pain Interference item bank was supported by CFA tests of model fit (CFI = 0.986, TLI = 0.986). Furthermore, the data fit the GRM and showed good coverage across the pain interference continuum (threshold-parameters range: -3.04 to 3.44). The Dutch-Flemish PROMIS Pain Interference item bank has good cross-cultural validity (only two out of 40 items showing DIF), good reliability (Cronbach’s alpha = 0.98), and good construct validity (Pearson correlations between 0.62 and 0.75). A computer adaptive test (CAT) and Dutch-Flemish PROMIS short forms of the Dutch-Flemish PROMIS Pain Interference item bank can now be developed. PMID:26214178

  14. Calibration and Validation of the Dutch-Flemish PROMIS Pain Interference Item Bank in Patients with Chronic Pain.

    PubMed

    Crins, Martine H P; Roorda, Leo D; Smits, Niels; de Vet, Henrica C W; Westhovens, Rene; Cella, David; Cook, Karon F; Revicki, Dennis; van Leeuwen, Jaap; Boers, Maarten; Dekker, Joost; Terwee, Caroline B

    2015-01-01

    The Dutch-Flemish PROMIS Group translated the adult PROMIS Pain Interference item bank into Dutch-Flemish. The aims of the current study were to calibrate the parameters of these items using an item response theory (IRT) model, to evaluate the cross-cultural validity of the Dutch-Flemish translations compared to the original English items, and to evaluate their reliability and construct validity. The 40 items in the bank were completed by 1085 Dutch chronic pain patients. Before calibrating the items, IRT model assumptions were evaluated using confirmatory factor analysis (CFA). Items were calibrated using the graded response model (GRM), an IRT model appropriate for items with more than two response options. To evaluate cross-cultural validity, differential item functioning (DIF) for language (Dutch vs. English) was examined. Reliability was evaluated based on standard errors and Cronbach's alpha. To evaluate construct validity correlations with scores on legacy instruments (e.g., the Disabilities of the Arm, Shoulder and Hand Questionnaire) were calculated. Unidimensionality of the Dutch-Flemish PROMIS Pain Interference item bank was supported by CFA tests of model fit (CFI = 0.986, TLI = 0.986). Furthermore, the data fit the GRM and showed good coverage across the pain interference continuum (threshold-parameters range: -3.04 to 3.44). The Dutch-Flemish PROMIS Pain Interference item bank has good cross-cultural validity (only two out of 40 items showing DIF), good reliability (Cronbach's alpha = 0.98), and good construct validity (Pearson correlations between 0.62 and 0.75). A computer adaptive test (CAT) and Dutch-Flemish PROMIS short forms of the Dutch-Flemish PROMIS Pain Interference item bank can now be developed.

  15. Remote Calibration Procedure and Results for the Ctbto AS109 STS-2HG at Ybh

    NASA Astrophysics Data System (ADS)

    Uhrhammer, R. A.; Taira, T.; Hellweg, M.

    2013-12-01

    Berkeley Digital Seismic Station (BDSN) YBH, located in Yreka, CA, USA, is certified as Auxiliary Seismic Station 109 (AS109) by the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty organization (CTBTO). YBH, sited in an abandoned hard rock mining drift, houses a Streckeisen STS-2HG triaxial broadband seismometer (the AS109 sensor) and a co-sited three-component set of Streckeisen STS-1 broadband seismometers and a Kinemetrics Episensor strong motion accelerometer (the BDSN sensors). CTBTO requested that we preform a remote calibration test of the STS-2HG (20,000 V/(m/s) nominal sensitivity) to verify its response and sensitivity. The remote calibration test was done successfully on June 17, 2013 and we report here on the procedure and results of the calibration. The calibration of the STS-2HG (s/n 30235) was accomplished using two Random Telegraph (RT) stimuli which were applied to the triaxial U,V,W component calibration coils through an appropriate series resistance to limit the drive current. The first was a four hour RT at 1.25 Hz (to determine the low-frequency response) and the second was a one hour RT at 25 Hz (to determine the high-frequency response). The RT stimulus signals were generated by the Kinemetrics Q330 data logger and both the stimuli and the response were recorded simultaneously with synchronous sampling at 100 sps. The RT calibrations were invoked remotely from Berkeley. The response to the 1.25 Hz RT stimulus was used to determine the seismometer natural period, fraction of critical damping and sensitivity of the STS-2HG sensors and the response to the 25 Hz RT stimulus was used to determine their corresponding high-frequency response. The accuracy of the sensitivity as determined by the response to the RT stimuli is limited by the accuracy of the calibration coil motor constant (2 g/A) provided on the factory calibration sheet. As a check on the accuracy of the sensitivity determined from the response to the RT stimuli, we also compare the ground motions inferred from the STS-2HG with the corresponding ground motions inferred from the co-sited STS-1's and the Episensor strong motion accelerometer using seismic signals which have adequate signal-to-noise ratios in passband common to both instruments.

  16. Calibration of two complex ecosystem models with different likelihood functions

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model goodness metric on calibration. The different likelihoods are different functions of RMSE (root mean squared error) weighted by measurement uncertainty: exponential / linear / quadratic / linear normalized by correlation. As a first calibration step sensitivity analysis was performed in order to select the influential parameters which have strong effect on the output data. In the second calibration step only the sensitive parameters were calibrated (optimal values and confidence intervals were calculated). In case of PaSim more parameters were found responsible for the 95% of the output data variance than is case of BBGC MuSo. Analysis of the results of the optimized models revealed that the exponential likelihood estimation proved to be the most robust (best model simulation with optimized parameter, highest confidence interval increase). The cross-validation of the model simulations can help in constraining the highly uncertain greenhouse gas budget of grasslands.

  17. Radiometer Calibration and Characterization (RCC) User's Manual: Windows Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreas, Afshin M.; Wilcox, Stephen M.

    2016-02-29

    The Radiometer Calibration and Characterization (RCC) software is a data acquisition and data archival system for performing Broadband Outdoor Radiometer Calibrations (BORCAL). RCC provides a unique method of calibrating broadband atmospheric longwave and solar shortwave radiometers using techniques that reduce measurement uncertainty and better characterize a radiometer's response profile. The RCC software automatically monitors and controls many of the components that contribute to uncertainty in an instrument's responsivity. This is a user's manual and guide to the RCC software.

  18. NASA-6 atmospheric measuring station. [calibration, functional checks, and operation of measuring instruments

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Information required to calibrate, functionally check, and operate the Instrumentation Branch equipment on the NASA-6 aircraft is provided. All procedures required for preflight checks and in-flight operation of the NASA-6 atmospheric measuring station are given. The calibration section is intended for only that portion of the system maintained and calibrated by IN-MSD-12 Systems Operation contractor personnel. Maintenance is not included.

  19. Comparison between different direct search optimization algorithms in the calibration of a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca

    2010-05-01

    The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance distributed model developed at the Department of Civil and Environmental Engineering of the University of Florence. Discussion on the comparisons between the effectiveness of the different algorithms on different cases of study on Central Italy basins is provided.

  20. Multiyear On-orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwo-Fu; Wu, Aisheng; Barnes, William; Guenther, Bruce; Salomonson, Vincent

    2007-01-01

    Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire mission

  1. The Impact of Indoor and Outdoor Radiometer Calibration on Solar Measurements: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron; Sengupta, Manajit; Andreas, Afshin

    2016-07-01

    Accurate solar radiation data sets are critical to reducing the expenses associated with mitigating performance risk for solar energy conversion systems, and they help utility planners and grid system operators understand the impacts of solar resource variability. The accuracy of solar radiation measured by radiometers depends on the instrument performance specification, installation method, calibration procedure, measurement conditions, maintenance practices, location, and environmental conditions. This study addresses the effect of calibration methodologies and the resulting calibration responsivities provided by radiometric calibration service providers such as the National Renewable Energy Laboratory (NREL) and manufacturers of radiometers. Some of these radiometers are calibratedmore » indoors, and some are calibrated outdoors. To establish or understand the differences in calibration methodology, we processed and analyzed field-measured data from these radiometers. This study investigates calibration responsivities provided by NREL's broadband outdoor radiometer calibration (BORCAL) and a few prominent manufacturers. The reference radiometer calibrations are traceable to the World Radiometric Reference. These different methods of calibration demonstrated 1% to 2% differences in solar irradiance measurement. Analyzing these values will ultimately assist in determining the uncertainties of the radiometer data and will assist in developing consensus on a standard for calibration.« less

  2. Reconstructing the calibrated strain signal in the Advanced LIGO detectors

    NASA Astrophysics Data System (ADS)

    Viets, A. D.; Wade, M.; Urban, A. L.; Kandhasamy, S.; Betzwieser, J.; Brown, Duncan A.; Burguet-Castell, J.; Cahillane, C.; Goetz, E.; Izumi, K.; Karki, S.; Kissel, J. S.; Mendell, G.; Savage, R. L.; Siemens, X.; Tuyenbayev, D.; Weinstein, A. J.

    2018-05-01

    Advanced LIGO’s raw detector output needs to be calibrated to compute dimensionless strain h(t) . Calibrated strain data is produced in the time domain using both a low-latency, online procedure and a high-latency, offline procedure. The low-latency h(t) data stream is produced in two stages, the first of which is performed on the same computers that operate the detector’s feedback control system. This stage, referred to as the front-end calibration, uses infinite impulse response (IIR) filtering and performs all operations at a 16 384 Hz digital sampling rate. Due to several limitations, this procedure currently introduces certain systematic errors in the calibrated strain data, motivating the second stage of the low-latency procedure, known as the low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses finite impulse response (FIR) filtering to apply corrections to the output of the front-end calibration. It applies time-dependent correction factors to the sensing and actuation components of the calibrated strain to reduce systematic errors. The gstlal calibration pipeline is also used in high latency to recalibrate the data, which is necessary due mainly to online dropouts in the calibrated data and identified improvements to the calibration models or filters.

  3. Position reconstruction in LUX

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2018-02-01

    The (x, y) position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessedmore » with calibration data including 83mKr (releasing a total energy of 41.5 keV) and 3H (β - with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV). Within the detector's fiducial volume, the reconstruction has achieved an (x, y) position uncertainty of σ = 0.82 cm and σ = 0.17 cm for events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are associated with electron recoils of energies ~0.25 keV and ~10 keV, respectively. Lastly, the reconstructed position of the smallest events with a single electron emitted from the liquid surface (22 detected photons) has a horizontal (x, y) uncertainty of 2.13 cm.« less

  4. Position reconstruction in LUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.

    The (x, y) position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessedmore » with calibration data including 83mKr (releasing a total energy of 41.5 keV) and 3H (β - with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV). Within the detector's fiducial volume, the reconstruction has achieved an (x, y) position uncertainty of σ = 0.82 cm and σ = 0.17 cm for events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are associated with electron recoils of energies ~0.25 keV and ~10 keV, respectively. Lastly, the reconstructed position of the smallest events with a single electron emitted from the liquid surface (22 detected photons) has a horizontal (x, y) uncertainty of 2.13 cm.« less

  5. Position reconstruction in LUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.

    © 2018 IOP Publishing Ltd and Sissa Medialab. The (x, y) position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe themore » response of the PMTs. The reconstruction was assessed with calibration data including 83m Kr (releasing a total energy of 41.5 keV) and 3 H (andbeta; - with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV) . Within the detector's fiducial volume, the reconstruction has achieved an (x, y) position uncertainty of andsigma; = 0.82 cm and andsigma; = 0.17 cm for events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are associated with electron recoils of energies andsim;0.25 keV and andsim;10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface (22 detected photons) has a horizontal (x, y) uncertainty of 2.13 cm.« less

  6. Position reconstruction in LUX

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2018-02-01

    © 2018 IOP Publishing Ltd and Sissa Medialab. The (x, y) position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe themore » response of the PMTs. The reconstruction was assessed with calibration data including 83m Kr (releasing a total energy of 41.5 keV) and 3 H (andbeta; - with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV) . Within the detector's fiducial volume, the reconstruction has achieved an (x, y) position uncertainty of andsigma; = 0.82 cm and andsigma; = 0.17 cm for events of only 200 and 4,000 detected electroluminescence photons respectively. Such signals are associated with electron recoils of energies andsim;0.25 keV and andsim;10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface (22 detected photons) has a horizontal (x, y) uncertainty of 2.13 cm.« less

  7. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  8. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    NASA Technical Reports Server (NTRS)

    Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.

    2017-01-01

    This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.

  9. The application of item response theory in developing and validating a shortened version of the Emirate Marital Satisfaction Scale.

    PubMed

    Dodeen, Hamzeh; Al-Darmaki, Fatima

    2016-12-01

    The aim of this study was to determine the feasibility of generating a shorter version of the Emirati Marital Satisfaction Scale (EMSS) using item response theory (IRT)-based methodology. The EMSS is the first national scale used to provide an understanding of the family function and level of marital satisfaction within the cultural context of the United Arab Emirates. A sample of 1,049 Emirati married individuals from different ages, genders, places of residence, and monthly incomes participated in this study. The IRT was calibrated using X-Calibre 4.2 and the graded response model. The analysis was developed on the basis of a short form of the EMSS (7 items), which constitutes a promising alternative to the original scale for practitioners and researchers. This short version is reliable, valid, and it gives results very similar to the original scale. The results of this study confirmed the usefulness of IRT-based methodology for developing psychological and counseling scales. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, D.A.; Moss, W.C.; Valk, T.C.; Conder, A.D.

    1995-11-21

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch. 13 figs.

  11. Method and apparatus for calibrating a particle emissions monitor

    DOEpatents

    Flower, W.L.; Renzi, R.F.

    1998-07-07

    The invention discloses a method and apparatus for calibrating particulate emissions monitors, in particular, sampling probes, and in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream. 6 figs.

  12. Method and apparatus for calibrating a particle emissions monitor

    DOEpatents

    Flower, William L.; Renzi, Ronald F.

    1998-07-07

    The instant invention discloses method and apparatus for calibrating particulate emissions monitors, in particular, and sampling probes, in general, without removing the instrument from the system being monitored. A source of one or more specific metals in aerosol (either solid or liquid) or vapor form is housed in the instrument. The calibration operation is initiated by moving a focusing lens, used to focus a light beam onto an analysis location and collect the output light response, from an operating position to a calibration position such that the focal point of the focusing lens is now within a calibration stream issuing from a calibration source. The output light response from the calibration stream can be compared to that derived from an analysis location in the operating position to more accurately monitor emissions within the emissions flow stream.

  13. WE-E-18A-04: Precision In-Vivo Dosimetry Using Optically Stimulated Luminescence Dosimeters and a Pulsed-Stimulating Dose Reader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q; Herrick, A; Hoke, S

    Purpose: A new readout technology based on pulsed optically stimulating luminescence is introduced (microSTARii, Landauer, Inc, Glenwood, IL60425). This investigation searches for approaches that maximizes the dosimetry accuracy in clinical applications. Methods: The sensitivity of each optically stimulated luminescence dosimeter (OSLD) was initially characterized by exposing it to a given radiation beam. After readout, the luminescence signal stored in the OSLD was erased by exposing its sensing area to a 21W white LED light for 24 hours. A set of OSLDs with consistent sensitivities was selected to calibrate the dose reader. Higher order nonlinear curves were also derived from themore » calibration readings. OSLDs with cumulative doses below 15 Gy were reused. Before an in-vivo dosimetry, the OSLD luminescence signal was erased with the white LED light. Results: For a set of 68 manufacturer-screened OSLDs, the measured sensitivities vary in a range of 17.3%. A sub-set of the OSLDs with sensitivities within ±1% was selected for the reader calibration. Three OSLDs in a group were exposed to a given radiation. Nine groups were exposed to radiation doses ranging from 0 to 13 Gy. Additional verifications demonstrated that the reader uncertainty is about 3%. With an external calibration function derived by fitting the OSLD readings to a 3rd-order polynomial, the dosimetry uncertainty dropped to 0.5%. The dose-luminescence response curves of individual OSLDs were characterized. All curves converge within 1% after the sensitivity correction. With all uncertainties considered, the systematic uncertainty is about 2%. Additional tests emulating in-vivo dosimetry by exposing the OSLDs under different radiation sources confirmed the claim. Conclusion: The sensitivity of individual OSLD should be characterized initially. A 3rd-order polynomial function is a more accurate representation of the dose-luminescence response curve. The dosimetry uncertainty specified by the manufacturer is 4%. Following the proposed approach, it can be controlled to 2%.« less

  14. Development of Design Analysis Methods for C/SiC Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.

    2006-01-01

    The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.

  15. Normative behavioral thresholds for short tone-bursts.

    PubMed

    Beattie, R C; Rochverger, I

    2001-10-01

    Although tone-bursts have been commonly used in auditory brainstem response (ABR) evaluations for many years, national standards describing normal calibration values have not been established. This study was designed to gather normative threshold data to establish a physical reference for tone-burst stimuli that can be reproduced across clinics and laboratories. More specifically, we obtained norms for 3-msec tone-bursts presented at two repetition rates (9.3/sec and 39/sec), two gating functions (Trapezoid and Blackman), and four frequencies (500, 1000, 2000, and 4000 Hz). Our results are specified using three physical references: dB peak sound pressure level, dB peak-to-peak equivalent sound pressure level, and dB SPL (fast meter response, rate = 50 stimuli/sec). These data are offered for consideration when calibrating ABR equipment. The 39/sec stimulus rate yielded tone-burst thresholds that were approximately 3 dB lower than the 9.3/sec rate. The improvement in threshold with increasing stimulus rate may reflect the ability of the auditory system to integrate energy that occurs within a time interval of 200 to 500 msec (temporal integration). The Trapezoid gating function yielded thresholds that averaged 1.4 dB lower than the Blackman function. Although these differences are small and of little clinical importance, the cumulative effects of several instrument and/or procedural variables may yield clinically important differences.

  16. Characterization of extended range Bonner Sphere Spectrometers in the CERF high-energy broad neutron field at CERN

    NASA Astrophysics Data System (ADS)

    Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.

    2012-12-01

    The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well controlled workplace field. The CERF (CERN-EU high-energy reference field) facility is a unique example of such a field, where a number of experimental campaigns and Monte Carlo simulations have been performed over the past years. With the aim of performing this kind of workplace performance test, four different ERBSS with different degrees of validation, operated by three groups (CERN, INFN-LNF and Politecnico of Milano), were exposed in two fixed positions at CERF. Using different unfolding codes (MAXED, GRAVEL, FRUIT and FRUIT SGM), the experimental data were analyzed to provide the neutron spectra and the related dosimetric quantities. The results allow assessing the overall performance of each ERBSS and of the unfolding codes, as well as comparing the performance of three ERRCs when used in a neutron field with energy distribution different from the calibration spectrum.

  17. Application of new techniques in the calibration of the TROPOMI-SWIR instrument (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tol, Paul; van Hees, Richard; van Kempen, Tim; Krijger, Matthijs; Cadot, Sidney; Aben, Ilse; Ludewig, Antje; Dingjan, Jos; Persijn, Stefan; Hoogeveen, Ruud

    2016-10-01

    The Tropospheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite is an Earth-observing spectrometer with bands in the ultraviolet, visible, near infrared and short-wave infrared (SWIR). It provides daily global coverage of atmospheric trace gases relevant for tropospheric air quality and climate research. Three new techniques will be presented that are unique for the TROPOMI-SWIR spectrometer. The retrieval of methane and CO columns from the data of the SWIR band requires for each detector pixel an accurate instrument spectral response function (ISRF), i.e. the normalized signal as a function of wavelength. A new determination method for Earth-observing instruments has been used in the on-ground calibration, based on measurements with a SWIR optical parametric oscillator (OPO) that was scanned over the whole TROPOMI-SWIR spectral range. The calibration algorithm derives the ISRF without needing the absolute wavelength during the measurement. The same OPO has also been used to determine the two-dimensional stray-light distribution for each SWIR pixel with a dynamic range of 7 orders. This was achieved by combining measurements at several exposure times and taking saturation into account. The correction algorithm and data are designed to remove the mean stray-light distribution and a reflection that moves relative to the direct image, within the strict constraints of the available time for the L01b processing. A third new technique is an alternative calibration of the SWIR absolute radiance and irradiance using a black body at the temperature of melting silver. Unlike a standard FEL lamp, this source does not have to be calibrated itself, because the temperature is very stable and well known. Measurement methods, data analyses, correction algorithms and limitations of the new techniques will be presented.

  18. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  19. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  20. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches†.

    PubMed

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-03-22

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating in air comparing the FRF experimentally obtained with a calibrated exciter (impact Hammer) and the FRF obtained with the described method. Finally, the same methodology has been applied for the structure submerged and close to a rigid wall, where it is extremely important to not modify the boundary conditions for an accurate determination of the FRF. As experimentally shown in this paper, in such cases, the use of PZTs combined with the proposed methodology gives much more accurate estimations of the FRF than other calibrated exciters typically used for the same purpose. Therefore, the validated methodology proposed in this paper can be used to obtain the FRF of a generic submerged and confined structure, without a previous calibration of the PZT.

  1. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  2. The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March-November 2002. Volume 2

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Abel, Peter; Carder, Kendall; Chapin, Albert; Clark, Dennis; Cooper, John; Davis, Curtis; English, David; Fargion, Giulietta; Feinholz, Michael; hide

    2003-01-01

    The second SIMBIOS (Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies) Radiometric Intercomparison (SIMRIC-2) was carried out in 2002. The purpose of the SIMRIC's was to ensure a common radiometric scale among the calibration facilities that are engaged in calibrating in-situ radiometrics used for ocean color-related research and to document the calibration procedures and protocols. The SeaWIFS Transfer Radiometer (SXR-II) measured the calibration radiances at six wavelengths from 411nm to 777nm in the ten laboratories participating in the SIMRIC-2. The measured radiances were compared with the radiances expected by the laboratories. The agreement was within the combined uncertainties for all but two laboratories. Likely error sources were identified in these laboratories and corrective measures were implemented. NIST calibrations in December 2001 and January 2003 showed changes ranging from -0.6% to +0.7% for the six SXR-II channels. Two independent light sources were used to monitor changes in the SXR-II responsivity between the NIST calibrations. A 2% variation of the responsivity of channel 1 of the SXR-II was detected, and the SXR-II responsivity was corrected using the monitoring data. This report also compared directional reflectance calibrations of a Spectralon plaque by different calibration facilities

  3. Calibration and Validation of the National Ecological Observatory Network's Airborne Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Leisso, N.

    2015-12-01

    The National Ecological Observatory Network (NEON) is being constructed by the National Science Foundation and is slated for completion in 2017. NEON is designed to collect data to improve the understanding of changes in observed ecosystems. The observatory will produce data products on a variety of spatial and temporal scales collected from individual sites strategically located across the U.S. including Alaska, Hawaii, and Puerto Rico. Data sources include standardized terrestrial, instrumental, and aquatic observation systems in addition to three airborne remote sensing observation systems installed into leased Twin Otter aircraft. The Airborne Observation Platforms (AOP) are designed to collect 3-band aerial imagery, waveform and discrete LiDAR, and high-fidelity imaging spectroscopy data over the NEON sites annually at or near peak-greenness. The NEON Imaging Spectrometer (NIS) is a Visible and Shortwave Infrared (VSWIR) sensor designed by NASA JPL for ecological applications. Spectroscopic data is collected at 5-nm intervals across the solar-reflective spectral region (380-nm to 2500-nm) in a 34-degree FOV swath. A key uncertainty driver to the derived remote sensing NEON data products is the calibration of the imaging spectrometers. In addition, the calibration and accuracy of the higher-level data product algorithms is essential to the overall NEON mission to detect changes in the collected ecosystems over the 30-year expected lifetime. The typical calibration workflow of the NIS consists of the characterizing the focal plane, spectral calibration, and radiometric calibration. Laboratory spectral calibration is based on well-defined emission lines in conjunction with a scanning monochromator to define the individual spectral response functions. The radiometric calibration is NIST traceable and transferred to the NIS with an integrating sphere calibrated through the use of transfer radiometers. The laboratory calibration is monitored and maintained through the use of an On-Board Calibration (OBC) system. Recent advances in the understanding of the NIS sensor that have led to improvements in the overall calibration accuracy are reported. In addition, the NIS calibration and data products are compared to Earth-observing satellite sensors.

  4. SeaWiFS Postlaunch Technical Report Series. Volume 4; The 1997 Prelaunch Radiometric Calibration of SeaWiFS

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Johnson, B. Carol; Early, Edward E.; Eplee, Robert E., Jr.; Barnes, Robert A.; Caffrey, Robert T.

    1999-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) was originally calibrated by the instrument's manufacturer, Santa Barbara Research Center (SBRC), in November 1993. In preparation for an August 1997 launch, the SeaWiFS Project and the National Institute of Standards and Technology (NIST) undertook a second calibration of SeaWiFS in January and April 1997 at the facility of the spacecraft integrator, Orbital Sciences Corporation (OSC). This calibration occurred in two phases, the first after the final thermal vacuum test, and the second after the final vibration test of the spacecraft. For the calibration, SeaWiFS observed an integrating sphere from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at four radiance levels. The spectral radiance of the sphere at these radiance levels was also measured by the SeaWiFS Transfer Radiometer (SXR). In addition, during the calibration, SeaWiFS and the SXR observed the sphere at 16 radiance levels to determine the linearity of the SeaWiFS response. As part of the calibration analysis, the GSFC sphere was also characterized using a GSFC spectroradiometer. The 1997 calibration agrees with the initial 1993 calibration to within +/- 4%. The new calibration coefficients, computed before and after the vibration test, agree to within 0.5%. The response of the SeaWiFS channels in each band is linear to better than 1%. In order to compare to previous and current methods, the SeaWiFS radiometric responses are presented in two ways: using the nominal center wave-lengths for the eight bands; and using band-averaged spectral radiances. The band-averaged values are used in the flight calibration table. An uncertainty analysis for the calibration coefficients is also presented.

  5. Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz

    PubMed Central

    Umchid, S.; Gopinath, R.; Srinivasan, K.; Lewin, P. A.; Daryoush, A. S.; Bansal, L.; El-Sherif, M.

    2009-01-01

    The primary objective of this work was to develop and optimize the calibration techniques for ultrasonic hydrophone probes used in acoustic field measurements up to 100 MHz. A dependable, 100 MHz calibration method was necessary to examine the behavior of a sub-millimeter spatial resolution fiber optic (FO) sensor and assess the need for such a sensor as an alternative tool for high frequency characterization of ultrasound fields. Also, it was of interest to investigate the feasibility of using FO probes in high intensity fields such as those employed in HIFU (High Intensity Focused Ultrasound) applications. In addition to the development and validation of a novel, 100 MHz calibration technique the innovative elements of this research include implementation and testing of a prototype FO sensor with an active diameter of about 10 μm that exhibits uniform sensitivity over the considered frequency range and does not require any spatial averaging corrections up to about 75 MHz. The results of the calibration measurements are presented and it is shown that the optimized calibration technique allows the sensitivity of the hydrophone probes to be determined as a virtually continuous function of frequency and is also well suited to verify the uniformity of the FO sensor frequency response. As anticipated, the overall uncertainty of the calibration was dependent on frequency and determined to be about ±12% (±1 dB) up to 40 MHz, ±20% (±1.5 dB) from 40 to 60 MHz and ±25% (±2 dB) from 60 to 100 MHz. The outcome of this research indicates that once fully developed and calibrated, the combined acousto-optic system will constitute a universal reference tool in the wide, 100 MHz bandwidth. PMID:19110289

  6. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei

    2014-03-01

    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  7. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  8. An Innovative Miniature Bite Force Recorder

    PubMed Central

    Utreja, Ashok K; Sandhu, Navreet; Dhaliwal, Yadvinder S

    2011-01-01

    In this study, a detailed description of development of a new novel bite force recorder (gnathodynamometer) using solid state components is vividly explained. This state of the art authenticated device can be used to assess the complex function of human bite force, which is the net resultant combination of functional response of various craniomandibular structures consisting of interrelated components, like the muscles of mastication, joints, teeth and the neuromuscular system. The consistency and accuracy of the bite force recorder was reaffirmed by doing a detailed laboratory calibration and clinical testing on 30 adult subjects. PMID:27672249

  9. Mars Exploration Rover Navigation Camera in-flight calibration

    USGS Publications Warehouse

    Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  10. To risk or not to risk: Anxiety and the calibration between risk perception and danger mitigation.

    PubMed

    Notebaert, Lies; Masschelein, Stijn; Wright, Bridget; MacLeod, Colin

    2016-06-01

    Anxiety prepares an organism for dealing with threats by recruiting cognitive resources to process information about the threat, and by engaging physiological systems to prepare a response. Heightened trait anxiety is associated with biases in both these processes: high trait-anxious individuals tend to report heightened risk perceptions, and inappropriate engagement in danger mitigation behavior. However, no research has addressed whether the calibration between risk perception and danger mitigation behavior is affected by anxiety, though it is well recognized that this calibration is crucial for adaptive functioning. The current study aimed to examine whether anxiety is characterized by better or worse calibration of danger mitigation behavior to variations in risk magnitude. Low and high trait-anxious participants were presented with information about the likelihood and severity of a danger (loud noise burst) on each trial. Participants could decide to mitigate this danger by investing a virtual coin, at the cost of losing danger mitigation ability on subsequent trials. Importantly, level of risk likelihood and severity were varied independently, and the multiplicative relationship between the 2 defined total danger. Multilevel modeling showed that the magnitude of total danger predicted the probability of coin investments, over and above the effects of risk likelihood and severity, suggesting that participants calibrated their danger mitigation behavior to integrated risk information. Crucially, this calibration was affected by trait anxiety, indicating better calibration in high trait-anxious individuals. These results are discussed in light of existing knowledge and models of the effect of anxiety on risk perception and decision-making. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. On-body calibration and measurements using personal radiofrequency exposimeters in indoor diffuse and specular environments.

    PubMed

    Aminzadeh, Reza; Thielens, Arno; Bamba, Aliou; Kone, Lamine; Gaillot, Davy Paul; Lienard, Martine; Martens, Luc; Joseph, Wout

    2016-07-01

    For the first time, response of personal exposimeters (PEMs) is studied under diffuse field exposure in indoor environments. To this aim, both numerical simulations, using finite-difference time-domain method, and calibration measurements were performed in the range of 880-5875 MHz covering 10 frequency bands in Belgium. Two PEMs were mounted on the body of a human male subject and calibrated on-body in an anechoic chamber (non-diffuse) and a reverberation chamber (RC) (diffuse fields). This was motivated by the fact that electromagnetic waves in indoor environments have both specular and diffuse components. Both calibrations show that PEMs underestimate actual incident electromagnetic fields. This can be compensated by using an on-body response. Moreover, it is shown that these responses are different in anechoic chamber and RC. Therefore, it is advised to use an on-body calibration in an RC in future indoor PEM measurements where diffuse fields are present. Using the response averaged over two PEMs reduced measurement uncertainty compared to single PEMs. Following the calibration, measurements in a realistic indoor environment were done for wireless fidelity (WiFi-5G) band. Measured power density values are maximally 8.9 mW/m(2) and 165.8 μW/m(2) on average. These satisfy reference levels issued by the International Commission on Non-Ionizing Radiation Protection in 1998. Power density values obtained by applying on-body calibration in RC are higher than values obtained from no body calibration (only PEMs) and on-body calibration in anechoic room, by factors of 7.55 and 2.21, respectively. Bioelectromagnetics. 37:298-309, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. A novel instrumentation circuit for electrochemical measurements.

    PubMed

    Yin, Li-Te; Wang, Hung-Yu; Lin, Yang-Chiuan; Huang, Wen-Chung

    2012-01-01

    In this paper, a novel signal processing circuit which can be used for the measurement of H(+) ion and urea concentration is presented. A potentiometric method is used to detect the concentrations of H(+) ions and urea by using H(+) ion-selective electrodes and urea electrodes, respectively. The experimental data shows that this measuring structure has a linear pH response for the concentration range within pH 2 and 12, and the dynamic range for urea concentration measurement is in the range of 0.25 to 64 mg/dL. The designed instrumentation circuit possesses a calibration function and it can be applied to different sensing electrodes for electrochemical analysis. It possesses the advantageous properties of being multi-purpose, easy calibration and low cost.

  13. Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones.

    PubMed

    Yuldashev, Petr; Karzova, Maria; Khokhlova, Vera; Ollivier, Sébastien; Blanc-Benon, Philippe

    2015-06-01

    A Mach-Zehnder interferometer is used to measure spherically diverging N-waves in homogeneous air. An electrical spark source is used to generate high-amplitude (1800 Pa at 15 cm from the source) and short duration (50 μs) N-waves. Pressure waveforms are reconstructed from optical phase signals using an Abel-type inversion. It is shown that the interferometric method allows one to reach 0.4 μs of time resolution, which is 6 times better than the time resolution of a 1/8-in. condenser microphone (2.5 μs). Numerical modeling is used to validate the waveform reconstruction method. The waveform reconstruction method provides an error of less than 2% with respect to amplitude in the given experimental conditions. Optical measurement is used as a reference to calibrate a 1/8-in. condenser microphone. The frequency response function of the microphone is obtained by comparing the spectra of the waveforms resulting from optical and acoustical measurements. The optically measured pressure waveforms filtered with the microphone frequency response are in good agreement with the microphone output voltage. Therefore, an optical measurement method based on the Mach-Zehnder interferometer is a reliable tool to accurately characterize evolution of weak shock waves in air and to calibrate broadband acoustical microphones.

  14. Optical Mass Displacement Tracking: A simplified field calibration method for the electro-mechanical seismometer.

    NASA Astrophysics Data System (ADS)

    Burk, D. R.; Mackey, K. G.; Hartse, H. E.

    2016-12-01

    We have developed a simplified field calibration method for use in seismic networks that still employ the classical electro-mechanical seismometer. Smaller networks may not always have the financial capability to purchase and operate modern, state of the art equipment. Therefore these networks generally operate a modern, low-cost digitizer that is paired to an existing electro-mechanical seismometer. These systems are typically poorly calibrated. Calibration of the station is difficult to estimate because coil loading, digitizer input impedance, and amplifier gain differences vary by station and digitizer model. Therefore, it is necessary to calibrate the station channel as a complete system to take into account all components from instrument, to amplifier, to even the digitizer. Routine calibrations at the smaller networks are not always consistent, because existing calibration techniques require either specialized equipment or significant technical expertise. To improve station data quality at the small network, we developed a calibration method that utilizes open source software and a commonly available laser position sensor. Using a signal generator and a small excitation coil, we force the mass of the instrument to oscillate at various frequencies across its operating range. We then compare the channel voltage output to the laser-measured mass displacement to determine the instrument voltage sensitivity at each frequency point. Using the standard equations of forced motion, a representation of the calibration curve as a function of voltage per unit of ground velocity is calculated. A computer algorithm optimizes the curve and then translates the instrument response into a Seismic Analysis Code (SAC) poles & zeros format. Results have been demonstrated to fall within a few percent of a standard laboratory calibration. This method is an effective and affordable option for networks that employ electro-mechanical seismometers, and it is currently being deployed in regional networks throughout Russia and in Central Asia.

  15. BAT3 Analyzer: Real-Time Data Display and Interpretation Software for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    USGS Publications Warehouse

    Winston, Richard B.; Shapiro, Allen M.

    2007-01-01

    The BAT3 Analyzer provides real-time display and interpretation of fluid pressure responses and flow rates measured during geochemical sampling, hydraulic testing, or tracer testing conducted with the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3) (Shapiro, 2007). Real-time display of the data collected with the Multifunction BAT3 allows the user to ensure that the downhole apparatus is operating properly, and that test procedures can be modified to correct for unanticipated hydraulic responses during testing. The BAT3 Analyzer can apply calibrations to the pressure transducer and flow meter data to display physically meaningful values. Plots of the time-varying data can be formatted for a specified time interval, and either saved to files, or printed. Libraries of calibrations for the pressure transducers and flow meters can be created, updated and reloaded to facilitate the rapid set up of the software to display data collected during testing with the Multifunction BAT3. The BAT3 Analyzer also has the functionality to estimate calibrations for pressure transducers and flow meters using data collected with the Multifunction BAT3 in conjunction with corroborating check measurements. During testing with the Multifunction BAT3, and also after testing has been completed, hydraulic properties of the test interval can be estimated by comparing fluid pressure responses with model results; a variety of hydrogeologic conceptual models of the formation are available for interpreting fluid-withdrawal, fluid-injection, and slug tests.

  16. Using Lunar Observations to Validate In-Flight Calibrations of Clouds and Earth Radiant Energy System Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    The validation of in-orbit instrument performance requires stability in both instrument and calibration source. This paper describes a method of validation using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. Unlike internal calibrations, the Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, in-orbit observations have become standardized and compiled for the Flight Models-1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance parameters which can be gleaned are detector gain, pointing accuracy and static detector point response function validation. Lunar observations are used to examine the stability of all three detectors on each of these instruments from 2006 to present. This validation method has yielded results showing trends per CERES data channel of 1.2% per decade or less.

  17. Calibration of Kodak EDR2 film for patient skin dose assessment in cardiac catheterization procedures.

    PubMed

    Morrell, Rachel E; Rogers, Andy

    2004-12-21

    Kodak EDR2 film has been calibrated across the range of exposure conditions encountered in our cardiac catheterization laboratory. Its dose-response function has been successfully modelled, up to the saturation point of 1 Gy. The most important factor affecting film sensitivity is the use of beam filtration. Spectral filtration and kVp together account for a variation in dose per optical density of -10% to +25%, at 160 mGy. The use of a dynamic wedge filter may cause doses to be underestimated by up to 6%. The film is relatively insensitive to variations in batch, field size, exposure rate, time to processing and day-to-day fluctuations in processor performance. Overall uncertainty in the calibration is estimated to be -20% to +40%, at 160 mGy. However, the uncertainty increases at higher doses, as the curve saturates. Artefacts were seen on a number of films, due to faults in the light-proofing of the film packets.

  18. Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy.

    PubMed

    Werle, P W; Mazzinghi, P; D'Amato, F; De Rosa, M; Maurer, K; Slemr, F

    2004-07-01

    Gas analyzers based on tunable diode-laser spectroscopy (TDLS) provide high sensitivity, fast response and highly specific in situ measurements of several atmospheric trace gases simultaneously. Under optimum conditions even a shot noise limited performance can be obtained. For field applications outside the laboratory practical limitations are important. At ambient mixing ratios below a few parts-per-billion spectrometers become more and more sensitive towards noise, interference, drift effects and background changes associated with low level signals. It is the purpose of this review to address some of the problems which are encountered at these low levels and to describe a signal processing strategy for trace gas monitoring and a concept for in situ system calibration applicable for tunable diode-laser spectroscopy. To meet the requirement of quality assurance for field measurements and monitoring applications, procedures to check the linearity according to International Standard Organization regulations are described and some measurements of calibration functions are presented and discussed.

  19. Astronomical Polarimetry with the RIT Polarization Imaging Camera

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry V.; Ninkov, Zoran; Brock, Neal

    2018-06-01

    In the last decade, imaging polarimeters based on micropolarizer arrays have been developed for use in terrestrial remote sensing and metrology applications. Micropolarizer-based sensors are dramatically smaller and more mechanically robust than other polarimeters with similar spectral response and snapshot capability. To determine the suitability of these new polarimeters for astronomical applications, we developed the RIT Polarization Imaging Camera to investigate the performance of these devices, with a special attention to the low signal-to-noise regime. We characterized the device performance in the lab, by determining the relative throughput, efficiency, and orientation of every pixel, as a function of wavelength. Using the resulting pixel response model, we developed demodulation procedures for aperture photometry and imaging polarimetry observing modes. We found that, using the current calibration, RITPIC is capable of detecting polarization signals as small as ∼0.3%. The relative ease of data collection, calibration, and analysis provided by these sensors suggest than they may become an important tool for a number of astronomical targets.

  20. SeaWiFS Technical Report Series. Volume 40; SeaWiFS Calibration Topics

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Eplee, Robert E., Jr.; Yeh, Eueng-nan; Esaias, Wayne E.

    1997-01-01

    For Earth-observing satellite instruments, it was standard to consider each instrument band to have a spectral response that is infinitely narrow, i.e., to have a response from a single wavelength. The SeaWiFS bands, however, have nominal spectral bandwidths of 20 and 40 nm. These bandwidths effect the SeaWiFS measurements on orbit. The effects are also linked to the manner in which the instrument was calibrated and to the spectral shape of the radiance that SeaWiFS views. The spectral shape of that radiance will not be well known on orbit. In this technical memorandum, two source spectra are examined. The first is a 12,000 K Planck function, and the second is based on the modeling results of H. Gordon at the University of Miami. By comparing these spectra, the best available corrections to the SeaWiFS measurements for source spectral shape, plus estimates of the uncertainties in these corrections, can be tabulated.

  1. A Calibration Method for Nanowire Biosensors to Suppress Device-to-device Variation

    PubMed Central

    Ishikawa, Fumiaki N.; Curreli, Marco; Chang, Hsiao-Kang; Chen, Po-Chiang; Zhang, Rui; Cote, Richard J.; Thompson, Mark E.; Zhou, Chongwu

    2009-01-01

    Nanowire/nanotube biosensors have stimulated significant interest; however the inevitable device-to-device variation in the biosensor performance remains a great challenge. We have developed an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. The method is based on our discovery of a strong correlation between the biosensor gate dependence (dIds/dVg) and the absolute response (absolute change in current, ΔI). In2O3 nanowire based biosensors for streptavidin detection were used as the model system. Studying the liquid gate effect and ionic concentration dependence of strepavidin sensing indicates that electrostatic interaction is the dominant mechanism for sensing response. Based on this sensing mechanism and transistor physics, a linear correlation between the absolute sensor response (ΔI) and the gate dependence (dIds/dVg) is predicted and confirmed experimentally. Using this correlation, a calibration method was developed where the absolute response is divided by dIds/dVg for each device, and the calibrated responses from different devices behaved almost identically. Compared to the common normalization method (normalization of the conductance/resistance/current by the initial value), this calibration method was proved advantageous using a conventional transistor model. The method presented here substantially suppresses device-to-device variation, allowing the use of nanosensors in large arrays. PMID:19921812

  2. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Azmy, Y.; Gardner, R. P.; Mattingly, J.; Smith, R.; Worrall, L. G.; Dewji, S.

    2017-11-01

    Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium iodide (NaI) nuclear material holdup field detector using the code named g03 developed by the Center for Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns were performed in order to validate the DRF's constructed by g03: on-axis detection of calibration sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements of the HEU disk with steel plates inserted between the source and the detector to provide attenuation. Furthermore, this work quantifies the uncertainty of the Monte Carlo simulations used in and with g03, as well as the uncertainties associated with each semi-empirical model employed in the full DRF representation. Overall, for the calibration source measurements, the response computed by the DRF for the prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about 45-65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk measurements, computed DRF responses tended to significantly underestimate (more than 20%) the secondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to scattering in the detector collimator and aluminum can, which is not included in the g03 model. We ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the statistical uncertainties were lower than their experimental counterpart's Poisson uncertainties. The uncertainties associated with least-squares fits to the experimental data tended to have parameter relative standard deviations lower than the peak channel relative standard deviation in most cases and good reduced chi-square values. The highest sources of uncertainty were identified as the energy calibration polynomial factor (due to limited source availability and NaI resolution) and the Ba-133 peak fit (only a very weak source was available), which were 20% and 10%, respectively.

  3. Relative spectral response calibration using Ti plasma lines

    NASA Astrophysics Data System (ADS)

    Teng, FEI; Congyuan, PAN; Qiang, ZENG; Qiuping, WANG; Xuewei, DU

    2018-04-01

    This work introduces the branching ratio (BR) method for determining relative spectral responses, which are needed routinely in laser induced breakdown spectroscopy (LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.

  4. Calibration of ITER Instant Power Neutron Monitors: Recommended Scenario of Experiments at the Reactor

    NASA Astrophysics Data System (ADS)

    Borisov, A. A.; Deryabina, N. A.; Markovskij, D. V.

    2017-12-01

    Instant power is a key parameter of the ITER. Its monitoring with an accuracy of a few percent is an urgent and challenging aspect of neutron diagnostics. In a series of works published in Problems of Atomic Science and Technology, Series: Thermonuclear Fusion under a common title, the step-by-step neutronics analysis was given to substantiate a calibration technique for the DT and DD modes of the ITER. A Gauss quadrature scheme, optimal for processing "expensive" experiments, is used for numerical integration of 235U and 238U detector responses to the point sources of 14-MeV neutrons. This approach allows controlling the integration accuracy in relation to the number of coordinate mesh points and thus minimizing the number of irradiations at the given uncertainty of the full monitor response. In the previous works, responses of the divertor and blanket monitors to the isotropic point sources of DT and DD neutrons in the plasma profile and to the models of real sources were calculated within the ITER model using the MCNP code. The neutronics analyses have allowed formulating the basic principles of calibration that are optimal for having the maximum accuracy at the minimum duration of in situ experiments at the reactor. In this work, scenarios of the preliminary and basic experimental ITER runs are suggested on the basis of those principles. It is proposed to calibrate the monitors only with DT neutrons and use correction factors to the DT mode calibration for the DD mode. It is reasonable to perform full calibration only with 235U chambers and calibrate 238U chambers by responses of the 235U chambers during reactor operation (cross-calibration). The divertor monitor can be calibrated using both direct measurement of responses at the Gauss positions of a point source and simplified techniques based on the concepts of equivalent ring sources and inverse response distributions, which will considerably reduce the amount of measurements. It is shown that the monitor based on the average responses of the horizontal and vertical neutron chambers remains spatially stable as the source moves and can be used in addition to the staff monitor at neutron fluxes in the detectors four orders of magnitude lower than on the first wall, where staff detectors are located. Owing to low background, detectors of neutron chambers do not need calibration in the reactor because it is actually determination of the absolute detector efficiency for 14-MeV neutrons, which is a routine out-of-reactor procedure.

  5. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner.

    PubMed

    McCabe, Bradley P; Speidel, Michael A; Pike, Tina L; Van Lysel, Michael S

    2011-04-01

    In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was +/- 7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases.

  6. GHRS Cycle 5 Echelle Wavelength Monitor

    NASA Astrophysics Data System (ADS)

    Soderblom, David

    1995-07-01

    This proposal defines the spectral lamp test for Echelle A. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. This proposal defines the spectral lamp test for Echelle B. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. It will be run every 4 months. The wavelengths may be out of range according to PEPSI or TRANS. Please ignore the errors.

  7. Evaluation of space shuttle main engine fluid dynamic frequency response characteristics

    NASA Technical Reports Server (NTRS)

    Gardner, T. G.

    1980-01-01

    In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.

  8. Potential for calibration of geostationary meteorological satellite imagers using the Moon

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Grant, I.F.; ,

    2005-01-01

    Solar-band imagery from geostationary meteorological satellites has been utilized in a number of important applications in Earth Science that require radiometric calibration. Because these satellite systems typically lack on-board calibrators, various techniques have been employed to establish "ground truth", including observations of stable ground sites and oceans, and cross-calibrating with coincident observations made by instruments with on-board calibration systems. The Moon appears regularly in the margins and corners of full-disk operational images of the Earth acquired by meteorological instruments with a rectangular field of regard, typically several times each month, which provides an excellent opportunity for radiometric calibration. The USGS RObotic Lunar Observatory (ROLO) project has developed the capability for on-orbit calibration using the Moon via a model for lunar spectral irradiance that accommodates the geometries of illumination and viewing by a spacecraft. The ROLO model has been used to determine on-orbit response characteristics for several NASA EOS instruments in low Earth orbit. Relative response trending with precision approaching 0.1% per year has been achieved for SeaWiFS as a result of the long time-series of lunar observations collected by that instrument. The method has a demonstrated capability for cross-calibration of different instruments that have viewed the Moon. The Moon appears skewed in high-resolution meteorological images, primarily due to satellite orbital motion during acquisition; however, the geometric correction for this is straightforward. By integrating the lunar disk image to an equivalent irradiance, and using knowledge of the sensor's spectral response, a calibration can be developed through comparison against the ROLO lunar model. The inherent stability of the lunar surface means that lunar calibration can be applied to observations made at any time, including retroactively. Archived geostationary imager data that contains the Moon can be used to develop response histories for these instruments, regardless of their current operational status.

  9. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    NASA Astrophysics Data System (ADS)

    Rinker, Jennifer M.

    2016-09-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.

  10. An in-depth psychometric analysis of the Connor-Davidson Resilience Scale: calibration with Rasch-Andrich model.

    PubMed

    Arias González, Víctor B; Crespo Sierra, María Teresa; Arias Martínez, Benito; Martínez-Molina, Agustín; Ponce, Fernando P

    2015-09-23

    The Connor-Davidson Resilience Scale (CD-RISC) is inarguably one of the best-known instruments in the field of resilience assessment. However, the criteria for the psychometric quality of the instrument were based only on classical test theory. The aim of this paper has focused on the calibration of the CD-RISC with a nonclinical sample of 444 adults using the Rasch-Andrich Rating Scale Model, in order to clarify its structure and analyze its psychometric properties at the level of item. Two items showed misfit to the model and were eliminated. The remaining 22 items form basically a unidimensional scale. The CD-RISC has good psychometric properties. The fit of both the items and the persons to the Rasch model was good, and the response categories were functioning properly. Two of the items showed differential item functioning. The CD-RISC has an obvious ceiling effect, which suggests to include more difficult items in future versions of the scale.

  11. Characterisation methods for the hyperspectral sensor HySpex at DLR's calibration home base

    NASA Astrophysics Data System (ADS)

    Baumgartner, Andreas; Gege, Peter; Köhler, Claas; Lenhard, Karim; Schwarzmaier, Thomas

    2012-09-01

    The German Aerospace Center's (DLR) Remote Sensing Technology Institute (IMF) operates a laboratory for the characterisation of imaging spectrometers. Originally designed as Calibration Home Base (CHB) for the imaging spectrometer APEX, the laboratory can be used to characterise nearly every airborne hyperspectral system. Characterisation methods will be demonstrated exemplarily with HySpex, an airborne imaging spectrometer system from Norsk Elektro Optikks A/S (NEO). Consisting of two separate devices (VNIR-1600 and SWIR-320me) the setup covers the spectral range from 400 nm to 2500 nm. Both airborne sensors have been characterised at NEO. This includes measurement of spectral and spatial resolution and misregistration, polarisation sensitivity, signal to noise ratios and the radiometric response. The same parameters have been examined at the CHB and were used to validate the NEO measurements. Additionally, the line spread functions (LSF) in across and along track direction and the spectral response functions (SRF) for certain detector pixels were measured. The high degree of lab automation allows the determination of the SRFs and LSFs for a large amount of sampling points. Despite this, the measurement of these functions for every detector element would be too time-consuming as typical detectors have 105 elements. But with enough sampling points it is possible to interpolate the attributes of the remaining pixels. The knowledge of these properties for every detector element allows the quantification of spectral and spatial misregistration (smile and keystone) and a better calibration of airborne data. Further laboratory measurements are used to validate the models for the spectral and spatial properties of the imaging spectrometers. Compared to the future German spaceborne hyperspectral Imager EnMAP, the HySpex sensors have the same or higher spectral and spatial resolution. Therefore, airborne data will be used to prepare for and validate the spaceborne system's data.

  12. Calculation of the static in-flight telescope-detector response by deconvolution applied to point-spread function for the geostationary earth radiation budget experiment.

    PubMed

    Matthews, Grant

    2004-12-01

    The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available.

  13. Recalibrating sleep: is recalibration and readjustment of sense organs and brain-body connections the core function of sleep?

    PubMed

    Smetacek, Victor

    2010-10-01

    Sleep is an enigma because we all know what it means and does to us, yet a scientific explanation for why animals including humans need to sleep is still lacking. However, the enigma can be resolved if the animal body is regarded as a purposeful machine whose moving parts are coordinated with spatial information provided by a disparate array of sense organs. The performance of all complex machines deteriorates with time due to inevitable instrument drift of the individual sensors combined with wear and tear of the moving parts which result in declining precision and coordination. Peak performance is restored by servicing the machine, which involves calibrating the sensors against baselines and standards, then with one another, and finally readjusting the connections between instruments and moving parts. It follows that the animal body and its sensors will also require regular calibration of sense organs and readjustment of brain-body connections which will need to be carried out while the animal is not in functional but in calibration mode. I suggest that this is the core function of sleep. This recalibration hypothesis of sleep can be tested subjectively. We all know from personal experience that sleep is needed to recover from tiredness that sets in towards the end of a long day. This tiredness, which is quite distinct from mental or muscular exhaustion caused by strenuous exertion, manifests itself in deteriorating general performance: the sense organs lose precision, movements become clumsy and the mind struggles to maintain focus. We can all agree that sleep sharpens the sense organs and restores agility to mind and body. I now propose that the sense of freshness and buoyancy after a good night's sleep is the feeling of recalibrated sensory and motor systems. The hypothesis can be tested rigorously by examining available data on sleep cycles and stages against this background. For instance, REM and deep sleep cycles can be interpreted as successive, separate calibration runs of the vestibulo-ocular reflex and the sensory-motor systems, respectively, amongst other functions running in parallel, such as dreaming. Because the split-second connections between sensory information and emotional responses will also require calibration, some aspects of dreaming could be interpreted in this light. Much of the baffling behaviour and patterns of brain activity of sleeping animals and humans make sense in the framework of this technological paradigm since different animal lineages will have evolved different techniques to achieve calibration. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera

    PubMed Central

    Sim, Sungdae; Sock, Juil; Kwak, Kiho

    2016-01-01

    LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches. PMID:27338416

  15. Cross-calibration of S-NPP VIIRS moderate-resolution reflective solar bands against MODIS Aqua over dark water scenes

    NASA Astrophysics Data System (ADS)

    Sayer, Andrew M.; Hsu, N. Christina; Bettenhausen, Corey; Holz, Robert E.; Lee, Jaehwa; Quinn, Greg; Veglio, Paolo

    2017-04-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ˜ 0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and they are shown to decrease the bias and total error in AOD across the mid-visible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multi-sensor data continuity.

  16. Dual Ion Spectrometers and Their Calibration for the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Coffey, V. N.; Chandler, M. O.

    2017-01-01

    The scientific target of NASA's Magnetospheric Multiscale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small size, on the order of hundred kilometers, for the ion diffusion region where ions are demagnetized at the dayside magnetopause. This region may typically sweep over the spacecraft at relatively high speeds of 50 km/s, requiring the fast plasma investigation (FPI) instrument suite to have an extremely high time resolution for measurements of the 3D particle distribution functions. As part of the FPI on MMS, the 16 dual ion spectrometers (DIS) will provide fast (150 ms) 3D ion velocity distributions, from 10 to 30,000 eV/q, by combining the measurements from four dual spectrometers on each of four MMS spacecraft. For any multispacecraft mission, the response uniformity among the spectrometer set assumes an enhanced importance. Due to these demanding instrument requirements and the effort of calibrating more than 32 sensors (16 × 2) within a tight schedule, a highly systematic and precise calibration was required for measurement repeatability. To illustrate how this challenge was met, a brief overview of the FPI DIS was presented with a detailed discussion of the calibration method of approach and implementation. Finally, a discussion of DIS performance results, their unit-to-unit variation, and the lessons learned from this calibration effort are presented.

  17. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    NASA Astrophysics Data System (ADS)

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.

  18. Kromoscopic measurement of glucose in the first overtone region of the near-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Amerov, Airat K.; Sun, Yu; Small, Gary W.; Arnold, Mark A.

    2002-05-01

    The ability of Kromoscopy to measure glucose selectively is demonstrated in solutions composed glucose, urea, triacetin, bovine serum albumin (BSA), cholesterol, and hemoglobin (Hb). Kromoscopic measurements are made with a four-channel instrument designed for measuring light between 1500 and 1900 nm. The channels are configured to respond to four individual bands of near infrared light centered at 1600, 1700, 1750, and 1800 nm. An equation is proposed that describes the relative response for each channel as a function of relevant experimental parameters. This equation predicts the linear response observed for these types of measurements as a function of solute concentration. In addition, molar absorptivities are provided for glucose, urea, triacetin, BSA, Hb, and water. The non-negligible absorptivity of water demands the consideration of water displacement caused by solute dissolution. Channel responses are measured for a series of thirty-one samples. The chemical composition of these samples is designed to minimize the correlations between glucose concentration and the concentrations of all other solutes. Likewise, these samples provide negligible correlation between the concentration of glucose and the extent of water displacement. A calibration model is constructed for glucose by using a conventional P-matrix multiple linear regression analysis of the four-channel information. The resulting model demonstrates selectivity for glucose with values of 1.27 and 1.34 mM for the standard errors of calibration and prediction, respectively, over a glucose concentration range of 1.9 to 19 mM.

  19. Performance of thin CaSO4:Dy pellets for calibration of a Sr90+Y90 source

    NASA Astrophysics Data System (ADS)

    Oliveira, M. L.; Caldas, L. V. E.

    2007-09-01

    Because of the radionuclide long half-life, Sr90+Y90, plane or concave sources, utilized in brachytherapy, have to be calibrated initially by the manufacturer and then routinely while they are utilized. Plane applicators can be calibrated against a conventional extrapolation chamber, but concave sources, because of their geometry, should be calibrated using relative dosimeters, as thermoluminescent (TL) materials. Thin CaSO4:Dy pellets are produced at IPEN specially for beta radiation detection. Previous works showed the feasibility of this material in the dosimetry of Sr90+Y90 sources in a wide range of absorbed dose in air. The aim of this work was to study the usefulness of these pellets for the calibration of a Sr90+Y90 concave applicator. To reach this objective, a special phantom was designed and manufactured in PTFE with semi spherical geometry. Because of the dependence of the TL response on the mass of the pellet, the response of each pellet was normalized by its mass in order to reduce the dispersion on TL response. Important characteristics of this material were obtained in reference of a standard Sr90+Y90 source, and the pellets were calibrated against a plane applicator; then they were utilized to calibrate the concave applicator.

  20. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.

  1. A Revised Calibration Function and Results for the Phoenix Mission TECP Relative Humidity Sensor

    NASA Technical Reports Server (NTRS)

    Zent, Aaron

    2014-01-01

    The original calibration function of the R(sub H) sensor on the Phoenix Thermal and Electrical Conductivity Sensor (TECP) has been revised in order to extend the range of the valid calibration, and to improve accuracy. The original function returned non-physical R(sub H) values at the lowest temperatures. To resolve this, and because the original calibration was performed against a pair of hygrometers that measured frost point (T(sub f)), the revised calibration equation is also cast in terms of frost point. Because of the complexity of maintaining very low temperatures and high R(sub H) in the laboratory, no calibration data exists at T is greater than 203K. However, sensor response during the mission was smooth and continuous down to 181 K. Therefore we have opted to include flight data in the calibration data set; selection was limited to data acquired during periods when the atmosphere is known to have been saturated. T(sub f) remained below 210 K throughout the mission(P is greater than 0.75 Pa). R(sub H), conversely, ranged from 1 to well under 0.01 diurnally, due to approximately 50 K temperature variations. To first order, both vapor pressure and its variance are greater during daylight hours. Variance in overnight humidity is almost entirely explained by temperature, while atmospheric turbulence contributes substantial variance to daytime humidity. Likewise, data gathered with the TECP aloft reflect higher H2O abundances than at the surface, as well as greater variance. There is evidence for saturation of the atmosphere overnight throughout much of the mission. In virtually every overnight observation, once the atmosphere cooled to T(sub f), water vapor begins to decrease, and tracks air temperature. There is no evidence for substantial decreases in water vapor prior to saturation, as expected for adsorptive exchange. Likewise, there is no evidence of local control of vapor by phases such as perchlorate hydrates hydrated minerals. The daytime average H2O pressure does not change substantially over the course of the mission, although the H2O column abundance varies by a factor of 2. Column abundances calculated from TECP data are lower than orbital measurements if one assumes that H2O is uniformly mixed through a single scale height. These results argue that the vertical distribution of H2O begins to change well in advance of surface concentrations as northern autumn approaches.

  2. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  3. Environmental limits to growth: physiological niche boundaries of corals along turbidity-light gradients.

    PubMed

    Anthony, Kenneth R N; Connolly, Sean R

    2004-11-01

    The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy losses will prove to be important determinants of niche differences in other systems as well.

  4. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    NASA Astrophysics Data System (ADS)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal transfert function of the DTGS has to be qualified and taken into account. The usual way is to measure it directly by means of an optical shopper and a locking amplifier for different shopping frequencies. We present here an alternative method to estimate this DTGS transfer function, based on the fact that a FTIR continuous scan interfergram contains the different spectral frequencies of interest. Such a calibration method doesn't need a specific setup as it can be performed in standard configuration, playing only with spectrometer parameters. It allows for the precise estimation of detector spectral shapes. However, this measurement is not absolute and the peak response needs therefore to be estimated using a calibrated black body cavity. The method, its results and limits is presented and discussed for a set of different DTGS cells.

  5. Volumetric calibration of a plenoptic camera.

    PubMed

    Hall, Elise Munz; Fahringer, Timothy W; Guildenbecher, Daniel R; Thurow, Brian S

    2018-02-01

    The volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creation of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.

  6. UNDERFLIGHT CALIBRATION OF SOHO/CDS AND HINODE/EIS WITH EUNIS-07

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Tongjiang; Brosius, Jeffrey W.; Thomas, Roger J.

    2011-12-01

    Flights of Goddard Space Flight Center's Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket in 2006 and 2007 provided updated radiometric calibrations for Solar and Heliospheric Observatory/Coronal Diagnostic Spectrometer (SOHO/CDS) and Hinode/Extreme Ultraviolet Imaging Spectrometer (Hinode/EIS). EUNIS carried two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order. After each flight, end-to-end radiometric calibrations of the rocket payload were carried out in the same facility used for pre-launch calibrations of CDS and EIS. During the 2007 flight, EUNIS, SOHO/CDS, and Hinode/EIS observed the same solar locations, allowing the EUNIS calibrations to bemore » directly applied to both CDS and EIS. The measured CDS NIS 1 line intensities calibrated with the standard (version 4) responsivities with the standard long-term corrections are found to be too low by a factor of 1.5 due to the decrease in responsivity. The EIS calibration update is performed in two ways. One uses the direct calibration transfer of the calibrated EUNIS-07 short wavelength (SW) channel. The other uses the insensitive line pairs, in which one member was observed by the EUNIS-07 long wavelength (LW) channel and the other by EIS in either the LW or SW waveband. Measurements from both methods are in good agreement, and confirm (within the measurement uncertainties) the EIS responsivity measured directly before the instrument's launch. The measurements also suggest that the EIS responsivity decreased by a factor of about 1.2 after the first year of operation (although the size of the measurement uncertainties is comparable to this decrease). The shape of the EIS SW response curve obtained by EUNIS-07 is consistent with the one measured in laboratory prior to launch. The absolute value of the quiet-Sun He II 304 A intensity measured by EUNIS-07 is consistent with the radiance measured by CDS NIS in quiet regions near the disk center and the solar minimum irradiance recently obtained by CDS NIS and the Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment.« less

  7. 40 CFR 91.314 - Analyzer accuracy and specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (3) Zero drift. The analyzer zero-response drift during a one-hour period must be less than two percent of full-scale chart deflection on the lowest range used. The zero-response is defined as the mean... calibration or span gas. (2) Noise. The analyzer peak-to-peak response to zero and calibration or span gases...

  8. Uncertainty Analysis of Instrument Calibration and Application

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.

  9. Uncertainty quantification for constitutive model calibration of brain tissue.

    PubMed

    Brewick, Patrick T; Teferra, Kirubel

    2018-05-31

    The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.

  10. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal.

    PubMed

    Thomason, Moriah E; Glover, Gary H

    2008-01-01

    Recent studies have shown that blood oxygen level dependent (BOLD) response amplitude during short periods of breath holding (BH) measured by functional magnetic resonance imaging (fMRI) can be an effective metric for intersubject calibration procedures. However, inconsistency in the depth of inspiration during the BH scan may account for a portion of BOLD variation observed in such scans, and it is likely to reduce the effectiveness of the calibration measurement. While modulation of BOLD signal has been correlated with end-tidal CO2 and other measures of breathing, fluctuations in performance of BH have not been studied in the context of their impact on BOLD signal. Here, we studied the degree to which inspiration depth corresponds to BOLD signal change and tested the effectiveness of a method designed to control inspiration level through visual cues during the BH task paradigm. We observed reliable differences in BOLD signal amplitude corresponding to the depth of inspiration. It was determined that variance in BOLD signal response to BH could be significantly reduced when subjects were given visual feedback during task inspiration periods. The implications of these findings for routine BH studies of BOLD-derived neurovascular response are discussed.

  11. Calibration of the QCM/SAW Cascade Impactor for Measurement of Ozone in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Wright, Cassandra K.; Sims, S. C.; Peterson, C. B.; Morris, V. R.

    1997-01-01

    The Quartz Crystal Microbalance Surface Acoustic Wave (QCM/SAW) cascade impactor collects size-fractionated distributions of aerosols on a series of 10 MHz quartz crystals and employs SAW devices coated with chemical sensors for gas detection. Presently, we are calibrating the ER-2 certified QCM/SAW cascade impactor in the laboratory for the detection of ozone. Experiments have been performed to characterize the QCM and SAW mass loading, saturation limits, mass frequency relationships, and sensitivity. We are also characterizing sampling efficiency by measuring the loss of ozone on different materials. There are parallel experiments underway to measure the variations in the sensitivity and response of the QCM/SAW crystals as a function of temperature and pressure. Results of the work to date will be shown.

  12. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.

  13. Well-ionization chamber response relative to NIST air-kerma strength standard for prostate brachytherapy seeds.

    PubMed

    Mitch, M G; Zimmerman, B E; Lamperti, P J; Seltzer, S M; Coursey, B M

    2000-10-01

    The response of well-ionization chambers to the emissions of 103Pd and 125I radioactive seed sources used in prostate cancer brachytherapy has been measured. Calibration factors relating chamber response (current or dial setting) to measured air-kerma strength have been determined for seeds from nine manufacturers, each with different designs. Variations in well-ionization chamber response relative to measured air-kerma strength have been observed because of differences in the emitted energy spectrum due to both the radionuclide support material (125I seeds) and the mass ratio of 103Pd to 102Pd (103Pd seeds). Obtaining accurate results from quality assurance measurements using well-ionization chambers at a therapy clinic requires knowledge of such differences in chamber response as a function of seed design.

  14. Lessons learned from the AIRS pre-flight radiometric calibration

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Weiler, Margie

    2013-09-01

    The Atmospheric Infrared Sounder (AIRS) instrument flies on the NASA Aqua satellite and measures the upwelling hyperspectral earth radiance in the spectral range of 3.7-15.4 μm with a nominal ground resolution at nadir of 13.5 km. The AIRS spectra are achieved using a temperature controlled grating spectrometer and HgCdTe infrared linear arrays providing 2378 channels with a nominal spectral resolution of approximately 1200. The AIRS pre-flight tests that impact the radiometric calibration include a full system radiometric response (linearity), polarization response, and response vs scan angle (RVS). We re-derive the AIRS instrument radiometric calibration coefficients from the pre-flight polarization measurements, the response vs scan (RVS) angle tests as well as the linearity tests, and a recent lunar roll test that allowed the AIRS to view the moon. The data and method for deriving the coefficients is discussed in detail and the resulting values compared amongst the different tests. Finally, we examine the residual errors in the reconstruction of the external calibrator blackbody radiances and the efficacy of a new radiometric uncertainty model. Results show the radiometric calibration of AIRS to be excellent and the radiometric uncertainty model does a reasonable job of characterizing the errors.

  15. Multiple Use One-Sided Hypotheses Testing in Univariate Linear Calibration

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, K.; Kulkarni, Pandurang M.; Mathew, Thomas

    1996-01-01

    Consider a normally distributed response variable, related to an explanatory variable through the simple linear regression model. Data obtained on the response variable, corresponding to known values of the explanatory variable (i.e., calibration data), are to be used for testing hypotheses concerning unknown values of the explanatory variable. We consider the problem of testing an unlimited sequence of one sided hypotheses concerning the explanatory variable, using the corresponding sequence of values of the response variable and the same set of calibration data. This is the situation of multiple use of the calibration data. The tests derived in this context are characterized by two types of uncertainties: one uncertainty associated with the sequence of values of the response variable, and a second uncertainty associated with the calibration data. We derive tests based on a condition that incorporates both of these uncertainties. The solution has practical applications in the decision limit problem. We illustrate our results using an example dealing with the estimation of blood alcohol concentration based on breath estimates of the alcohol concentration. In the example, the problem is to test if the unknown blood alcohol concentration of an individual exceeds a threshold that is safe for driving.

  16. A suggestion for computing objective function in model calibration

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang

    2014-01-01

    A parameter-optimization process (model calibration) is usually required for numerical model applications, which involves the use of an objective function to determine the model cost (model-data errors). The sum of square errors (SSR) has been widely adopted as the objective function in various optimization procedures. However, ‘square error’ calculation was found to be more sensitive to extreme or high values. Thus, we proposed that the sum of absolute errors (SAR) may be a better option than SSR for model calibration. To test this hypothesis, we used two case studies—a hydrological model calibration and a biogeochemical model calibration—to investigate the behavior of a group of potential objective functions: SSR, SAR, sum of squared relative deviation (SSRD), and sum of absolute relative deviation (SARD). Mathematical evaluation of model performance demonstrates that ‘absolute error’ (SAR and SARD) are superior to ‘square error’ (SSR and SSRD) in calculating objective function for model calibration, and SAR behaved the best (with the least error and highest efficiency). This study suggests that SSR might be overly used in real applications, and SAR may be a reasonable choice in common optimization implementations without emphasizing either high or low values (e.g., modeling for supporting resources management).

  17. Calibration uncertainty for Advanced LIGO's first and second observing runs

    NASA Astrophysics Data System (ADS)

    Cahillane, Craig; Betzwieser, Joe; Brown, Duncan A.; Goetz, Evan; Hall, Evan D.; Izumi, Kiwamu; Kandhasamy, Shivaraj; Karki, Sudarshan; Kissel, Jeff S.; Mendell, Greg; Savage, Richard L.; Tuyenbayev, Darkhan; Urban, Alex; Viets, Aaron; Wade, Madeline; Weinstein, Alan J.

    2017-11-01

    Calibration of the Advanced LIGO detectors is the quantification of the detectors' response to gravitational waves. Gravitational waves incident on the detectors cause phase shifts in the interferometer laser light which are read out as intensity fluctuations at the detector output. Understanding this detector response to gravitational waves is crucial to producing accurate and precise gravitational wave strain data. Estimates of binary black hole and neutron star parameters and tests of general relativity require well-calibrated data, as miscalibrations will lead to biased results. We describe the method of producing calibration uncertainty estimates for both LIGO detectors in the first and second observing runs.

  18. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  19. Bayesian model calibration of computational models in velocimetry diagnosed dynamic compression experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Justin; Hund, Lauren

    2017-02-01

    Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesianmore » model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.« less

  20. Calibration of GafChromic XR-RV3 radiochromic film for skin dose measurement using standardized x-ray spectra and a commercial flatbed scanner

    PubMed Central

    McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.; Van Lysel, Michael S.

    2011-01-01

    Purpose: In this study, newly formulated XR-RV3 GafChromic® film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity in scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was ±7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases. PMID:21626925

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Bradley P.; Speidel, Michael A.; Pike, Tina L.

    Purpose: In this study, newly formulated XR-RV3 GafChromic film was calibrated with National Institute of Standards and Technology (NIST) traceability for measurement of patient skin dose during fluoroscopically guided interventional procedures. Methods: The film was calibrated free-in-air to air kerma levels between 15 and 1100 cGy using four moderately filtered x-ray beam qualities (60, 80, 100, and 120 kVp). The calibration films were scanned with a commercial flatbed document scanner. Film reflective density-to-air kerma calibration curves were constructed for each beam quality, with both the orange and white sides facing the x-ray source. A method to correct for nonuniformity inmore » scanner response (up to 25% depending on position) was developed to enable dose measurement with large films. The response of XR-RV3 film under patient backscattering conditions was examined using on-phantom film exposures and Monte Carlo simulations. Results: The response of XR-RV3 film to a given air kerma depended on kVp and film orientation. For a 200 cGy air kerma exposure with the orange side of the film facing the source, the film response increased by 20% from 60 to 120 kVp. At 500 cGy, the increase was 12%. When 500 cGy exposures were performed with the white side facing the x-ray source, the film response increased by 4.0% (60 kVp) to 9.9% (120 kVp) compared to the orange-facing orientation. On-phantom film measurements and Monte Carlo simulations show that using a NIST-traceable free-in-air calibration curve to determine air kerma in the presence of backscatter results in an error from 2% up to 8% depending on beam quality. The combined uncertainty in the air kerma measurement from the calibration curves and scanner nonuniformity correction was {+-}7.1% (95% C.I.). The film showed notable stability. Calibrations of film and scanner separated by 1 yr differed by 1.0%. Conclusions: XR-RV3 radiochromic film response to a given air kerma shows dependence on beam quality and film orientation. The presence of backscatter slightly modifies the x-ray energy spectrum; however, the increase in film response can be attributed primarily to the increase in total photon fluence at the sensitive layer. Film calibration curves created under free-in-air conditions may be used to measure dose from fluoroscopic quality x-ray beams, including patient backscatter with an error less than the uncertainty of the calibration in most cases.« less

  2. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N.

    2003-11-11

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  3. Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-11-01

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  4. Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-05-10

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  5. Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2007-06-12

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  6. Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1991-01-01

    The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.

  7. A Monte-Carlo simulation analysis for evaluating the severity distribution functions (SDFs) calibration methodology and determining the minimum sample-size requirements.

    PubMed

    Shirazi, Mohammadali; Reddy Geedipally, Srinivas; Lord, Dominique

    2017-01-01

    Severity distribution functions (SDFs) are used in highway safety to estimate the severity of crashes and conduct different types of safety evaluations and analyses. Developing a new SDF is a difficult task and demands significant time and resources. To simplify the process, the Highway Safety Manual (HSM) has started to document SDF models for different types of facilities. As such, SDF models have recently been introduced for freeway and ramps in HSM addendum. However, since these functions or models are fitted and validated using data from a few selected number of states, they are required to be calibrated to the local conditions when applied to a new jurisdiction. The HSM provides a methodology to calibrate the models through a scalar calibration factor. However, the proposed methodology to calibrate SDFs was never validated through research. Furthermore, there are no concrete guidelines to select a reliable sample size. Using extensive simulation, this paper documents an analysis that examined the bias between the 'true' and 'estimated' calibration factors. It was indicated that as the value of the true calibration factor deviates further away from '1', more bias is observed between the 'true' and 'estimated' calibration factors. In addition, simulation studies were performed to determine the calibration sample size for various conditions. It was found that, as the average of the coefficient of variation (CV) of the 'KAB' and 'C' crashes increases, the analyst needs to collect a larger sample size to calibrate SDF models. Taking this observation into account, sample-size guidelines are proposed based on the average CV of crash severities that are used for the calibration process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Definition and sensitivity of the conceptual MORDOR rainfall-runoff model parameters using different multi-criteria calibration strategies

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Seyve, E.; Gottardi, F.; Le Lay, M.; Gailhard, J.; Garçon, R.

    2014-12-01

    MORDOR is a conceptual hydrological model extensively used in Électricité de France (EDF, French electric utility company) operational applications: (i) hydrological forecasting, (ii) flood risk assessment, (iii) water balance and (iv) climate change studies. MORDOR is a lumped, reservoir, elevation based model with hourly or daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt and routing. The model has been intensively used at EDF for more than 20 years, in particular for modeling French mountainous watersheds. In the matter of parameters calibration we propose and test alternative multi-criteria techniques based on two specific approaches: automatic calibration using single-objective functions and a priori parameter calibration founded on hydrological watershed features. The automatic calibration approach uses single-objective functions, based on Kling-Gupta efficiency, to quantify the good agreement between the simulated and observed runoff focusing on four different runoff samples: (i) time-series sample, (I) annual hydrological regime, (iii) monthly cumulative distribution functions and (iv) recession sequences.The primary purpose of this study is to analyze the definition and sensitivity of MORDOR parameters testing different calibration techniques in order to: (i) simplify the model structure, (ii) increase the calibration-validation performance of the model and (iii) reduce the equifinality problem of calibration process. We propose an alternative calibration strategy that reaches these goals. The analysis is illustrated by calibrating MORDOR model to daily data for 50 watersheds located in French mountainous regions.

  9. Parameterisation of rainfall-runoff models for forecasting low and average flows, I: Conceptual modelling

    NASA Astrophysics Data System (ADS)

    Castiglioni, S.; Toth, E.

    2009-04-01

    In the calibration procedure of continuously-simulating models, the hydrologist has to choose which part of the observed hydrograph is most important to fit, either implicitly, through the visual agreement in manual calibration, or explicitly, through the choice of the objective function(s). Changing the objective functions it is in fact possible to emphasise different kind of errors, giving them more weight in the calibration phase. The objective functions used for calibrating hydrological models are generally of the quadratic type (mean squared error, correlation coefficient, coefficient of determination, etc) and are therefore oversensitive to high and extreme error values, that typically correspond to high and extreme streamflow values. This is appropriate when, like in the majority of streamflow forecasting applications, the focus is on the ability to reproduce potentially dangerous flood events; on the contrary, if the aim of the modelling is the reproduction of low and average flows, as it is the case in water resource management problems, this may result in a deterioration of the forecasting performance. This contribution presents the results of a series of automatic calibration experiments of a continuously-simulating rainfall-runoff model applied over several real-world case-studies, where the objective function is chosen so to highlight the fit of average and low flows. In this work a simple conceptual model will be used, of the lumped type, with a relatively low number of parameters to be calibrated. The experiments will be carried out for a set of case-study watersheds in Central Italy, covering an extremely wide range of geo-morphologic conditions and for whom at least five years of contemporary daily series of streamflow, precipitation and evapotranspiration estimates are available. Different objective functions will be tested in calibration and the results will be compared, over validation data, against those obtained with traditional squared functions. A companion work presents the results, over the same case-study watersheds and observation periods, of a system-theoretic model, again calibrated for reproducing average and low streamflows.

  10. A calibration-free electrode compensation method

    PubMed Central

    Rossant, Cyrille; Fontaine, Bertrand; Magnusson, Anna K.

    2012-01-01

    In a single-electrode current-clamp recording, the measured potential includes both the response of the membrane and that of the measuring electrode. The electrode response is traditionally removed using bridge balance, where the response of an ideal resistor representing the electrode is subtracted from the measurement. Because the electrode is not an ideal resistor, this procedure produces capacitive transients in response to fast or discontinuous currents. More sophisticated methods exist, but they all require a preliminary calibration phase, to estimate the properties of the electrode. If these properties change after calibration, the measurements are corrupted. We propose a compensation method that does not require preliminary calibration. Measurements are compensated offline by fitting a model of the neuron and electrode to the trace and subtracting the predicted electrode response. The error criterion is designed to avoid the distortion of compensated traces by spikes. The technique allows electrode properties to be tracked over time and can be extended to arbitrary models of electrode and neuron. We demonstrate the method using biophysical models and whole cell recordings in cortical and brain-stem neurons. PMID:22896724

  11. Use of the moon to support on-orbit sensor calibration for climate change measurements

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2006-01-01

    Production of reliable climate datasets from multiple observational measurements acquired by remote sensing satellite systems available now and in the future places stringent requirements on the stability of sensors and consistency among the instruments and platforms. Detecting trends in environmental parameters measured at solar reflectance wavelengths (0.3 to 2.5 microns) requires on-orbit instrument stability at a level of 1% over a decade. This benchmark can be attained using the Moon as a radiometric reference. The lunar calibration program at the U.S. Geological Survey has an operational model to predict the lunar spectral irradiance with precision ???1%, explicitly accounting for the effects of phase, lunar librations, and the lunar surface photometric function. A system for utilization of the Moon by on-orbit instruments has been established. With multiple lunar views taken by a spacecraft instrument, sensor response characterization with sub-percent precision over several years has been achieved. Meteorological satellites in geostationary orbit (GEO) capture the Moon in operational images; applying lunar calibration to GEO visible-channel image archives has the potential to develop a climate record extending decades into the past. The USGS model and system can provide reliable transfer of calibration among instruments that have viewed the Moon as a common source. This capability will be enhanced with improvements to the USGS model absolute scale. Lunar calibration may prove essential to the critical calibration needs to cover a potential gap in observational capabilities prior to deployment of NPP/NPOESS. A key requirement is that current and future instruments observe the Moon.

  12. On the calibration and use of Dual Electron Sensors for NASA's Magnetospheric MultiScale mission

    NASA Astrophysics Data System (ADS)

    Avanov, L. A.; Gliese, U.; Pollock, C. J.; Barrie, A.; Mariano, A. J.; Tucker, C. J.; Jacques, A. D.; Zeuch, M.; Shields, N.; Christian, K. D.

    2013-12-01

    The scientific target of NASA's Magnetospheric MultiScale (MMS) mission is to study the fundamentally important phenomenon of magnetic reconnection. Theoretical models of this process predict a small (order of ten kilometers) size for the diffusion region where electrons are demagnetized at the dayside magnetopause. Yet, the region may typically sweep over the spacecraft at relatively high speeds of 50km/s. That is why Fast Plasma Investigation (FPI) instrument suite must have extremely high time resolution for measurements of the 3D particle distribution functions. The Dual Electron Spectrometers (DESs) provide fast (30ms) 3D electron velocity distributions, from 10eV to 30,000 eV, as part of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission. This is accomplished by combining the measurements from eight different spectrometers (packaged in four dual sets) on each MMS spacecraft to produce each full distribution. This approach presents a new and challenging aspect to the calibration and operation of these instruments. The response uniformity among the spectrometer set, the consistency and reliability of their calibration in both sensitivity and their phase space selectivity (energy and angle), and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application. In this paper, we will present brief descriptions of the spectrometers and our approach their ground calibration, trended results of those calibrations, and our plans to detect, track, and respond to any temporal evolution in instrument performance through the life of the mission.

  13. Estimation of option-implied risk-neutral into real-world density by using calibration function

    NASA Astrophysics Data System (ADS)

    Bahaludin, Hafizah; Abdullah, Mimi Hafizah

    2017-04-01

    Option prices contain crucial information that can be used as a reflection of future development of an underlying assets' price. The main objective of this study is to extract the risk-neutral density (RND) and the risk-world density (RWD) of option prices. A volatility function technique is applied by using a fourth order polynomial interpolation to obtain the RNDs. Then, a calibration function is used to convert the RNDs into RWDs. There are two types of calibration function which are parametric and non-parametric calibrations. The density is extracted from the Dow Jones Industrial Average (DJIA) index options with a one month constant maturity from January 2009 until December 2015. The performance of RNDs and RWDs extracted are evaluated by using a density forecasting test. This study found out that the RWDs obtain can provide an accurate information regarding the price of the underlying asset in future compared to that of the RNDs. In addition, empirical evidence suggests that RWDs from a non-parametric calibration has a better accuracy than other densities.

  14. A research on radiation calibration of high dynamic range based on the dual channel CMOS

    NASA Astrophysics Data System (ADS)

    Ma, Kai; Shi, Zhan; Pan, Xiaodong; Wang, Yongsheng; Wang, Jianghua

    2017-10-01

    The dual channel complementary metal-oxide semiconductor (CMOS) can get high dynamic range (HDR) image through extending the gray level of the image by using image fusion with high gain channel image and low gain channel image in a same frame. In the process of image fusion with dual channel, it adopts the coefficients of radiation response of a pixel from dual channel in a same frame, and then calculates the gray level of the pixel in the HDR image. For the coefficients of radiation response play a crucial role in image fusion, it has to find an effective method to acquire these parameters. In this article, it makes a research on radiation calibration of high dynamic range based on the dual channel CMOS, and designs an experiment to calibrate the coefficients of radiation response for the sensor it used. In the end, it applies these response parameters in the dual channel CMOS which calibrates, and verifies the correctness and feasibility of the method mentioned in this paper.

  15. Correcting X-ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    NASA Technical Reports Server (NTRS)

    Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.

    1993-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.

  16. Correcting x ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    NASA Technical Reports Server (NTRS)

    Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.

    1992-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.

  17. Detecting instabilities in tree-ring proxy calibration

    NASA Astrophysics Data System (ADS)

    Visser, H.; Büntgen, U.; D'Arrigo, R.; Petersen, A. C.

    2010-06-01

    Evidence has been found for reduced sensitivity of tree growth to temperature in a number of forests at high northern latitudes and alpine locations. Furthermore, at some of these sites, emergent subpopulations of trees show negative growth trends with rising temperature. These findings are typically referred to as the "Divergence Problem" (DP). Given the high relevance of paleoclimatic reconstructions for policy-related studies, it is important for dendrochronologists to address this issue of potential model uncertainties associated with the DP. Here we address this issue by proposing a calibration technique, termed "stochastic response function" (SRF), which allows the presence or absence of any instabilities in growth response of trees (or any other climate proxy) to their calibration target to be visualized and detected. Since this framework estimates confidence limits and subsequently provides statistical significance tests, the approach is also very well suited for proxy screening prior to the generation of a climate-reconstruction network. Two examples of tree growth/climate relationships are provided, one from the North American Arctic treeline and the other from the upper treeline in the European Alps. Instabilities were found to be present where stabilities were reported in the literature, and vice versa, stabilities were found where instabilities were reported. We advise to apply SRFs in future proxy-screening schemes, next to the use of correlations and RE/CE statistics. It will improve the strength of reconstruction hindcasts.

  18. Detecting instabilities in tree-ring proxy calibration

    NASA Astrophysics Data System (ADS)

    Visser, H.; Büntgen, U.; D'Arrigo, R.; Petersen, A. C.

    2010-02-01

    Evidence has been found for reduced sensitivity of tree growth to temperature in a number of forests at high northern latitudes and alpine locations. Furthermore, at some of these sites, emergent subpopulations of trees show negative growth trends with rising temperature. These findings are typically referred to as the "Divergence Problem" (DP). Given the high relevance of paleoclimatic reconstructions for policy-related studies, it is important for dendrochronologists to address this issue of potential model uncertainties associated with the DP. Here we address this issue by proposing a calibration technique, termed "stochastic response function" (SRF), which allows the presence or absence of any instabilities in growth response of trees (or any other climate proxy) to their calibration target to be visualized and detected. Since this framework estimates confidence limits and subsequently provides statistical significance tests, the approach is also very well suited for proxy screening prior to the generation of a climate-reconstruction network. Two examples of tree growth/climate relationships are provided, one from the North American Arctic treeline and the other from the upper treeline in the European Alps. Instabilities were found to be present where stabilities were reported in the literature, and vice versa, stabilities were found where instabilities were reported. We advise to apply SRFs in future proxy-screening schemes, next to the use of correlations and RE/CE statistics. It will improve the strength of reconstruction hindcasts.

  19. NPP VIIRS Geometric Performance Status

    NASA Technical Reports Server (NTRS)

    Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro

    2011-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.

  20. Development of the Computer-Adaptive Version of the Late-Life Function and Disability Instrument

    PubMed Central

    Tian, Feng; Kopits, Ilona M.; Moed, Richard; Pardasaney, Poonam K.; Jette, Alan M.

    2012-01-01

    Background. Having psychometrically strong disability measures that minimize response burden is important in assessing of older adults. Methods. Using the original 48 items from the Late-Life Function and Disability Instrument and newly developed items, a 158-item Activity Limitation and a 62-item Participation Restriction item pool were developed. The item pools were administered to a convenience sample of 520 community-dwelling adults 60 years or older. Confirmatory factor analysis and item response theory were employed to identify content structure, calibrate items, and build the computer-adaptive testings (CATs). We evaluated real-data simulations of 10-item CAT subscales. We collected data from 102 older adults to validate the 10-item CATs against the Veteran’s Short Form-36 and assessed test–retest reliability in a subsample of 57 subjects. Results. Confirmatory factor analysis revealed a bifactor structure, and multi-dimensional item response theory was used to calibrate an overall Activity Limitation Scale (141 items) and an overall Participation Restriction Scale (55 items). Fit statistics were acceptable (Activity Limitation: comparative fit index = 0.95, Tucker Lewis Index = 0.95, root mean square error approximation = 0.03; Participation Restriction: comparative fit index = 0.95, Tucker Lewis Index = 0.95, root mean square error approximation = 0.05). Correlation of 10-item CATs with full item banks were substantial (Activity Limitation: r = .90; Participation Restriction: r = .95). Test–retest reliability estimates were high (Activity Limitation: r = .85; Participation Restriction r = .80). Strength and pattern of correlations with Veteran’s Short Form-36 subscales were as hypothesized. Each CAT, on average, took 3.56 minutes to administer. Conclusions. The Late-Life Function and Disability Instrument CATs demonstrated strong reliability, validity, accuracy, and precision. The Late-Life Function and Disability Instrument CAT can achieve psychometrically sound disability assessment in older persons while reducing respondent burden. Further research is needed to assess their ability to measure change in older adults. PMID:22546960

  1. Accurate Determination of the Frequency Response Function of Submerged and Confined Structures by Using PZT-Patches †

    PubMed Central

    Presas, Alexandre; Valentin, David; Egusquiza, Eduard; Valero, Carme; Egusquiza, Mònica; Bossio, Matias

    2017-01-01

    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating in air comparing the FRF experimentally obtained with a calibrated exciter (impact Hammer) and the FRF obtained with the described method. Finally, the same methodology has been applied for the structure submerged and close to a rigid wall, where it is extremely important to not modify the boundary conditions for an accurate determination of the FRF. As experimentally shown in this paper, in such cases, the use of PZTs combined with the proposed methodology gives much more accurate estimations of the FRF than other calibrated exciters typically used for the same purpose. Therefore, the validated methodology proposed in this paper can be used to obtain the FRF of a generic submerged and confined structure, without a previous calibration of the PZT. PMID:28327501

  2. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  3. Analysis of Sting Balance Calibration Data Using Optimized Regression Models

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Bader, Jon B.

    2010-01-01

    Calibration data of a wind tunnel sting balance was processed using a candidate math model search algorithm that recommends an optimized regression model for the data analysis. During the calibration the normal force and the moment at the balance moment center were selected as independent calibration variables. The sting balance itself had two moment gages. Therefore, after analyzing the connection between calibration loads and gage outputs, it was decided to choose the difference and the sum of the gage outputs as the two responses that best describe the behavior of the balance. The math model search algorithm was applied to these two responses. An optimized regression model was obtained for each response. Classical strain gage balance load transformations and the equations of the deflection of a cantilever beam under load are used to show that the search algorithm s two optimized regression models are supported by a theoretical analysis of the relationship between the applied calibration loads and the measured gage outputs. The analysis of the sting balance calibration data set is a rare example of a situation when terms of a regression model of a balance can directly be derived from first principles of physics. In addition, it is interesting to note that the search algorithm recommended the correct regression model term combinations using only a set of statistical quality metrics that were applied to the experimental data during the algorithm s term selection process.

  4. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2014-09-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  5. Calibration and performance of the ATLAS Tile Calorimeter during the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Cerda Alberich, L.

    2018-02-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region | η| < 1.7. Jointly with the other sub-detectors it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source, a laser light system to check the PMT response, and a charge injection system (CIS) to check the front-end electronics. These calibration systems, in conjunction with data collected during proton-proton collisions, Minimum Bias (MB) events, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions and compared to Monte Carlo (MC) simulations. The response of high momentum isolated muons is also used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response. The calorimeter time resolution is studied with multijet events. A description of the different TileCal calibration systems and the results on the calorimeter performance during the LHC Run 2 are presented. The results on the pile-up noise and response uniformity studies are also discussed.

  6. Development and Operation of a Material Identification and Discrimination Imaging Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Dombrowski, Mark; Willson, paul; LaBaw, Clayton

    1997-01-01

    Many imaging applications require quantitative determination of a scene's spectral radiance. This paper describes a new system capable of real-time spectroradiometric imagery. Operating at a full-spectrum update rate of 30Hz, this imager is capable of collecting a 30 point spectrum from each of three imaging heads: the first operates from 400 nm to 950 nm, with a 2% bandwidth; the second operates from 1.5 micro-m to 5.5 micro-m with a 1.5% bandwidth; the third operates from 5 micro-m to 12 micro-m, also at a 1.5% bandwidth. Standard image format is 256 x 256, with 512 x 512 possible in the VIS/NIR head. Spectra of up to 256 points are available at proportionately lower frame rates. In order to make such a tremendous amount of data more manageable, internal processing electronics perform four important operations on the spectral imagery data in real-time. First, all data in the spatial/spectral cube of data is spectro-radiometrically calibrated as it is collected. Second, to allow the imager to simulate sensors with arbitrary spectral response, any set of three spectral response functions may be loaded into the imager including delta functions to allow single wavelength viewing; the instrument then evaluates the integral of the product of the scene spectral radiances and the response function. Third, more powerful exploitation of the gathered spectral radiances can be effected by application of various spectral-matched filtering algorithms to identify pixels whose relative spectral radiance distribution matches a sought-after spectral radiance distribution, allowing materials-based identification and discrimination. Fourth, the instrument allows determination of spectral reflectance, surface temperature, and spectral emissivity, also in real-time. The spectral imaging technique used in the instrument allows tailoring of the frame rate and/or the spectral bandwidth to suit the scene radiance levels, i.e., frame rate can be reduced, or bandwidth increased to improve SNR when viewing low radiance scenes. The unique challenges of design and calibration are described. Pixel readout rates of 160 MHz, for full frame readout rates of 1000 Hz (512 x 512 image) present the first challenge; processing rates of nearly 600 million integer operations per second for sensor emulation, or over 2 billion per second for matched filtering, present the second. Spatial and spectral calibration of 66,536 pixels (262,144 for the 512 x 512 version) and up to 1,000 spectral positions mandate novel decoupling methods to keep the required calibration memory to a reasonable size. Large radiometric dynamic range also requires care to maintain precision operation with minimum memory size.

  7. Calibration approach for fluorescence lifetime determination for applications using time-gated detection and finite pulse width excitation.

    PubMed

    Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul

    2008-10-15

    Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation.

  8. ISCCP-B1U Geostationary Satellite VIS Channel Vicarious Calibration/Validation in support of creation of long term climate data records

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D. R.; Bhatt, R.; Haney, C.; Scarino, B. R.

    2017-12-01

    The International Satellite Cloud Climatology Project (ISCCP) provides a 40-year geostationary (GEO) imager record from satellites worldwide of 3-hourly cloud properties and surface reflectances. ISCCP B1 data archived at the National Climatic Data Center (NCDC) are a collection of measurements from imagers on international GEO meteorological satellites which are sampled to approximately 10-km and at 3-hour intervals. ISCCP coordinated the ingestion of 3-hour geostationary imager pixel level radiances and placed them in a common and consistent unified format (ISCCP-B1U) across GEO imagers and archived the datasets at NCDC for future reprocessing efforts. The GEO imagers in the B1U record lacked onboard calibration to monitor the temporal stability of the visible channel. Consistent calibration of the B1U GEO imager record opens up the potential for their use in global climate studies. The NASA CERES project released the Edition4 products, where the GEO imager calibration has been referenced to the Aqua-MODIS band-1 Collection 6 calibration. This was done by matching coincident GEO and MODIS radiance pairs to transfer the MODIS calibration. This primary method was then validated by the independent vicarious calibration methods using invariant desert and deep convective cloud (DCC) targets. In this study we extend these vicarious methods to the historical ISCCP-B1U format GEO record going back from 2000-1978 while addressing some of the challenges viz. the short historical GEO imager lifetimes, spurious imagery, non-stationary VIS channel space counts, data source processing differences, inadequate spectral response function characterization and possible wavelength dependent degradations. Another challenge, is the occasional abrupt calibration gain discontinuities in time, these are validated by tracking the brightest pixels over time. We discuss the methodology used to address some of the challenges and present results from the two independent vicarious calibration approaches that are then merged according to their respective uncertainties to obtain optimal and self-consistent calibration gain timelines for the various GEO sensors in the historical record in support of global climate change studies

  9. Gaussian process based modeling and experimental design for sensor calibration in drifting environments

    PubMed Central

    Geng, Zongyu; Yang, Feng; Chen, Xi; Wu, Nianqiang

    2016-01-01

    It remains a challenge to accurately calibrate a sensor subject to environmental drift. The calibration task for such a sensor is to quantify the relationship between the sensor’s response and its exposure condition, which is specified by not only the analyte concentration but also the environmental factors such as temperature and humidity. This work developed a Gaussian Process (GP)-based procedure for the efficient calibration of sensors in drifting environments. Adopted as the calibration model, GP is not only able to capture the possibly nonlinear relationship between the sensor responses and the various exposure-condition factors, but also able to provide valid statistical inference for uncertainty quantification of the target estimates (e.g., the estimated analyte concentration of an unknown environment). Built on GP’s inference ability, an experimental design method was developed to achieve efficient sampling of calibration data in a batch sequential manner. The resulting calibration procedure, which integrates the GP-based modeling and experimental design, was applied on a simulated chemiresistor sensor to demonstrate its effectiveness and its efficiency over the traditional method. PMID:26924894

  10. Volumetric calibration of a plenoptic camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  11. Volumetric calibration of a plenoptic camera

    DOE PAGES

    Hall, Elise Munz; Fahringer, Timothy W.; Guildenbecher, Daniel Robert; ...

    2018-02-01

    Here, the volumetric calibration of a plenoptic camera is explored to correct for inaccuracies due to real-world lens distortions and thin-lens assumptions in current processing methods. Two methods of volumetric calibration based on a polynomial mapping function that does not require knowledge of specific lens parameters are presented and compared to a calibration based on thin-lens assumptions. The first method, volumetric dewarping, is executed by creation of a volumetric representation of a scene using the thin-lens assumptions, which is then corrected in post-processing using a polynomial mapping function. The second method, direct light-field calibration, uses the polynomial mapping in creationmore » of the initial volumetric representation to relate locations in object space directly to image sensor locations. The accuracy and feasibility of these methods is examined experimentally by capturing images of a known dot card at a variety of depths. Results suggest that use of a 3D polynomial mapping function provides a significant increase in reconstruction accuracy and that the achievable accuracy is similar using either polynomial-mapping-based method. Additionally, direct light-field calibration provides significant computational benefits by eliminating some intermediate processing steps found in other methods. Finally, the flexibility of this method is shown for a nonplanar calibration.« less

  12. Dynamic calibration of fast-response probes in low-pressure shock tubes

    NASA Astrophysics Data System (ADS)

    Persico, G.; Gaetani, P.; Guardone, A.

    2005-09-01

    Shock tube flows resulting from the incomplete burst of the diaphragm are investigated in connection with the dynamic calibration of fast-response pressure probes. As a result of the partial opening of the diaphragm, pressure disturbances are observed past the shock wave and the measured total pressure profile deviates from the envisaged step signal required by the calibration process. Pressure oscillations are generated as the initially normal shock wave diffracts from the diaphragm's orifice and reflects on the shock tube walls, with the lowest local frequency roughly equal to the ratio of the sound speed in the perturbed region to the shock tube diameter. The energy integral of the perturbations decreases with increasing distance from the diaphragm, as the diffracted leading shock and downwind reflections coalesce into a single normal shock. A procedure is proposed to calibrate fast-response pressure probes downwind of a partially opened shock tube diaphragm.

  13. Traceable terahertz power measurement from 1 THz to 5 THz.

    PubMed

    Steiger, Andreas; Kehrt, Mathias; Monte, Christian; Müller, Ralf

    2013-06-17

    The metrology institute in Germany, the Physikalisch-Technische Bundesanstalt (PTB), calibrates the spectral responsivity of THz detectors at 2.52 THz traceable to International System of Units. The Terahertz detector calibration facility is equipped with a standard detector calibrated against a cryogenic radiometer at this frequency. In order to extend this service to a broader spectral range in the THz region a new standard detector was developed. This detector is based on a commercial thermopile detector. Its absorber was modified and characterized by spectroscopic methods with respect to its absorptance and reflectance from 1 THz to 5 THz and at the wavelength of a helium-neon laser in the visible spectral range. This offers the possibility of tracing back the THz power responsivity scale to the more accurate responsivity scale in the visible spectral range and thereby to reduce the uncertainty of detector calibrations in the THz range significantly.

  14. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2018-05-01

    The LUX experiment has performed searches for dark-matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from 1.4 ×104 kg days of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.

  15. The recalibration of the IUE scientific instrument

    NASA Technical Reports Server (NTRS)

    Imhoff, Catherine L.; Oliversen, Nancy A.; Nichols-Bohlin, Joy; Casatella, Angelo; Lloyd, Christopher

    1988-01-01

    The IUE instrument was recalibrated because of long time-scale changes in the scientific instrument, a better understanding of the performance of the instrument, improved sets of calibration data, and improved analysis techniques. Calibrations completed or planned include intensity transfer functions (ITF), low-dispersion absolute calibrations, high-dispersion ripple corrections and absolute calibrations, improved geometric mapping of the ITFs to spectral images, studies to improve the signal-to-noise, enhanced absolute calibrations employing corrections for time, temperature, and aperture dependence, and photometric and geometric calibrations for the FES.

  16. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  17. 40 CFR 92.122 - Smoke meter calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment response of zero; (b) Calibrated neutral density filters having approximately 10, 20, and 40 percent opacity shall be employed to check the linearity of the instrument. The filter(s) shall be... beam of light from the light source emanates, and the recorder response shall be noted. Filters with...

  18. SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.

    PubMed

    Lawless, M; Junell, S; Hammer, C; DeWerd, L

    2012-06-01

    Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.

  19. Refinement of moisture calibration curves for nuclear gage : interim report no. 1.

    DOT National Transportation Integrated Search

    1972-01-01

    This study was initiated to determine the correct moisture calibration curves for different nuclear gages. It was found that the Troxler Model 227 had a linear response between count ratio and moisture content. Also, the two calibration curves for th...

  20. The use of the Sonoran Desert as a pseudo-invariant site for optical sensor cross-calibration and long-term stability monitoring

    USGS Publications Warehouse

    Angal, A.; Chander, Gyanesh; Choi, Taeyoung; Wu, Aisheng; Xiong, Xiaoxiong

    2010-01-01

    The Sonoran Desert is a large, flat, pseudo-invariant site near the United States-Mexico border. It is one of the largest and hottest deserts in North America, with an area of 311,000 square km. This site is particularly suitable for calibration purposes because of its high spatial and spectral uniformity and reasonable temporal stability. This study uses measurements from four different sensors, Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+), Aqua MODIS, and Landsat 5 (L5) Thematic Mapper (TM), to assess the suitability of this site for long-term stability monitoring and to evaluate the “radiometric calibration differences” between spectrally matching bands of all four sensors. In general, the drift in the top-of-atmosphere (TOA) reflectance of each sensor over a span of nine years is within the specified calibration uncertainties. Monthly precipitation measurements of the Sonoran Desert region were obtained from the Global Historical Climatology Network (GHCN), and their effects on the retrieved TOA reflectances were evaluated. To account for the combined uncertainties in the TOA reflectance due to the surface and atmospheric Bi-directional Reflectance Distribution Function (BRDF), a semi-empirical BRDF model has been adopted to monitor and reduce the impact of illumination geometry differences on the retrieved TOA reflectances. To evaluate calibration differences between the MODIS and Landsat sensors, correction for spectral response differences using a hyperspectral sensor is also demonstrated.

  1. Modeling demand for public transit services in rural areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attaluri, P.; Seneviratne, P.N.; Javid, M.

    1997-05-01

    Accurate estimates of demand are critical for planning, designing, and operating public transit systems. Previous research has demonstrated that the expected demand in rural areas is a function of both demographic and transit system variables. Numerous models have been proposed to describe the relationship between the aforementioned variables. However, most of them are site specific and their validity over time and space is not reported or perhaps has not been tested. Moreover, input variables in some cases are extremely difficult to quantify. In this article, the estimation of demand using the generalized linear modeling technique is discussed. Two separate models,more » one for fixed-route and another for demand-responsive services, are presented. These models, calibrated with data from systems in nine different states, are used to demonstrate the appropriateness and validity of generalized linear models compared to the regression models. They explain over 70% of the variation in expected demand for fixed-route services and 60% of the variation in expected demand for demand-responsive services. It was found that the models are spatially transferable and that data for calibration are easily obtainable.« less

  2. Calibration improvements to electronically scanned pressure systems and preliminary statistical assessment

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    1996-01-01

    Orifice-to-orifice inconsistencies in data acquired with an electronically-scanned pressure system at the beginning of a wind tunnel experiment forced modifications to the standard, instrument calibration procedures. These modifications included a large increase in the number of calibration points which would allow a critical examination of the calibration curve-fit process, and a subsequent post-test reduction of the pressure data. Evaluation of these data has resulted in an improved functional representation of the pressure-voltage signature for electronically-scanned pressures sensors, which can reduce the errors due to calibration curve fit to under 0.10 percent of reading compared to the manufacturer specified 0.10 percent of full scale. Application of the improved calibration function allows a more rational selection of the calibration set-point pressures. These pressures should be adjusted to achieve a voltage output which matches the physical shape of the pressure-voltage signature of the sensor. This process is conducted in lieu of the more traditional approach where a calibration pressure is specified and the resulting sensor voltage is recorded. The fifteen calibrations acquired over the two-week duration of the wind tunnel test were further used to perform a preliminary, statistical assessment of the variation in the calibration process. The results allowed the estimation of the bias uncertainty for a single instrument calibration; and, they form the precursor for more extensive and more controlled studies in the laboratory.

  3. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia

    NASA Astrophysics Data System (ADS)

    Hawdon, Aaron; McJannet, David; Wallace, Jim

    2014-06-01

    The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.

  4. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications

    DOE PAGES

    Nelson, N.; Azmy, Y.; Gardner, R. P.; ...

    2017-08-05

    Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium iodide (NaI) nuclear material holdup field detector using the code named g03 developed by the Center for Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns were performed in order to validate the DRF’s constructed by g03: on-axis detection of calibration sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements of the HEU disk with steel plates inserted between the source and the detector to provide attenuation. Furthermore, this work quantifies the uncertainty of the Montemore » Carlo simulations used in and with g03, as well as the uncertainties associated with each semi-empirical model employed in the full DRF rep-resentation. Overall, for the calibration source measurements, the response computed by the DRF for the prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about 45–65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk mea-surements, computed DRF responses tended to significantly underestimate (more than 20%) the sec-ondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to scattering in the detector collimator and aluminum can, which is not included in the g03 model. We ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the sta-tistical uncertainties were lower than their experimental counterpart’s Poisson uncertainties. The uncer-tainties associated with least-squares fits to the experimental data tended to have parameter relative standard deviations lower than the peak channel relative standard deviation in most cases and good reduced chi-square values. The highest sources of uncertainty were identified as the energy calibration polynomial factor (due to limited source availability and NaI resolution) and the Ba-133 peak fit (only a very weak source was available), which were 20% and 10%, respectively.« less

  5. Validation and uncertainty quantification of detector response functions for a 1″×2″ NaI collimated detector intended for inverse radioisotope source mapping applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, N.; Azmy, Y.; Gardner, R. P.

    Detector response functions (DRFs) are often used for inverse analysis. We compute the DRF of a sodium iodide (NaI) nuclear material holdup field detector using the code named g03 developed by the Center for Engineering Applications of Radioisotopes (CEAR) at NC State University. Three measurement campaigns were performed in order to validate the DRF’s constructed by g03: on-axis detection of calibration sources, off-axis measurements of a highly enriched uranium (HEU) disk, and on-axis measurements of the HEU disk with steel plates inserted between the source and the detector to provide attenuation. Furthermore, this work quantifies the uncertainty of the Montemore » Carlo simulations used in and with g03, as well as the uncertainties associated with each semi-empirical model employed in the full DRF rep-resentation. Overall, for the calibration source measurements, the response computed by the DRF for the prediction of the full-energy peak region of responses was good, i.e. within two standard deviations of the experimental response. In contrast, the DRF tended to overestimate the Compton continuum by about 45–65% due to inadequate tuning of the electron range multiplier fit variable that empirically represents physics associated with electron transport that is not modeled explicitly in g03. For the HEU disk mea-surements, computed DRF responses tended to significantly underestimate (more than 20%) the sec-ondary full-energy peaks (any peak of lower energy than the highest-energy peak computed) due to scattering in the detector collimator and aluminum can, which is not included in the g03 model. We ran a sufficiently large number of histories to ensure for all of the Monte Carlo simulations that the sta-tistical uncertainties were lower than their experimental counterpart’s Poisson uncertainties. The uncer-tainties associated with least-squares fits to the experimental data tended to have parameter relative standard deviations lower than the peak channel relative standard deviation in most cases and good reduced chi-square values. The highest sources of uncertainty were identified as the energy calibration polynomial factor (due to limited source availability and NaI resolution) and the Ba-133 peak fit (only a very weak source was available), which were 20% and 10%, respectively.« less

  6. Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Eastwood, Michael L.; Green, Robert O.; Mouroulis, Pantazis; Hochberg, Eric B.; Hein, Randall C.; Kroll, Linley A.; Geier, Sven; Coles, James B.; Meehan, Riley

    2012-01-01

    A paper describes an optical stimulus that produces more consistent results, and can be automated for unattended, routine generation of data analysis products needed by the integration and testing team assembling a high-fidelity imaging spectrometer system. One key attribute of the system is an arrangement of pick-off mirrors that provides multiple input beams (five in this implementation) to simultaneously provide stimulus light to several field angles along the field of view of the sensor under test, allowing one data set to contain all the information that previously required five data sets to be separately collected. This stimulus can also be fed by quickly reconfigured sources that ultimately provide three data set types that would previously be collected separately using three different setups: Spectral Response Function (SRF), Cross-track Response Function (CRF), and Along-track Response Function (ARF), respectively. This method also lends itself to expansion of the number of field points if less interpolation across the field of view is desirable. An absolute minimum of three is required at the beginning stages of imaging spectrometer alignment.

  7. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function.

    PubMed

    Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S

    2016-06-01

    MRI-guided interventions demand high frame rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real time to interactively deblur spiral images. Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF-predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF-predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 min of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. This real-time distortion correction framework will enable the use of these high frame rate imaging methods for MRI-guided interventions. Magn Reson Med 75:2278-2285, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function

    PubMed Central

    Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S

    2015-01-01

    Purpose MRI-guided interventions demand high frame-rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Methods Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real-time to interactively de-blur spiral images. Results Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 minutes of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. Conclusions This real-time distortion correction framework will enable the use of these high frame-rate imaging methods for MRI-guided interventions. PMID:26114951

  9. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  10. Detector Calibration to Spontaneous Fission for the Study of Superheavy Elements Using Gas-Filled Recoil Ion Separator

    NASA Astrophysics Data System (ADS)

    Takeyama, Mirei; Kaji, Daiya; Morimoto, Kouji; Wakabayashi, Yasuo; Tokanai, Fuyuki; Morita, Kosuke

    Detector response to spontaneous fission (SF) of heavy nuclides produced in the 206Pb(48Ca,2n)252No reaction was investigated using a gas-filled recoil ion separator (GARIS). Kinetic energy distributions of the SF originating from 252No were observed by tuning implantation depth of evaporation residue (ER) to the detector. The focal plane detector used in the GARIS experiments was well calibrated by comparing with the known total kinetic energy (TKE) of SF due to 252No. The correction value for the TKE calculation was deduced as a function of the implantation depth of 252No to the detector. Furthermore, we have investigated the results by comparing with those obtained by a computer simulation using the particle and heavy ion transport code system (PHITS).

  11. Real time polymer nanocomposites-based physical nanosensors: theory and modeling.

    PubMed

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  12. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    NASA Astrophysics Data System (ADS)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  13. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C.

    2004-09-03

    The goals of this project were to troubleshoot, repair, calibrate, and establish documentation regarding SLAC's (Stanford Linear Accelerator Center's) PMS (Peripheral Monitoring Station) system. The PMS system consists of seven PMSs that continuously monitor skyshine (neutron and photon) radiation levels in SLAC's environment. Each PMS consists of a boron trifluoride (BF{sub 3}) neutron detector (model RS-P1-0802-104 or NW-G-20-12) and a Geiger Moeller (GM) gamma ray detector (model TGM N107 or LND 719) together with their respective electronics. Electronics for each detector are housed in Nuclear Instrument Modules (NIMs) and are plugged into a NIM bin in the station. All communicationmore » lines from the stations to the Main Control Center (MCC) were tested prior to troubleshooting. To test communication with MCC, a pulse generator (Systron Donner model 100C) was connected to each channel in the PMS and data at MCC was checked for consistency. If MCC displayed no data, the communication cables to MCC or the CAMAC (Computer Automated Measurement and Control) crates were in need of repair. If MCC did display data, then it was known that the communication lines were intact. All electronics from each station were brought into the lab for troubleshooting. Troubleshooting usually consisted of connecting an oscilloscope or scaler (Ortec model 871 or 775) at different points in the circuit of each detector to record simulated pulses produced by a pulse generator; the input and output pulses were compared to establish the location of any problems in the circuit. Once any problems were isolated, repairs were done accordingly. The detectors and electronics were then calibrated in the field using radioactive sources. Calibration is a process that determines the response of the detector. Detector response is defined as the ratio of the number of counts per minute interpreted by the detector to the amount of dose equivalent rate (in mrem per hour, either calculated or measured). Detector response for both detectors is dependent upon the energy of the incident radiation; this trend had to be accounted for in the calibration of the BF{sub 3} detector. Energy dependence did not have to be taken into consideration when calibrating the GM detectors since GM detector response is only dependent on radiation energy below 100 keV; SLAC only produces a spectrum of gamma radiation above 100 keV. For the GM detector, calibration consisted of bringing a {sup 137}Cs source and a NIST-calibrated RADCAL Radiation Monitor Controller (model 9010) out to the field; the absolute dose rate was determined by the RADCAL device while simultaneously irradiating the GM detector to obtain a scaler reading corresponding to counts per minute. Detector response was then calculated. Calibration of the BF{sub 3} detector was done using NIST certified neutron sources of known emission rates and energies. Five neutron sources ({sup 238}PuBe, {sup 238}PuB, {sup 238}PuF4, {sup 238}PuLi and {sup 252}Cf) with different energies were used to account for the energy dependence of the response. The actual neutron dose rate was calculated by date-correcting NIST source data and considering the direct dose rate and scattered dose rate. Once the total dose rate (sum of the direct and scattered dose rates) was known, the response vs. energy curve was plotted. The first station calibrated (PMS6) was calibrated with these five neutron sources; all subsequent stations were calibrated with one neutron source and the energy dependence was assumed to be the same.« less

  14. Streamlined calibrations of the ATLAS precision muon chambers for initial LHC running

    NASA Astrophysics Data System (ADS)

    Amram, N.; Ball, R.; Benhammou, Y.; Ben Moshe, M.; Dai, T.; Diehl, E. B.; Dubbert, J.; Etzion, E.; Ferretti, C.; Gregory, J.; Haider, S.; Hindes, J.; Levin, D. S.; Manilow, E.; Thun, R.; Wilson, A.; Weaverdyck, C.; Wu, Y.; Yang, H.; Zhou, B.; Zimmermann, S.

    2012-04-01

    The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p=3% at 100 GeV and 10% at 1 TeV. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.

  15. Financial model calibration using consistency hints.

    PubMed

    Abu-Mostafa, Y S

    2001-01-01

    We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market.

  16. Free LittleDog!: Towards Completely Untethered Operation of the LittleDog Quadruped

    DTIC Science & Technology

    2007-08-01

    helpful Intel Open Source Computer Vision ( OpenCV ) library [4] wherever possible rather than reimplementing many of the standard algorithms, however...correspondences between image points and world points, and feeding these to a camera calibration function, such as that provided by OpenCV , allows one to solve... OpenCV calibration function to that used for intrinsic calibration solves for Tboard→camerai . The position of the camera 37 Figure 5.3: Snapshot of

  17. Calibrating the ECCO ocean general circulation model using Green's functions

    NASA Technical Reports Server (NTRS)

    Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.

    2002-01-01

    Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.

  18. Creating Fidelitious Climate Data Records from Meteosat First Generation Observations

    NASA Astrophysics Data System (ADS)

    Quast, Ralf; Govaerts, Yves; Ruthrich, Frank; Giering, Ralf; Roebeling, Rob

    2016-08-01

    A novel method for reconstructing the spectral response function of the Meteosat visible (VIS) channels is presented and applied to the Meteosat-10 Spinning Enhanced Visible and Infrared Imager (SEVIRI) high-resolution visible (HRV) channel as the first real-world benchmark. The method incorporates advanced radiative transfer modelling and inverse modelling techniques. Once established, EUMETSAT will use the reconstructed spectral response and uncertainty information to increase the calibration accuracy of Meteosat First Generation VIS observations, which will provide the basis for the Fidelity and Uncertainty in Climate data records from Earth Observations (FIDUCEO) Horizon 2020 project to produce new fundamental (reflectance) and thematic (albedo and aerosol) climate data records.

  19. Systems for measuring response statistics of gigahertz bandwidth photomultipliers

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Rowe, H. E.

    1977-01-01

    New systems have been developed for measuring the average impulse response, the pulse-height spectrum, the transit-time statistics as a function of signal level, and the dark-count spectrum of gigahertz bandwidth photomultipliers. Measurements showed that the 0.53 microns pulse used as an optical test source had a 30 picoseconds and less than 70 ps pulse width. Calibration data showed the system resolution to be less than 20 ps for root mean square transit-time measurements. Test data for a static crossed-field photomultiplier showed 2-photoelectron resolution and less than 30-ps time jitter over the 1- to 100-photoelectron range.

  20. Traceable calibration of ultraviolet meters used with broadband, extended sources.

    PubMed

    Coleman, A J; Collins, M; Saunders, J E

    2000-01-01

    A calibration system has been developed to provide increased accuracy in the measurement of the irradiance responsivity appropriate for UV meters used with broadband, extended sources of the type employed in phototherapy. The single wavelength responsivity of the test meter is obtained in the wavelength range 250-400 nm by intercomparison with a transfer standard meter in a narrow, monochromatic beam. Traceability to primary standard irradiance scales is provided via the National Measurement System with a best uncertainty of 7% (at 95% confidence). The effective responsivity of the test meter, when used with broadband extended sources, is calculated using the measured spectral and angular response of the meter and tabulated data on the spectral and spatial characteristics of the source radiance. The uncertainty in the effective responsivity, independent of the source variability, is estimated to be 10% (at 95% confidence). The advantages of this calibration system over existing approaches are discussed.

  1. The correction for spectral mismatch effects on the calibration of a solar cell when using a solar simulator

    NASA Technical Reports Server (NTRS)

    Seaman, C. H.

    1981-01-01

    A general expression was derived to enable calculation of the calibration error. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.

  2. Calibration of imaging plates to electrons between 40 and 180 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabhi, N., E-mail: nesrine.rabhi@celia.u-bordeaux.fr; Batani, D.; Boutoux, G.

    2016-05-15

    This paper presents the response calibration of Imaging Plates (IPs) for electrons in the 40-180 MeV range using laser-accelerated electrons at Laboratoire d’Optique Appliquée (LOA), Palaiseau, France. In the calibration process, the energy spectrum and charge of electron beams are measured by an independent system composed of a magnetic spectrometer and a Lanex scintillator screen used as a calibrated reference detector. It is possible to insert IPs of different types or stacks of IPs in this spectrometer in order to detect dispersed electrons simultaneously. The response values are inferred from the signal on the IPs, due to an appropriate chargemore » calibration of the reference detector. The effect of thin layers of tungsten in front and/or behind IPs is studied in detail. GEANT4 simulations are used in order to analyze our measurements.« less

  3. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOEpatents

    Pope, Noah G.; Veirs, Douglas K.; Claytor, Thomas N.

    1994-01-01

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure.

  4. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOEpatents

    Pope, N.G.; Veirs, D.K.; Claytor, T.N.

    1994-10-25

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast Fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure. 7 figs.

  5. SeaWiFS Technical Report Series. Volume 39; SeaWiFS Calibration Topics

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Barnes, Robert A.; Yeh, Eueng-nan; Eplee, Robert E.

    1996-01-01

    For Earth-observing satellite instruments, it was standard to consider each instrument band to have a spectral response that is infinitely narrow, i.e., to have a response from a single wavelength. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) bands, however, have nominal spectral bandwidths of 20 and 40nm. These bandwidths affect the SeaWiFS measurements on orbit. The effects are also linked to the manner in which the instrument was calibrated and to the spectral shape of the radiance that SeaWiFS views. Currently, SeaWiFS is calibrated such that the digital counts from each instrument band are linked to the Earth-exiting radiance at an individual center wavelength. Before launch, SeaWiFS will be recalibrated so that the digital counts from each band will be linked to the Earth-exiting radiance integrated over the spectral response of that band. In this technical memorandum, the effects of the instrument calibration and the source spectral shape on SeaWiFS measurements, including the in-band and out-of-band responses, and the center wavelengths are discussed.

  6. Calibrations between the variables of microbial TTI response and ground pork qualities.

    PubMed

    Kim, Eunji; Choi, Dong Yeol; Kim, Hyun Chul; Kim, Keehyuk; Lee, Seung Ju

    2013-10-01

    A time-temperature indicator (TTI) based on a lactic acid bacterium, Weissella cibaria CIFP009, was applied to ground pork packaging. Calibration curves between TTI response and pork qualities were obtained from storage tests at 2°C, 10°C, and 13°C. The curves of the TTI vs. total cell number at different temperatures coincided to the greatest extent, indicating the highest representativeness of calibration, by showing the least coefficient of variance (CV=11%) of the quality variables at a given TTI response (titratable acidity) on the curves, followed by pH (23%), volatile basic nitrogen (VBN) (25%), and thiobarbituric acid-reactive substances (TBARS) (47%). Similarity of Arrhenius activation energy (Ea) could also reflect the representativeness of calibration. The total cell number (104.9 kJ/mol) was found to be the most similar to that of the TTI response (106.2 kJ/mol), followed by pH (113.6 kJ/mol), VBN (77.4 kJ/mol), and TBARS (55.0 kJ/mol). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches.

    PubMed

    Farley, Kevin J; Meyer, Joseph S; Balistrieri, Laurie S; De Schamphelaere, Karel A C; Iwasaki, Yuichi; Janssen, Colin R; Kamo, Masashi; Lofts, Stephen; Mebane, Christopher A; Naito, Wataru; Ryan, Adam C; Santore, Robert C; Tipping, Edward

    2015-04-01

    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the US Geological Survey (USA), HDR|HydroQual (USA), and the Centre for Ecology and Hydrology (United Kingdom) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME workshop in Brussels, Belgium (May 2012), is provided in the present study. Overall, the models were found to be similar in structure (free ion activities computed by the Windermere humic aqueous model [WHAM]; specific or nonspecific binding of metals/cations in or on the organism; specification of metal potency factors or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single vs multiple types of binding sites on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong interrelationships among the model parameters (binding constants, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed. © 2014 SETAC.

  8. Metal Mixture Modeling Evaluation project: 2. Comparison of four modeling approaches

    USGS Publications Warehouse

    Farley, Kevin J.; Meyer, Joe; Balistrieri, Laurie S.; DeSchamphelaere, Karl; Iwasaki, Yuichi; Janssen, Colin; Kamo, Masashi; Lofts, Steve; Mebane, Christopher A.; Naito, Wataru; Ryan, Adam C.; Santore, Robert C.; Tipping, Edward

    2015-01-01

    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the U.S. Geological Survey (USA), HDR⎪HydroQual, Inc. (USA), and the Centre for Ecology and Hydrology (UK) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME Workshop in Brussels, Belgium (May 2012), is provided herein. Overall, the models were found to be similar in structure (free ion activities computed by WHAM; specific or non-specific binding of metals/cations in or on the organism; specification of metal potency factors and/or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single versus multiple types of binding site on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong inter-relationships among the model parameters (log KM values, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed.

  9. Improving SWAT model prediction using an upgraded denitrification scheme and constrained auto calibration

    USDA-ARS?s Scientific Manuscript database

    The reliability of common calibration practices for process based water quality models has recently been questioned. A so-called “adequately calibrated model” may contain input errors not readily identifiable by model users, or may not realistically represent intra-watershed responses. These short...

  10. Sensitivity and Uncertainty Analysis for Streamflow Prediction Using Different Objective Functions and Optimization Algorithms: San Joaquin California

    NASA Astrophysics Data System (ADS)

    Paul, M.; Negahban-Azar, M.

    2017-12-01

    The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).

  11. Radiation and Health Technology Laboratory Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.

    2005-07-09

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less

  12. Techniques for precise energy calibration of particle pixel detectors

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  13. Techniques for precise energy calibration of particle pixel detectors.

    PubMed

    Kroupa, M; Campbell-Ricketts, T; Bahadori, A; Empl, A

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  14. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1989-01-01

    The measurement conditions are described for an intensive field campaign at White Sands Missile Range for the calibration of the AVHRRs on NOAA-9, NOAA-10 and NOAA-11, LANDSAT-4 TM and SPOT. Three different methods for calibration of AVHRRs by reference to a ground surface site are reported, and results from these methods are compared. Significant degradations in NOAA-9 and NOAA-10 AVHRR responsivities occurred since prelaunch calibrations were completed. As of February 1988, degradations in NOAA-9 AVHRR responsivities were on the order of 37 percent in channel and 41 percent in channel 2, and for the NOAA-10 AVHRR these degradations were 42 and 59 percent in channels 1 and 2, respectively.

  15. A generalized forest growth projection system applied to the Lake States region.

    Treesearch

    USDA FS

    1979-01-01

    A collection of 12 papers describing the need, design, calibration database, potential diameter growth function, crown ratio, modifier, and mortality functions, as well as a diameter growth allocation rule, management algorithms, computer program, tests, and Lake State climate during calibration.

  16. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with <0.5% (k=2) uncertainty as a result of using an absolute tie point from a Si-trap detector traceable to the primary standard cryogenic radiometer. The flat pyroelectric radiometer standard can be used to perform uniform integrated irradiance measurements from all kinds of UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  17. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.

    PubMed

    Bleeker, H J; Lewin, P A

    2000-01-01

    A new calibration technique for PVDF ultrasonic hydrophone probes is described. Current implementation of the technique allows determination of hydrophone frequency response between 2 and 100 MHz and is based on the comparison of theoretically predicted and experimentally determined pressure-time waveforms produced by a focused, circular source. The simulation model was derived from the time domain algorithm that solves the non linear KZK (Khokhlov-Zabolotskaya-Kuznetsov) equation describing acoustic wave propagation. The calibration technique data were experimentally verified using independent calibration procedures in the frequency range from 2 to 40 MHz using a combined time delay spectrometry and reciprocity approach or calibration data provided by the National Physical Laboratory (NPL), UK. The results of verification indicated good agreement between the results obtained using KZK and the above-mentioned independent calibration techniques from 2 to 40 MHz, with the maximum discrepancy of 18% at 30 MHz. The frequency responses obtained using different hydrophone designs, including several membrane and needle probes, are presented, and it is shown that the technique developed provides a desirable tool for independent verification of primary calibration techniques such as those based on optical interferometry. Fundamental limitations of the presented calibration method are also examined.

  18. Evaluation of four fast-response flow measurement devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gero, A.J.; Suppers, K.L.; Tomb, T.F.

    1988-01-01

    The Federal Mine Safety and Health Act of 1977 requires that sampling of dust in coal mine environments be conducted with an approved sampler operating at a flow rate of 2.0 liters of air per minute or at such other flow rate as prescribed by the Secretaries of Labor and of Health and Human Services. Standard procedures for calibration of these samplers within the Mine Safety and Health Administration utilize either a 3.0 liter capacity wet test meter or a 1.0 liter soap film calibrator. Several new flow calibrating devices have become commercially available. This paper describes an evaluation conductedmore » on four such devices: the Mast Model 823-2 bubble flowmeter, the Buck Calibrator, the Kurz Model 541S mass flowmeter and the Kurz Pocket Calibrator. The precision of a series of measurements made with each instrument was compared to the precision of a series of measurements made with the wet test meter. The comparison showed that the variability of calibration measurements obtained with the fast response flow calibrators was between 1.5 and 4.5 times larger than that obtained with the WTM; however, with all of the calibration devices evaluated, three repetitive measurements were sufficient to obtain a precision of {plus minus}0.1 liters per minute. 4 refs., 2 figs., 1 tab.« less

  19. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun

    2015-01-30

    Different protocols for calibrating electron pair distribution function (ePDF) measurements are explored and described for quantitative studies on nanomaterials. It is found that the most accurate approach to determine the camera length is to use a standard calibration sample of Au nanoparticles from the National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  20. Calibration and data collection protocols for reliable lattice parameter values in electron pair distribution function (ePDF) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeykoon, A. M. Milinda; Hu, Hefei; Wu, Lijun

    2015-02-01

    We explore and describe different protocols for calibrating electron pair distribution function (ePDF) measurements for quantitative studies on nano-materials. We find the most accurate approach to determine the camera-length is to use a standard calibration sample of Au nanoparticles from National Institute of Standards and Technology. Different protocols for data collection are also explored, as are possible operational errors, to find the best approaches for accurate data collection for quantitative ePDF studies.

  1. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    PubMed

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the assumption of ionization quenching as described by Birks' formula. Plastic scintillation detectors should be calibrated at the same radiation quality that they will be used at and changes of the spectrum within the application need to be considered. The authors results can be used to evaluate the range of validity of a given calibration.

  2. Uncertainty and sensitivity assessments of an agricultural-hydrological model (RZWQM2) using the GLUE method

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Zhang, Xiaolin; Huo, Zailin; Feng, Shaoyuan; Huang, Guanhua; Mao, Xiaomin

    2016-03-01

    Quantitatively ascertaining and analyzing the effects of model uncertainty on model reliability is a focal point for agricultural-hydrological models due to more uncertainties of inputs and processes. In this study, the generalized likelihood uncertainty estimation (GLUE) method with Latin hypercube sampling (LHS) was used to evaluate the uncertainty of the RZWQM-DSSAT (RZWQM2) model outputs responses and the sensitivity of 25 parameters related to soil properties, nutrient transport and crop genetics. To avoid the one-sided risk of model prediction caused by using a single calibration criterion, the combined likelihood (CL) function integrated information concerning water, nitrogen, and crop production was introduced in GLUE analysis for the predictions of the following four model output responses: the total amount of water content (T-SWC) and the nitrate nitrogen (T-NIT) within the 1-m soil profile, the seed yields of waxy maize (Y-Maize) and winter wheat (Y-Wheat). In the process of evaluating RZWQM2, measurements and meteorological data were obtained from a field experiment that involved a winter wheat and waxy maize crop rotation system conducted from 2003 to 2004 in southern Beijing. The calibration and validation results indicated that RZWQM2 model can be used to simulate the crop growth and water-nitrogen migration and transformation in wheat-maize crop rotation planting system. The results of uncertainty analysis using of GLUE method showed T-NIT was sensitive to parameters relative to nitrification coefficient, maize growth characteristics on seedling period, wheat vernalization period, and wheat photoperiod. Parameters on soil saturated hydraulic conductivity, nitrogen nitrification and denitrification, and urea hydrolysis played an important role in crop yield component. The prediction errors for RZWQM2 outputs with CL function were relatively lower and uniform compared with other likelihood functions composed of individual calibration criterion. This new and successful application of the GLUE method for determining the uncertainty and sensitivity of the RZWQM2 could provide a reference for the optimization of model parameters with different emphases according to research interests.

  3. Digital filtering and model updating methods for improving the robustness of near-infrared multivariate calibrations.

    PubMed

    Kramer, Kirsten E; Small, Gary W

    2009-02-01

    Fourier transform near-infrared (NIR) transmission spectra are used for quantitative analysis of glucose for 17 sets of prediction data sampled as much as six months outside the timeframe of the corresponding calibration data. Aqueous samples containing physiological levels of glucose in a matrix of bovine serum albumin and triacetin are used to simulate clinical samples such as blood plasma. Background spectra of a single analyte-free matrix sample acquired during the instrumental warm-up period on the prediction day are used for calibration updating and for determining the optimal frequency response of a preprocessing infinite impulse response time-domain digital filter. By tuning the filter and the calibration model to the specific instrumental response associated with the prediction day, the calibration model is given enhanced ability to operate over time. This methodology is demonstrated in conjunction with partial least squares calibration models built with a spectral range of 4700-4300 cm(-1). By using a subset of the background spectra to evaluate the prediction performance of the updated model, projections can be made regarding the success of subsequent glucose predictions. If a threshold standard error of prediction (SEP) of 1.5 mM is used to establish successful model performance with the glucose samples, the corresponding threshold for the SEP of the background spectra is found to be 1.3 mM. For calibration updating in conjunction with digital filtering, SEP values of all 17 prediction sets collected over 3-178 days displaced from the calibration data are below 1.5 mM. In addition, the diagnostic based on the background spectra correctly assesses the prediction performance in 16 of the 17 cases.

  4. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters

    NASA Astrophysics Data System (ADS)

    Norton, P. A., II

    2015-12-01

    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  5. Advances in the RXTE Proportional Counter Array Calibration: Nearing the Statistical Limit

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nikolai; Jahoda, Keith; Markwardt, Craig; Swank, Jean; Strohmayer, Tod

    2012-01-01

    During its 16 years of service Rossi X-ray Timing Explorer (RXTE) mission has provided an extensive archive of data, which will serve as a primary source of high cadence observation of variable X-ray sources for fast timing studies. It is, therefore, very important to have the most reliable calibration of RXTE instruments. The Proportional Counter Array (PCA) is the primary instrument on-board RXTE which provides data in 2-50 keY with higher than millisecond time resolution in up to 256 energy channels. In 2009 RXTE team revised the response residual minimization method used to derive the parameters of the PCA physical model. The procedure is now based on the residual minimization between the model spectrum for Crab nebula emission and a calibration data set consisting of a number of spectra from the Crab and the on-board Am241 calibration source, uniformly covering a whole RXTE span. The new method led to a much more effective model convergence and allowed for better understanding of the behavior of the PCA energy-to-channel relationship. It greatly improved the response matrix performance. We describe the new version of the RXTE/PCA response generator PCARMF vll.7 along with the corresponding energy-to-channel conversion table (version e05v04) and their difference from the previous releases of PCA calibration. The new PCA response adequately represents the spectrum of the calibration sources and successfully predicts the energy of the narrow iron emission line in Cas-A throughout the RXTE mission.

  6. The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007

    NASA Technical Reports Server (NTRS)

    Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.; hide

    2007-01-01

    The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.

  7. An Open-Source Auto-Calibration Routine Supporting the Stormwater Management Model

    NASA Astrophysics Data System (ADS)

    Tiernan, E. D.; Hodges, B. R.

    2017-12-01

    The stormwater management model (SWMM) is a clustered model that relies on subcatchment-averaged parameter assignments to correctly capture catchment stormwater runoff behavior. Model calibration is considered a critical step for SWMM performance, an arduous task that most stormwater management designers undertake manually. This research presents an open-source, automated calibration routine that increases the efficiency and accuracy of the model calibration process. The routine makes use of a preliminary sensitivity analysis to reduce the dimensions of the parameter space, at which point a multi-objective function, genetic algorithm (modified Non-dominated Sorting Genetic Algorithm II) determines the Pareto front for the objective functions within the parameter space. The solutions on this Pareto front represent the optimized parameter value sets for the catchment behavior that could not have been reasonably obtained through manual calibration.

  8. Theoretical modeling of electron mobility in superfluid {sup 4}He

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitken, Frédéric; Bonifaci, Nelly; Haeften, Klaus von

    The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavitymore » sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.« less

  9. Research on camera on orbit radial calibration based on black body and infrared calibration stars

    NASA Astrophysics Data System (ADS)

    Wang, YuDu; Su, XiaoFeng; Zhang, WanYing; Chen, FanSheng

    2018-05-01

    Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.

  10. Quasi-Static Calibration Method of a High-g Accelerometer

    PubMed Central

    Wang, Yan; Fan, Jinbiao; Zu, Jing; Xu, Peng

    2017-01-01

    To solve the problem of resonance during quasi-static calibration of high-g accelerometers, we deduce the relationship between the minimum excitation pulse width and the resonant frequency of the calibrated accelerometer according to the second-order mathematical model of the accelerometer, and improve the quasi-static calibration theory. We establish a quasi-static calibration testing system, which uses a gas gun to generate high-g acceleration signals, and apply a laser interferometer to reproduce the impact acceleration. These signals are used to drive the calibrated accelerometer. By comparing the excitation acceleration signal and the output responses of the calibrated accelerometer to the excitation signals, the impact sensitivity of the calibrated accelerometer is obtained. As indicated by the calibration test results, this calibration system produces excitation acceleration signals with a pulse width of less than 1000 μs, and realize the quasi-static calibration of high-g accelerometers with a resonant frequency above 20 kHz when the calibration error was 3%. PMID:28230743

  11. Validity Assessment of Low-risk SCORE Function and SCORE Function Calibrated to the Spanish Population in the FRESCO Cohorts.

    PubMed

    Baena-Díez, José Miguel; Subirana, Isaac; Ramos, Rafael; Gómez de la Cámara, Agustín; Elosua, Roberto; Vila, Joan; Marín-Ibáñez, Alejandro; Guembe, María Jesús; Rigo, Fernando; Tormo-Díaz, María José; Moreno-Iribas, Conchi; Cabré, Joan Josep; Segura, Antonio; Lapetra, José; Quesada, Miquel; Medrano, María José; González-Diego, Paulino; Frontera, Guillem; Gavrila, Diana; Ardanaz, Eva; Basora, Josep; García, José María; García-Lareo, Manel; Gutiérrez-Fuentes, José Antonio; Mayoral, Eduardo; Sala, Joan; Dégano, Irene R; Francès, Albert; Castell, Conxa; Grau, María; Marrugat, Jaume

    2018-04-01

    To assess the validity of the original low-risk SCORE function without and with high-density lipoprotein cholesterol and SCORE calibrated to the Spanish population. Pooled analysis with individual data from 12 Spanish population-based cohort studies. We included 30 919 individuals aged 40 to 64 years with no history of cardiovascular disease at baseline, who were followed up for 10 years for the causes of death included in the SCORE project. The validity of the risk functions was analyzed with the area under the ROC curve (discrimination) and the Hosmer-Lemeshow test (calibration), respectively. Follow-up comprised 286 105 persons/y. Ten-year cardiovascular mortality was 0.6%. The ratio between estimated/observed cases ranged from 9.1, 6.5, and 9.1 in men and 3.3, 1.3, and 1.9 in women with original low-risk SCORE risk function without and with high-density lipoprotein cholesterol and calibrated SCORE, respectively; differences were statistically significant with the Hosmer-Lemeshow test between predicted and observed mortality with SCORE (P < .001 in both sexes and with all functions). The area under the ROC curve with the original SCORE was 0.68 in men and 0.69 in women. All versions of the SCORE functions available in Spain significantly overestimate the cardiovascular mortality observed in the Spanish population. Despite the acceptable discrimination capacity, prediction of the number of fatal cardiovascular events (calibration) was significantly inaccurate. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  12. Calibration of water-velocity meters

    USGS Publications Warehouse

    Kaehrle, William R.; Bowie, James E.

    1988-01-01

    The U.S. Geological Survey, Department of the Interior, as part of its responsibility to appraise the quantity of water resources in the United States, maintains facilities for the calibration of water-velocity meters at the Gulf Coast Hydroscience Center's Hydraulic Laboratory Facility, NSTL, Mississippi. These meters are used in hydrologic studies by the Geological Survey, U.S. Army Corps of Engineers, U.S. Department of Energy, state agencies, universities, and others in the public and private sector. This paper describes calibration facilities, types of water-velocity meters calibrated, and calibration standards, methods and results.

  13. SAR calibration technology review

    NASA Technical Reports Server (NTRS)

    Walker, J. L.; Larson, R. W.

    1981-01-01

    Synthetic Aperture Radar (SAR) calibration technology including a general description of the primary calibration techniques and some of the factors which affect the performance of calibrated SAR systems are reviewed. The use of reference reflectors for measurement of the total system transfer function along with an on-board calibration signal generator for monitoring the temporal variations of the receiver to processor output is a practical approach for SAR calibration. However, preliminary error analysis and previous experimental measurements indicate that reflectivity measurement accuracies of better than 3 dB will be difficult to achieve. This is not adequate for many applications and, therefore, improved end-to-end SAR calibration techniques are required.

  14. Enzymatic glucose sensor compensation for variations in ambient oxygen concentration

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; McShane, Michael J.

    2013-02-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.

  15. The on-ground calibration performances of the hyperspectral microscope MicrOmega for the Hayabusa-2 mission

    NASA Astrophysics Data System (ADS)

    Riu, Lucie; Bibring, Jean-Pierre; Pilorget, Cédric; Poulet, François; Hamm, Vincent

    2018-03-01

    The miniaturized near-infrared hyperspectral microscope MicrOmega, on board the MASCOT lander for Hayabusa-2 mission, is designed to perform in situ measurements at the grain scale of the C-type asteroid 1999 JU3 RYUGU. MicrOmega will observe samples with a field of view of a few millimeters with a spatial sampling of 25 μm and acquire near-infrared spectra by illuminating the sample sequentially with different wavelengths from 0.99 to 3.55 μm over two spectral channels with a typical spectral sampling of 20 cm-1. The on-ground calibration of MicrOmega requires a full characterization of the nominal range of operation of the instrument, both spectral (0.99-3.55 μm) and thermal (-40 °C to +40 °C) to derive the radiometric and spectral responses combined into a 4D transfer function to convert raw signal to calibrated reflectance. This specific 4D radiometric reference gives the instrument response according to the pixel location (x,y), the wavelength and the instrument temperature. This paper reports the complex computation of the 4D radiometric reference for the 0.9-2.5 μm channel. In this spectral range, the composition of the grains of a wide variety of minerals with relevance to solar system bodies can be identified through diagnostic spectral features: mafic (pyroxene, olivine…) as well as hydrated and altered minerals that are key phases for the solar system bodies' exploration.

  16. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  17. Quartz Crystal Microbalance: Aerosol Viscoelastic Measurement Calibration and Subsiquent H2O Uptake

    NASA Astrophysics Data System (ADS)

    Farland, D. R., Jr.; Gilles, M. K.; Harder, T.; Weis, J.; Mueller, S.

    2015-12-01

    Aerosol particles exposed to various atmospheric relative humidity (RH) levels exhibit hygroscopic properties which are not fully understood. Water adsorption or diffusion depends on particle viscosity in semi-solid to liquid states. This relationship between particle viscosity as a function of RH and the corresponding hygroscopic behavioral response is the purpose of this study. However, reliable techniques for viscosity quantification have been limited. A Quartz Crystal Microbalance with Dissipation (QCM-D) was used for viscosity measurements and to determine phase changes. Prior to studies on field samples, microscope immersion/viscosity standard oils, salt crystals, sugars and alpha-pinene secondary organic aerosol (SOA) surrogates are used for viscosity, RH calibrations, water uptake and phase change measurements. RH was controlled by flowing N2 gas saturated with H2O for RH's between 0-75% RH. For higher RH values, (75-100% RH range) saturated salt solutions were flowed over a gore membrane to protect the QCM sensor from direct contact with the solutions. The viscosity calibration constructed via QTools fitting software illustrates the limitations as well as the ranges of reliability of the QCM viscosity measurements. Deliquescing salt crystals of differing deliquescence relative humidity's (DRH), sugars and alpha-pinene SOA's provided insight into the detection of various phase change behaviors. Water uptake experiments performed on alpha-pinene SOA and sucrose sugar yielded significantly different frequency and dissipation responses than the deliquescing salts. Future work will apply these experimental methods and analysis on aerosol particles collected during the GoAmazon field campaign.

  18. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    PubMed

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  19. Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting

    PubMed Central

    Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng

    2015-01-01

    Summary The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function. PMID:27346982

  20. Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting.

    PubMed

    Chan, Kwun Chuen Gary; Yam, Sheung Chi Phillip; Zhang, Zheng

    2016-06-01

    The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group. The wide class includes exponential tilting, empirical likelihood and generalized regression as important special cases, and extends survey calibration estimators to different statistical problems and with important distinctions. Global semiparametric efficiency for the estimation of average treatment effects is established for this general class of calibration estimators. The results show that efficiency can be achieved by solely balancing the covariate distributions without resorting to direct estimation of propensity score or outcome regression function. We also propose a consistent estimator for the efficient asymptotic variance, which does not involve additional functional estimation of either the propensity score or the outcome regression functions. The proposed variance estimator outperforms existing estimators that require a direct approximation of the efficient influence function.

  1. High accuracy position response calibration method for a micro-channel plate ion detector

    NASA Astrophysics Data System (ADS)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Müller, P.; Knecht, A.; Liénard, E.; Kossin, M.; Sternberg, M. G.; Swanson, H. E.; Zumwalt, D. W.

    2016-11-01

    We have developed a position response calibration method for a micro-channel plate (MCP) detector with a delay-line anode position readout scheme. Using an in situ calibration mask, an accuracy of 8 μm and a resolution of 85 μm (FWHM) have been achieved for MeV-scale α particles and ions with energies of ∼10 keV. At this level of accuracy, the difference between the MCP position responses to high-energy α particles and low-energy ions is significant. The improved performance of the MCP detector can find applications in many fields of AMO and nuclear physics. In our case, it helps reducing systematic uncertainties in a high-precision nuclear β-decay experiment.

  2. Calibration Against the Moon. I: A Disk-Resolved Lunar Model for Absolute Reflectance Calibration

    DTIC Science & Technology

    2010-01-01

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Calibration against the Moon I: A disk- resolved lunar model for absolute reflectance...of the disk- resolved Moon at visible to near infrared wavelengths. It has been developed in order to use the Moon as a calibration reference

  3. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  4. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  5. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  6. 40 CFR 89.323 - NDIR analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... curve. Develop a calibration curve for each range used as follows: (1) Zero the analyzer. (2) Span the... zero response. If it has changed more than 0.5 percent of full scale, repeat the steps given in... coefficients. If any range is within 2 percent of being linear a linear calibration may be used. Include zero...

  7. Calibration of paired watersheds: Utility of moving sums in presence of externalities

    Treesearch

    Herbert Ssegane; D.M. Amatya; Augustine Muwamba; George M. Chescheir; Tim Appelboom; E.W. Tollner; Jami E. Nettles; Mohamed A. Youssef; Francois Birgand; R.W. Skaggs

    2017-01-01

    Historically, paired watershed studies have been used to quantify the hydrological effects of land use and management practices by concurrently monitoring two similar watersheds during calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change...

  8. Cross-calibration of the Terra MODIS, Landsat 7 ETM+ and EO-1 ALI sensors using near-simultaneous surface observation over the Railroad Valley Playa, Nevada, test site

    USGS Publications Warehouse

    Chander, G.; Angal, A.; Choi, T.; Meyer, D.J.; Xiong, X.; Teillet, P.M.

    2007-01-01

    A cross-calibration methodology has been developed using coincident image pairs from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS), the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) and the Earth Observing EO-1 Advanced Land Imager (ALI) to verify the absolute radiometric calibration accuracy of these sensors with respect to each other. To quantify the effects due to different spectral responses, the Relative Spectral Responses (RSR) of these sensors were studied and compared by developing a set of "figures-of-merit." Seven cloud-free scenes collected over the Railroad Valley Playa, Nevada (RVPN), test site were used to conduct the cross-calibration study. This cross-calibration approach was based on image statistics from near-simultaneous observations made by different satellite sensors. Homogeneous regions of interest (ROI) were selected in the image pairs, and the mean target statistics were converted to absolute units of at-sensor reflectance. Using these reflectances, a set of cross-calibration equations were developed giving a relative gain and bias between the sensor pair.

  9. Online Calibration of Polytomous Items Under the Generalized Partial Credit Model

    PubMed Central

    Zheng, Yi

    2016-01-01

    Online calibration is a technology-enhanced architecture for item calibration in computerized adaptive tests (CATs). Many CATs are administered continuously over a long term and rely on large item banks. To ensure test validity, these item banks need to be frequently replenished with new items, and these new items need to be pretested before being used operationally. Online calibration dynamically embeds pretest items in operational tests and calibrates their parameters as response data are gradually obtained through the continuous test administration. This study extends existing formulas, procedures, and algorithms for dichotomous item response theory models to the generalized partial credit model, a popular model for items scored in more than two categories. A simulation study was conducted to investigate the developed algorithms and procedures under a variety of conditions, including two estimation algorithms, three pretest item selection methods, three seeding locations, two numbers of score categories, and three calibration sample sizes. Results demonstrated acceptable estimation accuracy of the two estimation algorithms in some of the simulated conditions. A variety of findings were also revealed for the interacted effects of included factors, and recommendations were made respectively. PMID:29881063

  10. Calibration, event reconstruction, data analysis and limits calculation for the LUX dark matter experiment

    DOE PAGES

    Akerib, DS; Alsum, S; Araújo, HM; ...

    2018-01-05

    The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  11. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2018-05-31

    Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  12. Landsat 8 OLI radiometric calibration performance after three years (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Morfitt, Ron A.

    2016-09-01

    The Landsat 8 Operational Land Imager (OLI) impressed science users soon after launch in early 2013 with both its radiometric and geometric performance. After three years on-orbit, OLI continues to exceed expectations with its high signal-to-noise ratio, low striping, and stable response. The few artifacts that do exist, such as ghosting, continue to be minimal and show no signs of increasing. The on-board calibration sources showed a small decrease in response during the first six months of operations in the coastal aerosol band, but that decrease has stabilized to less than a half percent per year since that time. The other eight bands exhibit very little change over the past three years and have remained well within a half percent of their initial response to all on-board calibration sources. Analysis of lunar acquisitions also agree with the on-board calibrators. Overall, the OLI on-board the Landsat 8 spacecraft continues to provide exceptional measurements of the Earth's surface to continue the long tradition of Landsat.

  13. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.

    Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  14. A detector interferometric calibration experiment for high precision astrometry

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Henault, F.; Léger, A.; Cara, C.; LeDuigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.

    2016-11-01

    Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 × 10-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4 × 10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 × 10-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 × 10-3 pixel), a photon noise limited precision of 3 × 10-5 pixel was reached.

  15. Calibration for the SAGE III/EOS instruments

    NASA Technical Reports Server (NTRS)

    Chu, W. P.; Mccormick, M. P.; Zawodny, J. M.; Mcmaster, L. R.

    1991-01-01

    The calibration plan for the SAGE III instruments for maintaining instrument performance during the Earth Observing System (EOS) mission lifetime is described. The SAGE III calibration plan consists of detailed preflight and inflight calibration on the instrument performance together with the correlative measurement program to validate the data products from the inverted satellite measurements. Since the measurement technique is primarily solar/lunar occultation, the instrument will be self-calibrating by using the sun as the calibration source during the routine operation of the instrument in flight. The instrument is designed to perform radiometric calibration of throughput, spectral, and spatial response in flight during routine operation. Spectral calibration can be performed in-flight from observation of the solar Fraunhofer lines within the spectral region from 290 to 1030 nm wavelength.

  16. MODIS Instrument Operation and Calibration Improvements

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.

    2014-01-01

    Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.

  17. Dynamic studies of small animals with a four-color diffuse optical tomography imager

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph H.; Graber, Harry L.; Pei, Yaling; Farber, Mark; Stewart, Mark; Levina, Rita D.; Levin, Mikhail B.; Xu, Yong; Barbour, Randall L.

    2005-09-01

    We present newly developed instrumentation for full-tomographic four-wavelength, continuous wave, diffuse optical tomography (DOT) imaging on small animals. A small-animal imaging stage was constructed, from materials compatible with in-magnet studies, which offers stereotaxic fixation of the animal and precise, stable probe positioning. Instrument performance, based on calibration and phantom studies, demonstrates excellent long-term signal stability. DOT measurements of the functional rat brain response to electric paw stimulation are presented, and these demonstrate high data quality and excellent sensitivity to hemodynamic changes. A general linear model analysis on individual trials is used to localize and quantify the occurrence of functional behavior associated with the different hemoglobin state responses. Statistical evaluation of outcomes of individual trials is employed to identify significant regional response variations for different stimulation sites. Image results reveal a diffuse cortical response and a strong reaction of the thalamus, both indicative of activation of pain pathways by the stimulation. In addition, a weaker lateralized functional component is observed in the brain response, suggesting presence of motor activation. An important outcome of the experiment is that it shows that reactions to individual provocations can be monitored, without having to resort to signal averaging. Thus the described technology may be useful for studies of long-term trends in hemodynamic response, as would occur, for example, in behavioral studies involving freely moving animals.

  18. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    USGS Publications Warehouse

    Long, Andrew J.

    2015-01-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  19. Transportation safety data and analysis : Volume 2, Calibration of the highway safety manual and development of new safety performance functions.

    DOT National Transportation Integrated Search

    2011-03-01

    This report documents the calibration of the Highway Safety Manual (HSM) safety performance function (SPF) : for rural two-lane two-way roadway segments in Utah and the development of new models using negative : binomial and hierarchical Bayesian mod...

  20. a Transplantable Compensation Scheme for the Effect of the Radiance from the Interior of a Camera on the Accuracy of Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Dong, Shidu; Yang, Xiaofan; He, Bo; Liu, Guojin

    2006-11-01

    Radiance coming from the interior of an uncooled infrared camera has a significant effect on the measured value of the temperature of the object. This paper presents a three-phase compensation scheme for coping with this effect. The first phase acquires the calibration data and forms the calibration function by least square fitting. Likewise, the second phase obtains the compensation data and builds the compensation function by fitting. With the aid of these functions, the third phase determines the temperature of the object in concern from any given ambient temperature. It is known that acquiring the compensation data of a camera is very time-consuming. For the purpose of getting the compensation data at a reasonable time cost, we propose a transplantable scheme. The idea of this scheme is to calculate the ratio between the central pixel’s responsivity of the child camera to the radiance from the interior and that of the mother camera, followed by determining the compensation data of the child camera using this ratio and the compensation data of the mother camera Experimental results show that either of the child camera and the mother camera can measure the temperature of the object with an error of no more than 2°C.

  1. A new methodology based on sensitivity analysis to simplify the recalibration of functional-structural plant models in new conditions.

    PubMed

    Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry

    2018-06-19

    Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.

  2. Performance Testing of Tracer Gas and Tracer Aerosol Detectors for use in Radionuclide NESHAP Compliance Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuehne, David Patrick; Lattin, Rebecca Renee

    The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack samplingmore » system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable performance of the test instruments for the specific tests used in stack flow characterization.« less

  3. S-NPP VIIRS thermal emissive bands on-orbit calibration and performance

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; McIntire, Jeff; Moyer, David; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    Presented is an assessment of the on-orbit radiometric performance of the thermal emissive bands (TEB) of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument based on data from the first 2 years of operations—from 20 January 2012 to 20 January 2014. The VIIRS TEB are calibrated on orbit using a V-grooved blackbody (BB) as a radiance source. Performance characteristics trended over the life of the mission include the F factor—a measure of the gain change of the TEB detectors; the Noise Equivalent differential Temperature (NEdT)—a measure of the detector noise; and the detector offset and nonlinear terms trended at the quarterly performed BB warm-up cool-down cycles. We find that the BB temperature is well controlled and stable within the 30mK requirement. The F factor trends are very stable and showing little degradation (within 0.8%). The offsets and nonlinearity terms are also without noticeable drifts. NEdT is stable and does not show any trend. Other TEB radiometric calibration-related activities discussed include the on-orbit assessment of the response versus scan-angle functions and an approach to improve the M13 low-gain calibration using onboard lunar measurements. We conclude that all the assessed parameters comply with the requirements, and the TEB provide radiometric measurements with the required accuracy.

  4. The deformable secondary mirror of VLT: final electro-mechanical and optical acceptance test results

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Biasi, Roberto; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Angerer, Gerald; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2014-07-01

    The Deformable Secondary Mirror (DSM) for the VLT ended the stand-alone electro-mechanical and optical acceptance process, entering the test phase as part of the Adaptive Optics Facility (AOF) at the ESO Headquarter (Garching). The VLT-DSM currently represents the most advanced already-built large-format deformable mirror with its 1170 voice-coil actuators and its internal metrology based on co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the final results of the electro-mechanical and optical characterization of the DSM executed in a collaborative effort by the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.), INAF-Osservatorio Astrofisico di Arcetri and ESO. The electro-mechanical acceptance tests have been performed in the company premises and their main purpose was the dynamical characterization of the internal control loop response and the calibration of the system data that are needed for its optimization. The optical acceptance tests have been performed at ESO (Garching) using the ASSIST optical test facility. The main purpose of the tests are the characterization of the optical shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebenau, Melanie, E-mail: melanie.ebenau@tu-dortmun

    Purpose: Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm{sup 3}) made from the commonly used plastic scintillator BC400. Methods: Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a {sup 60}Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energymore » response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks’ formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. Results: The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks’ formula was determined to be kB = (12.3 ± 0.9) mg MeV{sup −1} cm{sup −2}. Conclusions: The energy response was quantified relative to the response to {sup 60}Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the assumption of ionization quenching as described by Birks’ formula. Plastic scintillation detectors should be calibrated at the same radiation quality that they will be used at and changes of the spectrum within the application need to be considered. The authors results can be used to evaluate the range of validity of a given calibration.« less

  6. Using Flux Site Observations to Calibrate Root System Architecture Stencils for Water Uptake of Plant Functional Types in Land Surface Models.

    NASA Astrophysics Data System (ADS)

    Bouda, M.

    2017-12-01

    Root system architecture (RSA) can significantly affect plant access to water, total transpiration, as well as its partitioning by soil depth, with implications for surface heat, water, and carbon budgets. Despite recent advances in land surface model (LSM) descriptions of plant hydraulics, RSA has not been included because of its three-dimensional complexity, which makes RSA modelling generally too computationally costly. This work builds upon the recently introduced "RSA stencil," a process-based 1D layered model that captures the dynamic shifts in water potential gradients of 3D RSA in response to heterogeneous soil moisture profiles. In validations using root systems calibrated to the rooting profiles of four plant functional types (PFT) of the Community Land Model, the RSA stencil predicts plant water potentials within 2% of the outputs of full 3D models, despite its trivial computational cost. In transient simulations, the RSA stencil yields improved predictions of water uptake and soil moisture profiles compared to a 1D model based on root fraction alone. Here I show how the RSA stencil can be calibrated to time-series observations of soil moisture and transpiration to yield a water uptake PFT definition for use in terrestrial models. This model-data integration exercise aims to improve LSM predictions of soil moisture dynamics and, under water-limiting conditions, surface fluxes. These improvements can be expected to significantly impact predictions of downstream variables, including surface fluxes, climate-vegetation feedbacks and soil nutrient cycling.

  7. SDMProjectBuilder: SWAT Simulation and Calibration for Nutrient Fate and Transport

    EPA Science Inventory

    This tutorial reviews screens, icons, and basic functions for downloading flow, sediment, and nutrient observations for a watershed of interest; how to prepare SWAT-CUP input files for SWAT parameter calibration; and how to perform SWAT parameter calibration with SWAT-CUP. It dem...

  8. Visible-regime polarimetric imager: a fully polarimetric, real-time imaging system.

    PubMed

    Barter, James D; Thompson, Harold R; Richardson, Christine L

    2003-03-20

    A fully polarimetric optical camera system has been constructed to obtain polarimetric information simultaneously from four synchronized charge-coupled device imagers at video frame rates of 60 Hz and a resolution of 640 x 480 pixels. The imagers view the same scene along the same optical axis by means of a four-way beam-splitting prism similar to ones used for multiple-imager, common-aperture color TV cameras. Appropriate polarizing filters in front of each imager provide the polarimetric information. Mueller matrix analysis of the polarimetric response of the prism, analyzing filters, and imagers is applied to the detected intensities in each imager as a function of the applied state of polarization over a wide range of linear and circular polarization combinations to obtain an average polarimetric calibration consistent to approximately 2%. Higher accuracies can be obtained by improvement of the polarimetric modeling of the splitting prism and by implementation of a pixel-by-pixel calibration.

  9. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  10. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.

  11. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  12. Swift/BAT Calibration and Spectral Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2004-01-01

    The Burst Alert Telescope (BAT) aboard NASA#s Swift Gamma-Ray Burst Explorer is a large coded aperture gamma-ray telescope consisting of a 2.4 m (8#) x 1.2 m (4#) coded aperture mask supported 1 meter above a 5200 square cm area detector plane containing 32,768 individual 4 mm x 4 mm x 2 mm CZT detectors. The BAT is now completely assembled and integrated with the Swift spacecraft in anticipation of an October 2004 launch. Extensive ground calibration measurements using a variety of radioactive sources have resulted in a moderately high fidelity model for the BAT spectral and photometric response. This paper describes these ground calibration measurements as well as related computer simulations used to study the efficiency and individual detector properties of the BAT detector array. The creation of a single spectral response model representative of the fully integrated BAT posed an interesting challenge and is at the heart of the public analysis tool #batdrmgen# which computes a response matrix for any given sky position within the BAT FOV. This paper will describe the batdrmgen response generator tool and conclude with a description of the on-orbit calibration plans as well as plans for the future improvements needed to produce the more detailed spectral response model that is required for the construction of an all-sky hard x-ray survey.

  13. Method of calibrating a fluid-level measurement system

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2010-01-01

    A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.

  14. Experimental Investigations of Non-Stationary Properties In Radiometer Receivers Using Measurements of Multiple Calibration References

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.

  15. Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images

    NASA Astrophysics Data System (ADS)

    Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan

    2014-05-01

    To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in order to study the response of the spectral response function proposed spectral response function of impact factor, and in view of the spectral response function measured spectral data resampling only HJ-1A CCD spectral response function, calculated according to the formula of the equivalent reflectivity quantitative spectral response function, and spectral normalization of proposed theoretical Technical Support. The Objective evaluation of its application of HJ-1A CCD1, and CCD2 data quality differences research has important implications for broader application to further promote China-made remote sensing satellite data, future research also needs calibration coefficient, the solar elevation angle atmospheric conditions and its image scanning angle be taken into account, and to make the corresponding normalized its impact quantitative research has important significance for the timing changes in the application of the ecological environment in China.

  16. A Python Script for Aligning the STIS Echelle Blaze Function

    NASA Astrophysics Data System (ADS)

    Baer, Malinda; Proffitt, Charles R.; Lockwood, Sean A.

    2018-01-01

    Accurate flux calibration for the STIS echelle modes is heavily dependent on the proper alignment of the blaze function for each spectral order. However, due to changes in the instrument alignment over time and between exposures, the blaze function can shift in wavelength. This may result in flux calibration inconsistencies of up to 10%. We present the stisblazefix Python module as a tool for STIS users to correct their echelle spectra. The stisblazefix module assumes that the error in the blaze alignment is a linear function of spectral order, and finds the set of shifts that minimizes the flux inconsistencies in the overlap between spectral orders. We discuss the uses and limitations of this tool, and show that its use can provide significant improvements to the default pipeline flux calibration for many observations.

  17. VIIRS reflective solar bands on-orbit calibration and performance: a three-year update

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Wang, Menghua

    2014-11-01

    The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.

  18. Hubble Space Telescope: Cycle 1 calibration plan. Version 1.0

    NASA Technical Reports Server (NTRS)

    Stanley, Peggy (Editor); Blades, Chris (Editor)

    1990-01-01

    The framework for quantitative scientific analysis with the Hubble Space Telescope (HST) will be established from a detailed calibration program, and a major responsibility of staff in the Telescope & Instruments Branch (TIB) is the development and maintenance of this calibration for the instruments and the telescope. The first in-orbit calibration will be performed by the SI Investigation Definition Teams (IDTs) during the Science Verification (SV) period in Cycle 0 (expected to start 3 months after launch and last for 5 months). Subsequently, instrument scientists in the TIB become responsible for all aspects of the calibration program. Because of the long lead times involved, TIB scientists have already formulated a calibration plan for the next observing period, Cycle 1 (expected to last a year after the end of SV), which has been reviewed and approved by the STScI Director. The purpose here is to describe the contents of this plan. Our primary aim has been to maintain through Cycle 1 the level of calibration that is anticipated by the end of SV. Anticipated accuracies are given here in tabular form - of course, these accuracies can only be best guesses because we do not know how each instrument will actually perform on-orbit. The calibration accuracies are expected to satisfy the normal needs of both the General Observers (GOs) and the Guaranteed Time Observers (GTOs).

  19. Non-uniformity calibration for MWIR polarization imagery obtained with integrated microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong

    2016-03-01

    Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.

  20. Method and apparatus for calibrating a tiled display

    NASA Technical Reports Server (NTRS)

    Chen, Chung-Jen (Inventor); Johnson, Michael J. (Inventor); Chandrasekhar, Rajesh (Inventor)

    2001-01-01

    A display system that can be calibrated and re-calibrated with a minimal amount of manual intervention. To accomplish this, one or more cameras are provided to capture an image of the display screen. The resulting captured image is processed to identify any non-desirable characteristics, including visible artifacts such as seams, bands, rings, etc. Once the non-desirable characteristics are identified, an appropriate transformation function is determined. The transformation function is used to pre-warp the input video signal that is provided to the display such that the non-desirable characteristics are reduced or eliminated from the display. The transformation function preferably compensates for spatial non-uniformity, color non-uniformity, luminance non-uniformity, and other visible artifacts.

  1. Empirical dual energy calibration (EDEC) for cone-beam computed tomography.

    PubMed

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-09-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p1 and p2 are obtained as functions of the measured attenuation data q1 and q2 (one DECT scan = two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical micro values and density values. Since EDEC is an empirical technique it inherently compensates for scatter components. The empirical dual energy calibration technique is a pragmatic, simple, and reliable calibration approach that produces highly quantitative DECT images.

  2. Construction of dose response calibration curves for dicentrics and micronuclei for X radiation in a Serbian population.

    PubMed

    Pajic, J; Rakic, B; Jovicic, D; Milovanovic, A

    2014-10-01

    Biological dosimetry using chromosome damage biomarkers is a valuable dose assessment method in cases of radiation overexposure with or without physical dosimetry data. In order to estimate dose by biodosimetry, any biological dosimetry service have to have its own dose response calibration curve. This paper reveals the results obtained after irradiation of blood samples from fourteen healthy male and female volunteers in order to establish biodosimetry in Serbia and produce dose response calibration curves for dicentrics and micronuclei. Taking into account pooled data from all the donors, the resultant fitted curve for dicentrics is: Ydic=0.0009 (±0.0003)+0.0421 (±0.0042)×D+0.0602 (±0.0022)×D(2); and for micronuclei: Ymn=0.0104 (±0.0015)+0.0824 (±0.0050)×D+0.0189 (±0.0017)×D(2). Following establishment of the dose response curve, a validation experiment was carried out with four blood samples. Applied and estimated doses were in good agreement. On this basis, the results reported here give us confidence to apply both calibration curves for future biological dosimetry requirements in Serbia. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. ON-LINE MONITORING OF I&C TRANSMITTERS AND SENSORS FOR CALIBRATION VERIFICATION AND RESPONSE TIME TESTING WAS SUCCESSFULLY IMPLEMENTED AT ATR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Phillip A.; O'Hagan, Ryan; Shumaker, Brent

    The Advanced Test Reactor (ATR) has always had a comprehensive procedure to verify the performance of its critical transmitters and sensors, including RTDs, and pressure, level, and flow transmitters. These transmitters and sensors have been periodically tested for response time and calibration verification to ensure accuracy. With implementation of online monitoring techniques at ATR, the calibration verification and response time testing of these transmitters and sensors are verified remotely, automatically, hands off, include more portions of the system, and can be performed at almost any time during process operations. The work was done under a DOE funded SBIR project carriedmore » out by AMS. As a result, ATR is now able to save the manpower that has been spent over the years on manual calibration verification and response time testing of its temperature and pressure sensors and refocus those resources towards more equipment reliability needs. More importantly, implementation of OLM will help enhance the overall availability, safety, and efficiency. Together with equipment reliability programs of ATR, the integration of OLM will also help with I&C aging management goals of the Department of Energy and long-time operation of ATR.« less

  4. HALOE Science Investigation

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris

    1998-01-01

    This cooperative agreement has investigated a number of spectroscopic problems of interest to the Halogen Occultation Experiment (HALOE). The types of studies performed are in two parts, namely, those that involve the testing and characterization of correlation spectrometers and those that provide basic molecular spectroscopic information. In addition, some solar studies were performed with the calibration data returned by HALOE from orbit. In order to accomplish this a software package was written as part of this cooperative agreement. The HALOE spectroscopic instrument package was used in various tests of the HALOE flight instrument. These included the spectral response test, the early stages of the gas response test and various spectral response tests of the detectors and optical elements of the instruments. Considerable effort was also expended upon the proper laboratory setup for many of the prelaunch tests of the HALOE flight instrument, including the spectral response test and the gas response test. These tests provided the calibration and the assurance that the calibration was performed correctly.

  5. Calibration of neural networks using genetic algorithms, with application to optimal path planning

    NASA Technical Reports Server (NTRS)

    Smith, Terence R.; Pitney, Gilbert A.; Greenwood, Daniel

    1987-01-01

    Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface.

  6. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.

    PubMed

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu

    2012-10-01

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  7. Calibrated work function mapping by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Fernández Garrillo, Pablo A.; Grévin, Benjamin; Chevalier, Nicolas; Borowik, Łukasz

    2018-04-01

    We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.

  8. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV hardware.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, B. S., E-mail: bsrosen@wisc.edu; Hammer, C. G.; Kunugi, K. A.

    Purpose: To evaluate a prototype densitometer traceable to primary optical standards and compare its performance to an EPSON Expression{sup ®} 10000XL flatbed scanner (the Epson) for quantitative radiochromic film (RCF) dosimetry. Methods: A prototype traceable laser densitometry system (LDS) was developed to mitigate common film scanning artifacts, such as positional scan dependence and high noise in low-dose regions, by performing point-based measurements of RCF suspended in free-space using coherent light. The LDS and the Epson optical absorbance scales were calibrated up to 3 AU, using reference materials calibrated at a primary standards laboratory and a scanner calibration factor (SCF). Calibratedmore » optical density (OD) was determined for 96 Gafchromic{sup ®} EBT3 film segments before and after irradiation to one of 16 dose levels between 0 and 10 Gy, exposed to {sup 60}Co in a polymethyl-methacrylate (PMMA) phantom. The sensitivity was determined at each dose level and at two rotationally orthogonal readout orientations to obtain the sensitometric response of each RCF dosimetry system. LDS rotational scanning dependence was measured at nine angles between 0°and 180°, due to the expected interference between coherent light and polarizing EBT3 material. The response curves were fit to the analytic functions predicted by two physical response models: the two-parameter single-hit model and the four-parameter percolation model. Results: The LDS and the Epson absorbance measurements were linear to primary optical standards to within 0.2% and 0.3% up to 2 and 1 AU, respectively. At higher densities, the LDS had an over-response (2.5% at 3 AU) and the Epson an under-response (3.1% and 9.8% at 2 and 3 AU, respectively). The LDS and the Epson SCF over the applicable range were 0.968% ± 0.2% and 1.561% ± 0.3%, respectively. The positional scan dependence was evaluated on each digitizer and shown to be mitigated on the LDS, as compared to the Epson. Maximum EBT3 rotational dependence was found to have a strong dependence on dose (0.1% and 34% at 30 mGy and 5 Gy, respectively). The preferred EBT3 polymerization axis angle was constant within experimental uncertainties. In its most sensitive orientation, the LDS-measured EBT3 sensitivity was 7.13 × 10{sup −4} ± 9.2 × 10{sup −6} AU/mGy, which represented a 4.5 fold increase over the Epson of 1.58 × 10{sup −4} ± 9.8 × 10{sup −6} AU/mGy. To first order approximations, EBT3 response was linear up to 500 mGy to within 0.80% and to within 7.5% for the most sensitive LDS and the Epson orientations, respectively. The corresponding single-hit and percolation model relative residual norms were 0.082 and 0.074 for LDS as compared to 0.29 and 0.18 for the Epson, which represented a significant increase in LDS-measured agreement with the simple physical model. Less sensitive LDS and the Epson orientations showed a marked decrease in the physical model agreement, which suggested that suboptimal readout device characteristics may be the origin of the complex sensitometric functional forms currently required for accurate RCF dosimetry. Conclusions: The prototype densitometer was shown to be superior to a conventional scanner for quantitative RCF dosimetry based on physical models of film response. The Epson was shown to be a reliable tool for routine RCF dosimetry in a clinical setting, yet calibration to primary optical standards did not mitigate the necessity for complex, empirical functional form fitting.« less

  10. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  11. The Calibration Reference Data System

    NASA Astrophysics Data System (ADS)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  12. Hydrograph structure informed calibration in the frequency domain with time localization

    NASA Astrophysics Data System (ADS)

    Kumarasamy, K.; Belmont, P.

    2015-12-01

    Complex models with large number of parameters are commonly used to estimate sediment yields and predict changes in sediment loads as a result of changes in management or conservation practice at large watershed (>2000 km2) scales. As sediment yield is a strongly non-linear function that responds to channel (peak or mean) velocity or flow depth, it is critical to accurately represent flows. The process of calibration in such models (e.g., SWAT) generally involves the adjustment of several parameters to obtain better estimates of goodness of fit metrics such as Nash Sutcliff Efficiency (NSE). However, such indicators only provide a global view of model performance, potentially obscuring accuracy of the timing or magnitude of specific flows of interest. We describe an approach for streamflow calibration that will greatly reduce the black-box nature of calibration, when response from a parameter adjustment is not clearly known. Fourier Transform or the Short Term Fourier Transform could be used to characterize model performance in the frequency domain as well, however, the ambiguity of a Fourier transform with regards to time localization renders its implementation in a model calibration setting rather useless. Brief and sudden changes (e.g. stream flow peaks) in signals carry the most interesting information from parameter adjustments, which are completely lost in the transform without time localization. Wavelet transform captures the frequency component in the signal without compromising time and is applied to contrast changes in signal response to parameter adjustments. Here we employ the mother wavelet called the Mexican hat wavelet and apply a Continuous Wavelet Transform to understand the signal in the frequency domain. Further, with the use of the cross-wavelet spectrum we examine the relationship between the two signals (prior or post parameter adjustment) in the time-scale plane (e.g., lower scales correspond to higher frequencies). The non-stationarity of the streamflow signal does not hinder this assessment and regions of change called boundaries of influence (seasons or time when such change occurs in the hydrograph) for each parameter are delineated. In addition, we can discover the structural component of the signal (e.g., shifts or amplitude change) that has changed.

  13. Calibration of the ART-XC mirror modules at MSFC

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Tkachenko, A.; Burenin, R.; Filippova, E.; Lapshov, I.; Mereminskiy, I.; Molkov, S.; Pavlinsky, M.; Sazonov, S.; Gubarev, M.; Kolodziejczak, J.; O'Dell, S. L.; Swartz, D.; Zavlin, Vyacheslav E.; Ramsey, B. D.

    2017-10-01

    The Astronomical Röntgen Telescope X-ray Concentrator (ART-XC) is a hard X-ray telescope with energy response up to 30 keV, to be launched on board the Spectrum Röntgen Gamma (SRG) spacecraft in 2018. ART-XC consists of seven identical co-aligned mirror modules. Each mirror assembly is coupled with a CdTe double-sided strip (DSS) focal-plane detector. Eight X-ray mirror modules (seven flight and one spare units) for ART-XC were developed and fabricated at the Marshall Space Flight Center (MSFC), NASA, USA. We present results of testing procedures performed with an X-ray beam facility at MSFC to calibrate the point spread function (PSF) of the mirror modules. The shape of the PSF was measured with a high-resolution CCD camera installed in the focal plane with defocusing of 7 mm, as required by the ART-XC design. For each module, we performed a parametrization of the PSF at various angular distances Θ. We used a King function to approximate the radial profile of the near on-axis PSF (Θ < 9 arcmin) and an ellipse fitting procedure to describe the morphology of the far off-axis angular response (9 < Θ < 24 arcmin). We found a good agreement between the seven ART-XC flight mirror modules at the level of 10%. The on-axis angular resolution of the ART-XC optics varies between 27 and 33 arcsec (half-power diameter), except for the spare module.

  14. An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases.

    PubMed

    Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid

    2016-07-28

    Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).

  15. Calibration of satellite sensors after launch

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1986-01-01

    A simple and accurate method for the postflight calibration of satellite Visible Infrared Spin-Scan Radiometers (VISSR) is presented, and the results of inflight testing are reported. The calibration source for the VISSR with its effective wavelength of 610 nm is the radiance of sunlight, measured in calibrated reflectance units, scattered by the atmospheric gas above ocean which is far from land. Only the lowest 20 percent of the full-scale VISSR response is calibrated. VISSR testing aboard two geostationary operational evironmental satellites between 1980 and 1983 showed significant calibration coefficient variations of only + or - 12 percent and + or - 2 percent. Good agreement was found between values of aerosol optical thickness measured by VISSR and those measured from the ground.

  16. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.3% (1sigma uncertainty). It is found that the conversion factor is not sensitive to beam filtration.

  17. Analysis of variation in calibration curves for Kodak XV radiographic film using model-based parameters.

    PubMed

    Hsu, Shu-Hui; Kulasekere, Ravi; Roberson, Peter L

    2010-08-05

    Film calibration is time-consuming work when dose accuracy is essential while working in a range of photon scatter environments. This study uses the single-target single-hit model of film response to fit the calibration curves as a function of calibration method, processor condition, field size and depth. Kodak XV film was irradiated perpendicular to the beam axis in a solid water phantom. Standard calibration films (one dose point per film) were irradiated at 90 cm source-to-surface distance (SSD) for various doses (16-128 cGy), depths (0.2, 0.5, 1.5, 5, 10 cm) and field sizes (5 × 5, 10 × 10 and 20 × 20 cm²). The 8-field calibration method (eight dose points per film) was used as a reference for each experiment, taken at 95 cm SSD and 5 cm depth. The delivered doses were measured using an Attix parallel plate chamber for improved accuracy of dose estimation in the buildup region. Three fitting methods with one to three dose points per calibration curve were investigated for the field sizes of 5 × 5, 10 × 10 and 20 × 20 cm². The inter-day variation of model parameters (background, saturation and slope) were 1.8%, 5.7%, and 7.7% (1 σ) using the 8-field method. The saturation parameter ratio of standard to 8-field curves was 1.083 ± 0.005. The slope parameter ratio of standard to 8-field curves ranged from 0.99 to 1.05, depending on field size and depth. The slope parameter ratio decreases with increasing depth below 0.5 cm for the three field sizes. It increases with increasing depths above 0.5 cm. A calibration curve with one to three dose points fitted with the model is possible with 2% accuracy in film dosimetry for various irradiation conditions. The proposed fitting methods may reduce workload while providing energy dependence correction in radiographic film dosimetry. This study is limited to radiographic XV film with a Lumisys scanner.

  18. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  19. DEM Calibration Approach: design of experiment

    NASA Astrophysics Data System (ADS)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  20. SRAM Detector Calibration

    NASA Technical Reports Server (NTRS)

    Soli, G. A.; Blaes, B. R.; Beuhler, M. G.

    1994-01-01

    Custom proton sensitive SRAM chips are being flown on the BMDO Clementine missions and Space Technology Research Vehicle experiments. This paper describes the calibration procedure for the SRAM proton detectors and their response to the space environment.

  1. Glass microneedles for force measurements: a finite-element analysis model

    PubMed Central

    Ayittey, Peter N.; Walker, John S.; Rice, Jeremy J.; de Tombe, Pieter P.

    2010-01-01

    Changes in developed force (0.1–3.0 μN) observed during contraction of single myofibrils in response to rapidly changing calcium concentrations can be measured using glass microneedles. These microneedles are calibrated for stiffness and deflect on response to developed myofibril force. The precision and accuracy of kinetic measurements are highly dependent on the structural and mechanical characteristics of the microneedles, which are generally assumed to have a linear force–deflection relationship. We present a finite-element analysis (FEA) model used to simulate the effects of measurable geometry on stiffness as a function of applied force and validate our model with actual measured needle properties. In addition, we developed a simple heuristic constitutive equation that best describes the stiffness of our range of microneedles used and define limits of geometry parameters within which our predictions hold true. Our model also maps a relation between the geometry parameters and natural frequencies in air, enabling optimum parametric combinations for microneedle fabrication that would reflect more reliable force measurement in fluids and physiological environments. We propose a use for this model to aid in the design of microneedles to improve calibration time, reproducibility, and precision for measuring myofibrillar, cellular, and supramolecular kinetic forces. PMID:19104827

  2. Addressing Curse of Dimensionality in Sensitivity Analysis: How Can We Handle High-Dimensional Problems?

    NASA Astrophysics Data System (ADS)

    Safaei, S.; Haghnegahdar, A.; Razavi, S.

    2016-12-01

    Complex environmental models are now the primary tool to inform decision makers for the current or future management of environmental resources under the climate and environmental changes. These complex models often contain a large number of parameters that need to be determined by a computationally intensive calibration procedure. Sensitivity analysis (SA) is a very useful tool that not only allows for understanding the model behavior, but also helps in reducing the number of calibration parameters by identifying unimportant ones. The issue is that most global sensitivity techniques are highly computationally demanding themselves for generating robust and stable sensitivity metrics over the entire model response surface. Recently, a novel global sensitivity analysis method, Variogram Analysis of Response Surfaces (VARS), is introduced that can efficiently provide a comprehensive assessment of global sensitivity using the Variogram concept. In this work, we aim to evaluate the effectiveness of this highly efficient GSA method in saving computational burden, when applied to systems with extra-large number of input factors ( 100). We use a test function and a hydrological modelling case study to demonstrate the capability of VARS method in reducing problem dimensionality by identifying important vs unimportant input factors.

  3. Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model.

    PubMed

    Lee, K R; Dipaolo, B; Ji, X

    2000-06-01

    Calibration is the process of fitting a model based on reference data points (x, y), then using the model to estimate an unknown x based on a new measured response, y. In DNA assay, x is the concentration, and y is the measured signal volume. A four-parameter logistic model was used frequently for calibration of immunoassay when the response is optical density for enzyme-linked immunosorbent assay (ELISA) or adjusted radioactivity count for radioimmunoassay (RIA). Here, it is shown that the same model or a linearized version of the curve are equally useful for the calibration of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs and calculation of performance measures of the assay.

  4. Determination of eddy current response with magnetic measurements.

    PubMed

    Jiang, Y Z; Tan, Y; Gao, Z; Nakamura, K; Liu, W B; Wang, S Z; Zhong, H; Wang, B B

    2017-09-01

    Accurate mutual inductances between magnetic diagnostics and poloidal field coils are an essential requirement for determining the poloidal flux for plasma equilibrium reconstruction. The mutual inductance calibration of the flux loops and magnetic probes requires time-varying coil currents, which also simultaneously drive eddy currents in electrically conducting structures. The eddy current-induced field appearing in the magnetic measurements can substantially increase the calibration error in the model if the eddy currents are neglected. In this paper, an expression of the magnetic diagnostic response to the coil currents is used to calibrate the mutual inductances, estimate the conductor time constant, and predict the eddy currents response. It is found that the eddy current effects in magnetic signals can be well-explained by the eddy current response determination. A set of experiments using a specially shaped saddle coil diagnostic are conducted to measure the SUNIST-like eddy current response and to examine the accuracy of this method. In shots that include plasmas, this approach can more accurately determine the plasma-related response in the magnetic signals by eliminating the field due to the eddy currents produced by the external field.

  5. Spectral responsivity-based calibration of photometer and colorimeter standards

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.

    2013-08-01

    Several new generation transfer- and working-standard illuminance meters and tristimulus colorimeters have been developed at the National Institute of Standards and Technology (NIST) [1] to measure all kinds of light sources with low uncertainty. The spectral and broad-band (illuminance) responsivities of the photometer (Y) channels of two tristimulus meters were determined at both the Spectral Irradiance and Radiance Responsivity Calibrations using Uniform Sources (SIRCUS) facility and the Spectral Comparator Facility (SCF) [2]. The two illuminance responsivities agreed within 0.1% with an overall uncertainty of 0.2% (k = 2), which is a factor of two improvement over the present NIST photometric scale. The first detector-based tristimulus color scale [3] was realized. All channels of the reference tristimulus colorimeter were calibrated at the SIRCUS. The other tristimulus meters were calibrated at the SCF and also against the reference meter on the photometry bench in broad-band measurement mode. The agreement between detector- and source-based calibrations was within 3 K when a tungsten lamp-standard was measured at 2856 K and 3100 K [4]. The color-temperature uncertainty of tungsten lamp measurements was 4 K (k = 2) between 2300 K and 3200 K, which is a factor of two improvement over the presently used NIST source-based color temperature scale. One colorimeter was extended with an additional (fifth) channel to apply software implemented matrix corrections. With this correction, the spectral mismatch caused color difference errors were decreased by a factor of 20 for single-color LEDs.

  6. Vessel calibre—a potential MRI biomarker of tumour response in clinical trials

    PubMed Central

    Emblem, Kyrre E.; Farrar, Christian T.; Gerstner, Elizabeth R.; Batchelor, Tracy T.; Borra, Ronald J. H.; Rosen, Bruce R.; Sorensen, A. Gregory; Jain, Rakesh K.

    2015-01-01

    Our understanding of the importance of blood vessels and angiogenesis in cancer has increased considerably over the past decades, and the assessment of tumour vessel calibre and structure has become increasingly important for in vivo monitoring of therapeutic response. The preferred method for in vivo imaging of most solid cancers is MRI, and the concept of vessel-calibre MRI has evolved since its initial inception in the early 1990s. Almost a quarter of a century later, unlike traditional contrast-enhanced MRI techniques, vessel-calibre MRI remains widely inaccessible to the general clinical community. The narrow availability of the technique is, in part, attributable to limited awareness and a lack of imaging standardization. Thus, the role of vessel-calibre MRI in early phase clinical trials remains to be determined. By contrast, regulatory approvals of antiangiogenic agents that are not directly cytotoxic have created an urgent need for clinical trials incorporating advanced imaging analyses, going beyond traditional assessments of tumour volume. To this end, we review the field of vessel-calibre MRI and summarize the emerging evidence supporting the use of this technique to monitor response to anticancer therapy. We also discuss the potential use of this biomarker assessment in clinical imaging trials and highlight relevant avenues for future research. PMID:25113840

  7. Analysis and calibration of Safecasta data relative to the 2011 Fukushima Daiichi nuclear accident

    NASA Astrophysics Data System (ADS)

    Cervone, G.; Hultquist, C.

    2017-12-01

    Citizen-led movements producing scientific hazard data during disasters are increasingly common. After the Japanese earthquake-triggered tsunami in 2011, and the resulting radioactive releases at the damaged Fukushima Daiichi nuclear power plants, citizens monitored on-ground levels of radiation with innovative mobile devices built from off-the-shelf components. To date, the citizen-led Safecast project has recorded 50 million radiation measurements world- wide, with the majority of these measurements from Japan. A robust methodology is presented to calibrate contributed Safecast radiation measurements acquired between 2011 and 2016 in the Fukushima prefecture of Japan. The Safecast data are calibrated using official observations acquired by the U.S. Department of Energy at the time of the 2011 Fukushima Daiichi power plant nuclear accident. The methodology performs a series of interpolations between the official and contributed datasets at specific time windows and at corresponding spatial locations. The coefficients found are aggregated and interpolated using cubic and linear methods to generate time dependent calibration function. Normal background radiation, decay rates and missing values are taken into account during the analysis. Results show that the official Safecast static transformation function overestimates the official measurements because it fails to capture the presence of two different Cesium isotopes and their changing ratio with time. The new time dependent calibration function takes into account the presence of different Cesium isotopes, and minimizes the error between official and contributed data. This time dependent Safecast calibration function is necessary until 2030, after which date the error caused by the isotopes ratio will become negligible.

  8. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  9. ON THE CALIBRATION OF DK-02 AND KID DOSIMETERS (in Estonian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehvaert, H.

    1963-01-01

    For the periodic calibration of the DK-02 and WD dosimeters, the rotating stand method which is more advantageous than the usual method is recommended. The calibration can be accomplished in a strong gamma field, reducing considerably the time necessary for calibration. Using a point source, the dose becomes a simple function of time and geometrical parameters. The experimental values are in good agreement with theoretical values. (tr-auth)

  10. Quantifiable Assessment of SWNT Dispersion in Polymer Composites

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Kim, Jae-Woo; Wise, Kristopher E.; Working, Dennis; Siochi, Mia; Harrison, Joycelyn; Gibbons, Luke; Siochi, Emilie J.; Lillehei, Peter T.; Cantrell, Sean; hide

    2007-01-01

    NASA LaRC has established a new protocol for visualizing the nanomaterials in structural polymer matrix resins. Using this new technique and reconstructing the 3D distribution of the nanomaterials allows us to compare this distribution against a theoretically perfect distribution. Additional tertiary structural information can now be obtained and quantified with the electron tomography studies. These tools will be necessary to establish the structural-functional relationships between the nano and the bulk. This will also help define the critical length scales needed for functional properties. Field ready tool development and calibration can begin by using these same samples and comparing the response. i.e. gold standards of good and bad dispersion.

  11. Climatic and land-use driven change of runoff throughout Sweden

    NASA Astrophysics Data System (ADS)

    Worman, A. L. E.; Riml, J.; Lindstrom, G.

    2015-12-01

    Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.

  12. Calibration and Temperature Profile of a Tungsten Filament Lamp

    ERIC Educational Resources Information Center

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  13. Simultaneous multi-headed imager geometry calibration method

    DOEpatents

    Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  14. A comparative survey of current and proposed tropospheric refraction-delay models for DSN radio metric data calibration

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Sovers, O. J.

    1994-01-01

    The standard tropospheric calibration model implemented in the operational Orbit Determination Program is the seasonal model developed by C. C. Chao in the early 1970's. The seasonal model has seen only slight modification since its release, particularly in the format and content of the zenith delay calibrations. Chao's most recent standard mapping tables, which are used to project the zenith delay calibrations along the station-to-spacecraft line of sight, have not been modified since they were first published in late 1972. This report focuses principally on proposed upgrades to the zenith delay mapping process, although modeling improvements to the zenith delay calibration process are also discussed. A number of candidate approximation models for the tropospheric mapping are evaluated, including the semi-analytic mapping function of Lanyi, and the semi-empirical mapping functions of Davis, et. al.('CfA-2.2'), of Ifadis (global solution model), of Herring ('MTT'), and of Niell ('NMF'). All of the candidate mapping functions are superior to the Chao standard mapping tables and approximation formulas when evaluated against the current Deep Space Network Mark 3 intercontinental very long baselines interferometry database.

  15. Improved method to fully compensate the spatial phase nonuniformity of LCoS devices with a Fizeau interferometer.

    PubMed

    Lu, Qiang; Sheng, Lei; Zeng, Fei; Gao, Shijie; Qiao, Yanfeng

    2016-10-01

    Liquid crystal on silicon (LCoS) devices usually show spatial phase nonuniformity (SPNU) in applications of phase modulation, which comprises the phase retardance nonuniformity (PRNU) as a function of the applied voltage and inherent wavefront distortion (WFD) introduced by the device itself. We propose a multipoint calibration method utilizing a Fizeau interferometer to compensate SPNU of the device. Calibration of PRNU is realized by defining a grid of 3×6 cells onto the aperture and then calculating phase retardance of each cell versus a gradient gray pattern. With designing an adjusted gray pattern calculated by the calibrated multipoint phase retardance function, compensation of inherent WFD is achieved. The peak-to-valley (PV) value of the residual WFD compensated by the multipoint calibration method is significantly reduced from 2.5λ to 0.140λ, while the PV value of the residual WFD after global calibration is reduced to 0.364λ. Experimental results of the generated finite-energy 2D Airy beams in Fourier space demonstrate the effectiveness of this multipoint calibration method.

  16. Linear and nonlinear trending and prediction for AVHRR time series data

    NASA Technical Reports Server (NTRS)

    Smid, J.; Volf, P.; Slama, M.; Palus, M.

    1995-01-01

    The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.

  17. Direct measurement and calibration of the Kepler CCD Pixel Response Function for improved photometry and astrometry

    NASA Astrophysics Data System (ADS)

    Ninkov, Zoran

    Stellar images taken with telescopes and detectors in space are usually undersampled, and to correct for this, an accurate pixel response function is required. The standard approach for HST and KEPLER has been to measure the telescope PSF combined ("convolved") with the actual pixel response function, super-sampled by taking into account dithered or offset observed images of many stars (Lauer [1999]). This combined response function has been called the "PRF" (Bryson et al. [2011]). However, using such results has not allowed astrometry from KEPLER to reach its full potential (Monet et al. [2010], [2014]). Given the precision of KEPLER photometry, it should be feasible to use a pre-determined detector pixel response function (PRF) and an optical point spread function (PSF) as separable quantities to more accurately correct photometry and astrometry for undersampling. Wavelength (i.e. stellar color) and instrumental temperature should be affecting each of these differently. Discussion of the PRF in the "KEPLER Instrument Handbook" is limited to an ad-hoc extension of earlier measurements on a quite different CCD. It is known that the KEPLER PSF typically has a sharp spike in the middle, and the main bulk of the PSF is still small enough to be undersampled, so that any substructure in the pixel may interact significantly with the optical PSF. Both the PSF and PRF are probably asymmetric. We propose to measure the PRF for an example of the CCD sensors used on KEPLER at sufficient sampling resolution to allow significant improvement of KEPLER photometry and astrometry, in particular allowing PSF fitting techniques to be used on the data archive.

  18. Precision Calibration for Realizing the Promise of 21 cm Cosmology with HERA

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Hydrogen Epoch of Reionization Array (HERA) Team

    2018-01-01

    In this talk I will discuss progress in both the theory and practice of data analysis for the Hydrogen Epoch of Reionization Array (HERA), focusing on techniques to calibrate the instrumental response and preserve the spectral smoothness that is essential to separating the cosmological 21 cm signal from foregrounds that are five orders of magnitude brighter. I will discuss how we take advantage of HERA's highly-redundant configuration to calibrate both relative antenna gains and perhaps also the overall spectral response and show some early results. I will discuss the effect of real-world deviations from redundancy and how they too might be overcome.

  19. 40 CFR 63.1325 - Batch process vents-performance test methods and procedures to determine compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production or activity level. (1) If the expected mix of products serves as the basis for the batch mass... from the high-level calibration gas is at least 20 times the standard deviation of the response from... 25A, 40 CFR part 60, appendix A, is acceptable if the response from the high-level calibration gas is...

  20. 40 CFR 63.490 - Batch front-end process vents-performance test methods and procedures to determine compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limitation is not dependent upon any past production or activity level. (1) If the expected mix of products... acceptable if the response from the high-level calibration gas is at least 20 times the standard deviation of..., appendix A is acceptable if the response from the high-level calibration gas is at least 20 times the...

Top