NASA Astrophysics Data System (ADS)
Jang, Yong-Man; Yu, Chol-Jun; Kim, Jin-Song; Kim, Song-Un
2018-04-01
Monomolecular drug carriers based on calix[n]-arenes and -resorcinarenes containing the interior cavity can enhance the affinity and specificity of the osteoporosis inhibitor drug zoledronate (ZOD). In this work we investigate the suitability of nine different calix[4]-arenes and -resorcinarenes based macrocycles as hosts for the ZOD guest molecule by conducting {\\it ab initio} density functional theory calculations for structures and energetics of eighteen different host-guest complexes. For the optimized molecular structures of the free, phosphonated, sulfonated calix[4]-arenes and -resorcinarenes, the geometric sizes of their interior cavities are measured and compared with those of the host-guest complexes in order to check the appropriateness for host-guest complex formation. Our calculations of binding energies indicate that in gaseous states some of the complexes might be unstable but in aqueous states almost all of the complexes can be formed spontaneously. Of the two different docking ways, the insertion of ZOD with the \\ce{P-C-P} branch into the cavity of host is easier than that with the nitrogen containing heterocycle of ZOD. The work will open a way for developing effective drug delivering systems for the ZOD drug and promote experimentalists to synthesize them.
Montasser, Imed; Shahgaldian, Patrick; Perret, Florent; Coleman, Anthony W.
2013-01-01
Solid lipid nanoparticles (SLNs) have attracted increasing attention during recent years. This paper presents an overview about the use of calix[n]arenes and calix-resorcinarenes in the formulation of SLNs. Because of their specific inclusion capability both in the intraparticle spaces and in the host cavities as well as their capacity for functionalization, these colloidal nanostructures represent excellent tools for the encapsulation of different active pharmaceutical ingredients (APIs) in the area of drug targeting, cosmetic additives, contrast agents, etc. Various synthetic routes to the supramolecular structures will be given. These various routes lead to the formulation of the corresponding SLNs. Characterization, properties, toxicological considerations as well as numerous corresponding experimental studies and analytical methods will be also exposed and discussed. PMID:24196356
Kinetic studies of BTEX vapour adsorption onto surfaces of calix-4-resorcinarene films
NASA Astrophysics Data System (ADS)
Hassan, A. K.; Ray, A. K.; Nabok, A. V.; Wilkop, T.
2001-10-01
The exposure of spun films of an amphiphilic calix-4-resorcinarene (C-4-RA) derivative to vapours of benzene, toluene, ethylbenzene, and m-xylene (BTEX) has produced a graded response, promising for the development of multisensor arrays. Fast and reversible adsorption of ethylbenzene was associated with changing the refractive index of the sensing layer and is believed to be due to the host-guest interaction between the cavitand C-4-RA molecules and the vapour molecules. Prolonged irradiation of the films with a focused laser beam has resulted in an initial increase of film sensitivity to the different organic vapours.
NASA Astrophysics Data System (ADS)
Gaynanova, Gulnara A.; Bekmukhametova, Alina M.; Kashapov, Ruslan R.; Ziganshina, Albina Yu.; Zakharova, Lucia Ya.
2016-05-01
Self-organization in the mixed system based on water-soluble aminomethylated calix[4]arene with sulfonatoethyl groups at the lower rim and classical cationic surfactant cetyltrimethylammonium bromide has been studied by the methods of tensiometry, conductometry, spectrophotometry, dynamic and electrophoretic light scattering. The values of the critical association concentration, the size and zeta potential values, and the solubilization capacity of mixed aggregates toward the hydrophobic probe (Sudan I) were determined.
Morozova, Ju E; Syakaev, V V; Shalaeva, Ya V; Ermakova, A M; Nizameev, I R; Kadirov, M K; Voloshina, A D; Zobov, V V; Antipin, I S; Konovalov, A I
2017-03-08
The association of cetylpyridinium chloride (CPC) micelles in the presence of octaacetated tetraphenyleneoxymethylcalix[4]resorcinarene (CR) leads to the formation of unusual spherical supramolecular nanoparticles (SNPs). Within the range of CR/CPC molar ratios from 10/1 to 1/10 (except for 1/8), CR, acting as a counterion, decreases the critical micelle concentration of CPC by one order of magnitude and leads to the formation of SNPs with an average hydrodynamic radius of 164 nm and an average zeta potential of -60 mV. The formation of SNPs was studied by NMR FT-PGSE and 2D NOESY, DLS, TEM, fluorimetry, and UV-Vis methods. The stability of SNPs at different temperatures and pH values and in the presence of electrolytes was investigated. The specificity of the interactions of the SNPs with substrates that were preferentially bound by a macrocycle or CPC micelle was studied. The enhancement of cation dye binding in the presence of SNPs is shown. The presented supramolecular system may serve as a nanocapsule for water-soluble and water-insoluble compounds.
NASA Astrophysics Data System (ADS)
Viana, R. S.; Oliveira, C. A. F.; Chojnacki, J.; Barros, B. S.; Alves-Jr, S.; Kulesza, J.
2017-07-01
Lanthanide-calixarene hybrid materials are of particular interest due to the combination of the interesting properties of the ligand cavity-like structure and the luminescent features of lanthanides. The aim of this study was to synthesize and investigate the photophysical properties of Eu3+, Tb3+ and Gd3+ hybrids based on calix[4]arene-tetracarboxylate. The preparation of two structurally different Tb3+ compounds (calix-TA-SC-Tb and calix-TA-Tb) was dictated by the ligand to metal molar ratio and the synthesis time. Analysis of calix-TA-SC-Tb monocrystals revealed the formation of a mononuclear complex of C2 symmetry containing Tb3+ coordinated by four calixarene ionized groups and formate anion encapsulated within the upper cavity. Syntheses of other hybrids failed in producing high-quality crystals and the structures could not be solved. The solid-state luminescent properties of hybrids were evaluated, and the structure/property relationship was investigated. Based on the emission and excitation spectra, the energy diagrams for calix-TA-Eu, calix-TA-Tb and calix-TA-Gd were proposed.
NASA Astrophysics Data System (ADS)
Taghvaei-Ganjali, Saeed; Zadmard, Reza; Saber-Tehrani, Mandana
2012-06-01
For the first time Chlorosulfonyl-Calix[4]arene has been chemically bonded to silica gel through the directly estrification without silane coupling agent to prepare Chlorosulfonyl-Calix[4]arene-bonded silica gel. Sample characterization was performed by various techniques such as elemental analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), powder X-ray diffraction (XRD), N2 adsorption-desorption, thermal gravimetric analysis (TGA), 29Si CP/MAS spectroscopy and acid-base titration. All data approve the successful incorporation of organic group via covalent bond. From the comparison between sulfur content determined by elemental analysis and the number of H+ determined by acid-base titration, it was shown that two ester units took place onto the new synthesized sample and two acidic sites exist on the surface.
Supramolecular gels with high strength by tuning of calix[4]arene-derived networks
NASA Astrophysics Data System (ADS)
Lee, Ji Ha; Park, Jaehyeon; Park, Jin-Woo; Ahn, Hyo-Jun; Jaworski, Justyn; Jung, Jong Hwa
2015-03-01
Supramolecular gels comprised of low-molecular-weight gelators are generally regarded as mechanically weak and unable to support formation of free-standing structures, hence, their practical use with applied loads has been limited. Here, we reveal a technique for in situ generation of high tensile strength supramolecular hydrogels derived from low-molecular-weight gelators. By controlling the concentration of hydrochloric acid during hydrazone formation between calix-[4]arene-based gelator precursors, we tune the mechanical and ductile properties of the resulting gel. Organogels formed without hydrochloric acid exhibit impressive tensile strengths, higher than 40 MPa, which is the strongest among self-assembled gels. Hydrogels, prepared by solvent exchange of organogels in water, show 7,000- to 10,000-fold enhanced mechanical properties because of further hydrazone formation. This method of molding also allows the gels to retain shape after processing, and furthermore, we find organogels when prepared as gel electrolytes for lithium battery applications to have good ionic conductivity.
Supramolecular gels with high strength by tuning of calix[4]arene-derived networks
Lee, Ji Ha; Park, Jaehyeon; Park, Jin-Woo; Ahn, Hyo-Jun; Jaworski, Justyn; Jung, Jong Hwa
2015-01-01
Supramolecular gels comprised of low-molecular-weight gelators are generally regarded as mechanically weak and unable to support formation of free-standing structures, hence, their practical use with applied loads has been limited. Here, we reveal a technique for in situ generation of high tensile strength supramolecular hydrogels derived from low-molecular-weight gelators. By controlling the concentration of hydrochloric acid during hydrazone formation between calix-[4]arene-based gelator precursors, we tune the mechanical and ductile properties of the resulting gel. Organogels formed without hydrochloric acid exhibit impressive tensile strengths, higher than 40 MPa, which is the strongest among self-assembled gels. Hydrogels, prepared by solvent exchange of organogels in water, show 7,000- to 10,000-fold enhanced mechanical properties because of further hydrazone formation. This method of molding also allows the gels to retain shape after processing, and furthermore, we find organogels when prepared as gel electrolytes for lithium battery applications to have good ionic conductivity. PMID:25799459
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yajuan; Yan Bing, E-mail: byan@tongji.edu.cn; Wang Li
2011-09-15
MCM-41 mesoporous silica has been functionalized with two kinds of macrocylic calixarene derivatives Calix[4] and Calix[4]Br (Calix[4]=P-tert-butylcalix[4]arene, Calix[4]Br=5.11,17.23-tetra-tert-butyl-25.27-bihydroxy- 26.28-bibromopropoxycalix[4]arene) through condensation approach of tetraethoxysilane (TEOS) in the presence of the cetyltrimethylammonium bromide (CTAB) surfactant as a template. Novel organic-inorganic mesoporous luminescent hybrid containing RE{sup 3+} (Eu{sup 3+}, Tb{sup 3+}) complexes covalently attached to the functionalized ordered mesoporous MCM-41, which are designated as RE-Calix[4]-MCM-41 and RE-Calix[4]Br-MCM-41, respectively, are obtained by sol-gel process. It is found that they all have high surface area, uniform in the mesostructure and good crystallinity. Measurement of the photoluminescence properties show the mesoporous material covalently bonded Tb{supmore » 3+} complexes (Tb-Calix[4]-MCM-41 and Tb-Calix[4]Br-MCM-41) exhibit the stronger characteristic emission of Tb{sup 3+} and longer lifetime than the corresponding Eu-containing materials Eu-Calix[4]-MCM-41 and Eu-Calix[4]Br-MCM-41 due to the triplet state energy of modified organic ligands Calix[4]-Si and Calix[4]Br-Si match with the emissive energy level of Tb{sup 3+} very well. - Graphical abstract: MCM-41 mesoporous silica is functionalized with two kinds of macrocylic calixarene derivatives and luminescent organic-inorganic mesoporous hybrids containing Ln{sup 3+} complexes covalently attached to the functionalized ordered mesoporous MCM-41. Highlights: > Novel linkages of functionalized calixarene derivative. > New rare earth mesoporous hybrids. > Luminescence in visible region.« less
Danil de Namor, Angela F; Al Nuaim, Maan; Villanueva Salas, Jose A; Bryant, Sophie; Howlin, Brendan
2017-03-30
The synthesis and characterisation of a partially substituted calix[4]arene, namely, 5,11,17,23-tetra-tert-butyl,25,27-bis[aminoethoxy] 26,28-dihydroxycalix[4]arene are reported. Its interaction with commonly used pharmaceuticals (clofibric acid, diclofenac and aspirin) was investigated by spectroscopic ( 1 H NMR and UV), electrochemical (conductance measurements) and thermal (titration calorimetry) techniques. It is concluded on the basis of the experimental work and molecular simulation studies that the receptor interacts selectively with these drugs. Preliminary studies on the selective extraction of these pharmaceuticals from water by the calix receptor are reported and the potential for a carrier mediated sensor based on this ligand for 'on site' monitoring of pharmaceuticals is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Ma, Bao-Qing; Vieira Ferreira, Luis F; Coppens, Philip
2004-04-01
A new framework based on C-methylcalix[4]resorcinarene and the flexible nonconjugated spacer 1,4-bis(imidazol-1yl-methyl)benzene encloses a large one-dimensional channel, containing benzil nanocolumns. Unlike in a previously reported series of benzil-containing supramolecular solids with conjugated linker molecules, benzil luminescence is observed, but the lifetime of 580 ns at 77 K is considerably shorter than the 145 micros reported for neat benzil at room temperature.
Kadirov, M K; Knyazeva, I R; Nizameev, I R; Safiullin, R A; Matveeva, V I; Kholin, K V; Khrizanforova, V V; Ismaev, T I; Burilov, A R; Budnikova, Yu H; Sinyashin, O G
2016-10-18
The catalytic activity of the nickel complexes of thiophosphorylated calix[4]resorcinols for oxygen reduction in a polymer electrolyte membrane fuel cell (PEMFC) has been studied. The conformation of the macrocyclic ligand determines the morphology and catalytic properties of the resulting organometallic species.
Lee, Ji Ha; Kim, Chaelin; Jung, Jong Hwa
2015-10-21
A 1,3-alternate calix[4]arene derivative 1 possessing four guanidinium moieties was synthesized as a molecular binder. The clay nanosheet (CNS) hydrogels were prepared upon addition of 1 and sodium polyacrylate (ASSP), and their mechanical properties were measured by rheometry. CNS hydrogels prepared by combining calix[4]arene 1 with dispersed CNSs surrounded by ASSPs showed an enhancement of mechanical properties such as viscosity and elasticity.
Self-assembly of dimeric tetraurea calix[4]pyrrole capsules
Ballester, Pablo; Gil-Ramírez, Guzmán
2009-01-01
Calix[4]pyrroles having extended aromatic cavities have been functionalized with 4 ureas in the para position of their meso phenyl substituents. This elaboration of the upper rim was completed in 2 synthetic steps starting from the α,α,α,α-tetranitro isomer of the calix[4]pyrrole obtained in the acid catalyzed condensation of p-nitrophenyl methyl ketone and pyrrole. In dichloromethane solution and in the presence of 4,4′-bipyridine N-N′-dioxide the tetraurea calix[4]pyrrole dimerizes reversibly forming a cyclic array of 16 hydrogen bonds and encapsulating 1 molecule of bis-N-oxide. The encapsulated guest is bound in the cavity by hydrogen bonding to the 2 endohedral calix[4]pyrrole centers. Further evidence for dimerization of the tetraurea calix[4]pyrroles is provided by 1H-NMR experiments and by the formation of mixed capsules. PMID:19261848
Wang, Minghui; Janout, Vaclav; Regen, Steven L.
2010-07-12
A homologous series of calix[4]arene-, calix[5]arene- and calix[6]arene-based surfactants, containing pendant trimethylammonium and n-hexadecyl groups, have been compared with respect to their ability (i) to undergo ionic crosslinking at the air/water interface, (ii) to incorporate poly(4-styrenesulfonate) (PSS) in Langmuir-Blodgett (LB) bilayers, and (iii) to act as barriers towards He, N 2 and CO 2 when assembled into crosslinked LB bilayers. As these calix[n]arenes increase in size, their ability to undergo ionic crosslinking has been found to increase, the thickness of corresponding glued LB bilayers has been found to decrease, and their barrier properties and permeation selectivities have been found tomore » increase. In conclusion, the likely origin for these effects and the probable mechanism by which He, N 2 and CO 2 cross these ultrathin films are discussed.« less
Blond, Pascale; Mattiuzzi, Alice; Valkenier, Hennie; Troian-Gautier, Ludovic; Bergamini, Jean-François; Doneux, Thomas; Goormaghtigh, Erik; Raussens, Vincent; Jabin, Ivan
2018-05-29
Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transform infrared (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive, but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. Here, we report robust monolayers of calix[4]arenes bearing oligo(ethylene glycol) (oEG) chains, which were grafted on germanium and gold surfaces via their tetradiazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR, and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy, and the nonspecific absorption of bovine serum albumin was found to be reduced by 85% compared to that of unmodified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way for the design of germanium- or gold-based biosensors.
Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes
NASA Astrophysics Data System (ADS)
Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina
2018-01-01
Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.
Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes.
Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T; Eliseeva, Svetlana V; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina
2018-01-01
Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic Gd III -ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of Tb III -DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (Tb III -DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.
Zhang, Anyun; Kuraoka, Etsushu; Kumagai, Mikio
2007-07-20
To partition effectively Cs(I) and Sr(II), two harmful heat emitting nuclides, from a highly active liquid waste by extraction chromatography, two kinds of macroporous silica-based polymeric materials, Calix[4]arene-R14/SiO(2)-P and TODGA/SiO(2)-P, were synthesized. Two chelating agents, 1,3-[(2,4-diethyl-heptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14), an excellent supramolecular compound having molecular recognition ability for Cs(I), and N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) were impregnated and immobilized into the pores of SiO(2)-P particles support by a vacuum sucking technique. The loading and elution of 11 typical simulated fission and non-fission products from 4.0M or 2.0M HNO(3) were performed at 298K. It was found that in the first column packed with the Calix[4]arene-R14/SiO(2)-P, all of the simulated elements were separated effectively into two groups: (1) Na(I), K(I), Sr(II), Fe(III), Ba(II), Ru(III), Pd(II), Zr(IV), and Mo(VI) (noted as Sr-group); (2) Cs(I)-Rb(I) (Cs-group) by eluting with 4.0M HNO(3) and distilled water, respectively. The harmful element Cs(I) flowed into the second group along with Rb(I) because of their close sorption and elution properties towards Calix[4]arene-R14/SiO(2)-P, while Sr(II) showed no sorption and flowed into Sr-containing group. In the second column packed with TODGA/SiO(2)-P, the Sr-group was separated into (1) Ba(II), Ru(III), Na(I), K(I), Fe(III), and Mo(VI) (non-sorption group); (2) Sr(II); (3) Pd(II); and (4) Zr(IV) by eluting with 2.0M HNO(3), 0.01M HNO(3), 0.05M DTPA-pH 2.5, and 0.5M H(2)C(2)O(4), respectively. Sr(II) adsorbed towards TODGA/SiO(2)-P flowed into the second group and showed the excellent separation efficiency from others. Based on the elution behavior of the tested elements, an advanced PREC (Partitioning and Recovery of two heat generators from an acidic HLW (high activity liquid waste) by Extraction Chromatography) process was proposed.
Multiple conformations of benzil in resorcinarene-based supramolecular host matrixes.
Ma, Bao-Qing; Zhang, Yuegang; Coppens, Philip
2003-11-28
Six supramolecular complexes incorporating benzil as a guest, CMCR*bipy*benzil (alpha) 1 (CMCR = C-methylcalix[4]resorcinarene), CMCR*bipy*benzil (beta) 2, CMCR*2bpe*benzil*ethanol 3 (bpe = trans-1,4-bis(pyridyl)ethylene), CMCR*2bpe*benzil*2H2O 4, CMCR.2bpeh*benzil*ethanol 5 (bpeh = bis-(1-pyridin-4-yl-ethylidene)-hydrazine), and CECR*2bpe.benzil 6 (CECR = C-ethylcalix[4]resorcinarene), have been synthesized by hydrothermal and conventional methods and characterized by X-ray diffraction. Resorcinarene adopts a boat conformation in 1-4 and a bowl conformation in 5 and 6. Compounds 1-4 show a brick-wall-like framework, in which two benzil molecules are incorporated. For 5, bpeh spacers link CMCR molecules to give a one-dimensional wavelike polymer in which one benzil guest is embedded within the polymer cavity. Complex 6 forms a carcerand-like capsule in which two benzil guests are encapsulated. The O=C-C=O torsion angles vary from 91.8 to 139.3 degrees and correlate with the length of the central C-C bond. The benzil concentration, which is approximately 6.2 mol/L in the neat crystals, varies between 1.01 and 1.51 mol/L in the structures studied, corresponding to a 6-fold dilution. The benzil molecules are disordered in the larger cavities of 4 and 5. The two benzoyl fragments are almost perpendicular in 3, which has the next largest cavity size when solvent volume is excluded, whereas a nearly trans-coplanar conformation occurs for the cavity with the smallest volume in 6.
Linked supramolecular building blocks for enhanced cluster formation
McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.; ...
2015-01-09
Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexova, J.; Sirova, M.; Rais, J.
2008-07-01
Within the framework of the ARTIST project of total fuel retreatment with ecological mixtures of solvents and extractants containing only C, H, O, and N atoms, a process segment of extraction of {sup 137}Cs from acidic stream was developed. The process with 25,27-Bis(1-octyloxy)calix[4]arene-crown- 6, DOC[4]C6, dissolved at its 0.01 M concentration in a mixture of 90 vol % 1-octanol and 10% dihexyl octanamide, DHOA was proposed as a viable variant due to its good multicycle performance, even with irradiated solvent, and due to the good chemical stability of the chosen combination of solvent mixture. (authors)
NASA Astrophysics Data System (ADS)
Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar
2018-03-01
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. In the present work, the removal of phenol from aqueous solution across polymer inclusion membrane (PIM), based on mixture of cellulose triacetate and cellulose acetate as support (75/25%), calix[4]resorcinarene derivative as a carrier and 2-nitrophenyl octyl ether (2-NPOE) as plasticizer was investigated. The experimental part of this investigation involved the influence of carrier nature, plasticizer concentration, pH phases, and phenol initial concentration on the removal efficiency of phenol from synthetic wastewater. A PIM containing 0.1 g (of mixture polymer), (0.15 g/g mixture of polymer) of carrier and (0.03 ml/g mixture of polymer) of 2-NPOE provided the highest percentage of phenol removal efficiency over a 6-day transport; the removal was found to be about 95%, indeed the removal was found to be highly dependent of pH phases. The feed solution in these transport experiments was at pH 2, while the stripping solution contained 0.20 M NaOH. This study claims that the PIM with a mixture of cellulose derivatives can be used effectively to remove phenols from wastewaters.
Li, Na; English, Christopher; Eaton, Ammon; Gillespie, Austin; Ence, T C; Christensen, Taylor J; Sego, Adam; Harrison, Roger G; Lamb, John D
2012-07-06
The selectivity and separation of transition metal ions on two columns packed with cyclen-based macrocycles adsorbed onto 55% cross-linked styrene-divinylbenzene resin are presented. The N-cyclen and cyclen-resorcinarene stationary phases were made by adsorbing hydrophobically substituted N-cyclen or a cyclen-resorcinarene derivative (cyclenbowl) on the resin, respectively. The stability constants of cyclen with transition metal ions demonstrate that cyclen has selectivity for Cu²⁺ over other transition metal ions. Mn²⁺, Co²⁺, Ni²⁺, Cd²⁺, and Zn²⁺ ions were separated from Cu²⁺ using HNO₃ eluent with the cyclenbowl column. The preconcentration of Cu²⁺ in parts per billion level from a high concentration matrix of Mn²⁺, Co²⁺, Ni²⁺, Cd²⁺, and Zn²⁺ ions was achieved in the cyclenbowl column using a nitric acid eluent gradient. Recovery of Cu²⁺ at >98% was obtained based on direct interaction of metal ion and cyclen. Although Mn²⁺, Co²⁺, Ni²⁺, Cd²⁺, and Zn²⁺ were not separated by HNO₃ eluent, addition of oxalic acid yielded a very good separation. A retention mechanism is proposed for the latter system in which the protonated cyclen units attract negatively charged HC₂O₄⁻ ions that cooperate with cyclen sites in retaining transition metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Etika, S. B.; Nasra, E.; Rilaztika, I.
2018-04-01
Synthesis and characterization of compound C-Cinnamal Calix [4] Resorsinarena (CCCR) of cinnamon oil waste have been done. This study was aimed to synthesis and characterize C-Cinnamal Calix [4] Resorsinarena from cinnamaldehyde violated cinnamon oil waste. C-Cinnamal Calix [4] Resorsinarena was synthesized by electrophilic substitution reaction of cinnamaldehyde isolated by the acid and resorcinol at 77oC temperature for 2 hour. The data analysis spectrum UV-VIS and FT-IR showed that the compound isolated cinnamaldehyde same as pure cinnamaldehyde compound. The characterization of C-Cinnamal Calix [4] Resorsinarena in the form of reddish-colored solids with melting point 3580C by using UV-VIS showed the presence of double bond, FT-IR showed the absorption at the wave number 3323,94 cm-1 indicating the ‑OH group, the wave number 1610,94 cm-1 showed the vibration C=C, the strong region absorption of 1500,86 cm-1 indicating the presence of an aromatic ring, the at 1442,88 cm-1 wave number indicating the presence of CH3.
Granata, Giuseppe; Paterniti, Irene; Geraci, Corrada; Cunsolo, Francesca; Esposito, Emanuela; Cordaro, Marika; Blanco, Anna Rita; Cuzzocrea, Salvatore; Consoli, Grazia M L
2017-05-01
Curcumin is an Indian spice with a wide spectrum of biological and pharmacological activities but poor aqueous solubility, rapid degradation, and low bioavailability that affect medical benefits. To overcome these limits in ophthalmic application, curcumin was entrapped in a polycationic calix[4]arene-based nanoaggregate by a simple and reproducible method. The calix[4]arene-curcumin supramolecular assembly (Calix-Cur) appeared as a clear colloidal solution consisting in micellar nanoaggregates with size, polydispersity index, surface potential, and drug loading percentage meeting the requirements for an ocular drug delivery system. The encapsulation in the calix[4]arene nanoassembly markedly enhanced the solubility, reduced the degradation, and improved the anti-inflammatory effects of curcumin compared to free curcumin in both in vitro and in vivo experiments. Calix-Cur did not compromise the viability of J774A.1 macrophages and suppressed pro-inflammatory marker expression in J774A.1 macrophages subjected to LPS-induced oxidative stress. Histological and immunohistochemical analyses showed that Calix-Cur reduced signs of inflammation in a rat model of LPS-induced uveitis when topically administrated in the eyes. Overall, the results supported the calix[4]arene nanoassembly as a promising nanocarrier for delivering curcumin to anterior ocular tissues.
NASA Astrophysics Data System (ADS)
Meenakshi, C.; Jayabal, P.; Ramakrishnan, V.
2014-06-01
The thermodynamic property of the host-guest complexes formed between the curcumin, component of Indian Ayurvedic medicine turmeric, a drug molecule, with the supra molecule, p-t-butyl calix(8)arene was studied. p-t-Butyl calix(8)arene has been used as a host molecule and curcumin as a guest molecule. Optical absorption spectral studies were carried out to investigate the molecular recognition properties of p-t-butyl calix(8)arene with curcumin. The stochiometry of the host-guest complexes formed and the binding constant were determined. An interesting 1:1 and 4:1 stochiometric host-guest complexes were formed. Job's continuous method of variation and Benesi-Hildebrand expression were used for the determination of binding constant and the stochiometry of the host-guest complex formed.
Patchett, Ruth; Knighton, Richard C; Mattock, James D; Vargas, Alfredo; Chaplin, Adrian B
2017-11-20
The synthesis of cationic rhodium and iridium complexes of a bis(imidazole-2-thione)-functionalized calix[4]arene ligand and their surprising capacity for potassium binding are described. In both cases, uptake of the alkali metal into the calix[4]arene cavity occurs despite adverse electrostatic interactions associated with close proximity to the transition-metal fragment [Rh + ···K + = 3.715(1) Å; Ir + ···K + = 3.690(1) Å]. The formation and constituent bonding of these unusual heterobimetallic adducts have been interrogated through extensive solution and solid-state characterization, examination of the host-guest chemistry of the ligand and its upper-rim unfunctionalized calix[4]arene analogue, and use of density functional theory based energy decomposition analysis.
Sawama, Yoshinari; Masuda, Masahiro; Honda, Akie; Yokoyama, Hiroki; Park, Kwihwan; Yasukawa, Naoki; Monguchi, Yasunari; Sajiki, Hironao
2016-01-01
The deprotection of the methoxyphenylmethyl (MPM) ether and ester derivatives can be generally achieved by the combinatorial use of a catalytic Lewis acid and stoichiometric nucleophile. The deprotections of 2,4-dimethoxyphenylmethyl (DMPM)-protected alcohols and carboxylic acids were found to be effectively catalyzed by iron(III) chloride without any additional nucleophile to form the deprotected mother alcohols and carboxylic acids in excellent yields. Since the present deprotection proceeds via the self-assembling mechanism of the 2,4-DMPM protective group itself to give the hardly-soluble resorcinarene derivative as a precipitate, the rigorous purification process by silica-gel column chromatography was unnecessary and the sufficiently-pure alcohols and carboxylic acids were easily obtained in satisfactory yields after simple filtration.
The Investigation on Resorcinarenes towards either Inhibiting or Promoting Insulin Fibrillation.
Han, Xu; Tian, Chuan; Gandra, Ingrid; Eslava, Valeria; Galindres, Diana; Vargas, Edgar; Leblanc, Roger
2017-12-19
Different tail-engineered resorcinarenes have been examined for insulin fibrillation by experimental and computational studies. The resorcinarene showed a promising effect on the inhibition of insulin fibrillation, studied using a ThT assay, circular dichroism spectroscopy, and atomic force microscopy. Both the ThT assay and computational results indicate the tail from the resorcinarene has an impact on insulin fibrillation by either inhibition or promotion because of the resident position on insulin. These observations have significant biological implications in the design of drug molecules as well as the development of potential therapeutic strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calix[4]arene coated QCM sensors for detection of VOC emissions: Methylene chloride sensing studies.
Temel, Farabi; Tabakci, Mustafa
2016-06-01
This paper describes the sensing studies of QCM sensors with coated some calixarene derivatives bearing different functional groups for some selected Volatile Organic Compounds (VOCs) such as acetone, acetonitrile, carbon tetrachloride, chloroform, methylene chloride (MC), N,N-dimethylformamide, 1,4-dioxane, ethanol, ethyl acetate, xylene, methanol, n-hexane and toluene. The initial experiments have revealed that whole the calix[4]arene modified QCM sensors exhibited strongest sensing ability to MC emissions. Thus, the detailed studies were performed for only MC emissions after the determination of relatively more effective calix-coated QCM sensors for MC emissions in aqueous media. The results demonstrated that QCM sensor coated with calix-7 bearing both amino and imidazole groups was most useful sensor for MC emissions with 54.1ppm of detection limit. Moreover, it was understood that cyclic structures, H-bonding capabilities and also good preorganization properties of calixarene derivatives played an important role in VOC sensing processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes
NASA Astrophysics Data System (ADS)
Guzzo, Rodrigo N.; Rezende, Michelle Jakeline Cunha; Kartnaller, Vinicius; Carneiro, José Walkimar de M.; Stoyanov, Stanislav R.; Costa, Leonardo Moreira da
2018-04-01
The density functional theory is employed to determine the efficiency of 11 exchange-correlation (XC) functionals to compute the 1H and 13C NMR chemical shifts of p-tert-butylcalix[4]arene (ptcx4, R1 = C(CH3)3) and congeners using the 6-31G(d,p) basis set. The statistical analysis shows that B3LYP, B3PW91 and PBE1PBE are the best XC functionals for the calculation of 1H chemical shifts. Moreover, the best results for the 13C chemical shifts are obtained using the LC-WPBE, M06-2X and wB97X-D functionals. The performance of these XC functionals is tested for three other calix[4]arenes: p-sulfonic acid calix[4]arene (sfxcx4 - R1 = SO3H), p-nitro-calix[4]arene (ncx4, R1 = NO2) and calix[4]arene (cx4 - R1 = H). For 1H chemical shifts B3LYP, B3PW91 and PBE1PBE yield similar results, although B3PW91 shows more consistency in the calculated error for the different structures. For 13C NMR chemical shifts, the XC functional that stood out as best is LC-WPBE. Indeed, the three functionals selected for each of 1H and 13C show good accuracy and can be used in future studies involving the prediction of 1H and 13C chemical shifts for this type of compounds.
Orlandini, Guido; Ragazzon, Giulio; Zanichelli, Valeria; Degli Esposti, Lorenzo; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto; Secchi, Andrea; Arduini, Arturo
2017-02-01
Tris-( N -phenylureido)-calix[6]arene derivatives are heteroditopic non-symmetric molecular hosts that can form pseudorotaxane complexes with 4,4'-bipyridinium-type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems the working modes of which can be governed and monitored by means of light-activated processes. Here, we report on the synthesis, structural characterization, and spectroscopic, photophysical, and electrochemical investigation of two calix[6]arene wheels decorated with three naphthyl groups anchored to either the upper or lower rim of the phenylureido calixarene platform. We found that the naphthyl units interact mutually and with the calixarene skeleton in a different fashion in the two compounds, which thus exhibit a markedly distinct photophysical behavior. For both hosts, the inclusion of a 4,4 ' -bipyridinium guest activates energy- and/or electron-transfer processes that lead to non-trivial luminescence changes.
Aydogan, Abdullah; Akar, Ahmet
2012-02-13
Calixpyrrole-based oligomeric compounds were synthesized by "click chemistry" from the corresponding alkyne- and azide-functionalized calix[4]pyrroles. Calix[4]pyrrole 3, possessing an alkyne functional group, was prepared through a mixed condensation of pyrrole with acetone and but-3-ynyl 4-oxopentanoate. Another alkyne-group-containing calix[4]pyrrole 5 was obtained by treatment of 4'-hydroxyphenyl-functionalized calixpyrrole 4 with propargyl bromide. Tetrakis(azidopentyl)-functionalized calix[4]pyrrole 7 was synthesized by reacting NaN(3) with tetrabromopentyltetraethylcalix[4]pyrrole 6, which was prepared through a condensation reaction of pyrrole and 7-bromohept-2-one. Oligomeric calixpyrrole compounds were found to be capable of extracting tetrabutylammonium chloride and fluoride salts from aqueous media. Extraction abilities of the oligomeric compounds were monitored by NMR and UV/Vis spectroscopy and thermogravimetric analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Long synthetic nanotubes from calix[4]arenes.
Organo, Voltaire G; Sgarlata, Valentina; Firouzbakht, Farhood; Rudkevich, Dmitry M
2007-01-01
We report the synthesis and encapsulation properties of long (up to 5 nm) molecular nanotubes 1-4, which are based on calix[4]arenes and can be filled with multiple nitrosonium (NO(+)) ions upon reaction with NO(2)/N(2)O(4) gases. These are among the largest nanoscale molecular containers prepared to date and can entrap up to five guests. The structure and properties of tubular complexes 1(NO(+))(2)-4(NO(+))(5) were studied by UV/Vis, FTIR, and (1)H NMR spectroscopy in solution, and also by molecular modeling. Entrapment of NO(+) in 1(NO(+))(2)-4(NO(+))(5) is reversible, and addition of [18]crown-6 quickly recovers starting tubes 1-4. The FTIR and titration data revealed enhanced binding of NO(+) in longer tubes, which may be due to cooperativity. The described nanotubes may serve as materials for storing and converting NO(x) and also offer a promise to further develop supramolecular chemistry of molecular containers. These findings also open wider perspectives towards applications of synthetic nanotubes as alternatives to carbon nanotubes.
Calixarene-Mediated Liquid-Membrane Transport of Choline Conjugates.
Adhikari, Birendra Babu; Fujii, Ayu; Schramm, Michael P
2014-05-01
A series of supramolecular calixarenes efficiently transport distinct molecular species through a liquid membrane when attached to a receptor-complementary choline handle. Calix-[6]arene hexacarboxylic acid was highly effective at transporting different target molecules against a pH gradient. Both carboxylic- and phosphonic-acid-functionalized calix[4]arenes effect transport without requiring a pH or ion gradient. NMR binding studies, two-phase solvent extraction, and three-phase transport experiments reveal the necessary and subtle parameters to effect the transport of molecules attached to a choline "handle". On the other hand, rescorin[4]arene cavitands, which have similar guest recognition profiles, did not transport guest molecules. These developments reveal new approaches towards attempting synthetic-receptor-mediated selective small-molecule transport in vesicular and cellular systems.
Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan
2000-01-01
The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.
Orlandini, Guido; Ragazzon, Giulio; Zanichelli, Valeria; Degli Esposti, Lorenzo; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Arduini, Arturo
2017-01-01
Abstract Tris‐(N‐phenylureido)‐calix[6]arene derivatives are heteroditopic non‐symmetric molecular hosts that can form pseudorotaxane complexes with 4,4′‐bipyridinium‐type guests. Owing to the unique structural features and recognition properties of the calix[6]arene wheel, these systems are of interest for the design and synthesis of novel molecular devices and machines. We envisaged that the incorporation of photoactive units in the calixarene skeleton could lead to the development of systems the working modes of which can be governed and monitored by means of light‐activated processes. Here, we report on the synthesis, structural characterization, and spectroscopic, photophysical, and electrochemical investigation of two calix[6]arene wheels decorated with three naphthyl groups anchored to either the upper or lower rim of the phenylureido calixarene platform. We found that the naphthyl units interact mutually and with the calixarene skeleton in a different fashion in the two compounds, which thus exhibit a markedly distinct photophysical behavior. For both hosts, the inclusion of a 4,4′‐bipyridinium guest activates energy‐ and/or electron‐transfer processes that lead to non‐trivial luminescence changes. PMID:28168152
Thermodynamics of hydrogen bond patterns in supramolecular assemblies of water molecules.
Henry, Marc
2002-07-02
The PACHA (Partial Atomic Charges and Hardnesses Analysis) formalism is applied to various supramolecular assemblies of water molecules. After a detailed study of all available crystal structures for ice polymorphs, we shown that the hydrogen bond strength is roughly constant below 1 GPa and considerably weakened above that value. New hydrogen bond patterns are proposed for ice IV, V, and VI after (EB) (electrostatic balance) minimization. For other polymorphs, there is an almost perfect coincidence between experimental and predicted hydrogen bond patterns. The evolution of hydrogen bond energy as a function of molecular geometry in water clusters with up to 280 water molecules and in large supramolecular compounds is quantitatively described. Intermolecular hydrogen bonds are found to lie between -9 and -32 kJ mol-1, the stronger interaction occurs within the spherical fully disordered water droplet buried at the heart of Müller's superfullerene keplerate. The weakest one occurs in a chiral molecular snub cube built from six calix[4]resorcinarene and eight water molecules. Intramolecular hydrogen bonds are found in the range -10-100 kJ mol-1 and can thus be considerably stronger than intermolecular bonds. Finally, through the investigation of a clathrate type I compound, it was possible to obtain a deep insight of the host-guest interactions and self-assembly rules of water cages in these materials.
Calixarene-Mediated Liquid-Membrane Transport of Choline Conjugates
Adhikari, Birendra Babu; Fujii, Ayu
2015-01-01
A series of supramolecular calixarenes efficiently transport distinct molecular species through a liquid membrane when attached to a receptor-complementary choline handle. Calix-[6]arene hexacarboxylic acid was highly effective at transporting different target molecules against a pH gradient. Both carboxylic- and phosphonic-acid-functionalized calix[4]arenes effect transport without requiring a pH or ion gradient. NMR binding studies, two-phase solvent extraction, and three-phase transport experiments reveal the necessary and subtle parameters to effect the transport of molecules attached to a choline “handle”. On the other hand, rescorin[4]arene cavitands, which have similar guest recognition profiles, did not transport guest molecules. These developments reveal new approaches towards attempting synthetic-receptor-mediated selective small-molecule transport in vesicular and cellular systems. PMID:26161034
Labyntseva, R D; Bevza, A A; Lul'ko, A O; Cherenok, S O; Kalchenko, V I; Kosterin, S O
2015-01-01
Calix[4]arenes are cup-like macrocyclic (polyphenolic) compounds, they are regarded as promising molecular "platforms" for the design of new physiologically active compounds. We have earlier found that calix[4]arene C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus in vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.
Böhmer, Volker; Dozol, Jean-François; Grüttner, Cordula; Liger, Karine; Matthews, Susan E; Rudershausen, Sandra; Saadioui, Mohamed; Wang, Pingshan
2004-08-21
Calix[4]arene tetraethers in the cone conformation bearing four -NH-CO-CH2-P(O)Ph2 (= CMPO) residues on their wide rim and one, two or four omega-amino alkyl residues of various lengths at the narrow rim were synthesized. Reaction with dichlorotriazinyl (DCT) functionalized magnetic particles led to complete coverage of the available surface by covalently linked CMPO-calix[4]arenes in all cases. Magnetically assisted removal of Eu(iii) and Am(iii) from acidic solutions was distinctly more efficient with these particles in comparison to analogous particles bearing the same amount of analogous single-chain CMPO-functions. The best result, an increase of the extraction efficiency by a factor of 140-160, was obtained for attachment via two propyl spacers. The selectivity Am/Eu was in the range of 1.9-2.8. No decrease of the extraction ability was observed, when the particles were repeatedly used, after simple back extraction with water.
Skorjanc, Tina; Shetty, Dinesh; Sharma, Sudhir; Raya, Jesus; Traboulsi, Hassan; Han, Dong-Suk; Lalla, Jayesh; Newlon, Ryan; Jagannathan, Ramesh; Kirmizialtin, Serdal; Olsen, John-Carl; Trabolsi, Ali
2018-04-17
Owing to their chemical and thermal stabilities, high uptake capacities, and easy recyclability, covalent organic polymers (COPs) have shown promise as pollutant sponges. Here, we describe the use of diazo coupling to synthesize two cationic COPs, COP1++ and COP2++, that incorporate a viologen-based molecular switch and an organic macrocycle, calix[4]arene. Both COPs form nanosheets with height profiles of 6.00 and 8.00 nm, respectively, based on AFM measurements. The sheets remain morphologically intact upon one- or two-electron reductions of their viologen subunits. MD simulations of the dicationic COPs indicate that calix[4]arene adopts a partial cone conformation and that, in height, the individual 2D polymer layers are 5.48 Å in COP1++ and 5.65 Å in COP2++, which, together with the AFM measurements, suggests that the nanosheets are composed of 11 and 14 layers, respectively. The COPs, in either dicationic, radical cationic, or neutral form exhibit high affinity for iodine, reaching up to 200% mass increase when exposed to iodine vapor at 70 °C, which makes the materials among the best-performing nanosheets for iodine capture reported in the literature. In addition, the COPs effectively remove Congo red from solution in the pH range of 2 - 10, reaching nearly 100% removal within 15 minutes at acidic pH. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Temel, Farabi; Ozcelik, Egemen; Ture, Ayse Gul; Tabakci, Mustafa
2017-08-01
This study presents the sensing studies of QCM sensors which coated with calix[4]arene derivatives bearing different functional groups towards some selected Volatile Organic Compounds (VOCs). Initial experiments revealed that QCM sensor coated with calix-3 bearing bromopropyl functionalities was relatively more effective sensor for methylene chloride (MC) emissions than the other calix[4]arene coated QCM sensors, in aqueous media. In further experiments, this effective calix-3 coated QCM sensor were used in detailed sensing studies of selected VOCs. However, the results demonstrated that calix-3 coated QCM sensor was most useful sensor for toluene (TOL) emissions among all. Moreover, the sensing of TOLs with calix-3 coated QCM sensor was also evaluated in terms of sorption phenomena. Consequently, calix-3 coated QCM sensor was good sensor for TOL emissions, and thus it demonstrated that the coating of QCM sensor surface with calixarenes was good approach for sensing of the VOCs.
Peterman, Dean R [Idaho Falls, ID; Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Riddle, Catherine L [Idaho Falls, ID; Todd, Terry A [Firth, ID; Greenhalgh, Mitchell R [Iona, ID; Tillotson, Richard D [Moore, ID; Bartsch, Richard A [Lubbock, TX; Moyer, Bruce A [Oak Ridge, TN; Delmau, Laetitia H [Oak Ridge, TN; Bonnesen, Peter V [Knoxville, TN
2012-04-17
A mixed extractant solvent that includes at least one dialkyloxycalix[4]arenebenzocrown-6 compound, 4',4',(5')-di-(t-butyldicyclohexano)-18-crown-6, at least one modifier, and, optionally, a diluent. The dialkyloxycalix[4]arenebenzocrown-6 compound is 1,3-alternate-25,27-di(octyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(decyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(dodecyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(2-ethylhexyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(3,7-dimethyloctyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(4-butyloctyl-1-oxy)calix[4]arenebenzocrown-6, or combinations thereof. The modifier is a primary alcohol. A method of separating cesium and strontium from an aqueous feed is also disclosed, as are dialkyloxycalix[4]arenebenzocrown-6 compounds and an alcohol modifier.
A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid.
Kim, Dae-Sik; Lynch, Vincent M; Nielsen, Kent A; Johnsen, Carsten; Jeppesen, Jan O; Sessler, Jonathan L
2009-09-01
A new receptor, the bisTTF-calix[2]thiophene[2]pyrrole derivative 3, has been prepared from the Lewis acid-catalyzed condensation of 2,5-bis(1-hydroxymethylethyl)thiopheno-TTF and pyrrole. This new system is found to form complexes with the electron-deficient guests, trinitrobenzene (TNB) and picric acid (PA), which serve as models for nitroaromatic explosives. The binding phenomenon, which has been studied in organic solution using proton nuclear magnetic resonance and absorption spectroscopies, results in an easy-to-visualize color change in chloroform that is independent of the presence of chloride anion, a known interferant for an earlier tetrakisTTF-calix[4]pyrrole TNB chemosensor. Support for the proposed binding mode comes from a preliminary solid state structure of the complex formed from TNB, namely TNB subset3. A color change is also observed when dichloromethane solutions of chemosensor 3 are added to solvent-free samples of TNB, PA, and 2,4,6-trinitrotoluene supported on silica gel.
Fan, Ping; Wan, Lu; Shang, Yunshan; Wang, Jun; Liu, Yulong; Sun, Xiaoyu; Chen, Chen
2015-02-01
In this work, three hydrosoluble azocalix[4]arene derivatives, 5-(o-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (o-MAC-Calix), 5-(m-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (m-MAC-Calix) and 5-(p-methylphenylazo)-25,26,27-tris(carboxymethoxy)-28-hydroxycalix[4]arene (p-MAC-Calix) were synthesized. Their structures were characterized by infrared spectrum (IR), nuclear magnetic resonance spectrum (1H NMR and 13C NMR) and mass spectrum (MS). The interactions between these compounds and bovine serum albumin (BSA) were studied by fluorescence spectroscopy, UV-vis spectrophotometry and circular dichroic spectroscopy. According to experimental results, three azocalix[4]arene derivatives can efficiently bind to BSA molecules and the o-MAC-Calix displays more efficient interactions with BSA molecules than m-MAC-Calix and p-MAC-Calix. Molecular docking showed that the o-MAC-Calix was embedded in the hydrophobic cavity of helical structure of BSA molecular and the tryptophan (Trp) residue of BSA molecular had strong interaction with o-MAC-Calix. The fluorescence quenching of BSA caused by azocalix[4]arene derivatives is attributed to the static quenching process. In addition, the synchronous fluorescence spectroscopy indicates that these azocalix[4]arene derivatives are more accessible to Trp residues of BSA molecules than the tyrosine (Tyr) residues. The circular dichroic spectroscopy further verified the binding of azocalix[4]arene derivatives and BSA. Copyright © 2014 Elsevier Inc. All rights reserved.
Adhikari, Birendra Babu; To, Cuong-Alexander; Iwasawa, Tetsuo; Schramm, Michael P.
2015-01-01
Calix[6]arene hexacarboxylic acid binds instantly and with low symmetry to Pb, Sr and Ba. Later a highly symmetric up-down alternating conformation emerges. The solution structures are identical to their p-tert-butylcalix[6]arene hexacarboxylic acid counterparts. With either receptor an octahedral cage is formed around the metal. The transformation from low to high symmetry however proceeds at significantly faster rates for the de-t-butylated host. PMID:26752941
Ciaccia, Maria; Tosi, Irene; Cacciapaglia, Roberta; Casnati, Alessandro; Baldini, Laura; Di Stefano, Stefano
2013-06-14
Via selective 1,3-distal intramolecular Cannizzaro disproportionation of an easily available cone-triformylcalix[4]arene, an inherently chiral trifunctional cone-calix[4]arene derivative has been prepared. The presence of three different functional groups (-CH2OH, -CHO and -COOH) at the upper rim of the calixarene scaffold makes this compound a versatile intermediate for the development of multifunctional devices. Interesting chiral discrimination of serine derivatives has been observed, presumably thanks to a multipoint-interaction involving the reversible imine bond formation and the hydrogen bonding of the hydroxyl group of the amino acid side-chain with the upper rim functional groups. Consistently, chiral discrimination was not observed with alanine and valine derivatives, lacking hydrogen bonding groups on the side-chain.
Chauhan, Shive Murat Singh; Garg, Bhaskar; Bisht, Tanuja
2007-11-09
A facile and efficient protocol is reported for the synthesis of calix[4]pyrroles and N-confused calix[4]pyrroles in moderate to excellent yields by reaction of dialkyl or cycloalkyl ketones with pyrrole catalyzed by reusable Amberlyst(TM)-15 under eco-friendly conditions.
Azocalix[4]arene strapped calix[4]pyrrole: a confirmable fluoride sensor.
Thiampanya, Preecha; Muangsin, Nongnuj; Pulpoka, Buncha
2012-08-17
A new chromogenic fluoride sensor based on 1,3-di-p-nitrophenylazocalix[4]arene-calix[4]pyrrole (1) was designed and synthesized. The color of the solution of probe 1 changed upon the addition of any F(-), CH(3)CO(2)(-), PhCO(2)(-), and H(2)PO(4)(-) ions. However, from these ions the highly specific sensing of F(-) is achieved by the addition of Ca(2+) which leads to a color change from light sky blue (of 1·F(-)) back to the original light orange color of 1.
NASA Astrophysics Data System (ADS)
Miyazono, Keitaro; Hanaya, Tadashi; Sueishi, Yoshimi
2014-07-01
By synthesizing unique nitroxide probes (α-substituted phenyl-2,4,6-trimethoxybenzyl(t-butyl)nitroxide), we have shown that p-sulfonatocalix[8]arene (Calix-S8) and γ-cyclodextin (γ-CD) form electron spin resonance spectroscopically separable group-inclusion complexes (α-substituted phenyl-in (R-in) and t-butyl-in complexes) and determined the group-inclusion constants of Calix-S8 and γ-CD. Using nitroxide probes, we have examined the effects of substituent and external pressure on group-inclusion complexation with Calix-S8 and γ-CD. Experiments on pressure dependence enabled us to calculate the reaction volume (Δ V) for R-in and t-butyl-in complex formations. Δ V for group-in complexation with Calix-S8 had negative values. In contrast, Δ V values for γ-CD showed positive values, which is responsible for the repelled water molecules in the CD cavity. The characteristic pressure effects on group-in complexation suggest that group recognition by γ-CD is sensitive when compared with that by Calix-S8.
Delahousse, Guillaume; Peulon-Agasse, Valérie; Debray, Jean-Christophe; Vaccaro, Marie; Cravotto, Giancarlo; Jabin, Ivan; Cardinael, Pascal
2013-11-29
New polyethylene-glycol-based sol-gels containing cyclodextrin or calix[6]arene derivatives have been synthesized. An original method for sol-gel preparation and capillary column coating, which consumes smaller quantities of selectors and allows for control of their amounts in the stationary phase, is reported herein. The new stationary phases exhibited excellent column efficiencies over a large range of temperatures and thermal stability up to 280°C. The cyclodextrin derivative generally showed the best separation factors for aromatic positional isomers. The calix[6]arene derivative exhibited the best selectivity for the polychlorobiphenyl congeners and some polycyclic aromatic hydrocarbon isomers. The relationship between the structure and the chromatographic properties of the selectors is discussed. The tert-butyl groups on the upper rim of the calix[6]arene were found to possibly play an important role in the recognition of solutes. The incorporation of the cyclodextrin derivative into the sol-gel matrix did not affect its enantioselective recognition capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Highly fluorescent resorcinarene cavitand nanocapsules with efficient renal clearance
NASA Astrophysics Data System (ADS)
Mahadevan, Kalpana; Patthipati, Venkata Suresh; Han, Sangbum; Swanson, R. James; Whelan, Eoin C.; Osgood, Christopher; Balasubramanian, Ramjee
2016-08-01
Nanomaterial based imaging approaches hold substantial promise in addressing current diagnostic and therapeutic challenges. One of the key requirements for the successful clinical translation of nanomaterials is their complete clearance from the body within a reasonable time period preferably via the renal filtration route. This article describes the synthesis of highly fluorescent, water soluble, resorcinarene cavitand nanocapsules and demonstrates their effective renal clearance in mice. The synthesis and functionalization of nanocapsules was accomplished in a one-pot operation via thiol-ene reactions without involving self-assembly, sacrificial templates or emulsions. Water soluble resorcinarene cavitand nanocapsules obtained by this approach were covalently functionalized with Alexa Fluor 750. Highly fluorescent nanocapsules with hydrodynamic diameters of 122 nm and 68 nm and extinction coefficients of 1.3 × 109 M-1 cm-1 and 1.5 × 108 M-1 cm-1 respectively were prepared by varying the reaction conditions. The in vivo biodistribution and clearance of these nanocapsules in mice followed by whole-body fluorescence imaging showed that they were both cleared renally within a few hours. Given the inherent encapsulation capabilities of nanocapsules, the renal clearance demonstrated in this work opens up new opportunities for their theranostic applications especially for targeting and treating the urinary tract.
Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung Kuk; Lee, Juhoon; Williams, Neil J
Cage-type calix[4]pyrroles 2 and 3 bearing two additional pyrrole groups on the strap have been synthesized. Compared with the parent calix[4]pyrrole (1), they were found to exhibit remarkably enhanced affinities for anions, including the sulfate anion (TBA+ salts), in organic media (CD2Cl2). This increase is ascribed to participation of the bipyrrole units in anion binding. Receptors 2 and 3 extract the hydrophilic sulfate anion (as the methyltrialkyl(C8-10)ammonium (A336+) salt)) from aqueous media into a chloroform phase with significantly improved efficiency (>10-fold relative to calix[4]pyrrole 1). These two receptors also solubilize into chloroform the otherwise insoluble sulfate salt, (TMA)2SO4 (tetramethylammonium sulfate).
Probing the inner space of resorcinarene molecular capsules with nitroxide guests.
Mileo, Elisabetta; Yi, Song; Bhattacharya, Papri; Kaifer, Angel E
2009-01-01
In quarantine: Nitroxide spin probes are encapsulated by hexameric resorcinarene molecular capsules in dichloromethane solutions (see picture). A substantial reduction in the tumbling rates occurs upon encapsulation of two cationic probes and one neutral probe. As the molecular volume of the probe increases, the tumbling rate of the probe reflects the overall tumbling rate of the entire supramolecular assembly.
Pyrrole- and Naphthobipyrrole-Strapped Calix[4]pyrroles as Azide Anion Receptors.
Kim, Seung Hyeon; Lee, Juhoon; Vargas-Zúñiga, Gabriela I; Lynch, Vincent M; Hay, Benjamin P; Sessler, Jonathan L; Kim, Sung Kuk
2018-03-02
The binding interactions between the azide anion (N 3 - ) and the strapped calix[4]pyrroles 2 and 3 bearing auxiliary hydrogen bonding donors on the bridging moieties, as well as of normal calix[4]pyrrole 1, were investigated via 1 H NMR spectroscopic and isothermal titration calorimetry analyses. The resulting data revealed that receptors 2 and 3 have significantly higher affinities for the azide anion in organic media as compared with the unfunctionalized calix[4]pyrrole 1 and other azide receptors reported to date. Single crystal X-ray diffraction analyses and calculations using density functional theory revealed that receptor 2 binds CsN 3 in two distinct structural forms. As judged from the metric parameters, in the resulting complexes one limiting azide anion resonance contributor is favored over the other, with the specifics depending on the binding mode. In contrast to what is seen for 2, receptor 3 forms a CsN 3 complex in 20% CD 3 OD in CDCl 3 , wherein the azide anion is bound only vertically to the NH protons of the calix[4]pyrrole and the cesium cation is complexed within the cone shaped-calix[4]pyrrole bowl. The bound cesium cation is also in close proximity to a naphthobipyrrole subunit present in a different molecule, forming an apparent cation-π complex.
Espelt, Mónica; Aragay, Gemma; Ballester, Pablo
2015-01-01
The encapsulation of N,N, N',N'-tetramethyl-1,5-pentanediamine-N,N'-dioxide 2 in a non-chiral capsular assembly formed by dimerization of tetraurea-calix[4]pyrrole 1a produced the observation of the N-methyl groups of the encapsulated guest as two separated singlets resonating highly upfield in the (1)H NMR spectrum. In order to clarify the origin of the observed signal splitting we assembled and studied a series of structurally related dimeric capsules. We used the tetraurea-calix[4]pyrrole 1a , the enantiomerically pure tetraurea-calix[4] pyrrole R-1b and the tetraurea-bisloop calix[4]pyrrole 1c as components of the produced assemblies. The (1)H NMR spectra of the assembled encapsulation complexes with bis-N-oxide 2 evidenced diverse splitting patterns of the N-methyl groups. In addition, 2D EXSY/ROESY NMR experiments revealed the existence of chemical exchange processes involving the separated methyl signals of the encapsulated guest. The capsular assemblies were mainly stabilized by a belt of eight head-to-tail hydrogen-bonded urea groups. The interconversion between the two senses of rotation of the unidirectionally oriented urea groups was slow on the (1)H NMR timescale. These characteristics determined the appearance of a new asymmetry element (supramolecular conformational chirality) in the assemblies that accounted for some of the magnetic asymmetries featured by the capsule's inner space. The racemization of the supramolecular chirality element was fast on the EXSY timescale and produced the chemical exchange processes detected for the encapsulation complexes.
NASA Astrophysics Data System (ADS)
Lu, Qin; Gu, Jiashan; Yu, Huapeng; Liu, Chun; Wang, Lun; Zhou, Yunyou
2007-09-01
The characteristics of host-guest complexation between p-sulfonated calix[ n]arene ( SCnA, n = 4, 6) and Vitamin K 3 ( VK3) were investigated by fluorescence spectrometry and absorption spectrometry using methylene blue ( MB) as a probe. Interaction with MB and SCnA led to an obvious decrease in fluorescence intensity of MB, accompanying with shifts of emission peaks. Absorption peaks also showed interesting changes; however, when VK3 was added, fluorescence intensity and absorbance recovered and a slight and slow red shift was observed. The obtained results showed that the inclusion ability of p-sulphonated calix[ n]arenes towards VK3 was the order: p-sulphonated calix[6]arene ( SC6A) > p-sulphonated calix[4]arene ( SC4A). Relative mechanism was proposed to explain the inclusion process.
Lu, Qin; Gu, Jiashan; Yu, Huapeng; Liu, Chun; Wang, Lun; Zhou, Yunyou
2007-09-01
The characteristics of host-guest complexation between p-sulfonated calix[n]arene (SCnA, n = 4, 6) and Vitamin K(3) (VK(3)) were investigated by fluorescence spectrometry and absorption spectrometry using methylene blue (MB) as a probe. Interaction with MB and SCnA led to an obvious decrease in fluorescence intensity of MB, accompanying with shifts of emission peaks. Absorption peaks also showed interesting changes; however, when VK(3) was added, fluorescence intensity and absorbance recovered and a slight and slow red shift was observed. The obtained results showed that the inclusion ability of p-sulphonated calix[n]arenes towards VK(3) was the order: p-sulphonated calix[6]arene (SC6A) >p-sulphonated calix[4]arene (SC4A). Relative mechanism was proposed to explain the inclusion process.
Capping the calix: How toluene completes cesium(i) coordination with calix[4]pyrrole
Ellis, Ross J.; Reinhart, Benjamin; Williams, Neil J.; ...
2017-05-04
The role of solvent in molecular recognition systems is under-researched and often ignored, especially when the solvent is considered “non-interacting”. This study concerns the role of toluene solvent in cesium(I) recognition by calix[4]pyrrole. We show that π-donor interactions bind toluene molecules onto the open face of the cation-receptor complex, thus “capping the calix.” As a result, by characterizing this unusual aromatically-saturated complex, we show how “non-interacting” aromatic solvents can directly coordinate receptor-bound cations and thus influence recognition.
Capping the calix: How toluene completes cesium(i) coordination with calix[4]pyrrole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Ross J.; Reinhart, Benjamin; Williams, Neil J.
The role of solvent in molecular recognition systems is under-researched and often ignored, especially when the solvent is considered “non-interacting”. This study concerns the role of toluene solvent in cesium(I) recognition by calix[4]pyrrole. We show that π-donor interactions bind toluene molecules onto the open face of the cation-receptor complex, thus “capping the calix.” As a result, by characterizing this unusual aromatically-saturated complex, we show how “non-interacting” aromatic solvents can directly coordinate receptor-bound cations and thus influence recognition.
Synthesis and Characterization of Mesoporous Silica Functionalized with Calix[4]arene Derivatives
Alahmadi, Sana M.; Mohamad, Sharifah; Maah, Mohd Jamil
2012-01-01
This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis. PMID:23202977
Comparative Study of Protein Immobilization Properties on Calixarene Monolayers
Chen, Hongxia; Lee, Minsu; Choi, Sungwook; Kim, Jae-Ho; Choi, Heung-Jin; Kim, Sung-Hoon; Lee, Jeabeom; Koh, Kwangnak
2007-01-01
Three calix[4]arene (Cal-4) derivatives of which contain ethylester (1), carboxylic acid (2), and crownether (3) at the lower rim with a common reactive thiol at the upper rim were synthesized and constructed to self-assembled monolayers (SAMs) on Au films. After spectroscopic characterization of monolayers, the interaction between Cal-4 and surface confined bovine serum albumin (BSA) in the SAMs was analyzed by surface plasmon resonance (SPR). The estimated surface concentration of BSA on the Cal-4 SAM with crownether group was the highest among the three Cal-4 derivatives. Anti-hIgG and hIgG pair was employed for the investigation of protein-protein interaction. Molecular interaction between anti-hIgG and hIgG can be detected in a concentration range of 10 pg/mL to 200 pg/mL on the Cal-4 derivative 3 SAM modified SPR chip.
Frkanec; Visnjevac; Kojic-Prodic; Zinic
2000-02-04
Chiral calix[4]arene derivatives with four O-(N-acetyl-PhgOMe), (1), (Phg denotes R-phenylglycine), or O-(N-acetyl-LeuOMe) (2) strands have been synthesised. Both compounds exist in chloroform in stable cone conformations with a noncovalently organised cavity at the lower rim that is formed by circular interstrand amidic hydrogen bonds. Such organisation affects both the selectivity and extraction/transport properties of 1 and 2 toward metal cations. Calix[4]arene derivatives with one OCH2COPhgOMe strand (3), two OCH2COPhgOMe strands (5) and with 1,3-OMe-2,4-(O-CH2COPhgOMe) substituents (4) at the lower rim have also been prepared. For 3, a conformation stabilised by a circular hydrogen-bond arrangement is found in chloroform, while 4 exists as a time-averaged C2 conformation with two intramolecular NH ...OCH3 hydrogen bonds. Compound 5 has a unique hydrogen-bonding motif in solution and in the solid state with two three-centred NH-.. O and two OH...O hydrogen bonds at the lower rim. This motif keeps 5 in the flattened cone conformation in chloroform. The X-ray structure analysis of 1 revealed a molecular structure with C2 symmetry; this structure is organised in infinite chains by intra- and intermolecular H bonds. The solid-state and solution structures of the [1-Na]ClO4 complex are identical, C4 symmetric cone conformations.
Biscalix[4]arene derivative as a very efficient phase selective gelator for oil spill recovery.
Tsai, Chia-Chen; Cheng, Ying-Tsai; Shen, Li-Ching; Chang, Kai-Chi; Ho, I-Ting; Chu, Jean-Ho; Chung, Wen-Sheng
2013-11-15
A biscalixarene framework, without long alkyl chains, has been readily synthesized in three steps starting from the parent calix[4]arene. The biscalix[4]arene 1 was able to form organogels in various alcoholic solvents; furthermore, it exhibited an excellent phase selective gelation property that is potentially useful in oil spill recovery.
Bauer, Anne; Jäschke, Astrid; Schöne, Sebastian; Barthen, Robert; März, Juliane; Patzschke, Michael; Kersting, Berthold; Fahmy, Karim; Oertel, Jana; Brendler, Vinzenz; Stumpf, Thorsten
2018-01-01
Abstract The environmental aspects of ore processing and waste treatment call for an optimization of applied technologies. There, understanding of the structure and complexation mechanism on a molecular scale is indispensable. Here, the complexation of UVI with a calix[4]arene‐based 8‐hydroxyquinoline ligand was investigated by applying a wide range of complementary methods. In solution, the formation of two complex species was proven with stability constants of log ß 1:1=5.94±0.02 and log ß 2:1=6.33±0.01, respectively. The formation of the 1:1 complex was found to be enthalpy driven [ΔH 1:1=(−71.5±10.0) kJ mol−1; TΔS 1:1=(−37.57±10.0) kJ mol−1], whereas the second complexation step was found to be endothermic and entropy driven [ΔH 2:1=(32.8±4.0) kJ mol−1; TΔS 2:1=(68.97±4.0) kJ mol−1]. Moreover, the molecular structure of [UO2(H6L)(NO3)](NO3) (1) was determined by single‐crystal X‐ray diffraction. Concluding, radiotoxic UVI was separated from a EuIII‐containing solution by the calix[4]arene‐based ligand in solvent extractions. PMID:29930893
Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.
Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma
2015-01-01
A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.
Fabrication of Calix[4]arene Derivative Monolayers to Control Orientation of Antibody Immobilization
Chen, Hongxia; Liu, Feng; Qi, Fangjie; Koh, Kwangnak; Wang, Keming
2014-01-01
Three calix[4]arene (Cal-4) derivatives which separately contain ethylester (1), carboxylic acid (2), and crownether (3) at the lower rim with a common reactive thiol at the upper rim were synthesized and constructed to self-assembled monolayers (SAMs) on Au films. After spectroscopic characterization of the monolayers, surface coverage and orientation of antibody immobilized on the Cal-4 derivative SAMs were studied by surface plasmon resonance (SPR) technique. Experimental results revealed that the antibody could be immobilized on the Cal-4 derivatives spontaneously. The orientation of absorbed antibody on the Cal-4 derivative SAMs is related to the SAM’s dipole moment. The possible orientations of the antibody immobilized on the Cal-4 derivative 1 SAM are lying-on or side-on, while on the Cal-4 derivative 2 and Cal-4 derivative 3 head-on and end-on respectively. These experimental results demonstrate the surface dipole moment of Cal-4 derivative appears to be an important factor to antibody orientation. Cal-4 derivatives are useful in developing site direct protein chips. PMID:24690993
Computational study of small molecule binding for both tethered and free conditions
2010-01-01
Using a calix[4]arene-benzene complex as a test system we compare the potential of mean force for when the calix[4]arene is tethered versus free. When the complex is in vacuum our results show that the difference between tethered and free is primarily due to the entropic contribution to the potential of mean force resulting in a significant binding free energy difference of 6.6 kJ/mol. By contrast, when the complex is in water our results suggest that there is no appreciable difference between tethered and free. This study elucidates the roles of entropy and enthalpy for this small molecule system and emphasizes the point that tethering the receptor has the potential to dramatically impact the binding properties. These findings should be taken into consideration when using calixarene molecules in nanosensor design. PMID:20369865
NASA Astrophysics Data System (ADS)
Ozmen, Mustafa; Ozbek, Zikriye; Bayrakci, Mevlut; Ertul, Seref; Ersoz, Mustafa; Capan, Rifat
2015-12-01
Organic vapor sensing properties of Langmuir-Blodgett (LB) thin films of p-tert-butyl calix[6]arene and calix[6]arene, and their certain characterization are reported in this work. LB films of these calixarenes have been characterized by contact angle measurement, quartz crystal microbalance (QCM), scanning electron microscopy (SEM) and atomic force microscopy (AFM). QCM system was used for the measurement of sensor response against chloroform, benzene, toluene and ethanol vapors. Forming of stable monolayers was observed at the water surface using surface pressure-area isotherm graph. The results indicate that good quality, uniform LB films can be prepared with a transfer ratio of over 0.95. Due to the adsorption of vapors into the LB film structures; they yield a response to all vapors as of large, fast, and reproducible.
NASA Astrophysics Data System (ADS)
Kongor, Anita; Panchal, Manthan; Athar, Mohd; Mehta, Viren; Bhatt, Keyur; Jha, P. C.; Jain, Vinod
2018-04-01
Novel calix[4]pyrrole encapsulated platinum nanoparticles (PtNPs) have been prepared in the aqueous medium using meso-tetra(methoxy) meso-tetra (4-phenoxy acetohydrazide) calix[4]pyrrole (MCPTH) as both reducing as well as the capping agent. The developed MCPTH-PtNPs nano-assembly has been characterized by HRTEM, XRD, XPS, TGA and FTIR methods. Grafting capability of MCPTH on PtNPs was envisaged by molecular dynamics simulations that renders towards the complemented role of ligand in capping the surface via metal-acceptor interactions. These nanoparticles have been exploited for chemoselective hydrogenation of nitroarenes using molecular hydrogen at room temperature. Supplemented computational and experimental apprehension clearly corroborates that hydrazide group remains in close contact with the surface and provides adequate coordination sites for the adsorption of nitrenes; required for hydrogenation. This catalytic approach can be conceived as an important tool for determining the electronic and structural influence on the catalytic activity which may open new vistas pertaining to the use of calix functionalized nanocatalyst.
Modified Calix[4]crowns as Molecular Receptors for Barium.
Steinberg, Janine; Bauer, David; Reissig, Falco; Köckerling, Martin; Pietzsch, Hans-Jürgen; Mamat, Constantin
2018-06-01
Invited for this month's cover picture is the group around Dr. Constantin Mamat at the Institute of Radiopharmaceutical Cancer Research at the Helmholtz-Zentrum Dresden-Rossendorf (Germany) together with Prof. Martin Köckerling from the University of Rostock (Germany). The cover picture shows the ability of special functionalized calix[4]crown-6 derivatives to stably bind group 2 metals like barium. This binding mode is highly important for radiopharmaceutical applications not to lose the respective radiometal in vivo to avoid high background signals and/or false positive results and damages in other tissues. For this purpose, different calix[4]crowns were tested, based upon their potential to stably bind barium as surrogate for radium. Radium nuclides are known to be good candidates for usage in α-targeted therapies. Currently, radium-223 is used for α-therapy of bone metastases because of its calcium mimetics. Our aim is to apply the radium to treat other cancer tissues. That's why we need novel chelators to stably fix groups 2 metals like barium and radium. Read the full text of their Full Paper at https://doi.org/10.1002/open.201800019.
A Cr(VI) selective probe based on a quinoline-amide calix[4]arene
NASA Astrophysics Data System (ADS)
Ferreira, Juliane F.; Bagatin, Izilda A.
2018-01-01
A new quinoline-amide calix[4]arene 3-receptor for detection of hazardous anions and cations have been synthesized. The 3-receptor was examined for its sensing properties towards several different anions (Cr2O72 -, SCN-, F-, Cl-, NO3-) and metal ions (Hg2+, Cd2+, Ag+) by UV-vis and fluorescence spectroscopies. It was detected that the 3-receptor has only sensing ability for Cr2O72 - and Hg2+ ions, resulting in the association constants higher for Cr2O72 - than to the Hg2+ ions. High selectivity towards Cr2O72 - were also observed by fluorescence measurement among other ions (F-, Cl-, SCN-, Hg2+, Cd2+, Ag+) with a low limit of detection (7.36 × 10-6 mol dm-3). Proton NMR anion-binding investigations revealed a strong interaction of Cr2O72 - anion with NH and CH groups of the receptor, showing that the combination with hydrogen-bonds donor groups strengthened the anion receptor association. Furthermore, remarkable association constants for dichromate anion obtained by all techniques strongly suggest the 3-receptor as a selective Cr(VI) sensor.
A Cr(VI) selective probe based on a quinoline-amide calix[4]arene.
Ferreira, Juliane F; Bagatin, Izilda A
2018-01-15
A new quinoline-amide calix[4]arene 3-receptor for detection of hazardous anions and cations have been synthesized. The 3-receptor was examined for its sensing properties towards several different anions (Cr 2 O 7 2- , SCN - , F - , Cl - , NO 3 - ) and metal ions (Hg 2+ , Cd 2+ , Ag + ) by UV-vis and fluorescence spectroscopies. It was detected that the 3-receptor has only sensing ability for Cr 2 O 7 2- and Hg 2+ ions, resulting in the association constants higher for Cr 2 O 7 2- than to the Hg 2+ ions. High selectivity towards Cr 2 O 7 2- were also observed by fluorescence measurement among other ions (F - , Cl - , SCN - , Hg 2+ , Cd 2+ , Ag + ) with a low limit of detection (7.36×10 -6 moldm -3 ). Proton NMR anion-binding investigations revealed a strong interaction of Cr 2 O 7 2- anion with NH and CH groups of the receptor, showing that the combination with hydrogen-bonds donor groups strengthened the anion receptor association. Furthermore, remarkable association constants for dichromate anion obtained by all techniques strongly suggest the 3-receptor as a selective Cr(VI) sensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A
Solvent-extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs cesium salt and receptor concentration, indicating the formation of an ionpaired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent-extraction system, with either chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride than for themore » cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less
Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A
Solvent extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs. cesium salt and receptor concentration, indicating the formation of an ion-paired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent extraction system, either with chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride thanmore » for the cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a very polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion-pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less
Bauzá, Antonio; Quiñonero, David; Frontera, Antonio; Ballester, Pablo
2015-01-01
In this manuscript we consider from a theoretical point of view the recently reported experimental quantification of anion–π interactions (the attractive force between electron deficient aromatic rings and anions) in solution using aryl extended calix[4]pyrrole receptors as model systems. Experimentally, two series of calix[4]pyrrole receptors functionalized, respectively, with two and four aryl rings at the meso positions, were used to assess the strength of chloride–π interactions in acetonitrile solution. As a result of these studies the contribution of each individual chloride–π interaction was quantified to be very small (<1 kcal/mol). This result is in contrast with the values derived from most theoretical calculations. Herein we report a theoretical study using high-level density functional theory (DFT) calculations that provides a plausible explanation for the observed disagreement between theory and experiment. The study reveals the existence of molecular interactions between solvent molecules and the aromatic walls of the receptors that strongly modulate the chloride–π interaction. In addition, the obtained theoretical results also suggest that the chloride-calix[4]pyrrole complex used as reference to dissect experimentally the contribution of the chloride–π interactions to the total binding energy for both the two and four-wall aryl-extended calix[4]pyrrole model systems is probably not ideal. PMID:25913375
Arantes, Lucas M; Varejão, Eduardo V V; Pelizzaro-Rocha, Karin J; Cereda, Cíntia M S; de Paula, Eneida; Lourenço, Maicon P; Duarte, Hélio A; Fernandes, Sergio A
2014-05-01
The aim of this work was to study the interaction between the local anesthetic benzocaine and p-sulfonic acid calix[n]arenes using NMR and theoretical calculations and to assess the effects of complexation on cytotoxicity of benzocaine. The architectures of the complexes were proposed according to (1) H NMR data (Job plot, binding constants, and ROESY) indicating details on the insertion of benzocaine in the cavity of the calix[n]arenes. The proposed inclusion compounds were optimized using the PM3 semiempirical method, and the electronic plus nuclear repulsion energy contributions were performed at the DFT level using the PBE exchange/correlation functional and the 6-311G(d) basis set. The remarkable agreement between experimental and theoretical approaches adds support to their use in the structural characterization of the inclusion complexes. In vitro cytotoxic tests showed that complexation intensifies the intrinsic toxicity of benzocaine, possibly by increasing the water solubility of the anesthetic and favoring its partitioning inside of biomembranes. © 2013 John Wiley & Sons A/S.
Cytosine substituted calix[4]pyrroles: Neutral receptors for 5′-guanosine monophosphate
Sessler, Jonathan L.; Král, Vladimír; Shishkanova, Tatiana V.; Gale, Philip A.
2002-01-01
The synthesis and characterization of two cytosine-substituted calix[4]pyrrole conjugates, bearing the appended cytosine attached at either a β- or meso-pyrrolic position, is described. These systems were tested as nucleotide-selective carriers and as active components of nucleotide-sensing ion-selective electrodes at pH 6.6. Studies of carrier selectivity were made using a Pressman-type model membrane system consisting of an initial pH 6.0 aqueous phase, an intervening dichloromethane barrier containing the calix[4]pyrrole conjugate, and a receiving basic aqueous phase. Good selectivity for the Watson–Crick complementary nucleotide, 5′-guanosine monophosphate (5′-GMP), was seen in the case of the meso-linked conjugate with the relative rates of through-membrane transport being 7.7:4.1:1 for 5′-GMP, 5′-AMP, and 5′-CMP, respectively. By contrast, the β-substituted conjugate, while showing a selectivity for 5′-GMP that was enhanced relative to unsubstituted calix[4]pyrrole, was found to transport 5′-CMP roughly 4.5 times more quickly than 5′-GMP. Higher selectivities were also found for 5′-CMP when both the β- and meso-substituted conjugates were incorporated into polyvinyl chloride membranes and tested as ion selective electrodes at pH 6.6, whereas near-equal selectivities were observed for 5′-CMP and 5′-GMP in the case of unsubstituted calix[4]pyrroles. These seemingly disparate results are consistent with a picture wherein the meso-substituted cytosine calix[4]pyrrole conjugate, but not its β-linked congener, is capable of acting as a ditopic receptor, binding concurrently both the phosphate anion and nucleobase portions of 5′-GMP to the calixpyrrole core and cytosine “tails” of the molecule, respectively, with the effect of this binding being most apparent under the conditions of the transport experiments. PMID:11929967
NASA Astrophysics Data System (ADS)
Zhao, Liang; Kang, Le; Chen, Yan; Li, Gang; Wang, Lan; Hu, Chun; Yang, Peng
2018-03-01
A fluorescent 2,7-dimethoxy-substituted calix[4]carbazole (1) is facilely synthesized. The spectral behaviors of both the guest-induced switchable conformation of 1 and its abilities serving as the stabilizer and molecular carrier of curcumin are investigated. UV-vis, fluorescence and NMR spectral results show that upon binding to curcumin, the 1,3-alternate conformation of 1 is converted to be the cone one. The relative high association constant (6.4 × 106 M- 1) of 1 binding to curcumin enables it to stabilize the curcumin, to suppress its degradation, and to sustainably deliver it into the EYPC vesicles within 20 h. Moreover, the cytotoxicity assay shows that 1 does not interfere the antiproliferative activities of curcumin. All these properties endow 1 the potential capability of serving as the molecular drug carrier. Our current result may pave the way looking for more efficient fluorescent calixcarbazoles and thereof spectral utilities.
Vita, Francesco; Boccia, Alice; Marrani, Andrea G; Zanoni, Robertino; Rossi, Francesca; Arduini, Arturo; Secchi, Andrea
2015-10-19
A series of lipophilic gold nanoparticles (AuNPs) circa 5 nm in diameter and having a mixed organic layer consisting of 1-dodecanethiol and 1-(11-mercaptoundecyl) pyridinium bromide was synthesised by reacting tetraoctylammonium bromide stabilised AuNPs in toluene with different mixtures of the two thiolate ligands. A bidentate ω-alkylthiolate calix[4]arene derivative was instead used as a functional protecting layer on AgNPs of approximately 3 nm. The functionalised nanoparticles were characterised by transmission electron microscopy (TEM), and by UV/Vis and X-ray photoelectron spectroscopy (XPS). Recognition of the pyridinium moieties loaded on the AuNPs by the calix[4]arene units immobilised on the AgNPs was demonstrated in solution of weakly polar solvents by UV/Vis titrations and DLS measurements. The extent of Au-AgNPs aggregation, shown through the low-energy shift of their surface plasmon bands (SPB), was strongly dependent on the loading of the pyridinium moieties present in the organic layer of the AuNPs. Extensive aggregation between dodecanethiol-capped AuNPs and the Ag calix[4]arene-functionalised NPs was also promoted by the action of a simple N-octyl pyridinium difunctional supramolecular linker. This linker can interdigitate through its long fatty tail in the organic layer of the dodecanethiol-capped AuNPs, and simultaneously interact through its pyridinium moiety with the calix[4]arene units at the surface of the modified AgNPs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular recognition by gold, silver and copper nanoparticles
Tauran, Yannick; Brioude, Arnaud; Coleman, Anthony W; Rhimi, Moez; Kim, Beonjoom
2013-01-01
The intrinsic physical properties of the noble metal nanoparticles, which are highly sensitive to the nature of their local molecular environment, make such systems ideal for the detection of molecular recognition events. The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles. In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization. A brief discussion of the three common methods of functionalization: Electrostatic adsorption; Chemisorption; Affinity-based coordination is given. In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition. In the main section the various types of capping agents for molecular recognition; nucleic acid coatings, protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications. Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition. For the proteins the recognition properties of antibodies form the core of the section. With respect to the supramolecular systems the cyclodextrins, calix[n]arenes, dendrimers, crown ethers and the cucurbitales are treated in depth. Finally a short section deals with the possible toxicity of the nanoparticles, a concern in public health. PMID:23977421
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-815-816-817-818-819-820), pulled on 11/29/2015 for analysis. The samples were inspected, combined, and analyzed for composition. Chemical analysis of the composite sample MCU-15-815-816-817-818-819-820 indicated the TiDG, Isopar™L, and MaxCalix are at nominal levels. The modifier concentration is 3% below its nominal concentration. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent on November 28, 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterizationmore » and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, up to 12.5 ± 3 micrograms of mercury per gram of solvent (or 10.4 μg/mL) was detected in this sample. The solids residues found at the bottom of the p-nut vial from sample MCU-15-815 were determined to be left-over pipe residues that were flushed into the sample and they were found to have no impact on the solvent purity or on the chemical and physical properties of the solvent. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less
Pelizzaro-Rocha, Karin Juliane; de Jesus, Marcelo Bispo; Ruela-de-Sousa, Roberta Regina; Nakamura, Celso Vataru; Reis, Fabiano Souza; de Fátima, Angelo; Ferreira-Halder, Carmen Veríssima
2013-12-01
Pancreatic cancer ranks fourth among cancer-related causes of death in North America. Minimal progress has been made in the diagnosis and treatment of patients with late-stage tumors. Moreover, pancreatic cancer aggressiveness is closely related to high levels of pro-survival mediators, which can ultimately lead to rapid disease progression, resistance and metastasis. The main goal of this study was to define the mechanisms by which calix[6]arene, but not other calixarenes, efficiently decreases the aggressiveness of a drug resistant human pancreas carcinoma cell line (Panc-1). Calix[6]arene was more potent in reducing Panc-1 cell viability than gemcitabine and 5-fluorouracil. In relation to the underlying mechanisms of cytotoxic effects, it led to cell cycle arrest in the G0/G1 phase through downregulation of PIM1, CDK2, CDK4 and retinoblastoma proteins. Importantly, calix[6]arene abolished signal transduction of Mer and AXL tyrosine kinase receptors, both of which are usually overexpressed in pancreatic cancer. Accordingly, inhibition of PI3K and mTOR was also observed, and these proteins are positively modulated by Mer and AXL. Despite decreasing the phosphorylation of AKT at Thr308, calix[6]arene caused an increase in phosphorylation at Ser473. These findings in conjunction with increased BiP and IRE1-α provide a molecular basis explaining the capacity of calix[6]arene to trigger endoplasmic reticulum stress and autophagic cell death. Our findings highlight calix[6]arene as a potential candidate for overcoming pancreatic cancer aggressiveness. Importantly, we provide evidence that calix[6]arene affects a broad array of key targets that are usually dysfunctional in pancreatic cancer, a highly desirable characteristic for chemotherapeutics. © 2013.
Khan, Khalid; Badshah, Syed Lal; Ahmad, Nasir; Rashid, Haroon Ur; Mabkhot, Yahia
2017-05-11
The inclusion complexes of a new family of nonionic amphiphilic calix[4]arenes with the anti-inflammatory hydrophobic drugs naproxen (NAP) and ibuprofen (IBP) were investigated. The effects of the alkyl chain's length and the inner core of calix[4]arenes on the interaction of the two drugs with the calix[4]arenes were explored. The inclusion complexes of Amphiphiles 1a - c with NAP and IBP increased the solubility of these drugs in aqueous media. The interaction of 1a - c with the drugs in aqueous media was investigated through fluorescence, molecular modeling, and ¹H-NMR analysis. TEM studies further supported the formation of inclusion complexes. The length of lipophilic alkyl chains and the intrinsic cyclic nature of cailx[4]arene derivatives 1a - c were found to have a significant impact on the solubility of NAP and IBP in pure water.
NASA Astrophysics Data System (ADS)
Oguz, Mehmet; Bhatti, Asif Ali; Karakurt, Serdar; Aktas, Mehmet; Yilmaz, Mustafa
2017-01-01
The present study demonstrates the synthesis of water-soluble fluorescent calix[4]arenes (6 and 7) and its application in living cell imaging for Hg2 + detection at a low level. The synthesized fluorescent ligands 6 and 7 were characterized by 1H NMR technique. The fluorescent study showed both water soluble ligands were Hg2 + selective and follow photo-induced electron transfer (PET) process. From the fluorimeter titration experiment detection limit was calculated as 1.14 × 10- 5 and 3.42 × 10- 5 for ligand 6 and 7, respectively. From the Benesi-Hildebrand plot binding constant values were evaluated as 666.7 and 733.3 M- 1 for 6 and 7, respectively. The interactions between ligands 6 and 7 and Hg2 + were also demonstrated in living cells, SW-620, using Fluorescent Cell Imager. While ligands 6 and 7 alone show fluorescent properties, they loss their action with the presence of Hg2 + in SW-620 cells.
Encapsulation and solid state sequestration of gases by calix[6]arene-based molecular containers.
Lavendomme, Roy; Ajami, Daniela; Moerkerke, Steven; Wouters, Johan; Rissanen, Kari; Luhmer, Michel; Jabin, Ivan
2017-06-13
Two calix[6]arene-based molecular containers were synthesized in high yields. These containers can encapsulate small guests through a unique "rotating door" complexation process. The sequestration of greenhouse gases is clearly demonstrated. They can be stored in the solid state for long periods and released via dissolution of the inclusion complex.
Zheng, Shuang; Chang, Ming-Liang; Zhou, Jing; Fu, Jing-Wei; Zhang, Qing-Wei; Li, Shao-Yong; Qiao, Wei; Liu, Jun-Min
2014-06-03
For all microhelices on aromatic rings of inherently chiral calix[4]arene, an expression was derived from one approximation and one hypothesis on the basis of the electron-on-a-helix model of Tinoco and Woody as follows: 1/E = μ(H - KΔα2), where μ = 1 for the right-handed microhelix and μ = -1 for the left-handed microhelix; and H and K are constant and greater than zero. The expression correlates microhelical electronic energy (E) with the atom polarizability difference (Δα) on both microhelix ends, which intuitively and clearly shows the impact of helical substituent polarizability on helical electronic energy. The case analysis almost entirely proves that the qualitative analysis of the helical electronic energy of inherently chiral calix[4]arenes with the expression is scientific and can be used to effectively assign their absolute configuration.
Bistri, Olivia; Reinaud, Olivia
2015-03-14
Supramolecular chemistry in water is a very challenging research area. In biology, water is the universal solvent where transition metal ions play major roles in molecular recognition and catalysis. In enzymes, it participates in substrate binding and/or activation in the heart of a pocket defined by the folded protein. The association of a hydrophobic cavity with a transition metal ion is thus a very appealing strategy for controlling the metal ion properties in the very competitive water solvent. Various systems based on intrinsically water-soluble macrocyclic structures such as cyclodextrins, cucurbituryls, and metallo-cages have been reported. Others use calixarenes and resorcinarenes functionalized with hydrophilic substituents. One approach for connecting a metal complex to these cavities is to graft a ligand for metal ion binding at their edge. Early work with cyclodextrins has shown Michaelis-Menten like catalysis displaying enhanced kinetics and substrate-selectivity. Remarkable examples of regio- and stereo-selective transformation of substrates have been reported as well. Dynamic two-phase systems for transition metal catalysis have also been developed. They rely on either water-transfer of the metal complex through ligand embedment or synergistic coordination of a metal ion and substrate hosting. Another strategy consists in using metallo-cages, which provide a well-defined hydrophobic space, to stabilize metal complexes in water. When the cages can host simultaneously a substrate and a reactive metal complex, size- and regio-selective catalysis was obtained. Finally, construction of a polydentate coordination site closely interlocked with a calixarene or resorcinarene macrocycle has been shown to be a very fruitful strategy for obtaining metal complexes with remarkable hosting properties. For each of these systems, the synergism resulting from the biomimetic association of a hydrophobic cavity and a metal ion is discussed within the objective of developing new tools for either selective molecular recognition (with analytical perspectives) or performant catalysis, in water.
Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis
2007-03-27
The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix.
Taner, Bilge; Kursunlu, Ahmed Nuri; Güler, Ersin
2014-01-24
A novel chemosensor based on calix[4]pyrrole derivative modified by Bodipy unit has been synthesized, and its complexes with various anions were investigated. The results show that the receptors can selectively recognize biologically important fluoride ions. The binding affinity for fluoride ions was investigated by naked-eye color change, absorption, emission, proton nuclear magnetic resonance spectroscopy. The addition of fluoride ions to an acetonitrile solution of chemosensor can result in an obvious color change (brownish yellow color to straw yellow). The stoichiometries between the receptor and fluoride were determined from the molar ratio plots using the UV-visible spectra, which showed evident 1:1. The proton nuclear magnetic resonance spectral data supported the fluoride anion recognition with the disappearance of the amino proton peaks. Published by Elsevier B.V.
McMahon, Gillian; Wall, Rachel; Nolan, Kieran; Diamond, Dermot
2002-07-19
A series of derivatisation reactions between p-t-butyl calix[4]arene and ethyl bromoacetate were carried out in order to prepare 1,3 diester substituted calix[4]arene. Mass spectral data, obtained from direct injection of samples, indicated that the reactions were rich in the desired product. Since the ultra violet (UV) spectra of the desired product and possible impurities are very similar, liquid chromatography (LC) chromatographic data seemed to corroborate these results. However, when on-line LC-UV-MS was carried out and each LC peak subjected to MS analysis as it eluted, a very different picture emerged. It was found that many of these reactions actually contained high levels of the monoester product which, having less affinity for sodium in the MS, is therefore seriously underestimated in any direct injection assay. LC-diode array detection (DAD) methods were also used to help successfully identify and characterise the compounds being formed in these complex reactions. The overall results obtained in this paper allowed the optimal reaction conditions to be determined for this reaction. LC-MS analysis of the chromatographic peaks also identified the presence of two isomers of the diester substituted calix[4]arene (1,3 and 1,2 diesters). The combination of LC and UV/MS detection is required for accurate analysis of the products of such reactions.
Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity.
Veesar, Irshad Ali; Solangi, Imam Bakhsh; Memon, Shahabuddin
2015-06-01
In order to enhance the cost-effectiveness practicability of enzymes in many industries such as pharmaceutical, food, medical and some other technological processes, there is great need to immobilize them onto a solid supports. In this study, a new and efficient immobilization of α-amylase from Saccharomyces cerevisiae has been developed by using the surface functionalization of calix[4]arene as support. A glutaraldehyde-containing amino group functionalized calix[4]arene was used to immobilize α-amylase covalently. In this procedure, imide bonds are formed between amino groups on the protein and aldehyde groups on the calix[4]arene surface. The surface modified support was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of various preparation conditions on the immobilized α-amylase process such as immobilization time, enzyme concentration, temperature and pH were investigated. The influence of pH and temperature on the activity of free and immobilized α-amylase was also studied using starch as substrate. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized α-amylase were 25°C and 7, respectively. Compared to the free enzyme, the immobilized α-amylase retained 85% of its original activity and exhibited significant thermal stability than the free one and excellent durability. Copyright © 2015 Elsevier Inc. All rights reserved.
Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding.
Duedal, Troels; Nielsen, Kent A; Olsen, Gunnar; Rasmussen, Charlotte B G; Kongsted, Jacob; Levillain, Eric; Breton, Tony; Miyazaki, Eigo; Takimiya, Kazuo; Bähring, Steffen; Jeppesen, Jan O
2017-02-17
The dual-analyte responsive behavior of tetraTTF-calix[4]pyrrole receptor 1 has been shown to complex electron-deficient planar guests in a 2:1 fashion by adopting a so-called 1,3-alternate conformation. However, stronger 1:1 complexes have been demonstrated with tetraalkylammonium halide salts that defer receptor 1 to its cone conformation. Herein, we report the complexation of an electron-deficient planar guest, 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA, 2) that champions the complexation with 1, resulting in a high association constant K a = 3 × 10 10 M -2 . The tetrathiafulvalene (TTF) subunits in the tetraTTF-calix[4]pyrrole receptor 1 present a near perfect shape and electronic complementarity to the NTCDA guest, which was confirmed by X-ray crystal structure analysis, DFT calculations, and electron density surface mapping. Moreover, the complexation of these species results in the formation of a charge transfer complex (2 2 ⊂1) as visualized by a readily apparent color change from yellow to brown.
USDA-ARS?s Scientific Manuscript database
The Caliciviridae is a family of small, nonenveloped viruses containing a single-stranded, plus-sense genomic ribonucleic acid (RNA) that is polyadenylated at its 3’-end. Most, but not all, caliciviruses have distinctive cup-shaped depressions (L. calix, cup) on their surface, giving them their char...
Zn2+ -Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles.
Ullmann, Steve; Schnorr, René; Handke, Marcel; Laube, Christian; Abel, Bernd; Matysik, Jörg; Findeisen, Matthias; Rüger, Robert; Heine, Thomas; Kersting, Berthold
2017-03-17
A macrocyclic ligand (H 2 L) containing two o,o'-bis(iminomethyl)phenol and two calix[4]arene head units has been synthesized and its coordination chemistry towards divalent Ni and Zn investigated. The new macrocycle forms complexes of composition [ML] (M=Zn, M=Ni) and [ZnL(py) 2 ], which were characterized by elemental analysis; IR, UV/Vis, and NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and X-ray crystallography (for [ZnL(py) 2 ] and [NiL]). H 2 L allows the sensitive optical detection of Zn 2+ among a series of biologically relevant metal ions by a dual fluorescence enhancement/quenching effect in solution. The fluorescence intensity of the macrocycle increases by a factor of ten in the presence of Zn 2+ with a detection limit in the lower nanomolar region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polar self-assembled thin films for non-linear optical materials
Yang, XiaoGuang; Swanson, Basil I.; Li, DeQuan
2000-01-01
The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.
Sutariya, Pinkesh G; Pandya, Alok; Lodha, Anand; Menon, Shobhana K
2016-01-15
A new, simple, ultra-sensitive and selective approach has been reported for the "on spot" colorimetric detection of creatinine based on calix[4]arene functionalized gold nanoparticles (AuNPs) with excellent discrimination in the presence of other biomolecules. The lower detection limit of the method is 2.16nM. The gold nanoparticles and p-tert-butylcalix[4]arene were synthesized by microwave assisted method. Specifically, in our study, we used dynamic light scattering (DLS) which is a powerful method for the determination of small changes in particle size, improved selectivity and sensitivity of the creatinine detection system over colorimetric method. The nanoassembly is characterized by Transmission electron microscopy (TEM), DLS, UV-vis and ESI-MS spectroscopy, which demonstrates the binding affinity due its ability of hydrogen bonding and electrostatic interaction between -NH group of creatinine and pSDSC4. It exhibits fast response time (<60s) to creatinine and has long shelf-life (>5 weeks). The developed pSDSC4-AuNPs based creatinine biosensor will be established as simple, reliable and accurate tool for the determination of creatinine in human urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makrlik, Emanuel; Selucky, P.; Vanura, Petr
2013-01-01
From extraction experiments and c-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + NaL+ (nb) , ML+ (nb) + Na+ (aq) taking place in the two-phase water nitrobenzene system (M+ = Li+, H3O+, NH+4; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: zH3O+ < Li+ < NH+4.
Baghdadi, S; Bouvier-Capely, C; Ritt, A; Peroux, A; Fevrier, L; Rebiere, F; Agarande, M; Cote, G
2015-11-01
Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to simulate satisfactorily the experimental uranium extraction data and to support the preliminary conclusions about the role of the phosphates present in mineralised urines. These calculations also showed that the phosphate/calcium ratio is a key parameter as far as the efficiency of the uranium (VI) extraction by the calix[6]arene columns is concerned. It predicted that the addition of CaCl2 in mineralised urines would release uranium (VI) from phosphates by forming calcium (II)-phosphate complexes and thus facilitate the uranium (VI) extraction on calix[6]arene columns. These predictions were confirmed experimentally as the addition of 0.1 mol L(-1) CaCl2 to a mineralised urine containing naturally a high concentration of phosphate (typically 0.04 mol L(-1)) significantly increased the percentage of uranium (VI) extraction on the calix[6]arene columns. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elçin, Serkan; Çılgı, Gülbanu Koyundereli; Bayrakdar, Alpaslan; Deligöz, Hasalettin
2015-05-01
In the present study, azocalix[4]arenes were prepared by linking 4-methoxy, 4-methyl, 4-ethyl, 4-chloro, 4-bromo and 4-nitroaniline to calix[4]arene through a diazo-coupling reaction. A new family of azocalix[4]arene tetraester derivatives, (4a-f), have been prepared with the incorporation of ethyl ester units to azocalix[4]arene. Characterization of the synthesized azocalix[4]arenes was carried using elemental analyses, UV-vis, FT-IR and 1H NMR spectroscopic techniques. The effect of varying pH levels and solvent types on the absorption ability of azocalix[n]arenes substituted with electron-donating and electron-withdrawing groups was examined. Thermal decomposition of azocalix[4]arene derivatives (4a-f) was investigated by means of thermogravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA) analyses. In conclusion of the examination of the extraction we found a selectivity characteristic of these compounds toward Ag+, Hg+ and Hg2+ cations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Custelcean, Radu; Bartsch, Richard A.
Two series of novel mono-ionizable calix[4]arene-benzocrown-6 ligands in 1,3-alternate conformations are synthesized. In one series, the proton-ionizable group (PIG) is attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether ring cavity. In the other series, the PIG is a substituent on the benzo group in the polyether ring. This orients the PIG away from the crown ether cavity. In addition to carboxylic acid functions, the PIGs include N-(X)sulfonyl carboxamide groups. With X group variation from methyl to phenyl to 4-nitrophenyl to trifluoromethyl, the acidity of the PIG is 'tuned'. Solventmore » extraction of Ag{sup +} from aqueous solutions into chloroform is used to probe the influence of structural variation within the mono-ionizable calixcrown ligand on metal ion extraction efficiency, including the identity and acidity of the PIG and its orientation with respect to the polyether ring.« less
PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M.
2010-09-28
A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix,more » or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Experimental testing with the improved solvent is required to determine the impact of any changes in the entrained solvent on DWPF processing.« less
Zawierucha, Iwona; Kozlowski, Cezary; Malina, Grzegorz
2013-10-01
In this study, performance of a lab-scale two-step treatment system was evaluated for removal of toxic metal ions from landfill leachate. The technology of polymer inclusion membranes (PIMs) was the first step, while the second step of the treatment system was based on sorption on impregnated resin. The PIMs were synthesized from cellulose triacetate as a support, macrocyclic compound i.e. alkyl derivative of resorcinarene as a ionic carrier and o-nitrophenyl pentyl ether as a plasticizer. The transport experiments through PIM were carried out in a permeation cell, in which the membrane film was tightly clamped between two cell compartments. The sorption tests were carried out using a column filled with a resin impregnated with resorcinarene derivative. The obtained results show the good performance with respect to the removal of heavy metals from landfill leachate with the overall removal efficiency of 99%, 88% and 55% for Pb(II), Cd(II) and Zn(II) ions, respectively. Moreover the contents of metal ions in the leachate sample after treatment system were below permissible limit for wastewater according to the Polish Standards. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hexaacetato calix(6)arene as the novel extractant for palladium.
Mathew, V J; Khopkar, S M
1997-10-01
A novel method is proposed for the solvent extraction of palladium. A superamolecular compound, hexaacetato calix(6)arene in low concentration in toluene quantitatively extracts microgram concentration of palladium at pH 7.5. It can be stripped from the organic phase with 2 M nitric acid and determined spectrophotometrically as its stannous chloride complex at 635 nm. The probable composition of the extracted species is Pd(HR)(2)Cl. As low as 1x10(-3) M of extractant is adequate for quantitative extraction. Toluene was the best diluent. With nitric and perchloric acid (1.5-3 M) the stripping was complete. Palladium was separated in large ratios from alkali and alkaline earths (1:50). The main group elements were tolerated in higher ratios (1:25), but ions like zinc, cadmium, iron, nickel, platinium, thorium, vanadium and molydenum were tolerated at low concentrations (1:1). The ions showing strong interference were copper, chromium. The relative standard deviation is +/-1.1%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Taylor-Pashow, K.
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-556, MCU-15-557, and MCU-15-558), pulled on 03/16/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-556-557-558 indicated a low concentration (~ 78 % of nominal) of the suppressor (TiDG) and concentrations of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent that were slightly lower than nominal. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier aremore » sufficient for continuing operation without adding a trim at this time. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). However, the p-nut vials that delivered the samples contained small (1 mm) droplets of oxidized modifier and amides (as detected by the FTIR analysis). In addition, up to 21 microgram of mercury per gram of solvent (or 17.4 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less
Calix[3]carbazole: A C3-symmetrical receptor for barium ion
NASA Astrophysics Data System (ADS)
Yang, Zhaozheng; Tian, Zhangmin; Yang, Peng; Deng, Tuo; Li, Gang; Zhou, Xue; Chen, Yan; Zhao, Liang; Shen, Hongyan
2017-03-01
The binding ability of calix[3]carbazole (1) to metal ions has been investigated. It is found that 1 could serve as a non crown ether based, C3-symmetrical receptor for Ba2 + via the marriage of cation-π and cation-dipole interactions. FID assay further illustrates that 1 could selectively interact with Ba2 + over Pd2 +. A possible binding mechanism for [1-Ba2 +] complex is proposed.
Felix, Vitor; Drew, Michael G B; Webber, Philip R A; Beer, Paul D
2006-01-28
Molecular modelling studies have been carried out on two bis(calix[4]diquinone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH(2))(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na(+), K(+), Rb(+), and Cs(+) in dmso solution. Conformational analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb(+) approximately K(+) > Cs(+) > Na(+), which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs(+) and K(+) complexes is only 0.60, showing that has only a slight preference for K(+). For the larger receptor , which is better suited to metal complexation, the binding affinity follows the pattern Cs(+) > Rb(+) > K(+) > Na(+), with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.
NASA Astrophysics Data System (ADS)
Jin, Tianqi; Zhou, Junqiang; Pan, Yangyang; Huang, Yu; Jin, Chuanming
2018-05-01
Three novel supramolecular complexes, [Ag4(2-mBIM)4](ClO4)4(H2O) (1), [Ag2(2-mBIM)2](PF6)2 (2) and [Ag2(PA-BIM)2](ClO4)2(CH2Cl2) (3) (2-mBIM = bis(2-methyl- imidazol-1-yl)methane; PA-BIM = 1,1-bis[(2-phenylazo)imidazol-1-yl]methane), have been prepared and structurally characterized. The reported complexes bear [4+4]metallomacrocyclic motifs comprising four silver atoms and four ditopic bis(imidazolyl)methane ligands. Complex 1 exhibits a rare 1D infinite inorganic [2]catenane structure, which was self-assembled by the interlocking action of [4+4]metallomacrocyclic units. Complex 2 is a 2D layered supramolecular motif containing [4+4]macrometallacycle units with π-π interaction between imidazole rings. Complex 3 has a 2D sheet supramolecular framework through Ag-Ag interactions in [4+4]macrometallacyclic calix [8]phenylazoimidazole with a nanocavity. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures. The thermal stability and photoluminescence spectra of the synthesized complexes have also been discussed.
Hromadka, Jiri; Korposh, Sergiy; Partridge, Matthew; James, Stephen W.; Davis, Frank; Crump, Derrick; Tatam, Ralph P.
2017-01-01
A long period grating (LPG) modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs) and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs), along with an organic moiety of poly(allylamine hydrochloride) polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4]) or p-sulphanato calix[8]arene (CA[8]). The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI) change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH) and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006) was used to test the LPG sensor performance. PMID:28208691
NASA Astrophysics Data System (ADS)
Miskolczy, Zsombor; Biczók, László
2009-07-01
A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.
Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.
2000-01-01
The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.
Novel calix[4]pyrrole assembly: Punctilious recognition of F- and Cu+2 ions
NASA Astrophysics Data System (ADS)
Bhatt, Keyur D.; Shah, Hemangini; Modi, Krunal M.; Kongor, Anita; Panchal, Manthan; Jain, Vinod K.
2017-12-01
A new tetra hydroxyl methoxy substituted calix[4]pyrrole (HMCP) has been synthesized and found to form stable complex with F- ions and Cu+2 ions. The red-shift in absorption band of HMCP was observed due to the presence of both cation (Cu+2) and anion (F-). These results displayed that formation of the complex is mainly attributed to the charge-transfer interactions between HMCP with electron deficient pyrrole rings and the electron-rich guest ions. Molecular dynamics simulation predicts intermolecular H-bonds and van der Waals types of interaction for the complex formation of HMCP-Cu+2 and HMCP-F-.
Solvent Hold Tank Sample Results for MCU-16-1247-1248-1249: August 2016 Monthly Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-1247-1248-1249), pulled on 08/22/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1247-1248-1249 indicated the Isopar™L concentration is above its nominal level (101%). The extractant (MaxCalix) and the modifier (CS-7SB) are 7% and 9 % below their nominal concentrations. The suppressor (TiDG) is 63% below its nominal concentration. This analysis confirms the solvent may require the addition of TiDG, and possibly of modifier and MaxCalix to restore then to nominal levels. Based on the current monthly sample, the levelsmore » of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. At the time of writing this report, A solvent trim batch containing TiDG, modifier and MaxCalix, was added to the SHT (October 2016) and expect the concentration of these components to be at their nominal values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abosadiya, Hamza M.; Hasbullah, Siti Aishah; Yamin, Bohari M.
2015-09-25
C-4-acetamidophenylcalix[4]pyrogallolarene was synthesized by an acid catalyzed condensation reaction of pyrogallol with 4-acetamidobenzaldehyde. The compound was characterized by IR, {sup 1}H and {sup 13}C NMR spectroscopy. Single crystal X-ray analysis revealed that the molecule crystallized in a triclinic system with space group Pī and the unit cell dimensions a= 12.2948(16) Å, b= 13.4423(17) Å, c= 13.5906(18) Å, α =107.549(4)°, β =102.034(4)°, γ =90.535(4)°, Z= 1 and V= 2088.2(5) Å{sup 3}. The macrocyclic calix adopts a chair (C{sub 2h}) conformation and the molecule is associated with eight DMSO molecules of crystallization. Antioxidant test by DPPH method showed that the compound exhibitsmore » good antioxidant activity of about 72%.« less
Ohira, Shin-Ichi; Wanigasekara, Eranda; Rudkevich, Dmitry M; Dasgupta, Purnendu K
2009-03-15
Calixarenes are interesting building blocks in supramolecular receptor design. They can be easily functionalized to give the desired guest binding and sequestration properties. We demonstrate here the use of simple alkylated calixarenes as novel NO(2) sensors. Upon reacting with gaseous NO(2), alkylated calixarenes form stable calixarene-NO(+) (nitrosonium) complexes that have a deep purple color. This specific and selective formation of the colored complex was used to develop a fiber optic based colorimetric NO(2) sensor. Several alkylated calixarenes are used and tested as sensing materials. The calixarene compound was immobilized on a fine mesh silica-gel coated thin layer chromatography plate. The sensing plate was coupled with a fiber optic based photodetector. Gas samples were sampled in a manner where they impinged on the surface of sensing plate. The light transmission through the plate was continuously monitored. For a 5 min sample, the limit of detection was 0.54 ppmv with 1,3-alternate O-hexyl calix[4]arene (1a). There were no significant response differences between different conformations of calixarenes such as 1,3-alternate or cone. This chemistry can form the basis of a colorimetric sensor that relies on extant filter tape technology. With calixarenes however, such a reaction is potentially reversible - color formed upon reaction with NO(2) can be reversed by flushing the sensing plate by purified air. While we found that the removal of the developed color can be accelerated by simultaneous heating and suction, permitting the reuse of the same sensing area multiple times, we also observed that the sensitivity gradually decreased. The nitrosonium calixarene derivative tends to transform to the nitrated form; this process is catalyzed by light. Several methylated calixarenes were synthesized and tested but a fully satisfactory solution has proven elusive.
He, Qing; Williams, Neil J.; Oh, Ju; ...
2018-05-25
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing; Williams, Neil J.; Oh, Ju
LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (i.e., used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Here in this paper, we describe two ditopic calix[4]pyrrole-based ion pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl-KCl salt mixture containing as little as 1% LiCl with ~100% selectivity, while receptor 3 achieved similar separations when the LiCl levelmore » was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl > NaCl > LiCl. Lastly, in contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.« less
Kim, Sung Kuk; Sessler, Jonathan L; Gross, Dustin E; Lee, Chang-Hee; Kim, Jong Seung; Lynch, Vincent M; Delmau, Laetitia H; Hay, Benjamin P
2010-04-28
An ion-pair receptor, the calix[4]pyrrole-calix[4]arene pseudodimer 2, bearing a strong anion-recognition site but not a weak cation-recognition site, has been synthesized and characterized by standard spectroscopic means and via single-crystal X-ray diffraction analysis. In 10% CD(3)OD in CDCl(3) (v/v), this new receptor binds neither the Cs(+) cation nor the F(-) anion when exposed to these species in the presence of other counterions; however, it forms a stable 1:1 solvent-separated CsF complex when exposed to these two ions in concert with one another in this same solvent mixture. In contrast to what is seen in the case of a previously reported crown ether "strapped" calixarene-calixpyrrole ion-pair receptor 1 (J. Am. Chem. Soc. 2008, 130, 13162-13166), where Cs(+) cation recognition takes place within the crown, in 2.CsF cation recognition takes place within the receptor cavity itself, as inferred from both single-crystal X-ray diffraction analyses and (1)H NMR spectroscopic studies. This binding mode is supported by calculations carried out using the MMFF94 force field model. In 10% CD(3)OD in CDCl(3) (v/v), receptor 2 shows selectivity for CsF over the Cs(+) salts of Cl(-), Br(-), and NO(3)(-) but will bind these other cesium salts in the absence of fluoride, both in solution and in the solid state. In the case of CsCl, an unprecedented 2:2 complex is observed in the solid state that is characterized by two different ion-pair binding modes. One of these consists of a contact ion pair with the cesium cation and chloride anion both being bound within the central binding pocket and in direct contact with one another. The other mode involves a chloride anion bound to the pyrrole NH protons of a calixpyrrole subunit and a cesium cation sandwiched between two cone shaped calix[4]pyrroles originating from separate receptor units. In contrast to what is seen for CsF and CsCl, single-crystal X-ray structural analyses and (1)H NMR spectroscopic studies reveal that receptor 2 forms a 1:1 complex with CsNO(3), with the ions bound in the form of a contact ion pair. Thus, depending on the counteranion, receptor 2 is able to stabilize three different ion-pair binding modes with Cs(+), namely solvent-bridged, contact, and host-separated.
Solvent hold tank sample results for MCU-15-914-915-916. December 2015 Monthly sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
2016-03-01
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-914-915-916), pulled on 12/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-914-915-916 indicated the TiDG, Isopar™L, and MaxCalix are at nominal levels. The modifier concentration is 3% below its nominal concentration. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in November 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additionsmore » to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, the Fourier transform infra-red spectroscopy (FTIR) method detected trace levels (a few ppm) of amides (more indicative of bacteria than a possible degradation product of TiDG). In addition, up to 18 ± 4 micrograms of mercury per gram of solvent (or 14.8 μg/mL) was detected in this sample. The current gamma concentration level (8.48E4 dpm/mL) confirmed that the gamma concentration has returned to the previous level where the process operated normally as expected. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less
Solvent hold tank sample results for MCU-16-53-55. January 2016 Monthly sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-53-54-55), pulled on 01/25/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-53-54-55 indicated the Isopar™L, and MaxCalix are at nominal levels. The modifier and TiDG concentrations are 3% and 23 % below their nominal concentrations. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent on November 28, 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time.more » Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, the Fourier transform infra-red spectroscopy (FTIR) method detected trace levels (a few ppm) of amides (a possible degradation product of TiDG). In addition, up to 21 ± 4 micrograms of mercury per gram of solvent (or 17.5 μg/mL) was detected in this sample. There appears to be a possible correlation between the mercury level and the TiDG concentration in the solvent. The current gamma level (9.16 E4 dpm/mL) confirmed that the gamma concentration has returned to previous level where the process operated normally and as expected. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less
A new ion selective electrode for cesium (I) based on calix[4]arene-crown-6 compounds.
Ramanjaneyulu, P S; Kumar, Abha Naveen; Sayi, Y S; Ramakumar, K L; Nayak, S K; Chattopadhyay, S
2012-02-29
A polyvinylchloride (PVC) based liquid membrane ion selective electrode (ISE) for cesium has been developed. 25,27-Dihydroxycalix[4]arene-crown-6 (L1), 5,11,17,23-tetra-tert-butyl-25,27-dimethoxycalix[4]arene-crown-6 (L2) and 25,27-bis(1-octyloxy)calix[4]arene-crown-6 (L3) were investigated for their use as ionophores. The cation exchange resin DOWEX-50W was used to maintain low activity Cs+ in inner filling solution to improve the performance. The best response for cesium was observed with L3 along with optimized membrane constituents and composition. Excellent Nernstian response (56.6 mV/decade of Cs(I)) over the concentration range 10(-7) to 10(-2)M of Cs(I) was obtained with a fast response time of less than 10s. Detection limit for Cs(I) using the present ISE is 8.48×10(-8) M Cs(I). Separate solution method (SSM) was applied to ascertain the selectivity for Cs(I) over alkali, alkaline earth and transition metal ions. The response of ISE for Cs(I) was fairly constant over the pH range of 4-11. The lifetime of the electrode is 10 months which is the highest life for any membrane based Cs-ISE so far developed. The concentration of cesium ion in two simulated high level active waste streams was determined and results agreed well with those obtained independently employing AAS. Copyright © 2011 Elsevier B.V. All rights reserved.
Calixarenes in analytical and separation chemistry.
Ludwig, R
2000-05-01
Discovered in the 1940's, [1n]metacyclophanes with the common name calix[n]arenes which is derived from for the molecule's shape enjoyed a remarkable interest in almost all fields of chemistry since the 1980's, which is highlighted by several books [1-8]. Over 50 reviews concerning their synthesis, properties and applicabilities were published, many of those with emphasis on organic synthesis and structural properties are cited in [P. 5-6 in 2]. Of interest for analytical chemists are reviews on calixarenes and the structurally related resorcin[n]arenes (or calix[n]resorcarenes) and calixpyrroles concerning potentiometric sensors [9-12], chromo- and fluorophores [13, 14], molecular switches [15], metal ion binding in solution [16-19], redox properties [20] and anion binding [21-24]. Other recent reviews deal with thermodynamic aspects [25], organometallic compounds [26], P-containing calixarenes [27-29], as well as molecular dynamics modeling [30-33]. It is a vital field with over 200 publications per year. Therefore, this article presents only selected results on complexation, solvent extraction and membrane transport with the emphasis on ion and molecular recognition which can be used for analytical purposes, without attempting to cover all available references.
Neutral glycoconjugated amide-based calix[4]arenes: complexation of alkali metal cations in water.
Cindro, Nikola; Požar, Josip; Barišić, Dajana; Bregović, Nikola; Pičuljan, Katarina; Tomaš, Renato; Frkanec, Leo; Tomišić, Vladislav
2018-02-07
Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.
Xu, Chao; Yuan, Liyong; Shen, Xinghai; Zhai, Maolin
2010-04-28
The removal of radioactive (137)Cs from nuclear waste is of great importance for both the environment and energy saving. Herein, we report a study on the removal of Cs(+) using a calix crown ether bis(2-propyloxy)calix[4]crown-6 (BPC6) in ionic liquids [C(n)mim][NTf(2)], where [C(n)mim](+) is 1-alkyl-3-methylimidazolium and [NTf(2)](-) is bis(trifluoromethylsulfonyl)imide. The BPC6/[C(n)mim][NTf(2)] system is highly efficient in removing Cs(+) from aqueous solution, even at a low concentration of BPC6. HNO(3) and metal ions such as Na(+), Al(3+) in the aqueous phase interfered with the extraction of Cs(+) by competitive interaction with BPC6 and/or salting-out effect. UV analysis confirmed that the extraction of Cs(+) by the BPC6/[C(n)mim][NTf(2)] system involves a dual extraction mechanism, i.e., via exchange of BPC6.Cs(+) complex or Cs(+) by [C(n)mim](+). Irradiation of [C(4)mim][NTf(2)] dramatically decreases Cs(+) partitioning in the ionic liquid phase by the competitive interaction of radiation-generated H(+) with BPC6, while irradiation of BPC6/[C(4)mim][NTf(2)] decreases Cs(+) partitioning more markedly due to the radiolysis of BPC6.
Tanwar, Shivani; Ho, Ja-an Annie; Magi, Emanuele
2013-12-15
Synthesis, characterization and application of Au-PANI-Calix and Au-PANI-Nap nanocomposites, is reported herein. An easy template free green synthesis is proposed and discussed for easy expediency. A variety of analytical techniques were used to characterize the nanocomposites: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Dynamic light scattering (DLS), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanocomposites. Surface morphology was studied by transmission electron microscopy (TEM). The nanocomposites were immobilized on screen-printed electrode and showed electroactivity in neutral pH, making them promising candidates for various analytical applications. A sensitive and selective detection of Cu(2+) was perceived on the Au-PANI-Calix modified electrode with no interference from ions K(+), Ni(2+), Co(2+), Pb(2+), Cr(3+) with a detection limit of 10nM. The copper detection is facilitated for accessible ligation with 4-sulfocalix[4]arene, so as the Cu(II)-Calix complex formed. The electrode modified with Au-PANI-Nap showed sensing application towards H2O2 with a detection limit of 1 μM. The modified electrodes were reproducible and stable for 2 months. © 2013 Elsevier B.V. All rights reserved.
Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.
2001-01-01
A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.
Van Tan, Le; Quang Hieu, Tran; Van Cuong, Nguyen
2015-01-01
New complexes of 5,11,17,23-tetra[(2-ethyl acetoethoxyphenyl)(azo)phenyl]calix[4]arene (TEAC) with Pb(II) and Cr(III) were prepared in basic solution with a mixture of MeOH and H2O as solvent. The ratio of TEAC and metal ion in complexes was found to be 1 : 1 under investigated condition. The complex formation constants (based on Benesi-Hildebrand method) for TEAC-Pb(II) and TEAC-Cr(III) were 4.03 × 104 and 1.2 × 104, respectively. Additionally, the molar extinction coefficients were 5 × 104 and 1.42 × 104 for TEAC-Pb(II) and TEAC-Cr(III), respectively. The H-Point Standard Addition Method (HPSAM) has been applied for simultaneous determination of complexes formation of Cr(III)/Pb(II) and TEAC with concentration from 2 : 1 to 1 : 20 (w/w). The proposed method was successfully utilized to invest lead and chromium contents in plating wastewater samples. The results for several analyzed samples were found to be in satisfied agreement with those acquired by using the inductively coupled plasma mass spectrometry (ICP-MS) technique. PMID:25984379
Conformational changes of a calix[8]arene derivative at the air-water interface.
de Miguel, Gustavo; Pedrosa, José M; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis
2005-03-10
The particular behavior of a p-tert-butyl calix[8]arene derivative (C8A) has been studied at the air-water interface using surface pressure-area isotherms, surface potential-area isotherms, film relaxation measurements, Brewster angle microscopy (BAM), and infrared spectroscopy for Langmuir-Blodgett films. Thus, it is observed that the properties of the film, for example, isotherms, domain formation, and FTIR spectra, recorded during the first compression cycle differ appreciably from those during the second compression and following cycles. The results obtained are interpreted on the basis of the conformational changes of the C8A molecules by surface pressure, allowing us to inquire into the inter- and intramolecular interactions (hydrogen bonds) of those molecules. Thus, the compression induces changes in the kind of hydrogen bonds from intra- and intermolecular with other C8A molecules to hydrogen bonds with water molecules.
Ayhan, Mehmet Menaf; Casano, Gilles; Karoui, Hakim; Rockenbauer, Antal; Monnier, Valérie; Hardy, Micaël; Tordo, Paul; Bardelang, David; Ouari, Olivier
2015-11-09
Nitroxide free radicals have been used to study the inner space of one of Rebek's water-soluble capsules. EPR and (1) H NMR spectroscopy, ESI-MS, and DFT calculations showed a preference for the formation of 1:2 complexes. EPR titrations allowed us to determine binding constants (Ka ) in the order of 10(7) M(-2) . EPR spectral-shape analysis provided information on the guest rotational dynamics within the capsule. The interplay between optimum hydrogen bonding upon capsule formation and steric strain for guest accommodation highlights some degree of flexibility for guest inclusion, particularly at the center of the capsule where the hydrogen bond seam can be barely distorted or slightly disturbed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multipoint molecular recognition within a calix[6]arene funnel complex
Coquière, David; de la Lande, Aurélien; Martí, Sergio; Parisel, Olivier; Prangé, Thierry; Reinaud, Olivia
2009-01-01
A multipoint recognition system based on a calix[6]arene is described. The calixarene core is decorated on alternating aromatic subunits by 3 imidazole arms at the small rim and 3 aniline groups at the large rim. This substitution pattern projects the aniline nitrogens toward each other when Zn(II) binds at the Tris-imidazole site or when a proton binds at an aniline. The XRD structure of the monoprotonated complex having an acetonitrile molecule bound to Zn(II) in the cavity revealed a constrained geometry at the metal center reminiscent of an entatic state. Computer modeling suggests that the aniline groups behave as a tritopic monobasic site in which only 1 aniline unit is protonated and interacts with the other 2 through strong hydrogen bonding. The metal complex selectively binds a monoprotonated diamine vs. a monoamine through multipoint recognition: coordination to the metal ion at the small rim, hydrogen bonding to the calix-oxygen core, CH/π interaction within the cavity's aromatic walls, and H-bonding to the anilines at the large rim. PMID:19237564
NASA Astrophysics Data System (ADS)
Zhou, Yunyou; Xu, Hongwei; Wu, Lian; Liu, Chun; Lu, Qin; Wang, Lun
2008-11-01
The characteristics of host-guest complexation between p-( p-sulfonated benzeneazo) calix[6]arene (SBC6A) and vitamin K 3 (VK 3) were investigated by fluorescence spectrometry. A 1:1 stoichiometry for the complexation was established and was verified by Job's plot. An association constant of 4.95 × 10 3 L mol -1 at 20 °C was calculated by applying a deduced equation. The interaction mechanism of the inclusion complex was discussed. It was found that the fluorescence of SBC6A could be remarkably quenched by an appropriate amount of VK 3 especially when non-ionic surfactant Triton X-100 existed. According to the obtained results, a novel sensitive spectrofluorimetric method for the determination of VK 3 based on supramolecular complex was developed with a linear range of 5.0 × 10 -7-3.0 × 10 -5 mol L -1 and a detection limit of 2.0 × 10 -7 mol L -1. The proposed method was used to determine VK 3 in commercial preparations with satisfactory results.
Zhou, Yunyou; Xu, Hongwei; Wu, Lian; Liu, Chun; Lu, Qin; Wang, Lun
2008-11-15
The characteristics of host-guest complexation between p-(p-sulfonated benzeneazo) calix[6]arene (SBC6A) and vitamin K3 (VK3) were investigated by fluorescence spectrometry. A 1:1 stoichiometry for the complexation was established and was verified by Job's plot. An association constant of 4.95 x 10(3)L mol(-1) at 20 degrees C was calculated by applying a deduced equation. The interaction mechanism of the inclusion complex was discussed. It was found that the fluorescence of SBC6A could be remarkably quenched by an appropriate amount of VK3 especially when non-ionic surfactant Triton X-100 existed. According to the obtained results, a novel sensitive spectrofluorimetric method for the determination of VK3 based on supramolecular complex was developed with a linear range of 5.0 x 10(-7) -3.0 x 10(-5)mol L(-1) and a detection limit of 2.0 x 10(-7)mol L(-1). The proposed method was used to determine VK3 in commercial preparations with satisfactory results.
Study of calixarenes thin films as chemical sensors for the detection of explosives
NASA Astrophysics Data System (ADS)
Montmeat, P.; Veignal, F.; Methivier, C.; Pradier, C. M.; Hairault, L.
2014-02-01
Calix(n)arenes (n = 4, 6, 8) are used as sensitive coatings for Quartz Crystal Microbalance (QCM)-based chemical sensors, and specially for the detection of dinitrotoluene as a model explosive molecule. Calix(n)arenes complex organic architectures were deposited by spray on gold-coated wafer surfaces, and DNT detection tests were performed by measuring both frequency changes and IR spectra during exposure to DNT vapours. The adsorption of DNT on calixarenes surface is proved by Polarisation Modulation Infrared Reflection-Absorption Spectroscopy (PM-IRRAS) experiments, which brings a chemical characterisation of the sensing surfaces. Kinetics of interaction of DNT with the surface was measured by QCM. When deposited onto QCM, calixarenes showed an excellent sensitivity to DNT vapours; no significant effect of the size of the cage was observed. The main drawback is the poor reversibility of these sensors, possibly due to a too strong interaction of dinitrotoluene inside the cage of the calixarenes, or to a loss of the ternary structure of these molecules, which in turn induces a loss of interaction strength with host molecules.
Kim, Sook-Hee; Hong, Seong-Jin; Yoo, Jaeduk; Kim, Sung Kuk; Sessler, Janathan L.; Lee, Chang-Hee
2014-01-01
A strapped calix[4]pyrrole bearing an 1,3-indanedione group at a β-pyrrolic position has been synthesized and studied as a ratiometric cyanide selective chemosensor. A concentration-dependent bleaching of the initial yellow color was observed upon addition of the cyanide anion. The bleaching, which was observed exclusively with the cyanide anion, occurred even in the presence of other anions. Spectroscopic studies provides support for a mechanistic interpretation wherein the cyanide anion forms a complex with the receptor (K = 2.78 × 104 M-1) through a fast equilibrium, which is followed by slow nucleophilic addition to the β-position of the 1,3-indanedione group. A minimum inhibitory effect from other anions was observed, a feature that could be beneficial in the selective sensing of the cyanide anion. PMID:19639968
NASA Astrophysics Data System (ADS)
Ma, Lina; Zhu, Xiashi
2012-09-01
The fluorescence quenching effect of emodin (EMO) on the derivatives of p-tert-butyl-calix[4]arene with o-phenanthroline (TBCP) in 1.0% hexadecyl trimethyl ammonium bromide (CTAB) medium was investigated. The fluorescence of TBCP was quenched by EMO due to the formation of the weak fluorescent inclusion complex (EOM-TBCP), and the fluorescence quenching (ΔF = FTBCP-FEMO-TBCP) was sensitized in CTAB. Under the optimal conditions, the linear range of calibration curve for the determination of EMO was 1.17-23.40 μg/mL. The detection limit estimated and RSD was 0.34 μg/mL, 3.63% (n = 3, c = 4.74 μg/mL). The quantum yield Yu of TBCP was approximately 2.0 times higher in the presence of CTAB than that in the absence of CTAB. The method has been applied for the determination of EMO in samples with satisfactory results.
Zanichelli, Valeria; Dallacasagrande, Luca; Arduini, Arturo; Secchi, Andrea; Ragazzon, Giulio; Silvi, Serena; Credi, Alberto
2018-05-11
Catenanes with desymmetrized ring components can undergo co-conformational rearrangements upon external stimulation and can form the basis for the development of molecular rotary motors. We describe the design, synthesis and properties of a [2]catenane consisting of a macrocycle-the 'track' ring-endowed with two distinct recognition sites (a bipyridinium and an ammonium) for a calix[6]arene-the 'shuttle' ring. By exploiting the ability of the calixarene to thread appropriate non-symmetric axles with directional selectivity, we assembled an oriented pseudorotaxane and converted it into the corresponding oriented catenane by intramolecular ring closing metathesis. Cyclic voltammetric experiments indicate that the calixarene wheel initially surrounds the bipyridinium site, moves away from it when it is reduced, and returns in the original position upon reoxidation. A comparison with appropriate model compounds shows that the presence of the ammonium station is necessary for the calixarene to leave the reduced bipyridinium site.
Rezayi, Majid; Heng, Lee Yook; Kassim, Anuar; Ahmadzadeh, Saeid; Abdollahi, Yadollah; Jahangirian, Hossein
2012-01-01
Novel ionophores comprising various hydroxide and amine structures were immobilized onto poly(vinyl chloride) (PVC) matrices, and these were examined to determine Ti(III) selectivity. To predict the selectivity of Ti(III), a PVC membrane was used to investigate the binding of Ti(III) to c-methylcalix[4]resorcinarene (CMCR). The study showed that the chelating ligand, CMCR, was coordinated selectively to Ti(III) at eight coordination sites involving the oxygen atoms at the interface of the membrane/solution. The membrane was prepared, based on CMCR as an ionophore, sodium tetrakis(4-fluorophenyl) borate (NaTFPB) as a lipophilic ionic additive, and dioctylphthalate (DOP) as a plasticizer. The immobilization of the ionophore and surface characterization studies revealed that the performance of CMCR-immobilized PVC was equivalent to that of mobile ionophores in supported liquid membranes (SLMs). The strengths of the ion-ionophore (CMCR-Ti(OH)(OH(2))(5) (2+)) interactions and the role of ionophores on membranes were studied via UV-Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and and X-ray diffraction (XRD).
Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid
NASA Astrophysics Data System (ADS)
Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina
2014-10-01
Radioactive pollution is a significant threat for the people's health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives' utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.
Nanofibers of fullerene C60 through interplay of ball-and-socket supermolecules.
Hubble, Lee J; Raston, Colin L
2007-01-01
Mixing solutions of p-tBu-calix[5]arene and C(60) in toluene results in a 1:1 complex (C(60)) intersection(p-tBu-calix[5]arene), which precipitates as nanofibers. The principle structural unit is based on a host-guest ball-and-socket nanostructure of the two components, with an extended structure comprising zigzag/helical arrays of fullerenes (powder X-ray diffraction data coupled with molecular modeling). Under argon at temperatures above 309 degrees C, the fibers undergo selective volatilization of the calixarenes to afford C(60)-core nanostructures encapsulated in a graphitic material sheath, which exhibits a dramatic increase in surface area. Above 650 degrees C the material exhibits an ohmic conductance response, due to the encapsulation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borman, Christopher J.; Custelcean, Radu; Hay, Ben P.
Here, meso-Octamethylcalix[4]pyrrole (C4P) enhances sulfate selectivity in solvent extraction by Aliquat 336N, an effect ascribed to the supramolecular preorganization and thermodynamic stability imparted by insertion of the methyl group of the Aliquat cation into the cup of C4P in its cone conformation.
Covalent capture of oriented calix[6]arene rotaxanes by a metal-free active template approach.
Orlandini, Guido; Ragazzon, Giulio; Zanichelli, Valeria; Secchi, Andrea; Silvi, Serena; Venturi, Margherita; Arduini, Arturo; Credi, Alberto
2017-06-01
We describe the active template effect of a calix[6]arene host towards the alkylation of a complexed pyridylpyridinium guest. The acceleration of the reaction within the cavity is significant and rim-selective, enabling the efficient preparation of rotaxanes with full control of the mutual orientation of their nonsymmetric components.
Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex
NASA Astrophysics Data System (ADS)
Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.
2004-07-01
In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.
Tirapegui, Federico Ignacio; González, Mariano Sebastian; González, Ignacio Pablo Tobía; Daels, Francisco P
2015-06-01
To identify kidney stone characteristics that will determine either success or failure of a percutaneous nephrolithotomy (PCNL) and design a classification system to predict results according to these characteristics. One hundred thirty-eight patients were assessed with multislice abdominal and pelvic CT before and after PCNL. With regard to pyelocaliceal stone distribution, we classified our patients in two groups that we called "no extra stone in middle calix" (NESMC) and "extra stone in middle calix" (ESMC), according to the difficulty in reaching the stones. We did a univariate and a multivariate analysis, as well as a receiving operating curve (ROC) of the proposed classification, based on the foreseen probabilities, to determine the diagnostic yield. Global residual lithiasis (RL) was 26.08%. The proportion of patients with RL according to classification was NESMC 11.5% and ESMC 59.5%. In the univariate logistic regression analysis of the distribution, number, total volumetry, side, type, radio-opacity of stones, and the presence or not of preoperatory urinary tract infection, the variables related to RL were the distribution (11.3; 95% confidence interval [95% CI] 4.7, 27.4), volumetry (odds ratio [OR] 1.01; 95% CI 1.004, 1.014), and the presence of staghorn stones (OR 6.64; 95% CI 2.463, 17.905). In the multivariate analysis, distribution was statistically significant (OR 8.687; 95% CI 2.69, 28.06), whereas total volumetry and the presence of staghorn stones were not (OR 1; 95% CI 1.000, 1.000 and OR 2.7; 95% CI 0.35, 20.57, respectively). The ROC showed an area under the curve of 0.77. In our experience, the distribution of kidney stones is the most important predictor of RL after PCNL. The results also suggest that the presence of stones in the middle calix has a direct impact on the stone-free rate. We put forward a simple and reproducible classification, easy to apply, and useful to estimate the chances of success of the procedure using preoperatory CT scans.
Koziol, Lucas; Essiz, Sebnem G; Wong, Sergio E; Lau, Edmond Y; Valdez, Carlos A; Satcher, Joe H; Aines, Roger D; Lightstone, Felice C
2013-03-12
Molecular dynamics simulations and quantum-mechanical calculations were performed to characterize a supramolecular tris(imidazolyl) calix[6]arene Zn(2+) aqua complex, as a biomimetic model for the catalyzed hydration of carbon dioxide to bicarbonate, H2O + CO2 → H(+) + HCO3(-). On the basis of potential-of-mean-force (PMF) calculations, stable conformations had distorted 3-fold symmetry and supported either one or zero encapsulated water molecules. The conformation with an encapsulated water molecule is calculated to be lower in free energy than the conformation with an empty cavity (ΔG = 1.2 kcal/mol) and is the calculated free-energy minimum in solution. CO2 molecule partitioning into the cavity is shown to be very facile, proceeding with a barrier of 1.6 kcal/mol from a weak encounter complex which stabilizes the species by about 1.0 kcal/mol. The stabilization energy of CO2 is calculated to be larger than that of H2O (ΔΔG = 1.4 kcal/mol), suggesting that the complex will preferentially encapsulate CO2 in solution. In contrast, the PMF for a bicarbonate anion entering the cavity is calculated to be repulsive in all nonbonding regions of the cavity, due to the diameter of the calix[6]arene walls. Geometry optimization of the Zn-bound hydroxide complex with an encapsulated CO2 molecule showed that multiple noncovalent interactions direct the reactants into optimal position for nucleophilic addition to occur. The calixarene complex is a structural mimic of the hydrophilic/hydrophobic divide in the enzyme, providing a functional effect for CO2 addition in the catalytic cycle. The results show that Zn-binding calix[6]arene scaffolds can be potential synthetic biomimetics for CO2 hydration catalysis, both in terms of preferentially encapsulating CO2 from solution and by spatially fixing the reactive species inside the cavity.
NASA Astrophysics Data System (ADS)
Wang, Se; Wang, Zhuang; Hao, Ce
2016-01-01
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT) reaction of calix[4] arene (C4A) and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1) were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.
Dialing in single-site reactivity of a supported calixarene-protected tetrairidium cluster catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palermo, Andrew; Solovyov, Andrew; Ertler, Daniel
2017-05-04
A closed Ir 4carbonyl cluster,1, comprising a tetrahedral metal frame and threetert-butyl-calix[4]arene(OPr) 3(OCH 2PPh 2) (Ph = phenyl; Pr = propyl) ligands at the basal plane, was silica supported and consists of “*” and “S” sites, which could be dialed in selectively for controlling ethylene hydrogenation catalysis.
Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.
Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B
2016-04-15
Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solvent Hold Tank Sample Results For MCU-15-750-751-752-: June Monthly Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Taylor-Pashow, K.
2015-10-07
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-750, MCU-15-751, and MCU-15-752), pulled on 06/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-750-751-752 indicated a low concentration (~ 49 % of nominal) of the suppressor (TiDG) and slightly lower than nominal concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient formore » continuing operation without adding a trim at this time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the near future. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 13.9 micrograms of mercury per gram of solvent (or 11.5 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less
1980-09-01
Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makrlik, Emanuel; Toman, Petr; Vanura, Petr
2013-01-01
From extraction experiments and -activity measurements, the exchange extraction constant corresponding to the equilibrium Tl+ (aq) + 1 Cs+ (org) 1 Tl+ (org) + Cs+ (aq) taking place in the two-phase water phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as log Kex (Tl+, 1 Cs+) = 1.7 0.1. Further, the extraordinarily high stability constant of the 1 Tl+ complex in FS 13 saturated with water was calculated for a temperature of 25 C: log org(1 Tl+) = 13.1 0.2. Finally, by using quantum mechanical DFT calculations, themore » most probable structure of the cationic complex species 1 Tl+ was derived. In the resulting 1 Tl+ complex, the central cation Tl+ is bound by eight bond interactions to six oxygen atoms from the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent receptor 1 via cation interaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makrlik, Emanuel; Toman, Petr; Vanura, Petr
2013-01-01
From extraction experiments and c-activity measurements, the extraction constant corresponding to the equilibrium Cs+ (aq) + I (aq) + 1 (org),1Cs+ (org) + I (org) taking place in the two-phase water-phenyltrifluoromethyl sulfone (abbrev. FS 13) system (1 = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, org = FS 13 phase) was evaluated as logKex (1Cs+, I) = 2.1 0.1. Further, the stability constant of the 1Cs+ complex in FS 13 saturated with water was calculated for a temperature of 25 C: log borg (1Cs+) = 9.9 0.1. Finally, by using quantum mechanical DFT calculations, the most probable structure of the cationic complexmore » species 1Cs+ was derived. In the resulting 1Cs+ complex, the central cation Cs+ is bound by eight bond interactions to six oxygen atoms of the respective 18-crown-6 moiety and to two carbons of the corresponding two benzene rings of the parent ligand 1 via cation p interaction.« less
Martínez-Rodríguez, Luis; Bandeira, Nuno A G; Bo, Carles; Kleij, Arjan W
2015-05-04
A calix[4]arene host equipped with two bis-[Zn(salphen)] complexes self-assembles into a capsular complex in the presence of a chiral diamine guest with an unexpected 2:1 ratio between the host and the guest. Effective chirality transfer from the diamine to the calix-salen hybrid host is observed by circular dichroism (CD) spectroscopy, and a high stability constant K2,1 of 1.59×10(11) M(-2) for the assembled host-guest ensemble has been determined with a substantial cooperativity factor α of 6.4. Density functional calculations are used to investigate the origin of the stability of the host-guest system and the experimental CD spectrum compared with those calculated for both possible diastereoisomers showing that the M,M isomer is the one that is preferentially formed. The current system holds promise for the chirality determination of diamines, as evidenced by the investigated substrate scope and the linear relationship between the ee of the diamine and the amplitude of the observed Cotton effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; ...
2014-04-23
Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less
Solvent Hold Tank Sample Results for MCU-16-596-597-598: April 2016 Monthly Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
2016-07-12
Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-596-597-598), pulled on 04/30/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-596-597-598 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 14% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. This analysis confirms the solvent may require the addition of modifier. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expectedmore » to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
Savannah River National Laboratory (SRNL) received one set of three Solvent Hold Tank (SHT) samples (MCU-16-1363-1364-1365), pulled on 11/15/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-1363-1364-1365 indicated the Isopar™L concentration is at its nominal level (100%). The extractant (MaxCalix) and the modifier (CS- 7SB) are 8% and 2 % below their nominal concentrations. The suppressor (TiDG) is 7% below its nominal concentration. This analysis confirms the trim and Isopar™ additions to the solvent in November. This analysis also indicates the solvent did not require further additions. Based on the current monthlymore » sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.« less
Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tara E.; Scherman, Carl; Martin, David
Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less
Gallego-Yerga, Laura; Posadas, Inmaculada; de la Torre, Cristina; Ruiz-Almansa, Jesús; Sansone, Francesco; Ortiz Mellet, Carmen; Casnati, Alessandro; García Fernández, José M; Ceña, Valentín
2017-01-01
Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA 4 ) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA 4 giant amphiphiles to access DTX carriers with tunable properties.
NASA Astrophysics Data System (ADS)
Bauer, David; Gott, Matthew; Steinbach, Jörg; Mamat, Constantin
2018-06-01
A crown-bridged calix[4]arene scaffold was investigated as lead compound for the ligation of heavy alkaline earth metals such as strontium and barium, which appear to be useful for radiopharmaceutical applications in diagnosis as well as in radiotherapy. In particular barium, due to its chemical similarities, could serve as a surrogate for radium, a metal of high radiopharmaceutical interest. The ability of p-tert-butylcalix[4]arene-1,3-crown-6 (1) in particular to chelate cations, such as group 1 and 2 metal ions or ammonium ions is well known. Also, the manifold possibilities of structural modification on the upper- and lower-rim as well as on the crown itself produce properties that may lead to a highly selective and effective chelating agent. In this work, titration experiments of the perchlorate salts of Ba2+, Sr2+ and Pb2+ with ligand 1 were performed to determine their stability constants (logK = 4.7, 4.3, and 3.3, respectively) by 1H NMR measurements in acetonitrile-d3.
Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.
2007-11-06
A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.
The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction.
Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad
2016-05-01
To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.
NASA Technical Reports Server (NTRS)
Siriwardane, R.; Wightman, J. P.
1980-01-01
The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.
Efficient active-template synthesis of calix[6]arene-based oriented pseudorotaxanes and rotaxanes.
Zanichelli, Valeria; Ragazzon, Giulio; Orlandini, Guido; Venturi, Margherita; Credi, Alberto; Silvi, Serena; Arduini, Arturo; Secchi, Andrea
2017-08-16
A substrate can modify its chemical features, including a change of its reactivity, as a consequence of non-covalent interactions upon inclusion within a molecular host. Since the rise of supramolecular chemistry, this phenomenon has stimulated the ingenuity of scientists to emulate the function of enzymes by designing supramolecular systems in which the energetics and selectivity of reactions can be manipulated through programmed host-guest interactions and/or steric confinement. In this paper we investigate how the engulfment of a positively charged pyridinium-based guest inside the π-rich cavity of a tris-(N-phenylureido)calix[6]arene host affects its reactivity towards a S N 2 reaction. We found that the alkylation of complexed substrates leads to the formation of pseudorotaxanes and rotaxanes with faster kinetics and higher yields with respect to the standard procedures exploited so far. More importantly, the strategy described here expands the range of efficient synthetic routes for the formation of mechanically interlocked species with a strict control of the mutual orientation of their non-symmetric molecular components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Jones, D.
A trend summary of four Solvent Hold Tank (SHT) monthly samples; MCU-16-122-124 (March 2017), MCU-17-130-132 (April 2017), MCU-17-133-135 (May 2017), and MCU-17-141-149 (June 2017) are reported. Analyses of the June SHT sample (MCU-17-141-149) indicated that the modifier (CS-7SB) and the extractant (MaxCalix) concentrations were slightly below (4% each) their nominal recommended levels (169,000 mg/L and 46,400 mg/L respectively). The suppressor (TiDG) level has decreased since the January 2017 measurement but has remained steady in the range of 666 to 705 mg/L, well above the minimum recommended level (479 mg/L), but below the nominal level. The “flat” trends observed in themore » TiDG, MaxCalix, modifier, and Gamma measurement are consistent with the solvent being idle since January 10, 2017.« less
Synthesis and characterization of new polyamides derived from alanine and valine derivatives
2012-01-01
Background Many efforts have been recently devoted to design, investigate and synthesize biocompatible, biodegradable polymers for applications in medicine for either the fabrication of biodegradable devices or as drug delivery systems. Many of them consist of condensation of polymers having incorporated peptide linkages susceptible to enzymatic cleavage. Polyamides (PAs) containing α-amino acid residues such as L-leucine, L-alanine and L-phenylalanine have been reported as biodegradable materials. Furthermore, polyamides (PAs) derived from C10 and C14 dicarboxylic acids and amide-diamines derived from 1,6-hexanediamine or 1,12-dodecanediamine and L-phenylalanine, L-valyl-L-phenylalanine or L-phenylalanyl-L-valine residues have been reported as biocompatible polymers. We have previously described the synthesis and thermal properties of a new type of polyamides-containing amino acids based on eight new symmetric meta-oriented protected diamines derived from coupling of amino acids namely; Fomc-glycine, Fmoc-alanine, Fomc-valine and Fomc-leucine with m-phenylene diamine or 2,6-diaminopyridine. Results revealed that incorporation of pyridine onto the polymeric backbone of all series decreases the thermal stability. Here we describe another family of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of the polymers. Results We report here the preparation of a new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of polymers. The thermal properties of the polymers were evaluated by different techniques. Results revealed that structure-thermal property correlation based on changing the dicarboxylic acid monomer or the diamine monomer demonstrated an interesting connection between a single change (changing the dicarboxylic acids in each series while the diamine is fixed) and thermal properties. The newly prepared polymers may possess biodegradability and thus may find some applications as novel biomaterials. Conclusions The thermal properties of the new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid (alanine and valine) linked to benzidine and 4,4′-oxydianiline were evaluated by thermal gravimetric (TG), differential thermal gravimetric (DTG) and differential thermal analysis (DTA) techniques. Results revealed that the structure-thermal property correlation based on changing the dicarboxylic acid monomer or the diamine monomer demonstrated an interesting connection between a single change (changing the dicarboxylic acids in each series while the diamine is fixed) and thermal properties. In addition, pyridine-containing polymers exhibited semicrystalline characteristic with melting temperature, Tm. where none of the valine-containing polymers showed a melting and crystallization peak indicating that the polymers were amorphous. This is expected since L-valine side chain can inhibit close packing and eliminate crystallization. The newly prepared polymers may possess biodegradability and thus may find some applications as novel biomaterials. PMID:23122321
Composite polyaniline/calixarene Langmuir - Blodgett films for gas sensing
NASA Astrophysics Data System (ADS)
Lavrik, N. V.; DeRossi, D.; Kazantseva, Z. I.; Nabok, A. V.; Nesterenko, B. A.; Piletsky, S. A.; Kalchenko, V. I.; Shivaniuk, A. N.; Markovskiy, L. N.
1996-12-01
Mixtures of the polyaniline (emeraldine base) and phosphorylated calix[4]resorcinolarene derivative (CA) are proposed to prepare LB films for conductometric gas sensors. They are quite stable at the air - water interface and give LB films of high quality. The average thickness of the mixed monolayers is found to be 1.6 nm. The as-deposited films are insulating. Doping with HCl increases the conductivity up to between 0957-4484/7/4/002/img12 and 0957-4484/7/4/002/img13 which depends on the component ratio. The films containing more than 20 wt% of CA are doped reversibly in part. Thus, the films which are highly sensitive to either 0957-4484/7/4/002/img14 or HCl films are prepared by choosing the component ratio. Detection of 0957-4484/7/4/002/img14 and HCl in the ppm range is demonstrated.
Williams, Neil J.; Bryantsev, Vyacheslav S.; Custelcean, Radu; ...
2016-01-29
α, α', α", α'"- meso-Tetrahexyltetramethyl-calix[4]pyrrole is easily obtained as a single diastereomer in a one-pot reaction. It exhibits enhanced solubility in organic solvents, including aliphatic solvents, relative to its parent meso-octamethylcalix[4]pyrrole (1). Somewhat surprisingly, the tetrahexyl derivative 2 complexes with tributylmethylammonium chloride in chloroform more strongly than does 1 as shown by NMR titrations. However, 1 and 2 exhibit comparable complexation strength in extraction experiments, the difference between the NMR and extraction results being attributed to the effect of organic-phase water in the extraction systems. Mass-action analysis indicates the formation of the predominant complex TBMA +(1 or 2)Cl – inmore » both NMR and extraction systems, and equilibrium constants are reported. x-Ray crystal structures were obtained for the free ligand 2 and its complex with tetramethylammonium chloride. In addition, the free ligand crystallises in the 1,3-alt conformation with equatorial hexyl arms. In the chloride complex with 2 in its cone conformation, the hexyl arms adopt an axial orientation, enveloping the anion. DFT calculations show this binding conformation to be the most stable, mostly owing to destabilising steric interactions involving the pyrrole C–H and alkyl C–H groups positioned equatorially.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Neil J.; Bryantsev, Vyacheslav S.; Custelcean, Radu
α, α', α", α'"- meso-Tetrahexyltetramethyl-calix[4]pyrrole is easily obtained as a single diastereomer in a one-pot reaction. It exhibits enhanced solubility in organic solvents, including aliphatic solvents, relative to its parent meso-octamethylcalix[4]pyrrole (1). Somewhat surprisingly, the tetrahexyl derivative 2 complexes with tributylmethylammonium chloride in chloroform more strongly than does 1 as shown by NMR titrations. However, 1 and 2 exhibit comparable complexation strength in extraction experiments, the difference between the NMR and extraction results being attributed to the effect of organic-phase water in the extraction systems. Mass-action analysis indicates the formation of the predominant complex TBMA +(1 or 2)Cl – inmore » both NMR and extraction systems, and equilibrium constants are reported. x-Ray crystal structures were obtained for the free ligand 2 and its complex with tetramethylammonium chloride. In addition, the free ligand crystallises in the 1,3-alt conformation with equatorial hexyl arms. In the chloride complex with 2 in its cone conformation, the hexyl arms adopt an axial orientation, enveloping the anion. DFT calculations show this binding conformation to be the most stable, mostly owing to destabilising steric interactions involving the pyrrole C–H and alkyl C–H groups positioned equatorially.« less
Ding, Chenghua; Qu, Kang; Li, Yongbo; Hu, Kai; Liu, Hongxia; Ye, Baoxian; Wu, Yangjie; Zhang, Shusheng
2007-11-02
Six calixarene bonded silica gel stationary phases were prepared and characterized by elemental analysis, infrared spectroscopy and thermal analysis. Their chromatographic performance was investigated by using PAHs, aromatic positional isomers and E- and Z-ethyl 3-(4-acetylphenyl) acrylate isomers as probes. Separation mechanism based on the different interactions between calixarenes and analytes were discussed. The chromatographic behaviors of those analytes on the calixarene columns were influenced by the supramolecular interaction including pi-pi interaction, space steric hindrance and hydrogen bonding interaction between calixarenes and analytes. Notably, the presence of polar groups (-OH, -NO(2) and -NH(2)) in the aromatic isomers could improve their separation selectivity on calixarene phase columns. The results from quantum chemistry calculation using DFT-B3LYP/STO-3G* base group were consistent with the retention behaviors of PHAs on calix[4]arene column.
Zagórska, Agnieszka; Czopek, Anna; Pawłowski, Maciej; Dybała, Małgorzata; Siwek, Agata; Nowak, Gabriel
2012-11-01
Affinities of arylpiperazinylalkyl derivatives of imidazo[2,1-f]purine-2,4-dione and imidazolidine-2,4-dione for serotonin transporter and their acid-base properties were evaluated. The dissociation constant (pK(a)) of compounds 1-22 were determinated by potentiometric titration and calculated using pKalc 3.1 module of the Pallas system. The data from experimental methods and computational calculations were compared and suitable conclusions were reached.
The Design, Synthesis, and Characterization of Open Sites on Metal Clusters
NASA Astrophysics Data System (ADS)
Nigra, Michael Mark
Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of undercoordinated sites led me to synthesize small gold clusters consisting of a high fraction of coordinatively unsaturated open sites. This was enabled through an approach that utilized bulky calix[4]arene ligands that are bound to a gold core. Since the size of the calix[4]arene ligand is commensurate with the size of the gold cluster core, the calix[4]arene ligand does not pack closely together on the gold cluster surface. This in turn results in areas of accessible gold atom sites between ligands. Additionally, these calix[4]arene ligands prevent cluster aggregation and electronically tune the gold core in a manner conceptually similar to enzymes affecting reactivity through organic side-chains acting as ligands. I quantified the number of open sites that result from this packing problem on the gold cluster surface, using fluorescence probe chemisorption experiments. The results of these chemisorption measurements support the mechanical model of accessibility whereby accessibility is not dependent on the identity of the functional group, whether it be calixarene phosphines or N-heterocyclic carbenes, bound to the gold surface, but rather to the relative radii of curvature of bound ligands and the gold cluster core. Additional materials characterization was completed with transmission electron microscopy in both bright-field imaging of zeolites, in MCM-22 and delaminated ITQ-2 and UCB-1 materials, and in dark field imaging of glucan coatings on oxide particles. These materials could prove to be interesting materials as to use as supports for the calixarene-bound metal clusters described above or for other metal clusters.
Safarnavadeh, Vahideh; Zare, Karim; Fakhari, Ali Reza
2013-11-15
In this study, the effects of two solvents (acetonitrile and water) and an anion dopant (para sulfonato calix[6]arene ((C[6]S)(-6))), on the manufacturing and properties of a polypyrrole (Ppy)-based, glucose oxidase amperometric biosensor were studied. Pyrrole was polymerized using galvanostatic mode in two different solvents, and the effect of (C[6]S)(-6) was studied in aqueous solution. The morphology of the obtained polypyrrole films was studied by scanning electron microscopy (SEM). Glucose oxidase (GOx) was adsorbed on the Ppy films via cross-linking method. Then the amperometric responses of the Pt/Ppy/GOx electrodes were measured using the amperometric method at the potential of 0.7 V in steps of adding a glucose solution to a potassium phosphate buffer. We found that acetonitrile and (C[6]S)(-6) increase the sensitivity of the enzyme electrode up to 79.30 µA M(-1)cm(-2) in comparison with 31.60 μA M(-1)cm(-2) for the electrode synthesized in calixarene free aqueous solvent. Also (C[6]S)(-6) has the main role in preventing leaching the enzyme from the electrode. This fact increases loading of the enzyme and stability of the biosensor. So that the steady state current density of the aforementioned electrode increases linearly with increasing glucose concentration up to 190 mM. Whereas the linearity was observed up to 61 mM and 80 mM for the electrodes made using calixarene free acetonitrile and aqueous solutions, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Santos, Sérgio M; Costa, Paulo J; Lankshear, Michael D; Beer, Paul D; Félix, Vítor
2010-09-02
The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The transport of dopamine complex along the reverse path is characterized by downhill energy profile, with a small free energy barrier of 6.56 kcal mol(-1).
Kumagai, Shogo; Hayashi, Kotaro; Kameda, Tomohito; Morohashi, Naoya; Hattori, Tetsutaro; Yoshioka, Toshiaki
2018-04-01
The treatment of cesium-contaminated wastewater has become one of the biggest issues. The selective Cs + removal from wastewater containing competitive alkali metal ions such as Na + is desired to reduce the volume of sludge. Therefore, the present work focused on water-soluble calix[4]arene-bis-crown-6 (W-BisC6) to selectively capture Cs + . For characterization of the complex, UV-vis spectroscopy is commonly used, however, due to the limited availability of information it can be hard to quickly identify the specific structures of some complexes. In this work, the electrospray ionization time of flight spectrometry (ESI-TOF-MS) is successfully utilized to identify the number and type of cations in W-BisC6-cation complexes. ESI-TOF-MS accurately recognized 4 types of complex (W-BisC6-Na + , W-BisC6-Cs + , W-BisC6-2Na + , W-BisC6-Na + -Cs + ), and the experimental and simulated results were almost perfectly matched. It also revealed the difficulty of W-BisC6-2Cs + complex formation under the present conditions. Thus, this technique is significantly helpful for rapid identification of the specific structures of complexes during Cs + -contaminated wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.
Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav
2017-09-14
The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.
NASA Astrophysics Data System (ADS)
Karabacak Atay, Çiğdem; Gökalp, Merve; Kart, Sevgi Özdemir; Tilki, Tahir
2017-08-01
Four new azo dyes: 2-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (A), 2-[(3-hydroxy-5-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (B), 2-[(3,5-dimethyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (C) and 2-[(5-amino-3-methyl-1H-pyrazol-4-yl)diazenyl]-5-nitrobenzoic acid (D) which have the same 4-nitrobenzene/azo/pyrazole skeleton and different substituted groups are synthesized in this work. The structures and spectroscopic properties of these new azo dyes are characterized by using spectroscopic methods such as FT-IR, 1H NMR, 13C NMR and UV-vis. Their solvatochromic properties in chloroform, acetic acid, methanol, dimethylformamide (DMF) and dimethylsulphoxide (DMSO) are studied. Moreover, molecular structures and some spectroscopic properties of azo dyes are investigated by utilizing the quantum computational chemistry method based on Density Functional Theory (DFT) employing B3LYP hybrid functional level with 6-31G(d) basis set. It is seen that experimental and theoretical results are compatible with each other.
Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P
2016-10-01
Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jin, Takashi
2010-01-01
The complexing properties of p-sulfonatocalix[n]arenes (n = 4: S[4], n = 6: S[6], and n = 8: S[8]) for rhodamine 800 (Rh800) and indocyanine green (ICG) were examined to develop a near-infrared (NIR) fluorescence detection method for acetylcholine (ACh). We found that Rh800 (as a cation) forms an inclusion complex with S[n], while ICG (as a twitter ion) have no binding ability for S[n]. The binding ability of Rh800 to S[n] decreased in the order of S[8] > S[6] >> S[4]. By the formation of the complex between Rh800 and S[8], fluorescence intensity of the Rh800 was significantly decreased. From the fluorescence titration of Rh800 by S[8], stoichiometry of the Rh800-S[8] complex was determined to be 1:1 with a dissociation constant of 2.2 μM in PBS. The addition of ACh to the aqueous solution of the Rh800-S[8] complex caused a fluorescence increase of Rh800, resulting from a competitive replacement of Rh800 by ACh in the complex. From the fluorescence change by the competitive fluorophore replacement, stoichiometry of the Rh800-ACh complex was found to be 1:1 with a dissociation constant of 1.7 mM. The effects of other neurotransmitters on the fluorescence spectra of the Rh800-S[8] complex were examined for dopamine, GABA, glycine, and l-asparatic acid. Among the neurotransmitters examined, fluorescence response of the Rh800-S[8] complex was highly specific to ACh. Rh800-S[8] complexes can be used as a NIR fluorescent probe for the detection of ACh (5 × 10−4−10−3 M) in PBS buffer (pH = 7.2). PMID:22294934
Bruice, Thomas C.; Maskiewicz, Richard; Job, Robert
1975-01-01
The iron-sulfur cluster compounds Fe4S4(SR)4-2 [where —SR = —SCH3, —S—C(CH3)3, and —S— CH2—CH(CH3)2] have been found to represent the base species of weak acids of pKa comparable to that of carboxylic acids. The acid species Fe4S4(SR)4H- is most subject to reaction with O2 and to acid-catalyzed solvolysis, while the base species Fe4S4(SR)4-2 most readily undergoes ligand exchange. The kinetics for hydrolysis of the isobutyl mercaptide cluster salt has been investigated in detail and a mechanism involving the stepwise process [Formula: see text] has been proposed. The importance of the acid-base equilibria in determining the reactivity of the iron-sulfur clusters and its possible importance as a factor in the determination of the potentials of ferredoxins and high potential iron protein are discussed. PMID:16592211
2-(4-Bromobenzyl)-5,11,17,23-tetra-tert-butyl-25,26,27,28-tetramethoxycalix[4]arene
Fischer, Conrad; Lin, Guisheng; Seichter, Wilhelm; Weber, Edwin
2009-01-01
In the title compound, C55H69BrO4, the calixarene molecule displays a ‘partial cone’ conformation bearing the lateral substituent in a sterically favorable equatorial arrangement between two syn-orientated arene units. The crystal packing is stabilized by weak C—H⋯π contacts, involving one tert-butyl group, and π–stacking interactions of the lateral bromobenzene units [centroid–centroid distance = 3.706 (1) Å]. PMID:21582956
Gujar, R B; Ansari, S A; Verboom, W; Mohapatra, P K
2016-05-27
Extraction chromatography resins, prepared by impregnating two multi-podant diglycolamide ligands, viz. diglycolamide-functionalized calix[4]arene (C4DGA) and tripodal diglycolamide (T-DGA) dissolved in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (RTIL: C4mimTf2N) on Chromosorb-W (an inert solid support), gave excellent results for the removal of trivalent actinides from acidic waste solutions. Distribution coefficient measurements on several metal ions showed selective sorption of Am(III) over hexavalent uranyl ions and other fission product elements such as strontium and cesium. The sorbed metal ions could be efficiently desorbed with a complexing solution containing guanidine carbonate and EDTA buffer. The sorption of Am(III) on both resins followed pseudo-second order rate kinetics with rate constants of 1.37×10(-6) and 6.88×10(-7)g/cpmmin for T-DGA and C4DGA resins, respectively. The metal sorption on both resins indicated the Langmuir monolayer chemisorption phenomenon with Eu(III) sorption capacities of 4.83±0.21 and 0.52±0.05mg per g of T-DGA and C4DGA resins, respectively. The results of column studies show that these resins are of interest for a possible application for the recovery of hazardous trivalent actinides from dilute aqueous solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.
Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz
2016-08-01
3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi
2013-07-01
A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy=2,2-bipyridine, Hbcpip=2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5±1.4)×10(5) M(-1) in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived. Copyright © 2013 Elsevier B.V. All rights reserved.
JPRS Report, Science & Technology, USSR: Chemistry
1990-11-08
desorption cycle. The photochemical activity of the oxides was determined by irradiating them with UV light at 353 K during the oxidation reactions of...No 1, Jan 90] 8 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces [N D. Konovalova, V. I. Stepanenko, etal; UKRAINSKIY...Figures 4; references 13: 10 Russian, 3 Western. UDC 541.183 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces 907M0149B Kiev
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Taylor-Pashow, K.
Savannah River National Laboratory (SRNL) received two sets of Solvent Hold Tank (SHT) samples (MCU-15-389 and MCU-15-390 pulled on February 23, 2015 and MCU-15-439, MCU-15-440, and MCU-15-441 pulled on February 28, 2015) for analysis. The samples in each set were combined and analyzed for composition. Analysis of the composite samples MCU-15-389-390 and MCU-15-439-440- 441 indicated a low concentration (~ 92 to 93 % of nominal) of the suppressor (TiDG) and slightly below nominal concentrations of the extractant (MaxCalix), but nominal levels of the modifier (CS-7SB) and of the Isopar™ L. This analysis confirms the addition of TiDG, MaxCalix, and modifiermore » to the solvent on February 22, 2015. Despite that the values are below the target component levels, the current levels of TiDG and MaxCalix are sufficient for continuing operation without adding a trim at this time. No impurities above the 1000 ppm level were found in this solvent. However, the p-nut vials that delivered the samples contained small (1 mm) droplets of oxidized modifier and amides. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.« less
Sreenivasu Mummidivarapu, V V; Hinge, Vijaya Kumar; Rao, Chebrolu Pulla
2015-01-21
A triazole-linked hydroxyethylimino conjugate of calix[4]arene () and its cadmium complex have been synthesized and characterized, and their structures have been established. In the complex, both the Cd(2+) centers are bound by an N2O4 core, and one of it is a distorted octahedral, whereas the other is a trigonal anti-prism. The fluorescence intensity of the di-nuclear Cd(ii) complex is quenched only in the presence of phosphates and not with other anions studied owing to their binding affinities and the nature of the interaction of the phosphates with Cd(2+). These are evident even from their absorption spectra. Different phosphates exhibit changes in both their fluorescence as well as absorption spectra to varying extents, suggesting their differential interactions. Among the six phosphates, H2PO4(-) has higher fluorescence quenching even at low equivalents of this ion, whereas P2O7(4-) shows only 50% quenching even at 10 equivalents. The fluorescence quenching is considerable even at 20 ppb (0.2 μM) of H2PO4(-), whereas all other phosphates require a concentration of 50-580 ppb to exhibit the same effect on fluorescence spectra. Thus, the interaction of H2PO4(-) is more effective by ∼30 fold as compared to that of P2O7(4-). Fluorescence quenching by phosphate is due to the release of from its original cadmium complex via the formation of a ternary species followed by the capture of Cd(2+) by the phosphate, as delineated based on the combination of spectral techniques, such as absorption, emission, (1)H NMR and ESI MS. The relative interactive abilities of the six phosphates differ from each other. The removal of Cd(2+) is demonstrated to be reversible by the repeated addition of the phosphate followed by Cd(2+). The characteristics of the ternary species formed in each of these six phosphates have been computationally modeled using molecular mechanics. The computational study revealed that the coordination between cadmium and -CH2-CH2-OH breaks and new coordination is established through the phosphate oxygens, and as a result the Cd(2+) center acquires a distorted octahedral geometry. The utility of the complex was demonstrated in HeLa cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Taylor-Pashow, K.
SRNL received two sets of SHT samples (MCU-14-667-672, pulled 8/27/2014 and MCU-14-846-847, pulled on 9/22/2014) for analysis. The samples were analyzed for composition. It is recommended that the solvent receives Isopar® L and TiDG trimming at this time. Analysis of sample MCU-14-846-847 indicates the solvent has evaporated Isopar®L and has lost TiDG to a level below the recommended minimum 1 mM level. Since the addition of MaxCalix to the SHT in early July 2014, the MaxCalix concentration in the solvent has reached nominal values. The laboratory will continue to monitor the quality of the solvent in particular for any newmore » impurity or degradation of the solvent components.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
StCaire, Lorri; Olynick, Deirdre L.; Chao, Weilun L.
We have implemented a technique to identify candidate polymer solvents for spinning, developing, and rinsing for a high resolution, negative electron beam resist hexa-methyl acetoxy calix(6)arene to elicit the optimum pattern development performance. Using the three dimensional Hansen solubility parameters for over 40 solvents, we have constructed a Hansen solubility sphere. From this sphere, we have estimated the Flory Huggins interaction parameter for solvents with hexa-methyl acetoxy calix(6)arene and found a correlation between resist development contrast and the Flory-Huggins parameter. This provides new insights into the development behavior of resist materials which are necessary for obtaining the ultimate lithographic resolution.
Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N
2013-01-01
Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.
Abdullah, Bashar Mudhaffar; Zubairi, Saiful Irwan; Huri, Hasniza Zaman; Hairunisa, Nany; Yousif, Emad; Basu, Roma Choudhury
2016-01-01
Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
Superprotonic solid acids: Structure, properties, and applications
NASA Astrophysics Data System (ADS)
Boysen, Dane Andrew
In this work, the structure and properties of superprotonic MH nXO4-type solid acids (where M = monovalent cation, X = S, Se, P, As, and n = 1, 2) have been investigated and, for the first time, applied in fuel cell devices. Several MH nXO4-type solid acids are known to undergo a "superprotonic" solid-state phase transition upon heating, in which the proton conductivity increases by several orders of magnitude and takes on values of ˜10 -2O-1cm-1. The presence of superprotonic conductivity in fully hydrogen bonded solid acids, such as CsH2PO4, has long been disputed. In these investigations, through the use of pressure, the unequivocal identification of superprotonic behavior in both RbH2PO4 and CsH2PO 4 has been demonstrated, whereas for chemically analogous compounds with smaller cations, such as KH2PO4 and NaH2PO 4, superprotonic conductivity was notably absent. Such observations have led to the adoption of radius ratio rules, in an attempt to identify a critical ion size effect on the presence of superprotonic conductivity in solid acids. It has been found that, while ionic size does play a prominent role in the presence of superprotonic behavior in solid acids, equally important are the effects of ionic and hydrogen bonding. Next, the properties of superprotonic phase transition have been investigated from a thermodynamic standpoint. With contributions from this work, a formulation has been developed that accounts for the entropy resulting from both the disordering of both hydrogen bonds and oxy-anion librations in the superprotonic phase of solid acids. This formulation, fundamentally derived from Linus Pauling's entropy rules for ice, accurately accounts for the change in entropy through a superprotonic phase transition. Lastly, the first proof-of-priniciple fuel cells based upon solid acid electrolytes have been demonstrated. Initial results based upon a sulfate electrolyte, CsHSO4, demonstrated the viability of solid acids, but poor chemical stability under the highly reducing H2 gas environment of the fuel cell anode. Later experiments employing a CsH2PO4 electrolyte proved quite successful. The results of these solid acid-based fuel cell measurements suggest solid acids could serve as an alternative to current state-of-the-art fuel cell electrolytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li
2013-09-15
Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphicalmore » abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriz, Jaroslav; Dybal, Jiri; Vanura, Petr
2011-01-01
Using 1H, 13C, and 133Cs NMR spectra, it is shown that calix[4]arene-bis (t-octylbenzo-18-crown-6) (L) forms complexes with one (L 3 Cs ) and two (L 3 2Cs ) Cs ions offered by cesium bis(1,2-dicarbollide) cobaltate (CsDCC) in nitrobenzene-d5. The ions interact with all six oxygen atoms in the crown-ether ring and the electrons of the calixarene aromatic moieties. According to extraction technique, the stability constant of the first complex is log nb(L 3 Cs ) = 8.8 ( 0.1. According to 133Cs NMR spectra, the value of the equilibrium constant of the second complex is log Knb (2)(L 3 2Csmore » ) = 6.3(0.2, i.e., its stabilization constant is log nb(L 3 2Cs ) = 15.1 ( 0.3. Self-diffusion measurements by 1H pulsed-field gradient (PFG) NMRcombined with density functional theory (DFT) calculations suggest that one DCC ion is tightly associated with L 3 Cs , decreasing its positive charge and consequently stabilizing the second complex, L 3 2Cs . Using a saturation-transfer 133Cs NMR technique, the correlation times ex of chemical exchange between L 3 Cs and L 3 2Cs as well as between L 3 2Cs and free Cs ions were determined as 33.6 and 29.2 ms, respectively.« less
Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi
2009-12-15
The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.
Shamrikova, E V; Ryazanov, M A; Vanchikova, E V
2006-11-01
Using the potentiometric titration and pK spectroscopy method, acid-base properties of water-soluble organic matter of forest soils have been studied. Five acidic classes composed of different substances with pK(a) values around 3.6; 4.8; 6.7; 8.7 and 9.7 have been identified. Testing the properties of soluble soil fraction, it is to be taken into account that when it is isolated from non-soluble soil matter, some water-soluble substances remain in soil and do not pass into the solution. Most firmly adsorbed in soil are water-soluble components with pK(a) 9.6-9.8.
New Polymeric Materials Expected to Have Superior Properties for Space-Based Use.
1985-07-01
Polymethacrylic esters Polvacrylic esters GB3 +CH 2-CH1 +CH 2-C4 COOR COOR Pa lyacrylamide Polymethacrylamide +CH -CH+ CH CONH 2 JCH 2-C4 Polyvinyl chloride...fl.. tetracarboxylic acid dianhydride or with pyromellitic dianhydride. These polymers have shown excellent thermal and radiolytic stability...than the crosslinked phthalocyanines. They can be dissolved in sulfuric acid and sublimed into thin films. 2 2 ,2 3 No mechanical properties have been
Giannakopoulos, Stilianos; Bantis, Athanasios; Kalaitzis, Christos; Touloupidis, Stavros
2010-10-01
Occasionally during percutaneous surgery, significant contrast extravasation obscures the field, making fluoroscopic access no longer feasible. Herein, we describe a salvage technique. The cystoscopically placed, open-end ureteral catheter is exchanged with an angled-tip angiographic catheter. With the aid of a guidewire and under fluoroscopic guidance, the tip of the catheter is placed in a posterior calix. The "bull's eye" technique is then applied to direct the needle into the tip of the catheter. This technique was used in four cases over a 7-year period. Successful access was accomplished in all cases through a middle or upper calix. The catheter serves as a target for providing access to the renal collecting system and facilitates final tract dilatation.
Complications employing the holmium:YAG laser.
Beaghler, M; Poon, M; Ruckle, H; Stewart, S; Weil, D
1998-12-01
We report the operative and early postoperative complications and limitations in 133 patients treated with the holmium laser. Complications included urinary tract infection (N = 3), postoperative bradycardia (1), inverted T-waves (1), intractable flank pain (1), urinary retention (1), inability to access a lower-pole calix with a 365-microm fiber (9), stone migration (5), and termination of procedure because of poor visibility (2). No ureteral perforations or strictures occurred, and no complications were directly attributable to the laser. The holmium laser was capable of fragmenting all urinary calculi in this study. In our initial experience, the holmium laser is safe and effective in the treatment of urinary pathology. Use of laser fibers larger than 200 microm occasionally limits deflection of the endoscope into a lower-pole or dependent calix.
Montero-Campillo, M Merced; Alkorta, Ibon; Elguero, Jose
2018-06-26
A series of A···water, B···water complexes (A = acid, B =base) are studied at the G4 level of theory to show that water acidity or basicity can be modulated by non-covalent interactions. Protic and non-protic acids interacting with water form hydrogen bonds or other kind of non-covalent interactions, respectively, that may dramatically change the acidity of water up to almost 360 kJ·mol-1 in terms of enthalpy. Similarly, hydrogen bonds responsible for the interaction between typical small nitrogen-containing Lewis bases and water can enhance the proton affinity of water by almost 300 kJ·mol-1. Our results reveal that these large enhancements are linearly related with the binding energy of the charged complexes, and are determined by the Lewis acid-base properties of the molecule involved in the interaction, allowing a quite precise modulation of the corresponding acid-base properties of water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of the acid-base properties of mineral soil horizons using pK spectroscopy
NASA Astrophysics Data System (ADS)
Shamrikova, E. V.; Vanchikova, E. V.; Ryazanov, M. A.
2007-11-01
The presence of groups 4 and 5 participating in acid-base equilibria was revealed in samples from mineral horizons of the gley-podzolic soil of the Komi Republic using pK spectroscopy (the mathematical processing of potentiometric titration curves for plotting the distribution of acid groups according to their pK values). The specific quantity of acid-base sites in soil samples was calculated. The contribution of organic and mineral soil components to the groups of acid-base sites was estimated. The pK values of groups determining the potential, exchangeable, and unexchangeable acidities were found. The heterogeneity of acid components determining different types of soil acidity was revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin
2014-04-01
Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D frameworkmore » with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.« less
A new viscosupplement based on partially hydrophobic hyaluronic acid: a comparative study.
Finelli, Ivana; Chiessi, Ester; Galesso, Devis; Renier, Davide; Paradossi, Gaio
2011-01-01
A novel partially hydrophobized derivative of hyaluronic acid (HYADD® 4), containing a low number of C16 side-chains per polysaccharide backbone, provides injectable hydrogels stabilized by side-chain hydrophobic interactions. The rheological properties of Hymovis®, a physical hydrogel based on the hyaluronic acid derivative HYADD® 4, were evaluated using as reference a solution of the parent natural polysaccharide, hyaluronic acid. The rheological measurements were performed both in flow and oscillation regimes at the physiological frequency values of the knee, typically spanning the range from 0.5 Hz (walking frequency) to 3 Hz (running frequency). Moreover, the viscoelastic features of Hymovis® were compared with the market-available viscosupplementation products in view of its use in joint diseases.The different behavior of the investigated materials in crossover frequency measurements and in structure recovery experiments can be explained on the basis of the structural and dynamic properties of the polymeric systems.
Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.
Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin
2007-05-18
Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.
Dielectric loss property of strong acids doped polyaniline (PANi)
NASA Astrophysics Data System (ADS)
Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar
2018-04-01
In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Qing-Jun; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com; Zhou, Lin-Xia
2015-07-15
Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H{sub 2}en)[Co{sub 3}(H{sub 2}zdn){sub 2}(ox)(H{sub 2}O){sub 2}] (1) and Cd{sub 2}(H{sub 2}zdn)(ox){sub 0.5}(H{sub 2}O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H{sub 5}zdn; oxalic acid=H{sub 2}ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O–P–O units of H{sub 5}zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with themore » temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property. - Graphical abstract: Linked by oxalate, two zoledronate-based metal–organic frameworks are synthesized, which exhibits the different frameworks. Magnetism and luminescent properties have been studied. The weak antiferromagnetic coupling is conducted in 1. - Highlights: • Compound 1 and 2 are first linked by oxalate anion based on zoledronic acid. • Compound 1 generates a classic “dia Diamond” (6{sup 6}) topology. • Compound 2 exhibits a (4{sup 4}·6{sup 2})(4{sup 4}·6{sup 6}) topology. • Magnetism and luminescent properties of 1 and 2 have been studied, respectively.« less
Tunable polymeric sorbent materials for fractionation of model naphthenates.
Mohamed, Mohamed H; Wilson, Lee D; Headley, John V
2013-04-04
The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was observed among the sorbents investigated.
NASA Astrophysics Data System (ADS)
Hachuła, Barbara; Jabłońska-Czapla, Magdalena; Flakus, Henryk T.; Nowak, Maria; Kusz, Joachim
2015-01-01
In the present work, the experimental and theoretical study of the nature of the inter-hydrogen bond interactions in two different carboxylic acids, 3-methylcinnamic acid (3MCA) and 4-phenylbutyric acid (4PBA), were reported. The polarized IR spectra of 3MCA and 4PBA crystals were recorded at the frequency ranges of the νOsbnd H and νOsbnd D bands. The spectral properties of 3MCA and 4PBA interpreted with the aid of the calculations based on the "strong-coupling" model. The differences in the spectral properties of the two different dimeric systems in the crystals provide a valuable information about the existence of a direct relationship between the crystal spectral properties in IR and the electronic structure of the molecular systems. In 3MCA crystals strong vibrational exciton interactions favor a "tail-to-head" (TH)-type Davydov coupling widespread via the π-electrons, whereas in 4PBA crystals a weak "through-space" (SS) exciton coupling is responsible for a "side-to-side"-type coupling. The relative contribution of each individual exciton coupling mechanism in IR spectra generation strongly depends on temperature and molecular electronic structure. The H/D isotopic recognition effect, depending on a non-random distribution of protons and deuterons in the crystal hydrogen bridges, was also analyzed.
Hachuła, Barbara; Jabłońska-Czapla, Magdalena; Flakus, Henryk T; Nowak, Maria; Kusz, Joachim
2015-01-05
In the present work, the experimental and theoretical study of the nature of the inter-hydrogen bond interactions in two different carboxylic acids, 3-methylcinnamic acid (3MCA) and 4-phenylbutyric acid (4PBA), were reported. The polarized IR spectra of 3MCA and 4PBA crystals were recorded at the frequency ranges of the νO-H and νO-D bands. The spectral properties of 3MCA and 4PBA interpreted with the aid of the calculations based on the "strong-coupling" model. The differences in the spectral properties of the two different dimeric systems in the crystals provide a valuable information about the existence of a direct relationship between the crystal spectral properties in IR and the electronic structure of the molecular systems. In 3MCA crystals strong vibrational exciton interactions favor a "tail-to-head" (TH)-type Davydov coupling widespread via the π-electrons, whereas in 4PBA crystals a weak "through-space" (SS) exciton coupling is responsible for a "side-to-side"-type coupling. The relative contribution of each individual exciton coupling mechanism in IR spectra generation strongly depends on temperature and molecular electronic structure. The H/D isotopic recognition effect, depending on a non-random distribution of protons and deuterons in the crystal hydrogen bridges, was also analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates.
Nwe, K; Bernardo, M; Regino, C A S; Williams, M; Brechbiel, M W
2010-08-15
In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N',N',N'',N''-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex(R) G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1, respectively. Molar relaxivity measured at pH 7.4, 22 degrees C, and 3T are comparable (29.5 vs 26.9 mM(-1)s(-1)), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t(1/2)=16 vs 29 min). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. Published by Elsevier Ltd.
Comparison of MRI properties between derivatized DTPA and DOTA gadolinium-dendrimer conjugates
Nwe, K.; Bernardo, M; Regino, C. A. S.; Williams, M; Brechbiel, M. W.
2010-01-01
In this report we directly compare the in vivo and in vitro MRI properties of gadolinium-dendrimer conjugates of derivatized acyclic diethylenetriamine-N,N’,N’,N’’, N’’-pentaacetic acid (1B4M-DTPA) and macrocyclic 1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid (C-DOTA). The metal-ligand chelates were pre-formed in alcohol prior to conjugation to the generation 4 PAMAM dendrimer (G4D), and the dendrimer-based agents were purified by Sephadex® G-25 column. The analysis and SE-HPLC data indicated chelate to dendrimer ratios of 30:1 and 28:1 respectively. Molar relaxivity measured at pH 7.4, 22°C, and 3T are comparable (29.5 vs. 26.9 mM−1s−1), and both conjugates are equally viable as MRI contrast agents based on the images obtained. The macrocyclic agent however exhibits a faster rate of clearance in vivo (t1/2 = 16 vs. 29 min.). Our conclusion is that the macrocyclic-based agent is the more suitable agent for in vivo use for these reasons combined with kinetic inertness associated with the Gd(III) DOTA complex stability properties. PMID:20663676
Horvat, Gordan; Stilinović, Vladimir; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav
2013-11-04
Complexation of alkali-metal cations with calix[4]arene secondary-amide derivative, 5,11,17,23-tetra(tert-butyl)-25,26,27,28-tetra(N-hexylcarbamoylmethoxy)calix[4]arene (L), in benzonitrile (PhCN) and methanol (MeOH) was studied by means of microcalorimetry, UV and NMR spectroscopies, and in the solid state by X-ray crystallography. The inclusion of solvent molecules (including acetonitrile, MeCN) in the calixarene hydrophobic cavity was also investigated. The classical molecular dynamics (MD) simulations of the systems studied were carried out. By combining the results obtained using the mentioned experimental and computational techniques, an attempt was made to get an as detailed insight into the complexation reactions as possible. The thermodynamic parameters, that is, equilibrium constants, reaction Gibbs energies, enthalpies, and entropies, of the investigated processes were determined and discussed. The stability constants of the 1:1 (metal:ligand) complexes measured by different methods were in very good agreement. Solution Gibbs energies of the ligand and its complexes with Na(+) and K(+) in methanol and acetonitrile were determined. It was established that from the thermodynamic point of view, apart from cation solvation, the most important reason for the huge difference in the stability of these complexes in the two solvents lay in the fact that the transfer of complex species from MeOH to MeCN was quite favorable. That could be at least partly explained by a more exergonic inclusion of the solvent molecule in the complexed calixarene cone in MeCN as compared to MeOH, which was supported by MD simulations. Molecular and crystal structures of the lithium cation complex of L with the benzonitrile molecule bound in the hydrophobic calixarene cavity were determined by single-crystal X-ray diffraction. As far as we are aware, for the first time the alkali-metal cation was found to be coordinated by the solvent nitrile group in a calixarene adduct. According to the results of MD simulations, the probability of such orientation of the benzonitrile molecule included in the ligand cone was by far the largest in the case of LiL(+) complex. Because of the favorable PhCN-Li(+) interaction, L was proven to have the highest affinity toward the lithium ion in benzonitrile, which was not the case in the other solvents examined (in acetonitrile, sodium complex was the most stable, whereas in methanol, complexation of lithium was not even observed). That could serve as a remarkable example showing the importance of specific solvent-solute interactions in determining the equilibrium in solution.
Ahmad, F.; Sheha, E.
2012-01-01
A solid acid membranes based on poly (vinyl alcohol) (PVA), sodium bromide (NaBr) and phosphoric acid (H3PO4) were prepared by a solution casting method. The morphological, IR, electrical and optical properties of the (PVA)0.7(NaBr)0.3(H3PO4)xM solid acid membranes where x = 0.00, 0.85, 1.7, 3.4, 5.1 M were investigated. The variation of film morphology was examined by scanning electron microscopy (SEM) studies. FTIR spectroscopy has been used to characterize the structure of polymer and confirms the complexation of phosphoric acid with host polymeric matrix. The temperature dependent nature of ionic conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The ionic conductivity at room temperature was found to be strongly depends on the H3PO4 concentration which it has been achieved to be of the order 4.3 × 10−3 S/cm at ambient temperature. Optical measurements showed a decrease in optical band gap and an increase in band tail width with the increase of phosphoric acid. The data shows that the (PVA)0.7(NaBr)0.3(H3PO4)xM solid acid membrane is promising for intermediate temperature phosphoric acid fuel cell applications. PMID:25685413
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Shabanian, Meisam
2011-04-01
Two new samples of polyamide-montmorillonite reinforced nanocomposites based on 4,4'-azodibenzoic acid were prepared by a convenient solution intercalation technique. Polyamide (PA) 4 as a source of polymer matrix was synthesized by the direct polycondensation reaction of 4,4'-azodibenzoic acid 2 with 4,4'-diamino diphenyl sulfone 3 in the presence of triphenyl phosphate (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PA-nanocomposite films 4a and 4b with 10 and 20% silicate particles were characterized by FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of clay dispersion and the interaction between clay and polymeric chains on the properties of nanocomposite films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.
Ultraviolet Photodissociation Spectroscopy of the Cold K⁺·Calix[4]arene Complex in the Gas Phase.
Inokuchi, Yoshiya; Soga, Kazuki; Hirai, Kenta; Kida, Motoki; Morishima, Fumiya; Ebata, Takayuki
2015-08-06
The cooling of ionic species in the gas phase greatly simplifies the UV spectrum, which is of special importance when studying the electronic and geometric structures of large systems, such as biorelated molecules and host-guest complexes. Many efforts have been devoted to achieving ion cooling with a cold, quadrupole Paul ion trap (QIT), but one problem was the insufficient cooling of ions (up to ∼30 K) in the QIT. In this study, we construct a mass spectrometer for the ultraviolet photodissociation (UVPD) spectroscopy of gas-phase cold ions. The instrument consists of an electrospray ion source, a QIT cooled with a He cryostat, and a time-of-flight mass spectrometer. With great care given to the cooling condition, we can achieve ∼10 K for the vibrational temperature of ions in the QIT, which is estimated from UVPD spectra of the benzo-18-crown-6 (B18C6) complex with a potassium ion, K(+)·B18C6. Using this setup, we measure a UVPD spectrum of cold calix[4]arene (C4A) complex with potassium ion, K(+)·C4A. The spectrum shows a very weak band and a strong one at 36018 and 36156 cm(-1), respectively, accompanied by many sharp vibronic bands in the 36000-36600 cm(-1) region. In the geometry optimization of the K(+)·C4A complex, we obtain three stable isomers: one endo and two exo forms. On the basis of the total energy and UV spectral patterns predicted by density functional theory calculations, we attribute the structure of the K(+)·C4A complex to the endo isomer (C2 symmetry), in which the K(+) ion is located inside the cup of C4A. The vibronic bands of K(+)·C4A at 36 018 and 36 156 cm(-1) are assigned to the S1(A)-S0(A) and S2(B)-S0(A) transitions of the endo isomer, respectively.
NASA Astrophysics Data System (ADS)
van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter
2010-02-01
Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.
1,3,4-Thiadiazole-based diamides: Synthesis and complexation properties
NASA Astrophysics Data System (ADS)
Łukasik, Natalia; Luboch, Elżbieta; Chojnacki, Jarosław; Wagner-Wysiecka, Ewa
2017-10-01
Aromatic diamides, derivative of 2,6-pyridinedicarboxylic acid and isophthalic acid, bearing 1,3,4-thiadiazole residue were prepared with satisfactory yields in conventional procedures and microwave stimulated reactions. X-ray structure of N,N‧-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide (2) DMSO solvate (2·DMSO) was described. Selective zinc(II), lanthanum(III), terbium(III) and L-tyrosine recognition was found for N,N‧-bis(1,3,4-thiadiazol-2-yl)-2,6-pyridinedicarboxamide in DMSO and its mixture with water. The IDA (Indicator Displacement Assay) system for metal cations sensing was proposed. The binding properties of 2 were compared with newly synthesized N,N‧-bis(1,3,4-thiadiazol-2-yl)-1,3-benzenedicarboxamide 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, B.; Jacques, V.; Shivanyuk, A.
The lanthanide and Th{sup 4+} complexes with calix[4]arene ligands substituted either on the narrow or at the wide rim by four coordinating groups behave totally differently as shown by an NMR investigation of the dia- and paramagnetic complexes. Solutions of complexes were prepared by reacting anhydrous metal perchlorate salts with the ligands in dry acetonitrile (CAUTION). Relaxation time T{sub 1} titrations of acetonitrile solutions of Gd{sup 3+} by calixarenes indicate that ligands substituted on the narrow rim form stable 1:1 complexes whether they feature four amide groups (1) or four phosphine oxide functions. In contrast, a ligand substituted by fourmore » (carbamoylmethyl)-diphenylphosphine oxide moieties on the wide rim (3) and its derivatives form polymeric species even at a 1:1 ligand/metal concentration ratio. Nuclear magnetic relaxation dispersion (NMRD) curves (relaxation rates 1/T{sub 1} vs magnetic field strength) of Gd{sup 3+}, Gd{sup 3+}{center_dot}1 and Gd{sup 3+}{center_dot}3 perchlorates in acetonitrile are analyzed by an extended version of the Solomon-Bloembergen-Morgan equations. A comparison of the calculated rotational correlation times {tau}{sub r} shows that ligand 3 forms oligomeric Gd{sup 3+} species. The chelates of ligand 1 are axially symmetric (C{sub 4} symmetry), and the paramagnetic shifts induced by the Yb{sup 3+} ion are accounted for quantitatively. The addition of water or of nitrate ions does not modify the geometry of the complex. The metal chelates of 3 and its derivatives adopt a C{sub 2} symmetry, and the paramagnetic shifts are interpreted on a semiquantitative basis only. Water and NO{sub 3}{sup {minus}} ions completely labilize the complexes of the heavy lanthanides. The very high selectivity of ligand 3 through the lanthanide series stems from a complex interplay of factors.« less
Optical Sensing Properties of Pyrene-Schiff Bases toward Different Acids.
Babgi, Bandar A; Alzahrani, Asma
2016-07-01
A set of (4-substituted-phenyl)-pyren-1-ylmethylene-amine (PMA) was prepared by the reaction of pyrene-1-carboxaldehyde and the corresponding 4-substituted aniline. The structure of the PMA compounds were confirmed by spectroscopic data (IR, (1)HNMR, (13)CNMR, ISI-MS and elemental analysis. The structure of (4-bromo-phenyl)-pyren-1-ylmethylene-amine (BrPMA) was further confirmed by the single X-ray crystallography. The absorption and emission spectroscopic behaviors were investigated in variant acids. The compounds showed dramatic spectroscopic changes upon acidifying with strong acids and negligible effects when weak acids are used in the acidifications. Hence, the PMA compounds can be used as sensors to distinguish between weak and strong acids.
Charge-switching amino acids-based cationic lipids for efficient gene delivery.
Zheng, Li-Ting; Yi, Wen-Jing; Liu, Qiang; Su, Rong-Chuan; Zhao, Zhi-Gang
2015-12-15
A series of charge-switching amino acids-based cationic lipids 4a-4e bearing a benzyl ester at the terminus of the acyl chain, but differing in the polar-head group were prepared. The physicochemical properties of these lipids, including size, zeta potential and cellular uptake of the lipoplexes formed from with DNA, as well as the transfection efficiency (TE), were investigated. The results showed that the chemical structure of the cationic head-group clearly affects the physicochemical parameters of the amino acid-based lipids and especially the TE. The selected lipid, 4c gave 2.1 times higher TE than bPEI 25k in the presence of 10% serum in HeLa cells, with little toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li
2015-12-15
Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were alsomore » investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.« less
Intracellular pH regulation by acid-base transporters in mammalian neurons
Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.
2014-01-01
Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239
The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption.
van Vliet, Stephan; Burd, Nicholas A; van Loon, Luc J C
2015-09-01
Clinical and consumer market interest is increasingly directed toward the use of plant-based proteins as dietary components aimed at preserving or increasing skeletal muscle mass. However, recent evidence suggests that the ingestion of the plant-based proteins in soy and wheat results in a lower muscle protein synthetic response when compared with several animal-based proteins. The possible lower anabolic properties of plant-based protein sources may be attributed to the lower digestibility of plant-based sources, in addition to greater splanchnic extraction and subsequent urea synthesis of plant protein-derived amino acids compared with animal-based proteins. The latter may be related to the relative lack of specific essential amino acids in plant- as opposed to animal-based proteins. Furthermore, most plant proteins have a relatively low leucine content, which may further reduce their anabolic properties when compared with animal proteins. However, few studies have actually assessed the postprandial muscle protein synthetic response to the ingestion of plant proteins, with soy and wheat protein being the primary sources studied. Despite the proposed lower anabolic properties of plant vs. animal proteins, various strategies may be applied to augment the anabolic properties of plant proteins. These may include the following: 1) fortification of plant-based protein sources with the amino acids methionine, lysine, and/or leucine; 2) selective breeding of plant sources to improve amino acid profiles; 3) consumption of greater amounts of plant-based protein sources; or 4) ingesting multiple protein sources to provide a more balanced amino acid profile. However, the efficacy of such dietary strategies on postprandial muscle protein synthesis remains to be studied. Future research comparing the anabolic properties of a variety of plant-based proteins should define the preferred protein sources to be used in nutritional interventions to support skeletal muscle mass gain or maintenance in both healthy and clinical populations. © 2015 American Society for Nutrition.
Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli
2016-08-10
Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu(3+) nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu(3+) are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb(3+)/Er(3+), Yb(3+)/Tm(3+) nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb(3+)/Er(3+) nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K(-1) at 285 K.
Li, Anming; Xu, Dekang; Lin, Hao; Yang, Shenghong; Shao, Yuanzhi; Zhang, Yueli
2016-01-01
Pure tetragonal phase, uniform and well-crystallized sodium gadolinium molybdate (NaGd(MoO4)2) nanocrystals with diverse morphologies, e.g. nanocylinders, nanocubes and square nanoplates have been selectively synthesized via oleic acid-mediated hydrothermal method. The phase, structure, morphology and composition of the as-synthesized products are studied. Contents of both sodium molybdate and oleic acid of the precursor solutions are found to affect the morphologies of the products significantly, and oleic acid plays a key role in the morphology-controlled synthesis of NaGd(MoO4)2 nanocrystals with diverse morphologies. Growth mechanism of NaGd(MoO4)2 nanocrystals is proposed based on time-dependent morphology evolution and X-ray diffraction analysis. Morphology-dependent down-shifting photoluminescence properties of NaGd(MoO4)2: Eu3+ nanocrystals, and upconversion photoluminescence properties of NaGd(MoO4)2: Yb3+/Er3+ and Yb3+/Tm3+ nanoplates are investigated in detail. Charge transfer band in the down-shifting excitation spectra shows a slight blue-shift, and the luminescence intensities and lifetimes of Eu3+ are decreased gradually with the morphology of the nanocrystals varying from nanocubes to thin square nanoplates. Upconversion energy transfer mechanisms of NaGd(MoO4)2: Yb3+/Er3+, Yb3+/Tm3+ nanoplates are proposed based on the energy level scheme and power dependence of upconversion emissions. Thermometric properties of NaGd(MoO4)2: Yb3+/Er3+ nanoplates are investigated, and the maximum sensitivity is determined to be 0.01333 K−1 at 285 K. PMID:27506629
Ionic supramolecular networks fully based on chemicals coming from renewable sources.
Aboudzadeh, Ali; Fernandez, Mercedes; Muñoz, Maria Eugenia; Santamaría, Antxon; Mecerreyes, David
2014-02-01
New supramolecular ionic networks are synthesized by proton transfer reaction between a bio-based fatty diamine molecule (Priamine 1074) and a series of naturally occurring carboxylic acids such as malonic acid, citric acid, tartaric acid, and 2,5-furandicarboxylic acid. The resulting solid soft material exhibits a thermoreversible transition becoming a viscoelastic liquid at high temperatures. All the networks show an elastic behavior at low temperatures/high frequencies, with elastic modulus values ranging from 4.5 × 10(6) to 4.5 × 10(7) Pa and soft network to liquid transitions T(nl) between -10 and 60 °C. The supramolecular ionic network based on cationic Priamine 1074 and anionic citrate shows promising self-healing properties at room temperature as well as relatively high ionic conductivity values close to 10(-6) S cm(-1). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biodegradable Zein-Based Blend Films: Structural, Mechanical and Barrier Properties
Filho, José Francisco Lopes
2015-01-01
Summary The effect of adding a hydrocolloid on the structural, mechanical and barrier properties of zein-based blend films is evaluated. Zein-oleic acid blend film with added xanthan gum (Z-OA-XG) showed higher water solubility (13.09%) and opacity (8.49 AU/mm) than zein-oleic acid (Z-OA) film (10.80% and 5.19 AU/mm, respectively). Furthermore, Z-OA film had greater flexibility with lower Young’s Modulus (YM=5.02 MPa) and higher elongation at break (η=10.62%); nonetheless, it was less resistant to tension (tensile strength σ=8.5 MPa) than Z-OA-XG film, which showed YM, η and σ of 6.38 MPa, 6.66% and 10.485 MPa, respectively. Both films had glossy and homogeneous structure with comparable water vapour and oxygen barrier properties around 4.39·10–11 and 1.82·10–13 g/(Pa·s·m), respectively. Based on that, xanthan gum structure influenced mainly mechanical and light barrier properties of zein-oleic acid blend films. PMID:27904368
NASA Astrophysics Data System (ADS)
Álvarez-Torrellas, S.; Martin-Martinez, M.; Gomes, H. T.; Ovejero, G.; García, J.
2017-08-01
In this work several activated carbons showing different textural and chemical properties were obtained by chemical and physical activation methods, using a lignocellulosic material (peach stones) as precursor. The activated carbon resulting from the chemical activation, namely as CAC, revealed the best textural properties (SBET = 1521 m2 g-1, pore volume = 0.90 cm3 g-1) and an acidic character. It was found that the activated carbon obtained at 300 °C (under air atmosphere, PAC_air), and those synthesized at 750 °C in presence of N2 flow with bubbling of water/12 M H3PO4 solution (PAC_N2(H2O)/PAC_N2(H3PO4)), respectively, revealed worse textural properties, compared to CAC. Two functionalization treatments, by using sulphuric acid at boiling temperature (PACS) and nitric acid-urea-N2 heating at 800 °C (PAC-NUT), were applied to PAC_air, in order to enhance the adsorption ability of the carbon material. Several techniques were carried out to characterize the physical and chemical properties of the obtained carbon materials. The modification treatments had influence on the carbon surface properties, since the nitric acid-urea-N2 heating treatment led to a carbon material with highly-improved properties (SBET = 679 m2 g-1, pHIEP = 5.3). Accordingly, the original and modified-carbon materials were tested as adsorbents to remove 4-nitrophenol (4-NP), assessing batch and fixed-bed column adsorption tests. PAC-NUT carbon offered the best adsorption behavior (qe = 234 mg g-1), showing a high ability for the removal of 4-NP from water.
Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto
2017-01-01
Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging. PMID:28091590
NASA Astrophysics Data System (ADS)
Zairov, Rustem; Mustafina, Asiya; Shamsutdinova, Nataliya; Nizameev, Irek; Moreira, Beatriz; Sudakova, Svetlana; Podyachev, Sergey; Fattakhova, Alfia; Safina, Gulnara; Lundstrom, Ingemar; Gubaidullin, Aidar; Vomiero, Alberto
2017-01-01
Polyelectrolyte-coated nanoparticles consisting of terbium and gadolinium complexes with calix[4]arene tetra-diketone ligand were first synthesized. The antenna effect of the ligand on Tb(III) green luminescence and the presence of water molecules in the coordination sphere of Gd(III) bring strong luminescent and magnetic performance to the core-shell nanoparticles. The size and the core-shell morphology of the colloids were studied using transmission electron microscopy and dynamic light scattering. The correlation between photophysical and magnetic properties of the nanoparticles and their core composition was highlighted. The core composition was optimized for the longitudinal relaxivity to be greater than that of the commercial magnetic resonance imaging (MRI) contrast agents together with high level of Tb(III)-centered luminescence. The tuning of both magnetic and luminescent output of nanoparticles is obtained via the simple variation of lanthanide chelates concentrations in the initial synthetic solution. The exposure of the pheochromocytoma 12 (PC 12) tumor cells and periphery human blood lymphocytes to nanoparticles results in negligible effect on cell viability, decreased platelet aggregation and bright coloring, indicating the nanoparticles as promising candidates for dual magneto-fluorescent bioimaging.
Fuentealba, Claudia; Gálvez, Lena; Cobos, Ariel; Olaeta, José Antonio; Defilippi, Bruno G; Chirinos, Rosana; Campos, David; Pedreschi, Romina
2016-01-01
Pouteria lucuma is an Andean fruit from pre-Incas' times highly appreciated due to its characteristic flavor and taste in its homeland. We characterized the primary (e.g., sugars and organic acids), and secondary (e.g., phenolics and carotenoids) and in vitro antioxidant and antihyperglycemic properties of Rosalia, Montero and Leiva 1 lucuma biotypes. Significant differences were found in these metabolites and functional properties related to biotype and ripeness stage. Results showed significant amounts of sugars (119.4-344 mg total sugars g(-1)DW) and organic acids (44.4-30.0 mg g(-1)DW) and functional associated compounds such as ascorbic acid (0.35-1.07 mg g(-1)DW), total phenolics (0.7-61.6 mg GAE g(-1)DW) and total carotenoids (0.22-0.50 mg β-carotene g(-1)DW). Important in vitro antioxidant and antihyperglycemic properties were found and provide the base for the standardization of lucuma harvest and postharvest focused not only on the enhancement of sensory but functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong
2018-02-01
Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.
Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R
NASA Astrophysics Data System (ADS)
Bevziuk, Kateryna; Chebotarev, Alexander; Snigur, Denys; Bazel, Yaroslav; Fizer, Maksym; Sidey, Vasyl
2017-09-01
The acid-base properties of Allura Red AC and Ponceau 4R azo dyes were investigated by spectrophotometric, potentiometric and tristimulus colourimetry methods. Ionization constants of the functional groups were also found in aqueous solutions of the dyes. It was discovered that the wavelength of the maximum light absorption of Allura Red AC and Ponceau 4R solutions does not change significantly over a wide pH range. As a result, spectrophotometric methods yield little information for assessing the acid-base properties of the dyes. It was shown with a help of the tristimulus colourimetry method that it is possible to determine the ionization constants of the functional groups of the dyes even when there is significant overlap of the absorption bands of the acid-base forms. The basic spectrophotometric characteristics of the main forms of Allura Red AC and Ponceau 4R in water and organic solvents were calculated. The molar absorbance coefficients of azo forms were shown to increase as the dielectric permittivity of the solvent increases. It was determined that in aqueous solution the dyes exist in the azo form over a wide range of acidity - pH 2-12 for Allura Red AC (λmax = 505 nm; ελ = 3.1·104 dm3 mol-1 cm-1) and 1-13 for Ponceau 4R (λmax = 510 nm; ελ = 1.7·10-4 dm3 mol-1 cm-1). The most probable protonation/deprotonation schemes were theoretically determined for Allura Red AC and Ponceau 4R using DFT calculations.
Probing the inner space of salt-bridged calix[5]arene capsules.
Brancatelli, Giovanna; Gattuso, Giuseppe; Geremia, Silvano; Notti, Anna; Pappalardo, Sebastiano; Parisi, Melchiorre F; Pisagatti, Ilenia
2014-05-02
A combined DOSY and XRD study indicates that a carboxylcalix[5]arene receptor is able to encapsulate α,ω-diamines of appropriate length by means of a proton-transfer-mediated recognition process followed by salt-bridge-assisted bis-endo-complexation.
Nanowire field-effect transistors for gas sensor applications
NASA Astrophysics Data System (ADS)
Constantinou, Marios
Sensing BTEX (Benzene, Ethylbenzene, Toluene, Xylene) pollutants is of utmost importance to reduce health risk and ensure public safety. The lack of sensitivity and selectivity of the current gas sensors and the limited number of available technologies in the field of BTEX-sensing raises the demand for the development of high-performance gas sensors for BTEX applications. The scope of this thesis is the fabrication and characterisation of high-quality field-effect transistors (FETs), with functionalised silicon nanowires (SiNWs), for the selective sensing of benzene vs. other BTEX gases. This research addresses three main challenges in SiNW FET-sensor device development: i) controllable and reproducible assembly of high-quality SiNWs for FET sensor devices using the method of dielectrophoresis (DEP), ii) almost complete elimination of harmful hysteresis effect in the SiNW FET current-voltage characteristics induced by surface states using DMF solvent, iii) selective sensing of benzene with up to ppb range of sensitivity using calix[4]arene-derivatives. It is experimentally demonstrated that frequency-controlled DEP is a powerful tool for the selection and collection of semiconducting SiNWs with advanced electrical and morphological properties, from a poly-disperse as-synthesised NWs. The DEP assembly method also leads to a controllable and reproducible fabrication of high-quality NW-based FETs. The results highlight the superiority of DEP, performed at high signal frequencies (5-20 MHz) to selectively assemble only high-quality NWs which can respond to such high DEP frequencies. The SiNW FETs, with NWs collected at high DEP frequencies, have high mobility (≈50 cm2 V-1 s-1), low sub-threshold-swing (≈1.26 V/decade), high on-current (up to 3 mA) and high on/off ratio (106-107). The DEP NW selection is also demonstrated using an industrially scalable method, to allow establishing of NW response characteristics to different DEP frequencies in a very short time window of about 60 seconds. The choice of solvent for the dispersion of the SiNW for the DEP process demonstrates a dramatic impact on their surface trap, with DMF solvent acting as a mild oxidising agent on the NW surface shell. This surface state passivation technique resulted in the fabrication of high-quality, hysteresis-free NW FET transducers for sensor applications. Finally, the proof-of-concept SiNW FET transducer decorated with calix[4]arene-derivative gas receptors exhibits selective detection of benzene vs. other BTEX gases up to 30 ppm concentrations, and up to sub-ppm benzene concentration. The demonstrated NW-sensors are low power and compact, and therefore can be easily mounted on a mobile device, providing instantaneous determination of hazardous gases in the surrounding atmosphere. The methodologies developed in this thesis, have a high potential to make a breakthrough in low-cost, selective gas sensors, which can be fabricated in line with printed and flexible electronic approaches.
Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong
2016-07-01
In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Acid Oxidation on the Dispersion Property of Multiwalled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Goh, P. S.; Ismail, A. F.; Aziz, M.
2009-06-01
A means of dispersion of multiwalled carbon nanotube (MWCNT) via mixed acid (HNO3 and H2SO4) oxidation with different treatment durations was investigated through the solubility study of the treated carbon nanotubes in some common solvents. Fourier transformed infrared (FTIR) characterization of the reaction products revealed that the surface of MWCNTs was successfully functionalized with surface acidic groups. The acid-base titration demonstrated that the amount of surface acidic groups increased in parallel with the refluxing duration. The acid modified MWCNTs were found to be well dispersed in polar solvents, such as ethanol and water due to the presence of the hydrophilic acid functional groups on the surface of raw MWCNTs. Such chemical modification of carbon nanotube properties will pave the way towards the realistic applications in the nanotechnology world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egli, Martin; Pallan, Pradeep S.; Pattanayek, Rekha
An experimental rationalization of the structure type encountered in DNA and RNA by systematically investigating the chemical and physical properties of alternative nucleic acids has identified systems with a variety of sugar-phosphate backbones that are capable of Watson-Crick base pairing and in some cases cross-pairing with the natural nucleic acids. The earliest among the model systems tested to date, (4{prime} {yields} 6{prime})-linked oligo(2{prime},3{prime}-dideoxy-{beta}-d-glucopyranosyl)nucleotides or homo-DNA, shows stable self-pairing, but the pairing rules for the four natural bases are not the same as those in DNA. However, a complete interpretation and understanding of the properties of the hexapyranosyl (4{prime} {yields} 6{prime})more » family of nucleic acids has been impeded until now by the lack of detailed 3D-structural data. We have determined the crystal structure of a homo-DNA octamer. It reveals a weakly twisted right-handed duplex with a strong inclination between the hexose-phosphate backbones and base-pair axes, and highly irregular values for helical rise and twist at individual base steps. The structure allows a rationalization of the inability of allo-, altro-, and glucopyranosyl-based oligonucleotides to form stable pairing systems.« less
Mary, Y Sheena; Panicker, C Yohannan; Varghese, Hema Tresa; Van Alsenoy, Christian; Procházková, Markéta; Sevčík, Richard; Pazdera, Pavel
2014-01-01
We report the vibrational spectral analysis was carried out using FT-IR and FT-Raman spectroscopy for 1-(pyrid-4-yl)piperazine (PyPi). Single crystals of PyPi suitable for X-ray structural analysis were obtained. The acid-base properties are also reported. PyPi supported on a weak acid cation-exchanger in the single protonated form and this system can be used efficiently as the solid supported analogue of 4-N,N-dimethyl-aminopyridine. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule and with the molecular electrostatic potential map was applied for the reactivity assessment of PyPi molecule toward proton, electrophiles and nucleopholes as well. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The calculated first hyperpolarizability of PyPi is 17.46 times that of urea. Copyright © 2013 Elsevier B.V. All rights reserved.
Simple trigonometry on computed tomography helps in planning renal access.
Bilen, Cenk Yücel; Koçak, Burak; Kitirci, Gürcan; Danaci, Murat; Sarikaya, Saban
2007-08-01
To retrospectively assess the usefulness of the measurements on preoperative computed tomography (CT) of patients with urinary stone disease for planning the access site using vertical angulation of the C-arm. Of the patients who underwent percutaneous nephrolithotomy from November 2001 to October 2006, 41 patients with superior calix access had undergone preoperative CT. The depth of the target stone (y) and the vertical distance from that point to the first rib free slice (x) were measured on CT. The limit of the ratio of x over y was accepted as 0.58, with ratios below that indicating that infracostal access could be achieved by vertical angulation of the C-arm. We achieved an approach to the superior calix through an infracostal access in 28 patients. The preoperative trigonometric study on CT predicted 24 of them. The stone-free rate was 92.6%, and no chest-related complications developed. Simple trigonometry on CT of the patients with complex stones could help endourologists in planning renal access.
Surendra Babu, Ayenampudi; Parimalavalli, Ramanathan; Rudra, Shalini Gaur
2015-09-01
Physicochemical properties of citric acid treated sweet potato starches were investigated in the present study. Sweet potato starch was hydrolyzed using citric acid with different concentrations (1 and 5%) and time periods (1 and 11 h) at 45 °C and was denoted as citric acid treated starch (CTS1 to CTS4) based on their experimental conditions. The recovery yield of acid treated starches was above 85%. The CTS4 sample displayed the highest amylose (around 31%) and water holding capacity its melting temperature was 47.66 °C. The digestibility rate was slightly increased for 78.58% for the CTS3 and CTS4. The gel strength of acid modified starches ranged from 0.27 kg to 1.11 kg. RVA results of acid thinned starches confirmed a low viscosity profile. CTS3 starch illustrated lower enthalpy compared to all other modified starches. All starch samples exhibited a shear-thinning behavior. SEM analysis revealed that the extent of visible degradation was increased at higher hydrolysis time and acid concentration. The CTS3 satisfied the criteria required for starch to act as a fat mimetic. Overall results conveyed that the citric acid treatment of sweet potato starch with 5% acid concentration and 11h period was an ideal condition for the preparation of a fat replacer. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
The Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-701, MCU-16-702 and MCU-16-703), pulled on 05/23/2016, and another set of SHT samples (MCU-16-710, MCU-16-711, and MCU-16-712) were pulled on 05/28/2016 after the solvent was superwashed with 300 mM sodium hydroxide for analysis. Samples MCU-16-701, MCU-16-702, and MCU-16-703 were combined into one sample (MCU-16-701-702-703) and samples MCU-16-710, MCU- 16-711, and MCU-16-712 were combined into one sample (MCU-16-710-711-712). Of the two composite samples MCU-16-710-711-712 represents the current chemical state of the solvent at MCU. All analytical conclusions are based on the chemical analysis of MCU-16-710-711-712. Theremore » were no chemical differences between MCU-16-701-702-703 and superwashed MCU-16-710-711-712. Analysis of the composited sample MCU-16-710-712-713 indicated the Isopar™L concentration is above its nominal level (102%). The modifier (CS-7SB) is 16% below its nominal concentration, while the TiDG and MaxCalix concentrations are at and above their nominal concentrations, respectively. The TiDG level has begun to decrease, and it is 7% below its nominal level as of May 28, 2016. Based on this current analysis, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended.« less
Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry
NASA Astrophysics Data System (ADS)
Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel
2016-05-01
Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.
The acid properties of dodecasubstituted porphyrins with a chemically active NH bond
NASA Astrophysics Data System (ADS)
Berezin, D. B.; Ivanova, Yu. B.; Sheinin, V. B.
2007-12-01
The NH acid properties of nonplanar dodecasubstituted porphyrins (H2P) were studied by the spectropotentiometric and spectrophotometric methods and by semiempirical quantum-chemical calculations. The reaction of H2P with a weak organic base DMSO proceeded with the formation of the H-associated form DMSO⋯H⋯PH or DMSO⋯H⋯P⋯H⋯DMSO. Strong bases KOH[222] and [NR4]OH reacted with the formation of mono-(HP-) or dianionic (P2-) forms. An increase in NH acidity along the series tetraphenylporphin < tetraphenyltetrabenzoporphin < β-octaethyltetraphenylporphin < dodecaphenylporphin < β-octabromotetraphenylporphin was to a great extent caused by the polarization of molecules, which accompanied saddle-nonplanar distortions of their structure, rather than β-substituent electronic effects. The quantitative characteristics obtained using the suggested system of criteria of the chemical activity of NH bonds (1H NMR spectral, kinetic, and quantum-chemical criteria) linearly correlated with H2P acid dissociation constants and could be used for alternative estimation of the acidity of tetrapyrrole compounds.
You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun
2018-05-25
Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the physicochemical properties/biological function. In this timely report, an arginine based poly(ester amide) (Arg-PEA) library was prepared with finely tunable structure to systematically investigate the structure-property relationships of polycations for nucleic acid delivery. The results revealed that slight change of Arg-PEA structure could finely tune the physicochemical property (such as hydrophobicity), which subsequently affect the size and zeta potential of Arg-PEA/nucleic acid nanoparticles(NPs), and finally regulate the resulting transfection or silencing outcomes. Further study of Arg-PEA/CpG NPs indicated that the polymer structure could precisely regulate immuno response of CpG, providing new potential nano-immunotherapy strategy. In vitro evaluations confirmed that the NPs showed satisfied delivery performance for a variety types of nucleic acids. Therefore, these studies provide comprehensive information of Arg-PEA structure-property relationship, and the tunable properties of Arg-PEAs make them promising candidates for nucleic acid delivery and other biomedical applications. Overall, we have shown enough significance and novelty in terms of nucleic acid delivery, biomaterials, pharmaceutical science and nanomedicine. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long
Three cadmium coordination polymers, [Cd(bismip)]{sub n} (1), {[Cd(bismip)(phen)]·H_2O}{sub n} (2) and {[Cd_2(bismip)_2(4,4′-bipy)]·2H_2O}{sub n} (3) (H{sub 2}bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd{sub 4}(bismip){sub 3}] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·8{sup 2})(4{sup 2}·8{sup 4}) Schläfli symbol in which 2D layers are interlinked by 4,4′-bipy ligands. The diverse structures of compounds 1–3 indicate that the auxiliary ligandsmore » have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance. - Graphical abstract: Three cadmium coordination polymers with different architectures based on 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid have been prepared. Their photoluminescent properties were also investigated. - Highlights: • Three new Cd(II) Cps were synthesized based on H{sub 2}bismip. • Compounds 1 and 3 show 3D networks and 2 exhibits a 1D chain. • Compoud 3 exhibits good catalytic activity of methylene blue photodegradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ligang; University of Chinese Academy of Sciences, Beijing 100049; Liu, Di
2014-11-15
Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant undermore » visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.« less
NASA Astrophysics Data System (ADS)
Elvistia Firdaus, Flora
2016-04-01
The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.
Muruve, Noah G G; Cheng, Y Frank; Feng, Yuanchao; Liu, Tao; Muruve, Daniel A; Hassett, Daniel J; Irvin, Randall T
2016-11-01
In this work, PEGylated D-amino acid K122-4 peptide (D-K122-4-PEG), derived from the type IV pilin of Pseudomonas aeruginosa, coated on 304 stainless steel was investigated for its corrosion resistant properties in a sodium chloride solution by various electrochemical measurements, surface characterization and molecular dynamics simulation. As a comparison, stainless steel electrodes coated with non-PEGylated D-amino acid retroinverso peptide (RI-K122-4) and D-amino acid K122-4 peptide (D-K122-4) were used as control variables during electrochemical tests. It was found that the D-K122-4-PEG coating is able to protect the stainless steel from corrosion in the solution. The RI-K122-4 coating shows corrosion resistant property and should be investigated further, while the D-K122-4 peptide coating, in contrast, shows little to no effect on corrosion. The morphological characterizations support the corrosion resistance of D-K122-4-PEG on stainless steel. The adsorption of D-K122-4 molecules occurs preferentially on Fe2O3, rather than Cr2O3, present on the stainless steel surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu
2010-07-28
Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Bronsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa congruent with 1) as a model for excited-state HPTS( *) (pKa congruent with 1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.
Ali, Sk Musharaf
2017-08-22
Density functional theory in conjunction with COSMO and COSMO-RS solvation models employing dispersion correction (DFT-D3) has been applied to gain an insight into the complexation of Eu 3+ /Am 3+ with diglycolamide (DGA) and calix[4]arene appended diglycolamide (CAL4DGA) in ionic liquids by studying structures, energetics, thermodynamics and population analysis. The calculated Gibbs free energy for both Eu 3+ and Am 3+ ions with DGA was found to be smaller than that with CAL4DGA. The entropy of complexation was also found to be reduced to a large extent with DGA compared to complexation with CAL4DGA. The solution phase free energy was found to be negative and was higher for Eu 3+ ion. The entropy of complexation was not only found to be further reduced but also became negative in the case of DGA alone. Though the entropy was found to be negative it could not outweigh the high negative enthalpic contribution. The same trend was observed in the solution where the free energy of extraction, ΔG, for Eu 3+ ions was shown to be higher than that for Am 3+ ions towards free DGA. But the values of ΔG and ΔΔG(= ΔG Eu -ΔG Am ) were found to be much higher with CAL4DGA (-12.58 kcal mol -1 ) in the presence of nitrate ions compared to DGA (-1.69 kcal mol -1 ) due to enhanced electronic interaction and positive entropic contribution. Furthermore, both the COSMO and COSMO-RS models predict very close values of ΔΔΔG (= ΔΔG CAL4DGA - ΔΔG nDGA ), indicating that both solvation models could be applied for evaluating the metal ion selectivity. The value of the reaction free energy was found to be higher after dispersion correction. The charge on the Eu and Am atoms for the complexes with DGA and CAL4DGA indicates the charge-dipole type interaction leading to strong binding energy. The present theoretical results support the experimental findings and thus might be of importance in the design of functionalized ligands.
Miszczyk, Patrycja; Wieczorek, Dorota; Gałęzowska, Joanna; Dziuk, Błażej; Wietrzyk, Joanna; Chmielewska, Ewa
2017-02-08
The reaction of diethyl phosphite with triethyl orthoformate and a primary amine followed by hydrolysis is presented, and the reaction was suitable for the preparation of (aminomethylene)bisphosphonates. 3-Amino-1,2,4-triazole was chosen as an interesting substrate for this reaction because it possesses multiple groups that can serve as the amino component in the reaction-namely, the side-chain and triazole amines. This substrate readily forms 1,2,4-triazolyl-3-yl-aminomethylenebisphosphonic acid (compound 1 ) as a major product, along with N -ethylated bisphosphonates as side products. The in vitro antiproliferative effects of the synthesized aminomethylenebisphosphonic acids against J774E macrophages were determined. These compounds exhibit similar activity to zoledronic acid and higher activity than incadronic acid.
NASA Astrophysics Data System (ADS)
Li, Hong-Juan; Wang, Lei; Zhao, Juan-Juan; Sun, Ju-Feng; Sun, Ji-Liang; Wang, Chun-Hua; Hou, Gui-Ge
2015-01-01
Based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A) and N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (B) with coformers, three novel macrocyclic co-crystals, (A)ṡ(resorcinol) (1), (A)ṡ(1,3,5-benzenetriol) (2), (B)2ṡ(1,3,5-benzenetriol)2 (3) and three chain co-crystals, (A)ṡ(hydroquinone) (4), (A)ṡ(isophthalic acid) (5), (B)ṡ(isophthalic acid) (6) have been synthesized and structurally characterized by IR, 1H NMR and X-ray crystal structure analysis. Structural analysis indicates that four-component macrocycles in 1-3 are generated from "clip-like" resorcinol templates and building blocks, while 4-6 show infinite H-bonding chains. In addition, the luminescent properties of A, B and 1-6 are investigated primarily in the solid state. Compared with free building blocks, 1-6 are blue-shifted 55-60 nm with decreasing emission intensities in spite of the enhancement in 6. The change of luminescent properties might be caused mainly by incorporation of coformers into co-crystals, including H-bonds, molecular conformations, arranging dispositions and π-π characteristics. It might have potential applications for crystal engineering to construct patentable crystals with interesting luminescent properties.
Cormode, David P; Evans, Andrew J; Davis, Jason J; Beer, Paul D
2010-07-28
A disulfide functionalized bis-ferrocene urea acyclic receptor and disulfide functionalized mono- and bis-ferrocene amide and urea appended upper rim calix[4]arene receptors were prepared for the fabrication of SAM redox-active anion sensors. 1H NMR and diffusive voltammetric anion recognition investigations revealed each receptor to be capable of complexing and electrochemically sensing anions via cathodic perturbations of the respective receptor's ferrocene/ferrocenium redox couple. SAMs of a ferrocene urea receptor 3 and ferrocene urea calixarene receptor 17 exhibited significant enhanced magnitudes of cathodic response upon anion addition as compared to observed diffusive perturbations. SAMs of 17 were demonstrated to sense the perrhenate anion in aqueous solutions.
Horvat, Gordan; Stilinović, Vladimir; Hrenar, Tomica; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav
2012-06-04
The calix[4]arene secondary-amide derivative L was synthesized, and its complexation with alkali-metal cations in acetonitrile (MeCN) was studied by means of spectrophotometric, NMR, conductometric, and microcalorimetric titrations at 25 °C. The stability constants of the 1:1 (metal/ligand) complexes determined by different methods were in excellent agreement. For the complexation of M(+) (M = Li, Na, K) with L, both enthalpic and entropic contributions were favorable, with their values and mutual relations being quite strongly dependent on the cation. The enthalpic and overall stability was the largest in the case of the sodium complex. Molecular and crystal structures of free L, its methanol and MeCN solvates, the sodium complex, and its MeCN solvate were determined by single-crystal X-ray diffraction. The inclusion of a MeCN molecule in the calixarene hydrophobic cavity was observed both in solution and in the solid state. This specific interaction was found to be stronger in the case of metal complexes compared to the free ligand because of the better preorganization of the hydrophobic cone to accept the solvent molecule. Density functional theory calculations showed that the flattened cone conformation (C(2) point group) of L was generally more favorable than the square cone conformation (C(4) point group). In the complex with Na(+), L was in square cone conformation, whereas in its adduct with MeCN, the conformation was slightly distorted from the full symmetry. These conformations were in agreement with those observed in the solid state. The classical molecular dynamics simulations indicated that the MeCN molecule enters the L hydrophobic cavity of both the free ligand and its alkali-metal complexes. The inclusion of MeCN in the cone of free L was accompanied by the conformational change from C(2) to C(4) symmetry. As in solution studies, in the case of ML(+) complexes, an allosteric effect was observed: the ligand was already in the appropriate square cone conformation to bind the solvent molecule, allowing it to more easily and faster enter the calixarene cavity.
Robal, Terje; Larsson, Mikael; Martin, Miina; Olivecrona, Gunilla; Lookene, Aivar
2012-08-24
Angiopoietin-like protein 4 (Angptl4), a potent regulator of plasma triglyceride metabolism, binds to lipoprotein lipase (LPL) through its N-terminal coiled-coil domain (ccd-Angptl4) inducing dissociation of the dimeric enzyme to inactive monomers. In this study, we demonstrate that fatty acids reduce the inactivation of LPL by Angptl4. This was the case both with ccd-Angptl4 and full-length Angptl4, and the effect was seen in human plasma or in the presence of albumin. The effect decreased in the sequence oleic acid > palmitic acid > myristic acid > linoleic acid > linolenic acid. Surface plasmon resonance, isothermal titration calorimetry, fluorescence, and chromatography measurements revealed that fatty acids bind with high affinity to ccd-Angptl4. The interactions were characterized by fast association and slow dissociation rates, indicating formation of stable complexes. The highest affinity for ccd-Angptl4 was detected for oleic acid with a subnanomolar equilibrium dissociation constant (K(d)). The K(d) values for palmitic and myristic acid were in the nanomolar range. Linoleic and linolenic acid bound with much lower affinity. On binding of fatty acids, ccd-Angptl4 underwent conformational changes resulting in a decreased helical content, weakened structural stability, dissociation of oligomers, and altered fluorescence properties of the Trp-38 residue that is located close to the putative LPL-binding region. Based on these results, we propose that fatty acids play an important role in modulating the effects of Angptl4.
Khan, Zia Ullah; Bubnova, Olga; Jafari, Mohammad Javad; Brooke, Robert; Liu, Xianjie; Gabrielsson, Roger; Ederth, Thomas; Evans, Drew R; Andreasen, Jens W; Fahlman, Mats; Crispin, Xavier
2015-10-28
PEDOT-Tos is one of the conducting polymers that displays the most promising thermoelectric properties. Until now, it has been utterly difficult to control all the synthesis parameters and the morphology governing the thermoelectric properties. To improve our understanding of this material, we study the variation in the thermoelectric properties by a simple acido-basic treatment. The emphasis of this study is to elucidate the chemical changes induced by acid (HCl) or base (NaOH) treatment in PEDOT-Tos thin films using various spectroscopic and structural techniques. We could identify changes in the nanoscale morphology due to anion exchange between tosylate and Cl - or OH - . But, we identified that changing the pH leads to a tuning of the oxidation level of the polymer, which can explain the changes in thermoelectric properties. Hence, a simple acid-base treatment allows finding the optimum for the power factor in PEDOT-Tos thin films.
UV absorbers for cellulosic apparels: A computational and experimental study
NASA Astrophysics Data System (ADS)
Sahar, Anum; Ali, Shaukat; Hussain, Tanveer; Irfan, Muhammad; Eliasson, Bertil; Iqbal, Javed
2018-01-01
Two triazine based Ultra Violet (UV) absorbers Sulfuric acid mono-(2-{4-[4-chloro-6-(4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino-phenylamino)-[1,3,5]triazin-2-ylamino]-benzenesulfonyl}-ethyl) ester (1a) and 4-{4-chloro-6-[4-(2-sulfooxy-ethanesulfonyl)-phenylamino]-[1,3,5] triazin-2-ylamino}-2-[4-chloro-6-(2-sulfooxy-ethanesulfonyl)-[1,3,5]triazin-2-ylamino]-benzenesulfonic acid (2a) with different substituents were designed computationally. The influence of different substituents on the electrochemical properties and UV spectra of the absorbers was investigated. The presence of electron deficient unit in 1a to the molecular core significantly reduces the LUMO levels and energy gap. The designed absorbers were synthesized via condensation reaction and characterized by UV-Vis, FT-IR, MS studies. The performance of synthesized compounds as UV absorbers and their fastness properties were assessed by finishing the cotton fabric through exhaust method at different concentration and results appeared in good range.
Glycolic acid physical properties and impurities assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Pickenheim, B. R.; Hay, M. S.
This document has been revised to add analytical data for fresh, 1 year old, and 4 year old glycolic acid as recommended in Revision 2 of this document. This was needed to understand the concentration of formaldehyde and methoxyacetic acid, impurities present in the glycolic acid used in Savannah River National Laboratory (SRNL) experiments. Based on this information, the concentration of these impurities did not change during storage. These impurities were in the glycolic acid used in the testing included in this report and in subsequent testing using DuPont (now called Chemours) supplied Technical Grade 70 wt% glycolic acid. However,more » these impurities were not reported in the first two versions of this report. The Defense Waste Processing Facility (DWPF) is planning to implement a nitric-glycolic acid flowsheets to increase attainment to meet closure commitment dates during Sludge Batch 9. In fiscal year 2009, SRNL was requested to determine the physical properties of formic and glycolic acid blends.« less
On the acid-base properties of humic acid in soil.
Cooke, James D; Hamilton-Taylor, John; Tipping, Edward
2007-01-15
Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.
Fermented probiotic beverages based on acid whey.
Skryplonek, Katarzyna; Jasińska, Małgorzata
2015-01-01
Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bacteria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Samples were inoculated with two strains of commercial probiotic cultures: Lactobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all samples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Obtained products made of acid whey combined with milk and fortified with buttermilk powder or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.
Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram
2015-01-01
In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin. PMID:26839810
Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.
Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang
2016-05-01
In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.
Space shuttle exhaust cloud properties
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Keller, V. W.
1983-01-01
A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.
Yuan, Cui-Li; Zhang, An-Guo; Zheng, Ze-Bo; Wang, Ke-Zhi
2013-03-01
A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)₂(Hbptip)](PF₆)₂ {bpy = 2,2'-bipyridine, Hbptip = 2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, ¹H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid-base properties of the complex were studied by UV-visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK(a1) = 1.31 ± 0.09 and pK(a2) = 5.71 ± 0.11 with the pK(a2) associated deprotonation/protonation process occurring over 3 pK(a) units more acidic than thiophenyl-free parent complex of [Ru(bpy)₂(Hpip)]²⁺ {Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)₂(Hbptip)]²⁺ in Tris-HCl buffer (pH 7.1 and 50 mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV-visible and emission spectroscopy techniques of UV-visible and luminescence titrations, steady-state emission quenching by [Fe(CN)₆]⁴⁻, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)₂(Hip)]²⁺, [Ru(bpy)₂(Htip)]²⁺, and [Ru(bpy)₂(Haptip)]²⁺ {Hip = 1H-imidazo[4,5-f][1,10]phenanthroline, Htip = 2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip = 2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.
Synthesis and Surface Activity of Cationic Amino Acid-Based Surfactants in Aqueous Solution.
Greber, Katarzyna E
2017-01-01
I studied the possibility of using amino acid-based surfactants as emulsifiers at the same time as preservatives. Fourteen lipopeptides were synthesized employing a solid phase peptide synthesis procedure. All compounds were designed to be positively charged from +1 to +4 and acylated with fatty acid chain-palmitic and miristic. The surface activity of the obtained lipopeptides was tested using a semi-automatic tensiometer to calculate parameters describing the behavior of lipopeptides in the air/water interface. Such parameters as CMC, surface tension at the CMC point ( σ CMC ), effectiveness ( π CMC ), and efficiency (pC20) were measured. Emulsifying properties of all lipopeptides were also examined. The studies reveal that the surface active properties of synthesized compounds strongly depend on the length of alkyl chains as well as on the composition of amino acid polar heads. The critical micelle concentration decreases with increasing alkyl chain length of lipopeptides with the same polar head. The effectiveness and efficiency decrease when the number of amino acids in the polar head increases. All lipopeptides established a very weak emulsification power and created unstable water/Miglyol 812 and water/paraffin oil emulsions. Results suggest that lipopeptides cannot be used as emulsifiers; nonetheless, it is possible to use them as auxiliary surfactants with disinfectant properties in combination with more potent emulsifiers.
The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.
Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S
2015-08-21
The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.
Extractant composition including crown ether and calixarene extractants
Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.
2009-04-28
An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.
5,11,17,23-Tetra-tert-butyl-25,26,27,28-tetramethoxycalix[4]arene dichloromethane hemisolvate
Fischer, Conrad; Gruber, Tobias; Seichter, Wilhelm; Schindler, Diana; Weber, Edwin
2008-01-01
In the title compound, C48H64O4·0.5CH2Cl2, both crystallographically independent calixarene molecules display a partial cone conformation. Their crystal packing is stabilized by C—H⋯π contacts involving the methoxy groups. The solvent molecule is located interstitially between two calixarene units with C—H⋯Cl contacts to methoxy and tert-butyl groups. One tert-butyl residue of each calixarene molecule is disordered over two positions (occupancies 0.60/0.40 and 0.63/0.37), resulting in bond distances that deviate from ideal values. The tetramer calixarene molecules present models with approximate non-crystallographic Cs symmetry. PMID:21202066
Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules
NASA Astrophysics Data System (ADS)
Fionov, Alexander V.
2002-06-01
Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.
Properties of whey protein isolates extruded under acidic and alkaline conditions.
Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H
2006-01-01
Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.
10B enriched plastic scintillators for application in thermal neutron detection
NASA Astrophysics Data System (ADS)
Mahl, Adam; Yemam, Henok A.; Fernando, Roshan; Koubek, Joshua T.; Sellinger, Alan; Greife, Uwe
2018-02-01
We report here on the synthesis and characterization of a novel 10B enriched aromatic molecule that can be incorporated into common poly(vinyltoluene) (PVT) based plastic scintillators to achieve enhanced thermal neutron detection. Starting from relatively inexpensive 10B enriched boric acid, we have prepared 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (MBB) in three high yield steps. MBB is soluble and compatible with PVT based formulations and results in stable plastic scintillators. Chemical synthesis, solubility limit in PVT, and the physical properties of the dopant were explored. The relevant response properties of the resulting scintillators when exposed to neutron and gamma radiation, including light yield and pulse shape discrimination properties were measured and analyzed.
Chakraborty, Poulami; Dastidar, Parthasarathi
2018-05-18
A series of primary ammonium monocarboxylate (PAM) salts derived from β-alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide⋅⋅⋅amide and PAM synthons on gelation. Single-crystal X-ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure-property correlation based on SXRD and powder X-ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA-MB-231, revealed that one of the PAM salts in the series, namely, PAA.B2, displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
O'Brien, Kieran T P; Kaltsoyannis, Nikolas
2017-01-17
A systematic computational study of organoactinide complexes of the form [LAnX] n+ has been carried out using density functional theory, the quantum theory of atoms in molecules (QTAIM) and Ziegler-Rauk energy decomposition analysis (EDA) methods. The systems studied feature L = trans-calix[2]benzene[2]pyrrolide, An = Th(iv), Th(iii), U(iii) and X = BH 4 , BO 2 C 2 H 4 , Me, N(SiH 3 ) 2 , OPh, CH 3 , NH 2 , OH, F, SiH 3 , PH 2 , SH, Cl, CH 2 Ph, NHPh, OPh, SiH 2 Ph, PHPh 2 , SPh, CPh 3 , NPh 2 , OPh, SiPh 3 PPh 2 , SPh. The PBE0 hybrid functional proved most suitable for geometry optimisations based on comparisons with available experimental data. An-X bond critical point electron densities, energy densities and An-X delocalisation indices, calculated with the PBE functional at the PBE0 geometries, are correlated with An-X bond energies, enthalpies and with the terms in the EDA. Good correlations are found between energies and QTAIM metrics, particularly for the orbital interaction term, provided the X ligand is part of an isoelectronic series and the number of open shell electrons is low (i.e. for the present Th(iv) and Th(iii) systems).
Usawachintachit, Manint; Tzou, David T; Mongan, John; Taguchi, Kazumi; Weinstein, Stefanie; Chi, Thomas
2017-02-01
Ultrasound-guided percutaneous nephrolithotomy (PCNL) has become increasingly utilized. Patients with nondilated collecting systems represent a challenge: the target calix is often difficult to visualize. Here we report pilot study results for retrograde ultrasound contrast injection to aid in percutaneous renal access during ultrasound-guided PCNL. From April to July 2016, consecutive patients over the age of 18 years with nondilated collecting systems on preoperative imaging who presented for PCNL were enrolled. B-mode ultrasound imaging was compared with contrast-enhanced mode with simultaneous retrograde injection of Optison™ via an ipsilateral ureteral catheter. Five patients (four males and one female) with renal stones underwent PCNL with retrograde ultrasound contrast injection during the study period. Mean body mass index was 28.3 ± 5.6 kg/m 2 and mean stone size was 24.5 ± 12.0 mm. Under B-mode ultrasound, all patients demonstrated nondilated renal collecting systems that appeared as hyperechoic areas, where it was difficult to identify a target calix for puncture. Retrograde contrast injection facilitated delineation of all renal calices initially difficult to visualize under B-mode ultrasound. Renal puncture was then performed effectively in all cases with a mean puncture time of 55.4 ± 44.8 seconds. All PCNL procedures were completed without intraoperative complications and no adverse events related to ultrasound contrast injection occurred. Retrograde ultrasound contrast injection as an aide for renal puncture during PCNL is a feasible technique. By improving visualization of the collecting system, it facilitates needle placement in challenging patients without hydronephrosis. Future larger scale studies comparing its use to standard ultrasound-guided technique will be required to validate this concept.
Solvent Hold Tank Sample Results for MCU-15-661-662-663: April 2015 Monthly Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Taylor-Pashow, K.
2015-07-08
The Savannah River National Lab (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-661, MCU-15-662, and MCU-15-663 pulled on April 2, 2015) for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-661-662-663 indicated a low concentration (~ 63% of nominal) of the suppressor (TiDG) and a slightly below the nominal concentration (~ 10% below nominal) of the extractant (MaxCalix). The modifier (CS-7SB) level was also 10% below its nominal value while the Isopar™ L level was slightly above its nominal value. This analysis confirms the addition of Isopar™L to the solvent onmore » March 6, 2015. Despite that the values are below target component levels, the current levels of TiDG, CS-7SB and MaxCalix are sufficient for continuing operation without adding a trim at this time until the next monthly sample. No impurities above the 1000 ppm level were found in this solvent. However, the sample was found to contain approximately 18.4 ug/g solvent mercury. The gamma level increased to 8 E5 dpm/mL solvent and it represents an order of magnitude increase relative to previous solvent samples. The increase means less cesium is being stripped from the solvent. Further analysis is needed to determine if the recent spike in the gamma measurement is due to external factors such as algae or other material that may impede stripping. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.« less
Piazzon, A; Vrhovsek, U; Masuero, D; Mattivi, F; Mandoj, F; Nardini, M
2012-12-19
The main metabolites of caffeic and ferulic acids (ferulic acid-4'-O-sulfate, caffeic acid-4'-O-sulfate, and caffeic acid-3'-O-sulfate), the most representative phenolic acids in fruits and vegetables, and the acyl glucuronide of ferulic acid were synthesized, purified, and tested for their antioxidant activity in comparison with those of their parent compounds and other related phenolics. Both the ferric reducing antioxidant power (FRAP) assay and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging method were used. Ferulic acid-4'-O-sulfate and ferulic acid-4'-O-glucuronide exhibited very low antioxidant activity, while the monosulfate derivatives of caffeic acid were 4-fold less efficient as the antioxidant than caffeic acid. The acyl glucuronide of ferulic acid showed strong antioxidant action. The antioxidant activity of caffeic acid-3'-O-glucuronide and caffeic acid-4'-O-glucuronide was also studied. Our results demonstrate that some of the products of phenolic acid metabolism still retain strong antioxidant properties. Moreover, we first demonstrate the ex vivo synthesis of the acyl glucuronide of ferulic acid by mouse liver microsomes, in addition to the phenyl glucuronide.
Dielectric Properties and Electrodynamic Process of Natural Ester-Based Insulating Nanofluid
NASA Astrophysics Data System (ADS)
Zou, Ping; Li, Jian; Sun, Cai-Xin; Zhang, Zhao-Tao; Liao, Rui-Jin
Natural ester is currently used as an insulating oil and coolant for medium-power transformers. The biodegradability of insulating natural ester makes it a preferable insulation liquid to mineral oils. In this work, Fe3O4 nanoparticles were used along with oleic acid to improve the performance of insulating natural ester. The micro-morphology of Fe3O4 nanoparticles before and after surface modification was observed through transmission electron microscopy. Attenuated total reflection-Fourier transform infrared spectroscopy, thermal gravimetric analysis, and differential thermal analysis were employed to investigate functional groups and their thermal stability on the surface-modified Fe3O4 nanoparticles. Basic dielectric properties of natural ester-based insulating nanofluid were measured. The electrodynamic process in the natural ester-based insulating nanofluid is also presented.
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Kasatova, I. Yu.
2011-07-01
The acid-base properties of the surface of solid solutions and binary components of the CdTe-ZnS system are studied by hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and Raman scattering spectroscopy. The strength, nature, and concentration of acid centers on the original surface and that exposed to CO are determined. The changes in acid-base properties in dependence on the composition of the system under investigation in the series of CdB6, ZnB6 analogs are studied.
Ali Elsheikh, Yasir; Hassan Akhtar, Faheem
2014-01-01
Biodiesel was prepared from Citrullus colocynthis oil (CCO) via a two-step process. The first esterification step was explored in two ionic liquids (ILs) with 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHSO4) and 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate (MSIMHSO4). Both ILs appeared to be good candidates to replace hazardous acidic catalyst due to their exceptional properties. However, the two sulfonic chains existing in DSIMHSO4 were found to increase the acidity to the IL than the single sulfonic chain in MSIMHSO4. Based on the results, 3.6 wt% of DSIMHSO4, methanol/CCO molar ratio of 12 : 1, and 150°C offered a final FFA conversion of 95.4% within 105 min. A 98.2% was produced via second KOH-catalyzed step in 1.0%, 6 : 1 molar ratio, 600 rpm, and 60°C for 50 min. This new two-step catalyzed process could solve the corrosion and environmental problems associated with the current acidic catalysts. PMID:24987736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhong-Xuan, E-mail: xuzhongxuan1974@163.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002; Ao, Ke-Hou
A pair of novel 3D homochiral metal−organic frameworks (HMOFs), namely [Cd{sub 2.5}((R)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-D), [Cd{sub 2.5}((S)-CIA){sub 6}(1,4-DIB)(H{sub 2}O){sub 2}]·((CH{sub 3}){sub 2}NH{sub 2})·H{sub 2}O (1-L), have been synthesized using lactic acid derivative ligands ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB. Crystallographic analyses indicate that the complexes 1-D and 1-L are packed by cage substructures. Some physical characteristics, such as solid-state circular dichroism (CD), thermal stabilities and photoluminescent properties are also investigated. Our results highlight the effective method to apply lactic acid derivative ligands to form interesting HMOFs. - Graphical abstract: Using lactic acid derivative ligandsmore » ((R)-H{sub 3}CIA and (S)-H{sub 3}CIA) and 1,4-DIB to assemble with Cd{sup 2+} ions, a pair of novel 3D homochiral metal-organic frameworks (HMOFs) with cage substructures have been synthesized. Display Omitted - Highlights: • Lactic acid derivative ligands • Cage substructure • Enantiomers.« less
Yamamoto, Takaaki; Mitsuno, Koki; Mori, Shigeki; Itoyama, Shuhei; Shiota, Yoshihito; Yoshizawa, Kazunari; Ishida, Masatoshi; Furuta, Hiroyuki
2018-05-07
Complexation of a RuCp* cation with N-confused tetraarylporphyrins (NCPs) forms directly bound ruthenium(II) pentamethylcyclopentadienyl (Cp*) π-complex on a specific meso-aryl group (e.g., phenyl) neighboring peripheral imino nitrogen of NCPs in high yields. In contrast, in the case of NCPs bearing bulky meso-substituents (e.g., 3,5-di-tert-butylphenyl), new ruthenocenophane-like complex embedded on an N-confused calix[4]phyrin was formed through multiple C-H bond activation of methyl groups of Cp* ligand. The mechanistic insight into the formation of the ruthenocenophane was derived from DFT calculations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recognition and Sensing of Creatinine.
Guinovart, Tomàs; Hernández-Alonso, Daniel; Adriaenssens, Louis; Blondeau, Pascal; Martínez-Belmonte, Marta; Rius, F Xavier; Andrade, Francisco J; Ballester, Pablo
2016-02-12
Current methods for creatinine quantification suffer from significant drawbacks when aiming to combine accuracy, simplicity, and affordability. Here, an unprecedented synthetic receptor, an aryl-substituted calix[4]pyrrole with a monophosphonate bridge, is reported that displays remarkable affinity for creatinine and the creatininium cation. The receptor works by including the guest in its deep and polar aromatic cavity and establishing directional interactions in three dimensions. When incorporated into a suitable polymeric membrane, this molecule acts as an ionophore. A highly sensitive and selective potentiometric sensor suitable for the determination of creatinine levels in biological fluids, such as urine or plasma, in an accurate, fast, simple, and cost-effective way has thus been developed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
The structural modifications of insoluble rice bran fiber (IRBF) by sequential regimes of sulphuric acid (H2SO4) and their effects on the physicochemical attributes were studied. The increment of H2SO4 concentration resulted in decreased water holding capacity that ultimately enhanced the oil bindin...
NASA Astrophysics Data System (ADS)
Izak Rudyardjo, Djony; Wijayanto, Setiawan
2017-05-01
The writers conducted a study about the synthesis and characterization of hydrogel chitosan-alginate by addition plasticizer lauric acid for wound dressing application. The purpose was to find out the impact of lauric acid concentration variation on hydrogel chitosan-alginate to get the best mechanical and physical properties to be applied as wound dressing in accordance with existing standards. This study used commercially chitosan from extract of shells crab, commercially-available alginate from the extract of sargassum sp, and commercial lauric acid from palm starch. The addition of lauric acid was aimed to repair mechanical properties of hydrogel. The composition of chitosan-alginate is 4:1 (v/v), while the lauric acid concentration variations are 0%, 1%, 2%, 3%, 4%, and 5% w/v. The characterization of mechanical properties test (Tensile strength and Elongation at break) at hydrogel showed the hydrogel chitosan-alginate-lauric acid have the characteristic which meets the standard of mechanical properties for human skin. The best performance of hydrogel chitosan-alginate-lauric acid was obtained by increasing luric acid concentration by 4%, which has a thickness value of 125.46±0.63 µm, elongation 28.89±1.01 %, tensile strength (9.01±0.65) MPa, and ability to absorb liquids (601.45 ±1.24) %.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Na; Guo, Hui-Lin; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN
2013-02-15
Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zincmore » units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.« less
Surface acid-base behaviors of Chinese loess.
Chu, Zhaosheng; Liu, Wenxin; Tang, Hongxiao; Qian, Tianwei; Li, Shushen; Li, Zhentang; Wu, Guibin
2002-08-15
Acid-base titration was applied to investigate the surface acid-base properties of a Chinese loess sample at different ionic strengths. The acidimetric supernatant was regarded as the system blank of titration to correct the influence of particle dissolution on the estimation of proton consumption. The titration behavior of the system blank could be described by the hydrolysis of Al3+ and Si(OH)4 in aqueous solution as well as the production of hydroxyaluminosilicates. The formation of Al-Si species on homogeneous surface sites by hydrous aluminum and silicic acid, released from solid substrate during the acidic titration, was considered in the model description of the back-titration procedure. A surface reaction model was suggested as follows: >SOH<-->SO(-)+H+, pK(a)(int)=3.48-3.98;>SOH+Al(3+)+H4SiO4<-->SOAl(OSi(OH)3(+)+2H+, pK(SC)=3.48-4.04. Two simple surface complexation models accounted for the interfacial structure, i.e., the constant capacitance model (CCM) and the diffuse layer model (DLM), and gave a satisfactory description of the experimental data. Considering the effect of ionic strength on the electrostatic profile at the solid-aqueous interface, the DLM was appropriate at the low concentrations (0.01 and 0.005 mol/L) of background electrolyte (NaNO3 in this study), while the CCM was preferable in the case of high ionic strength (0.1 mol/L).
Zhang, Xuqing; Cai, Chaozhong; Sui, Zhihua; Macielag, Mark; Wang, Yuanping; Yan, Wen; Suckow, Arthur; Hua, Hong; Bell, Austin; Haug, Peter; Clapper, Wilma; Jenkinson, Celia; Gunnet, Joseph; Leonard, James; Murray, William V
2017-09-14
We have discovered a novel series of isothiazole-based phenylpropanoic acids as GPR120 agonists. Extensive structure-activity relationship studies led to the discovery of a potent GPR120 agonist 4x , which displayed good EC 50 values in both calcium and β-arrestin assays. It also presented good pharmaceutical properties and a favorable PK profile. Moreover, it demonstrated in vivo antidiabetic activity in C57BL/6 DIO mice. Studies in WT and knockout DIO mice showed that it improved glucose handling during an OGTT via GPR120. Overall, 4x possessed promising antidiabetic effect and good safety profile to be a development candidate.
Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties
Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji
2017-01-01
Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4–0.7 mg KOH/g, or a viscosity of 140–540 mm2/s, can meet all of the performance requirements for asphalt rejuvenation used in this research. PMID:28772862
Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji
2017-05-06
Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4-0.7 mg KOH/g, or a viscosity of 140-540 mm²/s, can meet all of the performance requirements for asphalt rejuvenation used in this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xue-Fei; Wang, Xiao; Lun, Hui-Jie
The compounds [Co(e,a-cis-1,4-chdc)(phdat)]{sub n} (1) and [Cd(e,a-cis-1,4-chdc)(phdat)]{sub n} (2) have been synthesized under hydrothermal method by using 1,4-cyclohexanedicarboxylic acid (1,4-H{sub 2}chdc), 2,4-diamino-6-phenyl-1,3,5-triazine (phdat) as well as CoCl{sub 2}·6H{sub 2}O, CdCl{sub 2}·2.5H{sub 2}O respectively and characterized by IR spectra, X-ray single-crystal diffraction, powder X-ray single-crystal diffraction (PXRD), elemental analyses and thermogravimetric analyses (TGA). The results show the compounds 1 and 2 are isomorphous and exhibit paddle-wheel dinuclear Co{sub 2}(CO{sub 2}){sub 4}/Cd{sub 2}(CO{sub 2}){sub 4} units, which are further connected to 1D chain structures by μ{sub 4}:η{sup 1}:η{sup 1}:η{sup 1}:η{sup 1} 1,4-chdc{sup 2–} ligands and extended into a 3D structures via differentmore » hydrogen bonding and π…π stacking interactions. Furthermore, compound 1 exhibits antiferromagnetic behavior and compound 2 displays luminescent behavior at solid state. - Graphical abstract: Two isomorphous coordination compounds 1–2 have been synthesized and characterized by XRD, IR spectra and TGA etc. Compound 1 and 2 display antiferromagnetic behavior and luminescent behavior respectively. - Highlights: • Two novel polymers based on 1,4-cyclohexanedicarboxylic acid have been synthesized. • Compounds 1 and 2 feather 1D chain structure built up from paddle-wheel SBUs. • The magnetism of 2 is investigated. • The electrochemical property and luminescent property of 1 are investigated.« less
Chen, Liang; Xiang, Jun; Zhao, Yue; Yan, Qiang
2018-05-29
Chalcogen-bonding interactions have been viewed as new noncovalent forces in supramolecular chemistry. However, harnessing chalcogen bonds to drive molecular self-assembly processes is still unexplored. Here we report for the first time a novel class of supra-amphiphiles formed by Te···O or Se···O chalcogen-bonding interactions, and their self-assembly into supramolecular vesicles and nanofibers. A quasi-calix[4]chalcogenadiazole (C4Ch) as macrocyclic donor and a tailed pyridine N-oxide surfactant as molecular acceptor are designed to construct the donor-acceptor complex via chalcogen-chalcogen connection between the chalcogenadiazole moieties and oxide anion. The affinity of such chalcogen-bonding can dictate the geometry of supra-amphiphiles, driving diverse self-assembled morphologies. Furthermore, the reversible disassembly of these nanostructures can be promoted by introducing competing anions, such as halide ions, or by decreasing the systemic pH value.
Surface acid-base properties and hydration/dehydration mechanisms of aluminum (hydr)oxides.
Yang, Xiaofang; Sun, Zhongxi; Wang, Dongsheng; Forsling, Willis
2007-04-15
In this paper, surface physiochemical properties of three typical aluminas, gamma-Al(OH)3, gamma-Al2O3, and alpha-Al2O3, were investigated by means of XRD, SEM, TEM, BET surface area, TG/DTA, and potentiometric titration techniques. Based on the titration data, surface protonation and deprotonation constants were determined using the constant capacitance model (CCM). The emphasis of this research was laid on the comparison of the crystal structure, surface hydration/dehydration and acid-base properties of these three typical alumina minerals. The calculation results revealed that the surface acidity of the aluminas is in the order of alpha-Al2O3>gamma-Al(OH)3>gamma-Al2O3 after being hydrated for 1 h. The correlation between the hydration/dehydration mechanisms of alumina and its acid/base properties is discussed.
Acid-Base Properties of Azo Dyes in Solution Studied Using Spectrophotometry and Colorimetry
NASA Astrophysics Data System (ADS)
Snigur, D. V.; Chebotarev, A. N.; Bevziuk, K. V.
2018-03-01
Colorimetry and spectrophotometry with chemometric data processing were used to study the acid-base properties of azo dyes in aqueous solution. The capabilities of both methods were compared. Ionization constants of all the functional groups of the azo compounds studied could be determined relative to the change in the specific color difference depending on the acidity of the medium. The colorimetric functions of ion-molecular forms of azo compounds used as an analytical signal allow us to obtain complete information on the acid-base equilibrium in a wide acidity range.
Tor, Ali; Aydin, Mehmet Emin; Aydin, Senar; Tabakci, Mustafa; Beduk, Fatma
2013-11-15
An aminopropyl silica gel-immobilized calix[6]arene (C[6]APS) has been used for the removal of lindane from an aqueous solution in batch sorption technique. The C[6]APS was synthesized with p-tert-butylcalix[6]arene hexacarboxylate derivative and aminopropyl silica gel in the presence of N,N'-diisopropyl carbodiimide coupling reagent. The sorption study was carried out as functions of solution pH, contact time, initial lindane concentration, C[6]APS dosage and ionic strength of solution. The matrix effect of natural water samples on the sorption efficiency of C[6]APS was also investigated. Maximum lindane removal was obtained at a wide pH range of 2-8 and sorption equilibrium was achieved in 2h. The isotherm analysis indicated that the sorption data can be represented by both Langmuir and Freundlich isotherm models. Increasing ionic strength of the solutions increased the sorption efficiency and matrix of natural water samples had no effect on the sorption of lindane. By using multilinear regression model, regression equation was also developed to explain the effects of the experimental variables. Copyright © 2013 Elsevier B.V. All rights reserved.
Visualizing Chemistry: Investigations for Teachers.
ERIC Educational Resources Information Center
Ealy, Julie B.; Ealy, James L., Jr.
This book contains 101 investigations for chemistry classrooms. Topics include: (1) Physical Properties; (2) Reactions of Some Elements; (3) Reactions Involving Gases; (4) Energy Changes; (5) Solutions and Solubility; (6) Transition Metals and Complex Ions; (7) Kinetics and Equilibrium; (8) Acids and Bases; (9) Oxidation-Reduction; (10)…
NASA Astrophysics Data System (ADS)
Qi, De-Qiang; Yu, Chuan-Ming; You, Jin-Zong; Yang, Guang-Hui; Wang, Xue-Jie; Zhang, Yi-Ping
2015-11-01
A series of pyrazole-based 1,3,4-oxadiazole derivatives were rationally designed and synthesized in good yields by following a convenient route. All the newly synthesized molecules were fully characterized by IR, 1H NMR and elemental analysis. Eight compounds were structurally determined by single crystal X-ray diffraction analysis. The fluorescence properties of all the compounds were investigated in dimethyl sulfoxide media. In addition, these newly synthesized compounds were evaluated for in vitro inhibitory activity against commercial enzyme xanthine oxidase (XO) by measuring the formation of uric acid from xanthine. Among the compounds synthesized and tested, 3d and 3e were found to be moderate inhibitory activity against commercial XO with IC50 = 72.4 μM and 75.6 μM. The studies gave a new insight in further optimization of pyrazole-based 1,3,4-oxadiazole derivatives with excellent fluorescence properties and XO inhibitory activity.
Acidity and origin of dissolved organic carbon in different vegetation zones
NASA Astrophysics Data System (ADS)
Hruška, Jakub; Oulehle, Filip; Myška, Oldřích; Chuman, Tomáš
2016-04-01
The acid/base character of aquatic dissolved organic carbon (DOC) has been studied intensively during recent decades with regard to the role of DOC in stream water acidity and the balance between natural acidity and anthropogenic acidification. Recently, DOC has been shown to play an important role in preindustrial surface waters. Studies focused on the acid/base properties of DOC have been carried out in mainly in Europe and North America and paint a conflicting picture. Some studies reported large differences in acid base properties, sometimes between quite similar and nearby localities, or between seasons at the same site. Other studies, however, found similar acid/base properties in waters from a variety of sites, sometimes far from each other as well as stable acid/base properties at the same site through different seasons or runoff events. Site density of DOC (amount of carboxylic groups per milligram of DOC) and SUVA was measured for streams (or small tundra ponds respectively) from the tundra in northern Alaska, boreal zone of Sweden, western Czech Republic (temperate region), and tropical Congo rain forest in central Africa. At least 10 samples from each region were taken from surface waters during the growing season. Titration of carboxylic groups after proton saturation on cation-exchange resin was used for site density determination. Despite very different climatic and vegetation properties and internal variation within a region, there was no statistically significant difference among regions for site density (it varied between 10.2-10.5 ueq/mg DOC) as well as for SUVA (tested by ANOVA). Results suggest that different vegetation and climate produced generally the same DOC in respect of acid/base character and SUVA. It also suggests that use of the one analytical technique was more important than differences between climatic zones itself.
Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.
2011-04-01
Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less
Biolabeling with 2,4-dichlorophenoxyacetic acid derivatives: the 2,4-D tag.
Bade, Steffen; Röckendorf, Niels; Franek, Milan; Gorris, Hans H; Lindner, Buko; Olivier, Verena; Schaper, Klaus-Jürgen; Frey, Andreas
2009-12-01
Many bioanalytic and diagnostic procedures rely on labels with which the molecule of interest can be tracked in or discriminated from accompanying like substances. Herein, we describe a new labeling and detection system based on derivatives of 2,4-dichlorophenoxyacetic acid (2,4-D) and anti-2,4-D antibodies. The 2,4-D system is highly sensitive with a K(D) of 7 x 10(-11) M for the hapten-antibody pair, can be used on a large variety of biomolecules such as proteins, peptides, carbohydrates, and nucleic acids, is not hampered by endogenous backgrounds because 2,4-D is a xenobiotic, and is robust because 2,4-D is a very stable compound that withstands the conditions of most reactions usually performed on biomolecules. With this unique blend of properties, the 2,4-D system compares favorably with its rivals digoxigenin (DIG)/anti-DIG and biotin/(strept)avidin and provides an interesting and powerful tool in biomolecular labeling.
Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue.
Cotelle, Philippe; Cotelle, Nicole; Teissier, Elisabeth; Vezin, Hervé
2003-03-20
4-(4-Hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one 1 was prepared by an acidic dimerisation of 4-hydroxyphenylpyruvic acid and some of its antioxidant and spectroscopic properties have been measured and compared to that of ascorbic acid. 1 is as good an antioxidant as ascorbic acid in the DPPH (2,2-diphenyl-1-picryl hydrazyl radical) test and the inhibition of hydroxyl radical and a powerful inhibitor of the Cu(2+) or AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride) induced oxidation of human LDL. 1 gives a stable radical characterised by its ESR spectrum similarly to ascorbic acid but in lower concentration and with a different reactivity towards nitroxides. Theoretical calculations allow us to propose the structure for the radical formed from 1, to explain its lower stability than ascorbyl radical and to evaluate the lipophilicity of 1.
Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent
NASA Astrophysics Data System (ADS)
Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.
2013-07-01
The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.
Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.
Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu
2016-11-01
The reaction of manganese (II) halides MnX 2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz) 2 (MnX 4 )]·2H 2 O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn 2+ ion. Two organic - inorganic hybrids [(btz) 2 (MnX 4 )]·2H 2 O based on MnCl 2 , benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz) 2 (MnX 4 )]·2H 2 O based on MnCl 2 , benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.
Garnier, Cédric; Mounier, Stéphane; Benaïm, Jean Yves
2004-10-01
Natural organic matter (NOM) behaviour towards proton is an important parameter to understand NOM fate in the environment. Moreover, it is necessary to determine NOM acid-base properties before investigating trace metals complexation by natural organic matter. This work focuses on the possibility to determine these acid-base properties by accurate and simple titrations, even at low organic matter concentrations. So, the experiments were conducted on concentrated and diluted solutions of extracted humic and fulvic acid from Laurentian River, on concentrated and diluted model solutions of well-known simple molecules (acetic and phenolic acids), and on natural samples from the Seine river (France) which are not pre-concentrated. Titration experiments were modelled by a 6 acidic-sites discrete model, except for the model solutions. The modelling software used, called PROSECE (Programme d'Optimisation et de SpEciation Chimique dans l'Environnement), has been developed in our laboratory, is based on the mass balance equilibrium resolution. The results obtained on extracted organic matter and model solutions point out a threshold value for a confident determination of the studied organic matter acid-base properties. They also show an aberrant decreasing carboxylic/phenolic ratio with increasing sample dilution. This shift is neither due to any conformational effect, since it is also observed on model solutions, nor to ionic strength variations which is controlled during all experiments. On the other hand, it could be the result of an electrode troubleshooting occurring at basic pH values, which effect is amplified at low total concentration of acidic sites. So, in our conditions, the limit for a correct modelling of NOM acid-base properties is defined as 0.04 meq of total analysed acidic sites concentration. As for the analysed natural samples, due to their high acidic sites content, it is possible to model their behaviour despite the low organic carbon concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni
2014-07-01
To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n}more » (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.« less
Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa
2017-02-10
The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acid treatment and formation of MnWO4 belts for NH3-SCR performance of MnWOx/TiO2 catalysts
NASA Astrophysics Data System (ADS)
Zhang, Zekai; Lu, Weizhe; Zhang, Xinying; Liu, Huayan; Lu, Hanfeng
2018-06-01
NH3-SCR is an important technology to remove NOx, and non-V based catalysts development is still a hot topic in the field. To improve N2 selectivity, acid treatment was carried out to modify the properties of a MnWOx/TiO2 catalyst. Influences of acid concentration, time and temperature on the catalyst were investigated. The TEM results showed that the acid treatment removed more MnO2 species than Mn2O3 and MnWO4 and disclosed more crystal faces of the active species. The active species even formed hollow structures by Ostwald ripening mechanism, which was then corroded by acid to form the nanobelts on the surface. The working temperature window of the MnWOx/TiO2 catalyst was thereby moved to the high temperature attitude and the N2 selectivity is clearly improved.
NASA Astrophysics Data System (ADS)
Yan, Pen-Ji; Yao, Xiao-Qiang; Xie, Hua; Xiao, Guo-Bin; Liu, Jia-Cheng; Xu, Xin-Jian
2018-05-01
Two isomorphous metal-organic frameworks, {[M(TIPA) (btec)½]H2O}n, [M = Co (1) or Zn (2)] were synthesized hydrothermally based on a semi-rigid N-center triangular ligand TIPA, where TIPA = tris(4-(1H-imidazol-1-yl)-phenyl)amine, H4btec = 1,2,4,5-benzenetetracarboxylic acid. Single crystal structural analyses show that complexes 1 and 2 are isostructural and both feature a twofold interpenetrated pcu topology. In 1 and 2, the btec4- ligand adopting μ2-η2:η1 and μ1-η1:η0 coordination modes connect adjacent dinuclear Co/Zn units to form a 1D straight polymeric chain. Then these chains arranged in parallel/parallel fashion were further extended to a 3D network by exo-tridentate ligand TIPA with μ2-κ2N:N‧ coordination mode. The magnetic property of 1 and the luminescent property of 2 were investigated. Furthermore, the structure and spectroscopic property of 2 were further investigated by DFT and TD-DFT calculations.
Arjmandi, Reza; Hassan, Azman; Haafiz, M K M; Zakaria, Zainoha; Islam, Md Saiful
2016-01-01
Polylactic acid (PLA) nanocomposites reinforced with hybrid montmorillonite/cellulose nanowhiskers [MMT/CNW(SO4)] were prepared by solution casting. The CNW(SO4) nanofiller was first isolated from microcrystalline cellulose using acid hydrolysis treatment. PLA/MMT/CNW(SO4) hybrid nanocomposites were prepared by the addition of various amounts of CNW(SO4) [1-9 parts per hundred parts of polymer (phr)] into PLA/MMT nanocomposite at 5 phr MMT content, based on highest tensile strength values as reported previously. The biodegradability, thermal, tensile, morphological, water absorption and transparency properties of PLA/MMT/CNW(SO4) hybrid nanocomposites were investigated. The Biodegradability, thermal stability and crystallinity of hybrid nanocomposites increased compared to PLA/MMT nanocomposite and neat PLA. The highest tensile strength of hybrid nanocomposites was obtained by incorporating 1 phr CNW(SO4) [∼ 36 MPa]. Interestingly, the ductility of hybrid nanocomposites increased significantly by 87% at this formulation. The Young's modulus increased linearly with increasing CNW(SO4) content. This is due to the relatively good dispersion of nanofillers in the hybrid nanocomposites, as revealed by transmission electron microscopy. Fourier transform infrared spectroscopy indicated the formation of some polar interactions. In addition, water resistance of the hybrid nanocomposites improved and the visual transparency of neat PLA film did not affect by addition of CNW(SO4). Copyright © 2015 Elsevier B.V. All rights reserved.
Hu, Shuaifeng; Yu, Jie; Wang, Zhe; Li, Li; Du, Yunfei; Wang, Liping; Liu, Yuan
2017-06-01
This paper discusses the possibility of using sorbic acid-chitosan microcapsules (S-MPs) as an antibacterial component of active ethylene vinyl alcohol copolymer (EVOH) film. S-MPs with a diameter of approximately 1 to 4 μm showed a sorbic acid loading capacity of 46.5%. Addition of S-MPs (3%, w/w) increased the tensile strength, haze, oxygen, and water vapor barrier properties, as well as reduced the elongations at break and transmittance of S-MPs-EVOH (S-MP-EVOH) film. Antibacterial tests showed that the inhibitory capacity of S-MP-EVOH film against Salmonella Enteritidis and Escherichia coli was higher than that against Listeria monocytogenes. Moreover, the antibacterial effect of sorbic acid-EVOH (S-EVOH) film was stronger than that of S-MP-EVOH film. However, S-MP-EVOH film demonstrated a longer effective time than S-EVOH film. Using the total viable counts and total volatile base nitrogen as the judgment standard, S-MP-EVOH/polyethylene terephthalate (PET) composite film could extend the shelf life of fish fillets by 4 d at 4 °C, compared with EVOH/PET film. For this reason, S-MP could be a potential antibacterial component of active films. © 2017 Institute of Food Technologists®.
Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer
2012-08-03
The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.
Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction
NASA Astrophysics Data System (ADS)
Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.
2017-06-01
Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N], [HeMIM] [CF3SO3] and [HMIM] [CF3SO3]) were identified and selected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Lei; Mu, Bao; Li, Chang-Xia
A series of metal-organic frameworks (MOFs) have been prepared by tetracarboxylate ligands and Cd(II) ions under the hydrothermal or solvothermal conditions with the formulas of {[Cd_2(L_1)(H_2O)_4]·H_2O}{sub n} (1), {[(CH_3)_2NH_2]_2[Cd(L_1)]}{sub n} (2), [Cd(L{sub 2}){sub 0.5}(H{sub 2}O)]{sub n} (3), {[(CH_3)_2NH_2]_2 [Cd(L_2)]·2DMF}{sub n} (4), [Cd(L{sub 3}){sub 0.5}(H{sub 2}O)]{sub n} (5), {[Cd(L_3)_0_._5(H_2O)]·CH_3OH}{sub n} (6), {[(CH_3)_2NH_2]_2[Cd_3(L_4)_2]}{sub n} (7) (H{sub 4}L{sub 1}=[1,1′:4′,1″-terphenyl]-2,2″,5,5″-tetracarboxylic acid; H{sub 4}L{sub 2}=[1,1′:4′,1″-terphenyl]-2′,4,4″,5′-tetracarboxylic acid; H{sub 4}L{sub 3}=[1,1′:3′,1″-terphenyl]-2′,3,3″,5′-tetracarboxylic acid; H{sub 4}L{sub 4}=[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid), which are characterized by single-crystal X-ray diffraction, elemental analyses, IR, TGA and PXRD. Complex 1 exhibits a three-dimensional (3D) supramolecular framework based on two-dimensional (2D) coordination networks. Complexes 2 and 4more » possess 3D framework based on the 1D right-handed helix channels. Complexes 3 and 7 are a 3D architecture containing two different channels. Isostructural complexes 5 and 6 display 3D framework. The different synthetic methods and coordination modes of the tetracarboxylates ligands have effect on formation of various MOFs. Moreover, the luminescent properties and N{sub 2} adsorption behaviors have been reported. - Graphical abstract: A series of cadmium(II) high-dimensional coordination polymers constructed from four different kinds of tetracarboxylate ligands have been successfully prepared under hydrothermal or solvothermal conditions. The effect of solvents, the coordination modes of the tetracarboxylates and positions of carboxylate groups on the architectures of complexes 1–7 have been investigated in detail. The luminescent properties of the part of complexes, N{sub 2} adsorption behaviors of complexes 2, 4–7 have also been studied. - Highlights: • Tetracarboxylate ligands based on terphenyl moiety have been used. • Several factors that influenced the architecture have been discussed. • Luminescent properties have been investigated.« less
Spectral reflectance of surface soils - A statistical analysis
NASA Technical Reports Server (NTRS)
Crouse, K. R.; Henninger, D. L.; Thompson, D. R.
1983-01-01
The relationship of the physical and chemical properties of soils to their spectral reflectance as measured at six wavebands of Thematic Mapper (TM) aboard NASA's Landsat-4 satellite was examined. The results of performing regressions of over 20 soil properties on the six TM bands indicated that organic matter, water, clay, cation exchange capacity, and calcium were the properties most readily predicted from TM data. The middle infrared bands, bands 5 and 7, were the best bands for predicting soil properties, and the near infrared band, band 4, was nearly as good. Clustering 234 soil samples on the TM bands and characterizing the clusters on the basis of soil properties revealed several clear relationships between properties and reflectance. Discriminant analysis found organic matter, fine sand, base saturation, sand, extractable acidity, and water to be significant in discriminating among clusters.
Addition-type polyimides from solutions of monomeric reactants
NASA Technical Reports Server (NTRS)
Delvigs, P.; Serafini, T. T.; Lightsey, G. R.
1972-01-01
The monomeric reactants approach was used to fabricate addition-type polyimide/graphite fiber composites with improved mechanical properties and thermal stability characteristics over those of composites derived from addition-type amide acid prepolymers. A screening study of 24 different monomer combinations was performed. The results of a more extensive investigation of a selected number of monomer combinations showed that the combination providing the best thermomechanical properties was 5-norbornene-2,3-dicarboxylic acid monomethyl ester/4,4'-methylenedianiline/3,3'4,4'-benzophenone tetracarboxylic acid dimethyl ester at a molar ratio of 2/3.09/2.09.
Ban, Jianfeng; Zhu, Linjiang; Chen, Shaojun; Wang, Yiping
2016-01-01
To better understand shape memory materials and self-healing materials, a new series of liquid-crystalline shape memory polyurethane (LC-SMPU) composites, named SMPU-OOBAm, were successfully prepared by incorporating 4-octyldecyloxybenzoic acid (OOBA) into the PEG-based SMPU. The effect of OOBA on the structure, morphology, and properties of the material has been carefully investigated. The results demonstrate that SMPU-OOBAm has liquid crystalline properties, triple-shape memory properties, and self-healing properties. The incorporated OOBA promotes the crystallizability of both soft and hard segments of SMPU, and the crystallization rate of the hard segment of SMPU decreases when the OOBA-content increases. Additionally, the SMPU-OOBAm forms a two-phase separated structure (SMPU phase and OOBA phase), and it shows two-step modulus changes upon heating. Therefore, the SMPU-OOBAm exhibits triple-shape memory behavior, and the shape recovery ratio decreases with an increase in the OOBA content. Finally, SMPU-OOBAm exhibits self-healing properties. The new mechanism can be ascribed to the heating-induced “bleeding” of OOBA in the liquid crystalline state and the subsequent re-crystallization upon cooling. This successful combination of liquid crystalline properties, triple-shape memory properties, and self-healing properties make the SMPU-OOBAm composites ideal for many promising applications in smart optical devices, smart electronic devices, and smart sensors. PMID:28773914
Mondal, Abhishek N; Dai, Chunhua; Pan, Jiefeng; Zheng, Chunlei; Hossain, Md Masem; Khan, Muhammad Imran; Wu, Liang; Xu, Tongwen
2015-07-29
To reconcile the trade-off between separation performance and availability of desired material for cation exchange membranes (CEMs), we designed and successfully prepared a novel sulfonated aromatic backbone-based cation exchange precursor named sodium 4,4'-(((((3,3'-disulfo-[1,1'-biphenyl]-4,4'-diyl)bis(oxy)) bis(4,1-phenylene))bis(azanediyl))bis(methylene))bis(benzene-1,3-disulfonate) [DSBPB] from 4,4'-bis(4-aminophenoxy)-[1,1'-biphenyl]-3,3'-disulfonic acid [BAPBDS] by a three-step procedure that included sulfonation, Michael condensation followed by reduction. Prepared DSBPB was used to blend with sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) to get CEMs for alkali recovery via diffusion dialysis. Physiochemical properties and electrochemical performance of prepared membranes can be tuned by varying the dosage of DSBPB. All the thermo-mechanical properties like DMA and TGA were investigated along with water uptake (WR), ion exchange capacity (IEC), dimensional stability, etc. The effect of DSBPB was discussed in brief in connection with alkali recovery and ion conducting channels. The SPPO/DSBPB membranes possess both high water uptake as well as ion exchange capacity with high thermo-mechanical stability. At 25 °C the dialysis coefficients (UOH) appeared to be in the range of 0.0048-0.00814 m/h, whereas the separation factor (S) ranged from 12.61 to 36.88 when the membranes were tested for base recovery in Na2WO4/NaOH waste solution. Prepared membranes showed much improved DD performances compared to traditional SPPO membrane and possess the potentiality to be a promising candidate for alkali recovery via diffusion dialysis.
USDA-ARS?s Scientific Manuscript database
Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...
Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt
2017-10-01
Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
Ueda, Tadaharu; Okumura, Takashi; Tanaka, Yukino; Akase, Saki; Shimamura, Tomoko; Ukeda, Hiroyuki
2016-01-01
A new method was developed to evaluate antioxidant activity based on the redox properties of polyoxometalates, which are partially reduced by antioxidants to generate a limiting potential. The polyoxometalates [PMo12O40](3-), [PVW11O40](4-) and [SV2W10O40]4- formed in situ were used as electrochemical probes for the new evaluation method, and their formation conditions were optimized to evaluate the antioxidant activities of gallic acid, ellagic acid, catechin, quercetin, morin, trans-ferulic acid, sesamol, α-tocopherol, δ-tocopherol and L-ascorbic acid. The observed difference between initial potential and limiting potential (ΔE) were compared with spectrophotometrically evaluated antioxidant activities. In addition, the antioxidant capacities of five beverages (Japanese green tea, concentrated catechin-containing green tea, grapefruit juice, red wine and Japanese sake) were evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lun, Huijie; Yang, Jinghe; Jin, Linyu
2015-05-15
By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagneticmore » behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.
On June 2015, Savannah River National Laboratory (SRNL) received a Strip Effluent (SE) coalescer (FLT-304) from MCU. That coalescer was first installed at MCU in late October 2014 and removed in April 2015. While processing approximately 48,700 gallons of strip solution, the pressure drop steadily increased linearly from 1 psi to near 16 psi (the administrative limit is 17 psi) with the total filtrate volume (2.1E-4 psi/gal of filtrate). The linear behavior is due to the combined effect of a constant deposition of material that starts from the closed-end to the mid-section of the coalescer reducing the available surface areamore » of the coalescer for fluid passage (linearly with filtrate volume) and the formation of a secondary emulsion (water in NG-CSSX) on the fibers of the coalescer media. Both effects reduced the coalescer porosity by at least 13% (after processing 48,700 gallons). Before the coalescer was removed, it was flushed with a 10 mM boric acid solution to reduce the dose level. To determine the nature of the deposited material, a physical and chemical analysis of the coalescer was conducted. Characterization of this coalescer revealed the adsorption of organic containing amines (secondary amides and primary amines), TiDG, degraded modifier (with no hydroxyl group), MaxCalix, and oxidized hydrocarbon (possibly from Isopar™L or from lubricant used at MCU) onto the coalescer media. The amide and amines are possibly from the decomposition of the suppressor (TiDG). The modifier and MaxCalix were the largest components of the deposited organic material, as determined from leaching the coalescer with dichloromethane. Both the Fourier-Transformed Infrared (FTIR) and Fourier-Transformed Hydrogen Nuclear Magnetic Resonance (FT-HNMR) results indicated that some of the modifier was degraded (missing their OH groups). The modifier was observed everywhere in the examined coalescer pieces (FTIR), while the TiDG and its decomposition products were observed at the entrance discs of the coalescer. A solvent trim (a cocktail of solvent components with a high concentration of modifier) was added to the solvent on 2/22/2015. It is believed that the trim did not mix completely with the solvent and that it was subsequently spread around the MCU components including the coalescers, where it may have deposited. Chronologically, the modifier, the TiDG’s decomposition products and silicates deposited on the entrance discs first and after the pressure drop increased significantly, parts of the coalescer media detached itself from the central porous steel mandrel and a significant amount of steel debris, mercury, titanium, and additional aluminum and silicates deposited on the coalescer.« less
Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances
NASA Astrophysics Data System (ADS)
Jiang, Hao; Zhao, Ting; Yan, Chaoyi; Ma, Jan; Li, Chunzhong
2010-10-01
Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors.Uniform and single-crystalline Mn3O4 nano-octahedrons have been successfully synthesized by a simple ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) assisted hydrothermal route. The octahedron structures exhibit a high geometric symmetry with smooth surfaces and the mean side length of square base of octahedrons is ~160 nm. The structure is reckoned to provide superior functional properties and the nano-size achieved in the present work is noted to further facilitate the material property enhancement. The formation process was proposed to begin with a ``dissolution-recrystallization'' which is followed by an ``Ostwald ripening'' mechanism. The Mn3O4 nano-octahedrons exhibited an enhanced specific capacitance of 322 F g-1 compared with the truncated octahedrons with specific capacitances of 244 F g-1, making them a promising electrode material for supercapacitors. Electronic supplementary information (ESI) available: TEM images; EDTA-2Na reaction details. See DOI: 10.1039/c0nr00257g
[Study on chemical constituents from Schisandra chinensis stem].
Zheng, Li-shi; Du, Shu-shan; Cai, Qian
2014-10-01
To separate and identify the chemical constituents from the stem of Schisandra chinensis. Various chromatographic techniques were used to separate and purify the chemical constituents from 95% ethanol extraction of the stem of Schisandra chinensis. Their structures were elucidated based on the physico-chemical properties and spectral data. Ten compounds were obtained and elucidated as (+)-deoxyschizandrin (1), γ-schizandrin (2), wuweizisu C (3), gomisin N (4), schizandrin (5), anwuweizic acid (6), (-)-dihydroguaiaretic acid (7), tetradecanoic acid (8), β-sitosterol (9) and daucosterol (10). Compounds 6-8 are obtained from the stem of Schisandra chinensis for the first time.
Tiwari, Anjani K; Ojha, Himanshu; Kaul, Ankur; Dutta, Anupama; Srivastava, Pooja; Shukla, Gauri; Srivastava, Rakesh; Mishra, Anil K
2009-07-01
Nuclear magnetic resonance imaging is a very useful tool in modern medical diagnostics, especially when gadolinium (III)-based contrast agents are administered to the patient with the aim of increasing the image contrast between normal and diseased tissues. With the use of soft modelling techniques such as quantitative structure-activity relationship/quantitative structure-property relationship after a suitable description of their molecular structure, we have studied a series of phosphonic acid for designing new MRI contrast agent. Quantitative structure-property relationship studies with multiple linear regression analysis were applied to find correlation between different calculated molecular descriptors of the phosphonic acid-based chelating agent and their stability constants. The final quantitative structure-property relationship mathematical models were found as--quantitative structure-property relationship Model for phosphonic acid series (Model 1)--log K(ML) = {5.00243(+/-0.7102)}- MR {0.0263(+/-0.540)}n = 12 l r l = 0.942 s = 0.183 F = 99.165 quantitative structure-property relationship Model for phosphonic acid series (Model 2)--log K(ML) = {5.06280(+/-0.3418)}- MR {0.0252(+/- .198)}n = 12 l r l = 0.956 s = 0.186 F = 99.256.
Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je
2016-01-01
Background: Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. Objective: In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. Materials and Methods: New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. Conclusion: In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. SUMMARY D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2’’,6’’-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. PMID:27076746
Yun, Bo-Ra; Yang, Hye Jin; Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Ma, Choong Je
2016-01-01
Dianthus superbus L. has been used in Chinese herbal medicine as a diuretic and anti-inflammatory agent. In this study, we isolated ten bioactive compounds from D. superbus and evaluated their neuroprotective activity against glutamate-induced cell death in the hippocampal neuronal HT22 cells. New compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O (2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10), were isolated by bioactivity-guided separation. Structures of the isolated compounds were identified on the basis of (1)H nuclear magnetic resonance (NMR), (13)C NMR, and two-dimensional NMR spectra, while their neuroprotective properties were evaluated by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. D. superbus extract had a neuroprotective effect and isolated 10 compounds. Among the compounds, compounds 5 and 6 effectively protected HT22 cells against glutamate toxicity. In conclusion, the extract of D. superbus and compounds isolated from it exhibited neuroprotective properties, suggesting therapeutic potential for applications in neurotoxic diseases. D. superbus extract significantly protected on glutamate-induced cell death in HT22 cellsNew compound, (E)-methyl-4-hydroxy-4-(8a-methyl-3-oxodecahydronaphthalen-4a-yl) (1) and, nine known compounds, diosmetin-7-O(2'',6''-di-O-α-L-rhamnopyranosyl)-β-D-glucopyranoside (2), 4-hydroxy-3-methoxy-pentyl ester benzenepropanoic acid (3), vanillic acid (4), 4-hydroxy-benzeneacetic acid (5), 4-methoxybenzeneacetic acid (6), (E)-4-methoxycinnamic acid (7), 3-methoxy-4-hydroxyphenylethanol (8), hydroferulic acid (9), and methyl hydroferulate (10) were isolated from D. superbus extract4-hydroxy-benzeneacetic acid and 4-methoxybenzeneacetic acid showed significant protective activity against glutamate-induced toxicity in HT22 cells. Abbreviations used: CNS: Central nervous system, ROS: Reactive oxygen species, CHCl3: Chloroform, EtOAc: Ethyl acetate, BuOH: Butanol, HPLC: High performance liquid chromatography, TLC: Thin layer chromatography, MPLC: Middle performance liquid chromatography, MeOH: Methanol, OD: Optical density, COSY: Correlation spectroscopy, HMQC: Heteronuclear multiple-quantum correlation, HMBC: Heteronuclear multiple-bond correlation, HR-MS: High-resolution molecular spectroscopy, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
REDOX-SWITCHABLE CALIX[6]ARENE-BASED ISOMERIC ROTAXANES.
Zanichelli, Valeria; Bazzoni, Margherita; Arduini, Arturo; Franchi, Paola; Lucarini, Marco; Ragazzon, Giulio; Secchi, Andrea; Silvi, Serena
2018-04-16
Operating molecular machines are based on switchable systems, whose components can be set in motion in a controllable fashion. The presence of non-symmetric elements is a mandatory requirement to obtain and demonstrate the unidirectionality of motion. Calixarene-based macrocycles have proven very efficient hosts in the design of oriented rotaxanes and of pseudorotaxanes with a strict control on the direction of complexation. We have synthesized and characterized a series of two-station rotaxanes based on bypiridinium-ammonium axles. We have exploited a recently reported supramolecular-assisted strategy for the synthesis of different orientational isomers and we identified the ammonium unit as a proper secondary station for the calixarene. We were able to trigger the displacement of the macrocycle upon electrochemical reduction of the bipyridinium primary station and we demonstrated that the shuttling is influenced both by the length of the chain of the axle component and by the position of the secondary station with respect to the calixarene rims. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Modification of polystyrene-based activated carbon spheres to improve adsorption of dibenzothiophene
NASA Astrophysics Data System (ADS)
Wang, Qin; Liang, Xiaoyi; Qiao, Wenming; Liu, Chaojun; Liu, Xiaojun; Zhang, Rui; Ling, Licheng
2009-01-01
Polystyrene-based activated carbon spheres (PACS) were modified with either air, HNO 3, (NH 4) 2S 2O 8, H 2O 2 or H 2 to improve their adsorption properties of dibenzothiophene (DBT). The texture and surface chemistry of PACS were characterized by N 2 adsorption, scanning electron microscopy (SEM), temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), acid-base titration and elemental analysis. The results showed that HNO 3 and (NH 4) 2S 2O 8 treatments introduced large amount of acidic groups such as carboxylic, lactones and anhydride groups, while air and H 2O 2 had relatively mild effects and introduced a small quantity of phenol, carbonyl and ether groups. In the HNO 3 treatment, the acidic groups might be fixed on the internal and external surface of PACS, which may act as active sites of adsorption, resulting in increase of the adsorption amount by 45%. Whereas H 2O 2 and (NH 4) 2S 2O 8 treatments might fix more oxygen-containing groups on the external surface, which may hinder DBT molecule enter into micropores, leading to rather lower adsorption capacity with the extent of oxidation. So, the concentration, distribution and types of the acidic functional groups are responsible for the removal of DBT.
Satpathy, Raghunath; Guru, R K; Behera, R; Nayak, B
2015-01-01
Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound.
Medina-Plaza, C; García-Cabezón, C; García-Hernández, C; Bramorski, C; Blanco-Val, Y; Martín-Pedrosa, F; Kawai, T; de Saja, J A; Rodríguez-Méndez, M L
2015-01-01
A chemically modified electrode consisting of Langmuir-Blodgett (LB) films of n-dodecanethiol functionalized gold nanoparticles (SDODAuNP-LB), was investigated as a voltammetric sensor of organic and phenolic acids of interest in the wine industry. The nanostructured films demonstrated interfacial properties being able to detect the main organic acids present in grapes and wines (tartaric, malic, lactic and citric). Compared to a bare ITO electrode, the modified electrodes exhibited a shift of the reduction potential in the less positive direction and a marked enhancement in the current response. Moreover, the increased electrocatalytic properties made it possible to distinguish between the different dissociable protons of polyprotic acids. The SDODAuNP-LB sensor was also able to provide enhanced responses toward aqueous solutions of phenolic acids commonly found in wines (caffeic and gallic acids). The presence of nanoparticles increased drastically the sensitivity toward organic acids and phenolic compounds. Limits of detection as low as 10(-6) mol L(-1) were achieved. Efficient catalytic activity was also observed in mixtures of phenolic acid/tartaric in the range of pHs typically found in wines. In such mixtures, the electrode was able to provide simultaneous information about the acid and the phenol concentrations with a complete absence of interferences. The excellent sensing properties shown by these sensors could be attributed to the electrocatalytic properties of the nanoparticles combined with the high surface to volume ratio and homogeneity provided by the LB technique used for the immobilization. Moreover, the LB technique also provided an accurate method to immobilize the gold nanoparticles giving rise to stable and reproducible sensors showing repeatability lower than 2% and reproducibility lower than 4% for all the compounds analyzed. Copyright © 2014. Published by Elsevier B.V.
van den Bruinhorst, Adriaan; Spyriouni, Theodora; Hill, Jörg-Rüdiger; Kroon, Maaike C
2018-01-11
The liquid range and applicability of deep eutectic solvents (DESs) are determined by their physicochemical properties. In this work, the physicochemical properties of glycolic acid:proline and malic acid:proline were evaluated experimentally and with MD simulations at five different ratios. Both DESs exhibited esterification upon preparation, which affected the viscosity in particular. In order to minimize oligomer formation and water release, three different experimental preparation methods were explored, but none could prevent esterification. The experimental and calculated densities of the DESs were found to be in good agreement. The measured and modeled glass transition temperature showed similar trends with composition, as did the experimental viscosity and the calculated diffusivities. The MD simulations provided additional insight at the atomistic level, showing that at acid-rich compositions, the acid-acid hydrogen bonding (HB) interactions prevail. Malic acid-based DESs show stronger acid-acid HB interactions than glycolic acid-based ones, possibly explaining its extreme viscosity. Upon the addition of proline, the interspecies interactions become predominant, confirming the formation of the widely assumed HB network between the DESs constituents in the liquid phase.
Giri, Sib Sankar; Sen, Shib Sankar; Saha, Subrata; Sukumaran, Venkatachalam; Park, Se Chang
2018-01-01
This study aimed to isolate potential probiotic lactic acid bacteria from a traditional rice-based fermented beverage “bhaati jaanr” and to evaluate their role during preparation of the beverage. Among various isolates, Lactobacillus plantarum strain L7 exhibited satisfactory in vitro probiotic characteristics such as acid resistance and bile tolerance, cell surface hydrophobicity, auto-aggregation, antibiotic susceptibility, and antimicrobial activities. Therefore, performance of L7 as a starter culture in rice fermentation was determined during a 6-day rice fermentation study. L. plantarum L7 decreased the pH, associated with an increase in total titratable acidity and organic acid production up to the 4th day of fermentation. The highest concentrations of succinic acid (0.37 mg/g), lactic acid (4.95 mg/g), and acetic acid (0.36 mg/g) were recorded on the 3rd, 4th, and 5th days of fermentation, respectively. Saccharifying (148.13 μg/min g−1) and liquefying (89.47 μg/min g−1) activities were the highest on days 3 and 2, respectively, and thereafter, they decreased. Phytase activity and the cleavage of free minerals (sodium, calcium, magnesium, manganese, and ferrous) increased up to days 3–4. The concentration of various accumulated malto-oligosaccharides (glucose, fructose, maltotriose, and maltoterose) was noted to be the maximum on days 4 and 5. Furthermore, gas chromatography-mass spectrometry analysis indicated the presence of various volatile compounds. The fermented material also exhibited 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity. Therefore, the probiotic, L. plantarum L7, has a significant role in the fermentation of this beverage and enhances its functional properties. PMID:29593702
Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline
2017-05-09
Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua
2018-05-01
The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.
Lange, Jos H M; Venhorst, Jennifer; van Dongen, Maria J P; Frankena, Jurjen; Bassissi, Firas; de Bruin, Natasja M W J; den Besten, Cathaline; de Beer, Stephanie B A; Oostenbrink, Chris; Markova, Natalia; Kruse, Chris G
2011-10-01
Many early drug research efforts are too reductionist thereby not delivering key parameters such as kinetics and thermodynamics of target-ligand binding. A set of human D-Amino Acid Oxidase (DAAO) inhibitors 1-6 was applied to demonstrate the impact of key biophysical techniques and physicochemical methods in the differentiation of chemical entities that cannot be adequately distinguished on the basis of their normalized potency (ligand efficiency) values. The resulting biophysical and physicochemical data were related to relevant pharmacodynamic and pharmacokinetic properties. Surface Plasmon Resonance data indicated prolonged target-ligand residence times for 5 and 6 as compared to 1-4, based on the observed k(off) values. The Isothermal Titration Calorimetry-derived thermodynamic binding profiles of 1-6 to the DAAO enzyme revealed favorable contributions of both ΔH and ΔS to their ΔG values. Surprisingly, the thermodynamic binding profile of 3 elicited a substantially higher favorable contribution of ΔH to ΔG in comparison with the structurally closely related fused bicyclic acid 4. Molecular dynamics simulations and free energy calculations of 1, 3, and 4 led to novel insights into the thermodynamic properties of the binding process at an atomic level and in the different thermodynamic signatures of 3 and 4. The presented holistic approach is anticipated to facilitate the identification of compounds with best-in-class properties at an early research stage. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Pizzoli, Giuliano; Lobello, Maria Grazia; Carlotti, Benedetta; Elisei, Fausto; Nazeeruddin, Mohammad K; Vitillaro, Giuseppe; De Angelis, Filippo
2012-10-14
We report a combined spectro-photometric and computational investigation of the acid-base equilibria of the N3 solar cell sensitizer [Ru(dcbpyH(2))(2)(NCS)(2)] (dcbpyH(2) = 4,4'-dicarboxyl-2,2' bipyridine) in aqueous/ethanol solutions. The absorption spectra of N3 recorded at various pH values were analyzed by Single Value Decomposition techniques, followed by Global Fitting procedures, allowing us to identify four separate acid-base equilibria and their corresponding ground state pK(a) values. DFT/TDDFT calculations were performed for the N3 dye in solution, investigating the possible relevant species obtained by sequential deprotonation of the four dye carboxylic groups. TDDFT excited state calculations provided UV-vis absorption spectra which nicely agree with the experimental spectral shapes at various pH values. The calculated pK(a) values are also in good agreement with experimental data, within <1 pK(a) unit. Based on the calculated energy differences a tentative assignment of the N3 deprotonation pathway is reported.
Yan, Wei-Hong; Bao, Song-Song; Huang, Jian; Ren, Min; Sheng, Xiao-Li; Cai, Zhong-Sheng; Lu, Chang-Sheng; Meng, Qing-Jin; Zheng, Li-Min
2013-06-21
Three coordination polymers {[Co2(AQTC)(H2O)6]·6H2O}n (1), {[M2(AQTC)(bpym)(H2O)6]·6H2O}n (M = Co(2), Ni(3)) have been synthesized and structurally characterized, where H4AQTC is anthraquinone-1,4,5,8-tetracarboxylic acid and bpym is 2,2'-bipyrimidine. Complex 1 features a 3-D structure, where layers of Co2(AQTC) are cross-linked by Co-H2O chains. Complexes 2 and 3 are isostructural and display 1-D chain structures. The chains are connected through hydrogen-bonding interactions to form 3-D supramolecular structures. Magnetic properties of these complexes are investigated. Compound 1 shows canted antiferromagnetism and slow relaxation below 4.0 K. For complexes 2 and 3, dominant antiferromagnetic interactions are observed. The luminescent properties of the three complexes are investigated as well.
NASA Astrophysics Data System (ADS)
Zhou, Xinhui; Song, Lin; Li, Liang; Yang, Tao
2016-09-01
Two coordination polymers (CPs) {[Mg2L(μ2-H2O) (μ2-DMA)]·DMA}n (1), and [Ag4L(DMF)2]n (2) (H4L = 1,1‧:4‧,1″-terphenyl-2‧,4,4″,5‧-tetracarboxylic acid, DMA = N,N-dimethylacetamine, DMF = N,N-dimethylformamide) have been synthesized and structurally characterized. In 1 and 2, there exist a series of parallel aligned Msbnd Osbnd C chains, which are linked along two directions by para-terphenyl moieties of L4- ligands to lead to the metal-carboxylate chain-based three-dimensional frameworks. The photoluminescence properties of the compounds 1 and 2 have also been investigated. 1 displays blue-violet light emission with the emission maximum at 380 nm. 2 exhibits a broad emission peak from 300 to 800 nm with an emission maximum at 484 nm and some of the shoulder peaks.
NASA Astrophysics Data System (ADS)
Xia, Liang; Dong, Wen-Wen; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng
2016-10-01
To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d10 coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt)2]n (1), [Cd3(4-pzpt)2(suc)2]n (2), [Cd2(4-Hpzpt)(nbc)2(H2O)]n (3) and {[Cd2(4-pzpt)2(tfbdc)(H2O)4]·H2O}n (4) (H2suc=1,2-ethanedicarboxylic acid, H2nbc=hthalene-1,4-dicarboxylic acid, H2tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 44-sql layer, which is extended to a 3D network via nonclassical C-H…N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4120.63 net composed of trinuclear CdII-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·53·72)(53·6·7·9)(42·55·6·72). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 63-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O-H…N and O-H…O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated.
Cu(II) binding by a pH-fractionated fulvic acid
Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.; Leenheer, J.A.
1999-01-01
The relationship between acidity, Cu(II) binding and sorption to XAD resin was examined using Suwannee River fulvic acid (SRFA). The work was based on the hypothesis that fractions of SRFA eluted from an XAD column at various pH's from 1.0 to 12.0 would show systematic variations in acidity and possibly aromaticity which in turn would lead to different Cu(II) binding properties. We measured equilibrium Cu(II) binding to these fractions using Cu2+ ion-selective electrode (ISE) potentiometry at pH 6.0. Several model ligands were also examined, including cyclopentane-1,2,3,4-tetracarboxylic acid (CP-TCA) and tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THF-TCA), the latter binding Cu(II) much more strongly as a consequence of the ether linkage. The SRFA Cu(II) binding properties agreed with previous work at high ionic strength, and binding was enhanced substantially at lower ionic strength, in agreement with Poisson-Boltzmann predictions for small spheres. Determining Cu binding constants (K(i)) by non-linear regression with total ligand concentrations (L(Ti)) taken from previous work, the fractions eluted at varying pH had K(i) similar to the unfractionated SRFA, with a maximum enhancement of 0.50 log units. We conclude that variable-pH elution from XAD does not isolate significantly strong (or weak) Cu(II)-binding components from the SRFA mixture. Copyright (C) 1999 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Ee, Tang Zo; Lim, Steven; Ling, Pang Yean; Huei, Wong Kam; Chyuan, Ong Hwai
2017-04-01
Experiment was carried out to study the feasibility of biomass derived solid acid catalyst for the production of biodiesel using Palm Fatty Acid Distillate (PFAD). Malaysia indigenous seaweed was selected as the biomass to be carbonized as the catalyst support. Sulfonation of seaweed based carbon material was carried out by thermal decomposition of ammonium sulfate, (NH4)2SO4. The effects of carbonization temperature at 200 to 600°C on the catalyst physical and chemical properties were studied. The effect of reaction parameters on the fatty acid methyl ester (FAME) yield was studied by varying the concentration of ammonium sulfate (5.0 to 40.0 w/v%) and thermal decomposition time (15 to 90 min). Characterizations of catalyst were carried out to study the catalyst surface morphology with Scanning Electron Microscope (SEM), acid density with back titration and functional group attached with FT-IR. Results showed that when the catalyst sulfonated with 10.0 w/v% ammonium sulfate solution and heated to 235°C for 30 min, the highest FAME yield achieved was 23.7% at the reaction condition of 5.0 wt.% catalyst loading, esterification time of 4 h, methanol to PFAD molar ratio of 20:1 at 100°C reaction temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatakeyama, Keisuke, E-mail: hatakeyamak@pref.tottori.jp; Okuda, Masukazu; Kuki, Takahiro
2012-12-15
Graphical abstract: Display Omitted Highlights: ► The photocatalytic property of a silver orthophosphate (Ag{sub 3}PO{sub 4}) was investigated for humic acid degradation. ► The Ag{sub 3}PO{sub 4} shows high photocatalytic activity under visible light. ► The photocatalytic activity was greatly improved by employing the precipitation method. -- Abstract: In order to remove dissolved organic matter such as humic acid from water, a silver orthophosphate (Ag{sub 3}PO{sub 4}) was newly employed as a heterogeneous photocatalyst. Here, Ag{sub 3}PO{sub 4} was prepared by simple ion-exchange and precipitation methods, and the physico-chemical properties were characterized by X-ray diffraction, ultraviolet–visible diffuse reflectance spectroscopy, scanningmore » electron microscopy, particle distribution measurements and Brunauer–Emmett–Teller (BET) analysis. The degradation of humic acid was faster over Ag{sub 3}PO{sub 4} catalyst than over conventional TiO{sub 2} (P-25). The total photocatalytic properties were improved by employing not an ion-exchange method but a precipitation method; humic acid degradation was performed with a removal ratio of dissolved organic carbon of 75% under visible light (λ = 451 nm) for 2-h irradiation.« less
A novel acidic pH fluorescent probe based on a benzothiazole derivative
NASA Astrophysics Data System (ADS)
Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi
2017-04-01
A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.
[Key factors in the control of electroosmosis with external radial electric field in CE].
Zhu, Y; Chen, Y
1999-11-01
Direct control of electroosmosis flow (EOF) by external radial electric field was performed at room temperature using a home-made field-modulated capillary electrophoresis (CE) system. The EOF was monitored at 206 nm by using DMSO as a probe. To apply a radial electric field across the CE capillary wall, the capillary was cased with a wide column. Both of the concentric space and the capillary bore were then filled with an identical running buffer and applied with an axial electric field of 150 V/cm but starting from different levels. All of the tubes used were made of fused silica with polyimide over-coating (from the Yongnian Optical Fiber Work, Hebei, P. R. China). The size of the CE capillaries adopted was 25-100 microns i.d. (375 microns o.d.) x 28.5/45 cm (effective/total length), and that of the casing column 400 microns i.d. x 32 cm. To investigate the fundamentals of the external EOF control when using the flexible fused silica capillaries, various parameters have been inspected such as pH, buffer composition, additives and capillary wall feature etc.. As expected, to well control both of the magnitude and direction of the electroosmosis, the buffer pH should be kept below 4 and the buffer concentration below 50 mmol/L. However, buffers below 1 mmol/L should be avoided because such a diluted running buffer may result in poor CE separation. Weak electrolytes like citric acid, tartaric acid and acetic acid were found to be capable of generating better EOF control than the strong electrolytes such as phosphate and chlorides. This is possibly due to the formation of looser electric double layer with the weak rather than the strong electrolytes. Some wall coatings like calix arene and its derivatives can evidently improve the EOF control even at pH 5. This reveals an exciting way to expend the controllable pH range. In addition, narrow-bore capillaries were demonstrated to be better than wide-bore tubes. Other conditions such as buffer additives and capillary rinse procedure were shown to have only negligible influence on the control.
López, Carlos; Ximenis, Marta; Orvay, Francisca; Rotger, Carmen; Costa, Antonio
2017-06-01
Supramolecular hydrogels with tunable properties have innovative applications in biomedicine, catalysis, and materials chemistry. Minimalist low-molecular-weight hydrogelators based on squaramide and squaramic acid motifs have been designed. This approach benefits from the high acidity of squaramic acids and the aromaticity of squaramides. Moreover, substituents on the aryl ring tune the π density of the arylsquaramide motif. Thus, materials featuring distinct thermal and mechanical properties have been successfully prepared. The hydrogel (G'≈400 Pa, G''≈57 Pa; at 1.0 % w/v; 1 Hz) obtained from 4-nitrophenylsquaramide motif 1 is thermoreversible (T=57 °C at 0.2 % w/v), thixotropic, self-healable, and undergoes irreversible shrinking in response to saline stress. Furthermore, the hydrogel is injectable and can be loaded with substantial amounts (5:1 excess molar ratio) of zwitterionic biomolecules, such as l-carnitine, γ-aminobutyric acid (GABA), or d,l-Ala-d,l-Ala, without any loss of structural integrity. Then, the release of these molecules can be modulated by saline solutions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The properties of syringyl, guaiacyl and p-hydroxyphenyl artificial lignins
Bland, D. E.; Logan, A. F.
1965-01-01
1. Artificial lignins have been produced on potato parenchyma. 2. The methoxyl-free lignin and 4-hydroxy-3-methoxy (guaiacyl) lignins could be estimated by the sulphuric acid method but the 4-hydroxy-3,5-dimethoxy (syringyl) lignins could not. 3. Permanganate oxidation of isolated p-coumaric lignin gave 4-hydroxybenzoic acid, 4-hydroxyisophthalic acid and small amounts of hydroxytrimesic acid and 4-hydroxyphthalic acid. Ferulic lignin gave vanillic acid and 5-carboxyvanillic acid and also small amounts of 4-hydroxybenzoic acid and dehydrodivanillic acid. The sinapic lignin gave traces of syringic acid and of 4-hydroxybenzoic acid. 4. The p-coumaric lignin is a highly condensed polymer. The ferulic lignin is partly uncondensed and partly condensed through the 5-position like gymnosperm lignin. The sinapic lignin shows no evidence of condensation and is probably an ether-linked polymer. PMID:14340102
2014-01-01
We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000; Bai, Chao
Eight Zn(II)-based coordination polymers, namely, [Zn{sub 2}L{sub 2}(2,2’-bipy)]{sub n}·nH{sub 2}O (1), [Zn{sub 2}L{sub 2}(phen)]{sub n}·nH{sub 2}O (2), [ZnL(phen)(H{sub 2}O)]{sub n} (3), [Zn{sub 3}L{sub 3}(4,4’-bipy)]{sub n} (4), [Zn{sub 2}L{sub 2}(4,4’-bipy){sub 2}]{sub n} [Zn{sub 2}L{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (5), [Zn{sub 4}L{sub 4}(bpp){sub 2}]{sub n} (6), [ZnL(bbi){sub 0.5}]{sub n} (7), [ZnL(bpz)]{sub n} (8) (H{sub 2}L=4,4’-([1,2-phenylenebis-(methylene)]bis(oxy))dibenzoic acid, 2,2’-bipy =2,2’-bipyridine, phen =1,10-phenanthroline, 4,4’-bpy=4,4’-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1–8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1–8 in solid statemore » were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials. - Graphical abstract: Eight new Zn(II)-based coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and different N-donor ligands have been hydrothermally synthesized through fixing the metal salts and the solvent systems. The photoluminescent properties of complexes 1−8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives, in which indicates it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multiphotofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yunwu; Wang Yonghui; Li Yangguang
2008-06-15
A series of new three-dimensional (3D) lanthanide-transition metal (4f-3d) heterobimetallic open frameworks, [Ln{sub 2}(1,2-bdc){sub 2}(H{sub 2}O){sub 2} Cu(inic){sub 2}](ClO{sub 4}) (Ln=Eu (1), Tb (2), Nd (3) and Sm (4); 1,2-bdc=1,2-benzenedicarboxylate; Hinic=isonicotinic acid) have been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction analysis. Compounds 1-4 are isostructural. They possess a new anion-templated 3D heterobimetallic open framework, which is observed for the first time in the {l_brace}Ln/TM/bdc/inic{r_brace} (TM=transition metal) system. Compounds 1 and 2 exhibit the characteristic fluorescent properties of Eu(III) and Tb(III), respectively. - Graphical abstract: A series of new anion-templated 3D heterobimetallic open frameworkmore » based on the lanthanide-carboxylate layers and copper(I)-inic pillars, [Ln{sub 2}(1,2-bdc){sub 2}(H{sub 2}O){sub 2}Cu(inic){sub 2}](ClO{sub 4}) (Ln=Eu (1), Tb (2), Nd (3) and Sm (4); 1,2-bdc=1,2-benzenedicarboxylate; Hinic=isonicotinic acid), have been hydrothermally synthesized and structurally characterized, among which compounds 1 and 2 exhibit good fluorescent properties.« less
Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin
Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less
Effect of heterocyclic based organoclays on the properties of polyimide-clay nanocomposites.
Krishnan, P Santhana Gopala; Joshi, Mangala; Bhargava, Prachur; Valiyaveettil, Suresh; He, Chaobin
2005-07-01
Polyimide-clay nanocomposites were prepared from their precursor, namely, polyamic acid, by the solution-casting method. Organomodified montmorillonite (MMT) clay was prepared by treating Na+MMT (Kunipia F) with three different intercalating agents, namely, piperazine dihydrochloride, 1,3-bis(4-piperidinylpropane) dihydrochloride and 4,4'-bipiperidine dihydrochloride at 80 degrees C. Polyamic acid solutions containing various weight percentages of organomodified MMT were prepared by reacting 4,4'-(1,1'-biphenyl-4,4'-diyldioxy)dianiline with bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride in N-methyl-2-pyrrolidinone containing dispersed particles of organomodified MMT at 20 degrees C. Nanocomposite films were prepared from these solutions by solution casting and heated subsequently at a programmed heating rate. These films were transparent and brown in color. The extent of layer separation in nanocomposite films depends upon the chemical structure of the organoclay. These films were characterized by inherent viscosity, FT-IR, DSC, TMA, WAXD, TEM, UV, and TGA. The tensile behavior and surface energy studies were also investigated. The nanocomposite films had superior tensile properties, thermal behavior, and solvent resistance. Among the three organoclays, piperazine dihydrochloride was the best modifier.
Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers
Su, Lee-Chun; Xie, Zhiwei; Zhang, Yi; Nguyen, Kytai Truong; Yang, Jian
2014-01-01
Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate) showed ~70–80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers and biodegradable photoluminescent polymers also exhibited significant bacteria reduction of ~20 and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that the citrate-based polymers are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired. PMID:25023605
USDA-ARS?s Scientific Manuscript database
Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...
Ahmed, Farid; Perveen, Samina; Shah, Kiramat; Shah, Muhammad Raza; Ahmed, Shakil
2018-01-01
In this study a new calix[4]arene triazole 5 was successfully synthesized using click reaction and characterized through UV-visible, FT-IR, 1 H NMR spectroscopes and Mass Spectrometry. The supramolecular interaction of compound 5 towards commonly used drugs has been carried out using UV-Visible spectroscopy. The supramolecule 5 showed characteristic enhancement in the absorbance intensity after mixing with Cefuroxime at pH (2-12). Compound 5 displayed considerably good interactions with cefuroxime in the presence of other drugs. Compound 5 exhibits linear relationship with cefuroxime concentration in the range of (10-80µM) with regression value of 0.9954. The standard deviation for 50µM Cefuroxime was found to be 0.01 and the limit of detection for cefuroxime was calculated to be 2µM. Job's plot experiments showed 1:1 (5: cefuroxime) binding stoichiometry between compound 5 and cefuroxime. Supramolecule 5 displayed fairly good spectrophotometric recognition of Cefuroxime in human blood plasma and tap water thus showing that the ingredients of tap water and plasma sample was inert in the recognition of cefuroxime. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J
2010-01-01
When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less
The μ3 model of acids and bases: extending the Lewis theory to intermetallics.
Stacey, Timothy E; Fredrickson, Daniel C
2012-04-02
A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.
Park, Mi Ri; Kim, Younghoon; Lee, Myung-Ki
2015-01-01
The present study was conducted to screen candidate probiotic strains for anti-inflammatory activity. Initially, a nitric oxide (NO) assay was used to test selected candidate probiotic strains for anti-inflammatory activity in cultures of the murine macrophage cell line, RAW 264.7. Then, the in vitro probiotic properties of the strains, including bile tolerance, acid resistance, and growth in skim milk media, were investigated. We also performed an in vitro hydrophobicity test and an intestinal adhesion assay using Caenorhabditis elegans as a surrogate in vivo model. From our screening, we obtained 4 probiotic candidate lactic acid bacteria (LAB) strains based on their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell cultures and the results of the in vitro and in vivo probiotic property assessments. Molecular characterization using 16S rDNA sequencing analysis identified the 4 LAB strains as Lactobacillus plantarum. The selected L. plantarum strains (CAU1054, CAU1055, CAU1064, and CAU1106) were found to possess desirable in vitro and in vivo probiotic properties, and these strains are good candidates for further investigations in animal models and human clinical studies to elucidate the mechanisms underlying their anti-inflammatory activities. PMID:26761805
NASA Astrophysics Data System (ADS)
Meng, Jun-Rong; Yao, Peng-Fei; Cui, Lian-Sheng; Gan, Yong-Le; Li, Hai-Ye; Liu, Han-Fu; Huang, Fu-Ping
2018-03-01
In this paper, we obtained two novel 2D layered cobalt coordination polymers, namely [(Co(o-BDC)]n (1) and (Co(3-Cl-o-BDC)]n (2), through solvothermal method with acetone as solvent based on phthalic acid (o-H2BDC) and 3-chloro-phthalic acid (3-Cl-o-H2BDC) respectively. Due to the steric hindrance effect of chloric substituent, the two ligands revealed different coordination modes. And cobalt centers of 1 and 2 showed CoO6 octahedral and CoO4 tetrahedral configurations respectively. As a result, 1 and 2 revealed different layered constructions: a 5-connected topology with 48.62 Schläfli symbol for 1, and a 4-connected topology with 44.62 Schläfli symbol for 2, respectively. Besides, Compound 1 and 2 reveal ferromagnetic and antiferromagnetic behaviors, respectively.
NASA Astrophysics Data System (ADS)
Repko, Anton; Vejpravová, Jana; Vacková, Taťana; Zákutná, Dominika; Nižňanský, Daniel
2015-09-01
We present a facile and high-yield synthesis of cobalt ferrite nanoparticles by hydrothermal hydrolysis of Co-Fe oleate in the presence of pentanol/octanol/toluene and water at 180 or 220 °C. The particle size (6-10 nm) was controlled by the composition of the organic solvent and temperature. Magnetic properties were then investigated with respect to the particle size and surface modification with citric acid or titanium dioxide (leading to hydrophilic particles). The as-prepared hydrophobic nanoparticles (coated by oleic acid) had a minimum inter-particle distance of 2.5 nm. Their apparent blocking temperature (estimated as a maximum of the zero-field-cooled magnetization) was 180 K, 280 K and 330 K for the particles with size of 6, 9 and 10.5 nm, respectively. Replacement of oleic acid on the surface by citric acid decreased inter-particle distance to less than 1 nm, and increased blocking temperature by ca. 10 K. On the other hand, coating with titanium dioxide, supported by nitrilotri(methylphosphonic acid), caused increase of the particle spacing, and lowering of the blocking temperature by ca. 20 K. The CoFe2O4@TiO2 nanoparticles were sufficiently stable in water, methanol and ethanol. The particles were also investigated by Mössbauer spectroscopy and alternating-current (AC) susceptibility measurements, and their analysis with Vögel-Fulcher and power law. Effect of different particle coating and dipolar interactions on the magnetic properties is discussed.
Jurkić, Lela Munjas; Cepanec, Ivica; Pavelić, Sandra Kraljević; Pavelić, Krešimir
2013-01-08
Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.
Silicon-Based Anode and Method for Manufacturing the Same
NASA Technical Reports Server (NTRS)
Yushin, Gleb Nikolayevich (Inventor); Zdyrko, Bogdan (Inventor); Magasinski, Alexandre (Inventor); Luzinov, Igor (Inventor)
2017-01-01
A silicon-based anode comprising silicon, a carbon coating that coats the surface of the silicon, a polyvinyl acid that binds to at least a portion of the silicon, and vinylene carbonate that seals the interface between the silicon and the polyvinyl acid. Because of its properties, polyvinyl acid binders offer improved anode stability, tunable properties, and many other attractive attributes for silicon-based anodes, which enable the anode to withstand silicon cycles of expansion and contraction during charging and discharging.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin
2018-06-01
Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin
2018-04-01
Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.
NASA Astrophysics Data System (ADS)
Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang
2017-12-01
The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.
Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang
2017-12-05
The novel class of luminescent Al 3+ -based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2':6',2″-terpyridine]-4'-ylbenzoic acid (Hcptpy) with Al 3+ under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0μM with a detection limit of 4.64μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA. Copyright © 2017 Elsevier B.V. All rights reserved.
Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun
2014-10-01
The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.
A review of the different techniques for solid surface acid-base characterization.
Sun, Chenhang; Berg, John C
2003-09-18
In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).
NASA Astrophysics Data System (ADS)
Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai
1987-04-01
TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.
Spectroscopic study on variations in illite surface properties after acid-base titration.
Liu, Wen-xin; Coveney, R M; Tang, Hong-xiao
2003-07-01
FT-IR, Raman microscopy, XRD, 29Si and 27Al MAS NMR, were used to investigate changes in surface properties of a natural illite sample after acid-base potentiometric titration. The characteristic XRD lines indicated the presence of surface Al-Si complexes, preferable to Al(OH)3 precipitates. In the microscopic Raman spectra, the vibration peaks of Si-O and Al-O bonds diminished as a result of treatment with acid, then increased after hydroxide back titration. The varied ratio of signal intensity between (IV)Al and (VI)Al species in 27Al MAS NMR spectra, together with the stable BET surface area after acidimetric titration, suggested that edge faces and basal planes in the layer structure of illite participated in dissolution of structural components. The combined spectroscopic evidence demonstrated that the reactions between illite surfaces and acid-leaching silicic acid and aluminum ions should be considered in the model description of surface acid-base properties of the aqueous illite.
NASA Astrophysics Data System (ADS)
Xiong, Shanxin; Li, Shuaishuai; Zhang, Xiangkai; Wang, Ru; Zhang, Runlan; Wang, Xiaoqin; Wu, Bohua; Gong, Ming; Chu, Jia
2018-02-01
The molecular architecture of conducting polymers has a significant impact on their conjugated structure and electrochemical properties. We have investigated the influence of star-shaped structure on the electrochemical and electrochromic properties of polyaniline (PANI). Star-shaped PANI (SPANI) was prepared by copolymerization of aniline with triphenylamine (TPA) using an emulsion polymerization method. With addition of less than 4.0 mol.% TPA, the resulting SPANI exhibited good solubility in xylene with dodecylbenzenesulfonic acid (DBSA) as doping acid. The structure and thermal stability of the SPANI were characterized using Fourier-transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis, and the electrochemical behavior was analyzed by cyclic voltammetry (CV). The electrochromic properties of SPANI were tested using an electrochemical workstation combined with an ultraviolet-visible (UV-Vis) spectrometer. The results show that, with increasing TPA loading, the thermal stability of SPANI increased. With addition of 4.0 mol.% TPA, the weight loss of SPANI was 36.9% at 700°C, much lower than the value of 71.2% for PANI at the same temperature. The low oxidation potential and large enclosed area of the CV curves indicate that SPANI possesses higher electrochemical activity than PANI. Enhanced electrochromic properties including higher optical contrast and better electrochromic stability of SPANI were also obtained. SPANI with 1.6 mol.% TPA loading exhibited the highest optical contrast of 0.71, higher than the values of 0.58 for PANI, 0.66 for SPANI-0.4%, or 0.63 for SPANI-4.0%. Overdosing of TPA resulted in slow switching speed due to slow ion transport in short branched chains of star-shaped PANI electrochromic material. Long-term stability testing confirmed that all the SPANI-based devices exhibited better stability than the PANI-based device.
Horvat, Gordan; Frkanec, Leo; Cindro, Nikola; Tomišić, Vladislav
2017-09-13
The complexation of alkali metal cations by lower rim N,N-dihexylacetamide (L1) and newly synthesized N-hexyl-N-methylacetamide (L2) calix[4]arene tertiary-amide derivatives was thoroughly studied at 25 °C in acetonitrile (MeCN), benzonitrile (PhCN), and methanol (MeOH) by means of direct and competitive microcalorimetric titrations, and UV and 1 H NMR spectroscopies. In addition, by measuring the ligands' solubilities, the solution (transfer) Gibbs energies of the ligands and their alkali metal complexes were obtained. The inclusion of solvent molecules in the free and complexed calixarene hydrophobic cavities was also investigated. Computational (classical molecular dynamics) investigations of the studied systems were also carried out. The obtained results were compared with those previously obtained by studying the complexation ability of an N-hexylacetamidecalix[4]arene secondary-amide derivative (L3). The stability constants of 1 : 1 complexes were determined in all solvents used (the values obtained by different methods being in excellent agreement), as were the corresponding complexation enthalpies and entropies. Almost all of the examined reactions were enthalpically controlled. The most striking exceptions were reactions of Li + with both ligands in methanol, for which the entropic contribution to the reaction Gibbs energy was substantial due the entropically favourable desolvation of the smallest lithium cation. The thermodynamic stabilities of the complexes were quite solvent dependent (the stability decreased in the solvent order: MeCN > PhCN ≫ MeOH), which could be accounted for by considering the differences in the solvation of the ligand and free and complexed alkali metal cations in the solvents used. Comparison of the stability constants of the ligand L1 and L2 complexes clearly revealed that the higher electron-donating ability of the hexyl with respect to the methyl group is of considerable importance in determining the equilibria of the complexation reactions. Additionally, the quite strong influence of intramolecular hydrogen bond formation in compound L3 (not present in ligands L1 and L2) and that of the inclusion of solvent molecules in the calixarene hydrophobic cone were shown to be of great importance in determining the thermodynamic stability of the calixarene-cation complexes. The experimental results were fully supported by those obtained by MD simulations.
Chemical characteristics and fatty acid profile of butterfly tree seed oil (Bauhinia purpurea L)
NASA Astrophysics Data System (ADS)
Soetjipto, H.; Riyanto, C. A.; Victoria, T.
2018-04-01
Butterfly tree (Kachnar) in Indonesia is only used as ornamental plants in garden, park, and roadsides. The seed of Butterfly tree was extracted with n-hexane and physicochemical properties were determined based on Standard Nasional Indonesia (SNI) 01-3555-1998 while the oil chemical composition was determined using GC-MS. The result showed that yield of the oil as 57.33±1.14 % (w/w) and the chemical characteristic of seed oil include acid value (13.7.8±0.23 mg KOH/g) saponification value (153.32±1.85 mg KOH/g), peroxide value (43.51±0.57. mg KOH/g). The butterfly tree seed oil showed that linoleic acid (28.11 %), palmitic acid (29.2%), oleic acid (19.82%) and stearic acid (10.7.4 %) were the main fatty acids in the crude seed oils. Minor amounts of neophytadiena and arachidic acid were also identified.
Rational design of a colorimetric pH sensor from a soluble retinoic acid chaperone.
Berbasova, Tetyana; Nosrati, Meisam; Vasileiou, Chrysoula; Wang, Wenjing; Lee, Kin Sing Stephen; Yapici, Ipek; Geiger, James H; Borhan, Babak
2013-10-30
Reengineering of cellular retinoic acid binding protein II (CRABPII) to be capable of binding retinal as a protonated Schiff base is described. Through rational alterations of the binding pocket, electrostatic perturbations of the embedded retinylidene chromophore that favor delocalization of the iminium charge lead to exquisite control in the regulation of chromophoric absorption properties, spanning the visible spectrum (474-640 nm). The pKa of the retinylidene protonated Schiff base was modulated from 2.4 to 8.1, giving rise to a set of proteins of varying colors and pH sensitivities. These proteins were used to demonstrate a concentration-independent, ratiometric pH sensor.
ERIC Educational Resources Information Center
Nyasulu, Frazier; Barlag, Rebecca; Wise, Lindy; McMills, Lauren
2013-01-01
The thermodynamic properties of weak acid ionization reactions are determined. The thermodynamic properties are corresponding values of the absolute temperature (T), the weak acid equilibrium constant (K[subscript a]), the enthalpy of ionization (delta[subscript i]H[degrees]), and the entropy of ionization (delta[subscript i]S[degrees]). The…
Faroque, Muhammad Umer; Noureen, Sajida; Ahmed, Maqsood; Tahir, Muhammad Nawaz
2018-01-01
The crystal structure of the cocrystal salt form of the antimalarial drug pyrimethamine with 2,4-dihydroxybenzoic acid in methanol [systematic name: 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2,4-dihydroxybenzoate methanol monosolvate, C 12 H 14 ClN 4 + ·C 7 H 5 O 4 - ·CH 3 OH] has been studied using X-ray diffraction data collected at room temperature. The crystal structure was refined using the classical Independent Atom Model (IAM) and the Multipolar Atom Model by transferring electron-density parameters from the ELMAM2 database. The Cl atom was refined anharmonically. The results of both refinement methods have been compared. The intermolecular interactions have been characterized on the basis of Hirshfeld surface analysis and topological analysis using Bader's theory of Atoms in Molecules. The results show that the molecular assembly is built primarily on the basis of charge transfer between 2,4-dihydroxybenzoic acid and pyrimethamine, which results in strong intermolecular hydrogen bonds. This fact is further validated by the calculation of the electrostatic potential based on transferred electron-density parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Junsheng; Department of Applied Chemistry, Jilin Institute of Chemical Technology, Jilin 132022; Du Dongying
2011-02-15
Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studiedmore » in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.« less
NASA Astrophysics Data System (ADS)
Randeria, Pratik Shailesh
Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open wounds and lays the groundwork for developing SNA-based approaches for treating any skin-related disorder with a known genetic signature. Chapter 5 summarizes the key findings and conclusions and introduces future research directions. Taken together, this work demonstrates the important, and often surprising, role nanostructure plays in controlling biological properties and supports the continued development of SNAs as probes for molecular and medical biology.
Mesomorphic properties of multi-arm chenodeoxycholic acid-derived liquid crystals
NASA Astrophysics Data System (ADS)
Dong, Liang; Yao, Miao; Wu, Shuang-jie; Yao, Dan-Shu; Hu, Jian-She; He, Xiao-zhi; Tian, Mei
2017-12-01
Four multi-arm liquid crystals (LCs) based on chenodeoxycholic acid, termed as 2G-PD, 2G-IB, 2G-BD and 5G-GC, respectively, have been synthesised by convergent method, which nematic LC, 6-(4-((4-ethoxybenzoyl)oxy)phenoxy)-6-oxohexanoic acid, was used as side arm, and chenodeoxycholic acid (CDCA) was used as the first core, 1,2-propanediol (PD), isosorbide (IB), 4,4‧-biphenyldiol (BD) and glucose (GC) were used as the second core, respectively. The first generation product, CDCA2EA, displayed cholesteric phase. The second generation products 2G-BD and 5G-GC displayed cholesteric phase, while 2G-PD and 2G-IB exhibited nematic phase. The multi-arm LC, 2G-IB, did not display cholesteric phase although the two cores were all chiral ones. The result indicated that chirality of the second core sometimes made the multi-arm LCs display nematic phase when cholesteric CDCA-derivative were introduced into the second core. Some attention should be paid on molecular conformation besides the introduction of chiral cores for multi-chiral-core LCs to obtain cholesteric phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.; Jones, D.
A trend summary that includes the last two Solvent Hold Tank (SHT) monthly samples is shown; MCU- 17-150-152 (July SHT) and MCU-17-153-155 (August SHT). Since the last SHT sample sent for analysis was the August sample the chemical state of the solvent is best approximated by the chemical analysis of the August SHT sample (MCU-17-153-155). This report mainly focused on the chemical analysis of the August SHT sample. The analysis data from the July SHT sample are presented in the “trend” plots of this report. Analysis of the August SHT sample (MCU-17-153-155) indicated that the modifier (CS-7SB) was 2% belowmore » but the extractant (MaxCalix) concentration was at its nominal recommended level (169,000 mg/L and 46,400 mg/L respectively). The suppressor (TiDG) level has decreased since the last measurement taken while the Modular Caustic-Side Solvent Extraction unit (MCU) was operating in January 2017, but has remained steady in the range of 666 (observed in April) to 715 mg/L (observed in the August 2017 sample) since February 2017, well above the minimum recommended level (479 mg/L), but below the nominal level. The “flat” trends observed in the TiDG, MaxCalix, modifier, and Gamma measurement are consistent with the solvent being idle since January 10, 2017. A strong correlation between density and modifier concentration in the solvent continues to be observed in the SHT samples. This analysis confirms the Isopar™L addition to the solvent in January 2017. This analysis also indicates the solvent did not require further additions. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time if the Modular Caustic-Side Solvent Extraction Unit (MCU) returns to processing radioactive liquid waste. Otherwise, the levels of these components will remain steady. A future Isopar™L trimming addition to the solvent is recommended when MCU resumes processing waste. Two unknown impurities related to the modifier (but not sec-butyl phenol: a modifier degradation product observed before) at the 290 and 110 mg/L levels were observed in the August SHT sample by the Gas - Chromatography-Mass Spectrometry (GC-MS) method. They were observed in a second GC-MS re-run with a new column. Their identification can’t be ascertained at this time. No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). Another impurity observed in the samples was mercury. Based on the August SHT sample, up to 23 ± 5 micrograms of mercury per mL of solvent was detected (the average of the Cold Vapor-Atomic Adsorption [CV-AA] and X-Ray Fluorescence [XRF] methods). The higher mercury concentration in the solvent (as determined in the last three-monthly samples) is possibly due to either a higher mercury concentration in Salt Batches 8 and 9 (Tank 49H) . The gamma level (~ 2.0E4 dpm/mL) measured in the August SHT samples was one order of magnitude lower than the gamma levels observed in the December 2016 and January 2017 SHT samples. A similar level was observed in the July SHT sample (MCU-SHT-150-152). The gamma level has remained consistently steady since January 10, 2017 when MCU stopped processing radioactive liquid waste. The laboratory will continue to monitor the quality of the solvent in particularly for any new impurities or degradation of the solvent components.« less
Production of hydroxyl fatty acids, polyol oils, and diacylglycerol by bioprocess
USDA-ARS?s Scientific Manuscript database
Hydroxy fatty acids (HFA), originally found in plant systems, are good examples of the structurally modified lipids, rendering special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial potentials in a wide range...
Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R
2017-05-01
Microbial fuel cells (MFCs) are emerging technology for wastewater treatment by chemical oxygen demand (COD) reduction and simultaneous bioelectricity production. Fabrication of an effective proton exchange membrane (PEM) is a vital component for MFC performance. In this work, green chitosan-based (CS) PEMs were fabricated with graphene oxide (GO) as filler material (CS-GO) and cross-linked with phosphoric acid (CS-GO-P(24)) or sulfuric acid (CS-GO-S(24)) to determine their effect on PEM properties. Interrogation of the physicochemical, thermal, and mechanical properties of the cross-linked CS-GO PEMs demonstrated that ionic cross-linking based on the incorporation of PO 4 3- groups in the CS-GO mixed-matrix composites, when compared with sulfuric acid cross-linking commonly used in proton exchange membrane fuel cell (PEMFC) studies, generated additional density of ionic cluster domains, rendered enhanced sorption properties, and augmented the thermal and mechanical stability of the composite structure. Consequently, bioelectricity performance analysis in MFC application showed that CS-GO-P(24) membrane produced 135% higher power density than the CS-GO-S(24) MFC system. Simultaneously, 89.52% COD removal of primary clarifier municipal wastewater was achieved in the MFC operated with the CS-GO-P(24) membrane.
Physicochemical and antioxidant properties of Bangladeshi honeys stored for more than one year
2012-01-01
Background There is no available information on physicochemical and antioxidant properties on Bangladeshi honey. We investigated five different monofloral and three different multifloral honey samples collected from different parts of Bangladesh. Methods The levels of phenolics, flavonoids, ascorbic acid, ascorbic acid equivalent antioxidant content (AEAC), proline, protein and antioxidants were determined in the honey samples using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. Results The highest level of phenolic was 688.5 ± 5.9 mg Gallic acid/kg, and the highest level of flavonoid was 155 ± 6.9 mg Catechin/kg. The highest color intensity was 2034.00 ± 17.5 mAU, and the highest protein content was 8.6 ± 0.0mg/g. High levels of proline (2932.8 ± 3.7 mg/kg), ascorbic acid (154.3 ± 0.3 mg/kg), AEAC (34.1 ± 1.4mg/100 g) and FRAP (772.4 ± 2.5 μmol Fe (II)/100 g) were detected in some of the samples, especially the multifloral honey samples, indicating good antioxidant properties. A strong positive correlation was found between phenolics, flavonoids, DPPH, FRAP and color intensity, indicating that in addition to total phenolic and flavonoid concentrations, color intensity and amino acid are good indicators of the antioxidant potential of honey. Except for a single sample (BDH-6), the honey samples stored for 1.5 years at room temperature still had 5-hydroxymethylfurfural (HMF) values within the recommended range (mean = 10.93 mg/kg), indicating that the rate of HMF production in Bangladeshi honey samples is low. Conclusion It is postulated that the low rate of HMF formation could be attributed to the acidic and low moisture content in the samples. In general, multifloral honeys have higher antioxidant properties based on their high levels of phenolics, flavonoids, AEAC, DPPH and FRAP when compared to monofloral honeys. We also found that monofloral honey samples from Guizotia abyssinica and Nigella sativa had high antioxidant properties. PMID:23043497
Physicochemical and antioxidant properties of Bangladeshi honeys stored for more than one year.
Islam, Asiful; Khalil, Ibrahim; Islam, Nazmul; Moniruzzaman, Mohammed; Mottalib, Abdul; Sulaiman, Siti Amrah; Gan, Siew Hua
2012-10-08
There is no available information on physicochemical and antioxidant properties on Bangladeshi honey. We investigated five different monofloral and three different multifloral honey samples collected from different parts of Bangladesh. The levels of phenolics, flavonoids, ascorbic acid, ascorbic acid equivalent antioxidant content (AEAC), proline, protein and antioxidants were determined in the honey samples using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays. The highest level of phenolic was 688.5 ± 5.9 mg Gallic acid/kg, and the highest level of flavonoid was 155 ± 6.9 mg Catechin/kg. The highest color intensity was 2034.00 ± 17.5 mAU, and the highest protein content was 8.6 ± 0.0mg/g. High levels of proline (2932.8 ± 3.7 mg/kg), ascorbic acid (154.3 ± 0.3 mg/kg), AEAC (34.1 ± 1.4mg/100 g) and FRAP (772.4 ± 2.5 μmol Fe (II)/100 g) were detected in some of the samples, especially the multifloral honey samples, indicating good antioxidant properties. A strong positive correlation was found between phenolics, flavonoids, DPPH, FRAP and color intensity, indicating that in addition to total phenolic and flavonoid concentrations, color intensity and amino acid are good indicators of the antioxidant potential of honey. Except for a single sample (BDH-6), the honey samples stored for 1.5 years at room temperature still had 5-hydroxymethylfurfural (HMF) values within the recommended range (mean = 10.93 mg/kg), indicating that the rate of HMF production in Bangladeshi honey samples is low. It is postulated that the low rate of HMF formation could be attributed to the acidic and low moisture content in the samples. In general, multifloral honeys have higher antioxidant properties based on their high levels of phenolics, flavonoids, AEAC, DPPH and FRAP when compared to monofloral honeys. We also found that monofloral honey samples from Guizotia abyssinica and Nigella sativa had high antioxidant properties.
Hard and soft acids and bases: atoms and atomic ions.
Reed, James L
2008-07-07
The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.
Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety
NASA Astrophysics Data System (ADS)
Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz
2015-02-01
A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ - model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest - compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed.
Polyether precursors of molecular recognition systems based on the 9,10-anthraquinone moiety.
Wcisło, Anna; Cirocka, Anna; Zarzeczańska, Dorota; Niedziałkowski, Paweł; Nakonieczna, Sandra; Ossowski, Tadeusz
2015-02-25
A series of novel polyether derivatives of 9,10-anthraquinone (AQ) was synthesized and characterized by means of UV-Vis spectroscopy, acid-base titration and complexometric titration. The results were compared with 1-NEt2AQ and 1-NHEtAQ--model compounds of alkylaminoanthraquinones. Acetonitrile and methanol were used as solvents for determination of spectroscopic and acid-base properties. Complexometric titrations were carried out exclusively in acetonitrile. Spectral characteristic of these compounds strongly depends on pH. Addition of acid causes the decrease of absorption intensity and in some cases also a shift of the visible range band. The weakest base is the compound (2), and the strongest--compound (1), both in methanol and acetonitrile solution. The introduction of an additional substituent in the position 8 of the anthraquinone compound increases its basicity. The presence of metal ions causes changes in intensity of absorption (decrease for compounds (2) and (3) and increase with bathochromic shift for (1) and (4)). For the determination of the coordination properties aluminum (III) ions were chosen. The highest complex stability constant with Al (III) ions is observed for compound (1), and the weakest for compound (3). The elongation of the polyether chain decreases the stability of the complex formed. Copyright © 2014 Elsevier B.V. All rights reserved.
Radočaj, Olga; Dimić, Etelka; Tsao, Rong
2014-03-01
A mixture, simplex centroid, 2 components experimental design was used to evaluate the addition of hemp seed oil press-cake and decaffeinated green tea leaves, as functional ingredients to assess nutritional characteristics and antioxidant properties of gluten-free crackers. All samples with added hemp flour had much better nutritional qualities than the brown rice flour crackers in terms of higher protein, crude fibers, minerals, and essential fatty acids content. Likewise, all samples with added decaffeinated green tea leaves had much better antioxidant properties than crackers with no added green tea leaves. All crackers with added hemp flour had a significantly increased fiber content (39% to 249%) and decreased carbohydrate content (8.4% to 42.3%), compared to the brown rice flour crackers. All samples had antioxidant properties, even without the addition of green tea leaves. Optimization of the responses was conducted based on the maximized values for protein, fibers, omega-3 fatty acids content, as well as for the antioxidant activity and overall score. The suggested values for the addition of the hemp oil press-cake was 20% (total flour weight) with 4 g of decaffeinated green tea leaves that would provide protein content of 14.1 g/100 g; fibers content of 8.4 g/100 g; omega-3 fatty acids content of 3.2 g/100 g; antioxidant activity measured via 2,2-diphenyl-1-picrylhydrazyl value of 30.3 μmol TE/g d.w.; and an overall score of 8.9. This formulation has demonstrated potential application in the baking industry and marketing of these gluten-free crackers as a value-added functional product. Hemp seed oil press-cake as a by-product of cold-pressed oil processing and brown rice flour were used to design a functional gluten-free snack-type product-savory crackers. All crackers were high in minerals, fibers, and omega-3 fatty acids with a desirable omega-6/omega-3 fatty acids ratio. Green tea leaves were added to improve antioxidant activity, which greatly contributed to their functional properties. This qualified the crackers as a healthy snack with a minimal content saturated fatty acids and an abundance of polyunsaturated and monounsaturated fatty acids that originated from chia seeds residual oil present in the hemp flour. © 2014 Institute of Food Technologists®
Zhang, Chao; Li, Zhi-An; Cheng, Xiang-Rong; Xiao, Qun; Li, Hong-Bo
2010-01-01
Hydroxyapatite coating on metal implants is an effective method to enhance bioactive properties of the metal surface. We report here a method to coat the Ti-6Al-4V alloy with hydroxyapatite crystals. After alkaline/heat treatment, the spontaneous growth of organoapatite on titanium alloy surface involves sequential preadsorption of titanium isopropoxide (TIPO) and the copolymer of acrylic acid and itaconic acid on the metal, followed by exposure to simulated body fluid (SBF). The organoapatite characterization of the coating was carried out by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The copolymer of acrylic acid and itaconic acid overlayer which is rich of carboxylate groups can lead to the deposition of needle-like and homogeneous HA on the surface after immersion in SBF.
Purification and Properties of Acid Stable Xylanases from Aspergillus kawachii.
Ito, K; Ogasawara, H; Sugimoto, T; Ishikawa, T
1992-01-01
Five extracellular endo-xylanases were recognized in the culture broth of shochu koji mold (Aspergillus kawachii, IFO 4308), and three major xylanases (XylA, XylB, and XylC) were purified and characterized. The molecular masses of XylA, XylB, and XylC were 35,000, 26,000, and 29,000, and isoelectric points were pH 6.7, 4.4, and 3.5, respectively. Amino acid compositions and other properties were studied and these three xylanases were found to be greatly different in their properties. These three xylanases, XylA, XylB, and XylC, were stable between pH 3-10, 3-10, and 1-9 and the optimum pHs were 5.5, 4.5, and 2.0, respectively. Consequently, these xylanases were acid stable xylanases, especially XylC was an acidophilic xylanase (acid xylanase). These xylanases produced various xylooligosaccharides including xylose from xylan and the main product was xylobiose in all xylanases. The production of acid xylanase (XylC) was enhanced with a low initial pH of the medium.
NASA Astrophysics Data System (ADS)
Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing
2015-12-01
Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.
Yuan, Bin; Ren, Ying-Long; Ma, Li; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang
2014-02-01
To discuss the rationality of the clinical replacement of traditional Chinese medicine (TCM) bear bile with bile acid constituents, and analyze the difference between these constituents and bear bile in drug properties. Summarizing the drug properties of bear bile by reference to medical literatures for drug properties of TCM bear bile and Science of Traditional Chinese Medicine (China Press of Traditional Chinese Medicine, 2007). Analyzing and summarizing the pharmacological effects of main bile acid constituents according to relevant literatures for studies on pharmacological effects of main bile acid constituents in CNKI database. Predicating the drug properties of these bile acid constituents by using the drug property predication model established by the study group according the pharmacological effects of main bile acid constituents in the paper, and compare the prediction results with the drug properties of bear bile. Bile acid constituents in bear bile were mostly cold in property, bitter in taste, and the combination of their drug properties could reflect the combined drug properties of bear bile. All of these bile acid constituents in bear bile could show part of effects of bear bile. Attention shall be given to regulate the medication scheme in clinical application according to actual conditions.
Forest soil chemistry and terrain attributes in a Catskills watershed
Johnson, C.E.; Ruiz-Mendez, J. J.; Lawrence, G.B.
2000-01-01
Knowledge of soil chemistry is useful in assessing the sensitivity of forested areas to natural and anthropogenic disturbances, but characterizing large areas is expensive because of the large sample numbers required and the cost of soil chemical analyses. We collected and chemically analyzed soil samples from 72 sites within a 214-ha watershed in the Catskill Mountains of New York to evaluate factors that influence soil chemistry and whether terrain features could be used to predict soil chemical properties. Using geographic information system (GIS) techniques, we determined five terrain attributes at each sampling location: (i) slope, (ii) aspect, (iii) elevation, (iv) topographic index, and (v) flow accumulation. These attributes were ineffective in predicting the chemical properties of organic and mineral soil samples; together they explained only 4 to 25% of the variance in pH(w), effective cation-exchange capacity (CEC(e)), exchangeable bases, exchangeable acidity, total C, total N, and C/N ratio. Regressions among soil properties were much better; total C and pH(w) together explained 33 to 66% of the variation in exchangeable bases and CEC(e). Total C was positively correlated with N (r = 0.91 and 0.96 in Oa horizons and mineral soil, respectively), exchangeable bases (r = 0.65, 0.76), and CEC(e) (r = 0.54, 0.44), indicating the importance of organic matter to the chemistry of these acidic soils. The fraction of CEC(e) occupied by H explained 44% of the variation in pH(w). Soil chemical properties at this site vary on spatial scales finer than typical GIS analyses, resulting in relationships with poor predictive power. Thus, interrelationships among soil properties are more reliable for prediction.Knowledge of soil chemistry is useful in assessing the sensitivity of forested areas to natural and anthropogenic disturbances, but characterizing large areas is expensive because of the large sample numbers required and the cost of soil chemical analyses. We collected and chemically analyzed soil samples from 72 sites within a 214-ha watershed in the Catskill Mountains of New York to evaluate factors that influence soil chemistry and whether terrain features could be used to predict soil chemical properties. Using geographic information system (GIS) techniques, we determined five terrain attributes at each sampling location: (i) slope, (ii) aspect, (iii) elevation, (iv) topographic index, and (v) flow accumulation. These attributes were ineffective in predicting the chemical properties of organic and mineral soil samples; together they explained only 4 to 25% of the variance in pHw, effective cation-exchange capacity (CECe), exchangeable bases, exchangeable acidity, total C, total N, and C/N ratio. Regressions among soil properties were much better; total C and pHw together explained 33 to 66% of the variation in exchangeable bases and CECe. Total C was positively correlated with N (r = 0.91 and 0.96 in Oa horizons and mineral soil, respectively), exchangeable bases (r = 0.65, 0.76), and CECe (r = 0.54, 0.44), indicating the importance of organic matter to the chemistry of these acidic soils. The fraction of CECe occupied by H explained 44% of the variation in pHw. Soil chemical properties at this site vary on spatial scales finer than typical GIS analyses, resulting in relationships with poor predictive power. Thus, interrelationships among soil properties are more reliable for prediction.
Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
Li, Wenchen; Liu, Qingsheng; Liu, Lingyun
2014-01-01
A group of five amino acid containing zwitterionic vinyl monomers, based on serine, lysine, ornithine, glutamic acid, and aspartic acid, respectively, were proposed and developed for potential antifouling applications. Their polymer brushes were grafted on gold chips by surface-initiated photoiniferter-mediated polymerization. We then compared their performance in resisting protein adsorption from full human serum and plasma. All five polymers can reduce protein adsorption by more than 90% compared to the unmodified gold. The ornithine-based and aspartic acid-based poly(methacrylamide) can most strongly resist protein adsorption from serum and plasma, compared to the other three. The ability of surfaces to suppress bacterial adhesion is another criterion in evaluating antifouling properties of materials. Our results show that the five polymer-grafted surfaces can significantly suppress Escherichia coli K12 adhesion to 99% compared to the bare gold surface. The zwitterionic structure of amino acids, with homogenously distributed and balanced positive and negative charges, is responsible for the outstanding antifouling properties. Considering multiple potential applications (e.g. medical devices and drug delivery) of the antifouling materials, we further systematically evaluated the cytotoxicity of both monomers and polymer nanogels for all five materials at various concentrations. Very low cytotoxicity was observed for all tested amino acid-based monomers and nanogels, which is comparable or even lower than the traditional and some newly developed antifouling materials, which might be related to the biomimetic nature of amino acids.
Synthesis and biological evaluation of naphthyldesferrithiocin iron chelators.
Bergeron, R J; Wiegand, J; Wollenweber, M; McManis, J S; Algee, S E; Ratliff-Thompson, K
1996-04-12
The synthesis and iron-clearing properties of the naphthyldesferrithiocins 2-(2'-hydroxynaphth-1'-yl)-delta2-thiazoline-(4R)-carboxylic acid, 2-(2'-hydroxynaphth-1'-yl)-delta2-thiazoline-(4S)-carboxylic acid, 2-(3'-hydroxynaphth-2'-yl)-delta2-thiazoline-(4R)-carboxylic acid, and 2-(3'-hydroxynaphth-2'-yl)-delta2-thiazoline-(4S)-carboxylic acid are described. While the bile duct-cannulated rat model clearly demonstrates that the 3'-hydroxynaphthyl-2'-yl compounds are orally active iron-clearing agents and the corresponding 2'-hydroxynaphthyl-1'-yl compounds are not, in the primate model none of the benz-fused desazadesferrithiocin analogues are active. Oral versus subcutaneous administration of these ligands strongly suggests that metabolism is a key issue in their iron-clearing properties and that these benz-fused desferrithiocins are not good candidates for orally active iron-clearing drugs.
USDA-ARS?s Scientific Manuscript database
Hydroxy fatty acids (HFA), originally found in small amount mainly from plant systems, are good examples of the structurally modified lipids, rendering special properties such as higher viscosity and reactivity compared to normal fatty acids. Based on these properties, HFAs possess high industrial ...
Acid-base properties of aqueous illite surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Q.; Sun, Z.; Forsling, W.
In this paper, the acid-base properties of illite/water suspensions are examined using the constant capacitance surface complexation model. On the basis of results of potentiometric titrations and solubility experiments, the authors conclude that the proton reactions in the supernatants of illite suspensions can be successfully represented by proton reactions of Al(H{sub 2}O){sub 6}{sup 3+} and Si(OH){sub 4} in water solutions. For illustrating the acidic characteristics of aqueous illite surfaces, two surface protonation models are proposed: (1) one site-one pK{sub a} model, {triple_bond}SOH {r_reversible} {triple_bond}SO{sup {minus}} + H{sup +}, pK{sub a}{sup int} = 4.12-4.23; (2) two sites-two pK{sub a}s model, {triple_bond}S{submore » 1}OH {r_reversible} {triple_bond}S{sup 1}O{sup {minus}} + H{sup +}, pK{sub a{sub I}} = 4.17-4.44, and {triple_bond}S{sub II}OH {r_reversible} {triple_bond}S{sub II}O{sup {minus}} + H{sup +}, pK{sub a{sub II}}{sup int} = 6.35-7.74. Evaluation of these two models indicates that both of them can give good descriptions of the experimental data of systems with different illite concentrations and ionic strengths and that the one site-one pK{sub a} model can be considered as a simplification of the two sites-two pK{sub a}s model. Since both models assume only deprotonation reactions at the illite surfaces, they suggest that the surface behavior of the illite is similar to that of amorphous SiO{sub 2}. Model assumptions, experimental procedures, and evaluative criteria are detailed in the paper.« less
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Qiaoyi
2018-03-01
We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.
El-Hadidy, Gladious Naguib; Ibrahim, Howida Kamal; Mohamed, Magdi Ibrahim; El-Milligi, Mohamed Farid
2012-01-01
This work was undertaken to investigate microemulsion (ME) as a topical delivery system for the poorly water-soluble voriconazole. Different ME components were selected for the preparation of plain ME systems with suitable rheological properties for topical use. Two permeation enhancers were incorporated, namely sodium deoxycholate or oleic acid. Drug-loaded MEs were evaluated for their physical appearance, pH, rheological properties and in vitro permeation studies using guinea pig skin. MEs based on polyoxyethylene(10)oleyl ether (Brij 97) as the surfactant showed pseudoplastic flow with thixotropic behavior and were loaded with voriconazole. Jojoba oil-based MEs successfully prolonged voriconazole release up to 4 h. No significant changes in physical or rheological properties were recorded on storage for 12 months at ambient conditions. The presence of permeation enhancers favored transdermal rather than dermal delivery. Sodium deoxycholate was more effective than oleic acid for enhancing the voriconazole permeation. Voriconazole-loaded MEs, with and without enhancers, showed significantly better antifungal activity against Candida albicans than voriconazole supersaturated solution. In conclusion, the studied ME formulae could be promising vehicles for topical delivery of voriconazole.
Vallverdú-Queralt, Anna; Biler, Michal; Meudec, Emmanuelle; Guernevé, Christine Le; Vernhet, Aude; Mazauric, Jean-Paul; Legras, Jean-Luc; Loonis, Michèle; Trouillas, Patrick; Cheynier, Véronique; Dangles, Olivier
2016-01-01
The physicochemical properties of the wine pigments catechyl-pyranomalvidin-3-O-glucoside (PA1) and guaiacyl-pyranomalvidin-3-O-glucoside (PA2) are extensively revisited using ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and quantum chemistry density functional theory (DFT) calculations. In mildly acidic aqueous solution, each cationic pigment undergoes regioselective deprotonation to form a single neutral quinonoid base and water addition appears negligible. Above pH = 4, both PA1 and PA2 become prone to aggregation, which is manifested by the slow build-up of broad absorption bands at longer wavelengths (λ ≥ 600 nm), followed in the case of PA2 by precipitation. Some phenolic copigments are able to inhibit aggregation of pyranoanthocyanins (PAs), although at large copigment/PA molar ratios. Thus, chlorogenic acid can dissociate PA1 aggregates while catechin is inactive. With PA2, both chlorogenic acid and catechin are able to prevent precipitation but not self-association. Calculations confirmed that the noncovalent dimerization of PAs is stronger with the neutral base than with the cation and also stronger than π–π stacking of PAs to chlorogenic acid (copigmentation). For each type of complex, the most stable conformation could be obtained. Finally, PA1 can also bind hard metal ions such as Al3+ and Fe3+ and the corresponding chelates are less prone to self-association. PMID:27827954
Thermophysical properties of tri-n-butylphosphate-ionic liquid mixture
NASA Astrophysics Data System (ADS)
Rout, Alok; Mishra, Satyabrata; Venkatesan, K. A.; Antony, M. P.; Pandey, N. K.
2018-04-01
Thermophysical properties such as viscosity, density, energy of activation and coefficient of thermal expansion were measured for the solvent phase composed of tri-n-butylphosphate (TBP), 1-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C4mim][NTf2]) and 1.1 M TBP/[C4mim][NTf2]. The results were compared with that of nitric acid equilibrated [C4mim][NTf2] and 1.1M TBP/[C4mim][NTf2]. Thermal stability of the ionic liquid phase was assessed by using differential scanning calorimetric (DSC) technique. Other important physical properties such as refractive index and surface tension of the ionic liquid phase composition were evaluated before and after acid saturation.
NASA Astrophysics Data System (ADS)
Hu, Zhiyong; Zhao, Meng; Su, Jian; Xu, Shasha; Hu, Lei; Liu, Hui; Zhang, Qiong; Zhang, Jun; Wu, Jieying; Tian, Yupeng
2018-02-01
Three novel coordination polymers, [Zn(μ2-HTCA)(Phen)]n (1), {[Cd(μ3-HTCA)(Phen)]·2H2O}n (2), [Mn(μ2-HTCA)(Phen)(H2O)]n (3) were prepared by hydrothermal synthesis from the 4, 4', 4''-nitrilotribenzoicacid (H3TCA) and 1, 10-phenanthroline monohydrate (Phen) with different transition metal salts, which were characterized by elemental analysis, IR spectra, powder and single-crystal X-ray diffraction and thermogravimetric analysis. The photophysical properties of the complexes were investigated by solid-state diffuse reflectance spectra, photoluminescent properties, lifetime and quantum yield. For these complexes, it was found that the band gaps follow the order: 3 < 2 < 1 < 2.80 eV, fluorescence intensity order: 1 > H3TCA > 2 > 3; quantum yield order: H3TCA > 1 > 2 > 3; while the lifetime order: 1 > 2 > H3TCA > 3.
NASA Astrophysics Data System (ADS)
Sijo, A. K.
2017-11-01
In this study, we report the synthesis of nano-sized CoCrFeO4 and NiCrFeO4 using the solution self combustion method and the variation in the magnetic and structural properties with different fuel to nitrate ratios-fuel lean, fuel rich and stoichiometric. Citric acid is used as the fuel. XRD analysis of the samples confirms the formation of pure spinel phased nanoparticles in fuel rich and stoichiometric cases. But CoCrFeO4 and NiCrFeO4 samples prepared under the fuel lean condition show the presence of a small amount of impurity phases: α-Ni in fuel lean NiCrFeO4 and α-Co in fuel lean CoCrFeO4. Fuel lean samples possess high magnetic saturation. The stoichiometric ratio results in finest nano-particles and structural and magnetic properties are very critically dependent on fuel to nitrate ratio.
NASA Astrophysics Data System (ADS)
Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy
2015-05-01
Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.
Aerosol volatility and enthalpy of sublimation of carboxylic acids.
Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias
2010-04-08
The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.
Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing
2017-03-01
The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.
Youssef, A M; Abdel-Aziz, M E; El-Sayed, E S A; Abdel-Aziz, M S; Abd El-Hakim, A A; Kamel, S; Turky, G
2018-09-15
Bionanocomposites hydrogel based on conducting polymers were successfully fabricated from chitosan/polyacrylic acid/polypyrrole (CS/PAA/PPy) as well as the magnetite nanoparticle (Fe 3 O 4 -NPs) was prepared via co-precipitation method. In addition, different ratios of Fe 3 O 4 -NPs were added to the prepared bionanocomposites to enhance the antimicrobial and the electrical conductivity of the prepared conductive hydrogel. Furthermore, the morphology, the swelling percent, antimicrobial activity and the dielectric properties of the prepared conducting bionanocomposites hydrogel were investigated. The antibacterial activities of the experienced microbes were improved with the increasing the loading of Fe 3 O 4 -NPs in conducting Bio-nanocomposites hydrogel. Moreover, the DC-conductivity was examined and our resulted indicated that the DC-conductivity was enhanced by increasing the loadings of Fe 3 O 4 -NPs compared to that of the pure CS/PAA as well as CS/PAA/PPy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Lei-Lei; Yu, Cai-Xia; Ma, Feng-Ji; Li, Ya-Ru; Han, Jing-Jing; Lin, Lu; Ma, Lu-Fang
2015-01-28
Hydrothermal reactions of Cd(OAc)2·2H2O with a flexible V-shaped bipyridyl benzene ligand and five benzenedicarboxylic acid derivatives gave rise to five new coordination polymers i.e., [Cd(1,4-BDC)(bpmb)(H2O)]n (1), {[Cd(1,3-BDC)(bpmb)]·0.125H2O}n (2), [Cd2(5-Me-1,3-BDC)2(bpmb)2]n (3), [Cd(5-NO2-1,3-BDC)(bpmb)(H2O)]n (4) and [Cd(5-OH-1,3-BDC)(bpmb)(H2O)]n (5) (bpmb = 1,3-bis(pyridine-3-ylmethoxy)benzene, 1,4-H2BDC = 1,4-benzenedicarboxylic acid, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 5-Me-1,3-H2BDC = 5-methyl-1,3-benzenedicarboxylic acid, 5-NO2-1,3-H2BDC = 5-nitro-1,3-benzenedicarboxylic acid, 5-OH-1,3-H2BDC = 5-hydroxy-1,3-benzenedicarboxylic acid). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Compound 1 is a two-fold interpenetrating network showing the coexistence of polyrotaxane and polycatenane characters. Compounds 2 and 3 exhibit similar 2D (3,5)-connected (4(2)·6(7)·8)(4(2)·6) nets in which the bpmb ligands work as lockers in interlocking 1D [Cd(1,3-BDC/5-Me-1,3-BDC)]n chains. Compound 4 shows a 2D 4-connected (6(6)) sandwich-like structure with differently oriented [Cd(5-NO2-1,3-BDC)]n chains. Compound 5 is a 3D supramolecular pcu net based on a 1D ladder-shaped chain. These results suggest that the substituted positions of carboxylate groups and changes in substituted R groups in the 5-position of BDC ligands have significant effect on the final structures. These compounds exhibited relatively good photocatalytic activity towards the degradation of methylene blue (MB) in aqueous solution under UV irradiation. Moreover, solid-state photoluminescence properties of 1-5 were also investigated.
Lin, Shaoling; Ching, Lai Tsz; Ke, Xinxin; Cheung, Peter Chi Keung
2016-01-01
The composition profile and the antioxidant properties of phenolics in water extracts obtained from the fresh fruiting bodies of 4 common cultivated Asian edible mushrooms-Agrocybe aegerita, Pleurotus ostreatus, P. eryngii, and Pholiota nameko were compared. The water extract from A. aegerita (AaE) had the highest total phenolic content (TPC) at 54.18 ± 0.27 gallic acid equivalents (μmol/L)/mg extract (P < 0.05), as measured by the Folin-Ciocalteu method, and consisted of the largest number (including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, and sinapic acid) and total amounts of phenolic acids identified by Fourier transform-ion cyclotron resonance mass spectrometry. The water extract of Ph. nameko was found to have the second-highest TPC (43.55 ± 0.10 gallic acid equivalents [μmol/L]/mg extract), followed by the water extract of P. eryngii and the water extract of P. ostreatus (39.55 ± 0.25 and 39.02 ± 0.30 gallic acid equivalents/mg extract, respectively). The scavenging activities of the water extracts from these mushrooms were evaluated against 2,2-diphenyl-l-(2,4,6-trinitrophenyl) hydrazyl diphenylpicrylhydrazyl (DPPH), superoxide anion radicals, hydroxyl radicals, and hydrogen peroxide. Based on halfmaximal effective concentrations, AaE was more effective in scavenging hydrogen peroxide (<0.05), followed by DPPH (0.51 mg/mL), superoxide anion radicals (0.85 mg/mL) and hydroxyl radicals (5.94 mg/mL), then the other mushroom water extracts. The differences in the half-maximal effective concentrations of individual mushroom water extracts were probably the result of the different numbers and amounts of individual phenolic acids in the extracts. The antioxidant activities of the mushroom water extracts were correlated with their TPC. The strongest antioxidant properties of AaE were consistent with its highest TPC and with the largest number and amount of phenolics identified in the extract. These results indicated that cultivated edible mushrooms could be a potential source of natural antioxidants with free radical scavenging properties for application as a functional food ingredient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ay, Burak; Karaca, Serkan; Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr
2016-01-15
Four novel metal-organic frameworks,[Cu{sub 2}Cl{sub 2}(pyrz)]{sub n} (1) and (H{sub 2}pip){sub n}[Ln{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (Ln=Ce (2), Pr (3) and Eu (4), H{sub 2}pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln–O-Ln chains. All the complexes show high thermal stability. The complexes 1–3 exhibit luminescence emission bands at 584, 598 and 614 nm at roommore » temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four novel metal-organic frameworks have been synthesized under hydrothermal conditions. Thermal and luminescent properties of the compounds have been investigated.« less
NASA Astrophysics Data System (ADS)
Zhang, Li; Li, Xiaohui; Zhang, Yan
2016-01-01
Two interpenetrated 3D coordination polymers, namely [Cd2(tdc)2(bpp) (DMA)]n (1) and [Zn2(tdc)2(bib)2]n·2n(DMA) (2) (H2tdc = 2,5-thiophenedicarboxylic acid, bpp = 1,3-di(4-pyridyl)propane, bib = 1, 4-bis(imidazolyl)butane, DMA = N,N-dimethylacetamide), have been solvothermally synthesized by the self-assembly of flexible N-donor and dicarboxylate ligands. Single crystal X-ray diffraction analyses revealed that compound 1 features a 2-fold interpenetrated 3D framework based on dinuclear [Cd2(COO)3] subunits and can be simplified into a 6-connected pcu topology, and compound 2 features a 3-fold interpenetrated 3D framework with 4-connected dia topology. Moreover, the thermal stabilities and luminescent properties of these two compounds were also investigated.
Peng, Huafeng; Ning, Xiaoyu; Wei, Gang; Wang, Shaopeng; Dai, Guoliang; Ju, Anqi
2018-09-01
Novel intelligent cellulose/4-vinyl-phenylboronic acid (VPBA) composite bio-hydrogels with glucose and pH-responsiveness were successfully prepared via electron beam irradiation technology at room temperature. The composites were characterized by Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectroscopy (XPS). The electron beam irradiation results in the appearance of carbonyl in the polymerization of 4-ethenyl-phenylboronic acid, grafting and cross linking reaction in composites, and a novel composite hydrogel was formed between the poly-4-ethenyl-phenylboronic acid and cellulose matrix. By means of the incorporation of phenylboronic acid groups, the composite hydrogels with pH and glucose responsive properties was produced, and glucose responsive properties were investigated by the self-regulation of insulin release of composite hydrogel through a serial glucose solution with different concentrations, which is having great potential applications in many fields. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of acidity on the physicochemical properties of α- and β-chitin nanofibers.
Suenaga, Shin; Totani, Kazuhide; Nomura, Yoshihiro; Yamashita, Kazuhiko; Shimada, Iori; Fukunaga, Hiroshi; Takahashi, Nobuhide; Osada, Mitsumasa
2017-09-01
We have investigated whether acidity can be used to control the physicochemical properties of chitin nanofibers (ChNFs). In this study, we define acidity as the molar ratio of dissociated protons from the acid to the amino groups in the raw chitin powder. The effect of acidity on the physicochemical properties of α- and β-ChNFs was compared. The transmittance and viscosity of the β-ChNFs drastically and continuously increased with increasing acidity, while those of the α-ChNFs were not affected by acidity. These differences are because of the higher ability for cationization based on the more flexible crystal structure of β-chitin than α-chitin. In addition, the effect of the acid species on the transmittance of β-ChNFs was investigated. The transmittance of β-ChNFs can be expressed by the acidity regardless of the acid species, such as hydrochloric acid, phosphoric acid, and acetic acid. These results indicate that the acidity defined in this work is an effective parameter to define and control the physicochemical properties of ChNFs. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tanış, Emine; Babur Sas, Emine; Kurban, Mustafa; Kurt, Mustafa
2018-02-01
The experimental and theoretical study of 4-Formyl Phenyl Boronic Acid Pinacol Ester (4FPBAPE) molecule were performed in this work. 1H, 13C NMR and UV-Vis spectra were tested in dimethyl sulfoxide (DMSO). The structural, spectroscopic properties and energies of 4FPBAPE were obtained for two potential conformers from density functional theory (DFT) with B3LYP/6-311G (d, p) and CAM-B3LYP/6-311G (d, p) basis sets. The optimal geometry of those structures was obtained according to the position of oxygen atom upon determining the scan coordinates for each conformation. The most stable conformer was found as the A2 form. The fundamental vibrations were determined based on optimized structure in terms of total energy distribution. Electronic properties such as oscillator strength, wavelength, excitation energy, HOMO, LUMO and molecular electrostatic potential and structural properties such as radial distribution functions (RDF) and probability density depending on coordination number are presented. Theoretical results of 4-FPBAPE spectra were found to be compatible with observed spectra.
NASA Astrophysics Data System (ADS)
Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.
2017-07-01
Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization models by making dynamic quantitative measurements of lesion properties. This has important implications for future applications in clinical dentistry.
Kim, Sang Chai; Shim, Wang Geun
2008-06-15
The catalytic oxidation of toluene was studied over an iron-based spent and regenerated catalysts. Air, hydrogen, or four different acid solutions (oxalic acid (C2H2O4), citric acid (C6H8O7), acetic acid (CH3COOH), and nitric acid (HNO3)) were employed to regenerate the spent catalyst. The properties of pretreated spent catalyst were characterized by the Brunauer Emmett Teller (BET), inductively coupled plasma (ICP), temperature programmed reduction (TPR), and X-ray diffraction (XRD) analyses. The air pretreatment significantly enhanced the catalytic activity of the spent catalyst in the pretreatment temperature range of 200-400 degrees C, but its catalytic activity diminished at the pretreatment temperature of 600 degrees C. The catalytic activity sequence with respect to the air pretreatment temperatures was 400 degrees C>200 degrees C>parent>600 degrees C. The TPR results indicated that the catalytic activity was correlated with both the oxygen mobility and the amount of available oxygen on the catalyst. In contrast, the hydrogen pretreatment had a negative effect on the catalytic activity, and toluene conversion decreased with increasing pretreatment temperatures (200-600 degrees C). The XRD and TPR results confirmed the formation of metallic iron which had a negative effect on the catalytic activity with increasing pretreatment temperature. The acid pretreatment improved the catalytic activity of the spent catalyst. The catalytic activity sequence with respect to different acids pretreatment was found to be oxalic acid>citric acid>acetic acid>or=nitric acid>parent. The TPR results of acid pretreated samples showed an increased amount of available oxygen which gave a positive effect on the catalytic activity. Accordingly, air or acid pretreatments were more promising methods of regenerating the iron-based spent catalyst. In particular, the oxalic acid pretreatment was found to be most effective in the formation of FeC2O4 species which contributed highly to the catalytic combustion of toluene.
Ha, Ji-Eun; Yang, Seung-Ju; Gong, Young-Dae
2018-02-12
An efficient solid-phase synthetic route for the construction of 1,3,4-oxadiazole and 1,3,4-thiadiazole libraries based on branching diversity-oriented synthesis (DOS) has been developed in this study. The core skeleton resins, 1,3,4-oxadiazole and 1,3,4-thiadiazole, were obtained through desulfurative and dehydrative cyclizations of thiosemicarbazide resin, respectively. Various functional groups have been introduced to the core skeleton resins, such as aryl, amine, amide, urea, thiourea, and an amino acid. Most of the libraries were purified by simple trituration without extraction or column chromatography after cleavage of the products from the solid-supported resin. As a result, we obtained high yields of pure 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives (total numbers = 128). Finally, we confirmed the drug-like properties of our library by calculation of physicochemical properties, displays of the skeletal diversities of the library in 3D-space, and occupation of a broad range of areas by their functional groups.
Optimizing the specificity of nucleic acid hybridization.
Zhang, David Yu; Chen, Sherry Xi; Yin, Peng
2012-01-22
The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.
2015-01-01
The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks’, mares’ and cows’ milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production. PMID:26761898
Leblanc, A; Mercier, N; Allain, M; Dul, M-C; Weber, G; Geoffroy, N; Bellat, J-P; Bezverkhyy, I
2017-11-21
A novel porous coordination polymer [Mn(pc3)(H 2 O) 2 ]·xH 2 O (3 < x < 4) is synthesized in water at pH = 7 using the anionic viologen-carboxylate ligand 4,4'-bipyridinium,1,1'-bis-(2,4-dicarboxyphenyl) (pc3 2- ). Dehydration of the material results in the formation of open pores containing two types of accessible Lewis acid sites: exposed Mn 2+ cations and N + atoms of viologen units. Due to this property the PCP shows high affinity and capacity in the adsorption of H 2 O, CO 2 and NH 3 . Despite the presence of strong adsorption sites this material is stable in liquid water and in gaseous NH 3 .
Structural, electronic properties and stability of metatitanic acid (H 2TiO 3) nanotubes
NASA Astrophysics Data System (ADS)
Enyashin, A. N.; Denisova, T. A.; Ivanovskii, A. L.
2009-12-01
Quite recently, metatitanic acid (H 2TiO 3) has been successfully prepared, which extended the family of known titanic acids H 2Ti nO 2n+1 ( n = 2, 3 and 4). Here the atomic models for nanotubes (NTs) of metatitanic acid are designed and their cohesive and electronic properties are considered depending on their chirality and radii by means of density-functional theory-tight-binding (DFTB) method. Our main findings are that the proposed H 2TiO 3 tubes are stable and that all these NTs will be the insulators (independently from their chirality and the diameters) with forbidden gaps at about ˜4.6 eV. We have found also that aforementioned properties of predicted H 2TiO 3 NTs are very similar with those of recently prepared fabricated nanotubes of polytitanic acids; thus, it is possible to expect that the proposed H 2TiO 3 tubular materials may be fabricated.
NASA Astrophysics Data System (ADS)
Lin, Weizhen; Navaratnam, Suppiah; Yao, Side; Lin, Nianyun
1998-10-01
Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the p Ka values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
NASA Technical Reports Server (NTRS)
Chin, D. T.; Hsueh, K. L.; Chang, H. H.
1984-01-01
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.
NASA Astrophysics Data System (ADS)
Praseptiangga, Danar; Giovani, Sarah; Manuhara, Godras Jati; Muhammad, Dimas Rahadian Aji
2017-09-01
Novel composite films based on semi-refined iota-carrageenan (SRIC) incorporating palmitic acid (PA) were prepared by an emulsification method. Palmitic acid (PA) as hydrophobic material was incorporated into semi-refined iota-carrageenan edible films in order to improve water vapor barrier properties. Composite SRIC-based films with varying concentrations of PA (10%, 20%, and 30% w/w) were obtained by a solvent casting method. Their mechanical and barrier properties were investigated. Results showed that the incorporation of PA in films caused a significant increase (p < 0.05) in thickness as the concentration of PA increased (from 10% to 30% w/w). The mechanical properties of semi-refined iota-carrageenan were also affected by PA incorporation; increasing the concentration of PA (from 10% to 30% w/w) in films improved the tensile strength (TS). Interestingly, the TS value increased to a peak at 20% w/w PA. However, the TS value showed a decrease when PA were added at 30% w/w. Elongation-at-break (EAB) were significantly (p < 0.05) decreased when the concentration of PA in films increased (from 10% to 30% w/w). Furthermore, the incorporation of PA also affected the water vapor barrier properties of the films. Water vapor transmission rate (WVTR) of the composite semi-refined iota-carrageenan-based edible film decreased significantly (p < 0.05) as the concentration of palmitic acid increased (from 10% to 30% w/w). Composite SRIC-based edible film incorporating 30% w/w of PA presented better water vapor barrier properties as compared to other films with 10% and 20% w/w PA incorporation. Thus, formulation containing 30% w/w palmitic acid promoted films with a highly beneficial to improve water vapor barrier properties and it has the potential for food packaging applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN
2014-08-15
Five zinc(II) metal–organic frameworks, [Zn{sub 3}(344-pytpy){sub 2}Cl{sub 6}]{sub n}·n(H{sub 2}O) (1), [Zn(344-pytpy)(ox)]{sub n} (2), [Zn{sub 2}(344-pytpy)(bdc){sub 2}]{sub n}·1.5n(H{sub 2}O) (3), [Zn{sub 2}(344-pytpy){sub 2} (sfdb){sub 2}]{sub n}·1.5n(H{sub 2}O) (4) and [Zn{sub 3}(344-pytpy){sub 2}(btc){sub 2}]{sub n}·2n(H{sub 2}O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H{sub 2}ox=oxalic acid, H{sub 2}bdc=1,4-benzenedi-carboxylic acid, H{sub 2}sfdb=4,4′-sulfonyldibenzoic acid and H{sub 3}btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn{sup II} centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6{sup 6}. Compound 3 displays amore » unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8{sup 2})(4.8{sup 5})(8{sup 3}). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4{sup 4}.6{sup 2}). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8{sup 2}){sub 2}(6{sup 2}.8{sup 2}.10.12)(6{sup 2}.8{sup 3}.10){sub 2}(6{sup 2}.8){sub 2}. The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and topological structures have been investigated. • The luminescent properties have been investigated. • They possess great thermal stabilities which can be stable up to around 400 °C.« less
Cai, Shuang; Zhang, Yulu; Zhang, Hongli; Yan, Hongwei; Lv, Haibing; Jiang, Bo
2014-07-23
Hydrophobic antireflective coatings with a low refractive index were prepared via a base/acid-catalyzed two-step sol-gel process using tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) as precursors, respectively. The base-catalyzed hydrolysis of TEOS leads to the formation of a sol with spherical silica particles in the first step. In the second step, the acid-catalyzed MTES hydrolysis and condensation occur at the surface of the initial base-catalyzed spherical silica particles, which enlarge the silica particle size from 12.9 to 35.0 nm. By a dip-coating process, this hybrid sol gives an antireflective coating with a refractive index of about 1.15. Moreover, the water contact angles of the resulted coatings increase from 22.4 to 108.7° with the increases of MTES content, which affords the coatings an excellent hydrophobicity. A "core-shell" particle growth mechanism of the hybrid sol was proposed and the relationship between the microstructure of silica sols and the properties of AR coatings was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng
By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation ofmore » methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.« less
Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid
NASA Astrophysics Data System (ADS)
Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco
2003-04-01
DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.
[Chemical constituents of Changium smyrnioides].
Ren, Dong-chun; Qian, Shi-hui; Yang, Nian-yun; Xie, Ning; Duan, Jin-ao
2008-01-01
To study chemical constituents of Changium smyrnioides Wolff. The chemical components were isolated and purified by silica gel column and recrystallization. The chemical structures were elucidated on the basis of physico-chemical properties and spectral data. Ten compounds were isolated and identified as lignoceric acid (1), beta-sitosterol (2), stigmasterol (3), 5-hydroxy-8-methoxypsoralen (4), glycerylmonopalmitate (5), L-pyroglutamic acid (6), succinic acid (7), vanillic acid-4-O-beta-D-glucopyranoside (8 ), vanillic acid (9), daucosterol (10). Compounds 1, 4, 5, 6, 8 and 9 are obtained from the plant for the first time.
BF 3-promoted electrochemical properties of quinoxaline in propylene carbonate
Carino, Emily V.; Diesendruck, Charles E.; Moore, Jeffrey S.; ...
2015-02-04
Electrochemical and density functional studies demonstrate that coordination of electrolyte constituents to quinoxalines modulates their electrochemical properties. Quinoxalines are shown to be electrochemically inactive in most electrolytes in propylene carbonate, yet the predicted reduction potential is shown to match computational estimates in acetonitrile. We find that in the presence of LiBF 4 and trace water, an adduct is formed between quinoxaline and the Lewis acid BF3, which then displays electrochemical activity at 1–1.5 V higher than prior observations of quinoxaline electrochemistry in non-aqueous media. Direct synthesis and testing of a bis-BF 3 quinoxaline complex further validates the assignment of themore » electrochemically active species, presenting up to a ~26-fold improvement in charging capacity, demonstrating the advantages of this adduct over unmodified quinoxaline in LiBF 4-based electrolyte. The use of Lewis acids to effectively “turn on” the electrochemical activity of organic molecules may lead to the development of new active material classes for energy storage applications.« less
Chen, Wen-Cheng; Ju, Chien-Ping; Wang, Jen-Chyan; Hung, Chun-Cheng; Chern Lin, Jiin-Huey
2008-12-01
Bone filler has been used over the years in dental and biomedical applications. The present work is to characterize a non-dispersive, fast setting, modulus adjustable, high bioresorbable composite bone cement derived from calcium phosphate-based cement combined with polymer and binding agents. This cement, we hope, will not swell in simulated body fluid and keep the osteogenetic properties of the dry bone and avoid its disadvantages of being brittle. We developed a calcium phosphate cement (CPC) of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-polyacrylic acid with tartaric acid, calcium fluoride additives and phosphate hardening solution. The results show that while composite, the hard-brittle properties of 25wt% polyacrylic acid are proportional to CPC and mixing with additives is the same as those of the CPC without polyacrylic acid added. With an increase of polyacrylic acid/CPC ratio, the 67wt% samples revealed ductile-tough properties and 100wt% samples kept ductile or elastic properties after 24h of immersion. The modulus range of this development was from 200 to 2600MPa after getting immersed in simulated body fluid for 24h. The TTCP/DCPA-polyacrylic acid based CPC demonstrates adjustable brittle/ductile strength during setting and after immersion, and the final reaction products consist of high bioresorbable monetite/brushite/calcium fluoride composite with polyacrylic acid.
The foaming properties of camel and bovine whey: The impact of pH and heat treatment.
Lajnaf, Roua; Picart-Palmade, Laetitia; Cases, Eliane; Attia, Hamadi; Marchesseau, Sylvie; Ayadi, M A
2018-02-01
The effect of heat treatment (70°C or 90°C for 30min) on the foaming and interfacial properties of acid and sweet whey obtained from bovine and camel fresh milk was examined. The maximum foamability and foam stability were observed for acid whey when compared to sweet whey for both milks, with higher values for the camel whey. This behavior for acid whey was explained by the proximity of the pI of whey protein (4.9-5.2), where proteins were found to carry the lowest negative charge as confirmed by the zeta potential measurements. Interfacial properties of acid camel whey and acid bovine whey were preserved at air water interface even after a heat treatment at 90°C. These results confirmed the pronounced foaming and interfacial properties of acid camel whey, even if acid and sweet bovine whey exhibited the highest viscoelastic modulus after heating. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, X. T.; Showkat, A. M.; Wang, Z.
2015-03-30
Noble fluorescence nanocomposite compound based on barium titanate nanoparticles (BTO), polystyrene (PSt), and terbium ion (Tb{sup 3+}) was synthesized by a combination of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, Friedel-Crafts alkylation reaction and coordinate chemistry. Initially, a modification of surface of BTO was conducted by an exchange process with S-benzyl S’-trimethoxysilylpropyltrithiocarbonate to create macro-initiator for polymerization of styrene. Subsequently, aryl carboxylic acid functionalized polystyrene grafted barium titanate (BTO-g-PSt-COOH) was generated by substitution reaction between 4-(Chloromethyl) benzoic acid and PSt chains. The coordination of the nanohybrids with Tb{sup 3+} ions afforded fluorescent Tb{sup 3+} tagged aryl carboxylic acid functionalized polystyrenemore » grafted barium titanate (BTO-g-PSt-Tb{sup 3+}) complexes. Structure, morphology, and fluorescence properties of nanohybrid complexes were investigated by respective physical and spectral studies. FT-IR and SEM analyses confirmed the formation of BTO-g-PSt-Tb{sup 3+}nanohybrids. Furthermore, TGA profiles demonstrated the grafting of aryl carboxylic acid functionalized polystyrene on BTO surface. Optical properties of BTO-g-PSt-Tb{sup 3+} complexes were investigated by fluorescence spectroscopy.« less
Wang, Xingchi; Wen, Fanting; Zhang, Shurong; Shen, Ruru; Jiang, Wei; Liu, Jun
2017-03-01
Effect of acid hydrolysis on the morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight was investigated in this study. The hydrolysis degree of C. auriculatum starch rapidly increased to 63.69% after 4days and reached 78.67% at the end of 9days. Morphology observation showed that the starch granules remained intact during the first 4days of hydrolysis. However, serious erosion phenomenon was observed after 5days and starch granules completely fell into pieces after 7days. During acid hydrolysis process, the crystal type of hydrolyzed starch changed from original C B -type to final A-type. Small-angle X-ray scattering patterns showed the semi-crystalline growth rings started to be hydrolyzed after 4days. The proportions of single helix and amorphous components as well as amylose content in starch gradually decreased, whereas the proportion of double helix components continuously increased during acid hydrolysis. However, the contents of rapidly digestible starch, slowly digestible starch and resistant starch were almost constant during acid hydrolysis process, indicating the in vitro digestion property of C. auriculatum starch was not affected by acid hydrolysis. Our results provided novel information on the inner structure of C. auriculatum starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Tong-bin; Zhang, Xiong-lu; Fan, Xiao-lin; Li, Xun
2008-12-01
4-nitrobenzoic acid and hydraxine sulfate were cyclized with H3PO4/P2O5 to afford 2,5-bis(4-nitrophenyl)-1, 3,4-oxadiazole(1), then(1)was reduced to 2,5-bis(4-aminophenyl)-1,3,4-oxadiazole using Zn/CaCl2 as reduction reagent, and at last, a series of novel di-schiff base derivatives containing oxadiazole ring were obtained by the reaction of 2,5-bis(4-aminophenyl)-1, 3,4-oxadiazole with aromatic aldehydes (yield: 65%-81%). The structures of these compounds were confirmed by 1H NMR, FTIR and MS. Their UV-Vis spectra as well as fluorescence spectra were studied and the electrochemical properties were tested with cyclic voltammetry. The UV-Vis spectroscopy results show that the characteristic absorption peaks of 1, 3, 4-oxadiazole unit and di-schiff base unit disappeared. The maximum absorption wavelength was detected at 345-357 nm because conjugation effect made the two energy bands partially hybrid and form a new energy band structure. Fluorescence spectroscopy results show that they emit strong blue and purple fluorescence, and the emission maximum wavelengths of di-schiff base are from 390 to 407 nm. Electrochemical properties results show that they have higher affinity energy (2.36-3.04 eV) and ionic potential (5.35-6.06 eV), which indicated that they have better electron-transporting properties than PBD except 3 a and 3 h. The results give a reference to further application to organic electroluminescent devices of the target compound.
Toxicology of Perfluoroalkyl Acids*
The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...
Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar
2015-11-28
The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.
Zhong, Shian; Zhou, Chengyun; Zhang, Xiaona; Zhou, Hui; Li, Hui; Zhu, Xiaohong; Wang, Yan
2014-07-15
A new type of magnetic halloysite nanotubes molecularly imprinted polymer (MHNTs@MIP) based on halloysite nanotubes (HNTs) with embedded magnetic nanoparticles was introduced in this study. MHNTs@MIP was prepared through surface imprinting technology, using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template, 4-vinylpyridine as the monomer, divinylbenzene as cross-linking agents, and 2,2-azodiisobutyronitrile as initiator. MHNTs@MIP was characterized by Fourier Transform Infrared Spectrometer, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. MHNTs@MIP exhibited rapid and reliable analysis with supermagnetic properties, as well as repeated use and template-specific recognition. The adsorption capacity of magnetic halloysite nanotubes non-imprinted polymer (MHNTs@NIP) and MHNTs@MIP was 10.3mg/g and 35.2mg/g, respectively. In the detailed discussion on specific selectivity, MHNTs@MIP can be applied as an adsorbent for sample pretreatment extraction and obtain high recoveries of about 85-94%. After extraction, high-performance liquid chromatography was used to detect 2,4-D residue in water. Copyright © 2014 Elsevier B.V. All rights reserved.
[Chemical constituents from Imperata cylindrica].
Liu, Xuan; Zhang, Binfeng; Chou, Guixin; Yang, Li; Wang, Zhengtao
2012-08-01
Chemical investigation of Imperata cylindrica led to the isolation of thirteen compounds using various chromatographic techniques. The structure of these compounds were identified as: three phenylpropanoids, 1-(3,4,5-trimethoxyphenyl)-1,2,3-propanetriol ( 1 ), 1-O-p-coumaroylglycerol (2), 4-methoxy-5-methyl coumarin-7-O-beta-D-glucopyranoside (3); four organic acids, 4-hydroxybenzene carboxylic acid(4), 3,4-dihydroxybenzoic acid (5), vanillic acid (6), 3, 4-dihydroxybutyric acid (7); one phenolic compound, salicin (8); and five triterpenes, namely, arundoin (9), cylindrin (10), fernenol (11), simiarenol (12), glutinone (13) by their physicochemical properties and spectral data analysis. Among them, compounds 1-8 were isolated from the genus Imperata for the first time.
Wet spinning of solid polyamic acid fibers
NASA Technical Reports Server (NTRS)
Dorogy, William E., Jr. (Inventor); Saintclair, Anne K. (Inventor)
1989-01-01
The invention is a process for the production of solid aromatic polyamic acid and polyimide fibers from a wet gel or coagulation bath wet gel using N,N-dimethylacetamide (DMAc) solution of the polyamic acid derived from aromatic dianhydrides such as 3,3',4,4'-benzo phenone tetracarboxylic dianhydride (BTDA) and aromatic diamines such as 4,4'oxydianiline (4,4'-ODA). By utilizing the interrelationship between coagulation medium and concentration, resin inherent viscosity, resin percent solids, filament diameter, and fiber void content, it is possible to make improved polyamic acid fibers. Solid polyimide fibers, obtained by the thermal cyclization of the polyamic acid precursor, have increased tensile properties compared to fibers containing macropores from the same resin system.
Wet spinning of solid polyamic acid fibers
NASA Technical Reports Server (NTRS)
Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)
1991-01-01
The invention is a process for the production of solid aromatic polyamic acid and polyimide fibers from a wet gel or coagulation bath wet gel using N,N-dimethylacetamide (DMAc) solutions of the polyamic acid derived from aromatic dianhydrides such as 3,3',4,4' benzophenonetetra carboxylic dianhydride (BTDA) and aromatic diamines such as 4,4'-oxydianiline (4,4'-ODA). By utilizing the relationship among coagulation medium and concentration, resin inherent viscosity, resin percent solids, filament diameter, and fiber void content, it is possible to make improved polyamic acid fibers. Solid polyimide fibers, obtained by the thermal cyclization of the polyamic acid precursor, have increased tensile properties compared to fibers containing macropores from the same resin system.
NASA Astrophysics Data System (ADS)
Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas
2017-08-01
The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.
Photoanisotropic properties of luminescence media for polarization holography based on new-type dyes
NASA Astrophysics Data System (ADS)
Shaverdova, V. G.; Petrova, S. S.; Purtseladze, A. L.; Tarasashvili, V. I.; Obolashvili, N. Z.
2017-09-01
The luminescence polarization properties of new recording media obtained by directed synthesis—disulfochlorides of luminescent dyes (homologues of 1,7-diamino-3,9-dihydrodibenzo-[1,2,3de:4,5,6- d'e']diquinoline-2.8-dione (1,5-diaminoanthradipyridone) series), with the general structure (ClSO2)2-1,5-di-AAP-di-R—are investigated. Polarized photoluminescence spectra are recorded, and spectral dependences of the degree of anisotropy of phosphor on its chemical structure at different acidities of the medium are plotted.
Effect of polymer properties and adherend surfaces on adhesion. [titanium, aluminum
NASA Technical Reports Server (NTRS)
Dwight, D. W.; Counts, M. E.; Wightman, J. P.
1975-01-01
The surface properties associated with good adhesive joints were evaluated in terms of application of adhesive bonding in aerospace technology. The physical and chemical nature was determined of Ti and Al adherend surfaces after various surface treatments, and the effects on fracture surfaces of high temperature aging, and variations in amide, anhydride, and solvent during polymer synthesis. The effects were characterized of (1) high temperature during shear strength testing, (2) fiber-reinforced composites as adherends, (3) acid/base nature of adherends, (4) aluminum powder adhesive filler, and (5) bonding pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Uma; Rother, Gernot; Wu, Zili
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Tumuluri, Uma; Rother, Gernot; Wu, Zili
2016-03-21
Acid gases including CO 2, SO 2, and NO x are ubiquitous in large-scale energy applications including heterogeneous catalysis. The adverse environmental and health effects of these acid gases have resulted in high interest in the research and development of technologies to remove or convert these acid gases. The main challenge for the development of these technologies is to develop catalysts that are highly efficient, stable, and cost-effective, and many catalysts have been reported in this regard. CeO 2 and CeO 2-based catalysts have gained prominence in the removal and conversion of CO 2, SO 2, and NO x becausemore » of their structural robustness and redox and acid–base properties. In this article, we provide a brief overview of the application of CeO 2 and CeO 2-based catalysts for the removal of CO 2, SO 2, and NO x gases with an emphasis on the fundamental understanding of the interactions of these acid gases with CeO 2. The studies summarized in this review range from surface science using single crystals and thin films with precise crystallographic planes to practical catalysis applications of nanocrystalline and polycrystalline CeO 2 materials with defects and dopants. After an introduction to the properties of CeO 2 surfaces, their catalytic properties for conversions of different acid gases are reviewed and discussed. Lastly, we find that the surface atomic structure, oxygen vacancies, and surface acid–base properties of CeO 2 play vital roles in the surface chemistry and structure evolution during the interactions of acid gases with CeO 2 and CeO 2-based catalysts.« less
Physicochemical Profiling of α-Lipoic Acid and Related Compounds.
Mirzahosseini, Arash; Szilvay, András; Noszál, Béla
2016-07-01
Lipoic acid, the biomolecule of vital importance following glycolysis, shows diversity in its thiol/disulfide equilibria and also in its eight different protonation forms of the reduced molecule. In this paper, lipoic acid, lipoamide, and their dihydro derivatives were studied to quantify their solubility, acid-base, and lipophilicity properties at a submolecular level. The acid-base properties are characterized in terms of six macroscopic, 12 microscopic protonation constants, and three interactivity parameters. The species-specific basicities, the pH-dependent distribution of the microspecies, and lipophilicity parameters are interpreted by various intramolecular effects, and contribute to understanding the antioxidant, chelate-forming, and enzyme cofactor behavior of the molecules observed. © 2016 Wiley-VHCA AG, Zürich.
NASA Astrophysics Data System (ADS)
Rufchahi, E. O. Moradi; Gilani, A. Ghanadzadeh; Taghvaei, V.; Karimi, R.; Ramezanzade, N.
2016-03-01
Malondianilide (I) derived from p-chloroaniline was cyclized to 6-chloro-4-hydroxyquinoline-2(1H)-one (II) in moderately good yield using polyphosphoric acid as catalyst. This compound was then coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes 1-12. A systematic study of the effect of solvent, acid, base and pH upon the electronic absorption spectra of the dyes 1-12 was carried out. In DMSO, DMF, CH3CN, CHCl3, EtOH and acidic media (CH3COOH, acidified EtOH) these dyes that theoretically may be involved in azo-hydrazone tautomerism have been detected only as hydrazone tautomers T1 and T2. The acidic dissociation constants of the dyes were measured in 80 vol% ethanol-water solution at room temperature and ionic strength of 0.1. The results were correlated by the Hammett-type equation using the substituent constants σx.
Synthesis of tin-containing polyimide films
NASA Technical Reports Server (NTRS)
Ezzell, S. A.; Taylor, L. T.
1984-01-01
A series of tin-containing polyimide films derived from either 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride or pyromellitic dianhydride and 4,4'-oxydianiline have been synthesized and their electrical properties examined. Highest quality materials (i.e., homogeneous, smooth surface, flexible) with the best electrical properties were doped with either SnCl2.2H2O or (n-Bu)2SnCl2. In all cases, extensive reactivity of the tin dopant with water, air or polyamic acid during imidization is observed. Lowered electrical surface resistivities appear to be correlatable with the presence of surface tin oxide on the film surface.
NASA Astrophysics Data System (ADS)
Mathew, Bijo; Adeniyi, Adebayo A.; Joy, Monu; Mathew, Githa Elizabeth; Singh-Pillay, Ashona; Sudarsanakumar, C.; Soliman, Mahmoud E. S.; Suresh, Jerad
2017-10-01
Compound (2E)-3-(methoxyphenyl)-1-(4-methylphenyl) prop-2-en-1-one (Ch) was synthesized by the Claisen-Schmidt condensation reaction between para-methylacetophenone and para-methoxybenzaldehyde under basic condition. The structure of the molecule was elucidated using X-ray diffraction. Compound (Ch) demonstrated higher antioxidant activities in the DPPH test and H2O2 assay (IC50 = 12.23 ± 0.53 and 15.62 ± 0.98) than with the standard ascorbic acid (IC50 = 17.32 ± 0.44 and 19.07 ± 0.35). An evaluation of the atomic and molecular properties of ascorbic acid and Ch were computed based on their antioxidant activities. The molecular properties give insight into possible reasons for the enhanced antioxidant properties of Ch compared to ascorbic acid. The atomic properties provide further insight into chemical changes of the atoms of the compounds. Such changes include electronic shifting of the compounds electrophilic and/or nucleophilic states which highlight chemical moieties which characterize the antioxidant activity but do not directly relate to a variation in their antioxidant activities. The results obtained reflect oxygen atoms having significant nucleophilic interactions of each of the compounds. This was characterized by higher Fukui indices, isotropic and anisotropic hyperfine and orbital coupling stability energy.
Gong, Yun; Li, Jian; Jiang, Peng-Gang; Li, Qing-Fang; Lin, Jian-Hua
2013-02-07
Based on the redox-active L (N,N'-bis-(4-pyridyl)phthalamide) ligand, two porous MOFs formulated as Zn(6)(BPC)(6)(L)(3)·9DMF (H(2)BPC = 4,4'-biphenyldicarboxylic acid) (1) and Cd(2)(TDC)(2)(L)(2)·4H(2)O (H(2)TDC = 2,5-thiophenedicarboxylic acid) (2) were synthesized and structurally characterized by single-crystal X-ray diffractions. Complex 1 features a uninodal 5-connected 3-fold interpenetrated 3D framework with {4(6).6(4)}-bnn hexagonal BN topology. Complex 2 displays a uninodal 6-connected 2-fold interpenetrated 3D framework with {4(12).6(3)}-pcu topology. When complexes 1 and 2 are used as supercapacitor electrode materials, they can provide a large voltage window as high as 2.6 V in an aqueous electrolyte, and their specific capacitances are much more than the value for the bare carbon glassy electrode. It is observed that the more the current density, the less the specific capacitance for the two kinds of supercapacitor electrode materials. The two complexes show different thermal stabilities, UV absorption and photoluminescence properties.
Hayaloglu, A A; Guven, M; Fox, P F; McSweeney, P L H
2005-10-01
Turkish White-brined cheese was manufactured using Lactococcus strains (Lactococcus lactis ssp. lactis NCDO763 plus L. lactis ssp. cremoris SK11 and L. lactis ssp. lactis UC317 plus L. lactis ssp. cremoris HP) or without a starter culture, and ripened for 90 d. It was found that the use of starters significantly influenced the physical, chemical, biochemical, and sensory properties of the cheeses. Chemical composition, pH, and sensory properties of cheeses made with starter were not affected by the different starter bacteria. The levels of soluble nitrogen fractions and urea-PAGE of the pH 4.6-insoluble fractions were found to be significantly different at various stages of ripening. Urea-PAGE patterns of the pH 4.6-insoluble fractions of the cheeses showed that considerable degradation of alpha(s1)-casein occurred and that beta-casein was more resistant to hydrolysis. The use of a starter culture significantly influenced the levels of 12% trichloroacetic acid-soluble nitrogen, 5% phosphotungstic acid-soluble nitrogen, free amino acids, total free fatty acids, and the peptide profiles (reverse phase-HPLC) of 70% (vol/vol) ethanol-soluble and insoluble fractions of the pH 4.6-soluble fraction of the cheeses. The levels of peptides in the cheeses increased during the ripening period. Principal component and hierarchical cluster analyses of electrophoretic and chromatographic results indicated that the cheeses were significantly different in terms of their peptide profiles and they were grouped based on the use and type of starter and stage of ripening. Levels of free amino acid in the cheeses differed; Leu, Glu, Phe, Lys, and Val were the most abundant amino acids. Nitrogen fractions, total free amino acids, total free fatty acids, and the levels of peptides resolved by reverse phase-HPLC increased during ripening. No significant differences were found between the sensory properties of cheeses made using a starter, but the cheese made without starter received lower scores than the cheeses made using a starter. It was found that the cheese made with strains NCDO763 plus SK11 had the best quality during ripening. It was concluded that the use of different starter bacteria caused significant differences in the quality of the cheese, and that each starter culture contributed to proteolysis to a different degree.
Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar
2012-08-14
Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.
Perlepe, Panagiota S.; Cunha-Silva, Luis; Bekiari, Vlasoula; ...
2016-05-23
The employment of the fluorescent bridging and chelating ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH 2) in Ni II cluster chemistry has led to a series of pentanuclear and hexanuclear compounds with different structural motifs, magnetic and optical properties, as well as an interesting 1-D coordination polymer. Synthetic parameters such as the inorganic anion present in the NiX 2 starting materials (X = ClO 4 - or Cl -), the reaction solvent and the nature of the organic base employed for the deprotonation of nacbH 2 were also proved to be structure-directing components. Undoubtedly, the reported results demonstrate the rich coordination chemistry ofmore » nacbH 2 in the presence of Ni II metal ions and the ability of this chelate to adopt a variety of different modes, thus fostering the formation of high-nuclearity molecules with many physical properties.« less
Liu, Haiyan; Garrett, Timothy J; Su, Zhihua; Khoo, Christina; Gu, Liwei
2017-07-01
Plasma metabolome in young women following cranberry juice consumption were investigated using a global UHPLC-Q-Orbitrap-HRMS approach. Seventeen female college students, between 21 and 29 years old, were given either cranberry juice or apple juice for three days using a cross-over design. Plasma samples were collected before and after juice consumption. Plasma metabolomes were analyzed using UHPLC-Q-Orbitrap-HRMS followed by orthogonal partial least squares-discriminant analyses (OPLS-DA). S-plot was used to identify discriminant metabolites. Validated OPLS-DA analyses showed that the plasma metabolome in young women, including both exogenous and endogenous metabolites, were altered following cranberry juice consumption. Cranberry juice caused increases of exogenous metabolites including quinic acid, vanilloloside, catechol sulfate, 3,4-dihydroxyphenyl ethanol sulfate, coumaric acid sulfate, ferulic acid sulfate, 5-(trihydroxphenyl)-gamma-valerolactone, 3-(hydroxyphenyl)proponic acid, hydroxyphenylacetic acid and trihydroxybenzoic acid. In addition, the plasma levels of endogenous metabolites including citramalic acid, aconitic acid, hydroxyoctadecanoic acid, hippuric acid, 2-hydroxyhippuric acid, vanilloylglycine, 4-acetamido-2-aminobutanoic acid, dihydroxyquinoline, and glycerol 3-phosphate were increased in women following cranberry juice consumption. The metabolic differences and discriminant metabolites observed in this study may serve as biomarkers of cranberry juice consumption and explain its health promoting properties in human. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa
2017-09-01
New metal complexes derived from the in situ reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-5-guanidinopentanoic acid (arginine) and acetylacetone have been synthesized. The resulting complexes have been characterized by, elemental analyses, ES-MS, IR, Raman spectra, UV-Vis., 1HNMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that, The Schiff-base ligand acts as bi-negative tridentate coordinating via azomethine nitrogen, enolic carbonyl oxygen and carboxylate oxygen after displacement of hydrogen. The thermodynamic parameters E∗, ΔH, ΔG and ΔS of the isolated complexes have been calculated. The optical band gap (Eg) values of Cu, Co, Ni and Zn were found to be 3.3, 3.4, 3.7 and 4.3 eV, respectively, arising from direct transitions. Optical band gap measurements indicate the semi-conductivity nature of these complexes.
[Microspeciation of amphoteric molecules of unusual acid-base properties].
Kóczián, Kristóf
2007-01-01
The phisico-chemical properties of bio- and drug molecules greatly influence their interactions in the body and strongly effect the mechanism of drug action. Among these properties, macroscopic and site-specific protonation constants are of crucial importance. Latter one is the tool to calculate the relative concentration of the various microspecies in the compartments of the body at different pH values, and also, it is the versatile parameter to improve the pharmacokinetic properties of a new molecule in a particular family of drugs. In the present thesis work, the microspeciation of three molecules of great pharmaceutical importance and unusual acid-base properties, were carried out. The microconstants of tenoxicam, the non-steroidal anti-inflammatory drug, were described, introducing a novel deductive method using Hammett constants. For this purpose, a total of 8 tenoxicam and piroxicam derivatives were synthesised. To the best of our knowledge, the log k(N)O microconstant of tenoxicam obtained thus is the lowest enolate basicity value, which, however, can be well explained by the effects of the intramolecular environment. The developed evaluation procedure is suitable for microconstant determination of compounds in other molecule families. Besides, prodrug-type compounds and analogues similar to the structures of selective COX-2 isoenzyme inhibitors were synthesised. The other two molecules studied, the 6-aminopenicillanic acid and 7-cephalosporanic acid, the core molecules of the two most important beta-lactam antibiotic-types were derivatised and investigated by 1D and 2D NMR techniques. The NMR-pH titration on the parent compounds and their ester derivatives, combined with in situ pH-measurements allowed the microspeciation of these easily decomposing molecules. One of the protonation constant of 7-ACA (log kN(O) = 4.12), to the best of our knowledge, is the least non-aromatic basic amino-site among the natural compounds.
NASA Astrophysics Data System (ADS)
Antoni, Herianto, Jason Ghorman; Anastasia, Evelin; Hardjito, Djwantoro
2017-09-01
Fly ash with high calcium oxide content when used as the base material in geopolymer concrete could cause flash setting or rapid hardening. However, it might increase the compressive strength of geopolymer concrete. This rapid hardening could cause problems if the geopolymer concrete is used on a large scale casting that requires a long setting time. CaO content can be indicated by pH values of the fly ash, while higher pH is correlated with the rapid setting time of fly ash-based geopolymer. This study investigates the addition of acid solution to reduce the initial pH of the fly ash and to prolong the setting time of the mixture. The acids used in this study are hydrochloric acid (HCl), sulfuric acid (H2 SO4), nitric acid (HNO3) and acetic acid (CH3 COOH). It was found that the addition of acid solution in fly ash was able to decrease the initial pH of fly ash, however, the initial setting time of geopolymer was not reduced. It was even faster than that of the control mixture. The acid type causes various influence, depending on the fly ash properties. In addition, the use of acid solution in fly ash reduces the compressive strength of geopolymer mortar. It is concluded that the addition of acid solution cannot prolong the rapid hardening of high calcium fly ash geopolymer, and it causes adverse effect on the compressive strength.
Toxicology of Perfluoroalkyl acids
The Perfluoroalkyl acids(PFAAs) area a family of organic chemicals consisting of a perflurinated carbon backbone (4-12in length) and a acidic functional moiety (Carboxylate or sulfonate). These compounds have excellent surface-tension reducing properties and have numerous industr...
NASA Astrophysics Data System (ADS)
Qiao, Yu; Ren, Shan-Shan; Liu, Li-Hui; Guan, Wei-Sheng; Li, Zhi-Min; Che, Guang-Bo; Liu, Chun-Bo; Wang, Yan-Yan; Wang, Qing-Wei; Li, Xiu-Ying; Zhu, En-Wei
2018-06-01
A new coordination polymeric zinc(II) complex, namely, [Zn2(L)(H2O)3]n·nNO3(1), (H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid) has been synthesized under solvothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction analysis and powder X-ray diffraction. Complex 1 exhibits a three-dimensional structure with a Schläfli symbol of 44•69•82 topologies, constructed from two crystallographically independent five and six coordinated mode with metal center and connected H3L ligands. The complex has good thermal stability and excellent photoluminescent property. Furthermore, by comparing the photoluminescent and photocatalytic mutation results induced by interconversion of metal ions, we confirm that the properties mutation induced by metal ions is much controllable and obvious. In addition, the complex exhibits significantly enhanced photocatalytic activity for methylene blue (MB) under UV light irradiation (λ < 400 nm), and the degradation rate could reach 75% in 80 min. Meanwhile trapping experiments indicated that the •O2- and h+ are the main activated species.
Low dielectric polyimide fibers
NASA Technical Reports Server (NTRS)
Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)
1994-01-01
A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.
Albumin, bilirubin, uric acid and cancer risk: results from a prospective population-based study.
Kühn, Tilman; Sookthai, Disorn; Graf, Mirja E; Schübel, Ruth; Freisling, Heinz; Johnson, Theron; Katzke, Verena; Kaaks, Rudolf
2017-11-07
It has long been proposed that albumin, bilirubin and uric acid may inhibit cancer development due to their anti-oxidative properties. However, there is a lack of population-based studies on blood levels of these molecules and cancer risk. Associations between pre-diagnostic serum albumin, bilirubin and uric acid and the risks of common cancers as well as cancer death in the EPIC-Heidelberg cohort were evaluated by multivariable Cox regression analyses. A case-cohort sample including a random subcohort (n=2739) and all incident cases of breast (n=627), prostate (n=554), colorectal (n=256), and lung cancer (n=195) as well as cancer death (n=761) that occurred between baseline (1994-1998) and 2009 was used. Albumin levels were inversely associated with breast cancer risk (hazard ratio Quartile 4 vs Quartile 1 (95% CI): 0.71 (0.51, 0.99), P linear trend =0.004) and overall cancer mortality (HR Q4 vs Q1 (95% CI): 0.64 (0.48, 0.86), P linear trend <0.001) after multivariable adjustment. Uric acid levels were also inversely associated with breast cancer risk (HR Q4 vs Q1 (95% CI): 0.72 (0.53, 0.99), P linear trend =0.043) and cancer mortality (HR Q4 vs Q1 (95% CI): 0.75 (0.58, 0.98), P linear trend =0.09). There were no significant associations between albumin or uric acid and prostate, lung and colorectal cancer. Serum bilirubin was not associated with any cancer end point. The present findings indicate that higher levels of albumin and uric acid are related to lower risks of breast cancer and cancer mortality. Further studies are needed to assess whether the observed associations are causal.
Sellés-Marchart, Susana; Casado-Vela, Juan; Bru-Martínez, Roque
2007-08-15
The effects of detergents, trypsin and fatty acids on structural and functional properties of a pure loquat fruit latent polyphenol oxidase have been studied in relation to its regulation. Anionic detergents activated PPO at pH 6.0 below critical micelle concentration (cmc), but inhibited at pH 4.5 well above cmc. This behavior is due to a detergent-induced pH profile alkaline shift, accompanied by changes of intrinsic fluorescence of the protein. Gel filtration experiments demonstrate the formation of PPO-SDS mixed micelles. Partial PPO proteolysis suggest that latent PPO losses an SDS micelle-interacting region but conserves an SDS monomer-interacting site. Unsaturated fatty acids inhibit PPO at pH 4.5, the strongest being linolenic acid while the weakest was gamma-linolenic acid for both, the native and the trypsin-treated PPO. Down-regulation of PPO activity by anionic amphiphiles is discussed based on both, the pH profile shift induced upon anionic amphiphile binding and the PPO interaction with negatively charged membranes.
Radiation Stability of Benzyl Tributyl Ammonium Chloride towards Technetium-99 Extraction - 13016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, Patricia; Horkley, Jared; Campbell, Keri
2013-07-01
A closed nuclear fuel cycle combining new separation technologies along with generation III and generation IV reactors is a promising way to achieve a sustainable energy supply. But it is important to keep in mind that future recycling processes of used nuclear fuel (UNF) must minimize wastes, improve partitioning processes, and integrate waste considerations into processes. New separation processes are being developed worldwide to complement the actual industrialized PUREX process which selectively separates U(VI) and Pu(IV) from the raffinate. As an example, the UREX process has been developed in the United States to co-extract hexavalent uranium (U) and hepta-valent technetiummore » (Tc) by tri-n-butyl phosphate (TBP). Tc-99 is recognized to be one of the most abundant, long-lived radio-toxic isotopes in UNF (half-life, t{sub 1/2} = 2.13 x 10{sup 5} years), and as such, is targeted in UNF separation strategies for isolation and encapsulation in solid waste-forms for final disposal in a nuclear waste repository. Immobilization of Tc-99 by a durable solid waste-form is a challenge, and its fate in new advanced technology processes is of importance. It is essential to be able to quantify and locate 1) its occurrence in any new developed flowsheets, 2) its chemical form in the individual phases of a process, 3) its potential quantitative transfer in any waste streams, and consequently, 4) its quantitative separation for either potential transmutation to Ru-100 or isolation and encapsulation in solid waste-forms for ultimate disposal. In addition, as a result of an U(VI)-Tc(VII) co-extraction in a UREX-based process, Tc(VII) could be found in low level waste (LLW) streams. There is a need for the development of new extraction systems that would selectively extract Tc-99 from LLW streams and concentrate it for feed into high level waste (HLW) for either Tc-99 immobilization in metallic waste-forms (Tc-Zr alloys), and/or borosilicate-based waste glass. Studies have been launched to investigate the suitability of new macro-compounds such as crown-ethers, aza-crown ethers, quaternary ammonium salts, and resorcin-arenes for the selective extraction of Tc-99 from nitric acid solutions. The selectivity of the ligand is important in evaluating potential separation processes and also the radiation stability of the molecule is essential for minimization of waste and radiolysis products. In this paper, we are reporting the extraction of TcO{sub 4}{sup -} by benzyl tributyl ammonium chloride (BTBA). Experimental efforts were focused on determining the best extraction conditions by varying the ligand's matrix conditions and concentration, as well as varying the organic phase composition (i.e. diluent variation). Furthermore, the ligand has been investigated for radiation stability. The ?-irradiation was performed on the neat organic phases containing the ligand at different absorbed doses to a maximum of 200 kGy using an external Co-60 source. Post-irradiation solvent extraction measurements will be discussed. (authors)« less
Verstraete, G; Vandenbussche, L; Kasmi, S; Nuhn, L; Brouckaert, D; Van Renterghem, J; Grymonpré, W; Vanhoorne, V; Coenye, T; De Geest, B G; De Beer, T; Remon, J P; Vervaet, C
2017-08-30
The aim of the present study was to develop thermoplastic polyurethane (TPU)-based intravaginal rings (IVRs) for prophylaxis and treatment of bacterial vaginosis via hot melt extrusion/injection molding. Therefore, different TPU grades were processed in combination with lactic acid or metronidazole, targeting a sustained lactic acid release over a 28day-period and sustained metronidazole release over 4-7days. Hot melt extrusion of lactic acid/TPU combinations required a lower extrusion temperature due to the plasticizing properties of lactic acid, evidenced by the lower glass transition temperature (T g ) and cross-over point (T tanδ = 1 ) values. NIR-chemical imaging data showed a homogenous distribution of lactic acid in TPU matrices at drug loads up to 30% (w/w). The addition of metronidazole did not lower processing temperatures, as the active pharmaceutical ingredient remained crystalline in the TPU matrix. Hydrophobic TPUs with a low ratio between the soft and hard segments (SS/HS ratio) in the polymer structure were suitable carriers for the lactic acid-eluting device over a 28-day period, while hydrophilic TPUs were needed to achieve the required release rate of metronidazole-eluting IVRs. IVRs manufactured with a TPU grade having a higher SS/HS ratio and lactic acid/TPU ratio exhibited a more elastic behavior. The addition of 25% (w/w) metronidazole did not affect the mechanical properties of the IVRs. Hydrophilic TPUs were most prone to biofilm formation by Candida albicans and Staphylococcus aureus, but the incorporation of metronidazole in the device prevented biofilm formation. Based on the drug eluting performance and mechanical tests, a mixture of lactic acid and Tecoflex™ EG-93A (20/80, w/w) and a combination of metronidazole and Tecophilic™ SP-93A-100 (25/75, w/w) were selected to design IVRs for the prophylaxis and treatment of bacterial vaginosis, respectively. Slug mucosal irritation tests predicted low irritation potency for both devices. Copyright © 2017 Elsevier B.V. All rights reserved.
Lorenzo, Daniel A; Forrest, Sebastian J K; Sparkes, Hazel A
2016-02-01
A number of hydrogen-bonded co-crystals, consisting of a cinnamic acid derivative and a pyridyl co-crystallizer, have been synthesized and their properties investigated by X-ray diffraction. Samples were prepared by recrystallization or solvent drop grinding of trans-cinnamic acid (1), 4-methylcinnamic acid (2), 4-methoxy cinnamic acid (3) or 3,4-methoxy cinnamic acid (4), with 4,4-dipyridyl (A), iso-nicotinamide (B) or nicotinamide (C). The X-ray single-crystal structures of seven novel co-crystals, obtained through recrystallization, are examined and the hydrogen-bonding interactions discussed. Consistent hydrogen-bonding motifs were observed for samples prepared when using 4,4-dipyridyl (A) or iso-nicotinamide (B) as the co-crystallizing agent. Powder X-ray diffraction analysis of the samples prepared by solvent drop grinding suggests the formation of ten co-crystals.
Effect of Fatty acids and beeswax addition on properties of sodium caseinate dispersions and films.
Fabra, M J; Jiménez, A; Atarés, L; Talens, P; Chiralt, A
2009-06-08
Edible films based on sodium caseinate and different saturated fatty acids, oleic acid, or beeswax were formulated. Film-forming emulsions were characterized in terms of particle size distribution, rheological behavior and surface tension. In order to evaluate the influence of lipids on sodium caseinate matrices, mechanical, optical, and water vapor barrier properties were studied, taking into account the effect of water content and film structure on such properties. Saturated fatty acids affected the film properties in a particular way due to the formation of bilayer structures which limited water vapor permeability, giving rise to nonflexible and more opaque films. Oleic acid and beeswax were less effective as water vapor barriers, although the former imparted more flexibility to the caseinate films and did not reduce the film transparency notably.
Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina
2014-03-01
Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.
Sakthivel, M; Franklin, D S; Guhanathan, S
2016-12-01
A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.
The Acid-Base Properties and Chemical Composition of the Surface of the InSb-ZnTe System
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Shubenkova, E. G.; Timoshenko, O. T.; Filatova, T. N.
2008-04-01
The acid-base properties and chemical composition of the surface of solid solutions and binary components of the InSb-ZnTe system were studied by the hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and mass spectrometry methods. The strength, nature, and concentration of acid centers were determined. Changes in the concentration of acid centers caused by surface exposure to CO and changes in the composition of the system were also studied. The mechanism of acid-base interactions was established. The chemical composition of the surface of system components exposed to air included adsorbed H2O molecules, OH- groups, hydrocarbon and oxocarbon compounds, and the products of surface atom oxidation. After thermal treatment in a vacuum, the composition of the surface approached the stoichiometric composition.
Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins
2005-05-01
fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer
McKnight, Diane M.; Bencala, K.E.
1989-01-01
A pH perturbation experiment was conducted in an acidic, metal-enriched, mountain stream to identify relative rates of chemical and hydrologic processes as they influence iron transport. During the experiment the pH was lowered from 4.2 to 3.2 for three hours by injection of sulfuric acid. Amorphous iron oxides are abundant on the streambed, and dissolution and photoreduction reactions resulted in a rapid increase in the dissolved iron concentration. The increase occurred simultaneously with the decrease in pH. Ferrous iron was the major aqueous iron species. The changes in the iron concentration during the experiment indicate that variation exists in the solubility properties of the hydrous iron oxides on the streambed with dissolution of at least two compartments of hydrous iron oxides contributing to the iron pulse. Spatial variations of the hydrologic properties along the stream were quantified by simulating the transport of a coinjected tracer, lithium. A simulation of iron transport, as a conservative solute, indicated that hydrologie transport had a significant role in determining downstream changes in the iron pulse. The rapidity of the changes in iron concentration indicates that a model based on dynamic equilibrium may be adequate for simulating iron transport in acid streams. A major challenge for predictive solute transport models of geochemical processes may be due to substantial spatial and seasonal variations in chemical properties of the reactive hydrous oxides in such streams, and in the physical and hydrologic properties of the stream. ?? 1989.
The physicochemical and thermal properties of Malaysian high free fatty acid crude palm oil
NASA Astrophysics Data System (ADS)
Bahadi, Murad Awadh; Salimon, Jumat; Japir, Abd-Wali M.
2016-11-01
This study was carried out to determine the physicochemical properties and the thermal behavior of Malaysian high free fatty acid crude palm oil (HFFA-CPO). The physicochemical properties showed that the free fatty acid (FFA %), acid value, iodine value, saponification value, unsaponifiable matter, hydroxyl value, specific gravity, refractive index at 28°C, moisture content, viscosity at 28°C and colour at 28°C values were 9.4±0.1 %, 21.3±0.1 mg/g, 50.6±0.2 mg/g, 203.1±0.1 mg/g, 0.7±0.1%, 43.4±0.2 mg/g, 0.878 g/ml, 1.4669, 0.6 %, 52 cP and 50R-40Y respectively. Gas chromatography (GC) was used to determine the fatty acid (FA) composition in HFFA-CPO. The fatty acids were found to be comprised mostly with 45.7 % palmitic acid (C16:0), 39.5 % oleic acid (C18:1), 9.4 % linoleic acid (C18:2) and 4.3 % stearic acid (C18:0). The analysis of triacylglycerol components with high performance liquid chromatography (HPLC) has resulted with 3.5 % triunsaturated (OOO, OLL and OLO), 32.7 % monosaturated (POO, PLO, SOO and PLL), 35.7 % disaturated (MLP, PPL, PPO, POS and SOS) and 2.32 % trisaturated fatty acids (PPP and PPS). The differential scanning calorimetry (DSC) showed that the crystallization of TAG displayed two major exothermic regions of HFFA-CPO with the di and trisaturated TAG at 23.11°C and the di and triunsaturated TAG at 9.31 °C. The melting curve displayed multiple endothermic peak regions at 25.13 °C and 35.31 °C could be attributed to the di and trisaturated TAGs. While the peaks at 0.95 °C, 6.94 °C and 9.77 °C could be attributed to the mono, di and triunsaturated TAGs.
Synthesis, structure, and properties of chromium(III) sulfates
NASA Astrophysics Data System (ADS)
Atkinson, Tom David; Fjellvåg, Helmer; Kjekshus, Arne
2004-11-01
Reactions between CrO 3 and 50- 95 wt% H2SO4 are studied at temperatures up to the boiling point of the acid. Depending on the H 2SO 4 concentration and synthesis temperature, Cr 2(SO 4) 3, CrH(SO 4) 2, (H 3O)[Cr(SO 4) 2], Cr 2(SO 4) 3·H 2SO 4·4H 2O (gross formula), and (H 5O 2)[Cr(H 2O) 2(SO 4) 2], are obtained as identified reaction products in addition to the incompletely characterized chromic-sulfuric acid. The Cr III-based sulfates are characterized by X-ray powder diffraction, thermogravimetric, and magnetic susceptibility measurements. The nuclear and magnetic structures of Cr 2(SO 4) 3 at 10 K are determined, the structure type of (H 3O)[Cr(SO 4) 2] is established, and the crystal structure of (H 5O 2)[Cr(H 2O) 2(SO 4) 2] is firmly stipulated. Magnetic susceptibility data suggest that the samples of CrH(SO 4) 2 are in a micro-crystalline rather than in an amorphous state. All Cr III-based sulfates synthesized in this study appear to undergo paramagnetic-to-antiferromagnetic transitions at around 10 K.
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-01-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089
Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting
NASA Astrophysics Data System (ADS)
Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia
2015-12-01
Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.
Evolving a polymerase for hydrophobic base analogues.
Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp
2009-10-21
Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.
NASA Astrophysics Data System (ADS)
Cheng, Yue; Yang, Meng-Lin; Hu, Huai-Ming; Xu, Bing; Wang, Xiaofang; Xue, Ganglin
2016-07-01
Six new coordination polymers, [ZnLCl]n(1), [ZnL2]n·2nH2O (2), [Zn2L(o-bdc)(OH)]n·0.5nH2O (3), [Zn2L(m-bdc)(OH)]n·nH2O (4), [Zn2L2(p-bdc) (H2O)2]n·nH2O (5), [Zn2L(1,2,4-btc)(H2O)]n(6), (HL=4‧-(3-carboxyphenyl)- 3,2‧:6‧,3″-terpyridine, H2(o-bdc)= benzene-1,2-dicarboxylic acid, H2(m-bdc)= benzene-1,3-dicarboxylic acid, H2(p-bdc)= benzene-1,4-dicarboxylic acid, H3(1,2,4-btc)= benzene-1,2,4-tricarboxylic acid) have been synthesized under the hydrothermal conditions. Compound 1 displays a 3-connected 2D network structure with point symbol of {82.10}. Compound 2 exhibits 1D infinite loop chain structure. Compound 3 possesses a (3,8)-connected 3D framework composed of tetranuclear units with point symbol of {43}2{46.618.84}. Compound 4 features a typical 2D hcb network based on tetranuclear zinc(II) units with point symbol of {44.62}. Compound 5 presents a classical two-fold penetration sql network with point symbol of {63}. Compound 6 can be seen as a (3,3,6)-connected 3D net with point symbol of {42.64.89}{42.6}{63}. The thermal stability and luminescent properties of compounds 1-6 in the solid state are discussed in detail.
Students' Alternate Conceptions on Acids and Bases
ERIC Educational Resources Information Center
Pan, Hanqing; Henriques, Laura
2015-01-01
Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…
Schute, Kai; Rose, Marcus
2015-10-26
A metal-free route for the synthesis of hyper-cross-linked polymers (HCP) based on Brønsted acids such as trifluoromethanesulfonic acid as well as H2 SO4 is reported. It is an improved method compared to conventional synthesis strategies that use stoichiometric amounts of metal-based Lewis acids such as FeCl3 . The resulting high-performance adsorbents exhibit a permanent porosity with high specific surface areas up to 1842 m(2) g(-1) . Easy scalability of the HCP synthesis is proven on the multi-gram scale. All chemo-physical properties are preserved. Water-vapor adsorption shows that the resulting materials exhibit an even more pronounced hydrophobicity compared to the conventionally prepared materials. The reduced surface polarity enhances the selectivity in the liquid-phase adsorption of the biogenic platform chemical 5-hydroxymethylfurfural. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ncube, Efficient N.; Steenkamp, Paul A.; Madala, Ntakadzeni E.; Dubery, Ian A.
2016-01-01
Centella asiatica is a perrenial herb that grows in tropical regions with numerous medicinal properties mostly attributed to the presence of pentacyclic triterpenoids. Interestingly, this plant also possess a significant amount of phenylpropanoid-derived chlorogenic acids (CGAs) that have recently been reported to confer neuroprotective properties. In a biotechnological attempt to increase the biosynthesis of CGA-derivatives in cultured Centella cells, acibenzolar-S-methyl was applied as a xenobiotic inducer in combination with quinic acid and shikimic acid as precursor molecules. Applying a semi-targeted metabolomics-based approach, time and concentration studies were undertaken to evaluate the effect of the manipulation on cellular metabolism leading to CGA production. Phytochemical extracts were prepared using methanol and analyzed using a UHPLC-qTOF-MS platform. Data was processed and analyzed using multivariate data models. A total of four CGA-derivatives, annotated as trans-5-feruloylquinic acid, 3,5 di-caffeoylquinic acid, 3,5-O-dicaffeoyl-4-O-malonylquinic acid (irbic acid) and 3-caffeoyl, 5-feruloylquinic acid, were found to be upregulated by the acibenzolar-S-methyl treatment. To the best of our knowledge, this is the first report on the induction of CGA derivatives in this species. Contrary to expectations, the effects of precursor molecules on the levels of the CGAs were insignificant. However, a total of 16 metabolites, including CGA derivatives, were up-regulated by precursor treatment. Therefore, this study shows potential to biotechnologically manipulate C. asiatica cells to increase the production of these health beneficial CGAs. PMID:27733862
Fiber reinforced thermoplastic resin matrix composites
NASA Technical Reports Server (NTRS)
Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)
1989-01-01
Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi-Ru; Chien, Po-Hsiu; Chung, Huey-Ting
2014-04-01
The reaction of 1,2,4-benzenetricarboxylic acid (H{sub 3}btc), as a ligand, under pH-controlled hydrothermal conditions with nickel salts leads to the formation of a coordination polymer of (CsNi{sub 3}(OH)(H{sub 2}O){sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 2}·3H{sub 2}O){sub n} (1). The subunit of compound 1 contains a hydroxide- and carboxylate-bridged trinickel clusters that are linked by an unsymmetrical organic carboxylate spacer to form a chiral three-dimensional anionic framework, in which cesium cations and guest water molecules are located in one-dimensional channels. The presence of a hydroxide ion serves both as a deprotonation agent and a cation source during the hydrothermal reaction, thusmore » permitting the extent of deprotonation of the unsymmetrical ligand H{sub 3}btc to be controlled, which is essential for the successful formation of compound 1. The magnetic properties of compound 1 were analyzed. Both dc and ac magnetic susceptibility as well as reduced magnetization measurements confirmed the spin-frustration nature of 1. - Graphical abstract: A chiral three-dimension MOF compound and its magnetic properties are described. - Highlights: • A new chiral three-dimension coordination polymer were made. • An un-symmetric bridging ligand was used. • Alkali metal ion Cs{sup +} was incorporated in the structure. • Magnetic properties were studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xun; Liu, Jing; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022
2015-10-15
Reactions between later metal salts and conjugational N-hetrocyclic sulfonate/ carboxylic acid under the presence of bipyridyl auxiliary ligands afforded a series of manganese, nickel, zinc, silver, cadmium coordination polymers bearing with phenyl pendant arm attached to quinoline skeletons, and they have been characterized by elements analysis, thermogravimetry, infrared spectroscopy and single-crystal X-ray diffraction studying. The series of polymers show interesting structural diversity in coordination environment, dimensions and topologies. They are all built from 2-D networks constructed from metal cluster through sulfonate or carboxylate groups, as the secondary building unit (SBU). The thermalgravimetric analyses show that they display framework stabilities inmore » solid state. Variable-temperature magnetic susceptibility studies reveal the existence of antiferromagnetic interactions between adjacent Mn (II) ions in 1, and ferromagnetic interactions between Ni(II) ions for 2, respectively. The photo-luminescence properties of 3-5 have also been investigated systemically. - Highlights: • A series of coordination polymers based on later transition metal ions have been obtained. • They contain conjugational N-hetrocyclic sulfonate-carboxylic acid and bipyridyl auxiliary ligands. • They have been characterized systemically. • They exhibit structure diversity and interesting properties.« less
Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter
2012-01-01
Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments. Copyright © 2011 Elsevier B.V. All rights reserved.
Siebenhandl, Susanne; Grausgruber, Heinrich; Pellegrini, Nicoletta; Del Rio, Daniele; Fogliano, Vincenzo; Pernice, Rita; Berghofer, Emmerich
2007-10-17
Two pigmented wheat genotypes (blue and purple) and two black barley genotypes were fractionated in bran and flour fractions, examined, and compared for their free radical scavenging properties against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (Trolox equivalent antioxidant capacity, TEAC), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), phenolic acid composition, carotenoid composition, and total anthocyanin content. The results showed that fractionation has a significant influence on the antioxidant properties, TPC, anthocyanin and carotenoid contents, and phenolic acid composition. Bran fractions had the greatest antioxidant activities (1.9-2.3 mmol TEAC/100 g) in all four grain genotypes and were 3-5-fold higher than the respective flour fractions (0.4-0.7 mmol TEAC/100 g). Ferulic acid was the predominant phenolic acid in wheat genotypes (bran fractions) while p-coumaric acid was the predominant phenolic acid in the bran fractions of barley genotypes. High-performance liquid chromatography analysis detected the presence of lutein and zeaxanthin in all fractions with different distribution patterns within the genotypes. The highest contents of anthocyanins were found in the middlings of black barley genotypes or in the shorts of blue and purple wheat. These data suggest the possibility to improve the antioxidant release from cereal-based food through selection of postharvest treatments.
NASA Astrophysics Data System (ADS)
Yao, Xiao-Qiang; Li, Dan-Yang; Xiao, Guo-Bin; Ma, Heng-Chang; Lei, Zi-Qiang; Liu, Jia-Cheng
2018-04-01
A new compound, {[Co(BPFI)(NDC)]H2O·0.5DMF}n (1) has been synthesized under hydrothermal condition by the self-assembly of V-shaped N-containing rigid ligand BPFI with Co(II) ions in the presence of H2NDC acid, where BPFI = 2,8-di(1H-imidazole-1-yl)dibenzo[b,d]furan, H2NDC = naphthalene-1,4-dicarboxylic acid. Compound 1 was characterized by elemental analysis, single crystal X-ray diffraction, FT-IR spectroscopy and UV-visible spectra. Structural analysis reveals that compound 1 is a unique dinuclear Co-based 2D (4,4) layer structure decorated with parallel double chains. In addition, magnetic study reveals the existence of antiferromagnetic coupling interactions between the Co(II) ions within the dinuclear unit of 1.
NASA Astrophysics Data System (ADS)
Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin
2018-05-01
Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.
Dai, Xingping; Wang, Dongsheng; Li, Hui; Chen, Yanyi; Gong, Zhicheng; Xiang, Haiyan; Shi, Shuyun; Chen, Xiaoqing
2017-02-10
Polar and hydrophilic properties of hydroxybenzoic acids usually made them coelute with interferences in high performance liquid chromatography (HPLC) analysis. Then selective analysis of them was necessary. Herein, hollow porous ionic liquids composite polymers (PILs) based solid phase extraction (SPE) was firstly fabricated and coupled online with HPLC for selective analysis of hydroxybenzoic acids from complex matrices. Hollow porous PILs were firstly synthesized using Mobil Composition of Matter No. 48 (MCM-48) spheres as sacrificial support, 1-vinyl-3-methylimidazolium chloride (VMIM + Cl - ) as monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Various parameters affecting synthesis, adsorption and desorption behaviors were investigated and optimized. Steady-state adsorption studies showed the resulting hollow porous PILs exhibited high adsorption capacity, fast adsorption kinetics, and excellent specific adsorption. Subsequently, the application of online SPE system was studied by selective analysis of protocatechuic acid (PCA), 4-hydroxybenzoic acid (4-HBA), and vanillic acid (VA) from Pollen Typha angustifolia. The obtained limit of detection (LOD) varied from 0.002 to 0.01μg/mL, the linear range (0.05-5.0μg/mL) was wide with correlation coefficient (R) from 0.9982 to 0.9994, and the average recoveries at three spiking levels ranged from 82.7 to 102.4%, with column-to-column relative standard deviation (RSD) below 8.1%. The proposed online method showed good accuracy, precision, specificity and convenience, which opened up a universal and efficient route for selective analysis of hydroxybenzoic acids from complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Pratik, Saied Md; Datta, Ayan
2016-08-04
Formation of salt and/or cocrystal from organic acid-base mixtures has significant consequences in the pharmaceutical industry and its related intellectual property rights (IPR). On the basis of calculations using periodic dispersion corrected DFT (DFT-D2) on formic acid-pyridine adduct, we have demonstrated that an equimolar stoichiometric ratio (1:1) exists as a neutral cocrystal. On the other hand, the nonequimolar stoichiometry (4:1) readily forms an ionic salt. While the former result is in agreement with the ΔpKa rule between the base and the acid, the latter is not. Calculations reveal that, within the equimolar manifold (n:n; n = 1-4), the mixture exists as a hydrogen bonded complex in a cocrystal-like environment. However, the nonequimolar mixture in a ratio of 5:1 and above readily forms salt-like structures. Because of the cooperative nature of hydrogen bonding, the strength of the O-H···N hydrogen bond increases and eventually transforms into O(-)···H-N(+) (complete proton transfer) as the ratio of formic acid increases and forms salt as experimentally observed. Clearly, an enhanced polarization of formic acid on aggregation increases its acidity and, hence, facilitates its transfer to pyridine. Motion of the proton from formic acid to pyridine is shown to follow a relay mechanism wherein the proton that is far away from pyridine is ionized and is subsequently transferred to pyridine via hopping across the neutral formic acid molecules (Grotthuss type pathway). The dynamic nature of protons in the condensed phase is also evident for cocrystals as the barrier of intramolecular proton migration in formic acid (leading to tautomerism), ΔH(⧧)tautomer = 17.1 kcal/mol in the presence of pyridine is half of that in free formic acid (cf. ΔH(⧧)tautomer = 34.2 kcal/mol). We show that an acid-base reaction can be altered in the solid state to selectively form a cocrystal or salt depending on the strength and nature of aggregation.
Andrews, Frank M; Buchanan, Benjamin R; Smith, Sionagh H; Elliott, Sarah B; Saxton, Arnold M
2006-11-01
To compare the effects of hydrochloric acid (HCl) and various concentrations of volatile fatty acids (VFAs) on tissue bioelectric properties of equine stomach nonglandular (NG) mucosa. Gastric tissues obtained from 48 adult horses. NG gastric mucosa was studied by use of Ussing chambers. Short-circuit current (Isc) and potential difference (PD) were measured and electrical resistance (R) and conductance calculated for tissues after addition of HCl and VFAs (5, 10, 20, and 40 mM) in normal Ringer's solution (NRS). Mucosa exposed to HCl in NRS (pH of 1.5 and, to a lesser extent, 4.0) had a significant decrease in Isc, PD, and R, whereas tissues exposed to acetic acid at a pH of < 4.0, propionic and butyric acids at a pH of
Acid-base properties of humic and fulvic acids formed during composting.
Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro
2005-09-15
The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.
NASA Astrophysics Data System (ADS)
Septevani, Athanasia Amanda; Annamalai, Pratheep K.; Martin, Darren J.
2017-11-01
The increasing awareness of the environment and the economy of petroleum resources has driven the development of alternative processes and raw materials based on sustainable and renewable biomaterials with excellent properties. This study is aimed to use biologically renewable cellulose nanocrystals (CNC) as reinforcing agent to enhance the properties of polyurethane foams (PUF) based on solely palm-polyol. Rod-like shape cellulose nanocrystals (CNC) was successfully isolated from cotton based resources via strong acid hydrolysis with the average width, length and aspect ratio about 14.7 ± 4.9 nm, 167.7 ± 23.2 nm and 11.4, respectively. The crystallinity of CNC was confirmed by using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) and was found at 82.8% and 83.8%, respectively. This obtained cellulose nanocrystals (CNC) at a loading of 0.4 wt. % was then incorporated via solvent-free sonication method in the model of palm based polyurethane foam. The preliminary results showed that the effect of CNC on the mechanical properties afforded a significant improvement on the compressive strength and modulus without affecting much their tensile strength. The results on thermal stability and thermal transitions were found unchanged whereas the storage modulus revealed substantial improvement with the presence of CNC with almost two fold from 0.7 MPa to 1.3 MPa (˜86 %).
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Chen, Chen; Liu, Xiaoli; Gao, Peng; Hu, Ming
2017-09-01
Series of chiral 3d-4f heterometallic MOFs based on a multidentate terpyridyl carboxylic acid ligand have been synthesized under the solvothermal conditions, namely, [LnZnL(CO3)2(H2O)]n (Ln = Eu (1), Gd (2), Dy (3), Ho (4), Er (5), Tm (6), Yb (7), Lu (8)) (HL = 4‧-(4-carboxyphenyl)-2,2‧:6‧,2″-terpyridine). Compounds 1-8 were structurally characterized by the elemental analyses, infrared spectra, and single crystal X-ray diffractions. Compounds 1-8 exhibit the chiral interpenetrating 3D frameworks. Interestingly, 1 can serve as the luminescent sensor to detect nitrobenzene molecules with high sensitivity. The investigations on CD spectra of single crystals clearly assigned the Cotton effect, indicating that there exist two chiral enantiomers of 1-8 in the course of crystallization. The magnetic properties of 2 and 7 were exploited, respectively.
Pereira de Sousa, Irene; Suchaoin, Wongsakorn; Zupančič, Ožbej; Leichner, Christina; Bernkop-Schnürch, Andreas
2016-11-05
It is the aim of this study to synthesize hyaluronic acid (HA) derivatives bearing mucoadhesive properties and showing prolonged stability at pH 7.4 and under oxidative condition as liquid dosage form. HA was modified by thiolation with l-cysteine (HA-SH) and by conjugation with 2-mercaptonicotinic acid-l-cysteine ligand to obtain an S-protected derivative (HA-MNA). The polymers were characterized by determination of thiol group content and mercaptonicotinic acid content. Cytotoxicity, stability and mucoadhesive properties (rheological evaluation and tensile test) of the polymers were evaluated. HA-SH and HA-MNA could be successfully synthesized with a degree of modification of 5% and 9% of the total moles of carboxylic acid groups, respectively. MTT assay revealed no toxicity for the polymers. HA-SH resulted to be unstable both at pH 7.4 and under oxidative conditions, whereas HA-MNA was stable under both conditions. Rheological assessment showed a 52-fold and a 3-fold increase in viscosity for HA-MNA incubated with mucus compared to unmodified HA and HA-SH, respectively. Tensile evaluation carried out with intestinal and conjunctival mucosa confirmed the higher mucoadhesive properties of HA-MNA compared to HA-SH. According to the presented results, HA-MNA appears to be a potent excipient for the formulation of stable liquid dosage forms showing comparatively high mucodhesive properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optimizing the specificity of nucleic acid hybridization
Zhang, David Yu; Chen, Sherry Xi; Yin, Peng
2014-01-01
The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg2+ to 47 mM Mg2+, and with nucleic acid concentrations from 1 nM to 5 μM. Experiments with RNA also showed effective single-base change discrimination. PMID:22354435
Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan
2014-11-12
Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.
Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxyfatty Acids
USDA-ARS?s Scientific Manuscript database
Novel crosslinked thin polymer networks based on vegetable oil hydroxyfatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, r...
Nehdi, Imededdine Arbi; Sbihi, Hassen; Tan, Chin Ping; Al-Resayes, Saud Ibrahim
2013-01-15
The physicochemical properties, fatty acid, tocopherol, thermal properties, (1)H NMR, FTIR and profiles of non-conventional oil extracted from Citrullus colocynthis (L.) Schrad seeds were evaluated and compared with conventional sunflower seed oil. In addition, the antioxidant properties of C. colocynthis seed oil were also evaluated. The oil content of the C. colocynthis seeds was 23.16%. The main fatty acids in the oil were linoleic acid (66.73%) followed by oleic acid (14.78%), palmitic acid (9.74%), and stearic acid (7.37%). The tocopherol content was 121.85 mg/100g with γ-tocopherol as the major one (95.49%). The thermogravimetric analysis showed that the oil was thermally stable up to 286.57°C, and then began to decompose in four stages namely at 377.4°C, 408.4°C, 434.9°C and 559.2°C. The present study showed that this non-conventional C. colocynthis seed oil can be used for food and non-food applications to supplement or replace some of the conventional oils. Copyright © 2012 Elsevier Ltd. All rights reserved.