Sample records for called superionic water

  1. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  2. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  3. Approximation of super-ions for single-file diffusion of multiple ions through narrow pores.

    PubMed

    Kharkyanen, Valery N; Yesylevskyy, Semen O; Berezetskaya, Natalia M

    2010-11-01

    The general theory of the single-file multiparticle diffusion in the narrow pores could be greatly simplified in the case of inverted bell-like shape of the single-particle energy profile, which is often observed in biological ion channels. There is a narrow and deep groove in the energy landscape of multiple interacting ions in such profiles, which corresponds to the pre-defined optimal conduction pathway in the configurational space. If such groove exists, the motion of multiple ions can be reduced to the motion of single quasiparticle, called the superion, which moves in one-dimensional effective potential. The concept of the superions dramatically reduces the computational complexity of the problem and provides very clear physical interpretation of conduction phenomena in the narrow pores.

  4. Experimental evidence for superionic water ice using shock compression

    NASA Astrophysics Data System (ADS)

    Millot, Marius; Hamel, Sebastien; Rygg, J. Ryan; Celliers, Peter M.; Collins, Gilbert W.; Coppari, Federica; Fratanduono, Dayne E.; Jeanloz, Raymond; Swift, Damian C.; Eggert, Jon H.

    2018-03-01

    In stark contrast to common ice, Ih, water ice at planetary interior conditions has been predicted to become superionic with fast-diffusing (that is, liquid-like) hydrogen ions moving within a solid lattice of oxygen. Likely to constitute a large fraction of icy giant planets, this extraordinary phase has not been observed in the laboratory. Here, we report laser-driven shock-compression experiments on water ice VII. Using time-resolved optical pyrometry and laser velocimetry measurements as well as supporting density functional theory-molecular dynamics (DFT-MD) simulations, we document the shock equation of state of H2O to unprecedented extreme conditions and unravel thermodynamic signatures showing that ice melts near 5,000 K at 190 GPa. Optical reflectivity and absorption measurements also demonstrate the low electronic conductivity of ice, which, combined with previous measurements of the total electrical conductivity under reverberating shock compression, provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.

  5. Superionic Phases of the 1:1 Water–Ammonia Mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethkenhagen, Mandy; Cebulla, Daniel; Redmer, Ronald

    We report four structures for the 1:1 water–ammonia mixture showing superionic behavior at high temperature with the space groups P4/ nmm, Ima2, Pma2, and Pm, which have been identified from evolutionary random structure search calculations at 0 K. Analyzing the respective pair distribution functions and diffusive properties the superionic phase is found to be stable in a temperature range between 1000 and 6000 K for pressures up to 800 GPa. We propose a high-pressure phase diagram of the water–ammonia mixture for the first time and compare the self-diffusion coefficients in the mixture to the ones found in water and ammonia.more » Lastly, possible implications on the interior structure of the giant planets Uranus and Neptune are discussed.« less

  6. Superionic Phases of the 1:1 Water–Ammonia Mixture

    DOE PAGES

    Bethkenhagen, Mandy; Cebulla, Daniel; Redmer, Ronald; ...

    2015-09-21

    We report four structures for the 1:1 water–ammonia mixture showing superionic behavior at high temperature with the space groups P4/ nmm, Ima2, Pma2, and Pm, which have been identified from evolutionary random structure search calculations at 0 K. Analyzing the respective pair distribution functions and diffusive properties the superionic phase is found to be stable in a temperature range between 1000 and 6000 K for pressures up to 800 GPa. We propose a high-pressure phase diagram of the water–ammonia mixture for the first time and compare the self-diffusion coefficients in the mixture to the ones found in water and ammonia.more » Lastly, possible implications on the interior structure of the giant planets Uranus and Neptune are discussed.« less

  7. NMR Hole-Burning Experiments on Superionic Conductor Glasses

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Kuwata, N.; Hattori, T.

    2004-04-01

    Inhomogeneity is an inherent nature of glass, which is the density and concentration fluctuation frozen at glass transition temperature. The inhomogeneity of the glass plays significant role in so called superionic conductor glasses (SIG), since the mobile ions seek to move through energetically favorable paths. The localization of mobile ions in SIG near the 2nd glass transition is a remaining issue, where the trapping, percolation and many-body interactions are playing the roles. In order to investigate the trapping process in SIG, the authors have applied 109Ag NMR Hole-Burning technique to AgI containing SIG glasses. By using this technique, the slowing down process of the site-exchange rates between different sites were evaluated.

  8. The phase diagram of high-pressure superionic ice

    DOE PAGES

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; ...

    2015-08-28

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2 1/c symmetry. We also discover that higher pressuremore » phases have lower transition temperatures. The diffusive hydrogen in the P2 1/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2 1/c superionic phase transition.« less

  9. Superionic state in double-layer capacitors with nanoporous electrodes.

    PubMed

    Kondrat, S; Kornyshev, A

    2011-01-19

    In recent experiments (Chmiola et al 2006 Science 313 1760; Largeot et al 2008 J. Am. Chem. Soc. 130 2730) an anomalous increase of the capacitance with a decrease of the pore size of a carbon-based porous electric double-layer capacitor has been observed. We explain this effect by image forces which exponentially screen out the electrostatic interactions of ions in the interior of a pore. Packing of ions of the same sign becomes easier and is mainly limited by steric interactions. We call this state 'superionic' and suggest a simple model to describe it. The model reveals the possibility of a voltage-induced first order transition between a cation(anion)-deficient phase and a cation(anion)-rich phase which manifests itself in a jump of capacitance as a function of voltage.

  10. Mobility propagation and dynamic facilitation in superionic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annamareddy, Ajay, E-mail: vkannama@ncsu.edu; Eapen, Jacob, E-mail: jacob.eapen@ncsu.edu

    2015-11-21

    In an earlier work [V. A. Annamareddy et al., Phys. Rev. E 89, 010301(R) (2014)], we showed the manifestation of dynamical heterogeneity (DH)—the presence of clustered mobile and immobile regions—in UO{sub 2}, a model type II superionic conductor. In the current work, we demonstrate the mechanism of dynamic facilitation (DF) in two superionic conductors (CaF{sub 2} and UO{sub 2}) using atomistic simulations. Using the mobility transfer function, DF is shown to vary non-monotonically with temperature with the intensity of DF peaking at temperatures close to the superionic transition temperature (T{sub λ}). Both the metrics quantifying DH and DF show remarkablemore » correspondence implying that DF, in the framework of kinematically constrained models, underpins the heterogeneous dynamics in type II superionic conductors.« less

  11. Theoretical study of superionic phase transition in Li2S.

    PubMed

    Jand, Sara Panahian; Zhang, Qian; Kaghazchi, Payam

    2017-07-19

    We have studied temperature-induced superionic phase transition in Li 2 S, which is one of the most promising Li-S battery cathode material. Concentration of ionic carriers at low and high temperature was evaluated from thermodynamics of defects (using density functional theory) and detailed balance condition (using ab initio molecular dynamics (AIMD)), respectively. Diffusion coefficients were also obtained using AIMD simulations. Calculated ionic conductivity shows that superionic phase transition occurs at T = 900 K, which is in agreement with reported experimental values. The superionic behavior of Li 2 S is found to be due to thermodynamic reason (i.e. a large concentration of disordered defects).

  12. Dynamics and Tolerance of Superionics in Extreme Environment

    NASA Astrophysics Data System (ADS)

    Annamareddy, Venkata Ajay Krishna Choudary

    Superionic conductors are multi-component solid-state systems in which one sub-lattice exhibits exceptional ionic conductivity, which is comparable to molten state; among other things, the high ionic conductivity facilitates their use as solid-state electrolytes. Uranium di-oxide (UO 2)--the material of choice for fuel in most nuclear reactors--also shows superionic behavior, although very little is understood currently on the fast ion transport in UO2, and its implication. This dissertation aims to provide a better understanding of the dynamical characteristics of superionic conductors under both equilibrium and non-equilibrium thermodynamic conditions. In the first part, the emphasis is on equilibrium fluctuations and associated properties of Type II superionic conductors. Using atomistic simulations as well as available neutron and x-ray scattering data, the order-disorder transition or onset of superionic state for Type II conductors at a certain characteristic temperature (Talpha) is first revealed. Talpha marks a structural and kinetic crossover from a crystalline state to a semi-ordered state and is clearly different from the well-known thermodynamic superionic transition (T lambda). Though not favored by entropic forces, collective and cooperative dynamical effects, reminiscent of glassy states, are manifested in the temperature range spanned by Talpha and T lambda. Using atomistic simulations, dynamical heterogeneity (DH)--presence of clustered mobile and immobile regions in a static-homogeneous system--a ubiquitous feature of supercooled liquids and glassy states, is shown to germinate at Talpha. Using reliable metrics, the DH is shown to strengthen with increasing temperature, peak at an intermediate temperature between Talpha and Tlambda , and then recede. This manifestation of DH in superionics markedly differs from that in supercooled liquids through its initial growth against the destabilizing entropic barriers. Atomistic simulations further show that DH in superionics arises from facilitated dynamics, or the phenomenon of dynamic facilitation (DF). Using mobility transfer function, which gives the probability of a neighbor of a mobile ion becoming mobile relative to that of a random ion becoming mobile, it is shown that mobility propagates continuously to the neighboring ions with the strength of the DF increasing at the order-disorder temperature ( Talpha), exhibiting a maximum at an intermediate temperature, and then decreasing as the temperature approaches T lambda. This waxing and waning behavior with temperature is nearly identical to the variation of DH. Thus the close correspondence between DH and DF strongly indicates that DF underpins the heterogeneous dynamics in Type II superionic conductors. In a dynamically facilitated system, a jammed region can become unjammed only if it is physically adjacent to a mobile region. Remarkably, a string-like displacement of ions, the quintessential mode of particle mobility in jammed systems, is shown to operate in Type II superionics as well. The probability distribution of the length of the string is shown to vary exponentially, which is identical to that observed in supercooled and jammed states. Thus the demonstration of DH, DF and string-like cooperative ionic displacements in superionics that closely parallel the dynamic characteristics of supercooled liquids and glassy states, significantly augments the already existing but scant list of phenomenological similarities between these two distinct types of materials. The second part of this dissertation deals with non-equilibrium displacement-cascade simulations of UO2 that is used as a nuclear fuel. UO2 is known to resist amorphization even when subjected to intense nuclear radiations; analysis based on structure and energy does explain this behavior from a thermodynamic perspective. Radiation is inherently dynamic (non-equilibrium), and thus it is pertinent to understand the dynamics of the displaced ions during the annealing process. In this dissertation, the mechanism of dynamic recovery following a radiation knock at the atomistic level is investigated. It is shown that oxygen ions following a radiation perturbation exhibit correlated motion, which is similar to that in high temperature superionic state. Quite remarkably, the displaced oxygen ions also undergo fast recovery to their native lattice sites through collective string-like displacements that show an exponential distribution. Thus the superionic characteristics of UO2 under equilibrium conditions are also instrumental in fast defect recovery following a radiation perturbation.

  13. Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Stephen Dongmin; Pöhls, Jan-Hendrik; Aydemir, Umut

    Superionic thermoelectric materials have been shown to have high figure-of-merits, leading to expectations for efficient high-temperature thermoelectric generators. These compounds exhibit extremely high cation diffusivity, comparable to that of a liquid, which is believed to be associated with the low thermal conductivity that makes superionic materials good for thermoelectrics. However, the superionic behavior causes cation migration that leads to device deterioration, being the main obstacle for practical applications. It has been reported that lithium doping in superionic Cu2-xSe leads to suppression of the Cu ion diffusivity, but whether the material will retain the promising thermoelectric properties had not yet beenmore » investigated. Here, we report a maximum zT>1.4 from Li0.09Cu1.9Se, which is higher than what we find in the undoped samples. The high temperature effective weighted mobility of the doped sample is found higher than Cu2-xSe, while the lattice thermal conductivity remains similar. We find signatures of suppressed bipolar conduction due to an enlarged band gap. Our findings set forth a possible route for tuning the stability of superionic thermoelectric materials.« less

  14. Superion Interspinous Spacer Treatment of Moderate Spinal Stenosis: 4-Year Results.

    PubMed

    Nunley, Pierce D; Patel, Vikas V; Orndorff, Douglas G; Lavelle, William F; Block, Jon E; Geisler, Fred H

    2017-08-01

    To determine 4-year clinical outcomes in patients with moderate lumbar spinal stenosis treated with minimally invasive stand-alone interspinous process decompression using the Superion device. The 4-year Superion data were extracted from a randomized, controlled Food and Drug Administration investigational device exemption trial. Patients with intermittent neurogenic claudication relieved with back flexion who failed at least 6 months of nonsurgical management were enrolled. Outcomes included Zurich Claudication Questionnaire (ZCQ) symptom severity (ss), physical function (pf) and patient satisfaction (ps) subdomains, leg and back pain visual analog scale (VAS), and Oswestry Disability Index (ODI). At 4-year follow-up, 89 of the 122 patients (73%) provided complete clinical outcome evaluations. At 4 years after index procedure, 75 of 89 patients with Superion (84.3%) demonstrated clinical success on at least 2 of 3 ZCQ domains. Individual component responder rates were 83% (74/89), 79% (70/89), and 87% (77/89) for ZCQss, ZCQpf, and ZCQps; 78% (67/86) and 66% (57/86) for leg and back pain VAS; and 62% (55/89) for ODI. Patients with Superion also demonstrated percentage improvements over baseline of 41%, 40%, 73%, 69%, and 61% for ZCQss, ZCQpf, leg pain VAS, back pain VAS, and ODI. Within-group effect sizes all were classified as very large (>1.0): 1.49, 1.65, 1.42, 1.12, and 1.46 for ZCQss, ZCQpf, leg pain VAS, back pain VAS, and ODI. Minimally invasive implantation of the Superion device provides long-term, durable relief of symptoms of intermittent neurogenic claudication for patients with moderate lumbar spinal stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cluster-inspired Superionic Conductors

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Jena, Puru

    Superionic conductors with desirable properties hold the key to the development of next generation of rechargeable metal-ion batteries. In this study, we report a new family of superionic conductors composed by clusters based on the antiperovskite fast-ion conductors. The new lightweight conductor shows larger electrochemical stability window and favorable thermal and mechanical properties, while maintain a high Li+-ionconductivity at room temperature and a low activation energy. We reveal the conduction mechanism of the material by identifying the relation between the orientational symmetry of the cluster rotors and the potential surface felt by the lithium ion. We also find that the mixed phase of the new conductors show further enhanced conductivity.

  16. Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less

  17. Thermophysical properties and oxygen transport in (Th x,Pu 1-x)O 2

    DOE PAGES

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...

    2016-10-31

    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Th x,Pu 1–x)O 2 (0 ≤ x ≤ 1) between 300–3500 K. Specifically, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Th x,Pu 1–x)O 2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and themore » increase in oxygen diffusivity. The increase in oxygen diffusivity for (Th x,Pu 1–x)O 2 is explained in terms of lower oxygen defect formation enthalpies for (Th x,Pu 1–x)O 2 than PuO 2 and ThO 2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder.« less

  18. The Seebeck coefficient of superionic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, G. D.

    2015-01-28

    We present a theory of the anomalous Seebeck coefficient found in the superionic conductor Cu{sub 2}Se. It has a phase transition at T = 400 K where the cations disorder but the anions do not. This disorder gives a temperature-dependent width to the electronic states in the conduction band. This width provides the anomalous Seebeck contribution.

  19. Ion conduction in crystalline superionic solids and its applications

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  20. Characteristics of the Li+-Ion Conductivity of Li3R2(PO4)3 Crystals (R = Fe, Sc) in the Superionic State

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-05-01

    The characteristics of Li+-ion conductivity σdc of structural γ modifications of Li3R2(PO4)3 compounds (R = Fe, Sc) existing in the superionic state have been investigated by impedance spectroscopy. The type of structural framework [R2P3O12]∞ 3- affects the σdc value and the σdc activation enthalpy in these compounds. The ion transport activation enthalpy in γ-Li3R2(PO4)3 (Δ H σ = 0.31 ± 0.03 eV) is lower than in γ-Li3Fe2(PO4)3 (Δ H σ = 0.36 ± 0.03 eV). The conductivity of γ-Li3Fe2(PO4)3 (σdc = 0.02 S/cm at 573 K) is twice as high as that of γ-Li3R2(PO4)3. A decrease in temperature causes a structural transformation of Li3R2(PO4)3 from the superionic γ modification (space group Pcan) through the intermediate metastable β modification (space group P21/ n) into the "dielectric" α modification (space group P21/ n). Upon cooling, σdc for both phosphates decreases by a factor of about 100 at the superionic TSIC transition. In Li3Fe2(PO4)3 σdc gradually decreases in the temperature range T SIC = 430-540 K, whereas in Li3R2(PO4)3 σdc undergoes a jump at T SIC = 540 ± 25 K. Possible crystallochemical factors responsible for the difference in the σdc and Δ H σ values and the thermodynamics and kinetics of the superionic transition for Li3R2(PO4)3 are discussed.

  1. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE PAGES

    Lü, Xujie; Howard, John W.; Chen, Aiping; ...

    2016-02-02

    We prepared antiperovskite Li 3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10 -4 S cm -1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li 3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  2. Finite-temperature lattice dynamics and superionic transition in ceria from first principles

    NASA Astrophysics Data System (ADS)

    Klarbring, Johan; Skorodumova, Natalia V.; Simak, Sergei I.

    2018-03-01

    Ab initio molecular dynamics (AIMD) in combination with the temperature dependent effective potential (TDEP) method has been used to go beyond the quasiharmonic approximation and study the lattice dynamics in ceria, CeO2, at finite temperature. The results indicate that the previously proposed connection between the B1 u phonon mode turning imaginary and the transition to the superionic phase in fluorite structured materials is an artifact of the failure of the quasiharmonic approximation in describing the lattice dynamics at elevated temperatures. We instead show that, in the TDEP picture, a phonon mode coupling to the Eu mode prevents the B1 u mode from becoming imaginary. We directly observe the superionic transition at high temperatures in our AIMD simulations and find that it is initiated by the formation of oxygen Frenkel pairs (FP). These FP are found to form in a collective process involving simultaneous motion of two oxygen ions.

  3. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles.

    PubMed

    Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2017-05-12

    Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS_{2}O_{2} are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

  4. Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles

    NASA Astrophysics Data System (ADS)

    Wang, Xuelong; Xiao, Ruijuan; Li, Hong; Chen, Liquan

    2017-05-01

    Through first-principles calculations and crystal structure prediction techniques, we identify a new layered oxysulfide LiAlSO in orthorhombic structure as a novel lithium superionic conductor. Two kinds of stacking sequences of layers of AlS2O2 are found in different temperature ranges. Phonon and molecular dynamics simulations verify their dynamic stabilities, and wide band gaps up to 5.6 eV are found by electronic structure calculations. The lithium migration energy barrier simulations reveal the collective interstitial-host ion "kick-off" hopping mode with barriers lower than 50 meV as the dominating conduction mechanism for LiAlSO, indicating it to be a promising solid-state electrolyte in lithium secondary batteries with fast ionic conductivity and a wide electrochemical window. This is a first attempt in which the lithium superionic conductors are designed by the crystal structure prediction method and may help explore other mixed-anion battery materials.

  5. High Pressure and High Temperature State of Oxygen Enriched Ice

    NASA Astrophysics Data System (ADS)

    LI, M.; Zhang, S.; Jeanloz, R.; Militzer, B.

    2016-12-01

    Interior models for Uranus and Neptune include a hydrogen/helium/water outer envelope and a core of rock and metal at the center, with superionic water-rich ice proposed as comprising an intermediate layer. Here we consider an oxygen-enriched ice, such as H2O2 hydrogen peroxide (± water), that could form through chemical reaction between water-rich and underlying rocky (i.e., oxygen-rich) layers. As oxygen and its compounds (e.g., H2O, SiO2) form metallic fluids at pressures above 100-150 GPa, the problem amounts to considering oxygen alloying of semiconducting or metallic water. The density of H2O2 is 1.45 g/cc at ambient pressure and 0° C, increasing to 1.71 g/cc in the solid state at about -20° C. There are no Hugoniot data beyond 30 GPa, so we estimated Hugoniots for H2O2 with different initial densities, using both a mixing model based on Hugoniot data for H2O2 and 1/2 O2 (molar volume summation under pressure) and ab initio calculations for unreacted H2O2. The results agree with each other to pressures of about 200 GPa, and the ab initio calculations show evidence of a superionic state at temperatures as low as 500 K, much lower than for water ice. Hydrogen peroxide is expected to be liquid along planetary isentropes for Uranus and Neptune, suggesting that H2O2 may not be present as a pure compound in these planets. Instead, oxygen-enriched H2O ice may be the relevant form of water and oxygen, and might be produced in the laboratory by way of dynamic compression of H2O2 or laser-heating of statically compressed H2O + O2 and/or H2O2.

  6. Interspinous Process Decompression: Expanding Treatment Options for Lumbar Spinal Stenosis

    PubMed Central

    Nunley, Pierce D.; Shamie, A. Nick; Blumenthal, Scott L.; Orndorff, Douglas; Geisler, Fred H.

    2016-01-01

    Interspinous process decompression is a minimally invasive implantation procedure employing a stand-alone interspinous spacer that functions as an extension blocker to prevent compression of neural elements without direct surgical removal of tissue adjacent to the nerves. The Superion® spacer is the only FDA approved stand-alone device available in the US. It is also the only spacer approved by the CMS to be implanted in an ambulatory surgery center. We computed the within-group effect sizes from the Superion IDE trial and compared them to results extrapolated from two randomized trials of decompressive laminectomy. For the ODI, effect sizes were all very large (>1.0) for Superion and laminectomy at 2, 3, and 4 years. For ZCQ, the 2-year Superion symptom severity (1.26) and physical function (1.29) domains were very large; laminectomy effect sizes were very large (1.07) for symptom severity and large for physical function (0.80). Current projections indicate a marked increase in the number of patients with spinal stenosis. Consequently, there remains a keen interest in minimally invasive treatment options that delay or obviate the need for invasive surgical procedures, such as decompressive laminectomy or fusion. Stand-alone interspinous spacers may fill a currently unmet treatment gap in the continuum of care and help to reduce the burden of this chronic degenerative condition on the health care system. PMID:27819001

  7. Interspinous Process Decompression: Expanding Treatment Options for Lumbar Spinal Stenosis.

    PubMed

    Nunley, Pierce D; Shamie, A Nick; Blumenthal, Scott L; Orndorff, Douglas; Block, Jon E; Geisler, Fred H

    2016-01-01

    Interspinous process decompression is a minimally invasive implantation procedure employing a stand-alone interspinous spacer that functions as an extension blocker to prevent compression of neural elements without direct surgical removal of tissue adjacent to the nerves. The Superion® spacer is the only FDA approved stand-alone device available in the US. It is also the only spacer approved by the CMS to be implanted in an ambulatory surgery center. We computed the within-group effect sizes from the Superion IDE trial and compared them to results extrapolated from two randomized trials of decompressive laminectomy. For the ODI, effect sizes were all very large (>1.0) for Superion and laminectomy at 2, 3, and 4 years. For ZCQ, the 2-year Superion symptom severity (1.26) and physical function (1.29) domains were very large ; laminectomy effect sizes were very large (1.07) for symptom severity and large for physical function (0.80). Current projections indicate a marked increase in the number of patients with spinal stenosis. Consequently, there remains a keen interest in minimally invasive treatment options that delay or obviate the need for invasive surgical procedures, such as decompressive laminectomy or fusion. Stand-alone interspinous spacers may fill a currently unmet treatment gap in the continuum of care and help to reduce the burden of this chronic degenerative condition on the health care system.

  8. Hybrid graphene/geopolymeric cement as a superionic conductor for structural health monitoring applications

    NASA Astrophysics Data System (ADS)

    Saafi, M.; Piukovics, G.; Ye, J.

    2016-10-01

    In this paper, we demonstrate for the first time a novel hybrid superionic long gauge sensor for structural health monitoring applications. The sensor consists of two graphene electrodes and a superionic conductor film made entirely of fly ash geopolymeric material. The sensor employs ion hopping as a conduction mechanism for high precision temperature and tensile strain sensing in structures. The design, fabrication and characterization of the sensor are presented. The temperature and strain sensing mechanisms of the sensor are also discussed. The experimental results revealed that the crystal structure of the superionic film is a 3D sodium-poly(sialate-siloxo) framework, with a room temperature ionic conductivity between 1.54 × 10-2 and 1.72 × 10-2 S m-1 and, activation energy of 0.156 eV, which supports the notion that ion hopping is the main conduction mechanism for the sensor. The sensor showed high sensitivity to both temperature and tensile strain. The sensor exhibited temperature sensitivity as high as 21.5 kΩ °C-1 and tensile strain sensitivity (i.e., gauge factor) as high as 358. The proposed sensor is relatively inexpensive and can easily be manufactured with long gauges to measure temperature and bulk strains in structures. With further development and characterization, the sensor can be retrofitted onto existing structures such as bridges, buildings, pipelines and wind turbines to monitor their structural integrity.

  9. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag 8 SiSe 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar

    Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag 8SiSe 6, which exhibits promising thermoelectric performance close to room temperature.

  10. Short-lived K2S Molecules in Superionic Potassium Sulfide

    NASA Astrophysics Data System (ADS)

    Okeya, Yusuke; Tsumuraya, Kazuo

    2015-03-01

    The first principles molecular dynamics method allows us to elucidate the formation of short-lived K2S molecular states in superionic potassium sulfide. The covalent and the Coulomb bonds exist between the ionized mobile potassiums and the ionized immobile sulfurs. Both the bonds induces indirect covalent and indirect Coulomb attractions between the di-interstitial potassiums on the mid-sulfurs, which forms the short-lived K2S molecular states. The covalent electron density also exists between short-lived potassium dimers. The three attractions reduce Haven's ratios of the potassiums in the conductor. The molecule formation indicates the electronic state of the conductor is intermediate between the ionic and covalent crystals. The absence of the long-lived potassium dimers implies a failure of the caterpillar diffusion model or the Frenkel-Kontorova chain model for the superionic diffusion of the potassiums in the sulfide. The incompletely ionized cations and anions reduce the Coulomb attractions between them which induces the sublattice melting of smaller size of the potassiums than the sulfurs.

  11. Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba- closo -borate Salts

    DOE PAGES

    Tang, Wan Si; Yoshida, Koji; Soloninin, Alexei V.; ...

    2016-09-01

    Solid lithium and sodium closo-polyborate-based salts are capable of superionic conductivities surpassing even liquid electrolytes, but often only at above-ambient temperatures where their entropically driven disordered phases become stabilized. Here we show by X-ray diffraction, quasielastic neutron scattering, differential scanning calorimetry, NMR, and AC impedance measurements that by introducing 'geometric frustration' via the mixing of two different closo-polyborate anions, namely, 1-CB 9H 10- and CB 11H 12-, to form solid-solution anion-alloy salts of lithium or sodium, we can successfully suppress the formation of possible ordered phases in favor of disordered, fast-ion-conducting alloy phases over a broad temperature range from subambientmore » to high temperatures. Finally, this result exemplifies an important advancement for further improving on the remarkable conductive properties generally displayed by this class of materials and represents a practical strategy for creating tailored, ambient-temperature, solid, superionic conductors for a variety of upcoming all-solid-state energy devices of the future.« less

  12. Sol-Gel-Derived Lithium Superionic Conductor Li1.5Al0.5Ge1.5(PO4)3 Electrolyte for Solid-State Lithium-Oxygen Batteries

    DTIC Science & Technology

    2014-03-12

    AFRL-RQ-WP-TP-2015-0055 SOL-GEL-DERIVED LITHIUM SUPERIONIC CONDUCTOR LI1.5AL0.5GE1.5(PO4)3 ELECTROLYTE FOR SOLID-STATE LITHIUM-OXYGEN...COPY © 2014 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON...corporation; or convey any rights or permission to manufacture , use, or sell any patented invention that may relate to them. This report was

  13. Role of Dynamically Frustrated Bond Disorder in a Li + Superionic Solid Electrolyte

    DOE PAGES

    Adelstein, Nicole; Wood, Brandon C.

    2016-09-16

    Inorganic lithium solid electrolytes are critical components in next-generation solid-state batteries, yet the fundamental nature of the cation-anion interactions and their relevance for ionic conductivity in these materials remains enigmatic. Here, we employ first-principles molecular dynamics simulations to explore the interplay between chemistry, structure, and functionality of a highly conductive Li + solid electrolyte, Li3InBr6. Using local-orbital projections to dynamically track the evolution of the electronic charge density, the simulations reveal rapid, correlated fluctuations between cation-anion interactions with different degrees of directional covalent character. These chemical bond dynamics are shown to correlate with Li + mobility, and are enabled thermallymore » by intrinsic frustration between the preferred geometries of chemical bonding and lattice symmetry. We suggest that the fluctuating chemical environment from the polarizable anions functions similar to a solvent, contributing to the superionic behavior of Li 3InBr 6 by temporarily stabilizing configurations favorable for migrating Li +. The generality of these conclusions for understanding solid electrolytes and key factors governing the superionic phase transition is discussed.« less

  14. Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance.

    PubMed

    Xiao, Chong; Xu, Jie; Li, Kun; Feng, Jun; Yang, Jinlong; Xie, Yi

    2012-03-07

    Thermoelectric has long been recognized as a potentially transformative energy conversion technology due to its ability to convert heat directly into electricity. However, how to optimize the three interdependent thermoelectric parameters (i.e., electrical conductivity σ, Seebeck coefficient S, and thermal conductivity κ) for improving thermoelectric properties is still challenging. Here, we put forward for the first time the semiconductor-superionic conductor phase transition as a new and effective way to selectively optimize the thermoelectric power factor based on the modulation of the electric transport property across the phase transition. Ultra low value of thermal conductivity was successfully retained over the whole investigated temperature range through the reduction of grain size. As a result, taking monodisperse Ag(2)Se nanocrystals for an example, the maximized ZT value can be achieved around the temperature of phase transition. Furthermore, along with the effective scattering of short-wavelength phonons by atomic defects created by alloying, the alloyed ternary silver chalcogenide compounds, monodisperse Ag(4)SeS nanocrystals, show better ZT value around phase transition temperature, which is cooperatively contributed by superionic phase transition and alloying at nanoscale. © 2012 American Chemical Society

  15. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions

    DOE PAGES

    Tang, Wan Si; Unemoto, Atsushi; Zhou, Wei; ...

    2015-10-08

    Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na 2B 12H 12, which contains large, icosahedral, divalent B 12H 12 2– anions that enable impressive superionic conductivity, albeit only above its 529 K phase transition. Its lithium congener, Li 2B 12H 12, possesses an even more technologically prohibitive transition temperature above 600 K. Here we show that the chemically related LiCB 11H 12 and NaCB 11H 12 salts, which contain icosahedral, monovalent CB 11H 12–more » anions, both exhibit much lower transition temperatures near 400 K and 380 K, respectively, and truly stellar ionic conductivities (>0.1 S cm –1) unmatched by any other known polycrystalline materials at these temperatures. Furthermore with proper modifications, we are confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.« less

  16. Solubility of sodium chloride in superionic water ice

    NASA Astrophysics Data System (ADS)

    Hernandez, Jean-Alexis; Caracas, Razvan

    2017-04-01

    In icy planets, complex interactions are expected to occur at the interface between the rocky core and the icy mantle composed of mixtures based on water, methane, and ammonia [1, 2]. The hydration of the silicate layer produces salts (MgSO4, NaCl, KCl) that could mix with the ice, and change considerably its properties [3]. Here, we used first-principles molecular dynamics to investigate the stability and the properties of the binary system NaCl-H2O at the relevant thermodynamic conditions for planetary interiors up to ice giants. In these conditions, pure water ice undergoes several transitions that affect considerably its ionic conductivity and its elastic properties [4]. We calculated the Gibbs free energy of mixing along the NaCl-H2O binary by applying Boltzmann statistics to account for energy differences between configurations. We evaluated vibrational entropy from the vibrational spectra of the nuclei motion using the recently developed two phases thermodynamic memory function (2PT-MF) model for multicomponent systems [5, 6]. We show that the solubility of NaCl in water ice at 1600 K is less than 0.78 mol%. We find that salty ices present an extended superionic domain toward high pressures in comparison to pure water ice. Finally, we predict that the complete symmetrization of the hydrogen bonds (i.e. transition to ice X) occurs at higher pressure than in pure water ice, as observed in LiCl doped water ice at ambient temperature [7]. References: [1] M. R. Frank, C. E. Runge, H. P. Scott, S. J. Maglio, J. Olson, V. B. Prakapenka, G. Shen, PEPI 155 (2006) 152-162 [2] B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Icarus 226 (2013) 355-363 [3] S. Klotz, L. E. Bove, T. Strässle, T. C. Hansen, A. M. Saitta, Nature Materials 8 (2009) 405-409 [4] J. -A. Hernandez, R. Caracas, Phys. Rev. Lett. 117 (2016) 135503 [5] M. P. Desjarlais, Phys. Rev. E 88 (2013) 062145 [6] M. French, M. P. Desjarlais, R. Redmer, Phys. Rev. E 93 (2016) 022140 [7] L. E. Bove, R. Gaal, Z. Raza, A. -A. Lüdl, S. Klotz, A. M. Saitta, A. F. Goncharov, P. Gillet, PNAS 112 (2015) 8216-8220

  17. Trithallium hydrogen bis(sulfate), Tl(3)H(SO(4))(2), in the super-ionic phase by X-ray powder diffraction.

    PubMed

    Matsuo, Yasumitsu; Kawachi, Shinya; Shimizu, Yuya; Ikehata, Seiichiro

    2002-07-01

    The structure of trithallium hydrogen bis(sulfate), Tl(3)H(SO(4))(2), in the super-ionic phase has been analyzed by Rietveld analysis of the X-ray powder diffraction pattern. Atomic parameters based on the isotypic Rb(3)H(SeO(4))(2) crystal in space group R3m in the super-ionic phase were used as the starting model, because it has been shown from the comparison of thermal and electric properties in Tl(3)H(SO(4))(2) and M(3)H(SO(4))(2) type crystals (M = Rb, Cs or NH(4)) that the room-temperature Tl(3)H(SO(4))(2) phase is isostructural with the high-temperature R3m-symmetry M(3)H(SO(4))(2) crystals. The structure was determined in the trigonal space group R3m and the Rietveld refinement shows that an hydrogen-bond O-H...O separation is slightly shortened compared with O-H...O separations in isotypic M(3)H(SeO(4))(2) crystals. In addition, it was found that the distortion of the SO(4) tetrahedra in Tl(3)H(SO(4))(2) is less than that in isotypic crystals.

  18. Electronic structures of superionic conductor Li3N

    NASA Astrophysics Data System (ADS)

    Aoki, Masaru; Ode, Yoshiyuki; Tsumuraya, Kazuo

    2011-03-01

    Lithium nitride is a superionic conductor with high Li conductivity. The compound has been studied extensively because of its potential utility as electrolyte in solid-state batteries. Though the mobility of the cations within the crystalline solid is high comparable to that of molten salts, the mechanism of the high mobility of the cations remains unsolved. To clarify the origin of the mobility we investigate the electronic states of the Li cations in the Li 3 N crystal with the first principles electronic structure analysis, focusing a correlation between the cations and the ionicities of the constituent atoms. We have found the existence of the covalent bonding between the Li atoms in the Li 3 N crystal in spite of the ionized states of the constituent atoms.

  19. Ion Conduction Path and Low-Temperature Form:. Argyrodite-Type Superionic Conductors

    NASA Astrophysics Data System (ADS)

    Onoda, M.; Wada, H.; Sato, A.; Ishii, M.

    2007-01-01

    The structures of the orthorhombic room-temperature phase of Cu8GeS6 (phase II) and the monoclinic low-temperature phase of Ag7TaS6 (phase II) have been successfully refined based on X-ray diffraction data from 12-fold twinned (Cu8GeS6 II) and 24-fold twinned (Ag7TaS6 II) crystals. Respectively among 6 major and 6 minor twin domains of Cu8GeS6 II, or among 12 major and 12 minor twin domains of Ag7TaS6 II, the argyrodite-type frameworks, GeS6 or TaS6, can be superposed to each other in principle, and only Cu-Cu or Ag-Ag network directions differ. At higher temperature, the crystals were considered to be 2-fold twinned crystals of superionic-conductor phase I with a space group F 43m. On cooling, each domain transforms into 6 domains of orthorhombic Cu8GeS6 II or 12 domains of monoclinic Ag7TaS6 II. Superposed projections along 6 directions of the structure of Cu8GeS6 II and along 12 directions of the structure of Ag7TaS6 II seem to show approximate expressions for Cu-ion and Ag-ion conduction paths in superionic-conductor phases, Cu8GeS6 I and Ag7TaS6I.

  20. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Zevgolis, Alysia; Wood, Brandon C.; Mehmedović, Zerina; Hall, Alex T.; Alves, Thomaz C.; Adelstein, Nicole

    2018-04-01

    Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6-xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x = 3 and x = 6 compositions can be understood by assuming that the alloy separates into Br-rich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical. Similarities with other halide superionic conductors are highlighted.

  1. The Algol-like binary TT Hydrae - The stars, circumstellar matter, and superionized plasma

    NASA Technical Reports Server (NTRS)

    Plavec, Mirek J.

    1988-01-01

    This paper reports on superionized UV emission lines discovered in TT Hydrae (HD 97528), a semidetached eclipsing binary system in the Southern-Hemisphere sky. The list of emission lines observed is typical for interacting nondegenerate binaries of the Algol type, but with system-specific relative-intensity characteristics. The primary component of the system is a B9.5 V main-sequence star with effective temperature of 9800 K. Its mass equals 2.25 solar masses; the radius is 1.9 solar radii; and surface gravity log g equals 4.23. The secondary star has a mass of 0.41 solar mass and fills its critical Roche lobe. Evidence obtained on mass interaction supports the conclusion that HD 97528 is a normal semidetached system.

  2. International conference on defects in insulating crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    Short summaries of conference papers are presented. Some of the conference topics included transport properties, defect levels, superionic conductors, radiation effects, John-Teller effect, electron-lattice interactions, and relaxed excited states. (SDF)

  3. Apparent critical phenomena in the superionic phase transition of Cu 2-xSe

    DOE PAGES

    Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...

    2016-01-11

    The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less

  4. Electrical conductivity studies in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Kranjčec, M.; Solomon, A. M.; Orliukas, A. F.; Kežionis, A.; Kazakevičius, E.; Šalkus, T.

    2014-01-01

    Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1-x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300-400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

  5. Electrocatalysis-induced elasticity modulation in a superionic proton conductor probed by band-excitation atomic force microscopy.

    PubMed

    Papandrew, A B; Li, Q; Okatan, M B; Jesse, S; Hartnett, C; Kalinin, S V; Vasudevan, R K

    2015-12-21

    Variable temperature band-excitation atomic force microscopy in conjunction with I-V spectroscopy was used to investigate the crystalline superionic proton conductor CsHSO4 during proton exchange induced by a Pt-coated conductive scanning probe. At a sample temperature of 150 °C and under an applied bias <1 V, reduction currents of up to 1 nA were observed. Simultaneously, we show that the electrochemical reactions are accompanied by a reversible decrease in the elastic modulus of CsHSO4, as seen by a contact resonance shift, and find evidence for superplasticity during scanning. These effects were not observed in the room-temperature phase of CsHSO4 or in the case of catalytically inactive conductive probes, proving the utility of this technique for monitoring electrochemical processes on the nanoscale, as well as the use of local contact stiffness as a sensitive indicator of electrochemical reactions.

  6. Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo -Borate Solid Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Kyoung E.; Varley, Joel B.; Shea, Patrick

    Li 2B 12H 12, Na 2B 12H 12, and their closo-borate relatives exhibit unusually high ionic conductivity, making them attractive as a new class of candidate electrolytes in solid-state Li- and Na-ion batteries. However, further optimization of these materials requires a deeper understanding of the fundamental mechanisms underlying ultrafast ion conduction. To this end, we use ab initio molecular dynamics simulations and density-functional calculations to explore the motivations for cation diffusion. We find that superionic behavior in Li 2B 12H 12 and Na 2B 12H 12 results from a combination of key structural, chemical, and dynamical factors that introduce intrinsicmore » frustration and disorder. A statistical metric is used to show that the structures exhibit a high density of accessible interstitial sites and site types, which correlates with the flatness of the energy landscape and the observed cation mobility. Furthermore, cations are found to dock to specific anion sites, leading to a competition between the geometric symmetry of the anion and the symmetry of the lattice itself, which can facilitate cation hopping. Finally, facile anion reorientations and other low-frequency thermal vibrations lead to fluctuations in the local potential that enhance cation mobility by creating a local driving force for hopping. In conclusion, we discuss the relevance of each factor for developing new ionic conductivity descriptors that can be used for discovery and optimization of closo-borate solid electrolytes, as well as superionic conductors more generally.« less

  7. Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo -Borate Solid Electrolytes

    DOE PAGES

    Kweon, Kyoung E.; Varley, Joel B.; Shea, Patrick; ...

    2017-10-11

    Li 2B 12H 12, Na 2B 12H 12, and their closo-borate relatives exhibit unusually high ionic conductivity, making them attractive as a new class of candidate electrolytes in solid-state Li- and Na-ion batteries. However, further optimization of these materials requires a deeper understanding of the fundamental mechanisms underlying ultrafast ion conduction. To this end, we use ab initio molecular dynamics simulations and density-functional calculations to explore the motivations for cation diffusion. We find that superionic behavior in Li 2B 12H 12 and Na 2B 12H 12 results from a combination of key structural, chemical, and dynamical factors that introduce intrinsicmore » frustration and disorder. A statistical metric is used to show that the structures exhibit a high density of accessible interstitial sites and site types, which correlates with the flatness of the energy landscape and the observed cation mobility. Furthermore, cations are found to dock to specific anion sites, leading to a competition between the geometric symmetry of the anion and the symmetry of the lattice itself, which can facilitate cation hopping. Finally, facile anion reorientations and other low-frequency thermal vibrations lead to fluctuations in the local potential that enhance cation mobility by creating a local driving force for hopping. In conclusion, we discuss the relevance of each factor for developing new ionic conductivity descriptors that can be used for discovery and optimization of closo-borate solid electrolytes, as well as superionic conductors more generally.« less

  8. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li 3PS 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3PS 4 and Li 10GeP 2S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice,more » maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3PS 4. In addition, for β-Li 3PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in the Li-ion sub-lattice, it becomes energetically as well as entropically favorable for it to remain molten well below the bulk decomposition temperature of the solid. Finally, this principle may already apply to several known superionic conducting solids.« less

  9. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li 3PS 4

    DOE PAGES

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; ...

    2016-12-09

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3PS 4 and Li 10GeP 2S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice,more » maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3PS 4. In addition, for β-Li 3PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in the Li-ion sub-lattice, it becomes energetically as well as entropically favorable for it to remain molten well below the bulk decomposition temperature of the solid. Finally, this principle may already apply to several known superionic conducting solids.« less

  10. Diffusion mechanism in the sodium-ion battery material sodium cobaltate.

    PubMed

    Willis, T J; Porter, D G; Voneshen, D J; Uthayakumar, S; Demmel, F; Gutmann, M J; Roger, M; Refson, K; Goff, J P

    2018-02-16

    High performance batteries based on the movement of Li ions in Li x CoO 2 have made possible a revolution in mobile electronic technology, from laptops to mobile phones. However, the scarcity of Li and the demand for energy storage for renewables has led to intense interest in Na-ion batteries, including structurally-related Na x CoO 2 . Here we have determined the diffusion mechanism for Na 0.8 CoO 2 using diffuse x-ray scattering, quasi-elastic neutron scattering and ab-initio molecular dynamics simulations, and we find that the sodium ordering provides diffusion pathways and governs the diffusion rate. Above T ~ 290 K the so-called partially disordered stripe superstructure provides channels for quasi-1D diffusion, and melting of the sodium ordering leads to 2D superionic diffusion above T ~ 370 K. We obtain quantitative agreement between our microscopic study of the hopping mechanism and bulk self-diffusion measurements. Our approach can be applied widely to other Na- or Li-ion battery materials.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berastegui, P.; Hull, S., E-mail: stephen.hull@stfc.ac.u; Eriksson, S.G.

    The compound CsSn{sub 2}F{sub 5} has been investigated over the temperature range from ambient to 545 K using differential scanning calorimetry, impedance spectroscopy and neutron powder diffraction methods. A first-order phase transition is observed from DSC measurements at 510(2) K, to a phase possessing a high ionic conductivity ({sigma}{approx}2.5x10{sup -2} {Omega}{sup -1} cm{sup -1} at 520 K). The crystal structure of the high temperature superionic phase (labelled {alpha}) has been determined to be tetragonal (space group I4/mmm, a=4.2606(10) A, c=19.739(5) A and Z=2) in which the cations form layers perpendicular to the [001] direction, with a stacking sequence CsSnSnCsSnSn... Allmore » the anions are located in two partially occupied sites in the gap between the Cs and Sn layers, whilst the space between the Sn cations is empty, due to the orientation of the lone-pair electrons associated with the Sn{sup 2+}. The structure of {alpha}-CsSn{sub 2}F{sub 5} is discussed in relation to two other layered F{sup -} conducting superionic phases containing Sn{sup 2+} cations, {alpha}-RbSn{sub 2}F{sub 5} and {alpha}-PbSnF{sub 4} and, to facilitate this comparison, an improved structural characterisation of the former is also presented. The wider issue of the role of lone-pair cations such as Sn{sup 2+} in promoting dynamic disorder within an anion substructure is also briefly addressed. - Graphical abstract: CsSn{sub 2}F{sub 5} is shown to undergo a first order phase transition at 510(2) K to a superionic phase in which the specific electronic configuration of the Sn{sup 2+} plays a key role in promoting extensive disorder of the anions.« less

  12. Order–Disorder Transitions and Superionic Conductivity in the Sodium nido -Undeca(carba)borates

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Stavila, Vitalie; ...

    2017-11-20

    The salt compounds NaB 11H 14, Na-7-CB10H13, Li-7-CB 10H 13, Na-7,8-C 2B 9H 12, and Na-7,9-C 2B 9H 12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B-H} + {C-H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order-disordermore » phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ~10 10 jumps s -1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB 9H 10- and CB 11H 12- closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.« less

  13. First-Principles Computer Simulations of Dense Plasmas and Application to the Interiors of Giant Planets

    NASA Astrophysics Data System (ADS)

    Militzer, Burkhard

    2013-06-01

    This presentation will review three recent applications of first-principles computer simulation techniques to study matter at extreme temperature-pressure conditions that are of relevance to astrophysics. First we report a recent methodological advance in all-electron path integral Monte Carlo (PIMC) that allowed us to extend this method beyond hydrogen and helium to elements with core electrons [1]. We combine results from PIMC and with density functional molecular dynamics (DFT-MD) simulations and derive a coherent equation of state (EOS) for water and carbon plasmas in the regime from 1-50 Mbar and 104-109 K that can be compared to laboratory shock wave experiments. Second we apply DFT-MD simulations to characterize superionic water in the interiors of Uranus and Neptune. By adopting a thermodynamic integration technique, we derive the Gibbs free energy in order to demonstrate the existence of a phase transformation from body-centered cubic to face-centered cubic superionic water [2]. Finally we again use DFT-MD to study the interiors of gas giant planets. We determine the EOS for hydrogen-helium mixtures spanning density-temperature conditions in the deep interiors of giant planets, 0.2-9.0 g/cc and 1000-80000 K [3]. We compare the simulation results with the semi-analytical EOS model by Saumon and Chabrier. We present a revision to the mass-radius relationship which makes the hottest exoplanets increase in radius by ~0.2 Jupiter radii at fixed entropy and for masses greater than 0.5 Jupiter masses. This change is large enough to have possible implications for some discrepant inflated giant exoplanets. We conclude by demonstrating that all materials in the cores of giant planets, ices, MgO, SiO2, and iron, will all dissolve into metallic hydrogen. This implies the cores of Jupiter and Saturn have been at least partially eroded. [1] K. P. Driver, B. Militzer, Phys. Rev. Lett. 108 (2012) 115502. [2] H. F. Wilson, M. L. Wong, B. Militzer, http://arxiv.org/abs/1211.6482. [3] B. Militzer, Phys. Rev. B 87 (2013) 014202; http://arxiv.org/abs/1302.4691. [4] H. F. Wilson, B. Militzer, Astrophys. J. Lett. 745 (2011) 54; Phys. Rev. Lett. 108 (2012) 111101.

  14. Empirical-theoretical Survey of the Variety of Peculiarities and Anomalies in the Atmospheres Enveloping Actual Stars

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Phenomena observed in actual stellar atmospheres which contradict the speculative, standard thermal atmospheric model are discussed. Examples of stellar variability, emission line peculiarity, symbiotic stars and phenomena, extended atmosphere stars, superionization, and superthermic velocity are examined.

  15. Relaxation dynamics in AgI-doped silver vanadate superionic glasses.

    PubMed

    Bhattacharya, S; Ghosh, A

    2005-09-22

    Relaxation dynamics of Ag+ ions in several series of AgI-Ag2O-V2O5 superionic glasses has been studied in the frequency range from 10 Hz to 2 MHz and in the temperature range from 93 to 323 K. The composition dependence of the dc conductivity and the activation energy of these glasses has been compared with those of AgI-doped silver phosphate and borate glasses. The frequency-dependent electrical data have been analyzed in the framework of conductivity formalism. We have obtained the mobile ion concentration and the power-law exponent from the analysis of the conductivity spectra. We have observed that the concentration of Ag+ ions is independent of temperature and the conductivity is primarily determined by the mobility. A fraction of the Ag+ ions in the glass compositions are involved in the dynamic process. We have also shown that the power-law exponent is independent of temperature. The results are also supported by the temperature and composition independence of the scaling of the conductivity spectra.

  16. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.

    PubMed

    Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi; Tatsumisago, Masahiro

    2012-05-22

    Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safety, long-cycle lives and versatile geometries. Rechargeable sodium batteries are more suitable than lithium-ion batteries, because they use abundant and ubiquitous sodium sources. Solid electrolytes are critical for realizing all-solid-state sodium batteries. Here we show that stabilization of a high-temperature phase by crystallization from the glassy state dramatically enhances the Na(+) ion conductivity. An ambient temperature conductivity of over 10(-4) S cm(-1) was obtained in a glass-ceramic electrolyte, in which a cubic Na(3)PS(4) crystal with superionic conductivity was first realized. All-solid-state sodium batteries, with a powder-compressed Na(3)PS(4) electrolyte, functioned as a rechargeable battery at room temperature.

  17. Alternative first-principles calculation of entropy for liquids

    DOE PAGES

    Meyer, Edmund R.; Ticknor, Christopher; Kress, Joel D.; ...

    2016-04-15

    Here, w present an alternative method for interpreting the velocity autocorrelation function (VACF) of a fluid with application to extracting the entropy in a manner similar to the methods developed by Lin et al. [J. Chem. Phys. 119, 11792 (2003)] and improved upon by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. The liquid VACF is decomposed into two components, one gas and one solid, and each contribution's entropic portion is calculated. But, we fit both the gas and solid portions of the VACF in the time domain. This approach is applied to a single-component liquid (a two-phase model of liquidmore » Al at the melt line) and two different two-component systems: a superionic-to-superionic (bcc to fcc) phase transition in H 2 O at high temperatures and pressures and a metastable liquid state of MgO. Finally, for all three examples, comparisons to existing results in the literature demonstrate the validity of our alternative.« less

  18. Vacancy-Controlled Na+ Superion Conduction in Na11 Sn2 PS12.

    PubMed

    Duchardt, Marc; Ruschewitz, Uwe; Adams, Stefan; Dehnen, Stefanie; Roling, Bernhard

    2018-01-26

    Highly conductive solid electrolytes are crucial to the development of efficient all-solid-state batteries. Meanwhile, the ion conductivities of lithium solid electrolytes match those of liquid electrolytes used in commercial Li + ion batteries. However, concerns about the future availability and the price of lithium made Na + ion conductors come into the spotlight in recent years. Here we present the superionic conductor Na 11 Sn 2 PS 12 , which possesses a room temperature Na + conductivity close to 4 mS cm -1 , thus the highest value known to date for sulfide-based solids. Structure determination based on synchrotron X-ray powder diffraction data proves the existence of Na + vacancies. As confirmed by bond valence site energy calculations, the vacancies interconnect ion migration pathways in a 3D manner, hence enabling high Na + conductivity. The results indicate that sodium electrolytes are about to equal the performance of their lithium counterparts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure

    DOE PAGES

    Wang, Hui; Chen, Yan; Hood, Zachary D.; ...

    2016-01-01

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  20. First-principles investigations of ionic conduction in Li and Na borohydrides

    NASA Astrophysics Data System (ADS)

    Varley, Joel; Heo, Tae-Wook; Ray, Keith; Bonev, Stanimir; Wood, Brandon

    Recent experimental studies have identified a family of alkali borohydride materials that exhibit superionic transition temperatures approaching room temperature and ionic conductivities exceeding 0.1 S/cm-1, making them highly promising solid electrolytes for next-generation batteries. Despite the rapid advances in improving the superionic conductivity in these materials, an understanding of the exact mechanisms driving the transport remains unknown. Here we use ab initio molecular dynamics calculations to address this issue by characterizing the diffusivity of the Li and Na species in a representative set of closoborane ionic conductors. We investigate both the Na and Li-containing borohydrides with icosahedral (B12H12) and double-capped square antiprism (B10H10) anion species and discuss the trends in ionic conductivity as a function of stoichiometry and the incorporation of various dopants. Our results support the borohydrides as a subset of a larger family of very promising solid electrolytes and identify strategies to improving the conductivity in these materials. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. A lithium superionic conductor.

    PubMed

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-07-31

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  2. Effect of cationic substitution on the double-well hydrogen-bond potential in [K1-x(NH4)x]3H(SO4)2 proton conductors: a single-crystal neutron diffraction study.

    PubMed

    Choudhury, R R; Chitra, R; Selezneva, E V; Makarova, I P

    2017-10-01

    The structure of the mixed crystal [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 as obtained from single-crystal neutron diffraction is compared with the previously reported room-temperature neutron structure of crystalline K 3 H(SO 4 ) 2 . The two structures are very similar, as indicated by the high value of their isostructurality index (94.8%). It was found that the replacement of even a small amount (3%) of K + with NH 4 + has a significant influence on the short strong hydrogen bond connecting the two SO 4 2- ions. Earlier optical measurements had revealed that the kinetics of the superionic transition in the solid solution [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 are much faster than in K 3 H(SO 4 ) 2 ; this reported difference in the kinetics of the superionic phase transition in this class of crystal is explained on the basis of the difference in strength of the hydrogen-bond interactions in the two structures.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lü, Xujie; Howard, John W.; Chen, Aiping

    We prepared antiperovskite Li 3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10 -4 S cm -1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li 3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  4. Proposed three-phase modeling of Be stars from combined UV and visual observations

    NASA Technical Reports Server (NTRS)

    Doazan, V.; Stalio, R.; Thomas, R. N.

    1981-01-01

    Far ultraviolet observations of the behavior of wind velocity and superionization values as a function of the phase of the (Be, B shell, B normal) pattern established by visual observations for gamma Cas and 59 Cyg are translated into a crude atmospheric model for the Be phase and several kinds of mass flux variability across the three phases.

  5. Exploring New Phenomena in Salty Water Under Planetary Conditions

    NASA Astrophysics Data System (ADS)

    Goncharov, A. F.; Bove, L. E.; Klotz, S.; Gaal, R.; Saitta, A. M.; Gillet, P.

    2015-12-01

    Compressed water is overspread on Earth at depth and in the extra-terrestrial space, both interstellar and on outer planets and moons (ice bodies) [1]. Under the conditions experienced in these celestial bodies water displays an incredibly rich phase diagram, including sixteen known crystalline phases, three amorphous ones, and predicted exotic properties like plasticity [2], ionization [3], and superionicity [4]. In this talk I will review our recent experimental results on salty (LiCl, NaCl, MgCl2) water under extreme conditions including: plasticity [5], pressure-induced polyamorphism [6], salty ice crystallization under high pressure [7], and hydrogen bond symmetrisation at Mbar pressures [8]. [1] De Pater, I., and Lissauer, J.J. Planetary Sciences. Cambridge University Press (2004). [2] Wang, Y., Liu, H., et al. Nat. Comm. 563 1566 (2011).[3] Aragones, L., and Vega, C., J. Chem. Phys. 130, 244504 (2009).[4] Cavazzoni, C., et al., Science 283, 44-46 (1999).[5] Bove, L. E., Dreyfus, C. et al., JCP 139, 044501 (2013) ; Ruiz, G. N., Bove, L. E. et al., PCCP 16 18553-18562 (2014).[6] Bove, L. E., Klotz, S. et al., Phys. Rev. Lett. 106, 125701 (2011); Ludl, A. A., Bove, L. E. et al., PCCP 17, 14054 (2015). [7] Klotz, S., Bove, L. E. t al., Nat. Mat. 8, 405 (2009) ; Ludl A. A., Bove, L. E., submitted (2015).[8] Bove L. E. , Gaal, R. et al., PNAS 112, 27 (2015).

  6. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity

    PubMed Central

    Sun, Pengzhan; Ma, Renzhi; Bai, Xueyin; Wang, Kunlin; Zhu, Hongwei; Sasaki, Takayoshi

    2017-01-01

    When the dimensionality of layered materials is reduced to the physical limit, an ultimate two-dimensional (2D) anisotropy and/or confinement effect may bring about extraordinary physical and chemical properties. Layered double hydroxides (LDHs), bearing abundant hydroxyl groups covalently bonded within 2D host layers, have been proposed as inorganic anion conductors. However, typical hydroxyl ion conductivities for bulk or lamellar LDHs, generally up to 10−3 S cm−1, are considered not high enough for practical applications. We show that single-layer LDH nanosheets exhibited exceptionally high in-plane conductivities approaching 10−1 S cm−1, which were the highest among anion conductors and comparable to proton conductivities in commercial proton exchange membranes (for example, Nafion). The in-plane conductivities were four to five orders of magnitude higher than the cross-plane or cross-membrane values of restacked LDH nanosheets. This 2D superionic transport characteristic might have great promises in a variety of applications including alkaline fuel cells and water electrolysis. PMID:28439551

  7. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10-3 S cm-1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  8. A Crystal-Physical Model of Electrotransfer in the Superionic Conductor Pb1 - x Sc x F2 + x ( x = 0.1)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-04-01

    The frequency (ν = 10-1-107 Hz) dependences of electrical conductivity σ(ν) of single crystals of superionic conductor Pb0.9Sc0.1F2.1 (10 mol % ScF3) with fluorite type structure (CaF2) in the temperature range 153-410 K have been investigated. The static bulk conductivity σ dc =1.5 × 10-4 S/cm and average hopping frequency ν h = 1.5 × 107 Hz of charge carriers (mobile ions F-) at room temperature (293 K) have been defined from the σ dc (ν) experimental curves. Enthalpies of thermoactivated processes of ionic conductivity σ dc ( T) (Δ H σ = 0.393 ± 0.005 eV) and dielectric relaxation ν h ( T) (Δ H h = 0.37 ± 0.03 eV) coincide within their errors. A crystal-physical model of fluorine-ion transport in a Pb0.9Sc0.1F2.1 crystal lattice has been proposed. The characteristic parameters of charge carriers have been calculated: concentration n mob = 2.0 × 1021 cm-3, the distance of the hopping d ≈ 0.5 nm and mobility μmob = 4.5 × 10-7 cm2/s V (293 K).

  9. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  10. Crystal structure of the non-stoichiometric argyrodite compound Ag 7- xGeSe 5I 1- x ( x=0.31). A highly disordered silver superionic conducting material

    NASA Astrophysics Data System (ADS)

    Belin, Renaud; Aldon, Laurent; Zerouale, Abdel; Belin, Claude; Ribes, Michel

    2001-03-01

    Single crystals of the Ag 6.69GeSe 5I 0.69 phase have been obtained by iodine transport of the iodine-partially substituted stoichiometric argyrodite compound Ag 7GeSe 5I. This phase crystallizes in the cubic space group F4¯3 m (argyrodite γ-phase, a=10.921(2) Å at -100°C, a=10.972(3) Å at 25°C, Z=4). It is highly disordered both at anion and cation sites. Crystal structure refinements were completed by an anharmonic Gram-Charlier development of the atomic displacement factors of iodine and silver atoms. The structure of Ag 6.69GeSe 5I 0.69 was determined at -100°C and +25°C and was refined to R( F) values of 5.80 and 6.51%, respectively. Both iodine and selenium (Se1) anions have been found disordered and iodine is slightly defective on its crystallographic site. This is correlated to the disorder observed for the two Ag1 and Ag2 cations that provides this material with superionic conducting properties. Analysis of the joint probability density function allowed the visualization of the Ag + diffusion paths within the anionic framework.

  11. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.

    PubMed

    Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li

    2016-08-30

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  12. Progressive Assessment on the Decomposition Reaction of Na Superionic Conducting Ceramics.

    PubMed

    Jung, Jae-Il; Kim, Daekyeom; Kim, Hyojin; Jo, Yong Nam; Park, Jung Sik; Kim, Youngsik

    2017-01-11

    The successful analysis on the microstructure of Hong-type Na superionic conducting (NASICON) ceramics revealed that it consists of several heterogeneous phases: NASICON grains with rectangular shapes, monoclinic round ZrO 2 particles, grain boundaries, a SiO 2 -rich vitrified phase, Na-rich amorphous particles, and pores. A dramatic microstructural evolution of NASICON ceramics was demonstrated via an in situ analysis, which showed that NASICON grains sequentially lost their original morphology and were transformed into comminuted particles (as indicated by the immersion of bulk NASICON samples into seawater at a temperature of 80 °C). The consecutive X-ray diffraction analysis represented that the significant shear stress inside NASICON ceramics caused their structural decomposition, during which H 3 O + ions occupied ceramic Na + sites (predominantly along the (1̅11) and (1̅33) planes), while the original Na + cations came out in the (020) plane of the NASICON ceramic crystalline structure. The results of time-of-flight secondary-ion mass spectrometry analysis confirmed that large concentrations of Cl - and Na + ions were distributed across the surface of NASICON ceramics, leading to local densification of a 20 μm thick surface layer after treatment within seawater solution at a temperature of 80 °C.

  13. Metal abundances in hot white dwarfs with signatures of a superionized wind

    NASA Astrophysics Data System (ADS)

    Werner, K.; Rauch, T.; Kruk, J. W.

    2018-01-01

    About a dozen hot white dwarfs with effective temperatures Teff = 65 000-120 000 K exhibit unusual absorption features in their optical spectra. These objects were tentatively identified as Rydberg lines of ultra-high excited metals in ionization stages v-x, indicating line formation in a dense environment with temperatures near 106 K. Since some features show blueward extensions, it was argued that they stem from a superionized wind. A unique assignment of the lines to particular elements is not possible, although they probably stem from C, N, O, and Ne. To further investigate this phenomenon, we analyzed the ultraviolet spectra available from only three stars of this group; that is, two helium-rich white dwarfs, HE 0504-2408 and HS 0713+3958 with spectral type DO, and a hydrogen-rich white dwarf, HS 2115+1148 with spectral type DAO. We identified light metals (C, N, O, Si, P, and S) with generally subsolar abundances and heavy elements from the iron group (Cr, Mn, Fe, Co, Ni) with solar or oversolar abundance. The abundance patterns are not unusual for hot WDs and can be interpreted as the result of gravitational settling and radiative levitation of elements. As to the origin of the ultra-high ionized metals lines, we discuss the possible presence of a multicomponent radiatively driven wind that is frictionally heated.

  14. Characterization of the intermediate-range order in new superionic conducting AgI-Ag2S-AgPO3 glasses by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Kartini, E.; Kennedy, S. J.; Itoh, K.; Fukunaga, T.; Suminta, S.; Kamiyama, T.

    Superionic conducting glasses are of considerable technological interest because of their use in batteries, sensors, and displays. We have investigated the new ternary systems AgI-Ag2S-AgPO3 where the ratio AgI:Ag2S is 1:1. The system (AgI)x(Ag2S)x(AgPO3)1-2x, for a AgI+Ag2S fraction less than 82mol%, yields glasses. We have used a neutron-diffraction technique to obtain the total scattering structure factor S(Q) of this system at room temperature by using the HIT spectrometer at the High Energy Accelerator (KEK), Tsukuba, Japan. As for AgI-AgPO3 glasses, S(Q) shows a peak at anomalously low Q in the range from 0.6 to 0.9 Å-1. This peak is not observed in the corresponding glass Ag2S-AgPO3 or pure AgPO3. The peak depends strongly on the dopant salt. Its intensity increases as the amount of (AgI+Ag2S) increases and its position shifts to lower Q, while the number density of the glasses decreases with x. This peak can be associated with an intermediate structure of particles lying inside a continuous host with the characteristic length between 5 and 10 Å [1].

  15. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Anthony H.; Ihlefeld, Jon F.; Bartelt, Norman Charles

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with firstmore » principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.« less

  16. High conducting oxide--sulfide composite lithium superionic conductor

    DOEpatents

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin

    2017-01-17

    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  17. Gate-Induced Metal–Insulator Transition in MoS 2 by Solid Superionic Conductor LaF 3

    DOE PAGES

    Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin; ...

    2018-03-23

    Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less

  18. A P2-Type Layered Superionic Conductor Ga-Doped Na2 Zn2 TeO6 for All-Solid-State Sodium-Ion Batteries.

    PubMed

    Li, Yuyu; Deng, Zhi; Peng, Jian; Chen, Enyi; Yu, Yao; Li, Xiang; Luo, Jiahuan; Huang, Yangyang; Zhu, Jinlong; Fang, Chun; Li, Qing; Han, Jiantao; Huang, Yunhui

    2018-01-24

    Here, a P2-type layered Na 2 Zn 2 TeO 6 (NZTO) is reported with a high Na + ion conductivity ≈0.6×10 -3  S cm -1 at room temperature (RT), which is comparable to the currently best Na 1+n Zr 2 Si n P 3-n O 12 NASICON structure. As small amounts of Ga 3+ substitutes for Zn 2+ , more Na + vacancies are introduced in the interlayer gaps, which greatly reduces strong Na + -Na + coulomb interactions. Ga-substituted NZTO exhibits a superionic conductivity of ≈1.1×10 -3  S cm -1 at RT, and excellent phase and electrochemical stability. All solid-state batteries have been successfully assembled with a capacity of ≈70 mAh g -1 over 10 cycles with a rate of 0.2 C at 80 °C. 23 Na nuclear magnetic resonance (NMR) studies on powder samples show intra-grain (bulk) diffusion coefficients D NMR on the order of 12.35×10 -12  m 2  s -1 at 65 °C that corresponds to a conductivity σ NMR of 8.16×10 -3  S cm -1 , assuming the Nernst-Einstein equation, which thus suggests a new perspective of fast Na + ion conductor for advanced sodium ion batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB 11H 12 and NaCB 11H 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrievska, Mirjana; Shea, Patrick; Kweon, Kyoung E.

    The disordered phases ofLiCB 11H 12 and NaCB 11H 12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB 11H 12 - anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. Themore » symmetry-breaking carbon atom in CB 11H 12 - also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 10 10 s -1, suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB 11H 12 - salts compared with B 12H 12 2-.« less

  20. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB 11H 12 and NaCB 11H 12

    DOE PAGES

    Dimitrievska, Mirjana; Shea, Patrick; Kweon, Kyoung E.; ...

    2018-02-20

    The disordered phases ofLiCB 11H 12 and NaCB 11H 12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB 11H 12 - anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. Themore » symmetry-breaking carbon atom in CB 11H 12 - also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 10 10 s -1, suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB 11H 12 - salts compared with B 12H 12 2-.« less

  1. Final Report: "Recreating Planet Cores in the Laboratory"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanloz, Raymond

    2017-06-02

    The grant supported a combination of experimental and theoretical research characterizing materials at high pressures (above 0.1-1 TPa = 1-10 million atmospheres) and modest temperatures (below 20,000-100,000 K). This is the “warm dense” (sub-nuclear) regime relevant to understanding the properties of planets, and also to characterizing the chemical bonding forces between atoms. As such, the experiments provide important validation and extensions of theoretical simulations based on quantum mechanics, and offer new insights into the nature and evolution of planets, including the thousands of recently discovered extra-solar planets. In particular, our experiments have documented that: 1) helium can separate from hydrogenmore » at conditions existing inside Jupiter and Saturn, providing much of these planets’ internal energy hence observed luminosities; 2) water ice is likely present in a superionic state with mobile protons inside Uranus and Neptune; 3) rock (oxides) can become metallic at conditions inside “super-Earths” and other large planets, thereby contributing to their magnetic fields; and 4) the “statistical atom” regime that provides the theoretical foundation for characterizing materials at planetary and astrophysical conditions is now accessible to experimental testing.« less

  2. The low-temperature structural behavior of sodium 1-carba-closo-decaborate: NaCB{sub 9}H{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui, E-mail: hui.wu@nist.gov; Tang, Wan Si; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115

    2016-11-15

    Two ordered phases of the novel solid superionic conductor sodium 1-carba-closo-decaborate (NaCB{sub 9}H{sub 10}) were identified via synchrotron x-ray powder diffraction in combination with first-principles calculations and neutron vibrational spectroscopy. A monoclinic packing of the large ellipsoidal CB{sub 9}H{sub 10}{sup −} anions prevails at the lowest temperatures, but a first-order transformation to a slightly modified orthorhombic packing is largely complete by 240 K. The CB{sub 9}H{sub 10}{sup −} anion orientational alignments and Na{sup +} cation interstitial sitings in both phases are arranged so as to minimize the cation proximities to the uniquely more positive C-bonded H atoms of the anions.more » These results provide valuable structural information pertinent to understanding the relatively low-temperature, entropy-driven, order-disorder phase transition for this compound. - Graphical abstract: Ordered monoclinic and orthorhombic NaCB{sub 9}H{sub 10} phases were determined by XRD and DFT computations and corroborated by neutron vibrational spectroscopy. - Highlights: • Two T-dependent ordered structures of Na(1-CB{sub 9}H{sub 10}) were determined by XRD. • The lower-T monoclinic to higher-T orthorhombic transition occurs from 210 to 240 K. • The main structural differences involve changes in the canting of the CB{sub 9}H{sub 10}{sup −} anions. • DFT and neutron vibrational spectroscopy corroborate the lower-T monoclinic structure. • The results are important for understanding the nature of this superionic conductor.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Stavila, Vitalie

    The salt compounds NaB 11H 14, Na-7-CB10H13, Li-7-CB 10H 13, Na-7,8-C 2B 9H 12, and Na-7,9-C 2B 9H 12 all contain geometrically similar, monocharged, nido-undeca(carba)borate anions (i.e., truncated icosohedral-shaped clusters constructed of only 11 instead of 12 {B-H} + {C-H} vertices and an additional number of compensating bridging and/or terminal H atoms). We used first-principles calculations, X-ray powder diffraction, differential scanning calorimetry, neutron vibrational spectroscopy, neutron elastic-scattering fixed-window scans, quasielastic neutron scattering, and electrochemical impedance measurements to investigate their structures, bonding potentials, phase-transition behaviors, anion orientational mobilities, and ionic conductivities compared to those of their closo-poly(carba)borate cousins. All exhibited order-disordermore » phase transitions somewhere between room temperature and 375 K. All disordered phases appear to possess highly reorientationally mobile anions (> ~10 10 jumps s -1 above 300 K) and cation-vacancy-rich, close-packed or body-center-cubic-packed structures [like previously investigated closo-poly(carba)borates]. Moreover, all disordered phases display superionic conductivities but with generally somewhat lower values compared to those for the related sodium and lithium salts with similar monocharged 1-CB 9H 10- and CB 11H 12- closo-carbaborate anions. This study significantly expands the known toolkit of solid-state, poly(carba)borate-based salts capable of superionic conductivities and provides valuable insights into the effect of crystal lattice, unit cell volume, number of carbon atoms incorporated into the anion, and charge polarization on ionic conductivity.« less

  4. Solution-processable glass LiI-Li 4SnS 4 superionic conductors for all-solid-state Li-ion batteries

    DOE PAGES

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; ...

    2015-12-22

    The new, highly conductive (4.1 × 10 –4 S cm –1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li 4SnS 4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li 4SnS 4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  5. Ion mobility and transport properties of bismuth fluoride-containing solid solutions with tysonite-type structure

    NASA Astrophysics Data System (ADS)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Merkulov, E. B.; Polyantsev, M. M.

    2018-07-01

    The ion mobility and conductivity of solid solutions with tysonite-type structure obtained by doping bismuth trifluoride with lead (II) fluoride, and zirconium and bismuth oxides have been studied using 19F NMR, X-ray diffraction analysis, and impedance spectroscopy. The types of ionic motions in the fluoride sublattice of the synthesized solid solutions in the temperature range 150-450 K have been determined and the energy of their activation has been estimated. Due to high ionic conductivity, above 10-2 S/cm at 570 K, these solid solutions can be considered as superionic conductors.

  6. Validation of Potential Models for Li2O in Classical Molecular Dynamics Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Takuji; Oya, Yasuhisa; Tanaka, Satoru

    2007-08-01

    Four Buckingham-type pairwise potential models for Li2O were assessed by molecular static and dynamics simulations. In the static simulation, all models afforded acceptable agreement with experimental values and ab initio calculation results for the crystalline properties. Moreover, the superionic phase transition was realized in the dynamics simulation. However, the Li diffusivity and the lattice expansion were not adequately reproduced at the same time by any model. When using these models in future radiation simulation, these features should be taken into account, in order to reduce the model dependency of the results.

  7. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes

    NASA Astrophysics Data System (ADS)

    Nam, Young Jin; Oh, Dae Yang; Jung, Sung Hoo; Jung, Yoon Seok

    2018-01-01

    Owing to their potential for greater safety, higher energy density, and scalable fabrication, bulk-type all-solid-state lithium-ion batteries (ASLBs) employing deformable sulfide superionic conductors are considered highly promising for applications in battery electric vehicles. While fabrication of sheet-type electrodes is imperative from the practical point of view, reports on relevant research are scarce. This might be attributable to issues that complicate the slurry-based fabrication process and/or issues with ionic contacts and percolation. In this work, we systematically investigate the electrochemical performance of conventional dry-mixed electrodes and wet-slurry fabricated electrodes for ASLBs, by varying the different fractions of solid electrolytes and the mass loading. This information calls for a need to develop well-designed electrodes with better ionic contacts and to improve the ionic conductivity of solid electrolytes. As a scalable proof-of-concept to achieve better ionic contacts, a premixing process for active materials and solid electrolytes is demonstrated to significantly improve electrochemical performance. Pouch-type 80 × 60 mm2 all-solid-state LiNi0·6Co0·2Mn0·2O2/graphite full-cells fabricated by the slurry process show high cell-based energy density (184 W h kg-1 and 432 W h L-1). For the first time, their excellent safety is also demonstrated by simple tests (cutting with scissors and heating at 110 °C).

  8. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants

  9. Thermoelectric properties and chemical potential tuning by Cu-doping in n-type ionic conductors CuxAg2-xSe0.5Te0.5

    NASA Astrophysics Data System (ADS)

    Lee, Min Ho; Yun, Jae Hyun; Ahn, Kyunghan; Rhyee, Jong-Soo

    2017-12-01

    Copper and silver chalcogenides with superionic conduction behavior have shown impressively high ZT values, but there has been no intensive effort to optimize their carrier density to further improve their ZT values. Here, we prepared polycrystalline CuxAg2-xSe0.5Te0.5 (x = 0.01, 0.05, 0.1) samples using high temperature melting followed by hot-press sintering, and characterized their thermoelectric properties. We demonstrated that Cu substitution for Ag was achieved with <10% Cu content for CuxAg2-xSe0.5Te0.5 and the Cu doping was quite effective and significantly enhanced the compound's n-type carrier density, which was one order of magnitude higher than the pristine Ag2Se0.5Te0.5 (4.10 × 1018 cm-3). Impressively, the enhancement in electrical conductivity with increasing Cu content was greater than the decrease in absolute value of the Seebeck coefficient in the superionic conduction state. This led to relatively high power factors for Cu0.1Ag1.99Se0.5Te0.5, ranging between 1.10 and 1.30 mW m-1 K-2 over the broad temperature range of 400-560 K, and resulted in the highest ZT of 0.85 at 560 K. Furthermore, ZT values approached >0.7 over a wide temperature range of 460-560 K for x > 0.05. We suggest that the unusual Cu doping effect in Ag2Se0.5Te0.5 can be attributed to the creation of Cu ion conduction in addition to Ag ion conduction, and the optimization of the compound's n-type carrier density.

  10. Description of calls from private well owners to a national well water hotline, 2013.

    PubMed

    Ridpath, Alison; Taylor, Ethel; Greenstreet, Charlene; Martens, Margaret; Wicke, Heather; Martin, Colleen

    2016-02-15

    Water Systems Council (WSC) is a national, non-profit organization providing education and resources to private household well owners. Since 2003, WSC has provided wellcare®, a toll-free telephone hotline to answer questions from the public regarding well stewardship. In order to identify knowledge gaps regarding well stewardship among private well owners, we obtained data from WSC and reviewed calls made during 2013 to wellcare®. WSC records data from each wellcare® call-including caller information, primary reason for call, main use of well water, and if they were calling about a cistern, private well, shared well, or spring. We searched for calls with key words indicating specific contaminants of interest and reviewed primary reasons for calls. Calls classified as primarily testing-related were further categorized depending on whether the caller asked about how to test well water or how to interpret testing results. During 2013, wellcare® received 1100 calls from private well owners who were residents of 48 states. Among these calls, 87 (8%) mentioned radon, 83 (8%) coliforms, 51 (5%) chemicals related to fracking, 34 (3%) arsenic, and 32 (3%) nitrates key words. Only 38% of private well owners reported conducting any well maintenance activities, such as inspecting, cleaning, repairing the well, or testing well water, during the previous 12 months. The primary reason for calls were related to well water testing (n=403), general information relating to wells (n=249), contaminants (n=229), and well water treatment (n=97). Among calls related to testing, 319 had questions about how to test their well water, and 33 had questions about how to interpret testing results. Calls from private well owners to the wellcare® Hotline during 2013 identified key knowledge gaps regarding well stewardship; well owners are generally not testing or maintaining their wells, have questions about well water testing treatment, and concerns about well water contaminants. Published by Elsevier B.V.

  11. Solid-Liquid Lithium Electrolyte Nanocomposites Derived from Porous Molecular Cages.

    PubMed

    Petronico, Aaron; Moneypenny, Timothy P; Nicolau, Bruno G; Moore, Jeffrey S; Nuzzo, Ralph G; Gewirth, Andrew A

    2018-06-20

    We demonstrate that solid-liquid nanocomposites derived from porous organic cages are effective lithium ion electrolytes at room temperature. A solid-liquid electrolyte nanocomposite (SLEN) fabricated from a LiTFSI/DME electrolyte system and a porous organic cage exhibits ionic conductivity on the order of 1 × 10 -3 S cm -1 . With an experimentally measured activation barrier of 0.16 eV, this composite is characterized as a superionic conductor. Furthermore, the SLEN displays excellent oxidative stability up to 4.7 V vs Li/Li + . This simple three-component system enables the rational design of electrolytes from tunable discrete molecular architectures.

  12. Single particle excitations in RbAg/sub 4/I/sub 5/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, S.M.; Salamon, M.B.

    1979-01-01

    In an inelastic neutron experiment on RbAg/sub 4/I/sub 5/ a broad quasielastic peak was observed throughout Q-space. As the temperature was lowered, the quasielastic peak became a broad propagating excitation with dirac constant ..omega.. approx. 2.2 meV. This excitation was measured along several symmetry directions and it exhibited little dispersion. This confirms that the original idea of a single particle excitation corresponding to the Ag/sup +/ ions moving within a potential well created by the rest of the lattice. The temperature dependence of this excitation is consistent with recent calculations of neutron scattering in superionic conductors.

  13. Thermoelectric Behavior of Low Thermal Conductivity Cu-based and IV-V Chalcogenides

    NASA Astrophysics Data System (ADS)

    Olvera, Alan Anthony

    In an ever-changing global environment, energy-related issues have become a central feature in the day-to-day conversations of the general public. A niche field that has recently made major advancements in conversion performance is thermoelectric (TE) energy conversion, where progress in material optimization has resulted in the highest efficiency thermoelectric materials to date. This includes superionic copper chalcogenides and IV-VI selenide compounds, such as Cu2Se and PbSe. Hence, this work focuses on the reliable synthesis and characterization of thermoelectric Cu-based and IV-V compounds. The electronic and optical properties of Cu-based energy conversion materials are greatly affected by synthesis-induced defects. To alleviate this issue, a novel method is developed using the topochemical redox reaction of CuSe 2 into the desired material. It is predicted that CuSe2 -serves as a sacrificial structural template for the facile synthesis of structurally related materials. This was specifically verified in the case of CuInSe 2, where CuSe2 is gradually transformed into CuInSe 2 when reacted with elemental indium. Evidently, this synthetic method is a potential avenue for new material prediction and fabrication of novel composite materials. Using the method described, a composite of CuInSe2 and the known TE material, Cu2Se, is formed. Considering the structural similarity of both compounds, the efficiency of Cu2Se is drastically increased due to enhanced carrier mobility provided by tetrahedral indium subunits. These subunits simultaneously disrupt phonon propagation which result in reduced thermal conductivity and increased TE efficiency (ZT ≈ 2.6 at 850K). More significant is the increased chemical stability of Cu2Se while under applied current and temperature. It is observed that 1 mol % indium stabilizes Cu-ion migration, encouraging the commercialization of Cu 2Se. Currently, CuAgSe is the only promising n-type Cu-based superionic TE material. Accordingly, to find a compatible material for p-type Cu2Se at high temperatures, a series of materials with the formula Cu4-xAgxSe2 were synthesized. It was found that the composition of Cu3AgSe2 ( x = 1) is a two-phase mixture at low temperatures but becomes a single-phase p-type superionic material above 440 K. On the other hand, CuAg 3Se2 (x = 3) remains a two-phase n-type mixture throughout the measured temperature range, contrary to reports of CuAg3Se2 as a single-phase high temperature material. The most important finding is the high temperature n-type behavior of CuAgSe (x = 2), which is the first instance of CuAgSe as an n-type superionic material above 470 K. It is proposed that off-stoichiometry leads to p-type behavior of CuAgSe. Moving to IV-V compounds, a detailed experimental and computational study of the material Pb7Bi4Se13 shows excellent thermoelectric properties for a non-optimized system. It behaves as an n-type material with a small band gap of about 0.23 eV, which is confirmed by band structure calculations and experimental results. It demonstrates ultralow thermal conductivity largely due to the complex atomic-scale structure and heavy constituent atoms. This results in a ZT of approximately 0.9 at 775 K, which is a promising value for further optimization. Additional results from CuSe2 structural template reactions show that several composite materials and new materials can be predicted and synthesized. This includes Cu2Se-Cu(Ga,Al)Se2 composites and new materials such as Cu(Zn,Ni)1.5Se2 and CuPb 0.75Se2. Further work in Sn-Bi-Se compounds is discussed due their complex crystal structure that may result in promising thermoelectric properties. Finally, the preliminary results of high entropy chalcogenides are presented with discussion on future development.

  14. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE PAGES

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  15. A novel method for synthesizing nanoscale superionic MF-Sn2F5 (M = K, Cs) solid electrolytes

    NASA Astrophysics Data System (ADS)

    Podgorbunsky, Anatoly B.; Usolseva, T. I.; Sokolov, Alexander A.; Gnedenkov, S. V.; Sinebryukhov, S. L.

    2017-09-01

    Cesium and potassium pentafluorodistannites have been synthesized through "wet" high-energy ball milling and characterized through XRD, SEM techniques. The electrical conductivity of the systems have been investigated in the temperature range from 373 K to 513 K by means of impedance spectroscopy. It has been shown that the frequency dependent conductivity of the present system shows the power law feature. Thermally induced phase transitions has been confirmed as well as activation energy calculated from temperature variation of dc conductivity. It has been shown that synthesis in a wet medium enables one to obtain nanoparticles much smaller than in the case of "dry" milling.

  16. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 - x R xF2 + x and R 1 - y M yF3 - y crystals ( M = Ca, Sr, Ba; R are rare earth elements)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Sorokin, N. I.

    2014-11-01

    The peak manifestation of nonstoichiometry in fluoride systems in the number of phases with valuable properties and wide homogeneity ranges is 45 MF2- RF3 systems, where M = Ca, Sr, Ba and R are 15 rare earth elements from La to Lu and Y (with Pm and Sc excluded). A deviation from stoichiometry in crystals of the M 1 - x R xF2 + x (CaF2 fluorite type) and R 1 - y M yF3 - y (LaF3 tysonite type) phases is responsible for the fluorine superionic conductivity σ. The range of variation in σ with changes in the qualitative ( M, R) and quantitative ( x, y) compositions in both structure types is very wide. The σ value changes by a factor of 108 in the M 1 - x R xF2 + x phases (at 500 K) and by a factor of 106 in the R 1 - y M yF3 - y phases (at 293 K). Changing compositions, one can also obtain crystals with σ values large enough for their use as fluorine-conducting solid electrolytes. Phases promising for solid electrolytes were revealed in the MFm- RFn systems ( m < n ≤ 4), which were studied within the program of searching for new multicomponent fluoride materials at the Institute of Crystallography, Russian Academy of Sciences (IC RAS). Superionic conductivity is one of the peak manifestations of the influence of defect structure of nonstoichiometric crystals on their properties. The subject of this review is the results of the studies performed at the IC RAS on the ionic conductivity of single crystals of the M 1 - x R xF2 + x and R 1 - y M yF3 - y nonstoichiometric phases.

  17. The very high rotators in the late-B and early-A stars: Shell stars with Si IV and C IV features the case of HD 119921

    NASA Technical Reports Server (NTRS)

    Freireferrero, R.; Bruhweiler, Frederick C.; Grady, C. A.

    1990-01-01

    Study of several stars in the late B and early A spectral types shows that very high rotators are associated with shell characteristics (sometimes not detected at all in the visible spectra) and also with C IV and some Si IV spectral absorption features which can be explained by circumstellar phenomena superimposed over stellar metallic blends. These particularities are evidenced by comparison with other spectra of low and high rotators in the same spectral range. HD 119921, a star with similar characteristics to the other ones of the sample, is given special attention. A possible scenario is suggested to explain the observed superionization features.

  18. Association between Precipitation Upstream of a Drinking Water Utility and Nurse Advice Calls Relating to Acute Gastrointestinal Illnesses

    PubMed Central

    Tornevi, Andreas; Axelsson, Gösta; Forsberg, Bertil

    2013-01-01

    Background The River Göta Älv is a source of fresh-water for the City of Gothenburg (Sweden). We recently identified a clear association between upstream precipitation and indicator bacteria concentrations in the river water outside the intake to the drinking water utility. This study aimed to determine if variation in the incidence of acute gastrointestinal illnesses is associated with upstream precipitation. Methods We acquired data, covering 1494 days, on the daily number of telephone calls to the nurse advice line from citizens in Gothenburg living in areas with Göta Älv as a fresh-water supply. We separated calls relating to gastrointestinal illnesses from other medical concerns, and analyzed their association with precipitation using a distributed lag non-linear Poisson regression model, adjusting for seasonal patterns and covariates. We used a 0–21-day lag period for precipitation to account for drinking water delivery times and incubation periods of waterborne pathogens. Results The study period contained 25,659 nurse advice calls relating to gastrointestinal illnesses. Heavy rainfall was associated with increased calls the same day and around 5–6 days later. Consecutive days of wet weather were also found to be associated with an increase in the daily number of gastrointestinal concerns. No associations were identified between precipitation and nurse advice calls relating to other medical concerns. Conclusion An increase in nurse advice calls relating to gastrointestinal illnesses around 5–6 days after heavy rainfall is consistent with a hypothesis that the cause could be related to drinking water due to insufficient barriers in the drinking water production, suggesting the need for improved drinking water treatment. PMID:23875009

  19. Association between precipitation upstream of a drinking water utility and nurse advice calls relating to acute gastrointestinal illnesses.

    PubMed

    Tornevi, Andreas; Axelsson, Gösta; Forsberg, Bertil

    2013-01-01

    The River Göta Älv is a source of fresh-water for the City of Gothenburg (Sweden). We recently identified a clear association between upstream precipitation and indicator bacteria concentrations in the river water outside the intake to the drinking water utility. This study aimed to determine if variation in the incidence of acute gastrointestinal illnesses is associated with upstream precipitation. We acquired data, covering 1494 days, on the daily number of telephone calls to the nurse advice line from citizens in Gothenburg living in areas with Göta Älv as a fresh-water supply. We separated calls relating to gastrointestinal illnesses from other medical concerns, and analyzed their association with precipitation using a distributed lag non-linear Poisson regression model, adjusting for seasonal patterns and covariates. We used a 0-21-day lag period for precipitation to account for drinking water delivery times and incubation periods of waterborne pathogens. The study period contained 25,659 nurse advice calls relating to gastrointestinal illnesses. Heavy rainfall was associated with increased calls the same day and around 5-6 days later. Consecutive days of wet weather were also found to be associated with an increase in the daily number of gastrointestinal concerns. No associations were identified between precipitation and nurse advice calls relating to other medical concerns. An increase in nurse advice calls relating to gastrointestinal illnesses around 5-6 days after heavy rainfall is consistent with a hypothesis that the cause could be related to drinking water due to insufficient barriers in the drinking water production, suggesting the need for improved drinking water treatment.

  20. Comparison of environmental and body temperatures as predictors of mating call parameters of spring peepers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, L.E.; Brown, J.R.

    1977-01-01

    Parameters of the mating call of spring peepers (Hyla crucifer) were best predicted by water temperature rather than air or body temperature. Thus, water temperature should most closely approach the true body temperature of the calling frogs.

  1. Efficacy of water treatment processes and endemic gastrointestinal illness - A multi-city study in Sweden.

    PubMed

    Tornevi, Andreas; Simonsson, Magnus; Forsberg, Bertil; Säve-Söderbergh, Melle; Toljander, Jonas

    2016-10-01

    Outbreaks of acute gastrointestinal illnesses (AGI) have been linked to insufficient drinking water treatment on numerous occasions in the industrialized world, but it is largely unknown to what extent public drinking water influences the endemic level of AGI. This paper aimed to examine endemic AGI and the relationship with pathogen elimination efficacy in public drinking water treatment processes. For this reason, time series data of all telephone calls to the Swedish National Healthcare Guide between November 2007 and February 2014 from twenty Swedish cities were obtained. Calls concerning vomiting, diarrhea or abdominal pain (AGI calls) were separated from other concerns (non-AGI calls). Information on which type of microbial barriers each drinking water treatment plant in these cities have been used were obtained, together with the barriers' theoretical pathogen log reduction efficacy. The total log reduction in the drinking water plants varied between 0.0 and 6.1 units for viruses, 0.0-14.6 units for bacteria and 0.0-7.3 units regarding protozoans. To achieve one general efficacy parameter for each plant, a weighted mean value of the log reductions (WLR) was calculated, with the weights based on how commonly these pathogen groups cause AGI. The WLR in the plants varied between 0.0 and 6.4 units. The effect of different pathogen elimination efficacy on levels of AGI calls relative non-AGI calls was evaluated in regression models, controlling for long term trends, population size, age distribution, and climatological area. Populations receiving drinking water produced with higher total log reduction was associated with a lower relative number of AGI calls. In overall, AGI calls decreased by 4% (OR = 0.96, CI: 0.96-0.97) for each unit increase in the WLR. The findings apply to both groundwater and surface water study sites, but are particularly evident among surface water sites during seasons when viruses are the main cause of AGI. This study proposes that the endemic level of gastroenteritis can indeed be reduced with more advanced treatment processes at many municipal drinking water treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. New Technology for Oil/Water Emulsion Treatment: Phases I and II

    DTIC Science & Technology

    1998-05-15

    m.(Aŕ) Emulsions have long been of practical interest because of their extensive everyday applications. Emulsions are used in foods ( milk and...separating cream from milk . Valve-discharge centrifuges periodically discharge accumulated solids. Split-bowl centrifuges have a bowl that allows...fresh air. Call a physician. RVF CONTACT: Flush with water for 15 minutes. Call a physician. Wash thSroSghly with soap and rinse with water. Call

  3. Early outbreak detection by linking health advice line calls to water distribution areas retrospectively demonstrated in a large waterborne outbreak of cryptosporidiosis in Sweden.

    PubMed

    Bjelkmar, Pär; Hansen, Anette; Schönning, Caroline; Bergström, Jakob; Löfdahl, Margareta; Lebbad, Marianne; Wallensten, Anders; Allestam, Görel; Stenmark, Stephan; Lindh, Johan

    2017-04-18

    In the winter and spring of 2011 a large outbreak of cryptosporidiosis occurred in Skellefteå municipality, Sweden. This study summarizes the outbreak investigation in terms of outbreak size, duration, clinical characteristics, possible source(s) and the potential for earlier detection using calls to a health advice line. The investigation included two epidemiological questionnaires and microbial analysis of samples from patients, water and other environmental sources. In addition, a retrospective study based on phone calls to a health advice line was performed by comparing patterns of phone calls between different water distribution areas. Our analyses showed that approximately 18,500 individuals were affected by a waterborne outbreak of cryptosporidiosis in Skellefteå in 2011. This makes it the second largest outbreak of cryptosporidiosis in Europe to date. Cryptosporidium hominis oocysts of subtype IbA10G2 were found in patient and sewage samples, but not in raw water or in drinking water, and the initial contamination source could not be determined. The outbreak went unnoticed to authorities for several months. The analysis of the calls to the health advice line provides strong indications early in the outbreak that it was linked to a particular water treatment plant. We conclude that an earlier detection of the outbreak by linking calls to a health advice line to water distribution areas could have limited the outbreak substantially.

  4. The association of drinking water treatment and distribution network disturbances with Health Call Centre contacts for gastrointestinal illness symptoms.

    PubMed

    Malm, Annika; Axelsson, Gösta; Barregard, Lars; Ljungqvist, Jakob; Forsberg, Bertil; Bergstedt, Olof; Pettersson, Thomas J R

    2013-09-01

    There are relatively few studies on the association between disturbances in drinking water services and symptoms of gastrointestinal (GI) illness. Health Call Centres data concerning GI illness may be a useful source of information. This study investigates if there is an increased frequency of contacts with the Health Call Centre (HCC) concerning gastrointestinal symptoms at times when there is a risk of impaired water quality due to disturbances at water works or the distribution network. The study was conducted in Gothenburg, a Swedish city with 0.5 million inhabitants with a surface water source of drinking water and two water works. All HCC contacts due to GI symptoms (diarrhoea, vomiting or abdominal pain) were recorded for a three-year period, including also sex, age, and geocoded location of residence. The number of contacts with the HCC in the affected geographical areas were recorded during eight periods of disturbances in the water works (e.g. short stops of chlorine dosing), six periods of large disturbances in the distribution network (e.g. pumping station failure or pipe breaks with major consequences), and 818 pipe break and leak repairs over a three-year period. For each period of disturbance the observed number of calls was compared with the number of calls during a control period without disturbances in the same geographical area. In total about 55, 000 calls to the HCC due to GI symptoms were recorded over the three-year period, 35 per 1000 inhabitants and year, but much higher (>200) for children <3 yrs of age. There was no statistically significant increase in calls due to GI illness during or after disturbances at the water works or in the distribution network. Our results indicate that GI symptoms due to disturbances in water works or the distribution network are rare. The number of serious failures was, however limited, and further studies are needed to be able to assess the risk of GI illness in such cases. The technique of using geocoded HCC data together with geocoded records of disturbances in the drinking water network was feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility.

    PubMed

    Weldert, Kai S; Zeier, Wolfgang G; Day, Tristan W; Panthöfer, Martin; Snyder, G Jeffrey; Tremel, Wolfgang

    2014-08-27

    Building on the good thermoelectric performances of binary superionic compounds like Cu2Se, Ag2Se and Cu2S, a better and more detailed understanding of phonon-liquid electron-crystal (PLEC) thermoelectric materials is desirable. In this work we present the thermoelectric transport properties of the compound Cu7PSe6 as the first representative of the class of argyrodite-type ion conducting thermoelectrics. With a huge variety of possible compositions and high ionic conductivity even at room temperature, the argyrodites represent a very good model system to study structure-property relationships for PLEC thermoelectric materials. We particularly highlight the extraordinary low thermal conductivity of Cu7PSe6 below the glass limit, which can be associated with the molten copper sublattice leading to a softening of phonon modes.

  6. Disorder in Ag7GeSe5I, a superionic conductor: temperature-dependent anharmonic structural study.

    PubMed

    Albert, Stéphanie; Pillet, Sébastien; Lecomte, Claude; Pradel, Annie; Ribes, Michel

    2008-02-01

    A temperature-dependent structural investigation of the substituted argyrodite Ag(7)GeSe(5)I has been carried out on a single crystal from 15 to 475 K, in steps of 50 K, and correlated to its conductivity properties. The argyrodite crystallizes in a cubic cell with the F\\bar 43m space group. The crystal structure exhibits high static and dynamic disorder which has been efficiently accounted for using a combination of (i) Gram-Charlier development of the Debye-Waller factors for iodine and silver, and (ii) a split-atom model for Ag(+) ions. An increased delocalization of the mobile d(10) Ag(+) cations with temperature has been clearly shown by the inspection of the joint probability-density functions; the corresponding diffusion pathways have been determined.

  7. Review on Material Synthesis and Characterization of Sodium (Na) Super-Ionic Conductor (NASICON)

    NASA Astrophysics Data System (ADS)

    Kimpa, M. I.; Mayzan, M. Z. H.; Yabagi, J. A.; Nmaya, M. M.; Isah, K. U.; Agam, M. A.

    2018-04-01

    Sodium (Na) Super Ionic Conductor (NASICON) has general formula Na1+ x Zr2P3- xSi x O12 (0 ≤x ≤ 3) derived from its parent compound, sodium zirconium phosphate NaZr2(PO4)3 (NZP) which belong to a rhombohedral crystal structure. This material consists of three-dimensional structure with interesting features such as low thermal expansion coefficient, thermal stability, gas sensor and nuclear waste immobilization that make it viable for industrial applications. Current study presents comprehensive studies on the synthesis and essential characteristics required to understand the theory behind the mechanism that justifies the study of NASICON structure and its application such as lithium ion rechargeable battery, gas sensor, and nuclear waste immobilization and so on.

  8. Superionic conductor PbSnF4 in the inner channel of SWNT

    NASA Astrophysics Data System (ADS)

    Zakalyukin, Ruslan Mikhalovich; Levkevich, Ekaterina Alexandrovna; Kumskov, Andrey Sergeevich; Orekhov, Andrey Sergeevich

    2018-04-01

    The nanocomposite PbSnF4@SWNT was obtained by capillary technique for the first time. This nanocomposite was investigated using X-ray diffraction phase analysis (XRD), high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX). SWNT diameter is ˜2 nm. Lead tetrafluorostannate (PbSnF4) monoclinic modification (space group P2/n) was identified by XRD analysis. The periodicity of the crystal plane (201) along the tube axis is ˜3.2Å. The distortion of plane is 11° with respect to the nanotube axis. The model of PbSnF4 single crystal contains ˜168 atoms. The structure of 1D PbSnF4@SWNT nanocomposite and HREM image were modelled.

  9. Drinking Water - National Drinking Water Clearinghouse

    Science.gov Websites

    relevant to drinking water issues. We provide free and low-cost publications, products, databases , referrals, and more. Free Technical Assistance Calls The NDWC can answer common questions involving issues system troubleshooting. Call our Engineers and technical assistance specialists toll-free at (304) 293

  10. Effect of Mixed Glass Former on Ionic Conductivity of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O-{B2O3:WO3}

    NASA Astrophysics Data System (ADS)

    Dehariya, Harsha; Kumar, R.; Polu, A. R.

    2012-05-01

    The idea to explore new 'Superionic Electrolytes', "Fast ionic conductors" is due to their tremendous potential applications in solid state electrochemical devices viz. solid state batteries, fuel cells, sensors, super capacitors. Superionic glasses have attracted great deal of attention due to their several advantageous over their crystalline counterparts such as high ionic conductivity, easy preparation, wide selection of compositions, isotropic properties and high stability etc [4-7]. Large numbers of silver ion based glasses have been reported in the literature for the glassy system of AgI:Ag2O: MxOy (MxOy = B2O3, SiO2, P2O5, GeO2, V2O5, As2O5, CrO3, SeO2, MoO3 & TeO3 etc many of them shows high silver ion conductivity [8]. Ion transport behavior of Silver Boro Tungstate glass system x[0.75AgI:0.25AgCl]: (1-x) [Ag2O{B2O3:WO3}], where 0 <= x <= 1 in molar wt% prepared by melt quench technique were reported. The new host [0.75AgI:0.25AgCl] was used as a better alternate in place of conventional host salt AgI. Conductivity measurement were carried out on this glass system as a function of frequency from 50 Hz to 5 MHz, over a temperature range of 27°C to 200°C, for different compositions by Impedance spectroscopy. The composition 0.7[0.75AgI:0.25AgCl]: 0.3[Ag2O{B2O3:WO3}] shows the highest conductivity of the order of σrt ~ 2.76 × 10-2 S/cm, referred to as the Optimum Conducting Composition (OCC). The enhancement in the conductivity has been obtained by mixed former effect. XRD result shows that the system is completely amorphous. Temperature dependence of conductivity of all compositions were studied & reported. Activation energies (Ea) were also evaluated from the slope of .Log(σ) vs 1000/T, Arrhenius plots.

  11. Li + Defects in a Solid-State Li Ion Battery: Theoretical Insights with a Li 3 OCl Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegmaier, Saskia; Voss, Johannes; Reuter, Karsten

    In a solid-state Li ion battery, the solid-state electrolyte exits principally in regions of high externally applied potentials, and this varies rapidly at the interfaces with electrodes due to the formation of electrochemical double layers. Here, we investigate the implications of these for a model solid-state Li ion battery Li|Li 3OCl|C, where C is simply a metallic intercalation cathode. We use DFT to calculate the potential dependence of the formation energies of the Li + charge carriers in superionic Li 3OCl. We find that Li+ vacancies are the dominant species at the cathode while Li+ interstitials dominate at the anode.more » With typical Mg aliovalent doping of Li 3OCl, Li + vacancies dominate the bulk of the electrolyte as well, with freely mobile vacancies only ~ 10 -4 of the Mg doping density at room temperature. We study the repulsive interaction between Li+ vacancies and find that this is extremely short range, typically only one lattice constant due to local structural relaxation around the vacancy and this is significantly shorter than pure electrostatic screening. We model a Li 3OCl- cathode interface by treating the cathode as a nearly ideal metal using a polarizable continuum model with an ε r = 1000. There is a large interface segregation free energy of ~ - 1 eV per Li + vacancy. Combined with the short range for repulsive interactions of the vacancies, this means that very large vacancy concentrations will build up in a single layer of Li 3OCl at the cathode interface to form a compact double layer. The calculated potential drop across the interface is ~ 3 V for a nearly full concentration of vacancies at the surface. This suggests that nearly all the cathode potential drop in Li 3OCl occurs at the Helmholtz plane rather than in a diffuse space-charge region. We suggest that the conclusions found here will be general to other superionic conductors as well.« less

  12. Li + Defects in a Solid-State Li Ion Battery: Theoretical Insights with a Li 3 OCl Electrolyte

    DOE PAGES

    Stegmaier, Saskia; Voss, Johannes; Reuter, Karsten; ...

    2017-04-26

    In a solid-state Li ion battery, the solid-state electrolyte exits principally in regions of high externally applied potentials, and this varies rapidly at the interfaces with electrodes due to the formation of electrochemical double layers. Here, we investigate the implications of these for a model solid-state Li ion battery Li|Li 3OCl|C, where C is simply a metallic intercalation cathode. We use DFT to calculate the potential dependence of the formation energies of the Li + charge carriers in superionic Li 3OCl. We find that Li+ vacancies are the dominant species at the cathode while Li+ interstitials dominate at the anode.more » With typical Mg aliovalent doping of Li 3OCl, Li + vacancies dominate the bulk of the electrolyte as well, with freely mobile vacancies only ~ 10 -4 of the Mg doping density at room temperature. We study the repulsive interaction between Li+ vacancies and find that this is extremely short range, typically only one lattice constant due to local structural relaxation around the vacancy and this is significantly shorter than pure electrostatic screening. We model a Li 3OCl- cathode interface by treating the cathode as a nearly ideal metal using a polarizable continuum model with an ε r = 1000. There is a large interface segregation free energy of ~ - 1 eV per Li + vacancy. Combined with the short range for repulsive interactions of the vacancies, this means that very large vacancy concentrations will build up in a single layer of Li 3OCl at the cathode interface to form a compact double layer. The calculated potential drop across the interface is ~ 3 V for a nearly full concentration of vacancies at the surface. This suggests that nearly all the cathode potential drop in Li 3OCl occurs at the Helmholtz plane rather than in a diffuse space-charge region. We suggest that the conclusions found here will be general to other superionic conductors as well.« less

  13. Automated surveillance of 911 call data for detection of possible water contamination incidents.

    PubMed

    Haas, Adam J; Gibbons, Darcy; Dangel, Chrissy; Allgeier, Steve

    2011-03-30

    Drinking water contamination, with the capability to affect large populations, poses a significant risk to public health. In recent water contamination events, the impact of contamination on public health appeared in data streams monitoring health-seeking behavior. While public health surveillance has traditionally focused on the detection of pathogens, developing methods for detection of illness from fast-acting chemicals has not been an emphasis. An automated surveillance system was implemented for Cincinnati's drinking water contamination warning system to monitor health-related 911 calls in the city of Cincinnati. Incident codes indicative of possible water contamination were filtered from all 911 calls for analysis. The 911 surveillance system uses a space-time scan statistic to detect potential water contamination incidents. The frequency and characteristics of the 911 alarms over a 2.5 year period were studied. During the evaluation, 85 alarms occurred, although most occurred prior to the implementation of an additional alerting constraint in May 2009. Data were available for analysis approximately 48 minutes after calls indicating alarms may be generated 1-2 hours after a rapid increase in call volume. Most alerts occurred in areas of high population density. The average alarm area was 9.22 square kilometers. The average number of cases in an alarm was nine calls. The 911 surveillance system provides timely notification of possible public health events, but did have limitations. While the alarms contained incident codes and location of the caller, additional information such as medical status was not available to assist validating the cause of the alarm. Furthermore, users indicated that a better understanding of 911 system functionality is necessary to understand how it would behave in an actual water contamination event.

  14. Automated surveillance of 911 call data for detection of possible water contamination incidents

    PubMed Central

    2011-01-01

    Background Drinking water contamination, with the capability to affect large populations, poses a significant risk to public health. In recent water contamination events, the impact of contamination on public health appeared in data streams monitoring health-seeking behavior. While public health surveillance has traditionally focused on the detection of pathogens, developing methods for detection of illness from fast-acting chemicals has not been an emphasis. Methods An automated surveillance system was implemented for Cincinnati's drinking water contamination warning system to monitor health-related 911 calls in the city of Cincinnati. Incident codes indicative of possible water contamination were filtered from all 911 calls for analysis. The 911 surveillance system uses a space-time scan statistic to detect potential water contamination incidents. The frequency and characteristics of the 911 alarms over a 2.5 year period were studied. Results During the evaluation, 85 alarms occurred, although most occurred prior to the implementation of an additional alerting constraint in May 2009. Data were available for analysis approximately 48 minutes after calls indicating alarms may be generated 1-2 hours after a rapid increase in call volume. Most alerts occurred in areas of high population density. The average alarm area was 9.22 square kilometers. The average number of cases in an alarm was nine calls. Conclusions The 911 surveillance system provides timely notification of possible public health events, but did have limitations. While the alarms contained incident codes and location of the caller, additional information such as medical status was not available to assist validating the cause of the alarm. Furthermore, users indicated that a better understanding of 911 system functionality is necessary to understand how it would behave in an actual water contamination event. PMID:21450105

  15. Spitzer Sees Water Loud and Clear

    NASA Image and Video Library

    2007-08-29

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B. The data were captured by NASA Spitzer Space Telescope.

  16. A study of the phase transition behaviour of [(NH4)0.63Li0.37]2TeBr6

    NASA Astrophysics Data System (ADS)

    Karray, R.; Linda, D.; Van Der Lee, A.; Ben Salah, A.; Kabadou, A.

    2012-02-01

    The mixed hexabromotellurate [(NH4)0.63Li0.37]2TeBr6, presenting at room temperature a K2PtCl6-type structure with space group Fm bar 3 m, exhibits three anomalies at 195, 395 and 498 K in the differential scanning calorimetry diagram. Different techniques: dielectric investigation, High-temperature X-ray powder diffraction and infrared spectroscopic study, in the range temperature (300-470) K are applied to explore the phase transition around 395 K. Combining XRD, dielectric and differential scanning calorimetry (DSC) results, no phase transition leading to a super-ionic conductivity phase is found. At high temperature, [(NH4)0.63Li0.37]2TeBr6 is characterized by a medium conductivity σ453≈ 10-4 Ω-1m-1.

  17. Subcontract Report: Diffusion Mechanisms and Bond Dynamics in Solid Electrolyte Ion-Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevgolis, A.; Hall, A.; Alvez, T.

    2017-10-03

    We employ first-principles molecular dynamics simulations and Maximally Localized Wannier Function (MLWF) analysis to explore how halide substitution and nano-phase microstructures affect diffusivity, through the activation energy barrier - E a and D 0, in the solid electrolyte Li 3InBr 6-xCl x. We find that nano-phase microstructures with x=3 (50-50 Br-Cl) mixed composition have a higher diffusivity compared to x=2 and x=3 solid solutions. There is a positive linear relationship between ln(D 0.) and E a, which suggests that for superionic conductivity optimizing both the activation energy and the D 0 is important. Bond frustration due to mismatch in crystalmore » geometry and ideal coordination number leads to especially high diffusivity through a high D 0 in the x=3 composition.« less

  18. E. COLI AND PUBLIC HEALTH. MONITORING THE QUALITY OF RECREATIONAL WATERS

    EPA Science Inventory

    The responsibility for protecting the health of swimmers who may be exposed to microbial hazards at our nations beaches falls on state, municipal or community authorities. They accomplish this by measuring a microorganism called E. coli in beach water samples. We call these mic...

  19. Development of membranes and a study of their interfaces for rechargeable lithium-air battery

    NASA Astrophysics Data System (ADS)

    Kumar, Jitendra; Kumar, Binod

    This paper describes an investigation with an objective to screen and select high performance membrane materials for a working, rechargeable lithium-air battery. Membrane laminates comprising glass-ceramic (GC) and polymer-ceramic (PC) membranes were assembled, evaluated and analyzed. A superionic conducting GC membrane with a chemical composition of Li 1+ xAl xGe 2- x(PO 4) 3 (x = 0.5) was used. Polymer membranes comprising of PC(BN), PC(AlN), PC(Si 3N 4) and PC(Li 2O) electrochemically coupled the GC membrane with the lithium anode. The cell and membrane laminates were characterized by determining cell conductivity, open circuit voltage and carrier concentration and its mobility. The measurements identified Li 2O and BN as suitable dopants in polymer matrix which catalyzed anodic charge transfer reaction, formed stable SEI layer and provided high lithium ion conductivity.

  20. Design and synthesis of the superionic conductor Na10SnP2S12

    NASA Astrophysics Data System (ADS)

    Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-03-01

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

  1. Advances in first-principles calculations of thermodynamic properties of planetary materials (Invited)

    NASA Astrophysics Data System (ADS)

    Wilson, H. F.

    2013-12-01

    First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.

  2. Computer modeling of lithium phosphate and thiophosphate electrolyte materials

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Lepley, N. D.; Du, Yaojun A.

    In this work, several lithium phosphate and thiophosphate materials are modeled to determine their optimized lattice structures, their total energies, and their electronic structures. Included in this study are materials characterized by isolated phosphate and thiophosphate groups - Li 3PS 4 and Li 3PO 4 and materials characterized by phosphate and thiophosphate dimers - Li 4P 2S 6 and Li 4P 2O 6 and Li 4P 2S 7 and Li 4P 2O 7. In addition, the superionic conducting material Li 7P 3S 11 is also modeled as are recently discovered crystalline argyrodite materials Li 7PS 6 and Li 6PS 5Cl. A comparison of Li ion vacancy migration in Li 4P 2S 7 and Li 4P 2O 7 shows the migration energy barriers in the thiophosphate to be smaller (less than one-half) than in the phosphate.

  3. Highly conductive solid polymer electrolyte membranes based on polyethylene glycol-bis-carbamate dimethacrylate networks

    NASA Astrophysics Data System (ADS)

    Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein

    2017-08-01

    In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.

  4. Design principles for solid-state lithium superionic conductors.

    PubMed

    Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand

    2015-10-01

    Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.

  5. Design and synthesis of the superionic conductor Na10SnP2S12.

    PubMed

    Richards, William D; Tsujimura, Tomoyuki; Miara, Lincoln J; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-03-17

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

  6. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.

    PubMed

    Li, Huiqiao; Wang, Yonggang; Na, Haitao; Liu, Haimei; Zhou, Haoshen

    2009-10-28

    A rechargeable Ni-Li battery, in which nickel hydroxide serving as a cathode in an aqueous electrolyte and Li metal serving as an anode in an organic electrolyte were integrated by a superionic conductor glass ceramic film (LISICON), was proposed with the expectation to combine the advantages of both a Li-ion battery and Ni-MH battery. It has the potential for an ultrahigh theoretical energy density of 935 Wh/kg, twice that of a Li-ion battery (414 Wh/kg), based on the active material in electrodes. A prototype Ni-Li battery fabricated in the present work demonstrated a cell voltage of 3.47 V and a capacity of 264 mAh/g with good retention during 50 cycles of charge/discharge. This battery system with a hybrid electrolyte provides a new avenue for the best combination of electrode/electrolyte/electrode to fulfill the potential of high energy density as well as high power density.

  7. The high-temperature heat capacity of the (Th,U)O 2 and (U,Pu)O 2 solid solutions

    DOE PAGES

    Valu, S. O.; Benes, O.; Manara, D.; ...

    2016-11-09

    The enthalpy increment data for the (Th,U)O 2 and (U,Pu)O 2 solid solutions are reviewed and complemented with new experimental data (400–1773 K) and many-body potential model simulations. The results of the review show that from room temperature up to about 2000 K the enthalpy data are in agreement with the additivity rule (Neumann-Kopp) in the whole composition range. Above 2000 K the effect of Oxygen Frenkel Pair (OFP) formation leads to an excess enthalpy (heat capacity) that is modeled using the enthalpy and entropy of OFP formation from the end-members. Here, a good agreement with existing experimental work ismore » observed, and a reasonable agreement with the results of the many-body potential model, which indicate the presence of the diffuse Bredig (superionic) transition that is not found in the experimental enthalpy increment data.« less

  8. Pressure induced Ag 2Te polymorphs in conjunction with topological non trivial to metal transition

    DOE PAGES

    Zhu, J.; Oganov, A. R.; Feng, W. X.; ...

    2016-08-01

    Silver telluride (Ag 2Te) is well known as superionic conductor and topologica insulator with polymorphs. Pressure induced three phase transitions in Ag 2Te hav been reported in previous. Here, we experimentally identified high pressure phas above 13 GPa of Ag 2Te by using high pressure synchrotron x ray diffraction metho in combination with evolutionary crystal structure prediction, showing it crystallize into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag 2Te reveal that the topologically non-trivial semiconducting phase I andmore » semimetalli phase II previously predicated by theory transformed into bulk metals fo high pressure phases in consistent with the first principles calculations« less

  9. Environmental Assessment for the Tula Peak Road Intersection

    DTIC Science & Technology

    2009-07-01

    essential habitat and as outlined in the Storm Water Pollution Prevention Plan (SWPPP). Long term monitoring will be conducted until the soil is...went beyond the evaluated impact. The actual breach of policy was not discovered until a routine storm water inspection questioned the inadequacy of...project called for disturbing less than one acre, no SWPPP was · originally called for. Upon inspection by the Holloman AFB Storm Water manager, the

  10. Spatiotemporal variability and sound characterization in silver croaker Plagioscion squamosissimus (Sciaenidae) in the Central Amazon.

    PubMed

    Borie, Alfredo; Mok, Hin-Kiu; Chao, Ning L; Fine, Michael L

    2014-01-01

    The fish family Sciaenidae has numerous species that produce sounds with superfast muscles that vibrate the swimbladder. These muscles form post embryonically and undergo seasonal hypertrophy-atrophy cycles. The family has been the focus of numerous passive acoustic studies to localize spatial and temporal occurrence of spawning aggregations. Fishes produce disturbance calls when hand-held, and males form aggregations in late afternoon and produce advertisement calls to attract females for mating. Previous studies on five continents have been confined to temperate species. Here we examine the calls of the silver croaker Plagioscion squamosissimus, a freshwater equatorial species, which experiences constant photoperiod, minimal temperature variation but seasonal changes in water depth and color, pH and conductivity. Dissections indicate that sonic muscles are present exclusively in males and that muscles are thicker and redder during the mating season. Disturbance calls were recorded in hand-held fish during the low-water mating season and high-water period outside of the mating season. Advertisement calls were recorded from wild fish that formed aggregations in both periods but only during the mating season from fish in large cages. Disturbance calls consist of a series of short individual pulses in mature males. Advertisement calls start with single and paired pulses followed by greater amplitude multi-pulse bursts with higher peak frequencies than in disturbance calls. Advertisement-like calls also occur in aggregations during the off season, but bursts are shorter with fewer pulses. Silver croaker produce complex advertisement calls that vary in amplitude, number of cycles per burst and burst duration of their calls. Unlike temperate sciaenids, which only call during the spawning season, silver croaker produce advertisement calls in both seasons. Sonic muscles are thinner, and bursts are shorter than at the spawning peak, but males still produce complex calls outside of the mating season.

  11. Spatiotemporal Variability and Sound Characterization in Silver Croaker Plagioscion squamosissimus (Sciaenidae) in the Central Amazon

    PubMed Central

    Borie, Alfredo; Mok, Hin-Kiu; Chao, Ning L.; Fine, Michael L.

    2014-01-01

    Background The fish family Sciaenidae has numerous species that produce sounds with superfast muscles that vibrate the swimbladder. These muscles form post embryonically and undergo seasonal hypertrophy-atrophy cycles. The family has been the focus of numerous passive acoustic studies to localize spatial and temporal occurrence of spawning aggregations. Fishes produce disturbance calls when hand-held, and males form aggregations in late afternoon and produce advertisement calls to attract females for mating. Previous studies on five continents have been confined to temperate species. Here we examine the calls of the silver croaker Plagioscion squamosissimus, a freshwater equatorial species, which experiences constant photoperiod, minimal temperature variation but seasonal changes in water depth and color, pH and conductivity. Methods and Principal Findings Dissections indicate that sonic muscles are present exclusively in males and that muscles are thicker and redder during the mating season. Disturbance calls were recorded in hand-held fish during the low-water mating season and high-water period outside of the mating season. Advertisement calls were recorded from wild fish that formed aggregations in both periods but only during the mating season from fish in large cages. Disturbance calls consist of a series of short individual pulses in mature males. Advertisement calls start with single and paired pulses followed by greater amplitude multi-pulse bursts with higher peak frequencies than in disturbance calls. Advertisement-like calls also occur in aggregations during the off season, but bursts are shorter with fewer pulses. Conclusions and Significance Silver croaker produce complex advertisement calls that vary in amplitude, number of cycles per burst and burst duration of their calls. Unlike temperate sciaenids, which only call during the spawning season, silver croaker produce advertisement calls in both seasons. Sonic muscles are thinner, and bursts are shorter than at the spawning peak, but males still produce complex calls outside of the mating season. PMID:25098347

  12. 46 CFR 169.750 - Radio call sign.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radio call sign. 169.750 Section 169.750 Shipping COAST... Control, Miscellaneous Systems, and Equipment Markings § 169.750 Radio call sign. Each vessel certificated for exposed or partially protected water service must have its radio call sign permanently displayed...

  13. Heeding a Call to Action for U.S. Coral Reefs: the Untapped Potential of the Clean Water Act

    EPA Science Inventory

    A recently published call to action by Dodge et al. (2008) identifies nine actions needed to protect coral reefs. The authors identify several management goals that cannot be accomplished with MPAs alone, the traditional approach to coral reef protection. For U.S. waters, the Cle...

  14. Structural and superionic properties of Ag+-rich ternary phases within the AgI-MI2 systems

    NASA Astrophysics Data System (ADS)

    Hull, S.; Keen, D. A.; Berastegui, P.

    2002-12-01

    The effects of temperature on the crystal structure and ionic conductivity of the compounds Ag2CdI4, Ag2ZnI4 and Ag3SnI5 have been investigated by powder diffraction and impedance spectroscopy techniques. varepsilon-Ag2CdI4 adopts a tetragonal crystal structure under ambient conditions and abrupt increases in the ionic conductivity are observed at 407(2), 447(3) and 532(4) K, consistent with the sequence of transitions varepsilon-Ag2CdI 4 rightarrow beta-Ag2CdI 4 + beta-AgI + CdI2 rightarrow alpha-AgI + CdI2 rightarrow alpha-Ag2CdI4. Hexagonal beta-Ag2CdI4 is metastable at ambient temperature. The ambient-temperature beta phase of Ag2ZnI4 is orthorhombic and the structures of beta-Ag2CdI4 and beta-Ag2ZnI4 can, respectively, be considered as ordered derivatives of the wurtzite (beta) and zincblende (gamma) phases of AgI. On heating Ag2ZnI4, there is a 12-fold increase in ionic conductivity at 481(1) K and a further eightfold increase at 542(3) K. These changes result from decomposition of beta-Ag2ZnI4 into alpha-AgI + ZnI2, followed by the appearance of superionic alpha-Ag2ZnI4 at the higher temperature. The hexagonal crystal structure of alpha-Ag2ZnI4 is a dynamically disordered counterpart to the beta modification. Ag3SnI5 is only stable at temperatures in excess of 370(3) K and possesses a relatively high ionic conductivity (sigma approx 0.19Omega-1 cm-1 at 420 K) due to dynamic disorder of the Ag+ and Sn2+ within a cubic close packed I- sublattice. The implications of these findings for the wider issue of high ionic conductivity in AgI-MI2 compounds is discussed, with reference to recently published studies of Ag4PbI6 and Ag2HgI4 and new data for the temperature dependence of the ionic conductivity of the latter compound.

  15. Optimization of European call options considering physical delivery network and reservoir operation rules

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chen; Hsu, Nien-Sheng; Cheng, Wen-Ming; Yeh, William W.-G.

    2011-10-01

    This paper develops alternative strategies for European call options for water purchase under hydrological uncertainties that can be used by water resources managers for decision making. Each alternative strategy maximizes its own objective over a selected sequence of future hydrology that is characterized by exceedance probability. Water trade provides flexibility and enhances water distribution system reliability. However, water trade between two parties in a regional water distribution system involves many issues, such as delivery network, reservoir operation rules, storage space, demand, water availability, uncertainty, and any existing contracts. An option is a security giving the right to buy or sell an asset; in our case, the asset is water. We extend a flow path-based water distribution model to include reservoir operation rules. The model simultaneously considers both the physical distribution network as well as the relationships between water sellers and buyers. We first test the model extension. Then we apply the proposed optimization model for European call options to the Tainan water distribution system in southern Taiwan. The formulation lends itself to a mixed integer linear programming model. We use the weighing method to formulate a composite function for a multiobjective problem. The proposed methodology provides water resources managers with an overall picture of water trade strategies and the consequence of each strategy. The results from the case study indicate that the strategy associated with a streamflow exceedence probability of 50% or smaller should be adopted as the reference strategy for the Tainan water distribution system.

  16. 75 FR 62468 - Drawbridge Operation Regulations; Saugatuck River, Saugatuck, CT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... this rule, call or e-mail Ms. Judy K. Leung-Yee, Project Officer, First Coast Guard District, telephone (212) 668-7165, judy.k[email protected] . If you have questions on viewing the docket, call Renee V... feet at mean high water and 20 feet at mean low water. The drawbridge operation regulations are listed...

  17. Ranging bowhead whale calls in a shallow-water dispersive waveguide.

    PubMed

    Abadi, Shima H; Thode, Aaron M; Blackwell, Susanna B; Dowling, David R

    2014-07-01

    This paper presents the performance of three methods for estimating the range of broadband (50-500 Hz) bowhead whale calls in a nominally 55-m-deep waveguide: Conventional mode filtering (CMF), synthetic time reversal (STR), and triangulation. The first two methods use a linear vertical array to exploit dispersive propagation effects in the underwater sound channel. The triangulation technique used here, while requiring no knowledge about the propagation environment, relies on a distributed array of directional autonomous seafloor acoustics recorders (DASARs) arranged in triangular grid with 7 km spacing. This study uses simulations and acoustic data collected in 2010 from coastal waters near Kaktovik, Alaska. At that time, a 12-element vertical array, spanning the bottom 63% of the water column, was deployed alongside a distributed array of seven DASARs. The estimated call location-to-array ranges determined from CMF and STR are compared with DASAR triangulation results for 19 whale calls. The vertical-array ranging results are generally within ±10% of the DASAR results with the STR results providing slightly better agreement. The results also indicate that the vertical array can range calls over larger ranges and with greater precision than the particular distributed array discussed here, whenever the call locations are beyond the distributed array boundaries.

  18. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  19. Integration of oceanographic data with fin whale calling presence in the Bering Sea

    NASA Astrophysics Data System (ADS)

    Dasarathy, S.; Berchok, C.; Stabeno, P. J.; Crance, J.

    2016-02-01

    Through the integration of environmental data with passive acoustic monitoring, it is possible to investigate whether fin whale (Balaenoptera physalus) presence is influenced by environmental factors. Fin whale calling activity and concurrent environmental variables were analyzed from May 2012 to September 2013. These data were collected from passive acoustic and oceanographic moorings located in the Bering Sea. Fin whale calling presence was strongly correlated with three of the eight parameters analyzed: ice concentration, chlorophyll (a proxy for primary production), and temperature. Fin whale calling was negatively correlated with ice concentration; as ice concentration increased, fin whale calling decreased. A strong positive correlation was observed between fin whale calling and chlorophyll. A large spike in chlorophyll concentration in July 2013 preceded fin whale calling at the northern location. Fin whale calling also increased concurrently with a mixing of the water column (evidenced in the temperature data) at a depth of 30 to 50m. Peaks in chlorophyll concentration occurred after the mixing of the water column, and followed an increase in fin whale calling. These data illustrate the relationship between fin whale presence and environmental variables in the Bering Sea. These correlations may be used to predict the impact of climate change on fin whale populations in the rapidly changing environment of the Bering Sea.

  20. Radial Instabilities of a Pulsating Air Bubble in Water

    DTIC Science & Technology

    1990-01-30

    ERASEDISPLAY GOTO 100 ELSE C CALL ERASEDISPLAY CALL EXIr ENDIF END I 1 257 3 PRCA PM SHAPE VIRTUAL DRIVE(16384) WAVE1 (16384) , WAVE2 (16L8 4 ’ ,DC(16384)3...INTEGER DRIVE, WAVE1, WAVE2 , DC INTEGER ROW, COL, NCHAR, I, OSCADR, GENADR, INFO (50) , MAXVAL, MAXV INTEGER KOUNT REAL GEN, ATEMP, WTEMP, WATT, FREQ...IREC=1 26D CALL GETWAV (1, DC, OSCADR, I REC) CALL GETWAV (2, DRIVE, OSCADR, IREC) CALL GETWAV (3, WAVE1, OSCADR, IREC) CALL GETWAV (4, WAVE2 ,OSCADR

  1. 75 FR 7475 - Agency Information Collection Activity; Proposed Collection; Comment Request; Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ...; Information Collection Request for Application for Sustainable Water Leadership Program AGENCY: Environmental...: Application for Sustainable Water Leadership Program (formerly named the Annual National Clean Water Act... infrastructure initiatives and is now called the Sustainable Water Leadership Program. The Sustainable Water...

  2. Liquid-like cationic sub-lattice in copper selenide clusters

    NASA Astrophysics Data System (ADS)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-02-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  3. Oxygen diffusion in Gd-doped mixed oxides

    DOE PAGES

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.; ...

    2017-10-23

    Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less

  4. Oxygen diffusion in Gd-doped mixed oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvin, C. O. T.; Cooper, M. W. D.; Rushton, M. J. D.

    Molecular dynamics simulations have been performed to investigate oxygen transport in (U xPu x-1) 0.95Gd 0.05O 1.975, (U xTh x-1) 0.95Gd 0.05O 1.975 and (Pu xTh x-1) 0.95Gd 0.05O 1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (U xPu x-1)O 2, (U xTh x-1)O 2 and (Pu xTh x-1)O 2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. But, enhanced diffusivity for doped mixed actinidemore » cation compositions is not observed compared to doped end members. Furthermore, changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hui; Chen, Yan; Hood, Zachary D.

    All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less

  6. Design and synthesis of the superionic conductor Na10SnP2S12

    PubMed Central

    Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand

    2016-01-01

    Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm−1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity. PMID:26984102

  7. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan

    PubMed Central

    Wang, Dongxue; Bie, Xiaofei; Fu, Qiang; Dixon, Ditty; Bramnik, Natalia; Hu, Yong-Sheng; Fauth, Francois; Wei, Yingjin; Ehrenberg, Helmut; Chen, Gang; Du, Fei

    2017-01-01

    Sodium-ion batteries operating at ambient temperature hold great promise for use in grid energy storage owing to their significant cost advantages. However, challenges remain in the development of suitable electrode materials to enable long lifespan and high rate capability. Here we report a sodium super-ionic conductor structured electrode, sodium vanadium titanium phosphate, which delivers a high specific capacity of 147 mA h g−1 at a rate of 0.1 C and excellent capacity retentions at high rates. A symmetric sodium-ion full cell demonstrates a superior rate capability with a specific capacity of about 49 mA h g−1 at 20 C rate and ultralong lifetime over 10,000 cycles. Furthermore, in situ synchrotron diffraction and X-ray absorption spectroscopy measurement are carried out to unravel the underlying sodium storage mechanism and charge compensation behaviour. Our results suggest the potential application of symmetric batteries for electrochemical energy storage given the superior rate capability and long cycle life. PMID:28660877

  8. Temperature Dependences of Dielectric, Elastic and Piezoelectric Properties of KIO 3 Single Crystals Associated with the Successive Phase Transitions

    NASA Astrophysics Data System (ADS)

    Maeda, Masaki; Takagi, Masayoshi; Suzuki, Ikuo

    2000-01-01

    Pottasium iodate, KIO3, belongs to the perovskite structure and undergoes successive phase transitions at T1= 212°C, T2= 72.5°C, T3=-15°C, T4=-160°C and T5=-240°C, respectively. The temperature dependences of the dielectric, elastic and piezoelectic properties have been measured in the temperature range from -263°C to 330°C.The superionic conductivity was found in the temperature range above T2. Pronounced dielectric dispersions in the frequency range below 10 kHz were observed around -160°C and -240°C and the data were analyzed by fitting to the Davidson-Cole and Havriliak-Negami dispersion formulas, respectively. Both dielectric anomalies are ascribed to the orientaional glass-transitions. The piezoelectric and elastic properties have been investigsated by the resonance-antiresonance method. The piezoelectric and elastic anomalies were observed at T2 and T3.

  9. Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan.

    PubMed

    Wang, Dongxue; Bie, Xiaofei; Fu, Qiang; Dixon, Ditty; Bramnik, Natalia; Hu, Yong-Sheng; Fauth, Francois; Wei, Yingjin; Ehrenberg, Helmut; Chen, Gang; Du, Fei

    2017-06-29

    Sodium-ion batteries operating at ambient temperature hold great promise for use in grid energy storage owing to their significant cost advantages. However, challenges remain in the development of suitable electrode materials to enable long lifespan and high rate capability. Here we report a sodium super-ionic conductor structured electrode, sodium vanadium titanium phosphate, which delivers a high specific capacity of 147 mA h g -1 at a rate of 0.1 C and excellent capacity retentions at high rates. A symmetric sodium-ion full cell demonstrates a superior rate capability with a specific capacity of about 49 mA h g -1 at 20 C rate and ultralong lifetime over 10,000 cycles. Furthermore, in situ synchrotron diffraction and X-ray absorption spectroscopy measurement are carried out to unravel the underlying sodium storage mechanism and charge compensation behaviour. Our results suggest the potential application of symmetric batteries for electrochemical energy storage given the superior rate capability and long cycle life.

  10. Molecular dynamics analysis of diffusion of uranium and oxygen ions in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Arima, T.; Yoshida, K.; Idemitsu, K.; Inagaki, Y.; Sato, I.

    2010-03-01

    Diffusion behaviours of oxygen and uranium were evaluated for bulk and grain-boundaries of uranium dioxide using the molecular dynamics (MD) simulation. It elucidated that oxygen behaved like liquid in superionic state at high temperatures and migrated on sub-lattice sites accompanying formation of lattice defects such as Frenkel defects at middle temperatures. Formation energies of Frenkel and Shottky defects were compared to literature data, and migration energies of oxygen and uranium were estimated by introducing vacancies into the supercell. For grain-boundaries (GB) modelled by the coincidence-site lattice theory, MD calculations showed that GB energy and diffusivities of oxygen and uranium increased with the misorientation angle. By analysing GB structures such as pair-correlation functions, it also showed that the disordered phase was observed for uranium as well as oxygen in GBs especially for a large misorientation angle such as S5 GB. Hence, GB diffusion was much larger than bulk diffusion for oxygen and uranium.

  11. Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.

    2007-09-01

    The solid electrolytes with fluorine-ion conductivity that were revealed during the analysis of the phase diagrams of the MF m - RF n systems within the program of search for new multicomponent fluoride crystalline materials carried out at the Shubnikov Institute of Crystallography, Russian Academy of Sciences, are described. The most widespread and promising materials are the nonstoichiometric phases with fluorite (CaF2) and tysonite (LaF3) structures, which are formed in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, or Pb; R = Sc, Y, or La-Lu). These phases have superionic fluorine conductivity due to the anion sublattice disorder. The ionic conductivity of crystals of both structure types has been studied and the limits of its change with composition and temperature are determined. Nonstoichiometric fluorides are used as solid electrolytes in chemical sensors, fluorine sources, and batteries. The prospects of the use of fluorine-ion conductors in solid-state electrochemical devices, principles of their operation, and the problems of optimization of their composition are discussed.

  12. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications

    NASA Astrophysics Data System (ADS)

    Senthilkumar, S. T.; Abirami, Mari; Kim, Junsoo; Go, Wooseok; Hwang, Soo Min; Kim, Youngsik

    2017-02-01

    Sustainable, safe, and low-cost energy storage systems are essential for large-scale electrical energy storage. Herein, we report a sodium (Na)-ion hybrid electrolyte battery with a replaceable cathode system, which is separated from the Na metal anode by a Na superionic conducting ceramic. By using a fast Na-ion-intercalating nickel hexacyanoferrate (NiHCF) cathode along with an eco-friendly seawater catholyte, we demonstrate good cycling performance with an average discharge voltage of 3.4 V and capacity retention >80% over 100 cycles and >60% over 200 cycle. Remarkably, such high capacity retention is observed for both the initial as well as replaced cathodes. Moreover, a Na-metal-free hybrid electrolyte battery containing hard carbon as the anode exhibits an energy density of ∼146 Wh kg-1 at a current density of 10 mA g-1, which is comparable to that of lead-acid batteries and much higher than that of conventional aqueous Na-ion batteries. These results pave the way for further advances in sustainable energy storage technology.

  13. Drinking Water Action Plan

    EPA Pesticide Factsheets

    EPA's Drinking Water Action Plan serves as a national call to action, urging all levels of government, utilities, community organizations, and other stakeholders to work together to increase the safety and reliability of drinking water.

  14. Spitzer Sees Water Loud and Clear

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B.

    The data were captured by NASA's Spitzer Space Telescope using an instrument called a spectrograph. A spectrograph collects light and sorts it according to color, or wavelength. In this case, infrared light from NGC 1333-IRAS 4B was broken up into the wavelengths listed on the horizontal axis of the plot. The sharp spikes, called spectral lines, occur at wavelengths at which the stellar object is particularly bright. The signature of water vapor is revealed in the pattern of wavelengths at which the spikes appear.

    By comparing the observed data to a model (lower curve), astronomers can also determine the physical and chemical details of the region. For example, astronomers say these data suggest that ice in a cocoon surrounding the forming star is falling inward. The ice then smacks supersonically into a dusty planet-forming disk surrounding the stellar embryo, heats up and vaporizes quickly, releasing the infrared light that Spitzer collected.

  15. 77 FR 34382 - Meetings of the National Drinking Water Advisory Council-Notice of Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ...The U.S. Environmental Protection Agency (EPA or agency) is announcing one public webinar/conference call and one in-person meeting of the National Drinking Water Advisory Council (NDWAC or Council), established under the Safe Drinking Water Act (SDWA). The Council will consider various issues associated with drinking water protection and public water systems. For the webinar/conference call, the Council will discuss a draft guidance for EPA permit writers relative to hydraulic fracturing using diesel fuels under the SDWA's Underground Injection Control (UIC) Program and also options for assisting small water systems in achieving sustainable practices. For the in-person meeting, the primary focus will be for the Council to discuss the proposed regulation of perchlorate under the SDWA. Also at this in-person meeting, the Council will discuss assistance to small water systems among other program issues.

  16. Recovery Potential Screening for Prioritizing Restoration in Maryland Watersheds

    EPA Science Inventory

    States’ responsibilities under the Clean Water Act include identifying impaired waters (those not achieving Water Quality Standards) and ultimately restoring them. The high numbers of impaired waters in most states calls for yearly priority-setting decisions on restoration fundin...

  17. Swollen Knee (Water on the Knee)

    MedlinePlus

    ... your knee joint. Some people call this condition "water on the knee." A swollen knee may be ... Choose low-impact exercise. Certain activities, such as water aerobics and swimming, don't place continuous weight- ...

  18. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Plan to update the Commission's human health and aquatic life stream quality objectives (also called... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware...

  19. Urine and Urination

    MedlinePlus

    Your kidneys make urine by filtering wastes and extra water from your blood. The waste is called urea. Your blood carries it to the kidneys. From the kidneys, urine travels down two thin tubes called ureters to ...

  20. Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis

    EPA Science Inventory

    Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluv...

  1. Drainage water management

    USDA-ARS?s Scientific Manuscript database

    This article introduces a series of papers that report results of field studies to determine the effectiveness of drainage water management (DWM) on conserving drainage water and reducing losses of nitrogen (N) to surface waters. The series is focused on the performance of the DWM (also called contr...

  2. “Groundwater hydrology” is redundant

    NASA Astrophysics Data System (ADS)

    While in the Netherlands a few months ago, I mentioned “groundwater hydrology” to a very well-educated, very literary, and non-hydrologic old friend. She shuddered and told me in no uncertain words that this was a horrible term, completely redundant like a round circle, or as the linguists call it, a pleonasm. This is, of course, because hydrology already means water science (from the Greek words udor, or hydor for water, and logos for science), so that groundwater hydrology really stands for groundwater water science, and surface water hydrology for surface water science.These are pleonasms of the first kind and insults to any language purist, which all of us should strive to be! So I propose that henceforth groundwater hydrology be called subterranean hydrology. Other possibilities would be subsurface hydrology, but this sounds too shallow, or underground hydrology, which, however, could give the impression of some clandestine activity. Besides, subterranean hydrology would be in keeping with the words for groundwater in Latin-based languages (eau souterrain in French, acqua sotierranea in Italian, and aguas subterraneas in Spanish). Also, subterranean hydrology includes the vadose zone, which, of course, groundwater hydrology as such does not. Surface water hydrology would simply be called surface hydrology, and anything above that atmospheric hydrology.

  3. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... (also called water quality criteria) for human health and aquatic life for toxic pollutants in the... Commission in 1996 adopted water quality criteria for human health and aquatic life for Water Quality Zones 2... Objectives for Toxic Pollutants for the Protection of Aquatic Life'', Table 6, ``Stream Quality Objectives...

  4. The Role of Communicative Feedback in Successful Water Conservation Programs

    ERIC Educational Resources Information Center

    Tom, Gail; Tauchus, Gail; Williams, Jared; Tong, Stephanie

    2011-01-01

    The Sacramento County Water Agency has made available 2 water conservation programs to its customers. The Data Logger Program attaches the Meter Master Model 100 EL data logger to the customer's water meter for 1 week and provides a detailed report of water usage from each fixture. The Water Wise House Call Program provides findings and…

  5. Why is the ocean salty?

    USGS Publications Warehouse

    Swenson, Herbert

    1994-01-01

    All water, even rain water, contains dissolved chemicals which scientists call "salts." But not all water tastes salty. Water is fresh or salty according to individual judgment, and in making this decision man is more convinced by his sense of taste than by a laboratory test. It is one's taste buds that accept one water and reject another.

  6. The many faces and facets of water in agriculture

    USDA-ARS?s Scientific Manuscript database

    The many forms of water (i.e., water vapor, fog, rain, snow, hail and ice) are essential, but can be detrimental, for maintaining an adequate food supply and a productive and healthy environment for all forms of life. Greater limitations on water availability and quality call for research on water c...

  7. Structure and Dynamics of Cold Water Super-Earths: The Case of Occluded CH4 and Its Outgassing

    NASA Astrophysics Data System (ADS)

    Levi, A.; Sasselov, D.; Podolak, M.

    2014-09-01

    In this work, we study the transport of methane in the external water envelopes surrounding water-rich super-Earths. We investigate the influence of methane on the thermodynamics and mechanics of the water mantle. We find that including methane in the water matrix introduces a new phase (filled ice), resulting in hotter planetary interiors. This effect renders the super-ionic and reticulating phases accessible to the lower ice mantle of relatively low-mass planets (~5 ME ) lacking a H/He atmosphere. We model the thermal and structural profile of the planetary crust and discuss five possible crustal regimes which depend on the surface temperature and heat flux. We demonstrate that the planetary crust can be conductive throughout or partly confined to the dissociation curve of methane clathrate hydrate. The formation of methane clathrate in the subsurface is shown to inhibit the formation of a subterranean ocean. This effect results in increased stresses on the lithosphere, making modes of ice plate tectonics possible. The dynamic character of the tectonic plates is analyzed and the ability of this tectonic mode to cool the planet is estimated. The icy tectonic plates are found to be faster than those on a silicate super-Earth. A mid-layer of low viscosity is found to exist between the lithosphere and the lower mantle. Its existence results in a large difference between ice mantle overturn timescales and resurfacing timescales. Resurfacing timescales are found to be 1 Ma for fast plates and 100 Ma for sluggish plates, depending on the viscosity profile and ice mass fraction. Melting beneath spreading centers is required in order to account for the planetary radiogenic heating. The melt fraction is quantified for the various tectonic solutions explored, ranging from a few percent for the fast and thin plates to total melting of the upwelled material for the thick and sluggish plates. Ice mantle dynamics is found to be important for assessing the composition of the atmosphere. We propose a mechanism for methane release into the atmosphere, where freshly exposed reservoirs of methane clathrate hydrate at the ridge dissociate under surface conditions. We formulate the relation between the outgassing flux and the tectonic mode dynamical characteristics. We give numerical estimates for the global outgassing rate of methane into the atmosphere. We find, for example, that for a 2 ME planet outgassing can release 1027-1029 molecules s-1 of methane to the atmosphere. We suggest a qualitative explanation for how the same outgassing mechanism may result in either a stable or a runaway volatile release, depending on the specifics of a given planet. Finally, we integrate the global outgassing rate for a few cases and quantify how the surface atmospheric pressure of methane evolves over time. We find that methane is likely an important constituent of water planets' atmospheres.

  8. Structure and dynamics of cold water super-Earths: the case of occluded CH{sub 4} and its outgassing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, A.; Podolak, M.; Sasselov, D., E-mail: amitlevi.planetphys@gmail.com

    2014-09-10

    In this work, we study the transport of methane in the external water envelopes surrounding water-rich super-Earths. We investigate the influence of methane on the thermodynamics and mechanics of the water mantle. We find that including methane in the water matrix introduces a new phase (filled ice), resulting in hotter planetary interiors. This effect renders the super-ionic and reticulating phases accessible to the lower ice mantle of relatively low-mass planets (∼5 M{sub E} ) lacking a H/He atmosphere. We model the thermal and structural profile of the planetary crust and discuss five possible crustal regimes which depend on the surfacemore » temperature and heat flux. We demonstrate that the planetary crust can be conductive throughout or partly confined to the dissociation curve of methane clathrate hydrate. The formation of methane clathrate in the subsurface is shown to inhibit the formation of a subterranean ocean. This effect results in increased stresses on the lithosphere, making modes of ice plate tectonics possible. The dynamic character of the tectonic plates is analyzed and the ability of this tectonic mode to cool the planet is estimated. The icy tectonic plates are found to be faster than those on a silicate super-Earth. A mid-layer of low viscosity is found to exist between the lithosphere and the lower mantle. Its existence results in a large difference between ice mantle overturn timescales and resurfacing timescales. Resurfacing timescales are found to be 1 Ma for fast plates and 100 Ma for sluggish plates, depending on the viscosity profile and ice mass fraction. Melting beneath spreading centers is required in order to account for the planetary radiogenic heating. The melt fraction is quantified for the various tectonic solutions explored, ranging from a few percent for the fast and thin plates to total melting of the upwelled material for the thick and sluggish plates. Ice mantle dynamics is found to be important for assessing the composition of the atmosphere. We propose a mechanism for methane release into the atmosphere, where freshly exposed reservoirs of methane clathrate hydrate at the ridge dissociate under surface conditions. We formulate the relation between the outgassing flux and the tectonic mode dynamical characteristics. We give numerical estimates for the global outgassing rate of methane into the atmosphere. We find, for example, that for a 2 M{sub E} planet outgassing can release 10{sup 27}-10{sup 29} molecules s{sup –1} of methane to the atmosphere. We suggest a qualitative explanation for how the same outgassing mechanism may result in either a stable or a runaway volatile release, depending on the specifics of a given planet. Finally, we integrate the global outgassing rate for a few cases and quantify how the surface atmospheric pressure of methane evolves over time. We find that methane is likely an important constituent of water planets' atmospheres.« less

  9. Strategy for managing water in the Middle East and North Africa; Strategie pour la gestion de l`eau au moyen-orient et en afrique du nord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    Water has always been of central concern to life in the Middle East and North Africa (MENA). Burgeoning populations are placing unprecendented pressures on the resource, calling urgently for new approaches to water planning and management if escalating conflicts are to be avoided and if environmental degradation is to be reversed. The booklet sets out the implications of the new Bank policy for the MENA region, calling for a concerted effort by government and Bank staff to address water resources in a coordinated and sustainable manner. It proposes a practical, step-by-step approach to achieving this objective that could lead tomore » new Bank-supported operations to address the water sector as a whole.« less

  10. Florida Everglades

    Atmospheric Science Data Center

    2014-05-15

    ... Everglades is a region of broad, slow-moving sheets of water flowing southward over low-lying areas from Lake Okeechobee to the Gulf ... images include a series of shallow impoundments called Water Conservation Areas which were built to speed water flow through the Everglades ...

  11. PROPOSED WATER QUALITY SURVEILLANCE NETWORK USING PHYSICAL, CHEMICAL AND BIOLOGICAL EARLY WARNING SYSTEMS (CBEWS)

    EPA Science Inventory

    The Homeland Protection Act of 2002 specifically calls for the investigation and use of Early Warning Systems (EWS) for water security reasons. The EWS is a screening tool for detecting changes in source water and distribution system water quality. A suite of time-relevant biol...

  12. PROPOSED WATER QUALITY SURVEILLANCE NETWORK USING PHYSICAL, CHEMICAL AND BIOLOGICAL EARLY WARNING SYSTEMS (BEWS)

    EPA Science Inventory

    The Homeland Protection Act of 2002 specifically calls for the investigation and use of Early Warning Systems (EWS) for water security reasons. The EWS is a screening tool for detecting changes in source water and distribution system water quality. A suite of time-relevant biol...

  13. Students' Conceptions of Water Transport

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Rundgren, Shu-Nu Chang; Schonborn, Konrad J.

    2010-01-01

    Understanding diffusion of water into and out of the cell through osmosis is fundamental to the learning and teaching of biology. Although this process is thought of as occurring directly across the lipid bilayer, the majority of water transport is actually mediated by specialised transmembrane water-channels called aquaporins. This study…

  14. Managing Chemotherapy Side Effects: Urination Changes

    MedlinePlus

    ... how important it was to drink lots of water. She told me what changes to call about, such as a fever or ... when you urinate Managing Chemotherapy Side Effects: Urination ... Drink liquids such as water, soup, milkshakes, and cranberry juice. Add extra water ...

  15. Key water issues now facing our nation

    USGS Publications Warehouse

    Hirsch, Robert M.; Miller, Timothy L.; Hamilton, Pixie A.; Gilliom, Robert J.

    2008-01-01

    Challenges to sustaining sufficient and high-quality water for human consumption, industry, farms, energy production, and ecosystem services continue to intensify in many parts of the Nation. We face four key water issues that call for support from the science and engineering communities.

  16. Oyster toadfish (Opsanus tau) boatwhistle call detection and patterns within a large-scale oyster restoration site

    PubMed Central

    Bohnenstiehl, DelWayne R.; Eggleston, David B.; Kellogg, M. Lisa; Lyon, R. Patrick

    2017-01-01

    During May 2015, passive acoustic recorders were deployed at eight subtidal oyster reefs within Harris Creek Oyster Sanctuary in Chesapeake Bay, Maryland USA. These sites were selected to represent both restored and unrestored habitats having a range of oyster densities. Throughout the survey, the soundscape within Harris Creek was dominated by the boatwhistle calls of the oyster toadfish, Opsanus tau. A novel, multi-kernel spectral correlation approach was developed to automatically detect these boatwhistle calls using their two lowest harmonic bands. The results provided quantitative information on how call rate and call frequency varied in space and time. Toadfish boatwhistle fundamental frequency ranged from 140 Hz to 260 Hz and was well correlated (r = 0.94) with changes in water temperature, with the fundamental frequency increasing by ~11 Hz for every 1°C increase in temperature. The boatwhistle call rate increased from just a few calls per minute at the start of monitoring on May 7th to ~100 calls/min on May 10th and remained elevated throughout the survey. As male toadfish are known to generate boatwhistles to attract mates, this rapid increase in call rate was interpreted to mark the onset of spring spawning behavior. Call rate was not modulated by water temperature, but showed a consistent diurnal pattern, with a sharp decrease in rate just before sunrise and a peak just after sunset. There was a significant difference in call rate between restored and unrestored reefs, with restored sites having nearly twice the call rate as unrestored sites. This work highlights the benefits of using automated detection techniques that provide quantitative information on species-specific call characteristics and patterns. This type of non-invasive acoustic monitoring provides long-term, semi-continuous information on animal behavior and abundance, and operates effectively in settings that are otherwise difficult to sample. PMID:28792543

  17. Oyster toadfish (Opsanus tau) boatwhistle call detection and patterns within a large-scale oyster restoration site.

    PubMed

    Ricci, Shannon W; Bohnenstiehl, DelWayne R; Eggleston, David B; Kellogg, M Lisa; Lyon, R Patrick

    2017-01-01

    During May 2015, passive acoustic recorders were deployed at eight subtidal oyster reefs within Harris Creek Oyster Sanctuary in Chesapeake Bay, Maryland USA. These sites were selected to represent both restored and unrestored habitats having a range of oyster densities. Throughout the survey, the soundscape within Harris Creek was dominated by the boatwhistle calls of the oyster toadfish, Opsanus tau. A novel, multi-kernel spectral correlation approach was developed to automatically detect these boatwhistle calls using their two lowest harmonic bands. The results provided quantitative information on how call rate and call frequency varied in space and time. Toadfish boatwhistle fundamental frequency ranged from 140 Hz to 260 Hz and was well correlated (r = 0.94) with changes in water temperature, with the fundamental frequency increasing by ~11 Hz for every 1°C increase in temperature. The boatwhistle call rate increased from just a few calls per minute at the start of monitoring on May 7th to ~100 calls/min on May 10th and remained elevated throughout the survey. As male toadfish are known to generate boatwhistles to attract mates, this rapid increase in call rate was interpreted to mark the onset of spring spawning behavior. Call rate was not modulated by water temperature, but showed a consistent diurnal pattern, with a sharp decrease in rate just before sunrise and a peak just after sunset. There was a significant difference in call rate between restored and unrestored reefs, with restored sites having nearly twice the call rate as unrestored sites. This work highlights the benefits of using automated detection techniques that provide quantitative information on species-specific call characteristics and patterns. This type of non-invasive acoustic monitoring provides long-term, semi-continuous information on animal behavior and abundance, and operates effectively in settings that are otherwise difficult to sample.

  18. Optimization of an exchange-correlation density functional for water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Michelle; Fernández-Serra, Marivi; Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794-3800

    2016-06-14

    We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the “correct” parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and onmore » the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.« less

  19. Setting the Course for Clean Water: A Citizen's Guide to the Section 208 Water Quality Management Program.

    ERIC Educational Resources Information Center

    Donley, Diane L.; Albright, Catherine

    This is a citizen's guide to the section 208 water quality management program. Section 208 refers to that section of the Federal Water Pollution Control Act of 1972 (the Clean Water Act) which calls for public participation in water quality management planning. Included in this guide are chapters on controlling pollution through the Clean Water…

  20. Up Goes the Water

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    Water is very important to plants. Plants need water to produce food and grow. Plants make their own food through a complex, sunlight-powered process called photosynthesis. Simply put, in photosynthesis, water absorbed by a plant's roots and carbon dioxide taken from the air by a plant's leaves combine to make the plant's food. This article…

  1. Spironolactone and Hydrochlorothiazide

    MedlinePlus

    ... antagonists. It causes the kidneys to eliminate unneeded water and sodium from the body into the urine, ... is in a class of medications called diuretics (''water pills''). It works by causing the kidneys to ...

  2. Polyethylene Glycol 3350

    MedlinePlus

    ... is in a class of medications called osmotic laxatives. It works by causing water to be retained ... 8 ounces (240 milliliters) of water, juice, soda, coffee, or tea. Stir to dissolve the powder. Drink ...

  3. New methods for the detection of viruses: call for review of drinking water quality guidelines.

    PubMed

    Grabow, W O; Taylor, M B; de Villiers, J C

    2001-01-01

    Drinking water supplies which meet international recommendations for source, treatment and disinfection were analysed. Viruses recovered from 100 L-1,000 L volumes by in-line glass wool filters were inoculated in parallel into four cell culture systems. Cell culture inoculation was used to isolate cytopathogenic viruses, amplify the nucleic acid of non-cytopathogenic viruses and confirm viability of viruses. Over a period of two years, viruses were detected in 23% of 413 drinking water samples and 73% of 224 raw water samples. Cytopathogenic viruses were detected in 6% raw water samples but not in any treated drinking water supplies. Enteroviruses were detected in 17% drinking water samples, adenoviruses in 4% and hepatitis A virus in 3%. In addition to these viruses, astro- and rotaviruses were detected in raw water. All drinking water supplies had heterotrophic plate counts of < 100/mL, total and faecal coliform counts of 0/100 mL and negative results in qualitative presence-absence tests for somatic and F-RNA coliphages (500 mL samples). These results call for a revision of water quality guidelines based on indicator organisms and vague reference to the absence of viruses.

  4. 9. Excavation work at Pleasant Dam (now called Waddell Dam). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Excavation work at Pleasant Dam (now called Waddell Dam). Photographer unknown, July, 22, 1926. Source: Maricopa County Municipal Water Conservation District Number One (MWD). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  5. Soil Moisture Dynamics Under Corn, Soybean, and Perennial Kura Clover

    USDA-ARS?s Scientific Manuscript database

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting th...

  6. Egg Allergy

    MedlinePlus

    ... call for more than three eggs): 1 teaspoon baking powder + 1 tablespoon liquid + 1 tablespoon vinegar 1 ... 1½ tablespoons water + 1½ tablespoons oil + 1 teaspoon baking powder 1 packet gelatin + 2 tablespoons warm water ( ...

  7. INTEGRATED DISINFECTION BYPRODUCTS MIXTURES RESEARCH: COMPREHENSIVE CHARACTERIZATION OF WATER CONCENTRATES PREPARED FROM CHLORINATED AND OZONATED/POSTCHLORINATED DRINKING WATER

    EPA Science Inventory

    This article describes the disinfection byproduct (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking water concentrates containing highly complex mixtures of DBP. This project, called the Four...

  8. On the water lapping of felines and the water running of lizards

    PubMed Central

    Aristoff, Jeffrey M; Stocker, Roman; Reis, Pedro M

    2011-01-01

    We consider two biological phenomena taking place at the air-water interface: the water lapping of felines and the water running of lizards. Although seemingly disparate motions, we show that they are intimately linked by their underlying hydrodynamics and belong to a broader class of processes called Froude mechanisms. We describe how both felines and lizards exploit inertia to defeat gravity, and discuss water lapping and water running in the broader context of water exit and water entry, respectively. PMID:21655444

  9. Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems

    DTIC Science & Technology

    2009-10-31

    water system. This simplified chilled water system includes one chiller -pump plant and two service loads. • X- p«cM*MJ<w*4tf -a ’.•.wVlniX’i • V...and valve7. Pumps and chiller operation states are observable. Valve 7 is STUCKCLOSE at time / = 440sec (me 11th iteration). Valve 11 is STUCKCLOSE...framework is a product from Adobe called Flex. The product is a mixture of the Adobe Action script programming language and a markup language call MXML

  10. Implications of Modeling Uncertainty for Water Quality Decision Making

    NASA Astrophysics Data System (ADS)

    Shabman, L.

    2002-05-01

    The report, National Academy of Sciences report, "Assessing the TMDL Approach to Water Quality Management" endorsed the "watershed" and "ambient water quality focused" approach" to water quality management called for in the TMDL program. The committee felt that available data and models were adequate to move such a program forward, if the EPA and all stakeholders better understood the nature of the scientific enterprise and its application to the TMDL program. Specifically, the report called for a greater acknowledgement of model prediction uncertinaity in making and implementing TMDL plans. To assure that such uncertinaity was addressed in water quality decision making the committee called for a commitment to "adaptive implementation" of water quality management plans. The committee found that the number and complexity of the interactions of multiple stressors, combined with model prediction uncertinaity means that we need to avoid the temptation to make assurances that specific actions will result in attainment of particular water quality standards. Until the work on solving a water quality problem begins, analysts and decision makers cannot be sure what the correct solutions are, or even what water quality goals a community should be seeking. In complex systems we need to act in order to learn; adaptive implementation is a concurrent process of action and learning. Learning requires (1) continued monitoring of the waterbody to determine how it responds to the actions taken and (2) carefully designed experiments in the watershed. If we do not design learning into what we attempt we are not doing adaptive implementation. Therefore, there needs to be an increased commitment to monitoring and experiments in watersheds that will lead to learning. This presentation will 1) explain the logic for adaptive implementation; 2) discuss the ways that water quality modelers could characterize and explain model uncertinaity to decision makers; 3) speculate on the implications of the adaptive implementation for setting of water quality standards, for design of watershed monitoring programs and for the regulatory rules governing the TMDL program implementation.

  11. Size-Controlled AgI/Ag Heteronanowires in Highly Ordered Alumina Membranes: Superionic Phase Stabilization and Conductivity.

    PubMed

    Zhang, Hemin; Tsuchiya, Takashi; Liang, Changhao; Terabe, Kazuya

    2015-08-12

    Nanoscaled ionic conductors are crucial for future nanodevices. A well-known ionic conductor, AgI, exhibited conductivity greater than 1 Ω(-1) cm(-1) in α-phase and transformed into poorly conducting β-/γ-phase below 147 °C, thereby limiting applications. Here, we report that transition temperatures both from the β-/γ- to α-phase (Tc↑) and the α- to β-/γ-phase (Tc↓) are tuned by AgI/Ag heteronanowires embedded in anodic aluminum oxide (AAO) membranes with 10-30 nm pores. Tc↑ and Tc↓ shift to correspondingly higher and lower temperature as pore size decreases, generating a progressively enlarged thermal hysteresis. Tc↑ and Tc↓ specifically achieve 185 and 52 °C in 10 nm pores, and the final survived conductivity reaches ∼8.3 × 10(-3) Ω(-1) cm(-1) at room temperature. Moreover, the low-temperature stabilizing α-phase (down to 21 °C, the lowest in state of the art temperatures) is reproducible and survives further thermal cycling. The low-temperature phase stabilization and enhancement conductivity reported here suggest promising applications in silver-ion-based future nanodevices.

  12. A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Gayatri; Rangasamy, Ezhiylmurugan; Li, Juchuan

    2014-04-16

    In lithium-ion conducting solid electrolytes the potential to enable high-energy-density secondary batteries and offer distinctive safety features as an advantage over traditional liquid electrolytes is shown. Achieving the combination of high ionic conductivity, low activation energy, and outstanding electrochemical stability in crystalline solid electrolytes is a challenge for the synthesis of novel solid electrolytes. We report an exceptionally low activation energy (Ea) and high room temperature superionic conductivity via facile aliovalent substitution of Li 3AsS 4 by Ge, which increased the conductivity by two orders of magnitude as compared to the parent compound. The composition Li 3.334Ge 0.334As 0.666S 4more » has a high ionic conductivity of 1.12 mScm -1 at 27°C. Local Li + hopping in this material is accompanied by distinctive low activation energy Ea of 0.17 eV being the lowest of Li + solid conductors. Finally, our study demonstrates the efficacy of surface passivation of solid electrolyte to achieve compatibility with metallic lithium electrodes.« less

  13. Effect of cation ordering on oxygen vacancy diffusion pathways in double perovskites

    DOE PAGES

    Uberuaga, Blas Pedro; Pilania, Ghanshyam

    2015-07-08

    Perovskite structured oxides (ABO 3) are attractive for a number of technological applications, including as superionics because of the high oxygen conductivities they exhibit. Double perovskites (AA’BB’O 6) provide even more flexibility for tailoring properties. Using accelerated molecular dynamics, we examine the role of cation ordering on oxygen vacancy mobility in one model double perovskite SrLaTiAlO 6. We find that the mobility of the vacancy is very sensitive to the cation ordering, with a migration energy that varies from 0.6 to 2.7 eV. In the extreme cases, the mobility is both higher and lower than either of the two endmore » member single perovskites. Further, the nature of oxygen vacancy diffusion, whether one-dimensional, two-dimensional, or three-dimensional, also varies with cation ordering. We correlate the dependence of oxygen mobility on cation structure to the distribution of Ti 4+ cations, which provide unfavorable environments for the positively charged oxygen vacancy. The results demonstrate the potential of using tailored double perovskite structures to precisely control the behavior of oxygen vacancies in these materials.« less

  14. Superionic Conductivity of Sm3+, Pr3+, and Nd3+ Triple-Doped Ceria through Bulk and Surface Two-Step Doping Approach.

    PubMed

    Liu, Yanyan; Fan, Liangdong; Cai, Yixiao; Zhang, Wei; Wang, Baoyuan; Zhu, Bin

    2017-07-19

    Sufficiently high oxygen ion conductivity of electrolyte is critical for good performance of low-temperature solid oxide fuel cells (LT-SOFCs). Notably, material conductivity, reliability, and manufacturing cost are the major barriers hindering LT-SOFC commercialization. Generally, surface properties control the physical and chemical functionalities of materials. Hereby, we report a Sm 3+ , Pr 3+ , and Nd 3+ triple-doped ceria, exhibiting the highest ionic conductivity among reported doped-ceria oxides, 0.125 S cm -1 at 600 °C. It was designed using a two-step wet-chemical coprecipitation method to realize a desired doping for Sm 3+ at the bulk and Pr 3+ /Nd 3+ at surface domains (abbreviated as PNSDC). The redox couple Pr 3+ /Pr 4+ contributes to the extraordinary ionic conductivity. Moreover, the mechanism for ionic conductivity enhancement is demonstrated. The above findings reveal that a joint bulk and surface doping methodology for ceria is a feasible approach to develop new oxide-ion conductors with high impacts on advanced LT-SOFCs.

  15. Soft Phonon Modes Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe.

    PubMed

    Roychowdhury, Subhajit; Jana, Manoj K; Pan, Jaysree; Guin, Satya N; Sanyal, Dirtha; Waghmare, Umesh V; Biswas, Kanishka

    2018-04-03

    Crystalline solids with intrinsically low lattice thermal conductivity (κ L ) are crucial to realizing high-performance thermoelectric (TE) materials. Herein, we show an ultralow κ L of 0.35 Wm -1  K -1 in AgCuTe, which has a remarkable TE figure-of-merit, zT of 1.6 at 670 K when alloyed with 10 mol % Se. First-principles DFT calculation reveals several soft phonon modes in its room-temperature hexagonal phase, which are also evident from low-temperature heat-capacity measurement. These phonon modes, dominated by Ag vibrations, soften further with temperature giving a dynamic cation disorder and driving the superionic transition. Intrinsic factors cause an ultralow κ L in the room-temperature hexagonal phase, while the dynamic disorder of Ag/Cu cations leads to reduced phonon frequencies and mean free paths in the high-temperature rocksalt phase. Despite the cation disorder at elevated temperatures, the crystalline conduits of the rigid anion sublattice give a high power factor. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Generating Clean Water

    ERIC Educational Resources Information Center

    Barth, Katie; Bahr, Damon; Shumway, Steven

    2017-01-01

    Across the United States, political leaders, educators, and business persons are issuing an urgent call for reform in STEM education (NGSS Lead States 2013). One important response to this call is Integrated STEM, which the National Governor's Association (2007, p. 7) says involves, "... an emphasis on design and problem solving in…

  17. CALL-FOR-ABSTRACTS: SYMPOSIUM ON TECHNOLOGIES FOR PROTECTING AQUATIC ORGANISMS FROM COOLING WATER INTAKE STRUCTURES

    EPA Science Inventory

    Section 316(b) of the Clean Water Act requires EPA to ensure that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impacts. In February 2002, the EPA approved a proposed ...

  18. Calling in the Cold: Pervasive Acoustic Presence of Humpback Whales (Megaptera novaeangliae) in Antarctic Coastal Waters

    PubMed Central

    Van Opzeeland, Ilse; Van Parijs, Sofie; Kindermann, Lars; Burkhardt, Elke; Boebel, Olaf

    2013-01-01

    Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31’S, 8°13’W) are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe. PMID:24039844

  19. Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array

    PubMed Central

    Helble, Tyler A.; D’Spain, Gerald L.; Weller, David W.; Wiggins, Sean M.; Hildebrand, John A.

    2017-01-01

    Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics. PMID:29084266

  20. Calling in the cold: pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters.

    PubMed

    Van Opzeeland, Ilse; Van Parijs, Sofie; Kindermann, Lars; Burkhardt, Elke; Boebel, Olaf

    2013-01-01

    Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31'S, 8°13'W) are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.

  1. Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array.

    PubMed

    Guazzo, Regina A; Helble, Tyler A; D'Spain, Gerald L; Weller, David W; Wiggins, Sean M; Hildebrand, John A

    2017-01-01

    Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.

  2. Bowhead whale localization using asynchronous hydrophones in the Chukchi Sea.

    PubMed

    Warner, Graham A; Dosso, Stan E; Hannay, David E; Dettmer, Jan

    2016-07-01

    This paper estimates bowhead whale locations and uncertainties using non-linear Bayesian inversion of their modally-dispersed calls recorded on asynchronous recorders in the Chukchi Sea, Alaska. Bowhead calls were recorded on a cluster of 7 asynchronous ocean-bottom hydrophones that were separated by 0.5-9.2 km. A warping time-frequency analysis is used to extract relative mode arrival times as a function of frequency for nine frequency-modulated whale calls that dispersed in the shallow water environment. Each call was recorded on multiple hydrophones and the mode arrival times are inverted for: the whale location in the horizontal plane, source instantaneous frequency (IF), water sound-speed profile, seabed geoacoustic parameters, relative recorder clock drifts, and residual error standard deviations, all with estimated uncertainties. A simulation study shows that accurate prior environmental knowledge is not required for accurate localization as long as the inversion treats the environment as unknown. Joint inversion of multiple recorded calls is shown to substantially reduce uncertainties in location, source IF, and relative clock drift. Whale location uncertainties are estimated to be 30-160 m and relative clock drift uncertainties are 3-26 ms.

  3. Acoustic Blind Deconvolution and Frequency-Difference Beamforming in Shallow Ocean Environments

    DTIC Science & Technology

    2012-01-01

    acoustic field experiment (FAF06) conducted in July 2006 off the west coast of Italy. Dr. Heechun Song of the Scripps Institution of Oceanography...from seismic surveying and whale calls recorded on a vertical array with 12 elements. The whale call frequencies range from 100 to 500 Hz and the water...underway. Together Ms. Abadi and Dr. Thode had considerable success simulating the experimental environment, deconvolving whale calls, ranging the

  4. 75 FR 2860 - Clean Water Act Section 303(d): Call for Data for the Illinois River Watershed in Oklahoma and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... in Oklahoma and Arkansas to address nutrient water quality impairments. The results of this watershed... Watershed. EPA requests that the public provide any water quality related data and information that may be... loads that are needed to meet water quality standards in both States. This watershed model will serve as...

  5. A Knowledge, Attitudes, and Practices Survey of Water and Sanitation in Swaziland.

    ERIC Educational Resources Information Center

    Green, Edward C.

    The terms of agreement of the Rural Water-Borne Disease Control Project called for a knowledge, attitudes, and practices (KAP) study relating to water and sanitation in rural Swaziland. The purpose of the study was to provide: (1) baseline data for the design of a national health education strategy aimed at reducing the incidence of water-borne…

  6. Oxygen requirement of separated hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  7. Revised Masses and Densities of the Planets around Kepler-10

    NASA Astrophysics Data System (ADS)

    Weiss, Lauren M.; Rogers, Leslie A.; Isaacson, Howard T.; Agol, Eric; Marcy, Geoffrey W.; Rowe, Jason F.; Kipping, David; Fulton, Benjamin; Lissauer, Jack; Howard, Andrew; Clark Fabrycky, Daniel

    2015-12-01

    Determining which small exoplanets have stony-iron compositions is necessary for quantifying the occurrence of such planets and for understanding the physics of planet formation. Kepler-10 hosts the stony-iron world Kepler-10b, and also contains what has been reported to be the largest solid silicate-ice planet, Kepler-10c. Using 220 radial velocities (RVs), including 72 new precise RVs from Keck-HIRES, and 17 quarters of Kepler photometry, we obtain the most complete picture of the Kepler-10 system to date. We find that Kepler-10b (Rp = 1.47 R⊕) has mass 3.70 ± 0.43 M⊕ and density 6.44 ± 0.73 g cm-3. Modeling the interior of Kepler-10b as an iron core overlaid with a silicate mantle, we find that the core constitutes 0.17 ± 0.11 of the planet mass. For Kepler-10c (Rp = 2.35 R⊕) we measure mass 13.32 ± 1.65 M⊕and density 5.67 ± 0.70 g cm-3, significantly lower than the mass in Dumusque et al. (2014, 17.2±1.9 M⊕). Kepler-10c is not sufficiently dense to have a pure stony-iron composition. Internal compositional modeling reveals that at least 10% of the radius of Kepler-10c is a volatile envelope composed of either hydrogen-helium (0.0027 ± 0.0015 of the mass, 0.172±0.037 of the radius) or super-ionic water (0.309±0.11 of the mass, 0.305±0.075 of the radius). Transit timing variations (TTVs) of Kepler-10c indicate the likely presence of a third planet in the system, KOI-72.X. The TTVs and RVs are consistent with KOI-72.X having an orbital period of 24, 71, 82, or 101 days, and a mass from 1-7 M⊕.

  8. Hydrogen-bond symmetrization in methane and hydrogen hydrates in the Mbar range

    NASA Astrophysics Data System (ADS)

    Bove, L. E.; Ranieri, U.; Gaal, R.; Finocchi, F.; Kuhs, W. F.; Falenty, A.; Klotz, S.; Gillet, P.

    2016-12-01

    Ice-VII and ice-X phases are the most stable forms of ice at high temperature and extreme pressures, typical of the interiors of satellites and planets. The phase transition between them is a prototypical case of quantum-driven phenomenon, as it can be described as a quantum delocalization of protons in the middle of O-O distances. Recent studies on LiCl- and NaCl-doped ice 1-3 have shown that the presence of salt inclusions in the ice lattice suppresses the quantum behavior of protons, hindering the appearance of the symmetric phase, and possibly suppressing the predicted high temperature superionic phase. This finding stimulated the investigation of similar effects in other water-based compounds, which are thought to be present in icy bodies, namely hydrogen and methane high pressure hydrates. Few experiments have been performed in the past to identify signatures of the hydrogen-bond symmetrization in methane and hydrogen hydrates without reaching conclusive results4,5. Here we present new results on the hydrogen-bond symmetrization of methane and hydrogen hydrates using Raman scattering in the Mbar range and semiclassical simulations including nuclear quantum effects. 1 Bove L. E. et al., E_ect of salt on the H-bond symmetrization in ice, Proc. Natl. Acad. Sci. USA 112, 8216, 2015 ; 2. Bronstein Y. et al., Quantum versus classical protons in pure and salty ice under pressure, Phys. Rev. B 93, 024104, 2016. 3. Klotz S. et al., Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds, Nature Sci. Rep. , in press. 4. Tanaka T. et al., Phase changes of _lled ice Ih methane hydrate under low temperature and high pressure, J. Chem. Phys. 139, 104701, 2013 5. Hirai H. et al., Structural changes of _lled ice Ic hydrogen hydrate under low temperatures and high pressures from 5 to 50 GPa, J. Chem. Phys. 137, 074505, 2012

  9. A Philosophy of Water Pollution Control--Past and Present.

    ERIC Educational Resources Information Center

    Schroeffer, George J.

    1978-01-01

    An overview of water pollution control in the U.S. is given, leading to an analysis of present policy trends. A "rational environmental program" is called for to provide economic growth and environmental quality. (MDR)

  10. Water resources of the Indianapolis area, Indiana

    USGS Publications Warehouse

    Roberts, Claude Martin; Widman, L.E.; Brown, P.N.

    1955-01-01

    Difficulties in supplying water have occurred and will continue to occur from time to time when demands on ground-water sources are excessively heavy for long periods of time and locally where pumped wells are too closely spaced. Under such conditions ground-water levels decline rapidly and remain depressed for some time. Such a condition may constitute what could be called a water shortage. As the demand for water increases there is need for conservation and wise use of available surface and ground-water supplies. 

  11. Drinking Water and Health.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to a provision of the Safe Drinking Water Act of 1974 which called for a study that would serve as a scientific basis for revising the primary drinking water regulations that were promulgated under the Act, a study of the scientific literature was undertaken in order to assess the implications for human health of the constituents of…

  12. A new soil water and bulk eletrical conductivity sensor technology for irrigation and salinity management

    USDA-ARS?s Scientific Manuscript database

    Many soil water sensors, especially those based on electromagnetic (EM) properties of soils, have been shown to be unsuitable in salt-affected or clayey soils. Most available soil water content sensors are of this EM type, particularly the so-called capacitance sensors. They often over estimate and ...

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the fifth generation Urine Processor Development Hardware. The Urine Processor Assembly (UPA) is a part of the Water Recovery System (WRS) on the ISS. It uses a chase change process called vapor compression distillation technology to remove contaminants from urine. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.

  14. Soybean crop-water production functions in a humid region across years and soils determined with APEX model

    Treesearch

    Bangbang Zhang; Gary Feng; Lajpat R. Ahuja; Xiangbin Kong; Ying Ouyang; Ardeshir Adeli; Johnie N. Jenkins

    2018-01-01

    Crop production as a function of water use or water applied, called the crop water production function (CWPF), is a useful tool for irrigation planning, design and management. However, these functions are not only crop and variety specific they also vary with soil types and climatic conditions (locations). Derivation of multi-year average CWPFs through field...

  15. Genomic effects on advertisement call structure in diploid and triploid hybrid waterfrogs (Anura, Pelophylax esculentus).

    PubMed

    Hoffmann, Alexandra; Reyer, Heinz-Ulrich

    2013-12-04

    In anurans, differences in male mating calls have intensively been studied with respect to taxonomic classification, phylogeographic comparisons among different populations and sexual selection. Although overall successful, there is often much unexplained variation in these studies. Potential causes for such variation include differences among genotypes and breeding systems, as well as differences between populations. We investigated how these three factors affect call properties in male water frogs of Pelophylax lessonae (genotype LL), P. ridibundus (RR) and their interspecific hybrid P. esculentus which comes in diploid (LR) and triploid types (LLR, LRR). We investigated five call parameters that all showed a genomic dosage effect, i.e. they either decreased or increased with the L/R ratio in the order LL-LLR-LR-LRR-RR. Not all parameters differentiated equally well between the five genotypes, but combined they provided a good separation. Two of the five call parameters were also affected by the breeding system. Calls of diploid LR males varied, depending on whether these males mated with one or both of the parental species (diploid systems) or triploid hybrids (mixed ploidy systems). With the exception of the northernmost mixed-ploidy population, call differences were not related to the geographic location of the population and they were not correlated with genetic distances in the R and L genomes. We found an influence of all three tested factors on call parameters, with the effect size decreasing from genotype through breeding system to geographic location of the population. Overall, results were in line with predictions from a dosage effect in L/R ratios, but in three call parameters all three hybrid types were more similar to one or the other parental species. Also calls of diploid hybrids varied between breeding systems in agreement with the sexual host required for successful reproduction. The lack of hybrid call differences in a mixed-ploidy population at the northern edge of the water frog distribution is likely to be associated with genetic particularities, including a) low genetic variability and/or b) a local loss of genes coding for genotype-dependent call differentiation under conditions where female discrimination between diploid and triploid males is not beneficial.

  16. 12. CLOSEUP OF THE CURRENT TRASH RAKELIFTING MECHANISM (CALLED 'JAWS' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP OF THE CURRENT TRASH RAKE-LIFTING MECHANISM (CALLED 'JAWS' BY THE PRESENT OPERATORS), LOOKING WEST. THIS EQUIPMENT WAS REMOVED IN AUTUMN OF 1996. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  17. 21 CFR 165.110 - Bottled water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bottles or other containers with no added ingredients except that it may optionally contain safe and... Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to... availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register...

  18. Modeling of High-Frequency Acoustic Propagation in Shallow Water

    DTIC Science & Technology

    2007-06-01

    is a product of a phase function, called the eikonal equation, and an amplitude function, called the transport equation. To solve the eikonal ... eikonal equation in the ray coordinate system. Expanding Equation (2.6), 2 1 c =∇⋅∇ ττ , (2.14) so that substituting the value of τ∇ from

  19. Statics and dynamics of free and hydrogen-bonded OH groups at the air/water interface.

    PubMed

    Vila Verde, Ana; Bolhuis, Peter G; Campen, R Kramer

    2012-08-09

    We use classical atomistic molecular dynamics simulations of two water models (SPC/E and TIP4P/2005) to investigate the orientation and reorientation dynamics of two subpopulations of OH groups belonging to water molecules at the air/water interface at 300 K: those OH groups that donate a hydrogen bond (called "bonded") and those that do not (called "free"). Free interfacial OH groups reorient in two distinct regimes: a fast regime from 0 to 1 ps and a slow regime thereafter. Qualitatively similar behavior was reported by others for free OH groups near extended hydrophobic surfaces. In contrast, the net reorientation of bonded OH groups occurs at a rate similar to that of bulk water. This similarity in reorientation rate results from compensation of two effects: decreasing frequency of hydrogen-bond breaking/formation (i.e., hydrogen-bond exchange) and faster rotation of intact hydrogen bonds. Both changes result from the decrease in density at the air/water interface relative to the bulk. Interestingly, because of the presence of capillary waves, the slowdown of hydrogen-bond exchange is significantly smaller than that reported for water near extended hydrophobic surfaces, but it is almost identical to that reported for water near small hydrophobic solutes. In this sense water at the air/water interface has characteristics of water of hydration of both small and extended hydrophobic solutes.

  20. Water Availability Indices – A Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hui; Wu, May M.

    Fresh water is a critical resource for humanity and the ecosystem. In general, water resources can be partitioned into two major categories: blue water and green water (Falkenmark and Rockström 2006). Precipitation that runs off or percolates into the deep aquifer is defined as blue water, and precipitation that filtrates into soil, which eventually returns to the atmosphere as evaporation, is called green water (Hoekstra et al. 2011). For human purposes, green water is almost exclusively used for agricultural production, but blue water can be used for multiple competing sectors, such as irrigation and municipal water.

  1. SF Bay Delta TMDL Progress Assessment

    EPA Pesticide Factsheets

    EPA assessed the progress 14 TMDLs in the SF Bay Delta Estuary (SF Bay Delta) to determine if the actions called for in the TMDL were being accomplished and water quality was improving. Status and water quality reports can be found here.

  2. 75 FR 10500 - Environmental Assessment Prepared for Proposed Cape Wind Energy Project in Nantucket Sound, MA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... calls for 130, 3.6 megawatt (MW) wind turbine generators, each with a maximum blade height of 440 feet... in Federal waters, aside from transmission cables running through Massachusetts waters ashore. For...

  3. New MARKAL Tool Designed to Help Cities Meet Environmental Protection Goals

    EPA Pesticide Factsheets

    EPA researchers are creating an energy and water technology tool—called the Community-Scale MARKAL Model—to help cities and other municipalities make decisions on how to protect the environment, while also providing energy required for water services.

  4. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph spreads light from an object apart into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. Theorists though the spectra for hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules. It is what astronomers call 'flat.' For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not seen there might indicate that the water is hidden under a thick blanket of high, dry clouds.

    This spectrum was produced by Dr. Mark R. Swain of NASA's Jet Propulsion Laboratory in Pasadena, Calif., using a complex set of mathematical tools. It was derived using two different methods, both of which led to the same result. The data were taken on July 6 and 13, 2005, by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center and his team using Spitzer's infrared spectrograph.

  5. Water on the Web: Integrating Real-Time Data into Educational Curricula over the Internet. Guide Book.

    ERIC Educational Resources Information Center

    Minnesota Univ., Duluth. Minnesota Sea Grant Program.

    Water on the Web (WOW) curriculum materials help students understand data taken from several water sampling robots called Remote Underwater Sampling Station (RUSS) units located in Ice Lake, Lake Independence, Lake Minnetonka, and Grindstone Lake in Minnesota. WOW allows high school and college students to monitor Minnesota lakes over the…

  6. ANALYTIC ELEMENT MODELING FOR SOURCE WATER ASSESSMENTS OF PUBLIC WATER SUPPLY WELLS: CASE STUDIES IN GLACIAL OUTWASH AND BASIN-AND-RANGE

    EPA Science Inventory

    Over the last 10 years the EPA has invested in analytic elements as a computational method used in public domain software supporting capture zone delineation for source water assessments and wellhead protection. The current release is called WhAEM2000 (wellhead analytic element ...

  7. Managing for water-use efficient wood production in Eucalyptus globulus plantations

    Treesearch

    Donald A. White; John F. McGrath; Michael G. Ryan; Michael Battaglia; Daniel S. Mendham; Joe Kinal; Geoffrey M. Downes; D. Stuart Crombie; Mark E. Hunt

    2014-01-01

    This paper tests the hypothesis that thinning and nitrogen fertiliser can increase the mass of wood produced per volume of water used (evapotranspiration) by plantations of Eucalyptus globulus. We have called this plantation water productivity (PWPWOOD) and argue that, for a given genotype, this term integrates the effects of management, site and climate on both...

  8. Engineering and Design: Composite Materials for Civil Engineering Structures

    DTIC Science & Technology

    1997-03-31

    the effects of acidic, salt, and fresh waters . Acidic, salt, and fresh waters are corrosive to ferrous metals. In Corps of Engineers structures, high...what is commonly called a toughened epoxy. (5) Polymeric resins will absorb moisture. Since many applications are in contact with water (at least...ultraviolet radiation. Some coatings can reduce the amount of moisture absorption by the structure. All polymeric resins will absorb water to some

  9. Water Molecule Hops on Ceres

    NASA Image and Video Library

    2016-12-15

    This graphic shows a theoretical path of a water molecule on Ceres. Some water molecules fall into cold, dark craters at high latitudes called "cold traps," where very little of the ice turns into vapor, even over the course of a billion years. Other water molecules that do not land in cold traps are lost to space as they hop around the dwarf planet. http://photojournal.jpl.nasa.gov/catalog/PIA21083

  10. Evaluating Alternatives for Drinking Water at Deployed Locations

    DTIC Science & Technology

    2006-03-01

    Tucker and Sands, 1999; Beering , 2002). 1986 Plutonium was found in the New York city drinking water system. Though the concentrations were...based approach called Hazard Analysis and Critical Control Point ( HACCP ). This approach holds that avoidance is practical and effective where other

  11. The Community Connection

    ERIC Educational Resources Information Center

    Rittenburg, Rebecca; Miller, Brant G.; Rust, Cindy; Esler, Jamie; Kreider, Rusti; Boylan, Ryan; Squires, Audrey

    2015-01-01

    In a regional gathering called the Youth Water Summit, high school students present projects that respond to the driving question behind their science curriculum: "How can you address a significant water resource challenge in your community's watershed?" Students exhibit scientific posters, interactive presentations, films, art projects,…

  12. 7 CFR 633.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... organized pursuant to applicable State law to promote and undertake actions for the conservation of soil... the United States Department of Agriculture, formerly called the Soil Conservation Service. Operator... and improvement of water quality; (3) Attenuation of water flows due to flooding; (4) The recharge of...

  13. 7 CFR 633.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... organized pursuant to applicable State law to promote and undertake actions for the conservation of soil... the United States Department of Agriculture, formerly called the Soil Conservation Service. Operator... and improvement of water quality; (3) Attenuation of water flows due to flooding; (4) The recharge of...

  14. Trawling bats exploit an echo-acoustic ground effect

    PubMed Central

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M.; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above. PMID:23576990

  15. Big oil's top explorer takes to the high seas. [Shell Oil drills 100 mi off NJ coast in 6500 ft of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nulty, P.

    1984-01-23

    The lower 48 states are the most pawed-over, poked-into oil and gas producing region on earth. Yet in deep water beyond the continental shelves of both coasts lie vast tracts of essentially untouched acreage. However, in December 1983, Shell Oil completed a well in 6500 feet of water 100 miles off Cape May, New Jersey in an area called Wilmington Canyon. The well was in water 800 feet deeper than any attempted before, and more than six times the depth of the deepest producing well. It was dry, but competitors aren't laughing. The drilling program, costing $500 million calls formore » four more wells this year in waters up to 7500 feet deep. While representing an enormous gamble for Shell, one of the last great exploration frontiers will be open for business if any of the wells proves out. In the event of success, however, very formidable problems must be overcome to produce the oil or gas.« less

  16. The Forty-Eight-Hour Rule: Emotional Engagement and the Student Athlete

    ERIC Educational Resources Information Center

    Mueller, Alan C. R.

    2009-01-01

    Several years ago, the author taught a course called First-Year experience. A student named Sean mentioned that he played "water pong." Sean, a high-achieving student who was also a member of the lacrosse team, explained that water pong was a game with the rules of beer pong, using water rather than beer. Sean volunteered an explanation of his…

  17. One-year assessment of a solar space/water heater--Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.

  18. Environmental Control and Life Support Systems Testing Facility at MSFC

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. This photograph shows the fifth generation Urine Processor Development Hardware. The Urine Processor Assembly (UPA) is a part of the Water Recovery System (WRS) on the ISS. It uses a chase change process called vapor compression distillation technology to remove contaminants from urine. The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the Water Processor Assembly (WPA). The WPA removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank.

  19. Measuring the erosion of an irrigation reservoir levee

    USDA-ARS?s Scientific Manuscript database

    Increasing demands on limited groundwater resources in the Arkansas and Mississippi alluvial floodplain (commonly called the Delta) have created a growing need for the development of surface water resources for irrigation. On-farm reservoirs, along with tail-water recovery systems, are used to stor...

  20. Water Processing Assembly Particulate Filter Remove and Replace (R&R)

    NASA Image and Video Library

    2013-07-12

    ISS036-E-018008 (12 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, removes and replaces the particulate filter for the Water Pump Assembly 2 (WPA2) in Tranquility (also called Node 3) on the International Space Station.

  1. Water Processing Assembly Particulate Filter Remove and Replace (R&R)

    NASA Image and Video Library

    2013-07-12

    ISS036-E-018007 (12 July 2013) --- European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, removes and replaces the particulate filter for the Water Pump Assembly 2 (WPA2) in Tranquility (also called Node 3) on the International Space Station.

  2. NMR and specific heat study of atomic dynamics and spin-orbit behavior in Cu2-xAgyTe

    NASA Astrophysics Data System (ADS)

    Sirusi, Ali A.; Ballikaya, Sedat; Chen, Jing-Han; Uher, Ctirad; Ross, Joseph H., Jr.

    We report studies of Cu2Te and Cu2-xAgyTe, promising candidates for thermoelectric and photovoltaic applications. Cu and Te NMR show that above a well-defined 200 K onset, Cu2Te exhibits Cu-ion hopping, leading to the higher-temperature superionic motion. In Cu1.98Ag0.2Te the onset increases to 250 K. In the low-temperature static phase the properties are nearly identical. Aside from Korringa terms there are large diamagnetic contributions for all nuclei, comparable to those for other systems with very large spin-orbit and/or inverted band configurations. Thus the system may be a topologically interesting system like the similar phase Ag2Te. Results will be compared to DFT calculations of NMR shifts. The low-temperature spectra also indicate two distinct local environments for Cu sites, one corresponding to high symmetry such as characterizes the high-temperature cubic phase, and one with much more asymmetry. In addition, specific heat results are consistent with about 50% of the Cu ions being weakly bound on Einstein-oscillator sites. We tentatively connect these results to reported local inhomogeneity due to vacancy condensation in similar systems.

  3. Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn).

    PubMed

    Hori, Satoshi; Suzuki, Kota; Hirayama, Masaaki; Kato, Yuki; Saito, Toshiya; Yonemura, Masao; Kanno, Ryoji

    2014-01-01

    Solid solutions of the silicon and tin analogous phases of the superionic conductor Li(10)MP(2)S(12) (M = Si, Sn) were synthesized by a conventional solid-state reaction in an evacuated silica tube at 823 K. The ranges of the solid solutions were determined to be 0.20 < δ < 0.43 and -0.25 < δ < -0.01 in Li(10+δ)M(1+δ)P(2-δ)S(12) (0.525 ≤k≤ 0.60 and 0.67 ≤k≤ 0.75 in Li(4-k)M(1-k)PkS(4)) for the Si and Sn systems, respectively. The ionic conductivity of these systems varied as a function of the changing M ions: the Si and Sn systems showed lower conductivity than the Ge system, Li(10+δ)Ge(1+δ)P(2-δ)S(12). The conductivity change for different elements might be due to the lattice size and lithium content affecting the ionic conduction. The relationship between ionic conduction, structure, and lithium concentration is discussed based on the structural and electrochemical information for the silicon, germanium, and tin systems.

  4. Holistic computational structure screening of more than 12,000 candidates for solid lithium-ion conductor materials

    NASA Astrophysics Data System (ADS)

    Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.; Duerloo, Karel-Alexander N.; Cui, Yi; Reed, Evan J.

    We present a new type of large-scale computational screening approach for identifying promising candidate materials for solid state electrolytes for lithium ion batteries that is capable of screening all known lithium containing solids. To predict the likelihood of a candidate material exhibiting high lithium ion conductivity, we leverage machine learning techniques to train an ionic conductivity classification model using logistic regression based on experimental measurements reported in the literature. This model, which is built on easily calculable atomistic descriptors, provides new insight into the structure-property relationship for superionic behavior in solids and is approximately one million times faster to evaluate than DFT-based approaches to calculating diffusion coefficients or migration barriers. We couple this model with several other technologically motivated heuristics to reduce the list of candidate materials from the more than 12,000 known lithium containing solids to 21 structures that show promise as electrolytes, few of which have been examined experimentally. Our screening utilizes structures and electronic information contained in the Materials Project database. This work is supported by an Office of Technology Licensing Fellowship through the Stanford Graduate Fellowship Program and a seed Grant from the TomKat Center for Sustainable Energy at Stanford.

  5. Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong; Li, Shuai; Zhang, Yi

    Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less

  6. Ion-ion correlations across and between electrified graphene layers

    NASA Astrophysics Data System (ADS)

    Mendez-Morales, Trinidad; Burbano, Mario; Haefele, Matthieu; Rotenberg, Benjamin; Salanne, Mathieu

    2018-05-01

    When an ionic liquid adsorbs onto a porous electrode, its ionic arrangement is deeply modified due to a screening of the Coulombic interactions by the metallic surface and by the confinement imposed upon it by the electrode's morphology. In particular, ions of the same charge can approach at close contact, leading to the formation of a superionic state. The impact of an electrified surface placed between two liquid phases is much less understood. Here we simulate a full supercapacitor made of the 1-butyl-3-methylimidazolium hexafluorophosphate and nanoporous graphene electrodes, with varying distances between the graphene sheets. The electrodes are held at constant potential by allowing the carbon charges to fluctuate. Under strong confinement conditions, we show that ions of the same charge tend to adsorb in front of each other across the graphene plane. These correlations are allowed by the formation of a highly localized image charge on the carbon atoms between the ions. They are suppressed in larger pores, when the liquid adopts a bilayer structure between the graphene sheets. These effects are qualitatively similar to the recent templating effects which have been reported during the growth of nanocrystals on a graphene substrate.

  7. Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte

    DOE PAGES

    Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...

    2016-09-07

    Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less

  8. Structure and thermal expansion of Lu 2O 3 and Yb 2O 3 up to the melting points

    DOE PAGES

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra; ...

    2017-08-24

    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. We studied the structure and thermal expansion of Lu 2O 3 and Yb 2O 3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb 2O 3 and Lumore » 2O 33 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10 -6 K -1 and (7.7 ± 0.6) · 10 -6 K -1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb 2O 3 phase transformation to hexagonal phase prior to melting.« less

  9. Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries.

    PubMed

    Chi, Xiaowei; Liang, Yanliang; Hao, Fang; Zhang, Ye; Whiteley, Justin; Dong, Hui; Hu, Pu; Lee, Sehee; Yao, Yan

    2018-03-01

    All-solid-state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium-ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium-ion cathodes leads to a volatile cathode-electrolyte interface and undesirable cell performance. Here we report a high-capacity organic cathode, Na 4 C 6 O 6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk-type ASSSB shows high specific capacity (184 mAh g -1 ) and one of the highest specific energies (395 Wh kg -1 ) among intercalation compound-based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na 4 C 6 O 6 functions as a capable anode material, enabling a symmetric all-organic ASSSB with Na 4 C 6 O 6 as both cathode and anode materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spryite, {{Ag}}8({{{As}}_{0.5}^{3 +} {{As}}_{0.5}^{5 +}}){{S}}6: structure determination and inferred absence of superionic conduction of the first As3+-bearing argyrodite

    NASA Astrophysics Data System (ADS)

    Bindi, Luca; Keutsch, Frank N.; Morana, Marta; Zaccarini, Federica

    2017-01-01

    We report data on the composition and crystal structure of the first As3+-bearing natural argyrodite, spryite. Spryite has the formula ({{{Ag}}_{7.98} {{Cu}}_{0.05}})_{Σ = 8.03} ({{{As}}_{0.31}^{5 +} {{Ge}}_{0.36} {{As}}_{0.31}^{3 +} {{Fe}}_{0.02}^{3 +}})_{Σ = 1.00} {{S}}_{5.97}, ideally {{Ag}}8 ({{{As}}_{0.5}^{3 +} {{As}}_{0.5}^{5 +}}){{S}}6. The crystal studied was found in a sample from the Uchucchacua polymetallic deposit, Oyon district, Cajatambo, Lima Department, Peru. The structure was refined in the space group Pna21 up to R = 0.0782 using 2099 observed reflections [2 σ( I) level]. Spryite is intimately twinned with six twin domains. The structure solution showed that As3+ and As5+ coexist in the new mineral, which represents the first case ever discovered in either a mineral or a synthetic compound belonging to a sulfide/sulfosalt group. High-temperature in situ X-ray diffraction experiments indicated that no phase transitions occur in the temperature range investigated and that the mineral does not show any evidence of fast ionic conduction.

  11. Structure and thermal expansion of Lu 2O 3 and Yb 2O 3 up to the melting points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra

    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. We studied the structure and thermal expansion of Lu 2O 3 and Yb 2O 3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb 2O 3 and Lumore » 2O 33 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10 -6 K -1 and (7.7 ± 0.6) · 10 -6 K -1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb 2O 3 phase transformation to hexagonal phase prior to melting.« less

  12. Electronic structure of Ag7GeS5I superionic compound

    NASA Astrophysics Data System (ADS)

    Bletskan, Dmytro; Studenyak, Ihor; Bletskan, Mykhailo; Vakulchak, Vasyl

    2018-05-01

    This paper presents the originally results of ab initio calculations of electronic structure, total and partial densities of electronic states as well as electronic charge density distribution of Ag7GeS5I crystal performed within the density functional theory (DFT) in the local density approximation (LDA) for exchange-correlation potential. According to performed calculations, Ag7GeS5I is the direct-gap semiconductor with the valence band top and the conductivity band bottom in the Γ point of Brillouin zone. The band gap width calculated in the LDA-approximation is Egd = 0.73 eV. The analysis of total and partial densities of electronic states allow us to identify the atomic orbital contributions into the crystal orbitals as well as the formation data of chemical bond in the studied crystal. In the top part of Ag7GeS5I valence band it was revealed the considerable mixing (hybridization) of the occupied d-states of Ag noble metal and the delocalized p-states of sulfur and iodine, which is undoubtedly associated with the covalent character of chemical bond between S, I atoms and noble metal atom.

  13. Structure and properties of Li 2S-P 2S 5-P 2S 3 glass and glass-ceramic electrolytes

    NASA Astrophysics Data System (ADS)

    Minami, Keiichi; Hayashi, Akitoshi; Ujiie, Satoshi; Tatsumisago, Masahiro

    High lithium ion conducting 70Li 2S·(30 - x)P 2S 5· xP 2S 3 (mol%) glasses and glass-ceramics were prepared by the mechanical milling method. Glasses were obtained in the composition range of 0 ≦ x ≦ 10. The substitution of P 2S 3 for P 2S 5 promoted the formation of the P 2S 6 4- units in the glasses. The conductivity of the glass increased with an increase in P 2S 3 contents up to 5 mol% and the glass with 5 mol% of P 2S 3 showed the conductivity of 1 × 10 -4 S cm -1 at room temperature. In the case of glass-ceramics, the conductivity increased with an increase in P 2S 3 contents up to 1 mol%, and the superionic conducting Li 7P 3S 11 crystal was precipitated in the glass-ceramic. The glass-ceramic with 1 mol% of P 2S 3 showed the highest conductivity of 3.9 × 10 -3 S cm -1 at room temperature.

  14. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  15. Dependences of the density of M 1- x R x F2 + x and R 1- y M y F3- y single crystals ( M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-01

    The density of single crystals of nonstoichiometric phases Ba1 - x La x F2 + x (0 ≤ x ≤ 0.5) and Sr0.8La0.2 - x Lu x F2.2 (0 ≤ x ≤ 0.2) with the fluorite (CaF2) structure type and R 1 - y Sr y F3 - y ( R = Pr, Nd; 0 ≤ y ≤ 0.15) with the tysonite (LaF3) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement the composition control of single crystals of superionic conductors M 1 - x R x F2 + x and R 1 - y M y F3 - y in practice, calibration graphs of X-ray density in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.

  16. A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8

    DOE PAGES

    Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue; ...

    2018-01-31

    Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less

  17. The vocal monotony of monogamy

    NASA Astrophysics Data System (ADS)

    Thomas, Jeanette

    2003-04-01

    There are four phocids in waters around Antarctica: Weddell, leopard, crabeater, and Ross seals. These four species provide a unique opportunity to examine underwater vocal behavior in species sharing the same ecosystem. Some species live in pack ice, others in factice, but all are restricted to the Antarctic or sub-Antarctic islands. All breed and produce vocalizations under water. Social systems range from polygyny in large breeding colonies, to serial monogamy, to solitary species. The type of mating system influences the number of underwater vocalizations in the repertoire, with monogamous seals producing only a single call, polygynous species producing up to 35 calls, and solitary species an intermediate number of about 10 calls. Breeding occurs during the austral spring and each species carves-out an acoustic niche for communicating, with species using different frequency ranges, temporal patterns, and amplitude changes to convey their species-specific calls and presumably reduce acoustic competition. Some species exhibit geographic variations in their vocalizations around the continent, which may reflect discrete breeding populations. Some seals become silent during a vulnerable time of predation by killer whales, perhaps to avoid detection. Overall, vocalizations of these seals exhibit adaptive characteristics that reflect the co-evolution among species in the same ecosystem.

  18. What models can teach us about watershed-nearshore relationships that observational studies cannot

    EPA Science Inventory

    The nearshore waters of the Laurentian Great Lakes are a valuable resource for drinking water, recreation, fishing, wildlife and industrial usage. However, environmental concerns such as eutrophication and the colonization of invasive species have resulted in the call for an over...

  19. Sustainable Landscape Systems for Managing Storm Water 2nd Edition

    EPA Science Inventory

    Rain gardens are designed to capture and infiltrate rainwater in the landscape. These gardens are also called "rain water gardens". Rainwater is routed to the garden and filtered naturally by the plants and soils in the garden. This filtration process removes nutrients and poll...

  20. Use of geospatial data to predict downstream influence of coal mining in Appalachia

    EPA Science Inventory

    A 2001 Supreme Court decision first called into question whether some headwater streams could be considered jurisdictional under the Clean Water Act. A subsequent decision then required that non-navigable waters must be "relatively permanent" or "possess a significant nexus" to ...

  1. COMPUTER PROGRAM DOCUMENTATION FOR THE ENHANCED STREAM WATER QUALITY MODEL QUAL2E

    EPA Science Inventory

    Presented in the manual are recent modifications and improvements to the widely used stream water quality model QUAL-II. Called QUAL2E, the enhanced model incorporates improvements in eight areas: (1) algal, nitrogen, phosphorus, and dissolved oxygen interactions; (2) algal growt...

  2. Genomic effects on advertisement call structure in diploid and triploid hybrid waterfrogs (Anura, Pelophylax esculentus)

    PubMed Central

    2013-01-01

    Background In anurans, differences in male mating calls have intensively been studied with respect to taxonomic classification, phylogeographic comparisons among different populations and sexual selection. Although overall successful, there is often much unexplained variation in these studies. Potential causes for such variation include differences among genotypes and breeding systems, as well as differences between populations. We investigated how these three factors affect call properties in male water frogs of Pelophylax lessonae (genotype LL), P. ridibundus (RR) and their interspecific hybrid P. esculentus which comes in diploid (LR) and triploid types (LLR, LRR). Results We investigated five call parameters that all showed a genomic dosage effect, i.e. they either decreased or increased with the L/R ratio in the order LL-LLR-LR-LRR-RR. Not all parameters differentiated equally well between the five genotypes, but combined they provided a good separation. Two of the five call parameters were also affected by the breeding system. Calls of diploid LR males varied, depending on whether these males mated with one or both of the parental species (diploid systems) or triploid hybrids (mixed ploidy systems). With the exception of the northernmost mixed-ploidy population, call differences were not related to the geographic location of the population and they were not correlated with genetic distances in the R and L genomes. Conclusions We found an influence of all three tested factors on call parameters, with the effect size decreasing from genotype through breeding system to geographic location of the population. Overall, results were in line with predictions from a dosage effect in L/R ratios, but in three call parameters all three hybrid types were more similar to one or the other parental species. Also calls of diploid hybrids varied between breeding systems in agreement with the sexual host required for successful reproduction. The lack of hybrid call differences in a mixed-ploidy population at the northern edge of the water frog distribution is likely to be associated with genetic particularities, including a) low genetic variability and/or b) a local loss of genes coding for genotype-dependent call differentiation under conditions where female discrimination between diploid and triploid males is not beneficial. PMID:24304922

  3. Water Filtration Products

    NASA Technical Reports Server (NTRS)

    1986-01-01

    American Water Corporation manufactures water filtration products which incorporate technology originally developed for manned space operations. The formula involves granular activated charcoal and other ingredients, and removes substances by catalytic reactions, mechanical filtration, and absorption. Details are proprietary. A NASA literature search contributed to development of the compound. The technology is being extended to a deodorizing compound called Biofresh which traps gas and moisture inside the unit. Further applications are anticipated.

  4. Changes in antioxidant and fruit quality in hot water-treated ‘Hom Thong’ banana fruit during storage

    USDA-ARS?s Scientific Manuscript database

    The effects of hot water treatment on antioxidant phytochemicals and fruit quality were investigated in banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) by immersing fruits in hot water (50 'C) for 10 min, before storage at 25 'C for 10 days or 14 'C for 8 da...

  5. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions

    NASA Astrophysics Data System (ADS)

    Kahil, Mohamed Taher; Dinar, Ariel; Albiac, Jose

    2015-03-01

    Growing water extractions combined with emerging demands for environment protection increase competition for scarce water resources worldwide, especially in arid and semiarid regions. In those regions, climate change is projected to exacerbate water scarcity and increase the recurrence and intensity of droughts. These circumstances call for methodologies that can support the design of sustainable water management. This paper presents a hydro-economic model that links a reduced form hydrological component, with economic and environmental components. The model is applied to an arid and semiarid basin in Southeastern Spain to analyze the effects of droughts and to assess alternative adaptation policies. Results indicate that drought events have large impacts on social welfare, with the main adjustments sustained by irrigation and the environment. The water market policy seems to be a suitable option to overcome the negative economic effects of droughts, although the environmental effects may weaken its advantages for society. The environmental water market policy, where water is acquired for the environment, is an appealing policy to reap the private benefits of markets while protecting ecosystems. The current water management approach in Spain, based on stakeholders' cooperation, achieves almost the same economic outcomes and better environmental outcomes compared to a pure water market. These findings call for a reconsideration of the current management in arid and semiarid basins around the world. The paper illustrates the potential of hydro-economic modeling for integrating the multiple dimensions of water resources, becoming a valuable tool in the advancement of sustainable water management policies.

  6. Results of a monitoring program of continuous water levels and physical water properties at the Operable Unit 1 area of the Savage Municipal Well Superfund site, Milford, New Hampshire, water years 2000-03

    USGS Publications Warehouse

    Harte, Philip T.

    2005-01-01

    The Milford-Souhegan glacial-drift (MSGD) aquifer, in south-central New Hampshire, is an important source of industrial, commercial, and domestic water. The MSGD aquifer was also an important source of drinking water for the town of Milford until it was found to contain high concentrations of volatile organic compounds (VOCs) in the Savage and Keyes municipal-supply wells in the early 1980s. A VOC plume was found to cover part of the southwestern half of the MSGD aquifer. In September 1984, the site was designated a Superfund site, called the Savage Municipal Well Superfund site. The primary source area of contaminants was a former tool manufacturing facility (called the OK Tool facility, and now called the Operable Unit 1 (OU1) area) that disposed of solvents at the surface and in the subsurface. The facility was closed in 1987 and removed in 1998. A low-permeability containment barrier wall was constructed and installed in the overburden (MSGD aquifer) in 1998 to encapsulate the highest concentrations of VOCs, and a pump-and-treat remediation facility was also added. Remedial operations of extraction and injection wells started in May 1999. A network of water-level monitoring sites was implemented in water year 2000 (October 1, 1999, through September 30, 2000) in the OU1 area to help assess the effectiveness of remedial operations to mitigate the VOC plume, and to evaluate the effect of the barrier wall and remedial operations on the hydraulic connections across the barrier and between the overburden and underlying bedrock. Remedial extraction and injections wells inside and outside the barrier help isolate ground-water flow inside the barrier and the further spreading of VOCs. This report summarizes both continuous and selected periodic manual measurements of water level and physical water properties (specific conductance and water temperature) for 10 monitoring locations during water years 2000-03. Additional periodic manual measurements of water levels were made at four nearby monitoring wells. Water levels are referenced to periods of remedial extraction and injection operations. Remedial extraction inside the barrier in the overburden causes water-level drawdowns in interior (inside the barrier) monitoring wells but also exterior (outside the barrier) monitoring wells. Drawdowns were observed in the following descending sequence at: interior overburden wells, interior underlying bedrock wells, exterior underlying bedrock wells, and exterior overburden wells.

  7. Evaluation of ultrasonic cavitation of metallic and non-metallic surfaces

    NASA Technical Reports Server (NTRS)

    Mehta, Narinder K.

    1992-01-01

    1,1,2 trichloro-1,2,2 trifluoro ethane (CFC-113) commercially known as Freon-113 is the primary test solvent used for validating the cleaned hardware at the Kennedy Space Center (KSC). Due to the ozone depletion problem, the current United States policy calls for the phase out of Freons by 1995. NASAs chlorofluorocarbon (CFC) replacement group at KSC has opted to use water as a replacement fluid for the validation process since water is non-toxic, inexpensive, and is environmentally friendly. The replacement validation method calls for the ultrasonification of the small parts with water at 52 C for a cycle or two of 10 min duration wash using commercial ultrasonic baths. In this project, experimental data was obtained to assess the applicability of the proposed validation method for any damage of the metallic and non-metallic surfaces resulting from ultrasonic cavitation.

  8. DEVELOPMENT OF NEAR-SHORE HYDRODYNAMIC MODELS FOR BEACH CLOSURE FORECASTING IN THE GREAT LAKES

    EPA Science Inventory

    Water quality managers and other planning and decision entities are increasingly calling for up-to-the-minute data on present water quality conditions or forecasts of these data that can be used to adjust or respond to quickly developing activities with environmental implications...

  9. Underwater Rays

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2008-01-01

    Light beams in wavy unclear water, also called underwater rays, and caustic networks of light formed at the bottom of shallow water are two faces of a single phenomenon. Derivation of the caustic using only simple geometry, Snell's law and simple derivatives accounts for observations such as the existence of the caustic network on vertical walls,…

  10. Are Clouds a Solid, Liquid, or Gas?

    ERIC Educational Resources Information Center

    Kroog, Heidi; Ruiz-Primo, Maria Araceli

    2017-01-01

    The "Next Generation Science Standards" ("NGSS") state that by the end of fifth grade, students are expected to understand the water cycle, also called the hydrologic cycle, and the three states of matter in which water can exist (NGSS Lead States 2013). Logically, many educators choose to teach these topics concurrently or…

  11. Annual runoff in the United States

    USGS Publications Warehouse

    Langbein, Walter Basil

    1949-01-01

    The water that drains from the land into creeks and rivers is called runoff. Supplying many of our basic human needs for water, runoff occurs chiefly as a residual of rainfall after Nature’s take – that is, after the persistent demands of evaporation from land and transpiration from vegetation have been supplied.

  12. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  13. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  14. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  15. 18 CFR 131.50 - Reports of proposals received.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Reports of proposals received. 131.50 Section 131.50 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY..., including maximum life and average life of sinking fund issue; (e) Dividend or interest rate; (f) Call...

  16. Phytoplankton bloom in the Black Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Brightly colored waters in the Black Sea give evidence of the growth of tiny marine plants called phytoplankton, which contain chlorophyll and other pigments that reflect light different ways, producing the colorful displays. The very bright blue waters could be an organism called a coccolithophores, which has a highly reflective calcium carbonate coating that appears bright blue (or sometimes white) in true-color (visible) imagery. However, other organisms, such as cyanobacteria can also appear that color, and so often scientists will compare the ratios of reflectance at one wavelength of light to another to decide what organisms might be present. This series of images shows a bloom occurring in the Black Sea from May 11, 2002, to May 18.

  17. Following the water, the new program for Mars exploration.

    PubMed

    Hubbard, G Scott; Naderi, Firouz M; Garvin, James B

    2002-01-01

    In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. c2002 Published by Elsevier Science Ltd.

  18. Following the water, the new program for Mars exploration

    NASA Technical Reports Server (NTRS)

    Hubbard, G. Scott; Naderi, Firouz M.; Garvin, James B.

    2002-01-01

    In the wake of the loss of Mars Climate Orbiter and Mars Polar Lander in late 1999, NASA embarked on a major review of the failures and subsequently restructured all aspects of what was then called the Mars Surveyor Program--now renamed the Mars Exploration Program. This paper presents the process and results of this reexamination and defines a new approach which we have called "Program System Engineering". Emphasis is given to the scientific, technological, and programmatic strategies that were used to shape the new Program. A scientific approach known as "follow the water" is described, as is an exploration strategy we have called "seek--in situ--sample". An overview of the mission queue from continuing Mars Global Surveyor through a possible Mars Sample Return Mission launch in 2011 is provided. In addition, key proposed international collaborations, especially those between NASA, CNES and ASI are outlined, as is an approach for a robust telecommunications infrastructure. c2002 Published by Elsevier Science Ltd.

  19. The breeding behaviour, advertisement call and tadpole of Limnonectes dabanus (Anura: Dicroglossidae).

    PubMed

    Rowley, Jodi J L; Le, Duong Thi Thuy; Hoang, Huy Duc; Altig, Ronald

    2014-11-04

    Fanged frogs (Limnonectes) are a group of dicroglossid frogs from Asia that often have reversed sexual dimorphism with larger males. Limnonectes dabanus is a poorly known species of fanged frog from forested habitats in southern Vietnam and eastern Cambodia. Adult males exhibit an extreme degree of megacephaly and possess bizarre head ornamentation. L. dabanus breeds in shallow, non-flowing or very slow-flowing pools, puddles, and drainage ditches. Eggs are laid as a widely spaced array, and the larvae have a morphology typical of pond-dwelling tadpoles. Although males of the species lack vocal sacs, they produce a low-pitched (0.4-0.6 kHz), single-note advertisement call that sounds like a drop of water falling into water. Given the spacing of calling males, presence of multiple females near breeding sites, and reversed sexual dimorphism, the mating system of L. dabanus may be an example of resource-defense polygyny, and the massive head of the male is likely used in male combat.

  20. Developmental variation in sound production in water and air in the blue catfish Ictalurus furcatus.

    PubMed

    Ghahramani, Zachary N; Mohajer, Yasha; Fine, Michael L

    2014-12-01

    Blue catfish, Ictalurus furcatus, the largest catfish in North America, produce pectoral stridulation sounds (distress calls) when attacked and held. They have both fish and bird predators, and the frequency spectrum of their sounds is better matched to the hearing of birds than to that of unspecialized fish predators with low frequency hearing. It is unclear whether their sounds evolved to function in air or water. We categorized the calls and how they change with fish size in air and water and compared developmental changes in call parameters with stridulation motions captured with a high-speed camera. Stridulation sounds consist of a variable series of pulses produced during abduction of the pectoral spine. Pulses are caused by quick rapid spine rotations (jerks) of the pectoral spine that do not change with fish size although larger individuals generate longer, higher amplitude pulses with lower peak frequencies. There are longer pauses between jerks, and therefore fewer jerks and fewer pulses, in larger fish, which take longer to abduct their spines and therefore produce a longer series of pulses per abduction sweep. Sounds couple more effectively to water (1400 times greater pressure in Pascals at 1 m), are more sharply tuned and have lower peak frequencies than in air. Blue catfish stridulation sounds appear to be specialized to produce underwater signals although most of the sound spectrum includes frequencies matched to catfish hearing but largely above the hearing range of unspecialized fishes. © 2014. Published by The Company of Biologists Ltd.

  1. Reversed-phase high-performance liquid chromatography of sulfur mustard in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuveeran, C.D.; Malhotra, R.C.; Dangi, R.S.

    1993-01-01

    A reversed-phase high-performance liquid chromatography method for the detection and quantitation of sulfur mustard (HD) in water is described with detection at 200 nm. The detection based on the solubility of HD in water revealed that extremely low quantities of HD (4 to 5 mg/L) only are soluble. Experience shows that water is still the medium of choice for the analysis of HD in water and aqueous effluents in spite of the minor handicap of its half-life of ca. 4 minutes, which only calls for speedy analysis.

  2. New model system in radiation cryochemistry:. hyperquenched glassy water

    NASA Astrophysics Data System (ADS)

    Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin

    1999-08-01

    Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.

  3. Countering Small Boat Terrorism in Territorial Sea

    DTIC Science & Technology

    2010-12-01

    February 07, 2010). 4 coastal state extends, beyond its land territory and internal waters, and in the case of an archipelagic state, its archipelagic ...1970s and early 1980s had direct implications on Israel’s defense doctrines , which called for even harder military retaliation against terrorist... doctrines , which called for even harder military retaliation against terrorist infrastructures, thereby often invading the sovereign territory of third

  4. Why the water bridge does not collapse

    NASA Astrophysics Data System (ADS)

    Aerov, Artem A.

    2011-09-01

    In 2007 an interesting phenomenon was discovered [J. Phys. DJPAPBE0022-372710.1088/0022-3727/40/19/052 40, 6112 (2007)]: a horizontal thread of water, the so-called water bridge, hangs in a horizontal electrostatic field. A different explanation of the water bridge stability is proposed herein: the force supporting it is the surface tension of water, while the role of the electric field is to not allow the water bridge to reduce its surface energy by breaking into separate drops. It is proven that electrostatic field is not the origin of the tension holding the bridge.

  5. Characterization of Cloud Water-Content Distribution

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  6. RADIATION DOSE AND RISK TO RECREATIONAL FISHERMEN FROM INGESTION OF FISH CAUGHT NEAR EIGHT OIL PLATFORMS IN THE GULF OF MEXICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MEINHOLD,A.F.; HOLTZMAN,S.

    1998-06-01

    Offshore production of oil and gas is accompanied by a saline wastewater, called produced water. Produced water discharges to the Gulf of Mexico often contain elevated concentrations of radionuclides that occur naturally in the geologic reservoir along with the oil and gas. These radionuclides may accumulate in organisms that live near offshore oil and gas structures. Because recreational fishing in the Gulf of Mexico is concentrated near oil and gas platforms, there is the potential for increased risks to recreational fishermen from the ingestion of radionuclides in fish caught near produced water discharges. This analysis investigated the potential risk tomore » recreational fishermen from radium and lead-210 in offshore produced water discharges to the Gulf of Mexico. The assessment used data collected at eight discharging offshore platforms and two reference locations. These data were collected in a USDOE funded project titled ``Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations'', here called the USDOE Field Study. The risk assessments were done to support risk managers in developing regulations and permits for offshore discharges of produced water.« less

  7. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Joseph, R. D.

    2009-08-01

    The SOFIA is a 2.5-meter telescope built into a Boeing 747 airplane. It will fly at altitudes between 12-14 km above 99.8% of the atmospheric water vapor, making possible observations throughout the far-infrared and submillimeter spectral region. Nine focal plane instruments providing imaging and low-to-high resolution spectroscopy will be available. It will be operated as a guest observer facility. The first call for ``Early Basic Science'' will be issued in December 2009, the call for Demonstration Science will be issued early in 2010, and the call for Cycle 0 Guest Investigator programs is planned for January 2011.

  8. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    NASA Astrophysics Data System (ADS)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  9. Passive acoustic monitoring, development of disturbance calls and differentiation of disturbance and advertisement calls in the Argentine croaker Umbrina canosai (Sciaenidae).

    PubMed

    Tellechea, J S; Fine, M L; Norbis, W

    2017-04-01

    Disturbance and advertisement calls of the Argentine croaker Umbrina canosai were recorded from coastal Uruguayan waters. Dissections indicate typical sciaenid extrinsic swimbladder muscles present exclusively in males. Disturbance calls were produced when captive U. canosai were startled, chased with a net or grabbed by the tail. Calls were unusual for sciaenids because each pulse consisted of multiple cycles. The number of cycles per pulse and dominant frequency did not change with U. canosai size, but pulse duration and interpulse interval increased. Advertisement calls were recorded from unseen choruses in the field and confirmed with captive individuals in a large tank. Advertisement calls were recorded throughout the known range of the species in Uruguay indicating a continuous belt of spawning populations. Tank recordings of the same individuals permitted explicit comparisons between the two calls. Advertisement call pulses averaged 2·4 more cycles (11·0-8·6) although pulses of both calls were basically similar as were durations and dominant frequencies. Pulse number, however, differed markedly, averaging 13·6 and 3·4 pulses for disturbance and advertisement calls respectively. Furthermore, disturbance calls were produced as a rapid series with an interpulse interval of 26-31 ms whereas advertisement call patterns were less stereotyped and ranged from <100 to 450 ms. Multicycle pulses distinguished U. canosai from other sympatric sciaenids. © 2017 The Fisheries Society of the British Isles.

  10. Velocity field measurements in tailings dam failure experiments using a combined PIV-PTV approach

    USDA-ARS?s Scientific Manuscript database

    Tailings dams are built to impound mining waste, also called tailings, which consists of a mixture of fine-sized sediments and water contaminated with some hazardous chemicals used for extracting the ore by leaching. Non-Newtonian flow of sediment-water mixture resulting from a failure of tailings d...

  11. Tiered on-the-ground implementation projects for Gulf of Mexico water quality improvements

    USDA-ARS?s Scientific Manuscript database

    Both the Gulf Hypoxia Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico and Improving Water Quality in the Mississippi River Basin (USEPA 2008) and the GOMA Governors’ Action Plan II for Healthy and Resilient Coasts (GOMA 2009) call for the development and ...

  12. 18 CFR 1b.21 - Enforcement hotline.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... by calling (202) 502-8390 or 1-888-889-8030 (toll free), by e-mail at [email protected], or writing to... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Enforcement hotline. 1b.21 Section 1b.21 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  13. 21 CFR 172.167 - Silver nitrate and hydrogen peroxide solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agent in bottled water. (b) Hydrogen peroxide meets the specifications of the “Food Chemicals Codex... information on the availability of this material at NARA, call 202-741-6030 or go to: http://www.archives.gov... exceed 17 micrograms per kilogram in the treated bottled water, and the amount of hydrogen peroxide will...

  14. Photo essay: Trinchera dams for erosion control and streambed restoration (Foto ensayo: Trincheras para controlar la erosion y restaurar el cauce de los arroyos)

    Treesearch

    Valer Austin; Josiah Austin

    2006-01-01

    Loose rock structures, called trincheras or rock curtains, can be constructed across streambeds to slow water flow, allowing water to seep into the ground. Soil and debris collect behind the rocks, forming a bed for vegetation.

  15. Two-Dimensional Crystallography Introduced by the Sprinkler Watering Problem

    ERIC Educational Resources Information Center

    De Toro, Jose A.; Calvo, Gabriel F.; Muniz, Pablo

    2012-01-01

    The problem of optimizing the number of circular sprinklers watering large fields is used to introduce, from a purely elementary geometrical perspective, some basic concepts in crystallography and comment on a few size effects in condensed matter physics. We examine square and hexagonal lattices to build a function describing the, so-called, dry…

  16. 24 CFR 902.23 - Physical condition standards for public housing-decent, safe, and sanitary housing in good repair...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... water, electrical system, elevators, emergency power, fire protection, HVAC, and sanitary system. Each..., call-for-aid, ceiling, doors, electrical systems, floors, hot water heater, HVAC (where individual... HOUSING ASSESSMENT SYSTEM PHAS Indicator #1: Physical Condition § 902.23 Physical condition standards for...

  17. A thermal-based remote sensing modelling system for estimating crop water use and stress from field to regional scales

    USDA-ARS?s Scientific Manuscript database

    Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. A thermal-based scheme, called the Two-Source Energy Balance (TSEB) model, solves for the soil/substrate and canopy temp...

  18. Association of ice and river channel morphology determined using ground-penetrationg radar in the Kuparuk River, Alaska

    USGS Publications Warehouse

    Best, Heather; McNamara, J.P.; Liberty, Lee M.

    2005-01-01

    We collected ground-penetrating radar data at 10 sites along the Kuparuk River and its main tributary, the Toolik River, to detect unfrozen water beneath river ice. We used 250 MHz and 500 MHz antennas to image both the ice-water interface and the river channel in late April 2001, when daily high temperatures were consistently freezing and river ice had attained its maximum seasonal thickness. The presence of water below the river ice appears as a strong, horizontal reflection observed in the radar data and is confirmed by drill hole data. A downstream transition occurs from ice that is frozen to the bed, called bedfast ice, to ice that is floating on unfrozen water, called floating ice. This transition in ice type corresponds to a downstream change in channel size that was detected in previously conducted hydraulic geometry surveys of the Kuparuk River. We propose a conceptual model wherein the downstream transition from bedfast ice to floating ice is responsible for an observed step change in channel size due to enhanced bank erosion in large channels by floating ice.

  19. Consumptive water use to feed humanity - curing a blind spot

    NASA Astrophysics Data System (ADS)

    Falkenmark, M.; Lannerstad, M.

    2005-06-01

    Since in large parts of the world it is getting difficult to meet growing water demands by mobilising more water, the discourse has turned its focus to demand management, governance and the necessary concern for aquatic ecosystems by reserving an "environmental flow" in the river. The latter calls for attention to river depletion which may be expected in response to changes in consumptive water use by both natural and anthropogenic systems. Basically, consumptive use has three faces: runoff generation influenced by land cover changes; consumptive use of water withdrawn; and evaporation from water systems (reservoirs, canals, river based cooling). After demonstrating the vulnerability to changes in consumptive use under savanna region conditions - representative of many poverty and hunger prone developing countries subject to attention in the Millennium Development Goal activities - the paper exemplifies; 1) changes in runoff generation in response to regional scale land cover changes; 2) consumptive use in large scale irrigation systems. It goes on to analyse the implications of seeing food as a human right by estimating the additional consumptive use requirements to produce food for the next two generations. Attention is paid to remaining degrees of freedom in terms of uncommitted water beyond an environmental flow reserve and to potential food trade consequences (so-called virtual water). The paper concludes that a human-right-to-food principle will have major consequences in terms of altered consumptive water use. It will therefore be essential for humanity to address river depletion to avoid loss of resilience of the life support system. This will demand a deep-going cooperation between hydrology, ecology and water governance.

  20. Consumptive water use to feed humanity - curing a blind spot

    NASA Astrophysics Data System (ADS)

    Falkenmark, M.; Lannerstad, M.

    2004-11-01

    Since in large parts of the world it is getting difficult to meet growing water demands by mobilising more water, the discourse has turned its focus to demand management, governance and the necessary concern for aquatic ecosystems by reserving an "environmental flow" in the river. The latter calls for attention to river depletion which may be expected in response to changes in consumptive water use by both natural and anthropogenic systems. Basically, consumptive use has three faces: runoff generation influenced by land cover changes; consumptive use of water withdrawn; and evaporation from water systems (reservoirs, canals, river based cooling). After demonstrating the vulnerability to changes in consumptive use under savanna region conditions - representative of many poverty and hunger prone developing countries subject to attention in the Millennium Development Goal activities - the paper exemplifies 1) changes in runoff generation in response to regional scale land cover changes; 2) consumptive use in large scale irrigation systems. It goes on to analyse the implications of seeing food as a human right by estimating the additional consumptive use requirements to produce food for the next two generations. Attention is paid to remaining degrees of freedom in terms of uncommitted water beyond an environmental flow reserve and to potential food trade consequences (so-called virtual water). The paper concludes that a human-right-to-food principle will have major consequences in terms of altered consumptive water use. It will therefore be essential for humanity to address river depletion to avoid loss of resilience of the life support system. This will demand a deep-going cooperation between hydrology, ecology and water governance.

  1. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  2. Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network.

    PubMed

    Wilcock, William S D

    2012-10-01

    Ocean bottom seismometer (OBS) networks represent a tool of opportunity to study fin and blue whales. A small OBS network on the Juan de Fuca Ridge in the northeast Pacific Ocean in ~2.3 km of water recorded an extensive data set of 20-Hz fin whale calls. An automated method has been developed to identify arrival times based on instantaneous frequency and amplitude and to locate calls using a grid search even in the presence of a few bad arrival times. When only one whale is calling near the network, tracks can generally be obtained up to distances of ~15 km from the network. When the calls from multiple whales overlap, user supervision is required to identify tracks. The absolute and relative amplitudes of arrivals and their three-component particle motions provide additional constraints on call location but are not useful for extending the distance to which calls can be located. The double-difference method inverts for changes in relative call locations using differences in residuals for pairs of nearby calls recorded on a common station. The method significantly reduces the unsystematic component of the location error, especially when inconsistencies in arrival time observations are minimized by cross-correlation.

  3. Effects of the Structure of Water Rights on Agricultural Production During Drought: A Spatiotemporal Analysis of California's Central Valley

    NASA Astrophysics Data System (ADS)

    Nelson, K. S.; Burchfield, E. K.

    2017-10-01

    California's Central Valley region has been called the "bread-basket" of the United States. The region is home to one of the most productive agricultural systems on the planet. Such high levels of agricultural productivity require large amounts of fresh water for irrigation. However, the long-term availability of water required to sustain high levels of agricultural production is being called into question following the latest drought in California. In this paper, we use Bayesian multilevel spatiotemporal modeling techniques to examine the influence of the structure of surface water rights in the Central Valley on agricultural production during the recent drought. California is an important place to study these dynamics as it is the only state to recognize the two dominant approaches to surface water management in the United States: riparian and appropriative rights. In this study, Bayesian spatiotemporal modeling is employed to account for spatial processes that have the potential to influence the effects of water right structures on agricultural production. Results suggest that, after accounting for spatiotemporal dependencies in the data, seniority in surface water access significantly improves crop health and productivity on cultivated lands but does not independently affect the ability to maintain cultivated extent. In addition, agricultural productivity in watersheds with more junior surface water rights shows less sensitivity to cumulative drought exposure than other watersheds, however the extent of cultivation in these same watersheds is relatively more sensitive to cumulative drought exposure.

  4. Deposition Nucleation or Pore Condensation and Freezing?

    NASA Astrophysics Data System (ADS)

    David, Robert O.; Mahrt, Fabian; Marcolli, Claudia; Fahrni, Jonas; Brühwiler, Dominik; Lohmann, Ulrike; Kanji, Zamin A.

    2017-04-01

    Ice nucleation plays an important role in moderating Earth's climate and precipitation formation. Over the last century of research, several mechanisms for the nucleation of ice have been identified. Of the known mechanisms for ice nucleation, only deposition nucleation occurs below water saturation. Deposition nucleation is defined as the formation of ice from supersaturated water vapor on an insoluble particle without the prior formation of liquid. However, recent work has found that the efficiency of so-called deposition nucleation shows a dependence on the homogeneous freezing temperature of water even though no liquid phase is presumed to be present. Additionally, the ability of certain particles to nucleate ice more efficiently after being pre-cooled (pre-activation) raises questions on the true mechanism when ice nucleation occurs below water saturation. In an attempt to explain the dependence of the efficiency of so-called deposition nucleation on the onset of homogeneous freezing of liquid water, pore condensation and freezing has been proposed. Pore condensation and freezing suggests that the liquid phase can exist under sub-saturated conditions with respect to liquid in narrow confinements or pores due to the inverse Kelvin effect. Once the liquid-phase condenses, it is capable of nucleating ice either homogeneously or heterogeneously. The role of pore condensation and freezing is assessed in the Zurich Ice Nucleation Chamber, a continuous flow diffusion chamber, using spherical nonporous and mesoporous silica particles. The mesoporous silica particles have a well-defined particle size range of 400 to 600nm with discreet pore sizes of 2.5, 2.8, 3.5 and 3.8nm. Experiments conducted between 218K and 238K show that so-called deposition nucleation only occurs below the homogenous freezing temperature of water and is highly dependent on the presence of pores and their size. The results strongly support pore condensation and freezing, questioning the role of deposition nucleation as an ice nucleation pathway.

  5. Water: Critical Infrastructure and Key Resources Sector-Specific Plan as Input to the National Infrastructure Protection Plan

    DTIC Science & Technology

    2007-05-01

    National Association of Clean Water Agencies Shelly Foston Meridian Institute Michael Gritzuk Pima County (AZ) Wastewater Management Department Genevieve...agencies to assist small and medium systems, and it has helped fund and develop a variety of Web casts and security trainings. Although drinking water...trainings, conference calls, Web casts , and other communica- tions; (2) provide administrative support; (3) provide technical support; and (4

  6. A Non-Equilibrium Sediment Transport Model for Coastal Inlets and Navigation Channels

    DTIC Science & Technology

    2011-01-01

    exchange of water , sediment, and nutrients between estuaries and the ocean. Because of the multiple interacting forces (waves, wind, tide, river...in parallel using OpenMP. The CMS takes advantage of the Surface- water Modeling System (SMS) interface for grid generation and model setup, as well...as for plotting and post- processing (Zundel, 2000). The circulation model in the CMS (called CMS-Flow) computes the unsteady water level and

  7. Ammonium hydroxide poisoning

    MedlinePlus

    Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...

  8. Spatiotemporal analysis of prior appropriations water calls

    NASA Astrophysics Data System (ADS)

    Elbakidze, Levan; Shen, Xiaozhe; Taylor, Garth; Mooney, SiâN.

    2012-06-01

    A spatiotemporal model is developed to examine prior appropriations-based water curtailment in Idaho's Snake River Plain Aquifer. Using a 100 year horizon, prior appropriations-based curtailment supplemented with optimized water use reductions is shown to produce a spatial distribution of water use reductions that differs from that produced by regulatory curtailment based strictly on initial water right assignments. Discounted profits over 100 years of crop production are up to 7% higher when allocation is optimized. Total pumping over 100 years is 0.3%, 3%, and 40% higher under 1, 10, and 100 year prior appropriations-based regulatory curtailment, respectively.

  9. Precipitation and primary health care visits for gastrointestinal illness in Gothenburg, Sweden.

    PubMed

    Tornevi, Andreas; Barregård, Lars; Forsberg, Bertil

    2015-01-01

    The river Göta Älv is a source of freshwater for the City of Gothenburg, Sweden, and we recently identified a clear influence of upstream precipitation on concentrations of indicator bacteria in the river water, as well as an association with the daily number of phone calls to the nurse advice line related to acute gastrointestinal illnesses (AGI calls). This study aimed to examine visits to primary health-care centers owing to similar symptoms (AGI visits) in the same area, to explore associations with precipitation, and to compare variability in AGI visits and AGI calls. We obtained data covering six years (2007-2012) of daily AGI visits and studied their association with prior precipitation (0-28 days) using a distributed lag nonlinear Poisson regression model, adjusting for seasonal patterns and covariates. In addition, we studied the effects of prolonged wet and dry weather on AGI visits. We analyzed lagged short-term relations between AGI visits and AGI calls, and we studied differences in their seasonal patterns using a binomial regression model. The study period saw a total of 17,030 AGI visits, and the number of daily visits decreased on days when precipitation occurred. However, prolonged wet weather was associated with an elevated number of AGI visits. Differences in seasonality patterns were observed between AGI visits and AGI calls, as visits were relatively less frequent during winter and relatively more frequent in August, and only weak short-term relations were found. AGI visits and AGI calls seems to partly reflect different types of AGI illnesses, and the patients' choice of medical contact (in-person visits versus phone calls) appears to depend on current weather conditions. An association between prolonged wet weather and increased AGI visits supports the hypothesis that the drinking water is related to an increased risk of AGI illnesses.

  10. A novel approach to comparing reproductive stage serum profiles in mares using near infrared spectroscopy (NIR) and aquaphotomics

    USDA-ARS?s Scientific Manuscript database

    The capability of near infrared spectroscopy (NIR) to detect biomolecules in aqueous solutions, a sub-field of NIR called Aquaphotomics, has yet to be fully explored. Aquaphotomics references water absorbance patterns and wavelength shifts in the 1st overtone of the water spectrum as they change pat...

  11. Developing a Multimedia Package for University Teaching and Learning--Lessons Learnt

    ERIC Educational Resources Information Center

    Maheshwari, B.

    2011-01-01

    A team of staff at the University of Western Sydney (UWS) were involved in developing a multimedia package, called Sustainable Water Use in Agriculture (SWAG), to assist the first and second year students to learn about the use, management and conservation of water in agriculture. A range of media techniques including text, sound, diagrams,…

  12. 47 CFR 87.173 - Frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...

  13. 47 CFR 87.173 - Frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...

  14. 47 CFR 87.173 - Frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...

  15. 47 CFR 87.173 - Frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...

  16. 47 CFR 87.173 - Frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... traffic control. 325-435 kHz Q RLB Radiobeacons. 410.0 kHz F MA International direction-finding for use outside of United States. 457.0 kHz F MA Working frequency for aircraft on over-water flights. 500.0 kHz F MA International calling and distress frequency for ships and aircraft on over-water flights. 510-535...

  17. Wort free amino nitrogen analysis adapted to a microplate format

    USDA-ARS?s Scientific Manuscript database

    The standard method for determining wort free amino nitrogen content calls for the use of test tubes and glass marbles, as well as boiling and 20°C water baths. In this paper we describe how the standard method can be updated and streamlined by replacing water baths, test tubes and marbles with a th...

  18. The Secret of the Svalbard Sea Ice Barrier

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Van Woert, Michael L.; Neumann, Gregory

    2004-01-01

    An elongated sea ice feature called the Svalbard sea ice barrier rapidly formed over an area in the Barents Sea to the east of Svalbard posing navigation hazards. The secret of its formation lies in the bottom bathymetry that governs the distribution of cold Arctic waters masses, which impacts sea ice growth on the water surface.

  19. 75 FR 13537 - Clean Water Act Section 303(d): Notice of Call for Public Comment on 303(d) Program and Ocean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...), Joint Subcommittee on Ocean Science and Technology (JSOST), National Research Council report on Marine p... ideas for effective strategies for Federal, State, and local officials to use to address the potential... particularly suited to gathering information about acidification of ocean waters? ii. Are there new programs...

  20. Application of Trophic Magnification Factors (TMFs) Under the Water Framework Directive: Some Practical Advice on Selecting and Determining a TMF

    EPA Science Inventory

    Directive 2013/39/EU amending and updating the Water Framework Directive (2000/60/EC) and its Daughter Directive (the so-called EQS Directive: 2008/105/EC) sets Environmental Quality Standards for biota (EQSbiota) for a number of bioaccumulative chemicals which can pose a threat ...

  1. Application of trophic magnification factors (TMFs) under the Water Framework Directive: some practical advice on selecting and determining a TMF (poster)

    EPA Science Inventory

    Directive 2013/39/EU amending and updating the Water Framework Directive (2000/60/EC) and its Daughter Directive (the so-called EQS Directive: 2008/105/EC) sets Environmental Quality Standards for biota (EQSbiota) for a number of bioaccumulative chemicals which can pose a threat ...

  2. Temperature Coefficient for Modeling Denitrification in Surface Water Sediments Using the Mass Transfer Coefficient

    Treesearch

    T. W. Appelboom; G. M. Chescheir; R. W. Skaggs; J. W. Gilliam; Devendra M. Amatya

    2006-01-01

    Watershed modeling has become an important tool for researchers with the high costs of water quality monitoring. When modeling nitrate transport within drainage networks, denitrification within the sediments needs to be accounted for. Birgand et. al. developed an equation using a term called a mass transfer coefficient to mathematically describe sediment...

  3. Speaking up: Killer whales (Orcinus orca) increase their call amplitude in response to vessel noise.

    PubMed

    Holt, Marla M; Noren, Dawn P; Veirs, Val; Emmons, Candice K; Veirs, Scott

    2009-01-01

    This study investigated the effects of anthropogenic sound exposure on the vocal behavior of free-ranging killer whales. Endangered Southern Resident killer whales inhabit areas including the urban coastal waters of Puget Sound near Seattle, WA, where anthropogenic sounds are ubiquitous, particularly those from motorized vessels. A calibrated recording system was used to measure killer whale call source levels and background noise levels (1-40 kHz). Results show that whales increased their call amplitude by 1 dB for every 1 dB increase in background noise levels. Furthermore, nearby vessel counts were positively correlated with these observed background noise levels.

  4. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  5. Altitude of the water table in the alluvial and other shallow aquifers along the Colorado River near La Grange, Texas, December 1980

    USGS Publications Warehouse

    Rettman, Paul

    1981-01-01

    The delineation of the water table in the alluvium of the Colorado River is fairly well defined, and 10-feet contour intervals may be interpreted with confidence in the area called ' potential lignite-mining area. ' The water table in the bedrock aquifers is more difficult to delineate with the available data; therefore, the contours are only estimates of the position of the water table in the hilly bedrock area adjacent to the Colorado River alluvium. 

  6. Water transport in limestone by X-ray CAT scanning

    USGS Publications Warehouse

    Mossoti, Victor G.; Castanier, Louis M.

    1989-01-01

    The transport of water through the interior of Salem limestone test briquettes can be dynamically monitored by computer aided tomography (commonly called CAT scanning in medical diagnostics). Most significantly, unless evaporation from a particular face of the briquette is accelerated by forced air flow (wind simulation), the distribution of water in the interior of the briquette remains more or less uniform throughout the complete drying cycle. Moreover, simulated solar illumination of the test briquette does not result in the production of significant water gradients in the briquette under steady-state drying conditions.

  7. GKI chloride in water, analysis method. GKI boron in water, analysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morriss, L.L.

    1979-05-01

    Procedures for the chemical analysis of chlorides and boron in water are presented. Chlorides can be titrated with mercuric nitrate to form mercuric chloride. At pH 2.3 to 2.8, diphenylcarbazone indicates the end point of this titration by formation of a purple complex with mercury ions. When a sample of water containing boron is acidified and evaporated in the presence of curcumin, a red colored product called rosocyanine is formed. This is dissolved and can be measured photometrically or visually. (DMC)

  8. Analysis for the Design of a U.S. Navy Diving and Salvage Smart Stage

    DTIC Science & Technology

    2013-06-01

    to be salvaged or constructed in the depths of the water , they send in the U.S. Navy divers to carry out that task. The current device used to...conditions of the waters vary depending on the location and situation in which they are called upon to act. A dive stage is used when a diver is...used in tropical waters for one salvage job, and then the next time it is used may be in frigid arctic waters (Commander, Naval Sea Systems Command

  9. M0899; hoh; steam tables 14. 5-2538 psia. [CDC6600; FORTRAN IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, L.L.

    By making calls on a subroutine called HOH, M0899 edits thermodynamic and transport properties of water over the range 14.5 to 2538 psia and up to 608 degrees Fahrenheit below saturation and 932 degrees Fahrenheit above saturation.CDC6600; FORTRAN IV; SCOPE 2.0; On the CDC6600 a FORTRAN IV compiler plus about 3000 storage locations for subroutine HOH and 10,000 locations for the main program.

  10. Holding onto the Green Zone: A Youth Program for the Study and Stewardship of Community Riparian Areas. Action Guide

    ERIC Educational Resources Information Center

    US Department of the Interior, 2008

    2008-01-01

    Scientists call the land along the edges of a river, stream, or lake a riparian zone. In this guide, riparian zone will be called the Green Zone. Riparian zones make up only a small part of land in the United States. But they are very important. They protect water quality and quantity, supply food and shelter for fish and wildlife, and provide…

  11. PCI fuel failure analysis: a report on a cooperative program undertaken by Pacific Northwest Laboratory and Chalk River Nuclear Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, C.L.; Pankaskie, P.J.; Heasler, P.G.

    Reactor fuel failure data sets in the form of initial power (P/sub i/), final power (P/sub f/), transient increase in power (..delta..P), and burnup (Bu) were obtained for pressurized heavy water reactors (PHWRs), boiling water reactors (BWRs), and pressurized water reactors (PWRs). These data sets were evaluated and used as the basis for developing two predictive fuel failure models, a graphical concept called the PCI-OGRAM, and a nonlinear regression based model called PROFIT. The PCI-OGRAM is an extension of the FUELOGRAM developed by AECL. It is based on a critical threshold concept for stress dependent stress corrosion cracking. The PROFITmore » model, developed at Pacific Northwest Laboratory, is the result of applying standard statistical regression methods to the available PCI fuel failure data and an analysis of the environmental and strain rate dependent stress-strain properties of the Zircaloy cladding.« less

  12. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    NASA Astrophysics Data System (ADS)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  13. Gallinules in the waters of KSC-Merritt Island National Wildlife Refuge

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A mother gallinule (right) calls her two chicks to enter the algae-covered water in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. Gallinules, called Moorhens in the Old World, are duck-like swimming birds that constantly bob their heads while moving. They are identified by the prominent red bill with yellow tip and red frontal shield as well as white feathers under the tail, as shown here on the mother. Gallinules range throughout the Americas, from southern Canada to southern South America, inhabiting freshwater marshes and ponds with cattails and other aquatic vegetation. The 92,000-acre wildlife refuge is a habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds.

  14. Use of a health information telephone line, Info-santé CLSC, for the surveillance of waterborne gastroenteritis.

    PubMed

    Gilbert, Marie-Line; Levallois, Patrick; Rodriguez, Manuel J

    2006-06-01

    The increasing frequency of waterborne outbreaks demonstrates that classic indicators used for the surveillance of the microbiological quality of drinking water have several gaps and that routine public health surveillance seems insufficient to allow for the rapid detection of these outbreaks. The main objective of this study was to evaluate the possibility of using a regional health information telephone line, 'Info-Santé CLSC' (Info-Health Local Community Health Centre), for the surveillance of waterborne gastroenteritis. This study measured the incidence rate of calls for acute gastrointestinal illness (AGI) placed to the Info-Santé CLSC line, investigated the relationship between the frequency of calls for AGI placed to the Info-Santé CLSC line and the turbidity of the treated water in the Quebec City drinking water plant and evaluated the relevance and the conditions of use of the Info-Santé CLSC system for the surveillance of waterborne enteric illness. A relationship between the turbidity and the calls for AGI placed to Info-Santé CLSC line was observed. Significant time lags (11, 15 and 17 days prior to the outcome) were identified in the final model derived from a Poisson model using generalized additive models (GAM) as a time series analysis. Some recommendations to improve the system were formulated even though the system already seems to be useful for the surveillance of waterborne enteric diseases.

  15. FORSPAN Model Users Guide

    USGS Publications Warehouse

    Klett, T.R.; Charpentier, Ronald R.

    2003-01-01

    The USGS FORSPAN model is designed for the assessment of continuous accumulations of crude oil, natural gas, and natural gas liquids (collectively called petroleum). Continuous (also called ?unconventional?) accumulations have large spatial dimensions and lack well defined down-dip petroleum/water contacts. Oil and natural gas therefore are not localized by buoyancy in water in these accumulations. Continuous accumulations include ?tight gas reservoirs,? coalbed gas, oil and gas in shale, oil and gas in chalk, and shallow biogenic gas. The FORSPAN model treats a continuous accumulation as a collection of petroleumcontaining cells for assessment purposes. Each cell is capable of producing oil or gas, but the cells may vary significantly from one another in their production (and thus economic) characteristics. The potential additions to reserves from continuous petroleum resources are calculated by statistically combining probability distributions of the estimated number of untested cells having the potential for additions to reserves with the estimated volume of oil and natural gas that each of the untested cells may potentially produce (total recovery). One such statistical method for combination of number of cells with total recovery, used by the USGS, is called ACCESS.

  16. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  17. Metolazone

    MedlinePlus

    ... in a class of medications called diuretics ('water pills'). It causes the kidneys to reduce the amount ... of children as many containers (such as weekly pill minders and those for eye drops, creams, patches, ...

  18. Bumetanide

    MedlinePlus

    ... in a class of medications called diuretics ('water pills'). It works by causing the kidneys to get ... of children as many containers (such as weekly pill minders and those for eye drops, creams, patches, ...

  19. Mumps

    MedlinePlus

    ... These 12 to 24 days are called the incubation period. Treatment How are mumps treated? If you ... citrus fruits. Gargle with warm salt water several times a day. Try popsicles to soothe your throat. ...

  20. Amiloride

    MedlinePlus

    Amiloride is usually used in combination with other diuretics ('water pills') to treat high blood pressure and ... Amiloride is in a class of medications called diuretics. It works by causing the kidneys to get ...

  1. Bexarotene

    MedlinePlus

    ... gets on your skin, wash the area with soap and water immediately and call your doctor.Your ... the following: amiodarone (Cordarone); certain antifungals such as ketoconazole (Nizoral) and itraconazole (Sporanox); cimetidine (Tagamet); clarithromycin (Biaxin); ...

  2. Rita Roars Through a Warm Gulf September 22, 2005

    NASA Image and Video Library

    2005-09-22

    This sea surface height map of the Gulf of Mexico, with the Florida peninsula on the right and the Texas-Mexico Gulf Coast on the left, is based on altimeter data from four satellites including NASA’s Topex/Poseidon and Jason. Red indicates a strong circulation of much warmer waters, which can feed energy to a hurricane. This area stands 35 to 60 centimeters (about 13 to 23 inches) higher than the surrounding waters of the Gulf. The actual track of a hurricane is primarily dependent upon steering winds, which are forecasted through the use of atmospheric models. However, the interaction of the hurricane with the upper ocean is the primary source of energy for the storm. Hurricane intensity is therefore greatly affected by the upper ocean temperature structure and can exhibit explosive growth over warm ocean currents and eddies. Eddies are currents of water that run contrary to the direction of the main current. According to the forecasted track through the Gulf of Mexico, Hurricane Rita will continue crossing the warm waters of a Gulf of Mexico circulation feature called the Loop Current and then pass near a warm-water eddy called the Eddy Vortex, located in the north central Gulf, south of Louisiana. http://photojournal.jpl.nasa.gov/catalog/PIA06427

  3. Unique Turbinal Morphology in Horseshoe Bats (Chiroptera: Rhinolophidae).

    PubMed

    Curtis, Abigail A; Simmons, Nancy B

    2017-02-01

    The mammalian nasal fossa contains a set of delicate and often structurally complex bones called turbinals. Turbinals and associated mucosae function in regulating respiratory heat and water loss, increasing surface area for olfactory tissue, and directing airflow within the nasal fossa. We used high-resolution micro-CT scanning to investigate a unique maxilloturbinal morphology in 37 species from the bat family Rhinolophidae, which we compared with those of families Hipposideridae, Megadermatidae, and Pteropodidae. Rhinolophids exhibit numerous structural modifications along the nasopharyngeal tract associated with emission of high duty cycle echolocation calls via the nostrils. In rhinolophids, we found that the maxilloturbinals and a portion of ethmoturbinal I form a pair of strand-like bony structures on each side of the nasal chamber. These structures project anteriorly from the transverse lamina and complete a hairpin turn to project posteriorly down the nasopharyngeal duct, and vary in length among species. The strand-like maxilloturbinals in Rhinolophidae were not observed in our outgroups and represent a synapomorphy for this family, and are unique in form among mammals. Within Rhinolophidae, maxilloturbinal size and cross-sectional shape were correlated with phylogeny. We hypothesize that strand-shaped maxilloturbinals may function to reduce respiratory heat and water loss without greatly impacting echolocation call transmission since they provide increased mucosal surface area for heat and moisture exchange but occupy minimal space. Alternatively, they may play a role in transmission of echolocation calls since they are located directly along the path sound travels between the larynx and nostrils during call emission. Anat Rec, 300:309-325, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Iron Chelation

    MedlinePlus

    ... fortified cereals and eggs. What is Iron Chelation Therapy? Drugs called iron chelators remove extra iron from ... form that must be dissolved in juice or water and taken (by mouth) once a day. Most ...

  5. All About ALS

    MedlinePlus

    ... by storm with videos of people pouring ice water on themselves for the Ice Bucket Challenge. The worldwide phenomenon raised awareness—and millions of research dollars—for a fatal disease called ALS. ALS ...

  6. Fluocinolone Topical

    MedlinePlus

    ... of medications called corticosteroids. It works by activating natural substances in the skin to reduce swelling, redness, ... and then rinse the shampoo out of your hair and off your body with plenty of water. ...

  7. Effects of noise levels and call types on the source levels of killer whale calls.

    PubMed

    Holt, Marla M; Noren, Dawn P; Emmons, Candice K

    2011-11-01

    Accurate parameter estimates relevant to the vocal behavior of marine mammals are needed to assess potential effects of anthropogenic sound exposure including how masking noise reduces the active space of sounds used for communication. Information about how these animals modify their vocal behavior in response to noise exposure is also needed for such assessment. Prior studies have reported variations in the source levels of killer whale sounds, and a more recent study reported that killer whales compensate for vessel masking noise by increasing their call amplitude. The objectives of the current study were to investigate the source levels of a variety of call types in southern resident killer whales while also considering background noise level as a likely factor related to call source level variability. The source levels of 763 discrete calls along with corresponding background noise were measured over three summer field seasons in the waters surrounding the San Juan Islands, WA. Both noise level and call type were significant factors on call source levels (1-40 kHz band, range of 135.0-175.7 dB(rms) re 1 [micro sign]Pa at 1 m). These factors should be considered in models that predict how anthropogenic masking noise reduces vocal communication space in marine mammals.

  8. Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  9. Structural and Na-ion conduction characteristics of Na 3 PS x Se 4-x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4-x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4-x more » identified a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4-x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  10. Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo

    2014-10-01

    KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.

  11. Effect of Molecular Weight on Mechanical and Electrochemical Performance of All Solid-State Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    He, Ruixuan; Ward, Daniel; Echeverri, Mauricio; Kyu, Thein

    2015-03-01

    Guided by ternary phase diagrams of polyethylene glycol diacrylate (PEGDA), succinonitrile plasticizer, and LiTFSI salt, completely amorphous solid-state transparent polymer electrolyte membranes (ss-PEM) were fabricated by UV irradiation in the isotropic melt state. Effects of PEGDA molecular weight (700 vs 6000 g/mol) on ss-PEM performance were investigated. These amorphous PEMs have superionic room temperature ionic conductivity of ~10-3 S/cm, whereby PEGDA6000-PEM outperforms its PEGDA700 counterpart, which may be ascribed to lower crosslinking density and greater segmental mobility. The longer chain between crosslinked points of PEGDA6000-PEM is responsible for greater extensibility of ~80% versus ~7% of PEGDA700-PEM. Besides, both PEMs exhibited thermal stability up to 120 °C and electrochemical stability versus Li+/Li up to 4.7V. LiFePO4/PEM/Li and Li4Ti5O12 /PEM/Li half-cells exhibited stable cyclic behavior up to 50 cycles tested with a capacity of ~140mAh/g, suggesting that LiFePO4/PEM/Li4Ti5O12 may be a promising full-cell for all solid-state lithium battery. We thank NSF-DMR 1161070 for providing funding of this project.

  12. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.

    PubMed

    Lu, Ziheng; Chen, Chi; Baiyee, Zarah Medina; Chen, Xin; Niu, Chunming; Ciucci, Francesco

    2015-12-28

    Lithium-rich anti-perovskites (LiRAPs) are a promising family of solid electrolytes, which exhibit ionic conductivities above 10(-3) S cm(-1) at room temperature, among the highest reported values to date. In this work, we investigate the defect chemistry and the associated lithium transport in Li3OCl, a prototypical LiRAP, using ab initio density functional theory (DFT) calculations and classical molecular dynamics (MD) simulations. We studied three types of charge neutral defect pairs, namely the LiCl Schottky pair, the Li2O Schottky pair, and the Li interstitial with a substitutional defect of O on the Cl site. Among them the LiCl Schottky pair has the lowest binding energy and is the most energetically favorable for diffusion as computed by DFT. This is confirmed by classical MD simulations, where the computed Li ion diffusion coefficients for LiCl Schottky systems are significantly higher than those for the other two defects considered and the activation energy in LiCl deficient Li3OCl is comparable to experimental values. The high conductivities and low activation energies of LiCl Schottky systems are explained by the low energy pathways of Li between the Cl vacancies. We propose that Li vacancy hopping is the main diffusion mechanism in highly conductive Li3OCl.

  13. 3D Interconnected Carbon Fiber Network-Enabled Ultralong Life Na3 V2 (PO4 )3 @Carbon Paper Cathode for Sodium-Ion Batteries.

    PubMed

    Kretschmer, Katja; Sun, Bing; Zhang, Jinqiang; Xie, Xiuqiang; Liu, Hao; Wang, Guoxiu

    2017-03-01

    Sodium-ion batteries (NIBs) are an emerging technology, which can meet increasing demands for large-scale energy storage. One of the most promising cathode material candidates for sodium-ion batteries is Na 3 V 2 (PO 4 ) 3 due to its high capacity, thermal stability, and sodium (Na) Superionic Conductor 3D (NASICON)-type framework. In this work, the authors have significantly improved electrochemical performance and cycling stability of Na 3 V 2 (PO 4 ) 3 by introducing a 3D interconnected conductive network in the form of carbon fiber derived from ordinary paper towel. The free-standing Na 3 V 2 (PO 4 ) 3 -carbon paper (Na 3 V 2 (PO 4 ) 3 @CP) hybrid electrodes do not require a metallic current collector, polymeric binder, or conducting additives to function as a cathode material in an NIB system. The Na 3 V 2 (PO 4 ) 3 @CP cathode demonstrates extraordinary long term cycling stability for 30 000 deep charge-discharge cycles at a current density of 2.5 mA cm -2 . Such outstanding cycling stability can meet the stringent requirements for renewable energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Diffusion paths formation for Cu + ions in superionic Cu 6PS 5I single crystals studied in terms of structural phase transition

    NASA Astrophysics Data System (ADS)

    Gągor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-01

    In order to understand the structural transformations leading to high ionic conductivity of Cu + ions in Cu 6PS 5I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T=(144-169) K Cu 6PS 5I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above Tc delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43 c ( a'=19.528 Å, z=32). Finally, above T1=274 K increasing disordering of the Cu + ions heightens the symmetry to F-43 m ( a=9.794 Å, z=4). In this work, the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions ( R1=0.0397 for F-43 c phase, and 0.0245 for F-43 m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.

  15. Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand

    2016-05-19

    The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less

  16. Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li 3OX (X=Cl, Br)

    DOE PAGES

    Li, Shuai; Zhu, Jinlong; Wang, Yonggang; ...

    2015-12-10

    Lithium-rich Anti-perovskite (LiRAP), with general formula Li 3OX (X = Cl, Br, I), and recently reported as superionic conductors with 3-dimensional Li + migrating channels, is emerging as a promising candidate for solid electrolyte of all-solid-state LIBs. But, it is still difficult to fabricate pure LiRAP due to the difficulty of the phase formation and moisture-sensitive nature of the products. In this work, we thoroughly studied the formation mechanism of Li 3OCl and Li 3OBr in various solid state reaction routes. We developed different experimental strategies in order to improve the syntheses, in purposes of improved phase stability and large-scalemore » production of LiRAP. One feasible method is to use strongly reductive agents Li metal or LiH to eliminate OH species. The results show that LiH is more effective than Li metal because of negatively charged H - and uniform reaction. The other well-established method is using Li 2O and LiX mixture as reagents to preventing OH phase at the beginning, and using protected ball milling to make fine powders and hence active the reaction. Finally, IR spectroscopy, thermal analyses and first-principle calculation were performed to give indications on the reaction pathway.« less

  17. CALCULATING WATER CONSUMPTION AND WITHDRAWAL FROM POWER PLANTS GLOBALLYUsing machine learning, remote sensing and power plant data from the Power Watch platform

    NASA Astrophysics Data System (ADS)

    Kressig, A.

    2017-12-01

    BACKGROUND The Greenhouse Gas Protocol (GHGP), Scope 2 Guidance standardizes how companies measure greenhouse gas emissions from purchased or independently generated electricity (called "scope 2 emissions"). Additionally, the interlinkages between industrial or commercial (nonresidential) energy requirements and water demands have been studied extensively, mostly at the national or provincial scale, focused on industries involved in power generation. However there is little guidance available for companies to systematically and effectively quantify water withdrawals and consumption (herein referred to as "water demand") associated with purchased or acquired electricity(what we call "Scope 2 Water"). This lack of guidance on measuring a company's water demand from electricity use is due to a lack of data on average consumption and withdrawal rates of water associated with purchased electricity. OBJECTIVE There is growing demand from companies in the food, beverage, manufacturing, information communication and technology, and other sectors for a methodology to quantify Scope 2 water demands. By understanding Scope 2 water demands, companies could evaluate their exposure to water-related risks associated with purchased or acquired electricity, and quantify the water benefits of changing to less water-intensive sources of electricity and energy generation such as wind and solar. However, there has never been a way of quantifying Scope 2 Water consumption and withdrawals for a company across its international supply chain. Even with interest in understanding exposure to water related risk and measuring water use reductions, there has been no quantitative way of measuring this information. But WRI's Power Watch provides the necessary data to allow for the Scope 2 Water accounting, because it will provide water withdrawal and consumption rates associated with purchased electricity at the power plant level. By calculating the average consumption and withdrawal rates per unit of electricity produced across a grid region, companies can measure their water demand from facilities in that region. WRI is now developing a global dataset of grid level water consumption rates and developing a guidance for companies to report water demand across their supply chain and measure their reductions.

  18. The 2009 NCTE Presidential Address: Sailing over the Edge--Navigating the Uncharted Waters of a World Gone Flat

    ERIC Educational Resources Information Center

    Beers, Kylene

    2010-01-01

    This article presents the text of the author's presidential address, delivered at the National Council of Teachers of English (NCTE) Annual Convention in Philadelphia, Pennsylvania, on November 22, 2009. For the author, the title of this president's address, "Sailing over the Edge: Navigating the Uncharted Waters of a World Gone Flat," calls to…

  19. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    NASA Astrophysics Data System (ADS)

    Rayner, John

    2017-02-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  20. Middle Rio Grande Cooperative Water Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vince; Passell, Howard

    2005-11-01

    This is computer simulation model built in a commercial modeling product Called Studio Expert, developed by Powersim, Inc. The simulation model is built in a system dynamics environment, allowing the simulation of the interaction among multiple systems that are all changing over time. The model focuses on hydrology, ecology, demography, and economy of the Middle Rio Grande, with Water as the unifying feature.

  1. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    ERIC Educational Resources Information Center

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  2. The Empty Cup: "Teaching for Understanding" at 21st Century Edward Waters College. Occasional Paper #6

    ERIC Educational Resources Information Center

    Fluellen, Jerry E., Jr.

    2008-01-01

    What happens in a final project that fosters teaching for understanding? That inquiry calls to mind the Taoist belief that emptiness makes a cup useful. In the context of this paper, the inquiry organizes a narrative about how teaching for understanding surfaced in a "Theories of Learning" course at Edward Waters College. At a deeper…

  3. Bile

    MedlinePlus

    ... the digestive tract. Bile contains: Mostly cholesterol Bile acids (also called bile salts) Bilirubin (a breakdown product or red blood cells) It also contains: Water Body salts (such as potassium and sodium) Copper and other metals

  4. Prediction of contaminant fate and transport in potable water systems using H2OFate

    NASA Astrophysics Data System (ADS)

    Devarakonda, Venkat; Manickavasagam, Sivakumar; VanBlaricum, Vicki; Ginsberg, Mark

    2009-05-01

    BlazeTech has recently developed a software called H2OFate to predict the fate and transport of chemical and biological contaminants in water distribution systems. This software includes models for the reactions of these contaminants with residual disinfectant in bulk water and at the pipe wall, and their adhesion/reactions with the pipe walls. This software can be interfaced with sensors through SCADA systems to monitor water distribution networks for contamination events and activate countermeasures, as needed. This paper presents results from parametric calculations carried out using H2OFate for a simulated contaminant release into a sample water distribution network.

  5. Saturn Apollo Program

    NASA Image and Video Library

    1962-04-25

    The second flight of the Saturn I vehicle, the SA-2, was successfully launched from Cape Canaveral, Florida on April 15, 1962. This vehicle had a secondary mission. After the first stage shutoff, at a 65-mile altitude, the water-filled upper stage was exploded, dumping 95 tons of water in the upper atmosphere. The resulting massive ice cloud rose to a height of 90 miles. The experiment, called Project Highwater, was intended to investigate the effects on the ionosphere of the sudden release of such a great volume of water.

  6. Stimulation results in the Giddings (Austin Chalk) field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, D.N.

    1995-05-01

    So called ``water-fracs`` have obtained excellent results in the Austin Chalk formation of Giddings field. This inexpensive treatment uses high volumes of water but no proppant. The reasons the treatment is successful include imbibition, gravity drainage, skin damage removal, and repressurization of the reservoir to enhance recovery. Union Pacific Resources Co. (UPRC) has treated about 250 vertical and 150 horizontal wells with very high economic success rates. Incremental recoveries from horizontal well water fracs alone exceed 5 million bbl of oil equivalent (6 Mcf = 1 bbl).

  7. Easing food waste could reduce pressure on natural resources

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    Calls to reduce food waste and enhance agricultural water efficiency were among the points raised during the 27 August opening session of World Water Week in Stockholm, Sweden. “More than one fourth of all the water we use worldwide is taken to grow over one billion tons of food that nobody eats. That water, together with the billions of dollars spent to grow, ship, package, and purchase the food, is sent down the drain,” said Torgny Holmgren, executive director of the Stockholm International Water Institute, which organizes World Water Week. “Reducing the waste of food is the smartest and most direct route to relieve pressure on water and land resources. It's an opportunity we cannot afford to overlook,” he added.

  8. Water Conservation and Water Storage

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  9. Hybrid Multi-Objective Optimization of Folsom Reservoir Operation to Maximize Storage in Whole Watershed

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.

    2017-12-01

    The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.

  10. James McCall | NREL

    Science.gov Websites

    include techno-economic analyses for various renewable technologies, economic and employment impacts, and gas producer Research Interests Energy Water Nexus Techno-economic Analysis Economic and Employment

  11. Sugar-water hemolysis test

    MedlinePlus

    ... These proteins work with the immune system. Normal Results A normal test result is called a negative ... meaning of your specific test results. What Abnormal Results Mean A positive test result means the results ...

  12. Doxercalciferol Injection

    MedlinePlus

    ... injection is in a class of medications called vitamin D analogs. It works by helping the body to ... thiazide diuretics (''water pills''), or other forms of vitamin D. You and your caregiver should know that many ...

  13. Fluid imbalance

    MedlinePlus

    ... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...

  14. Mars survival handbook: where to find water

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.

    2015-04-01

    Most famous observations of Mars are those of Giovianni Schiaparelli in the late 19th century. His maps contain many linear features across the surface of Mars, which he called `canali'. The mis-translation from the Italian `canali', meaning channel, to the English `canal', man-made infrastructure, led to wild speculations of an advanced species struggling to survive on a planet with diminishing natural resources. Later research has proven this is not the case, at least not for Mars. Nevertheless, the possible existence of life and habitability of Mars has inspired further investigations, interplanetary missions and inevitably at some point human exploration. While no canals exist on Mars, there is widespread evidence for occurrence of liquid water a long time ago on this planet far, far away. The ancient landscapes of Mars may provide most valuable clues for answering the ultimate question about life, the universe and everything, but Mars today is a terrible place to be as it is extremely cold and dry; there may be life, but not as we know it. Nevertheless, many humans have volunteered to go there. Some call them mad, some call them heroes, but perhaps they just want to flee from our planet facing floods, droughts and climate change? But unless we find a good source of water for these explorers, the climate on Mars will certainly cause a swift EXTERMINATION! I have written my PhD thesis on groundwater outflow landscapes on Mars. I will review some of the most spectacular landscapes on Mars, experiments I have done in the past years to explain these landscapes and their hydrological and climate implications. Although the outlook is not so hopeful for early colonist, I will share my views on the possible sources of water on Mars today.

  15. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    NASA Astrophysics Data System (ADS)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  16. Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues

    PubMed Central

    Übernickel, Kirstin; Tschapka, Marco; Kalko, Elisabeth K. V.

    2013-01-01

    Trawling bats use echolocation not only to detect and classify acoustically continuous cues originated from insects at and above water surfaces, but also to detect small water-dwelling prey items breaking the water surface for a very short time, producing only transient cues to be perceived acoustically. Generally, bats need to adjust their echolocation behavior to the specific task on hand, and because of the diversity of prey cues they use in hunting, trawling bats should be highly flexible in their echolocation behavior. We studied the adaptations in the behavior of Noctilio leporinus when approaching either a continuous cue or a transient cue that disappeared during the approach of the bat. Normally the bats reacted by dipping their feet in the water at the cue location. We found that the bats typically started to adapt their calling behavior at approximately 410 ms before prey contact in continuous cue trials, but were also able to adapt their approach behavior to stimuli onsets as short as 177 ms before contact, within a minimum reaction time of 50.9 ms in response to transient cues. In both tasks the approach phase ended between 32 and 53 ms before prey contact. Call emission always continued after the end of the approach phase until around prey contact. In some failed capture attempts, call emission did not cease at all after prey contact. Probably bats used spatial memory to dip at the original location of the transient cue after its disappearance. The duration of the pointed dips was significantly longer in transient cue trials than in continuous cue trials. Our results suggest that trawling bats possess the ability to modify their generally rather stereotyped echolocation behavior during approaches within very short reaction times depending on the sensory information available. PMID:23675352

  17. Antibacterial effect of electrolyzed water on oral bacteria.

    PubMed

    Lee, Sung-Hoon; Choi, Bong-Kyu

    2006-08-01

    This study investigated the antibacterial effect of electrolyzed water on oral bacteria both in vitro and in vivo. Tap water was electrolyzed in a water vessel using platinum cell technology. The electrolyzed tap water (called Puri-water) was put in contact with five major periodontopathogens or toothbrushes contaminated with these bacteria for 30 sec. In addition, Puri-water was used as a mouthwash for 30 sec in 16 subjects and the antibacterial effect on salivary bacteria was evaluated. Puri-water significantly reduced the growth of all periodontopathogens in culture and on toothbrushes, and that of aerobic and anaerobic bacteria in saliva, when compared to the effect of tap water. It also significantly reduced mutans streptococci growing on mitis salivarius-bacitracin agar. Our results demonstrate that the electrolyzed tap water is effective as a mouthwash and for toothbrush disinfection.

  18. Development of an on-line aqueous particle sensor to study the performance of inclusions in a 12 tonne, delta shaped full scale water model tundish

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek

    Detection of particulate matter thinly dispersed in a fluid medium with the aid of the difference in electrical conductivity between the pure fluid and the particles has been practiced at least since the last 50 to 60 years. The first such instruments were employed to measure cell counts in samples of biological fluid. Following a detailed study of the physics and principles operating within the device, called the Electric Sensing Zone (ESZ) principle, a new device called the Liquid Metal Cleanliness Analyzer (LiMCA) was invented which could measure and count particles of inclusions in molten metal. It provided a fast and fairly accurate tool to make online measurement of the quality of steel during refining and casting operations. On similar lines of development as the LiMCA, a water analogue of the device called, the Aqueous Particle Sensor (APS) was developed for physical modeling experiments of metal refining operations involving water models. The APS can detect and measure simulated particles of inclusions added to the working fluid (water). The present study involves the designing, building and final application of a new and improved APS in water modeling experiments to study inclusion behavior in a tundish operation. The custom built instrument shows superior performance and applicability in experiments involving physical modeling of metal refining operations, compared to its commercial counterparts. In addition to higher accuracy and range of operating parameters, its capability to take real-time experimental data for extended periods of time helps to reduce the total number of experiments required to reach a result, and makes it suitable for analyzing temporal changes occurring in unsteady systems. With the modern impetus on the quality of the final product of metallurgical operations, the new APS can prove to be an indispensable research tool to study and put forward innovative design and parametric changes in industrially practised metallurgical operations.

  19. Infantile methemoglobinemia: reexamining the role of drinking water nitrates.

    PubMed

    Avery, A A

    1999-07-01

    Ingestion of nitrates in drinking water has long been thought to be a primary cause of acquired infantile methemoglobinemia, often called blue baby syndrome. However, recent research and a review of historical cases offer a more complex picture of the causes of infantile methemoglobinemia. Gastrointestinal infection and inflammation and the ensuing overproduction of nitric oxide may be the cause of many cases of infantile methemoglobinemia previously attributed to drinking water nitrates. If so, current limits on allowable levels of nitrates in drinking water, which are based solely on the health threat of infantile methemoglobinemia, may be unnecessarily strict.

  20. Heart failure - fluids and diuretics

    MedlinePlus

    ... are often called "water pills." There are many brands of diuretics. Some are taken 1 time a ... failure: a scientific statement from the American Heart Association. Circulation . 2009;120(12):1141-1163. PMID: 19720935 ...

  1. Dialysis centers -- what to expect

    MedlinePlus

    ... will flow through a special filter that removes waste and excess fluid. The filter is sometimes called ... on: How well your kidneys work How much waste needs to be removed How much water weight ...

  2. Peritoneal Dialysis Dose and Adequacy

    MedlinePlus

    ... and other minerals dissolved in water, called dialysis solution, is placed in a person's abdominal cavity through ... to pass from the blood into the dialysis solution. These wastes then leave the body when the ...

  3. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION PROCESS, Hazcon, Inc.

    EPA Science Inventory

    The solidification/stabilization technology mixes hazardous wastes, cement, water and an additive called Chloranan. Chloranan, a nontoxic chemical, encapsulates organic molecules, rendering them ineffective in retarding or inhibiting solidification. This treatment technol...

  4. Rapid direct conversion of Cu2-xSe to CuAgSe nanoplatelets via ion exchange reactions at room temperature

    NASA Astrophysics Data System (ADS)

    Moroz, N. A.; Olvera, A.; Willis, G. M.; Poudeu, P. F. P.

    2015-05-01

    The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance.The use of template nanostructures for the creation of photovoltaic and thermoelectric semiconductors is becoming a quickly expanding synthesis strategy. In this work we report a simple two-step process enabling the formation of ternary CuAgSe nanoplatelets with a great degree of control over the composition and shape. Starting with hexagonal nanoplatelets of cubic Cu2-xSe, ternary CuAgSe nanoplatelets were generated through a rapid ion exchange reaction at 300 K using AgNO3 solution. The Cu2-xSe nanoplatelet template and the final CuAgSe nanoplatelets were analyzed by electron microscopy and X-ray diffraction (XRD). It was found that both the low temperature pseudotetragonal and the high temperature cubic forms of CuAgSe phase were created while maintaining the morphology of the Cu2-xSe nanoplatelet template. Thermal and electronic transport measurements of hot-pressed pellets of the synthesized CuAgSe nanoplatelets showed a drastic reduction in the thermal conductivity and a sharp transition from n-type (S = -45 μV K-1) to p-type (S = +200 μV K-1) semiconducting behavior upon heating above the structural transition from the low temperature orthorhombic to the high temperature super-ionic cubic phase. This simple reaction process utilizing a template nanostructure matrix represents an energy efficient, cost-efficient, and versatile strategy to create interesting materials with lower defect density and superior thermoelectric performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01451d

  5. Cetacean Bioacoustics with Emphasis on Recording and Monitoring

    NASA Astrophysics Data System (ADS)

    Akamatsu, Tomonari

    More than 80 cetacean species live in oceans, lakes, and rivers. For underwater navigation and recognition, whales and dolphins have developed unique sensory systems using acoustic signals. Toothed whales, such as dolphins and porpoises, have sonar using ultrasonic pulse trains called echolocations (Au, 1993). As top predators in the water, dolphins and porpoises rely on accurate and long-range sensory systems for catching prey. Dolphins have another type of vocalization called a whistle that is narrowband with a long duration.

  6. Forest Service Turns to NREL for Help Fighting Fires More Sustainably |

    Science.gov Websites

    reduce energy and water use as well as waste generation at fire camps and supporting operations , burn less fuel, generate less waste, and recycle more. While NREL is often called upon to identify how fundamentally it would be nice to see some savings realized on the energy, water, or waste side, and to add some

  7. Voice of Experience: Little Square Pegs

    ERIC Educational Resources Information Center

    Day, Nicole

    2013-01-01

    The author got a bucket of water and a cloth and called her 3-year-old daughter, Gisella, to help her get things done. She had a "goal" in mind for her daughter; she wanted her to learn something simple like how to clean the table. But then she discovered that as Gisella dunked her little hand into the bucket, soapy water spilled over the edge. It…

  8. Queer Eye on Straight Youth: Homoerotics and Racial Violence in the Narrative Discourse of White Settler Masculinity

    ERIC Educational Resources Information Center

    McNinch, James

    2008-01-01

    In September 2001, three white men from Tisdale Saskatchewan sexually assaulted a 12-year-old Saulteaux girl from the Yellow Quill First Nations. At the time, this Reserve was known for having what was called "the worst water in Canada," while nearby Tisdale still advertises itself as the land of "sparkling waters" and the land…

  9. Environmental effects of dredging. Documentation of the efqual module for ADDAMS: Comparison of predicted effluent water quality with standards. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palermo, M.R.; Schroeder, P.R.

    This technical note describes a technique for comparison of the predicted quality of effluent discharged from confined dredged material disposal areas with applicable water quality standards. This note also serves as documentation of a computer program called EFQUAL written for that purpose as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  10. Modeling of Water-Breathing Propulsion Systems Utilizing the Aluminum-Seawater Reaction and Solid-Oxide Fuel Cells

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component

  11. Promoting Sustainable Development Through Engagement.

    DTIC Science & Technology

    1999-01-30

    address development problems. In June 1992, the United Nations convened an international conference in Rio de Janeiro , commonly called the Earth... River or polluted air and water in the Central and Eastern European countries, nations are failing to provide their population potable water...situation in Central and Eastern Europe (CEE) provide us some examples. First, there is the health impact. Air pollution appears to be the cause of

  12. Water-use in the context of the approaching climate change

    NASA Astrophysics Data System (ADS)

    Krocova, S.; Vaclavik, V.

    2017-10-01

    Optimal use of surface and groundwater will be a decisive factor in maintaining the lives of people on the Earth and the functioning of infrastructure. A climate change calls for a new way of the management and use of water. What means and methods are used to achieve the required balanced state is presented in the basic scope by the following article.

  13. International Travel: Tips for Staying Healthy

    MedlinePlus

    ... Avoid swimming and other water activities in freshwater lakes and streams. Schistosomiasis (also called bilharziasis) is a ... be exposed to in some African streams and lakes. Try to avoid taking overcrowded transportation. Try not ...

  14. Windows to Meridiani's Water-Soaked Past

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken by the Mars Exploration Rover Opportunity shows the two holes that allowed scientists to peer into Meridiani Planum's wet past. The rover drilled the holes into rocks in the region dubbed 'El Capitan' with its rock abrasion tool. By analyzing the freshly exposed rock with the rover's suite of scientific instruments, scientists gathered evidence that this part of Mars may have once been drenched in water. The lower hole, located on a target called 'McKittrick,' was made on the 30th martian day, or sol, of Opportunity's journey. The upper hole, located on a target called 'Guadalupe' was made on the 34th sol of the rover's mission. This image was taken on the 35th martian day, or sol, by the rover's hazard-avoidance camera. The rock abrasion tool and scientific instruments are located on the rover's robotic arm.

  15. Cyanide

    USGS Publications Warehouse

    Creekmore, Lynn H.

    1999-01-01

    Cyanide poisoning of birds is caused by exposure to cyanide in two forms: inorganic salts and hydrogen cyanide gas (HCN). Two sources of cyanide have been associated with bird mortalities: gold and silver mines that use cyanide in the extraction process and a predator control device called the M-44 sodium cyanide ejector, which uses cyanide as the toxic agent.Most of the cyanide mortality documented in birds is a result of exposure to cyanide used in heap leach and carbonin-pulp mill gold or silver mining processes. At these mines, the animals are exposed when they ingest water that contains cyanide salts used in mining processes or, possibly, when they inhale HCN gas. In heap leach mining operations, the ore is placed on an impermeable pad over which a cyanide solution is sprayed or dripped. The cyanide solution dissolves and attaches to or “leaches out” the gold. The cyanide and gold solution is then drained to a plastic-lined pond, which is commonly called the pregnant pond. The gold is extracted, and the remaining solution is moved into another lined pond, which is commonly called the barren pond. The cyanide concentration in this pond is increased so that the solution is again suitable for use in the leaching process, and the solution is used again on the ore heap (Fig. 46.1). Bird use of the HCN-contaminated water in the ponds (Fig. 46.2) or contaminated water on or at the base of the heap leach pads (Fig. 46.3) can result in mortality.

  16. Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks

    NASA Astrophysics Data System (ADS)

    Hooda, Nikhil; Damani, Om

    2017-06-01

    The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.

  17. Self assembly of oppositely charged latex particles at oil-water interface.

    PubMed

    Nallamilli, Trivikram; Ragothaman, Srikanth; Basavaraj, Madivala G

    2017-01-15

    In this study we explore the self assembly of oppositely charged latex particles at decane water interfaces. Two spreading protocols have been proposed in this context. In the first method oppositely charged particles are mixed prior to spreading at the interface, this is called "premixed-mixtures". In the second protocol negatively charged particles are first spread at the interface at known coverage followed by spreading positively charged particles at known coverage and this is called "sequential-mixtures". In premixed mixtures depending on particle mixing ratio (composition) and total surface coverage a number of 2d structures ranging from 2d crystals, aggregate-crystal coexistence and 2d-gels are observed. A detailed phase diagram of this system has been explored. In sequential-mixtures for the first time we observed a new phase in colloidal monolayers called 2d-bi crystalline domains. These structures consisted regions of two crystal phases of oppositely charged particles separated by a one dimensional chain of alternating positive and negative particles. Phase diagram of this system has also been explored at various combinations of first spread and second spread particles. A possible mechanism leading to formation of these 2d bi crystalline structures has been discussed. A direct visualization of breakage and reformation of particle barriers separating the crystal phases has been demonstrated through videos. Effect of salt in the water sub phase and particle hydrophobicity on domain formation is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Number of 24-Hour Diet Recalls Needed to Estimate Energy Intake

    PubMed Central

    MA, Yunsheng; Olendzki, Barbara C.; Pagoto, Sherry L.; Hurley, Thomas G.; Magner, Robert P.; Ockene, Ira S.; Schneider, Kristin L.; Merriam, Philip A.; Hébert, James R.

    2009-01-01

    Purpose Twenty-four-hour diet recall interviews (24HRs) are used to assess diet and to validate other diet assessment instruments. Therefore it is important to know how many 24HRs are required to describe an individual's intake. Method Seventy-nine middle-aged white women completed seven 24HRs over a 14-day period, during which energy expenditure (EE) was determined by the doubly labeled water method (DLW). Mean daily intakes were compared to DLW-derived EE using paired t tests. Linear mixed models were used to evaluate the effect of call sequence and day of the week on 24HR-derived energy intake while adjusting for education, relative body weight, social desirability, and an interaction between call sequence and social desirability. Results Mean EE from DLW was 2115 kcal/day. Adjusted 24HR-derived energy intake was lowest at call 1 (1501 kcal/day); significantly higher energy intake was observed at calls 2 and 3 (2246 and 2315 kcal/day, respectively). Energy intake on Friday was significantly lower than on Sunday. Averaging energy intake from the first two calls better approximated true energy expenditure than did the first call, and averaging the first three calls further improved the estimate (p = 0.02 for both comparisons). Additional calls did not improve estimation. Conclusions Energy intake is underreported on the first 24HR. Three 24HRs appear optimal for estimating energy intake. PMID:19576535

  19. Number of 24-hour diet recalls needed to estimate energy intake.

    PubMed

    Ma, Yunsheng; Olendzki, Barbara C; Pagoto, Sherry L; Hurley, Thomas G; Magner, Robert P; Ockene, Ira S; Schneider, Kristin L; Merriam, Philip A; Hébert, James R

    2009-08-01

    Twenty-four-hour diet recall interviews (24HRs) are used to assess diet and to validate other diet assessment instruments. Therefore it is important to know how many 24HRs are required to describe an individual's intake. Seventy-nine middle-aged white women completed seven 24HRs over a 14-day period, during which energy expenditure (EE) was determined by the doubly labeled water method (DLW). Mean daily intakes were compared to DLW-derived EE using paired t tests. Linear mixed models were used to evaluate the effect of call sequence and day of the week on 24HR-derived energy intake while adjusting for education, relative body weight, social desirability, and an interaction between call sequence and social desirability. Mean EE from DLW was 2115 kcal/day. Adjusted 24HR-derived energy intake was lowest at call 1 (1501 kcal/day); significantly higher energy intake was observed at calls 2 and 3 (2246 and 2315 kcal/day, respectively). Energy intake on Friday was significantly lower than on Sunday. Averaging energy intake from the first two calls better approximated true energy expenditure than did the first call, and averaging the first three calls further improved the estimate (p=0.02 for both comparisons). Additional calls did not improve estimation. Energy intake is underreported on the first 24HR. Three 24HRs appear optimal for estimating energy intake.

  20. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.

    PubMed

    Clusella-Trullas, Susana; Chown, Steven L

    2008-10-01

    Several controversies currently dominate the fields of arthropod metabolic rate, gas exchange and water balance, including the extent to which modulation of gas exchange reduces water loss, the origins of discontinuous gas exchange, the relationship between metabolic rate and life-history strategies, and the causes of Palaeozoic gigantism. In all of these areas, repeated calls have been made for the investigation of groups that might most inform the debates, especially of taxa in key phylogenetic positions. Here we respond to this call by investigating metabolic rate, respiratory water loss and critical oxygen partial pressure (Pc) in the onychophoran Peripatopsis capensis, a member of a group basal to the arthropods, and by synthesizing the available data on the Onychophora. The rate of carbon dioxide release (VCO2) at 20 degrees C in P. capensis is 0.043 ml CO2 h(-1), in keeping with other onychophoran species; suggesting that low metabolic rates in some arthropod groups are derived. Continuous gas exchange suggests that more complex gas exchange patterns are also derived. Total water loss in P. capensis is 57 mg H2O h(-1) at 20 degrees C, similar to modern estimates for another onychophoran species. High relative respiratory water loss rates ( approximately 34%; estimated using a regression technique) suggest that the basal condition in arthropods may be a high respiratory water loss rate. Relatively high Pc values (5-10% O2) suggest that substantial safety margins in insects are also a derived condition. Curling behaviour in P. capensis appears to be a strategy to lower energetic costs when resting, and the concomitant depression of water loss is a proximate consequence of this behaviour.

  1. Seasonal variability and detection range modeling of baleen whale calls in the Gulf of Alaska, 1999-2002.

    PubMed

    Stafford, Kathleen M; Mellinger, David K; Moore, Sue E; Fox, Christopher G

    2007-12-01

    Five species of large whales, including the blue (Balaenoptera musculus), fin (B. physalus), sei (B. borealis), humpback (Megaptera novaeangliae), and North Pacific right (Eubalaena japonica), were the target of commercial harvests in the Gulf of Alaska (GoA) during the 19th through mid-20th Centuries. Since this time, there have been a few summer time visual surveys for these species, but no overview of year-round use of these waters by endangered whales primarily because standard visual survey data are difficult and costly. From October 1999-May 2002, moored hydrophones were deployed in six locations in the GoA to record whale calls. Reception of calls from fin, humpback, and blue whales and an unknown source, called Watkins' whale, showed seasonal and geographic variation. Calls were detected more often during the winter than during the summer, suggesting that animals inhabit the GoA year-round. To estimate the distance at which species-diagnostic calls could be heard, parabolic equation propagation loss models for frequencies characteristic of each of each call type were run. Maximum detection ranges in the subarctic North Pacific ranged from 45 to 250 km among three species (fin, humpback, blue), although modeled detection ranges varied greatly with input parameters and choice of ambient noise level.

  2. KSC-2011-3558

    NASA Image and Video Library

    2011-05-15

    CAPE CANAVERAL, Fla. - Water bags, called red water sausages, are revealed on Launch Pad 39A at NASA's Kennedy Space Center in Florida following the move of the rotating service structure (RSS). RSS "rollback," as it's called, began at 11:44 a.m. EDT on May 15 and was completed at 12:24 p.m. The bags will dampen the wave of sound energy that is reflected back up toward space shuttle Endeavour when the solid rocket boosters ignite during launch. They suppress the powerful pulse of pressure to prevent dangerous stress on the wings of the shuttle. STS-134 will deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. May 16 at 8:56 a.m. will be the second launch attempt for Endeavour. The first attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). STS-134 will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  3. KSC-2011-3557

    NASA Image and Video Library

    2011-05-15

    CAPE CANAVERAL, Fla. - Water bags, called red water sausages, are revealed on Launch Pad 39A at NASA's Kennedy Space Center in Florida following the move of the rotating service structure (RSS). RSS "rollback," as it's called, began at 11:44 a.m. EDT on May 15 and was completed at 12:24 p.m. The bags will dampen the wave of sound energy that is reflected back up toward space shuttle Endeavour when the solid rocket boosters ignite during launch. They suppress the powerful pulse of pressure to prevent dangerous stress on the wings of the shuttle. STS-134 will deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. May 16 at 8:56 a.m. will be the second launch attempt for Endeavour. The first attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). STS-134 will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  4. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1more » well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.« less

  5. Moditored unsaturated soil transport processes as a support for large scale soil and water management

    NASA Astrophysics Data System (ADS)

    Vanclooster, Marnik

    2010-05-01

    The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.

  6. Cell culture-based biosensing techniques for detecting toxicity in water.

    PubMed

    Tan, Lu; Schirmer, Kristin

    2017-06-01

    The significant increase of contaminants entering fresh water bodies calls for the development of rapid and reliable methods to monitor the aquatic environment and to detect water toxicity. Cell culture-based biosensing techniques utilise the overall cytotoxic response to external stimuli, mediated by a transduced signal, to specify the toxicity of aqueous samples. These biosensing techniques can effectively indicate water toxicity for human safety and aquatic organism health. In this review we account for the recent developments of the mainstream cell culture-based biosensing techniques for water quality evaluation, discuss their key features, potentials and limitations, and outline the future prospects of their development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Fluorene-9-bisphenol is anti-oestrogenic and may cause adverse pregnancy outcomes in mice

    PubMed Central

    Zhang, Zhaobin; Hu, Ying; Guo, Jilong; Yu, Tong; Sun, Libei; Xiao, Xuan; Zhu, Desheng; Nakanishi, Tsuyoshi; Hiromori, Youhei; Li, Junyu; Fan, Xiaolin; Wan, Yi; Cheng, Siyu; Li, Jun; Guo, Xuan; Hu, Jianying

    2017-01-01

    Bisphenol A (BPA) is used in the production of plastic but has oestrogenic activity. Therefore, BPA substitutes, such as fluorene-9-bisphenol (BHPF), have been introduced for the production of so-called ‘BPA-free' plastics. Here we show that BHPF is released from commercial ‘BPA-free' plastic bottles into drinking water and has anti-oestrogenic effects in mice. We demonstrate that BHPF has anti-oestrogenic activity in vitro and, in an uterotrophic assay in mice, induces low uterine weight, atrophic endometria and causes adverse pregnancy outcomes, even at doses lower than those of BPA for which no observed adverse effect have been reported. Female mice given water containing BHPF released from plastic bottles, have detectable levels of BHPF in serum, low uterine weights and show decreased expressions of oestrogen-responsive genes. We also detect BHPF in the plasma of 7/100 individuals, who regularly drink water from plastic bottles. Our data suggest that BPA substitutes should be tested for anti-oestrogenic activity and call for further study of the toxicological effects of BHPF on human health. PMID:28248286

  8. Indicators: Wetland Vegetation (Introduced Species)

    EPA Pesticide Factsheets

    Introduced plants are indicators of the ecological integrity of waters and evidence of increased human-caused disturbance in the watershed. Introduced species that cause economic or environmental harm, or harm to human health, are called invasive species.

  9. Spleen and Lymphatic System (For Parents)

    MedlinePlus

    ... they have many tiny openings that allow gases, water, and nutrients to pass through to the surrounding cells, nourishing them and taking away waste products. When lymph fluid leaks through in this way it is called interstitial ...

  10. STS-34 onboard view of iodine comparator assembly used to check water quality

    NASA Image and Video Library

    1989-10-23

    STS034-10-014 (18-23 Oct. 1989) --- An onboard 35mm camera provides a closeup view of an STS-34 beverage container doubling as an experiment module for a test involving iodine concentration in onboard water. The examination called for the adding of starch to a specimen of Atlantis' fuel-cell produced water. The liquid was then compared against the color chart for determining the degree of iodine content. The experiment was designed by Terry H. Slezak of JSC's Photographic Technology and Television Division.

  11. Solar Energy Technologies and the Utilization on Native American Tribal Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Kathryn

    As an undergraduate researcher, I worked on a new technology called nanofluid-based direct absorption solar collectors (DASC) which is a type of solar water heater that has the potential to be more efficient than traditional solar water heaters. Because of my experience with this type of technology, I decided to look into other types of solar energy technologies which could be used on Native American tribal lands. Some types of solar energy technologies that I wanted to focus on are photovoltaic solar energy systems, passive solar design, and solar water heaters.

  12. Enhancement Of Water-Jet Stripping Of Foam

    NASA Technical Reports Server (NTRS)

    Cosby, Steven A.; Shockney, Charles H.; Bates, Keith E.; Shalala, John P.; Daniels, Larry S.

    1995-01-01

    Improved robotic high-pressure-water-jet system strips foam insulation from parts without removing adjacent coating materials like paints, primers, and sealants. Even injects water into crevices and blind holes to clean out foam, without harming adjacent areas. Eliminates both cost of full stripping and recoating and problem of disposing of toxic solutions used in preparation for coating. Developed for postflight refurbishing of aft skirts of booster rockets. System includes six-axis robot provided with special end effector and specially written control software, called Aftfoam. Adaptable to cleaning and stripping in other industrial settings.

  13. Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water.

    PubMed

    Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek

    2014-01-01

    Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.

  14. A progress report on suspended sediment in several western Oregon and western Washington streams.

    Treesearch

    Manes Barton

    1951-01-01

    Streams transport their loads by traction (the bed load) in suspension (the suspended load) and as salts in solution (the solution load). The total load is the sum of these three and is commonly called the water quality. The amounts of and variation in stream flow and water quality have become in the past few years accepted criteria for evaluating watershed conditions...

  15. Membrane Pump for Synthetic Muscle Actuation

    DTIC Science & Technology

    2009-09-28

    FIG. 3 is a schematic representation of an embodiment of a muscle equipped to use electroosmotic flow in accordance with the present invention...water through the membrane to the cathode. This movement of water across the membrane during the application of current is called electroosmotic ...current and a 120 V AC source, again with an appropriate electronics package to control voltage and current. Preferably, the power source 316 can be

  16. Silicon and Civilization,

    DTIC Science & Technology

    1980-11-04

    less form, or so-called amorphous, as strata of diatomaceous earth , or also in the form of the precious stone--opal. As mentioned, silicon dioxide...skeletons and those of water creatures, which after mortification fall to the bottom of the waters creating strata of diatomaceous earth are also built of...reactions. Likewise, diatomaceous earth has a well developed surface and great adsorptive capa- bility, among others it can absorb a triple excess of

  17. A software framework for assessing the resilience of drinking ...

    EPA Pesticide Factsheets

    Journal article This paper introduces a new software tool called the Water Network Tool for Resilience (WNTR) that water utilities can use to assess their resilience to disasters. A case study of an earthquake is included that results in damage to pipes and tanks, fires, and power outages. The utility uses several response strategies including fixing damaged pipes and tanks, restoring power, fighting fires, and implementing conservation.

  18. Millimeter Wave Attenuation in Moist Air: Laboratory Measurements and Analysis.

    DTIC Science & Technology

    1984-03-01

    GHz (see Table 1). Artificial aerosol populations of known chemical composition and concentration can be added to study their growth/evaporation... engen in the quantitative deorip im of the inter- (0) Water ion activity ...... .28. 45 action betven, millimeter waves and moist air. The water...sizes. and chemical two states called the saturation point. At saturation, the rate composition. and moat Importantly. having the ability to

  19. Documentation of the runqual module for ADDAMS: Comparison of predicted runoff water quality with standards. Environmental effects of dredging. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, P.R.; Gibson, A.C.; Dardeau, E.A.

    This technical note has a twofold purpose: to describe a technique for comparing the predicted quality of surface runoff from confined dredged material disposal areas with applicable water quality standards and to document a computer program called RUNQUAL, written for that purpose as a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  20. Tankers in US waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, R.J.

    About 200 US flag tankers operate between US ports; the import trade consists of 30-40 more US tankers and 600-700 foreign tankers. US ships have 50% as many spills per port call as Liberian tankers and 20-33% as many as foreign tankers as a whole. There is mounting evidence that ships are prone to have a rather constant number of spills per year irrespective of variations in port call exposure. When spill incidence is measured per ship time, the US tanker margin over foreign fleets is only 2-3 instead of 3-6. For 1973-1975, 76% of all US tanker spills weremore » <100 gal, compared with 65% of all flag of convenience spills. The probability of no tanker losses in a one-year period in US waters is only 0.22. One-half the losses can be expected to occur in conditions favorable to a spill in coastal waters. In any given year, the US tanker fleet of 235 vessels >1000 gross registered tonnage can be expected to have about 100 spills in US waters, while foreign flag ships contribute another 250 spills. The largest US tanker spill in a one-year period is <5000 gal; the median value for the largest spill from foreign tankers is closer to 50,000-100,000 gal.« less

  1. Arsenic: The Silent Killer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years,more » can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.« less

  2. Active formation of `chaos terrain' over shallow subsurface water on Europa

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2011-11-01

    Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America.

  3. Infantile methemoglobinemia: reexamining the role of drinking water nitrates.

    PubMed Central

    Avery, A A

    1999-01-01

    Ingestion of nitrates in drinking water has long been thought to be a primary cause of acquired infantile methemoglobinemia, often called blue baby syndrome. However, recent research and a review of historical cases offer a more complex picture of the causes of infantile methemoglobinemia. Gastrointestinal infection and inflammation and the ensuing overproduction of nitric oxide may be the cause of many cases of infantile methemoglobinemia previously attributed to drinking water nitrates. If so, current limits on allowable levels of nitrates in drinking water, which are based solely on the health threat of infantile methemoglobinemia, may be unnecessarily strict. Images Figure 1 Figure 2 PMID:10379005

  4. Water's Early Journey in a Solar System (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Spitzer Space Telescope observed a fledgling solar system like the one depicted in this artist's concept, and discovered deep within it enough water vapor to fill the oceans on Earth five times. This water vapor starts out in the form of ice in a cloudy cocoon (not pictured) that surrounds the embryonic star, called NGC 1333-IRAS 4B (buried in center of image). Material from the cocoon, including ice, falls toward the center of the cloud. The ice then smacks down onto a dusty pre-planetary disk circling the stellar embryo (doughnut-shaped cloud) and vaporizes. Eventually, this water might make its way into developing planets.

  5. Water-Energy Nexus: Examining The Crucial Connection Through Simulation Based Optimization

    NASA Astrophysics Data System (ADS)

    Erfani, T.; Tan, C. C.

    2014-12-01

    With a growing urbanisation and the emergence of climate change, the world is facing a more water constrained future. This phenomenon will have direct impacts on the resilience and performance of energy sector as water is playing a key role in electricity generation processes. As energy is becoming a thirstier resource and the pressure on finite water sources is increasing, modelling and analysing this closely interlinked and interdependent loop, called 'water-energy nexus' is becoming an important cross-disciplinary challenge. Conflict often arises in transboundary river where several countries share the same source of water to be used in productive sectors for economic growth. From the perspective of the upstream users, it would be ideal to store the water for hydropower generation and protect the city against drought whereas the downstream users need the supply of water for growth. This research use the case study on the transboundary Blue Nile River basin located in the Middle East where the Ethiopian government decided to invest on building a new dam to store the water and generate hydropower. This leads to an opposition by downstream users as they believe that the introduction of the dam would reduce the amount of water available downstream. This calls for a compromise management where the reservoir operating rules need to be derived considering the interdependencies between the resources available and the requirements proposed by all users. For this, we link multiobjective optimization algorithm to water-energy use simulation model to achieve effective management of the transboundary reservoir operating strategies. The objective functions aim to attain social and economic welfare by minimizing the deficit of water supply and maximizing the hydropower generation. The study helps to improve the policies by understanding the value of water and energy in their alternative uses. The results show how different optimal reservoir release rules generate different trade-off solutions inherently involved in upstream and downstream users requirements and decisions. This study stimulates the research in this context by using simulation based optimization techniques to manage for security for food, water and energy generation, which leads to improve sustainability and long-term political stability.

  6. 48 CFR 1823.7101 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Frequency Authorization 1823.7101 Contract clause. The contracting... calling for developing, producing, constructing, testing, or operating a device for which a radio...

  7. The Same Here as There

    NASA Image and Video Library

    2011-10-05

    New measurements from NASA Herschel Space Observatory have discovered water with the same chemical signature as our oceans in a comet called Hartley 2 pictured at right. The image at bottom right is an artist concept of a comet.

  8. NAPL: SIMULATOR DOCUMENTATION

    EPA Science Inventory

    A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...

  9. DEMONSTRATION BULLETIN - SOLIDIFICATION/ STABILIZATION PROCESS, SOLIDTECH, INC.

    EPA Science Inventory

    The Soliditech solidification/stabilization technology mixes hazardous waste materials in soils or sludges with pozzolanic material (cement, fly ash, or kiln dust), a proprietary additive called Urrichem, other proprietary additives, and water. The process is designed to aid ...

  10. Genetics Home Reference: acatalasemia

    MedlinePlus

    ... oxygen and water. Hydrogen peroxide is produced through chemical reactions within cells. At low levels, it is involved in several chemical signaling pathways, but at high levels it is toxic to cells. ... reactions convert it into compounds called reactive oxygen species ...

  11. Impact of environmental pollutants on the male: effects on germ cell differentiation

    PubMed Central

    Rao Veeramachaneni, D. N.

    2008-01-01

    A variety of so-called innocuous chemicals can have insidious and long lasting effects on the developing male reproductive system. Developmental exposures of male rabbits to common industrial contaminants in drinking water (a mixture of arsenic, chromium, lead, benzene, chloroform, phenol, and trichloroethylene); alkyl phenols (e.g. octylphenol); water disinfection by-products (e.g. dibromoacetic acid); anti-androgenic pesticides (e.g. p,p’-DDT and vinclozolin); and plasticizers (e.g. dibutyl phthalate) produce testicular dysgenesis. The lesions include testicular carcinoma in situ, also called intratubular germ cell neoplasia—the precursor lesion of germ cell tumors in men, and acrosomal dysgenesis—characterized by sharing of a dysplastic acrosome by two or more spermatids resulting in characteristic sperm acrosomal-nuclear malformations. Certain manifestations of testicular dysgenesis arch across environmental agents, and sequelae of intentional developmental exposures of rabbits duplicate what has been encountered in deer, horses, and humans for which the etiology is uncertain. PMID:18155861

  12. Then Why Do They Call Earth the Blue Planet?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    While the most common photographs of Earth taken from space show the planet covered in blue water, NASA has managed to produce detailed color images, using satellite imagery, that show the remarkable variation of colors that actually make up the oceanic surface. An ocean s color is determined by the interaction of surface waters with sunlight, and surface waters can contain any number of different particles and dissolved substances, which could then change the color. Then Why Do They Call Earth the Blue Planet? The particles are mostly phytoplankton, the microscopic, single-celled ocean plants that are the primary food source for much marine life. Remote detection of phytoplankton provides information about the uptake and cycling of carbon by the ocean through photosynthesis, as well as the overall health of the water. Inorganic particles and substances dissolved in the water also affect its color, particularly in coastal regions. Satellite images can be used to calculate the concentrations of these materials in surface waters, as well as the levels of biological activity. The satellites allow a global view that is not available from ship or shore. NASA s orbiting satellites offer a unique vantage point for studying the oceans. By resolving the biological, chemical, and physical conditions in surface waters, they have allowed the oceanographic community to make huge leaps in its understanding of oceanographic processes on regional and global fronts. The study of ocean color, in particular, has been integral in helping researchers understand the natural and human-induced changes in the global environment and establishing the role of the oceans in the biochemical cycles of elements that influence the climate and the distribution of life on Earth.

  13. ARC-1989-AC89-0114-592

    NASA Image and Video Library

    1989-02-28

    Airborne Arctic Stratospheric (Ozone) Expedition Stavanger Norway Jan-Feb 1989: The clouds seen from the NASA DC-8 aircraft at nearly 39,000 feet in the polar regions north of Stravanger, Norway, are representative of what are called 'Type II' polar stratospheric clouds. This type consists mostly of water molecules frozen as ice. These particular clouds are also exhibiting what is called orographic effects - the clouds have taken on a wave-like form because of motion associated with underlying topographic features of the earth's surface; in this case, some mountains in Iceland.

  14. PURDU-WINCOF: A computer code for establishing the performance of a fan-compressor unit with water ingestion

    NASA Technical Reports Server (NTRS)

    Leonardo, M.; Tsuchiya, T.; Murthy, S. N. B.

    1982-01-01

    A model for predicting the performance of a multi-spool axial-flow compressor with a fan during operation with water ingestion was developed incorporating several two-phase fluid flow effects as follows: (1) ingestion of water, (2) droplet interaction with blades and resulting changes in blade characteristics, (3) redistribution of water and water vapor due to centrifugal action, (4) heat and mass transfer processes, and (5) droplet size adjustment due to mass transfer and mechanical stability considerations. A computer program, called the PURDU-WINCOF code, was generated based on the model utilizing a one-dimensional formulation. An illustrative case serves to show the manner in which the code can be utilized and the nature of the results obtained.

  15. Investigation and Characterization of Water-Recrystallized Croconic Acid

    DTIC Science & Technology

    2016-12-01

    high- pressure synthesis. Thermal analysis, bomb calorimetry, X-ray diffraction, and Raman spectroscopy were performed on water- recrystallized...3.2.3 Raman Spectroscopy and X-ray Diffraction 12 3.2.4 Bomb Calorimetry 13 4. Conclusions 15 5. References 16 List of Symbols, Abbreviations, and...and is called the β-phase (the as-received [AR] material is also known as the α-phase). Bomb calorimeter testing of the β-CA indicated a heat of

  16. Water Penetration Photogrammetry. Volume 1. Feasibility and Evaluation Study

    DTIC Science & Technology

    1983-01-01

    so-called ’ yellow substance,’ which occurs frequently in coastal waters. It shifts the best propagation wavelengths toward the green region...Stereophotogrammetric Method for the Investigation of Underwater Relief. Geodesy and Aerophotog., n. 1 . (2) Specht , M. R., D. Needier, and N. L...sensitive, yellow dye-forming layer in color film (e.g., Current, 1969; Willard, 1969) or the use of a yellow filter (Wratten No. 12) (e.g., Lepley, 1968

  17. Petroleum Release Assessment and Impacts of Weather Extremes

    EPA Science Inventory

    Contaminated ground water and vapor intrusion are two major exposure pathways of concern at petroleum release sites. EPA has recently developed a model for petroleum vapor intrusion, called PVIScreen, which incorporates variability and uncertainty in input parameters. This ap...

  18. Neratinib

    MedlinePlus

    ... to take anti-diarrhea medication to prevent dehydration (loss of too much water from your body). Your doctor may also tell you to drink plenty of liquids, make changes in your diet, or take other medications to control the diarrhea. Call your doctor immediately if you ...

  19. Halos on Mars Could Mean a Longer Life-Friendly Past

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Lighter-toned bedrock that surrounds fractures and comprises high concentrations of silica—called “halos”—has been found in Gale crater on Mars, indicating that the planet had liquid water much longer than previously believed.

  20. Spring Slide

    NASA Image and Video Library

    2013-10-30

    The North Polar region of Mars is capped with layers of water ice and dust, called the polar layered deposits. This permanent polar cap is covered in the winter with a layer of seasonal carbon dioxide ice as seen by NASA Mars Reconnaissance Orbiter.

  1. Geobiotropy: The Evolution of Rocks in Symbiosis with Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Bassez, M. P.

    2017-07-01

    In their interaction with water, minerals inside rocks transform with production of elements and small molecules which intervene in prebiotic syntheses. This chemical evolution between the world of rocks and the world of life is called geobiotropy.

  2. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  3. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    NASA Astrophysics Data System (ADS)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three frog species phenological activities are also affected by certain thresholds in the incident, blackbody, latent, sensible, and net heat

  4. Linking Pan-European data to the local scale for decision making for global change and water scarcity within water resources planning and management.

    PubMed

    Suárez-Almiñana, Sara; Pedro-Monzonís, María; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2017-12-15

    This study focuses on a novel type of methodology which connects Pan-European data to the local scale in the field of water resources management. This methodology is proposed to improve and facilitate the decision making within the planning and management of water resources, taking into account climate change and its expected impacts. Our main point of interest is focused on the assessment of the predictability of extreme events and their possible effects, specifically droughts and water scarcity. Consequently, the Júcar River Basin was selected as the case study, due to the ongoing water scarcity problems and the last drought episodes suffered in the Mediterranean region. In order to study these possible impacts, we developed a modeling chain divided into four steps, they are: i) data collection, ii) analysis of available data, iii) models calibration and iv) climate impact analysis. Over previous steps, we used climate data from 15 different regional climate models (RCMs) belonging to the three different Representative Concentration Pathways (RCPs) coming from a hydrological model across all of Europe called E-HYPE. The data were bias corrected and used to obtain statistical results of the availability of water resources for the future (horizon 2039) and in form of indicators. This was performed through a hydrological (EVALHID), stochastic (MASHWIN) and risk management (SIMRISK) models, all of which were specifically calibrated for this basin. The results show that the availability of water resources is much more enthusiastic than in the current situation, indicating the possibility that climate change, which was predicted to occur in the future has already happened in the Júcar River Basin. It seems that the so called "Effect 80", an important decrease in water resources for the last three decades, is not well contemplated in the initial data. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Stabilization of superionic α-Agl at room temperature in a glass matrix

    NASA Astrophysics Data System (ADS)

    Tatsumisago, Masahiro; Shinkuma, Yoshikane; Minami, Tsutomu

    1991-11-01

    SINCE the discovery1 that the high-temperature phase of silver iodide (α-AgI) has an ionic conductivity comparable to that of the best liquid electrolytes, solid electrolytes have attracted wide interest. Possible applications of these materials range from solid-state batteries to electrochromic displays and sensors2. Although α-AgI displays conductivities of more than 10 S cm-1 (ref. 3), owing to the almost liquid-like mobility of Ag+ ions, the crystal transforms below 147 °C to the β-phase with a conductivity of only ~10-5 S cm-1 at room temperature. Efforts to achieve good conductivities at lower temperatures have focused on the addition of a second component to AgI to form solid solutions or new compounds such as RbAg4I5 and Ag2HgI4 (refs 4-7). Here we report our success in depressing the α-->β transformation temperature so as to stabilize α-AgI itself at room temperature. We use a melt-quenching technique to prepare crystallites of α-AgI frozen into a silver borate glass matrix. The quenched material showed diffraction peaks characteristic of α-AgI and displayed ionic conductivities of about 10-1 S cm-1. Further development of these glass/crystal composites may make the high ionic conductivity of α-AgI available for room-temperature solid-state applications.

  6. Dependences of the density of M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} single crystals (M = Ca, Sr, Ba, Cd, Pb; R means rare earth elements) on composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, N. I., E-mail: sorokin@ns.crys.ras.ru; Krivandina, E. A.; Zhmurova, Z. I.

    2013-11-15

    The density of single crystals of nonstoichiometric phases Ba{sub 1-x}La{sub x}F{sub 2+x} (0 {<=} x {<=} 0.5) and Sr{sub 0.8}La{sub 0.2-x}Lu{sub x}F{sub 2.2} (0 {<=} x {<=} 0.2) with the fluorite (CaF{sub 2}) structure type and R{sub 1-y}Sr{sub y}F{sub 3-y} (R = Pr, Nd; 0 {<=} y {<=} 0.15) with the tysonite (LaF{sub 3}) structure type has been measured. Single crystals were grown from a melt by the Bridgman method. The measured concentration dependences of single crystal density are linear. The interstitial and vacancy models of defect formation in the fluorite and tysonite phases, respectively, are confirmed. To implement themore » composition control of single crystals of superionic conductors M{sub 1-x}R{sub x}F{sub 2+x} and R{sub 1-y}M{sub y}F{sub 3-y} in practice, calibration graphs of X-ray density in the MF{sub 2}-RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R = La-Lu, Y) are plotted.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chun-Lan; Yuan, Hongtao; Li, Yanbin

    Electric-double-layer (EDL) gating with liquid electrolyte has been a powerful tool widely used to explore emerging interfacial electronic phenomena. Due to the large EDL capacitance, a high carrier density up to 10 14 cm –2 can be induced, directly leading to the realization of field-induced insulator to metal (or superconductor) transition. However, the liquid nature of the electrolyte has created technical issues including possible side electrochemical reactions or intercalation, and the potential for huge strain at the interface during cooling. In addition, the liquid coverage of active devices also makes many surface characterizations and in situ measurements challenging. Here, wemore » demonstrate an all solid-state EDL device based on a solid superionic conductor LaF 3, which can be used as both a substrate and a fluorine ionic gate dielectric to achieve a wide tunability of carrier density without the issues of strain or electrochemical reactions and can expose the active device surface for external access. Based on LaF 3 EDL transistors (EDLTs), we observe the metal–insulator transition in MoS 2. Interestingly, the well-defined crystal lattice provides a more uniform potential distribution in the substrate, resulting in less interface electron scattering and therefore a higher mobility in MoS 2 transistors. Finally, this result shows the powerful gating capability of LaF 3 solid electrolyte for new possibilities of novel interfacial electronic phenomena.« less

  8. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt.more » %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.« less

  9. Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics

    PubMed Central

    Slodczyk, Aneta; Colomban, Philippe

    2010-01-01

    Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1−x)PbMg1/3Nb2/3O3−xPbTiO3) solid solutions arise from the coexistence of different symmetries with long and short scales in the morphotropic phase boundary (MPB) region. This complex physical behavior requires the use of experimental techniques able to probe the local structure at the nanoregion scale. Since both Raman signature and thermal expansion behavior depend on the chemical bond anharmonicity, these techniques are very efficient to detect and then to analyze the subtitle structural modifications with an efficiency comparable to neutron scattering. Using the example of poled (field cooling or room temperature) and unpoled PMN-PT single crystal and textured ceramic, we show how the competition between the different sublattices with competing degrees of freedom, namely the Pb-Pb dominated by the Coulombian interactions and those built of covalent bonded entities (NbO6 and TiO6), determine the short range arrangement and the outstanding ferro- and piezoelectric properties. PMID:28883367

  10. Understanding ionic conductivity trends in polyborane solid electrolytes from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Varley, Joel; Kweon, Kyoung; Mehta, Prateek; Shea, Patrick; Heo, Tae Wook; Stavila, Vitalie; Udovic, Terrence; Wood, Brandon

    Polyborane salts based on B12H122- , B10H102- , and their carboborane counterparts CB11H12- and CB9H10- demonstrate extraordinary Li and Na superionic conductivity that make them attractive as electrolytes in all-solid-state batteries. Their rich chemical and structural diversity creates a versatile design space that could be used to optimize materials with even higher conductivity at lower temperatures; however, many mechanistic details remain enigmatic, including reasons why certain modifications lead to improved performance. Here, we use extensive ab initio molecular dynamics simulations to broadly explore the dependence of ionic conductivity on cation/anion pair combinations for Li and Na polyborane salts. Further simulations based on Li2B12H12 as a model system are used to probe the additional influence of local perturbations, including modifications to chemistry, stoichiometry, and composition. Carbon doping, anion alloying, and cation off-stoichiometry are found to be favorable because they introduce intrinsic disorder, which facilitates local deviations from the expected cation population. Anion reorientations are also discovered to be critical for conduction, with benefits associated with lattice expansion traceable to the facilitation of anion rotation at larger volumes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Diffusion paths formation for Cu{sup +} ions in superionic Cu{sub 6}PS{sub 5}I single crystals studied in terms of structural phase transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagor, A.; Pietraszko, A.; Kaynts, D.

    2005-11-15

    In order to understand the structural transformations leading to high ionic conductivity of Cu{sup +} ions in Cu{sub 6}PS{sub 5}I argyrodite compound, the detailed structure analysis based on single-crystal X-ray diffraction has been performed. Below the phase transition at T{sub c}=(144-169)K Cu{sub 6}PS{sub 5}I belongs to monoclinic, ferroelastic phase (space group Cc) with ordered copper sublattice. Above T{sub c} delocalization of copper ions begins and crystal changes the symmetry to cubic superstructure with space group F-43c (a{sup '}=19.528A, z=32). Finally, above T{sub 1}=274K increasing disordering of the Cu{sup +} ions heightens the symmetry to F-43m (a=9.794A, z=4). In this work,more » the final structural model of two cubic phases is presented including the detailed temperature evolution of positions and site occupation factors of copper ions (R{sub 1}=0.0397 for F-43c phase, and 0.0245 for F-43m phase). Possible diffusion paths for the copper ions are represented by means of the atomic displacement factors and split model. The structural results coincide well with the previously reported non-Arrhenius behavior of conductivity and indicate significant change in conduction mechanism.« less

  12. The First Bromeligenous Species of Dendropsophus (Anura: Hylidae) from Brazil's Atlantic Forest.

    PubMed

    Ferreira, Rodrigo B; Faivovich, Julián; Beard, Karen H; Pombal, José P

    2015-01-01

    We describe a new treefrog species of Dendropsophus collected on rocky outcrops in the Brazilian Atlantic Forest. Ecologically, the new species can be distinguished from all known congeners by having a larval phase associated with rainwater accumulated in bromeliad phytotelms instead of temporary or lentic water bodies. Phylogenetic analysis based on molecular data confirms that the new species is a member of Dendropsophus; our analysis does not assign it to any recognized species group in the genus. Morphologically, based on comparison with the 96 known congeners, the new species is diagnosed by its small size, framed dorsal color pattern, and short webbing between toes IV-V. The advertisement call is composed of a moderate-pitched two-note call (~5 kHz). The territorial call contains more notes and pulses than the advertisement call. Field observations suggest that this new bromeligenous species uses a variety of bromeliad species to breed in, and may be both territorial and exhibit male parental care.

  13. The First Bromeligenous Species of Dendropsophus (Anura: Hylidae) from Brazil's Atlantic Forest

    PubMed Central

    Ferreira, Rodrigo B.; Faivovich, Julián; Beard, Karen H.; Pombal, José P.

    2015-01-01

    We describe a new treefrog species of Dendropsophus collected on rocky outcrops in the Brazilian Atlantic Forest. Ecologically, the new species can be distinguished from all known congeners by having a larval phase associated with rainwater accumulated in bromeliad phytotelms instead of temporary or lentic water bodies. Phylogenetic analysis based on molecular data confirms that the new species is a member of Dendropsophus; our analysis does not assign it to any recognized species group in the genus. Morphologically, based on comparison with the 96 known congeners, the new species is diagnosed by its small size, framed dorsal color pattern, and short webbing between toes IV-V. The advertisement call is composed of a moderate-pitched two-note call (~5 kHz). The territorial call contains more notes and pulses than the advertisement call. Field observations suggest that this new bromeligenous species uses a variety of bromeliad species to breed in, and may be both territorial and exhibit male parental care. PMID:26650515

  14. Tropospheric rivers? A pilot study. [of filamentary structures of atmospheric water vapor

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Newell, Nicholas E.; Zhu, Yong; Scott, Courtney

    1992-01-01

    Computations of daily global tropospheric water vapor flux values show the presence of a filamentary structure. The filaments, here called rivers, have lengths many times their widths and persist for many days while being translated through the atmosphere. They are present in data analyzed for both 1981 and 1991. The water vapor flux maxima coincide quite closely to reflectivity features (averaged from wavelengths of 380 and 360 nm) as revealed by the Total Ozone Mapping Spectrometer (TOMS). It is suggested that the filamentary structure may also be present in other trace constituents.

  15. Why "improved" water sources are not always safe.

    PubMed

    Shaheed, Ameer; Orgill, Jennifer; Montgomery, Maggie A; Jeuland, Marc A; Brown, Joe

    2014-04-01

    Existing and proposed metrics for household drinking-water services are intended to measure the availability, safety and accessibility of water sources. However, these attributes can be highly variable over time and space and this variation complicates the task of creating and implementing simple and scalable metrics. In this paper, we highlight those factors - especially those that relate to so-called improved water sources - that contribute to variability in water safety but may not be generally recognized as important by non-experts. Problems in the provision of water in adequate quantities and of adequate quality - interrelated problems that are often influenced by human behaviour - may contribute to an increased risk of poor health. Such risk may be masked by global water metrics that indicate that we are on the way to meeting the world's drinking-water needs. Given the complexity of the topic and current knowledge gaps, international metrics for access to drinking water should be interpreted with great caution. We need further targeted research on the health impacts associated with improvements in drinking-water supplies.

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Described are demonstrations designed to reveal the important "nonsolvent" properties of water through its interaction with a toy called "Magic Sand" and other synthetic silica derivatives, especially those bonded with organic moities. The procedures for seven demonstrations along with a discussion of the effects are presented. (CW)

  17. STC synthesis of research results for water quality management at construction sites : research project capsule.

    DOT National Transportation Integrated Search

    2012-07-01

    The RAC Region II has initiated a collaborative research program consortium through the : Transportation Pooled Fund (TPF) Program. The research program is called the Southeast : Transportation Consortium (STC) and is intended to encourage coordinati...

  18. Great Lakes Nearshore Assessment: What Would Goldilocks Do?

    EPA Science Inventory

    Concerns with the nearshore water quality of the Great Lakes, such as excessive eutrophication and harmful algal blooms, called for establishing a nearshore monitoring program to gain a better understanding of the watershed-nearshore link. This is challenging, as sporadic runoff ...

  19. An Easy Classroom Experiment on the Supercooling of Water

    ERIC Educational Resources Information Center

    Gianino, Concetto

    2007-01-01

    The change from the state of supercooling to the solid state of ice is called superfreezing. This process is not uncommon and takes place in domestic freezers. It is also easy to reproduce in the laboratory. (Contains 6 figures.)

  20. Teaching for a World Conservation Strategy.

    ERIC Educational Resources Information Center

    Kirk, John J.

    1982-01-01

    The World Conservation Strategy calls upon international, national, and regional efforts to balance development with conservation of the world's living resources (e.g., forests, water, farmland, coastal resources). Environmental educators must inform themselves, establish adequate teacher training programs, and develop curriculum materials to…

  1. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  2. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Di Pasquale, Nicodemo; Davie, Stuart J.; Popelier, Paul L. A.

    2018-06-01

    Using the machine learning method kriging, we predict the energies of atoms in ion-water clusters, consisting of either Cl- or Na+ surrounded by a number of water molecules (i.e., without Na+Cl- interaction). These atomic energies are calculated following the topological energy partitioning method called Interacting Quantum Atoms (IQAs). Kriging predicts atomic properties (in this case IQA energies) by a model that has been trained over a small set of geometries with known property values. The results presented here are part of the development of an advanced type of force field, called FFLUX, which offers quantum mechanical information to molecular dynamics simulations without the limiting computational cost of ab initio calculations. The results reported for the prediction of the IQA components of the energy in the test set exhibit an accuracy of a few kJ/mol, corresponding to an average error of less than 5%, even when a large cluster of water molecules surrounding an ion is considered. Ions represent an important chemical system and this work shows that they can be correctly taken into account in the framework of the FFLUX force field.

  3. Do manatees utilize infrasonic communication or detection?

    NASA Astrophysics Data System (ADS)

    Gerstein, Edmund; Gerstein, Laura; Forsythe, Steve; Blue, Joseph

    2004-05-01

    Some researchers speculate Sirenians might utilize infrasonic communication like their distant elephant cousins; however, audiogram measurements and calibrated manatee vocalizations do not support this contention. A comprehensive series of hearing tests conducted with West Indian manatees yielded the first and most definitive audiogram for any Sirenian. The manatee hearing tests were also the first controlled underwater infrasonic psychometric tests with any marine mammal. Auditory thresholds were measured from 0.4 to 46 kHz, but detection thresholds of possible vibrotactile origin were measured as low as 0.015 kHz. Manatees have short hairs on their bodies that may be sensitive vibrotactile receptors capable of detecting particle displacement in the near field. To detect these signals the manatee rotated on axis, exposing the densest portion of hairs toward the projector. Manatees inhabit shallow water where particle motion detection may be more useful near the water's surface, where sound pressures are low due to the Lloyd mirror effect. With respect to intraspecific communication, no infrasonic spectra have been identified in hundreds of calibrated calls. Low source levels and propagation limits in shallow-water habitats suggest low-frequency manatee calls have limited utility over long distances and infrasonic communication is not an attribute shared with elephants.

  4. Life at low water activity.

    PubMed Central

    Grant, W D

    2004-01-01

    Two major types of environment provide habitats for the most xerophilic organisms known: foods preserved by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (a(w)) of 0.61, the lowest a(w) value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (a(w) 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called 'compatible solutes' (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloarchaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods. PMID:15306380

  5. Detection of baleen whales on an ocean-bottom seismometer array in the Lau Basin

    NASA Astrophysics Data System (ADS)

    Brodie, D.; Dunn, R.

    2011-12-01

    Long-term deployment of ocean-bottom seismometer arrays provides a unique opportunity for identifying and tracking whales in a manner not usually possible in biological studies. Large baleen whales emit low frequency (>5Hz) sounds called 'calls' or 'songs' that can be detected on either the hydrophone or vertical channel of the instrument at distances in excess of 50 km. The calls are distinct to individual species and even geographical groups among species, and are thought to serve a variety of purposes. Distinct repeating calls can be automatically identified using matched-filter processing, and whales can be located in a manner similar to that of earthquakes. Many baleen whale species are endangered, and little is known about their geographic distribution, population dynamics, and basic behaviors. The Lau back-arc basin, a tectonically active, elongated basin bounded by volcanic shallows, lies in the southwestern Pacific Ocean between Fiji and Tonga. Although whales are known to exist around Fiji and Tonga, little is understood about the population dynamics and migration patterns throughout the basin. Twenty-nine broadband ocean-bottom seismometers deployed in the basin recorded data for approximately ten months during the years 2009-2010. To date, four species of whales have been identified in the data: Blue (one call type), Humpback (two call types, including long-lasting 'songs'), Bryde's (one call type), and Fin whales (three call types). Three as-yet-unknown call types have also been identified. After the calls were identified, idealized spectrograms of the known calls were matched against the entire data set using an auto-detection algorithm. The auto-detection output provides the number of calls and times of year when each call type was recorded. Based on the results, whales migrate seasonally through the basin with some overlapping of species. Initial results also indicate that different species of whales are more common in some parts of the basin than others, suggesting preferences in water depth and distance to land. In future work, whales will be tracked through the basin using call localization information to illustrate migration patterns of the various species.

  6. The impact of radiatively active water-ice clouds on Martian mesoscale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Madeleine, J.-B.; Hinson, D.; Navarro, T.; Forget, F.

    2014-04-01

    Background and Goals Water ice clouds are a key component of the Martian climate [1]. Understanding the properties of the Martian water ice clouds is crucial to constrain the Red Planet's climate and hydrological cycle both in the present and in the past [2]. In recent years, this statement have become all the more true as it was shown that the radiative effects of water ice clouds is far from being as negligible as hitherto believed; water ice clouds plays instead a key role in the large-scale thermal structure and dynamics of the Martian atmosphere [3, 4, 5]. Nevertheless, the radiative effect of water ice clouds at lower scales than the large synoptic scale (the so-called meso-scales) is still left to be explored. Here we use for the first time mesoscale modeling with radiatively active water ice clouds to address this open question.

  7. Expert forecasts and the emergence of water scarcity on public agendas

    USGS Publications Warehouse

    Graffy, E.A.

    2006-01-01

    Expert forecasts of worldwide water scarcity depict conditions that call for proactive, preventive, coordinated water governance, but they have not been matched by public agendas of commensurate scope and urgency in the United States. This disconnect can not be adequately explained without some attention to attributes of forecasts themselves. I propose that the institutional fragmentation of water expertise and prevailing patterns of communication about water scarcity militate against the formulation of a common public definition of the problem and encourage reliance on unambiguous crises to stimulate social and policy agenda setting. I do not argue that expert forecasts should drive public agendas deterministically, but if their purpose is to help prevent water crises (not just predict them), then a greater effort is needed to overcome the barriers to meaningful public scrutiny of expert claims and evaluation of water strategies presently in place. Copyright ?? 2006 Taylor & Francis Group, LLC.

  8. Emerging solutions to the water challenges of an urbanizing world.

    PubMed

    Larsen, Tove A; Hoffmann, Sabine; Lüthi, Christoph; Truffer, Bernhard; Maurer, Max

    2016-05-20

    The top priorities for urban water sustainability include the provision of safe drinking water, wastewater handling for public health, and protection against flooding. However, rapidly aging infrastructure, population growth, and increasing urbanization call into question current urban water management strategies, especially in the fast-growing urban areas in Asia and Africa. We review innovative approaches in urban water management with the potential to provide locally adapted, resource-efficient alternative solutions. Promising examples include new concepts for stormwater drainage, increased water productivity, distributed or on-site treatment of wastewater, source separation of human waste, and institutional and organizational reforms. We conclude that there is an urgent need for major transdisciplinary efforts in research, policy, and practice to develop alternatives with implications for cities and aquatic ecosystems alike. Copyright © 2016, American Association for the Advancement of Science.

  9. Seeing real-space dynamics of liquid water through inelastic x-ray scattering.

    PubMed

    Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi

    2017-12-01

    Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.

  10. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 189733b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    Astronomers were perplexed when they first saw the infrared spectrum above. It doesn't look anything like what theorists had predicted. Theorists thought the spectra of hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules, and is instead what astronomers call 'flat.' For example, theorists thought there'd be a strong signature of water in the form of a big drop in the wavelength range between 7 and 10 microns. The fact that water is not detected may indicate that it is hidden underneath a thick blanket of high, dry clouds. The average brightness of the spectrum is also a bit lower than theoretical predictions, suggesting that very high winds are rapidly moving the terrific heat of the noonday sun from the day side of HD 189733b to the night side.

    This spectrum was produced by Dr. Carl Grillmair of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena, Calif., and his colleagues. The data were taken by Spitzer's infrared spectrograph on November 22, 2006.

  11. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 189733b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. Astronomers were perplexed when they first saw the infrared spectrum above. It doesn't look anything like what theorists had predicted. Theorists thought the spectra of hot, Jupiter-like planets like this one would be filled with the signatures of molecules in the planets' atmospheres. But the spectrum doesn't show any molecules, and is instead what astronomers call "flat." For example, theorists thought there'd be a strong signature of water in the form of a big drop in the wavelength range between 7 and 10 microns. The fact that water is not detected may indicate that it is hidden underneath a thick blanket of high, dry clouds. The average brightness of the spectrum is also a bit lower than theoretical predictions, suggesting that very high winds are rapidly moving the terrific heat of the noonday sun from the day side of HD 189733b to the night side. This spectrum was produced by Dr. Carl Grillmair of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena, Calif., and his colleagues. The data were taken by Spitzer's infrared spectrograph on November 22, 2006. http://photojournal.jpl.nasa.gov/catalog/PIA09199

  12. Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner.

    NASA Astrophysics Data System (ADS)

    Matijevic, J. R.; Crisp, J.; Bickler, D. B.; Banes, R. S.; Cooper, B. K.; Eisen, H. J.; Gensler, J.; Haldemann, A.; Hartman, F.; Jewett, K. A.; Matthies, L. H.; Laubach, S. L.; Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Sirota, A. R.; Stone, H. W.; Stride, S.; Sword, L. F.; Tarsala, J. A.; Thompson, A. D.; Wallace, M. T.; Welch, R.; Wellman, E.; Wilcox, B. H.; Ferguson, D.; Jenkins, P.; Kolecki, J.; Landis, G. A.; Wilt, D.; Rover Team

    1997-12-01

    The Mars Pathfinder rover discovered pebbles on the surface and in rocks that may be sedimentary - not volcanic - in origin. Surface pebbles may have been rounded by Ares flood waters or liberated by weathering of sedimentary rocks called conglomerates. Conglomerates imply that water existed elsewhere and earlier than the Ares flood. Most soil-like deposits are similar to moderately dense soils on Earth. Small amounts of dust are currently settling from the atmosphere.

  13. Design, Monitoring, and Validation of a High Performance Sustainable Building

    DTIC Science & Technology

    2013-08-01

    normalized by building average population and square footage. Longstreet had a larger number of emergency calls than CESS, but the ESTCP team did not have...system was measured sUSEPArately from the domestic water use. The rainwater was used to displace potable water for toilet flushing and vehicle washing...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for

  14. Parameterization of the Porous-Material Model for Sand with Different Levels of Water Saturation

    DTIC Science & Technology

    2008-01-01

    equation of state defines pressures dependence on mass density and internal-energy density (and in the case of anisotropic materials, on deviatoric ...strain). The strength and failure equations define the evolutions of the deviatoric stress in the elastic regime, elastic–plastic regime, and in the...via the so-called ‘‘pore pressure’’) [6]. Furthermore, the deformation of soil is controlled by the effective stress since the water and gas do not

  15. Water Efficient Installations - A New Army Guidance Document

    DTIC Science & Technology

    2010-06-01

    Toilets 1.28 gpf or less, 50 manuf., 500+ models Required in CA Dual flush options also available WaterSense program provides certification and...lose 8760 to 219,000 gal/year Broken flush valve on toilet can lose 40 gal/hour US Army Corps of Engineers® Engineer Research and Development Center...Engineer Research and Development Center Toilets and Urinals ULFTs Ultra-Low Flush Toilet , also called low flow 1.28 gpf to 1.6 gpf HETs High Efficiency

  16. Active formation of 'chaos terrain' over shallow subsurface water on Europa.

    PubMed

    Schmidt, B E; Blankenship, D D; Patterson, G W; Schenk, P M

    2011-11-16

    Europa, the innermost icy satellite of Jupiter, has a tortured young surface and sustains a liquid water ocean below an ice shell of highly debated thickness. Quasi-circular areas of ice disruption called chaos terrains are unique to Europa, and both their formation and the ice-shell thickness depend on Europa's thermal state. No model so far has been able to explain why features such as Conamara Chaos stand above surrounding terrain and contain matrix domes. Melt-through of a thin (few-kilometre) shell is thermodynamically improbable and cannot raise the ice. The buoyancy of material rising as either plumes of warm, pure ice called diapirs or convective cells in a thick (>10 kilometres) shell is insufficient to produce the observed chaos heights, and no single plume can create matrix domes. Here we report an analysis of archival data from Europa, guided by processes observed within Earth's subglacial volcanoes and ice shelves. The data suggest that chaos terrains form above liquid water lenses perched within the ice shell as shallow as 3 kilometres. Our results suggest that ice-water interactions and freeze-out give rise to the diverse morphologies and topography of chaos terrains. The sunken topography of Thera Macula indicates that Europa is actively resurfacing over a lens comparable in volume to the Great Lakes in North America. ©2011 Macmillan Publishers Limited. All rights reserved

  17. Cavitation induced Becquerel effect.

    PubMed

    Prevenslik, T V

    2003-06-01

    The observation of an electrical current upon the ultraviolet (UV) illumination of one of a pair of identical electrodes in liquid water, called the Becquerel effect, was made over 150 years ago. More recently, an electrical current was found if the water surrounding one electrode was made to cavitate by focused acoustic radiation, the phenomenon called the cavitation induced Becquerel effect. Since cavitation is known to produce UV light, the electrode may simply absorb the UV light and produce the current by the photo-emission theory of photoelectrochemistry. But the current was found to be semi-logarithmic with the standard electrode potential which is characteristic of the oxidation of the electrode surface in the photo-decomposition theory, and not the photo-emission theory. High bubble collapse temperatures may oxidize the electrode, but this is unlikely because melting was not observed on the electrode surfaces. At ambient temperature, oxidation may proceed by chemical reaction provided a source of vacuum ultraviolet (VUV) radiation is available to produce the excited OH* states of water to react with the electrode. The source of VUV radiation is shown to be the spontaneous emission of coherent infrared (IR) radiation from water molecules in particles that form in bubbles because of surface tension, the spontaneous IR emission induced by cavity quantum electrodynamics. The excited OH* states are produced as the IR radiation accumulates to VUV levels in the bubble wall molecules.

  18. Analysing inter-relationships among water, governance, human development variables in developing countries

    NASA Astrophysics Data System (ADS)

    Dondeynaz, C.; Carmona Moreno, C.; Céspedes Lorente, J. J.

    2012-10-01

    The "Integrated Water Resources Management" principle was formally laid down at the International Conference on Water and Sustainable development in Dublin 1992. One of the main results of this conference is that improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). These sectors influence or are influenced by the access to WSS. The understanding of these interrelations appears as crucial for decision makers in the water sector. In this framework, the Joint Research Centre (JRC) of the European Commission (EC) has developed a new database (WatSan4Dev database) containing 42 indicators (called variables in this paper) from environmental, socio-economic, governance and financial aid flows data in developing countries. This paper describes the development of the WatSan4Dev dataset, the statistical processes needed to improve the data quality, and finally, the analysis to verify the database coherence is presented. Based on 25 relevant variables, the relationships between variables are described and organised into five factors (HDP - Human Development against Poverty, AP - Human Activity Pressure on water resources, WR - Water Resources, ODA - Official Development Aid, CEC - Country Environmental Concern). Linear regression methods are used to identify key variables having influence on water supply and sanitation. First analysis indicates that the informal urbanisation development is an important factor negatively influencing the percentage of the population having access to WSS. Health, and in particular children's health, benefits from the improvement of WSS. Irrigation is also enhancing Water Supply service thanks to multi-purpose infrastructure. Five country profiles are also created to deeper understand and synthetize the amount of information gathered. This new classification of countries is useful in identifying countries with a less advanced position and weaknesses to be tackled. The relevance of indicators gathered to represent environmental and water resources state is questioned in the discussion section. The paper concludes with the necessity to increase the reliability of current indicators and calls for further research on specific indicators, in particular on water quality at national scale, in order to better include environmental state in analysis to WSS.

  19. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2013-09-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  20. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite

    PubMed Central

    Inukai, Shigeki; Cruz-Silva, Rodolfo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Tanioka, Akihiko; Araki, Takumi; Tejima, Syogo; Noguchi, Toru; Terrones, Mauricio; Endo, Morinobu

    2015-01-01

    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes. PMID:26333385

  1. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  2. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  3. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales

    PubMed Central

    Shabangu, Fannie W.; Yemane, Dawit; Stafford, Kathleen M.; Ensor, Paul; Findlay, Ken P.

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species. PMID:28222124

  4. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales.

    PubMed

    Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species.

  5. [Bioacoustic of the advertisement call of Ceratophrys cranwelli (Anura: Ceratophryidae)].

    PubMed

    Valetti, Julián Alonso; Salas, Nancy Edith; Martino, Adolfo Ludovico

    2013-03-01

    The advertisement call plays an important role in the life history of anuran amphibians, mainly during the breeding season. Call features represent an important character to discriminate species, and sound emissions are very effective to assure or reinforce genetic incompatibility, especially in the case of sibling species. Since frogs are ectotherms, acoustic properties of their calls will vary with temperature. In this study, we described the advertisement call of C. cranwelli, quantifying the temperature effect on its components. The acoustic emissions were recorded during 2007 using a DAT record Sony TCD-100 with stereo microphone ECM-MS907 Sony and tape TDK DAT-RGX 60. As males emit their calls floating in temporary ponds, water temperatures were registered after recording the advertisement calls with a digital thermometer TES 1300+/-0.1 degreeC. Altogether, 54 calls from 18 males were analyzed. The temporal variables of each advertisement call were measured using oscillograms and sonograms and the analyses of dominant frequency were performed using a spectrogram. Multiple correlation analysis was used to identify the temperature-dependent acoustic variables and the temperature effect on these variables was quantified using linear regression models. The advertisement call of C. cranwelli consists of a single pulse group. Call duration, Pulse duration and Pulse interval decreased with the temperature, whereas the Pulse rate increased with temperature. The temperature-dependent variables were standardized at 25 degreeC according to the linear regression model obtained. The acoustic variables that were correlated with the temperature are the variables which emissions depend on laryngeal muscles and the temperature constraints the contractile properties of muscles. Our results indicated that temperature explains an important fraction of the variability in some acoustic variables (79% in the Pulse rate), and demonstrated the importance of considering the effect of temperature in acoustic components. The results suggest that acoustic variables show geographic variation to compare data with previous works.

  6. Critical review: Uncharted waters? The future of the electricity-water nexus.

    PubMed

    Sanders, Kelly T

    2015-01-06

    Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.

  7. Interpreting drinking water quality in the distribution system using Dempster-Shafer theory of evidence.

    PubMed

    Sadiq, Rehan; Rodriguez, Manuel J

    2005-04-01

    Interpreting water quality data routinely generated for control and monitoring purposes in water distribution systems is a complicated task for utility managers. In fact, data for diverse water quality indicators (physico-chemical and microbiological) are generated at different times and at different locations in the distribution system. To simplify and improve the understanding and the interpretation of water quality, methodologies for aggregation and fusion of data must be developed. In this paper, the Dempster-Shafer theory also called theory of evidence is introduced as a potential methodology for interpreting water quality data. The conceptual basis of this methodology and the process for its implementation are presented by two applications. The first application deals with the interpretation of spatial water quality data fusion, while the second application deals with the development of water quality index based on key monitored indicators. Based on the obtained results, the authors discuss the potential contribution of theory of evidence as a decision-making tool for water quality management.

  8. Cracking the Code of Faraway Worlds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared data from NASA's Spitzer Space Telescope - called a spectrum - tells astronomers that a distant gas planet, a so-called 'hot Jupiter' called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world.

    A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object.

    Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called 'transiting' hot-Jupiter planets using the 'secondary eclipse' technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors.

    When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds.

    In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system.

    There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature.

    This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005.

  9. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds. In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system. There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature. This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005. http://photojournal.jpl.nasa.gov/catalog/PIA09197

  10. Cracking the Code of Faraway Worlds

    NASA Image and Video Library

    2007-02-21

    This infrared data from NASA's Spitzer Space Telescope -- called a spectrum -- tells astronomers that a distant gas planet, a so-called "hot Jupiter" called HD 209458b, might be smothered with high clouds. It is one of the first spectra of an alien world. A spectrum is created when an instrument called a spectrograph cracks light from an object open into a rainbow of different wavelengths. Patterns or ripples within the spectrum indicate the presence, or absence, of molecules making up the object. Astronomers using Spitzer's spectrograph were able to obtain infrared spectra for two so-called "transiting" hot-Jupiter planets using the "secondary eclipse" technique. In this method, the spectrograph first collects the combined infrared light from the planet plus its star, then, as the planet is eclipsed by the star, the infrared light of just the star. Subtracting the latter from the former reveals the planet's own rainbow of infrared colors. When astronomers first saw the infrared spectrum above, they were shocked. It doesn't look anything like what theorists had predicted. For example, theorists thought there'd be signatures of water in the wavelength ranges of 8 to 9 microns. The fact that water is not detected might indicate that it is hidden under a thick blanket of high, dry clouds. In addition, the spectrum shows signs of silicate dust -- tiny grains of sand -- in the wavelength range of 9 to 10 microns. This suggests that the planet's skies could be filled with high clouds of dust unlike anything seen in our own solar system. There is also an unidentified molecular signature at 7.78 microns. Future observations using Spitzer's spectrograph should be able to determine the nature of the mysterious feature. This spectrum was produced by Dr. Jeremy Richardson of NASA's Goddard Space Flight Center, Greenbelt, Md. and his colleagues. The data were taken by Spitzer's infrared spectrograph on July 6 and 13, 2005. http://photojournal.jpl.nasa.gov/catalog/PIA09198

  11. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.

    PubMed

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2-5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less significant role than other selective forces or biological constraints in evolutionary design of anuran acoustic signals.

  12. Call Transmission Efficiency in Native and Invasive Anurans: Competing Hypotheses of Divergence in Acoustic Signals

    PubMed Central

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less significant role than other selective forces or biological constraints in evolutionary design of anuran acoustic signals. PMID:24155940

  13. Geochemical characteristics of the San Miguel aquifer, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Tostado-Plascencia, Miriam; Rosas-Elguera, Jose; Kretzschmar, Thomas

    2010-05-01

    The valley of San Miguel, located in the state of Baja California, Mexico, is an important region because of the wine industry. It is therefore important to know groundwater characteristics. Two aquifers can be recognized in the San Miguel basin, first one is in fractured granitic rocks (in the upper part of the basin, called UB) and other is free-type in detritc sediments (in the lower part of the basin, close to the sea, called LB). The water temperature ranges between 25°C y 11°C without significant variations along the year. The conductivity increases with the water temperature and decreases in February when the temperature is lower. The pH of the waters in UB is between 8.5 and 6.5 but in the LB is in the range of 6.8 to 7.3. Our data show that Na, Mg, and HCO3- concentrations decrease during the rainy season due to ion exchange. According to the Stiff diagrams the waters of the LB are classified as sodium chloride. In the UB the water classification includes calcium and magnesium bicarbonate, magnesium chloride, and few calcium chloride and sodium chloride. The saturation indexes of the waters suggest that the mineral phases which can be present are: K-feldspar, gibbsite, albite, quartz, calcite, aragonite, gypsum, and magnesite. Because of SI>0 then the first four phases can precipitate but the SI of magnesite and gypsum is negative thus the can be dissolved. Finally, calcite and aragonite are in equilibrium due to they are close to zero. Our results suggest that the aquifers of the San Miguel basin do not show evidence of saline intrusion.

  14. Validation and Determination of Ice Water Content - Radar Reflectivity Relationships during CRYSTAL-FACE: Flight Requirements for Future Comparisons

    NASA Technical Reports Server (NTRS)

    Sayres, D. S.; Smith, J. B.; Pittman, J. V.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Fridland, A. M.; Ackerman, A. S.

    2007-01-01

    In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches.

  15. Hypersalinity reduces the risk of cyanide toxicosis to insectivorous bats interacting with wastewater impoundments at gold mines.

    PubMed

    Griffiths, Stephen R; Donato, David B; Lumsden, Linda F; Coulson, Graeme

    2014-01-01

    Wildlife and livestock that ingest bioavailable cyanide compounds in gold mining tailings dams are known to experience cyanide toxicosis. Elevated levels of salinity in open impoundments have been shown to prevent wildlife cyanide toxicosis by reducing drinking and foraging. This finding appears to be consistent for diurnal wildlife interacting with open impoundments, however the risks to nocturnal wildlife of cyanide exposure are unknown. We investigated the activity of insectivorous bats in the airspace above both fresh (potable to wildlife) and saline water bodies at two gold mines in the goldfields of Western Australian. During this study, cyanide-bearing solutions stored in open impoundments at both mine sites were hypersaline (range=57,000-295,000 mg/L total dissolved solids (TDS)), well above known physiological tolerance of any terrestrial vertebrate. Bats used the airspace above each water body monitored, but were more active at fresh than saline water bodies. In addition, considerably more terminal echolocation buzz calls were recorded in the airspace above fresh than saline water bodies at both mine sites. However, it was not possible to determine whether these buzz calls corresponded to foraging or drinking bouts. No drinking bouts were observed in 33 h of thermal video footage recorded at one hypersaline tailings dam, suggesting that this water is not used for drinking. There is no information on salinity tolerances of bats, but it could be assumed that bats would not tolerate salinity in drinking water at concentrations greater than those documented as toxic for saline-adapted terrestrial wildlife. Therefore, when managing wastewater impoundments at gold mines to avoid wildlife mortalities, adopting a precautionary principle, bats are unlikely to drink solutions at salinity levels ≥50,000 mg/L TDS. © 2013 Published by Elsevier Inc.

  16. NASA Study Hints at Possible Change in Water ‘Fingerprint’ of Comet

    NASA Image and Video Library

    2017-12-08

    A trip past the sun may have selectively altered the production of one form of water in a comet – an effect not seen by astronomers before, a new NASA study suggests. Astronomers from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, observed the Oort cloud comet C/2014 Q2, also called Lovejoy, when it passed near Earth in early 2015. Through NASA’s partnership in the W. M. Keck Observatory on Mauna Kea, Hawaii, the team observed the comet at infrared wavelengths a few days after Lovejoy passed its perihelion – or closest point to the sun. The team focused on Lovejoy’s water, simultaneously measuring the release of H2O along with production of a heavier form of water, HDO. Water molecules consist of two hydrogen atoms and one oxygen atom. A hydrogen atom has one proton, but when it also includes a neutron, that heavier hydrogen isotope is called deuterium, or the “D” in HDO. From these measurements, the researchers calculated the D-to-H ratio – a chemical fingerprint that provides clues about exactly where comets (or asteroids) formed within the cloud of material that surrounded the young sun in the early days of the solar system. Researchers also use the D-to-H value to try to understand how much of Earth’s water may have come from comets versus asteroids. Read more: go.nasa.gov/2lvd6Vt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Birthmarks

    MedlinePlus

    ... its type and what kind of monitoring and treatment it needs, if any. Call the doctor if a birthmark ever bleeds, hurts, itches, or becomes infected. Like any injury where there is bleeding, you should clean the wound with soap and water and, using a gauze bandage, place firm pressure ...

  18. Primary Aldosteronism

    MedlinePlus

    ... in salt and water build-up and a rise in blood pressure. Uncontrolled high blood pressure can put you at risk for ... tumor in one adrenal gland (also called Conn’s syndrome), which occurs in about one-third of ... High blood pressure that requires more than three medications ...

  19. Hurricane Sandy

    Atmospheric Science Data Center

    2015-03-05

    ... and New England. In this region, the low-level winds are coming from the east, pushing water toward the coast, leading to calls for ... in the area. The upper-level winds seen by MISR are coming from the south, with much greater strength. Some of the wind speeds ...

  20. Using Work Breakdown Structure Models to Develop Unit Treatment Costs

    EPA Science Inventory

    This article presents a new cost modeling approach called work breakdown structure (WBS), designed to develop unit costs for drinking water technologies. WBS involves breaking the technology into its discrete components for the purposes of estimating unit costs. The article dem...

Top