Science.gov

Sample records for callosum fractional anisotropy

  1. Reduced fractional anisotropy in the anterior corpus callosum is associated with reduced speech fluency in persistent developmental stuttering.

    PubMed

    Civier, Oren; Kronfeld-Duenias, Vered; Amir, Ofer; Ezrati-Vinacour, Ruth; Ben-Shachar, Michal

    2015-04-01

    Developmental stuttering is a speech disorder that severely limits one's ability to communicate. White matter anomalies were reported in stuttering, but their functional significance is unclear. We analyzed the relation between white matter properties and speech fluency in adults who stutter (AWS). We used diffusion tensor imaging with tract-based spatial statistics, and examined group differences as well as correlations with behavioral fluency measures. We detected a region in the anterior corpus callosum with significantly lower fractional anisotropy in AWS relative to controls. Within the AWS group, reduced anisotropy in that region is associated with reduced fluency. A statistically significant interaction was found between group and age in two additional regions: the left Rolandic operculum and the left posterior corpus callosum. Our findings suggest that anterior callosal anomaly in stuttering may represent a maladaptive reduction in interhemispheric inhibition, possibly leading to a disadvantageous recruitment of right frontal cortex in speech production.

  2. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia.

    PubMed

    Balevich, Emily C; Haznedar, M Mehmet; Wang, Eugene; Newmark, Randall E; Bloom, Rachel; Schneiderman, Jason S; Aronowitz, Jonathan; Tang, Cheuk Y; Chu, King-Wai; Byne, William; Buchsbaum, Monte S; Hazlett, Erin A

    2015-03-30

    The corpus callosum has been implicated as a region of dysfunctional connectivity in schizophrenia, but the association between age and callosal pathology is unclear. Magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) were performed on adults (n=34) and adolescents (n=17) with schizophrenia and adult (n=33) and adolescent (n=15) age- and sex-matched healthy controls. The corpus callosum was manually traced on each participant׳s MRI, and the DTI scan was co-registered to the MRI. The corpus callosum was divided into five anteroposterior segments. Area and anisotropy were calculated for each segment. Both patient groups demonstrated reduced callosal anisotropy; however, the adolescents exhibited reductions mostly in anterior regions while the reductions were more prominent in posterior regions of the adults. The adolescent patients showed greater decreases in absolute area as compared with the adult patients, particularly in the anterior segments. However, the adults showed greater reductions when area was considered relative to whole brain white matter volume. Our results suggest that the initial stages of the illness are characterized by deficiencies in frontal connections, and the chronic phase is characterized by deficits in the posterior corpus callosum; or, alternatively, adolescent-onset schizophrenia may represent a different or more severe form of the illness.

  3. Altered Fractional Anisotropy in Early Huntington's Disease

    PubMed Central

    Singh, Silky; Mehta, Hasit; Fekete, Robert

    2013-01-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disease best known for chorea. The disorder includes numerous other clinical features including mood disorder, eye movement abnormalities, cognitive disturbance, pendular knee reflexes, motor impersistence, and postural instability. We describe a mild case of HD early in the disease course with depression and subtle neurological manifestations. In addition, we review MRI and diffusion tensor imaging features in this patient. The bicaudate ratio, a measure of caudate atrophy, was increased. Fractional anisotropy values of the bilateral caudate and putamen were increased, signifying neurodegeneration of these structures in HD. PMID:23525910

  4. Cosmic ray anisotropy in fractional differential models of anomalous diffusion

    SciTech Connect

    Uchaikin, V. V.

    2013-06-15

    The problem of galactic cosmic ray anisotropy is considered in two versions of the fractional differential model for anomalous diffusion. The simplest problem of cosmic ray propagation from a point instantaneous source in an unbounded medium is used as an example to show that the transition from the standard diffusion model to the Lagutin-Uchaikin fractional differential model (with characteristic exponent {alpha} = 3/5 and a finite velocity of free particle motion), which gives rise to a knee in the energy spectrum at 10{sup 6} GeV, increases the anisotropy coefficient only by 20%, while the anisotropy coefficient in the Lagutin-Tyumentsev model (with exponents {alpha} = 0.3 and {beta} = 0.8, a long stay of particles in traps, and an infinite velocity of their jumps) is close to one. This is because the parameters of the Lagutin-Tyumentsev model have been chosen improperly.

  5. Kurtosis fractional anisotropy, its contrast and estimation by proxy

    NASA Astrophysics Data System (ADS)

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-04-01

    The diffusion kurtosis observed with diffusion magnetic resonance imaging (dMRI) may vary with direction. This directional variation is summarized in the scalar kurtosis fractional anisotropy (KFA). Recent studies suggest that kurtosis anisotropy offers microstructural contrast not contained in other commonly used dMRI markers. We compare KFA to other dMRI contrasts in fixed rat brain and in human brain. We then investigate the observed contrast differences using data obtained in a physical phantom and simulations based on data from the phantom, rat spinal cord, and human brain. Lastly, we assess a strategy for rapid estimation of a computationally modest KFA proxy by evaluating its correlation to true KFA for varying number of sampling directions and signal-to-noise ratio (SNR) levels. We also map this proxy’s b-value dependency. We find that KFA supplements the contrast of other dMRI metrics – particularly fractional anisotropy (FA) which vanishes in near orthogonal fiber arrangements where KFA does not. Simulations and phantom data support this interpretation. KFA therefore supplements FA and could be useful for evaluation of complex tissue arrangements. The KFA proxy is strongly correlated to true KFA when sampling is performed along at least nine directions and SNR is high.

  6. Fractional anisotropy helps predicts memory rehabilitation outcome after traumatic brain injury.

    PubMed

    Strangman, Gary E; O'Neil-Pirozzi, Therese M; Supelana, Christina; Goldstein, Richard; Katz, Douglas I; Glenn, Mel B

    2012-01-01

    Traumatic brain injury (TBI) commonly results in residual memory difficulties. Such deficits are amenable to cognitive rehabilitation, but optimal selection of rehabilitation interventions remains a challenge. We hypothesized that diffusion tensor imaging (DTI) could be used to predict which individuals were likely to benefit from a specific memory rehabilitation intervention. Thirty-seven individuals with TBI, of all severities, first underwent DTI scanning, along with 18 matched controls. Participants with TBI then attended a 12-session memory intervention emphasizing internal memory strategies (I-MEMS). Primary outcome measures (HVLT, RBMT) were collected at the time of DTI scanning, and both immediately and one month post-therapy. In contrast to typical neuroimaging analysis, fractional anisotropy (FA) was used to predict long-term outcome scores, adjusting for typical predictors (injury severity, age, education, time since injury, pretest score). FA of the parahippocampal white matter was a significant negative predictor of HVLT, while the anterior corpus callosum, left anterior internal capsule, and right anterior corona radiata were negative predictors of RBMT outcome. The importance of these predictors rivaled those of pretest scores. Thus, FA measures may provide substantial predictive value for other cognitive interventions as well. The reason why higher FA was associated with less successful response to cognitive intervention remains unclear and will require further study.

  7. Effects of citicoline therapy on the network connectivity of the corpus callosum in patients with leukoaraiosis

    PubMed Central

    Feng, Liang; Jiang, Hong; Li, Yunxia; Teng, Fei; He, Yusheng

    2017-01-01

    Abstract This study aimed to investigate the effects of citicoline therapy on the network connectivity of the corpus callosum in patients with leukoaraiosis (LA) by diffusion tension imaging (DTI). A total of 30 LA patients with Fazekas score of 2 to 3 were voluntarily assigned into citicoline group (n = 14) and control group (n = 16). In citicoline group, citicoline was administered at 0.6 g/d for 1 year. In control group, central nervous system drugs should not be used, except for sleeping pills and antidepressants. Interventions for pre-existing diseases should be conducted in both groups. During the periods of citicoline therapy and post-treatment follow-up, cranial magnetic resonance imaging and DTI were routinely performed in these patients, and the genu, body, and splenium of corpus callosum were selected as the regions of interest (ROIs). The fractional anisotropy (FA) and mean diffusivity (MD) of each ROI were determined with PANDA software. On recruitment, there were no significant differences in the general characteristics, blood biochemical results, cognition function, and the FA and MD of the corpus callosum between 2 groups (P > 0.05). After 1-year treatment, the FA of the corpus callosum reduced gradually, but the MD of the corpus callosum tended to increased in both group, although significant differences were not observed. However, the reductions in FA of genu and splenium of corpus callosum in citicoline group were significantly lower than in control group (P < 0.05); the reductions in MD of genu, body, and splenium of corpus callosum in citicoline group were significantly lower than in control group (P < 0.05). In LA patients, the disruption of the network connectivity of the corpus callosum deteriorates over time. Citicoline treatment may delay the reduction in FA of corpus callosum, which might be beneficial for the improvement of network connectivity of the corpus callosum. PMID:28121935

  8. Effects of citicoline therapy on the network connectivity of the corpus callosum in patients with leukoaraiosis.

    PubMed

    Feng, Liang; Jiang, Hong; Li, Yunxia; Teng, Fei; He, Yusheng

    2017-01-01

    This study aimed to investigate the effects of citicoline therapy on the network connectivity of the corpus callosum in patients with leukoaraiosis (LA) by diffusion tension imaging (DTI).A total of 30 LA patients with Fazekas score of 2 to 3 were voluntarily assigned into citicoline group (n = 14) and control group (n = 16). In citicoline group, citicoline was administered at 0.6 g/d for 1 year. In control group, central nervous system drugs should not be used, except for sleeping pills and antidepressants. Interventions for pre-existing diseases should be conducted in both groups. During the periods of citicoline therapy and post-treatment follow-up, cranial magnetic resonance imaging and DTI were routinely performed in these patients, and the genu, body, and splenium of corpus callosum were selected as the regions of interest (ROIs). The fractional anisotropy (FA) and mean diffusivity (MD) of each ROI were determined with PANDA software.On recruitment, there were no significant differences in the general characteristics, blood biochemical results, cognition function, and the FA and MD of the corpus callosum between 2 groups (P > 0.05). After 1-year treatment, the FA of the corpus callosum reduced gradually, but the MD of the corpus callosum tended to increased in both group, although significant differences were not observed. However, the reductions in FA of genu and splenium of corpus callosum in citicoline group were significantly lower than in control group (P < 0.05); the reductions in MD of genu, body, and splenium of corpus callosum in citicoline group were significantly lower than in control group (P < 0.05).In LA patients, the disruption of the network connectivity of the corpus callosum deteriorates over time. Citicoline treatment may delay the reduction in FA of corpus callosum, which might be beneficial for the improvement of network connectivity of the corpus callosum.

  9. White Matter Fractional Anisotropy Correlates With Speed of Processing and Motor Speed in Young Childhood Cancer Survivors

    SciTech Connect

    Aukema, Eline J.; Oudhuis, Nienke; Vos, Frans M.; Reneman, Liesbeth; Last, Bob F.; Grootenhuis, Martha A.

    2009-07-01

    Purpose: To determine whether childhood medulloblastoma and acute lymphoblastic leukemia (ALL) survivors have decreased white matter fractional anisotropy (WMFA) and whether WMFA is related to the speed of processing and motor speed. Methods and Materials: For this study, 17 patients (6 medulloblastoma, 5 ALL treated with high-dose methotrexate (MTX) (4 x 5 g/m{sup 2}) and 6 with low-dose MTX (3 x 2 g/m{sup 2})) and 17 age-matched controls participated. On a 3.0-T magnetic resonance imaging (MRI) scanner, diffusion tensor imaging (DTI) was performed, and WMFA values were calculated, including specific regions of interest (ROIs), and correlated with the speed of processing and motor speed. Results: Mean WMFA in the patient group, mean age 14 years (range 8.9 - 16.9), was decreased compared with the control group (p = 0.01), as well as WMFA in the right inferior fronto-occipital fasciliculus (IFO) (p = 0.03) and in the genu of the corpus callosum (gCC) (p = 0.01). Based on neurocognitive results, significant positive correlations were present between processing speed and WMFA in the splenium (sCC) (r = 0.53, p = 0.03) and the body of the corpus callosum (bCC) (r = 0.52, p = 0.03), whereas the right IFO WMFA was related to motor speed (r = 0.49, p < 0.05). Conclusions: White matter tracts, using a 3.0-T MRI scanner, show impairment in childhood cancer survivors, medulloblastoma survivors, and also those treated with high doses of MTX. In particular, white matter tracts in the sCC, bCC and right IFO are positively correlated with speed of processing and motor speed.

  10. The effect of injury timing on white matter changes in the corpus callosum following unilateral brain injury.

    PubMed

    Hawe, Rachel L; Sukal-Moulton, Theresa; Dewald, Julius P A

    2013-01-01

    Motor impairments following unilateral brain injuries may be related to changes in the corpus callosum. The purpose of this study was to determine if the corpus callosum is impacted differently in pediatric versus adult hemiplegia. Diffusion tensor imaging was completed on 41 participants (11 pediatric hemiplegia, 10 adult hemiplegia, 10 pediatric control and 10 adult control). Fractional anisotropy values and cross-sectional areas for five regions of the corpus callosum were compared between subject groups. Additionally, the amount of involuntary activity in the paretic elbow was quantified during non-paretic elbow flexion tasks for a subset of pediatric hemiplegia participants. Fractional anisotropy values were reduced in pediatric hemiplegia compared to pediatric control subjects in callosal regions corresponding to premotor and supplementary motor areas, primary sensory cortex, and parietal, temporal, and occipital cortices. Differences in fractional anisotropy between adult stroke and adult controls were only found in the region corresponding to parietal, temporal, and occipital cortices. Cross-sectional area was affected in all regions of the corpus callosum in pediatric hemiplegia, but only in the primary sensory region in adult hemiplegia. Additionally, changes in the cross-sectional areas were correlated with involuntary mirror movements in the pediatric hemiplegia group. In conclusion, the corpus callosum is affected to a greater extent in pediatric compared to adult hemiplegia, which may explain why unsuppressed mirror movements and difficulty with bimanual coordination are greater problems in this population.

  11. Tractography of the spider monkey (Ateles geoffroyi) corpus callosum using diffusion tensor magnetic resonance imaging.

    PubMed

    Platas-Neri, Diana; Hidalgo-Tobón, Silvia; de Celis Alonso, Benito; da Celis Alonso, Benito; de León, Fernando Chico-Ponce; Muñoz-Delgado, Jairo; Phillips, Kimberley A

    2015-01-01

    The objective of this research was to describe the organization, connectivity and microstructure of the corpus callosum of the spider monkey (Ateles geoffroyi). Non-invasive magnetic resonance imaging and diffusion-tensor imaging were obtained from three subjects using a 3T Philips scanner. We hypothesized that the arrangement of fibers in spider monkeys would be similar to that observed in other non-human primates. A repeated measure (n = 3) of fractional anisotropy values was obtained of each subject and for each callosal subdivision. Measurements of the diffusion properties of corpus callosum fibers exhibited a similar pattern to those reported in the literature for humans and chimpanzees. No statistical difference was reached when comparing this parameter between the different CC regions (p = 0.066). The highest fractional anisotropy values corresponded to regions projecting from the corpus callosum to the posterior cortical association areas, premotor and supplementary motor cortices. The lowest fractional anisotropy corresponded to projections to motor and sensory cortical areas. Analyses indicated that approximately 57% of the fibers projects to the frontal cortex and 43% to the post-central cortex. While this study had a small sample size, the results provided important information concerning the organization of the corpus callosum in spider monkeys.

  12. Tractography of the Spider Monkey (Ateles geoffroyi) Corpus Callosum Using Diffusion Tensor Magnetic Resonance Imaging

    PubMed Central

    Platas-Neri, Diana; Hidalgo-Tobón, Silvia; da Celis Alonso, Benito; de León, Fernando Chico-Ponce; Muñoz-Delgado, Jairo; Phillips, Kimberley A.

    2015-01-01

    The objective of this research was to describe the organization, connectivity and microstructure of the corpus callosum of the spider monkey (Ateles geoffroyi). Non-invasive magnetic resonance imaging and diffusion-tensor imaging were obtained from three subjects using a 3T Philips scanner. We hypothesized that the arrangement of fibers in spider monkeys would be similar to that observed in other non-human primates. A repeated measure (n = 3) of fractional anisotropy values was obtained of each subject and for each callosal subdivision. Measurements of the diffusion properties of corpus callosum fibers exhibited a similar pattern to those reported in the literature for humans and chimpanzees. No statistical difference was reached when comparing this parameter between the different CC regions (p = 0.066). The highest fractional anisotropy values corresponded to regions projecting from the corpus callosum to the posterior cortical association areas, premotor and supplementary motor cortices. The lowest fractional anisotropy corresponded to projections to motor and sensory cortical areas. Analyses indicated that approximately 57% of the fibers projects to the frontal cortex and 43% to the post-central cortex. While this study had a small sample size, the results provided important information concerning the organization of the corpus callosum in spider monkeys. PMID:25693078

  13. Bi-directional changes in fractional anisotropy after experiment TBI: Disorganization and reorganization?

    PubMed

    Harris, N G; Verley, D R; Gutman, B A; Sutton, R L

    2016-06-01

    The current dogma to explain the extent of injury-related changes following rodent controlled cortical impact (CCI) injury is a focal injury with limited axonal pathology. However, there is in fact good, published histologic evidence to suggest that axonal injury is far more widespread in this model than generally thought. One possibility that might help to explain this is the often-used region-of-interest data analysis approach taken by experimental traumatic brain injury (TBI) diffusion tensor imaging (DTI) or histologic studies that might miss more widespread damage, when compared to the whole brain, statistically robust method of tract-based analysis used more routinely in clinical research. To determine the extent of DTI changes in this model, we acquired in vivo DTI data before and at 1 and 4weeks after CCI injury in 17 adult male rats and analyzed parametric maps of fractional anisotropy (FA), axial, radial, and mean diffusivity (AD, RD, MD), tensor mode (MO), and fiber tract density (FTD) using tract-based spatial statistics. Contusion volume was used as a surrogate marker of injury severity and as a covariate for investigating severity dependence of the data. Mean fiber tract length was also computed from seeds in the cortical spinal tract regions. In parallel experiments (n=3-5/group), we investigated corpus callosum neurofilaments and demyelination using immunohistochemistry (IHC) at 3days and 6weeks, callosal tract patency using dual-label retrograde tract tracing at 5weeks, and the contribution of gliosis to DTI parameter maps using GFAP IHC at 4weeks post-injury. The data show widespread ipsilateral regions of significantly reduced FA at 1week post-injury, driven by temporally changing values of AD, RD, and MD that persist to 4weeks. Demyelination, retrograde label tract loss, and reductions in MO (tract degeneration) and FTD were shown to underpin these data. Significant FA increases occurred in subcortical and corticospinal tract regions that were

  14. Quantitative Cortical Mapping of Fractional Anisotropy in Developing Rat Brains

    PubMed Central

    Huang, Hao; Yamamoto, Akria; Hossain, Mir Ahamed; Younes, Laurent; Mori, Susumu

    2010-01-01

    Cortical development is associated with a series of events that involve axon and dendrite growth and synaptic formation. Although these developmental processes have been investigated in detail with histology, three-dimensional and quantitative imaging methods for rodent brains may be useful for genetic and pharmacological studies in which cortical developmental abnormalities are suspected. It has been shown that diffusion tensor imaging (DTI) can delineate the columnar organization of the fetal and early neonatal cortex based on a high degree of diffusion anisotropy along the columnar structures. This anisotropy is known to decrease during brain development. In this study, we applied DTI to developing rat brains at five developmental stages, postnatal days 0, 3, 7, 11 and 19, and used diffusion anisotropy as an index to characterize the structural change. Statistical analysis reveals four distinctive cortical areas that demonstrate a characteristic time course of anisotropy loss. This method may provide a means to delineate specific cortical areas and a quantitative method to detect abnormalities in cortical development in rodent pathological models. PMID:18256263

  15. Simultaneous changes in gray matter volume and white matter fractional anisotropy in Alzheimer's disease revealed by multimodal CCA and joint ICA.

    PubMed

    Ouyang, X; Chen, K; Yao, L; Hu, B; Wu, X; Ye, Q; Guo, X

    2015-08-20

    The prominent morphometric alterations of Alzheimer's disease (AD) occur both in gray matter and in white matter. Multimodal fusion can examine joint information by combining multiple neuroimaging datasets to identify the covariant morphometric alterations in AD in greater detail. In the current study, we conducted a multimodal canonical correlation analysis and joint independent component analysis to identify the covariance patterns of the gray and white matter by fusing structural magnetic resonance imaging and diffusion tensor imaging data of 39 AD patients (23 males and 16 females, mean age: 74.91±8.13years) and 41 normal controls (NCs) (20 males and 21 females, mean age: 73.97±6.34years) derived from the Alzheimer's Disease Neuroimaging Initiative database. The results revealed 25 joint independent components (ICs), of which three joint ICs exhibited strong links between the gray matter volume and the white matter fractional anisotropy (FA) and significant differences between the AD and NC group. The joint IC maps revealed that the simultaneous changes in the gray matter and FA values primarily involved the following areas: (1) the temporal lobe/hippocampus-cingulum, (2) the frontal/cingulate gyrus-corpus callosum, and (3) the temporal/occipital/parietal lobe-corpus callosum/corona radiata. Our findings suggest that gray matter atrophy is associated with reduced white matter fiber integrity in AD and possibly expand the understanding of the neuropathological mechanisms in AD.

  16. Interleukin-6, age, and corpus callosum integrity.

    PubMed

    Bettcher, Brianne M; Watson, Christa L; Walsh, Christine M; Lobach, Iryna V; Neuhaus, John; Miller, Joshua W; Green, Ralph; Patel, Nihar; Dutt, Shubir; Busovaca, Edgar; Rosen, Howard J; Yaffe, Kristine; Miller, Bruce L; Kramer, Joel H

    2014-01-01

    The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories.

  17. Interleukin-6, Age, and Corpus Callosum Integrity

    PubMed Central

    Bettcher, Brianne M.; Watson, Christa L.; Walsh, Christine M.; Lobach, Iryna V.; Neuhaus, John; Miller, Joshua W.; Green, Ralph; Patel, Nihar; Dutt, Shubir; Busovaca, Edgar; Rosen, Howard J.; Yaffe, Kristine; Miller, Bruce L.; Kramer, Joel H.

    2014-01-01

    The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories. PMID:25188448

  18. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue.

    PubMed

    Giordano, Chiara; Kleiven, Svein

    2014-02-06

    Brain tissue modelling has been an active area of research for years. Brain matter does not follow the constitutive relations for common materials and loads applied to the brain turn into stresses and strains depending on tissue local morphology. In this work, a hyperviscoelastic fibre-reinforced anisotropic law is used for computational brain injury prediction. Thanks to a fibre-reinforcement dispersion parameter, this formulation accounts for anisotropic features and heterogeneities of the tissue owing to different axon alignment. The novelty of the work is the correlation of the material mechanical anisotropy with fractional anisotropy (FA) from diffusion tensor images. Finite-element (FE) models are used to investigate the influence of the fibre distribution for different loading conditions. In the case of tensile-compressive loads, the comparison between experiments and simulations highlights the validity of the proposed FA-k correlation. Axon alignment affects the deformation predicted by FE models and, when the strain in the axonal direction is large with respect to the maximum principal strain, decreased maximum deformations are detected. It is concluded that the introduction of fibre dispersion information into the constitutive law of brain tissue affects the biofidelity of the simulations.

  19. Segmented corpus callosum diffusivity correlates with the Expanded Disability Status Scale score in the early stages of relapsing-remitting multiple sclerosis

    PubMed Central

    de Medeiros Rimkus, Carolina; de Faria Junqueira, Thiago; Callegaro, Dagoberto; Otaduy, Maria Concepción García; da Costa Leite, Claudia

    2013-01-01

    OBJECTIVE: The aim of this study was to characterize the microscopic damage to the corpus callosum in relapsing-remitting multiple sclerosis (RRMS) with diffusion tensor imaging and to investigate the correlation of this damage with disability. The diffusion tensor imaging parameters of fractional anisotropy and mean diffusivity provide information about the integrity of cell membranes, offering two more specific indices, namely the axial and radial diffusivities, which are useful for discriminating axon loss from demyelination. METHOD: Brain magnetic resonance imaging exams of 30 relapsing-remitting multiple sclerosis patients and 30 age- and sex-matched healthy controls were acquired in a 3T scanner. The axial diffusivities, radial diffusivities, fractional anisotropy, and mean diffusivity of five segments of the corpus callosum, correlated to the Expanded Disability Status Scale score, were obtained. RESULTS: All corpus callosum segments showed increased radial diffusivities and mean diffusivity, as well as decreased fractional anisotropy, in the relapsing-remitting multiple sclerosis group. The axial diffusivity was increased in the posterior midbody and splenium. The Expanded Disability Status Scale scores correlated more strongly with axial diffusivities and mean diffusivity, with an isolated correlation with radial diffusivities in the posterior midbody of the corpus callosum. There was no significant correlation with lesion loads. CONCLUSION: Neurological dysfunction in relapsing-remitting multiple sclerosis can be influenced by commissural disconnection, and the diffusion indices of diffusion tensor imaging are potential biomarkers of disability that can be assessed during follow-up. PMID:24037007

  20. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    PubMed

    Hummel, Nadine; Hüfner, Katharina; Stephan, Thomas; Linn, Jennifer; Kremmyda, Olympia; Brandt, Thomas; Flanagin, Virginia L

    2014-01-01

    Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI) to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction). Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  1. Towards tract-specific fractional anisotropy (TSFA) at crossing-fiber regions with clinical diffusion MRI

    PubMed Central

    Mishra, Virendra; Guo, Xiaohu; Delgado, Mauricio R.; Huang, Hao

    2014-01-01

    Purpose White matter fractional anisotropy (FA), a measure implying microstructure, is significantly underestimated with single diffusion tensor model at crossing-fiber regions (CFR). We propose a tract-specific FA (TSFA), corrected for the effects of crossing-fiber geometry and free water at CFR, and adapted for tract analysis with diffusion MRI (dMRI) in clinical research. Methods At CFR voxels, the proposed technique estimates free water fraction (fiso) as a linear function of mean apparent diffusion coefficient (mADC), fits the dual tensors and estimates TSFA. Digital phantoms were designed for testing the accuracy of fiso and fitted dual-anisotropies at CFR. The technique was applied to clinical dMRI of normal subjects and hereditary spastic paraplegia (HSP) patients to test the effectiveness of TSFA. Results Phantom simulation showed unbiased estimates of dual-tensor anisotropies at CFR and high accuracy of fiso as a linear function of mADC. TSFA at CFR was highly consistent to the single tensor FA at non-CFR within the same tract with normal human dMRI. Additional HSP imaging biomarkers with significant correlation to clinical motor function scores could be identified with TSFA. Conclusion Results suggest the potential of the proposed technique in estimating unbiased TSFA at CFR and conducting tract analysis in clinical research. PMID:25447208

  2. New non-linear color look-up table for visualization of brain fractional anisotropy based on normative measurements - principals and first clinical use.

    PubMed

    Keller, Jiří; Rulseh, Aaron M; Komárek, Arnošt; Latnerová, Iva; Rusina, Robert; Brožová, Hana; Vymazal, Josef

    2013-01-01

    Fractional anisotropy (FA) is the most commonly used quantitative measure of diffusion in the brain. Changes in FA have been reported in many neurological disorders, but the implementation of diffusion tensor imaging (DTI) in daily clinical practice remains challenging. We propose a novel color look-up table (LUT) based on normative data as a tool for screening FA changes. FA was calculated for 76 healthy volunteers using 12 motion-probing gradient directions (MPG), a subset of 59 subjects was additionally scanned using 30 MPG. Population means and 95% prediction intervals for FA in the corpus callosum, frontal gray matter, thalamus and basal ganglia were used to create the LUT. Unique colors were assigned to inflection points with continuous ramps between them. Clinical use was demonstrated on 17 multiple system atrophy (MSA) patients compared to 13 patients with Parkinson disease (PD) and 17 healthy subjects. Four blinded radiologists classified subjects as MSA/non-MSA. Using only the LUT, high sensitivity (80%) and specificity (84%) were achieved in differentiating MSA subjects from PD subjects and controls. The LUTs generated from 12 and 30 MPG were comparable and accentuate FA abnormalities.

  3. New Non-Linear Color Look-Up Table for Visualization of Brain Fractional Anisotropy Based on Normative Measurements – Principals and First Clinical Use

    PubMed Central

    Keller, Jiří; Rulseh, Aaron M.; Komárek, Arnošt; Latnerová, Iva; Rusina, Robert; Brožová, Hana; Vymazal, Josef

    2013-01-01

    Fractional anisotropy (FA) is the most commonly used quantitative measure of diffusion in the brain. Changes in FA have been reported in many neurological disorders, but the implementation of diffusion tensor imaging (DTI) in daily clinical practice remains challenging. We propose a novel color look-up table (LUT) based on normative data as a tool for screening FA changes. FA was calculated for 76 healthy volunteers using 12 motion-probing gradient directions (MPG), a subset of 59 subjects was additionally scanned using 30 MPG. Population means and 95% prediction intervals for FA in the corpus callosum, frontal gray matter, thalamus and basal ganglia were used to create the LUT. Unique colors were assigned to inflection points with continuous ramps between them. Clinical use was demonstrated on 17 multiple system atrophy (MSA) patients compared to 13 patients with Parkinson disease (PD) and 17 healthy subjects. Four blinded radiologists classified subjects as MSA/non-MSA. Using only the LUT, high sensitivity (80%) and specificity (84%) were achieved in differentiating MSA subjects from PD subjects and controls. The LUTs generated from 12 and 30 MPG were comparable and accentuate FA abnormalities. PMID:23990954

  4. Heritability of white matter microstructure in late middle age: A twin study of tract-based fractional anisotropy and absolute diffusivity indices.

    PubMed

    Vuoksimaa, Eero; Panizzon, Matthew S; Hagler, Donald J; Hatton, Sean N; Fennema-Notestine, Christine; Rinker, Daniel; Eyler, Lisa T; Franz, Carol E; Lyons, Michael J; Neale, Michael C; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2017-04-01

    There is evidence that differences among individuals in white matter microstructure, as measured with diffusion tensor imaging (DTI), are under genetic control. However, little is known about the relative contribution of genetic and environmental effects on different diffusivity indices among late middle-aged adults. Here, we examined the magnitude of genetic influences for fractional anisotropy (FA), and mean (MD), axial (AD), and radial (RD) diffusivities in male twins aged 56-66 years old. Using an atlas-based registration approach to delineate individual white matter tracts, we investigated mean DTI-based indices within the corpus callosum, 12 bilateral tracts and all these regions of interest combined. All four diffusivity indices had high heritability at the global level (72%-80%). The magnitude of genetic effects in individual tracts varied from 0% to 82% for FA, 0% to 81% for MD, 8% to 77% for AD, and 0% to 80% for RD with most of the tracts showing significant heritability estimates. Despite the narrow age range of this community-based sample, age was correlated with all four diffusivity indices at the global level. In sum, all diffusion indices proved to have substantial heritability for most of the tracts and the heritability estimates were similar in magnitude for different diffusivity measures. Future studies could aim to discover the particular set of genes that underlie the significant heritability of white matter microstructure. Hum Brain Mapp 38:2026-2036, 2017. © 2017 Wiley Periodicals, Inc.

  5. Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II

    PubMed Central

    Kudo, Takashi; Matsuoka, Kiwamu; Yamamoto, Akihide; Takahashi, Masato; Nakagawara, Jyoji; Nagatsuka, Kazuyuki; Iida, Hidehiro; Kishimoto, Toshifumi

    2016-01-01

    Background A significantly lower fractional anisotropy (FA) value has been shown in anterior parts of the corpus callosum in patients with bipolar disorder. Aims We investigated the association between abnormal corpus callosum integrity and interhemispheric functional connectivity (IFC) in patients with bipolar disorder. Methods We examined the association between FA values in the corpus callosum (CC-FA) and the IFC between homotopic regions in the anterior cortical structures of bipolar disorder (n=16) and major depressive disorder (n=22) patients with depressed or euthymic states. Results We found a positive correlation between the CC-FA and IFC values between homotopic regions of the ventral prefrontal cortex and insula cortex, and significantly lower IFC between these regions in bipolar disorder patients. Conclusions The abnormal corpus callosum integrity in bipolar disorder patients is relevant to the IFC between homotopic regions, possibly disturbing the exchange of emotional information between the cerebral hemispheres resulting in emotional dysregulation. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:27847590

  6. Determining mean fractional anisotropy using DDCOSY: preliminary results in biological tissues.

    PubMed

    Zong, Fangrong; Ancelet, Lindsay R; Hermans, Ian F; Galvosas, Petrik

    2017-05-01

    Complex materials are ubiquitous in science, engineering and nature. One important parameter for characterising their morphology is the degree of anisotropy. Magnetic resonance imaging offers non-invasive methods for quantitative measurements of the materials anisotropy, most commonly via diffusion tensor imaging and the subsequent extraction of the spatially resolved fractional anisotropy (FA) value. Here, we propose an alternative way of determining the FA as a sample average for cases where spatially resolved methods are not needed or not applicable. It is based on a particular diffusion-diffusion correlation spectroscopy protocol, allowing for the extraction of the mean (i.e. sample averaged) FA value. We demonstrate that mean FA values obtained from three anisotropic biological tissues are consistent with those extracted using diffusion tensor imaging. Moreover, we show that differences of mean FA values in healthy and tumour-bearing mouse brains allow to distinguish these tissue types. We anticipate that the proposed method will be beneficial in the wider context of medical and material science. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging.

    PubMed

    Moeller, Frederick Gerard; Hasan, Khader M; Steinberg, Joel L; Kramer, Larry A; Dougherty, Donald M; Santos, Rafael M; Valdes, Ignacio; Swann, Alan C; Barratt, Ernest S; Narayana, Ponnada A

    2005-03-01

    Brain imaging studies find evidence of prefrontal cortical dysfunction in cocaine-dependent subjects. Similarly, cocaine-dependent subjects have problems with behaviors related to executive function and impulsivity. Since prefrontal cortical axonal tracts cross between hemispheres in the corpus callosum, it is possible that white matter integrity in the corpus callosum could also be diminished in cocaine-dependent subjects. The purpose of this study was to compare corpus callosum white matter integrity as measured by the fractional anisotropy (FA) on diffusion tensor imaging (DTI) between 18 cocaine-dependent subjects and 18 healthy controls. The Barratt Impulsiveness Scale (BIS-11) and a continuous performance test: the Immediate and Delayed Memory Task (IMT/DMT) were also collected. Results of the DTI showed significantly reduced FA in the genu and rostral body of the anterior corpus callosum in cocaine-dependent subjects compared to controls. Cocaine-dependent subjects also had significantly higher BIS-11 scores, greater impulsive (commission) errors, and reduced ability to discriminate target from catch stimuli (discriminability) on the IMT/DMT. Within cocaine dependent subjects there was a significant negative correlation between FA in the anterior corpus callosum and behavioral laboratory measured impulsivity, and there was a positive correlation between FA and discriminability. The finding that reduced integrity of anterior corpus callosum white matter in cocaine users is related to impaired impulse control and reduced ability to discriminate between target and catch stimuli is consistent with prior theories regarding frontal cortical involvement in impaired inhibitory control in cocaine-dependent subjects.

  8. A Novel Approach to Constrain the Escape Fraction and Dust Content at High Redshift Using the Cosmic Infrared Background Fractional Anisotropy

    NASA Astrophysics Data System (ADS)

    Fernandez, Elizabeth R.; Dole, Herve; Iliev, Ilian T.

    2013-02-01

    The Cosmic Infrared Background (CIB) provides an opportunity to constrain many properties of the high-redshift (z > 6) stellar population as a whole. This background, specifically from 1 to 200 μm, should contain information about the era of reionization and the stars that are responsible for these ionizing photons. In this paper, we look at the fractional anisotropy (δI/I) of this high-redshift population, where δI is the ratio of the magnitude of the fluctuations and I is the mean intensity. We show that this can be used to constrain the escape fraction of the population as a whole, because the magnitude of the fluctuations of the CIB depends on the escape fraction, while the mean intensity does not. This results in lower values of the escape fraction producing higher values of the fractional anisotropy. This difference is predicted to be larger at longer wavelength bands (above 10 μm), albeit it is also much harder to observe in that range. We show that the fractional anisotropy can also be used to separate a dusty from a dust-free population. Finally, we discuss the constraints provided by current observations on the CIB fractional anisotropy.

  9. Bilingual Corpus Callosum Variability

    ERIC Educational Resources Information Center

    Coggins, Porter E., III.; Kennedy, Teresa J.; Armstrong, Terry A.

    2004-01-01

    Magnetic resonance imaging was used to produce midsagittal images of the corpus callosum of 19 right-handed adult male and female subjects. The preliminary findings of this study indicate that significant adaptation in the anterior midbody of the corpus callosum has occurred to accommodate multiple language capacity in bilingual individuals…

  10. Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery.

    PubMed

    Hagmann, Cornelia; Singer, Jitka; Latal, Beatrice; Knirsch, Walter; Makki, Malek

    2016-03-01

    The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants.

  11. Organising white matter in a brain without corpus callosum fibres.

    PubMed

    Bénézit, Audrey; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Germanaud, David; Duclap, Delphine; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Moutard, Marie-Laure; Dubois, Jessica

    2015-02-01

    Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles' anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles' organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis.

  12. Structural properties of the human corpus callosum: Multimodal assessment and sex differences.

    PubMed

    Björnholm, L; Nikkinen, J; Kiviniemi, V; Nordström, T; Niemelä, S; Drakesmith, M; Evans, J C; Pike, G B; Veijola, J; Paus, T

    2017-02-22

    A number of structural properties of white matter can be assessed in vivo using multimodal magnetic resonance imaging (MRI). We measured profiles of R1 and R2 relaxation rates, myelin water fraction (MWF) and diffusion tensor measures (fractional anisotropy [FA], mean diffusivity [MD]) across the mid-sagittal section of the corpus callosum in two samples of young individuals. In Part 1, we compared histology-derived axon diameter (Aboitiz et al., 1992) to MRI measures obtained in 402 young men (19.55 ± 0.84 years) recruited from the Avon Longitudinal Study on Parents and Children. In Part 2, we examined sex differences in FA, MD and magnetization transfer ratio (MTR) across the corpus callosum in 433 young (26.50 ± 0.51 years) men and women recruited from the Northern Finland Birth Cohort 1986. We found that R1, R2, and MWF follow the anterior-to-posterior profile of small-axon density. Sex differences in mean MTR were similar across the corpus callosum (males > females) while these in FA differed by the callosal segment (Body: M>F; Splenium: F>M). We suggest that the values of R1, R2 and MWF are driven by high surface area of myelin in regions with high density of "small axons".

  13. Age-Associated Alterations in Corpus Callosum White Matter Integrity in Bipolar Disorder Assessed Using Probabilistic Tractography

    PubMed Central

    Toteja, Nitin; Cokol, Perihan Guvenek; Ikuta, Toshikazu; Kafantaris, Vivian; Peters, Bart D.; Burdick, Katherine E.; John, Majnu; Malhotra, Anil K.; Szeszko, Philip R.

    2014-01-01

    Objectives Atypical age-associated changes in white matter integrity may play a role in the neurobiology of bipolar disorder, but no studies have examined the major white matter tracts using nonlinear statistical modeling across a wide age range in this disorder. The goal of this study was to identify possible deviations in the typical pattern of age-associated changes in white matter integrity in patients with bipolar disorder across the age range of 9 to 62 years. Methods Diffusion tensor imaging was performed in 57 (20M/37F) patients with a diagnosis of bipolar disorder and 57 (20M/37F) age- and sex-matched healthy volunteers. Mean diffusivity and fractional anisotropy were computed for the genu and splenium of the corpus callosum, two projection tracts, and five association tracts using probabilistic tractography. Results Overall, patients had lower fractional anisotropy and higher mean diffusivity compared to healthy volunteers across all tracts (while controlling for the effects of age and age2). In addition, there were greater age-associated increases in mean diffusivity in patients compared to healthy volunteers within the genu and splenium of the corpus callosum beginning in the second and third decades of life. Conclusions Our findings provide evidence for alterations in the typical pattern of white matter development in patients with bipolar disorder compared to healthy volunteers. Changes in white matter development within the corpus callosum may lead to altered inter-hemispheric communication that is considered integral to the neurobiology of the disorder. PMID:25532972

  14. Relationship between fractional anisotropy of cerebral white matter and metabolite concentrations measured using (1)H magnetic resonance spectroscopy in healthy adults.

    PubMed

    Wijtenburg, S A; McGuire, S A; Rowland, L M; Sherman, P M; Lancaster, J L; Tate, D F; Hardies, L J; Patel, B; Glahn, D C; Hong, L E; Fox, P T; Kochunov, P

    2013-02-01

    Fractional anisotropy (FA) of water diffusion in cerebral white matter (WM), derived from diffusion tensor imaging (DTI), is a sensitive index of microscopic WM integrity. Physiological and metabolic factors that explain intersubject variability in FA values were evaluated in two cohorts of healthy adults of different age spans (N=65, range: 28-50years; and N=25, age=66.6±6.2, range: 57-80years). Single voxel magnetic resonance spectroscopy (MRS) was used to measure N-acetylaspartate (NAA), total choline-containing compounds, and total creatine, bilaterally in an associative WM tract: anterior corona radiata (ACR). FA values were calculated for the underlying, proximal and two distal WM regions. Two-stage regression analysis was used to calculate the proportion of variability in FA values explained by spectroscopy measurements, at the first stage, and subject's age, at the second stage. WM NAA concentration explained 23% and 66% of intersubject variability (p<0.001) in the FA of the underlying WM in the younger and older cohorts, respectively. WM NAA concentration also explained a significant proportion of variability in FA of the genu of corpus callosum (CC), a proximal WM tract where some of the fibers contained within the spectroscopic voxel decussate. NAA concentrations also explained a significant proportion of variability in the FA values in the splenium of CC, a distal WM tract that also carries associative fibers, in both cohorts. These results suggest that MRS measurements explained a significant proportion of variability in FA values in both proximal and distal WM tracts that carry similar fiber-types.

  15. White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry.

    PubMed

    Takao, H; Hayashi, N; Ohtomo, K

    2013-02-12

    Diffusion tensor imaging (DTI) provides information regarding white matter microstructure; however, macroscopic fiber architectures can affect DTI measures. A larger brain (fiber tract) has a 'relatively' smaller voxel size, and the voxels are less likely to contain more than one fiber orientation and more likely to have higher fractional anisotropy (FA). Previous DTI studies report left-to-right differences in the white matter; however, these may reflect true microscopic differences or be caused purely by volume differences. Using tract-based spatial statistics, we investigated left-to-right differences in white matter microstructure across the whole brain. Voxel-wise analysis revealed a large number of white matter volume asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. In many white matter regions, FA asymmetry was positively correlated with volume asymmetry. Voxel-wise analysis with adjustment for volume asymmetry revealed many white matter FA asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. The voxel-wise analysis showed a reduced number of regions with significant FA asymmetry compared with analysis performed without adjustment for volume asymmetry; however, the overall trend of the results was unchanged. The results of the present study suggest that these FA asymmetries are not caused by volume differences and reflect microscopic differences in the white matter.

  16. Enlarged thalamic volumes and increased fractional anisotropy in the thalamic radiations in veterans with suicide behaviors.

    PubMed

    Lopez-Larson, Melissa; King, Jace B; McGlade, Erin; Bueler, Elliott; Stoeckel, Amanda; Epstein, Daniel J; Yurgelun-Todd, Deborah

    2013-01-01

    Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR) in a group of Veterans with and without a history of suicidal behavior (SB) to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI) and no SB (TBI-SB), 19 Veterans with mild TBI and a history of SB (TB + SB), and 15 healthy controls (HC) underwent magnetic resonance imaging scanning including a structural and diffusion tensor imaging scan. SBs were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS). Differences in thalamic volumes and ATR fractional anisotropy (FA) were examined between (1) TBI + SB versus HC and (2) TBI + SB versus combined HC and TBI-SB and (3) between TBI + SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI + SB compared to the HC, TBI-SB, and the combined group. Veterans with TBI + SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI + SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI + SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide.

  17. Enlarged Thalamic Volumes and Increased Fractional Anisotropy in the Thalamic Radiations in Veterans with Suicide Behaviors

    PubMed Central

    Lopez-Larson, Melissa; King, Jace B.; McGlade, Erin; Bueler, Elliott; Stoeckel, Amanda; Epstein, Daniel J.; Yurgelun-Todd, Deborah

    2013-01-01

    Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR) in a group of Veterans with and without a history of suicidal behavior (SB) to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI) and no SB (TBI-SB), 19 Veterans with mild TBI and a history of SB (TB + SB), and 15 healthy controls (HC) underwent magnetic resonance imaging scanning including a structural and diffusion tensor imaging scan. SBs were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS). Differences in thalamic volumes and ATR fractional anisotropy (FA) were examined between (1) TBI + SB versus HC and (2) TBI + SB versus combined HC and TBI-SB and (3) between TBI + SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI + SB compared to the HC, TBI-SB, and the combined group. Veterans with TBI + SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI + SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI + SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide. PMID:23964245

  18. Alterations of white matter fractional anisotropy in unmedicated obsessive–compulsive disorder

    PubMed Central

    Tao, Jiong; Wang, Xianglan; Zhong, Zhiyong; Han, Hongying; Liu, Sha; Wen, Shenglin; Guan, Nianhong; Li, Lingjiang

    2017-01-01

    Background Abnormalities in white matter (WM) have previously been reported in patients with obsessive–compulsive disorder (OCD). However, there was some inconsistency in the results obtained for altered regions of WM. The aim of this study was to investigate fractional anisotropy (FA) in the WM of the whole brain in patients with OCD by using diffusion tensor imaging (DTI). Methods In total, 28 unmedicated patients with OCD and 28 healthy volunteers underwent DTI scan. A voxel-based analysis was used to compare FA values in WM of the two groups at a voxel threshold of P<0.005 with an extent threshold of k>72 voxels (P<0.05; Alphasim correction). Subsequently, correlation analysis was conducted in order to find the correlation between the mean FA values in significantly altered brain regions and Yale–Brown Obsessive Compulsive Scale (Y-BOCS) scores of the OCD patients. Results Compared with healthy volunteers, the OCD patients had lower FA value in the left lingual gyrus, right midbrain, and right precuneus. There were no regions with significantly higher FA values in OCD patients compared with healthy volunteers. The mean FA values in the above regions (left lingual, r=0.019, P=0.923; right midbrain, r=−0.208, P=0.289; and right precuneus, r=−0.273, P=0.161) had no significant correlation with the Y-BOCS scores of the OCD patients. Conclusion The findings of this study suggest that alterations in WM of the left lingual gyrus, right midbrain, and right precuneus are associated with the pathophysiology mechanism of OCD, and these microstructural alterations do not correlate with symptom severity of OCD. PMID:28096674

  19. The relationship between early life stress and microstructural integrity of the corpus callosum in a non-clinical population

    PubMed Central

    Paul, Robert; Henry, Lorrie; Grieve, Stuart M; Guilmette, Thomas J; Niaura, Raymond; Bryant, Richard; Bruce, Steven; Williams, Leanne M; Richard, Clark C; Cohen, Ronald A; Gordon, Evian

    2008-01-01

    Background Previous studies have examined the impact of early life stress (ELS) on the gross morphometry of brain regions, including the corpus callosum. However, studies have not examined the relationship between ELS and the microstructural integrity of the brain. Methods In the present study we evaluated this relationship in healthy non-clinical participants using diffusion tensor imaging (DTI) and self-reported history of ELS. Results Regression analyses revealed significant reductions in fractional anisotropy (FA) within the genu of the corpus callosum among those exposed to the greatest number of early life stressors, suggesting reduced microstructural integrity associated with increased ELS. These effects were most pronounced in the genu of the corpus callosum compared to the body and splenium, and were evident for females rather than males despite no differences in total ELS exposure between the sexes. In addition, a further comparison of those participants who were exposed to no ELS vs. three or more ELS events revealed lower FA in the genu of the corpus callosum among the ELS-exposed group, with trends of FA reduction in the body and the whole corpus callosum. By contrast, there were no relationships between ELS and volumetric analysis of the CC regions. The two group did not differ significantly on measures of current depression, stress or anxiety. Conclusion Our results reveal that greater exposure to ELS is associated with microstructural alterations in the white matter in the absence of significant volumetric changes. Importantly, our results indicate that exposure to ELS is associated with abnormalities on DTI despite the absence of clinically significant psychiatric symptoms. Future studies are needed to determine whether specific types of ELS are more likely to impact brain structure and function. PMID:18728817

  20. Sex differences in the relationship between planum temporale asymmetry and corpus callosum morphology in chimpanzees (Pan troglodytes): A combined MRI and DTI analysis.

    PubMed

    Hopkins, William D; Hopkins, Anna M; Misiura, Maria; Latash, Elitaveta M; Mareno, Mary Catherine; Schapiro, Steven J; Phillips, Kimberley A

    2016-12-01

    Increases brain size has been hypothesized to be inversely associated with the expression of behavioral and brain asymmetries within and between species. We tested this hypothesis by analyzing the relation between asymmetries in the planum temporale (PT) and different measures of the corpus callosum (CC) including surface area, streamline count as measured from diffusion tensor imaging, fractional anisotropy values and the ratio in the number of fibers to surface area in a sample of chimpanzees. We found that chimpanzees with larger PT asymmetries in absolute terms had smaller CC surface areas, fewer streamlines and a smaller ratio of fibers to surface area. These results were largely specific to male but not female chimpanzees. Our results partially support the hypothesis that brain asymmetries are linked to variation in corpus callosum morphology, although these associations may be sex-dependent.

  1. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

    PubMed

    Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K

    2015-06-01

    As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj  = 0.889), especially in combination with fabric anisotropy (r(2) adj  = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj  = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric anisotropy are the best determinants of trabecular bone stiffness and show, against common belief, that other

  2. Tractography of the Corpus Callosum in Huntington’s Disease

    PubMed Central

    Phillips, Owen; Sanchez-Castaneda, Cristina; Elifani, Francesca; Maglione, Vittorio; Di Pardo, Alba; Caltagirone, Carlo; Squitieri, Ferdinando; Sabatini, Umberto; Di Paola, Margherita

    2013-01-01

    White matter abnormalities have been shown in presymptomatic and symptomatic Huntington’s disease (HD) subjects using Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) methods. The largest white matter tract, the corpus callosum (CC), has been shown to be particularly vulnerable; however, little work has been done to investigate the regional specificity of tract abnormalities in the CC. Thus, this study examined the major callosal tracts by applying DTI-based tractography. Using TrackVis, a previously defined region of interest tractography method parcellating CC into seven major tracts based on target region was applied to 30 direction DTI data collected from 100 subjects: presymptomatic HD (Pre-HD) subjects (n = 25), HD patients (n = 25) and healthy control subjects (n = 50). Tractography results showed decreased fractional anisotropy (FA) and increased radial diffusivity (RD) across broad regions of the CC in Pre-HD subjects. Similar though more severe deficits were seen in HD patients. In Pre-HD and HD, callosal FA and RD were correlated with Disease Burden/CAG repeat length as well as motor (UHDRSI) and cognitive (URDRS2) assessments. These results add evidence that CC pathways are compromised prior to disease onset with possible demyelination occurring early in the disease and suggest that CAG repeat length is a contributing factor to connectivity deficits. Furthermore, disruption of these callosal pathways potentially contributes to the disturbances of motor and cognitive processing that characterize HD. PMID:24019913

  3. Abnormality of the corpus callosum in coalmine gas explosion-related posttraumatic stress disorder.

    PubMed

    Zhang, Yang; Li, Huabing; Lang, Xu; Zhuo, Chuanjun; Qin, Wen; Zhang, Quan

    2015-01-01

    Abnormal corpus callosum (CC) has been reported in childhood trauma-related posttraumatic stress disorder (PTSD); however, the nature of white matter (WM) integrity alterations in the CC of young adult-onset PTSD patients is unknown. In this study, 14 victims of a coal mine gas explosion with PTSD and 23 matched coal miners without experiencing the coal mine explosion were enrolled. The differences in fractional anisotropy (FA) within 7 sub-regions of the CC were compared between the two groups. Compared to the controls, PTSD coal miners exhibited significantly reduced FA values in the anterior sub-regions of the CC (P < 0.05, Bonferroni-corrected), which mainly interconnect the bilateral frontal cortices. Our findings indicated that the anterior part of the CC was more severely impaired than the posterior part in young adult-onset PTSD, which suggested the patterns of CC impairment may depend on the developmental stage of the structure when the PTSD occurs.

  4. More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome.

    PubMed

    Hoeft, Fumiko; Barnea-Goraly, Naama; Haas, Brian W; Golarai, Golijeh; Ng, Derek; Mills, Debra; Korenberg, Julie; Bellugi, Ursula; Galaburda, Albert; Reiss, Allan L

    2007-10-31

    We used diffusion tensor imaging to examine white matter integrity in the dorsal and ventral streams among individuals with Williams syndrome (WS) compared with two control groups (typically developing and developmentally delayed) and using three separate analysis methods (whole brain, region of interest, and fiber tractography). All analysis methods consistently showed that fractional anisotropy (FA; a measure of microstructural integrity) was higher in the right superior longitudinal fasciculus (SLF) in WS compared with both control groups. There was a significant association with deficits in visuospatial construction and higher FA in WS individuals. Comparable increases in FA across analytic methods were not observed in the left SLF or the bilateral inferior longitudinal fasciculus in WS subjects. Together, these findings suggest a specific role of right SLF abnormality in visuospatial construction deficits in WS.

  5. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    NASA Astrophysics Data System (ADS)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  6. Early Idiopathic Normal Pressure Hydrocephalus Patients With Neuropsychological Impairment Are Associated With Increased Fractional Anisotropy in the Anterior Thalamic Nucleus.

    PubMed

    Chen, Yung-Chieh; Chiang, Shih-Wei; Chi, Chia-Hsing; Liou, Michelle; Kuo, Duen-Pang; Kao, Hung-Wen; Chung, Hsiao-Wen; Ma, Hsin I; Peng, Giia-Sheun; Wu, Yu-Te; Chen, Cheng-Yu

    2016-05-01

    In this study, we aimed to investigate the reactive changes in diffusion tensor imaging (DTI)-derived diffusion metrics of the anterior thalamic nucleus (AN), a relaying center for the Papez circuit, in early idiopathic normal pressure hydrocephalus (iNPH) patients with memory impairment, as well as its correlation with the patients' neuropsychological performances. In total, 28 probable iNPH patients with symptom onset within 1 year and 17 control subjects were prospectively recruited between 2010 and 2013 for this institutional review board-approved study. Imaging studies including DTI and a neuropsychological assessment battery were performed in all subjects. Diffusion metrics were measured from the region of the AN using tract-deterministic seeding method by reconstructing the mammillo-thalamo-cingulate connections within the Papez circuit. Differences in diffusion metrics and memory assessment scores between the patient and control group were examined via the Mann-Whitney U test. Spearman correlation analyses were performed to examine associations between diffusion metrics of AN and neuropsychological tests within the patient group. We discovered that early iNPH patients exhibited marked elevations in fractional anisotropy, pure diffusion anisotropy, and axial diffusivity (all P < 0.01), as well as lower neuropsychological test scores including verbal and nonverbal memory (all P < 0.05) compared with normal control. Spearman rank correlation analyses did not disclose significant correlations between AN diffusion metrics and neuropsychological test scores in the patient group, whereas ranked scatter plots clearly demonstrated a dichotic sample distribution between patient and control samples. In summary, our study highlighted the potential compensatory role of the AN by increasing thalamocortical connectivity within the Papez circuit because memory function declines in early iNPH when early shunt treatment may potentially reverse the memory deficits.

  7. Early Idiopathic Normal Pressure Hydrocephalus Patients With Neuropsychological Impairment Are Associated With Increased Fractional Anisotropy in the Anterior Thalamic Nucleus

    PubMed Central

    Chen, Yung-Chieh; Chiang, Shih-Wei; Chi, Chia-Hsing; Liou, Michelle; Kuo, Duen-Pang; Kao, Hung-Wen; Chung, Hsiao-Wen; Ma, Hsin I.; Peng, Giia-Sheun; Wu, Yu-Te; Chen, Cheng-Yu

    2016-01-01

    Abstract In this study, we aimed to investigate the reactive changes in diffusion tensor imaging (DTI)-derived diffusion metrics of the anterior thalamic nucleus (AN), a relaying center for the Papez circuit, in early idiopathic normal pressure hydrocephalus (iNPH) patients with memory impairment, as well as its correlation with the patients’ neuropsychological performances. In total, 28 probable iNPH patients with symptom onset within 1 year and 17 control subjects were prospectively recruited between 2010 and 2013 for this institutional review board-approved study. Imaging studies including DTI and a neuropsychological assessment battery were performed in all subjects. Diffusion metrics were measured from the region of the AN using tract-deterministic seeding method by reconstructing the mammillo–thalamo–cingulate connections within the Papez circuit. Differences in diffusion metrics and memory assessment scores between the patient and control group were examined via the Mann–Whitney U test. Spearman correlation analyses were performed to examine associations between diffusion metrics of AN and neuropsychological tests within the patient group. We discovered that early iNPH patients exhibited marked elevations in fractional anisotropy, pure diffusion anisotropy, and axial diffusivity (all P < 0.01), as well as lower neuropsychological test scores including verbal and nonverbal memory (all P < 0.05) compared with normal control. Spearman rank correlation analyses did not disclose significant correlations between AN diffusion metrics and neuropsychological test scores in the patient group, whereas ranked scatter plots clearly demonstrated a dichotic sample distribution between patient and control samples. In summary, our study highlighted the potential compensatory role of the AN by increasing thalamocortical connectivity within the Papez circuit because memory function declines in early iNPH when early shunt treatment may potentially reverse the

  8. Diffusion tensor quantification and cognitive correlates of the macrostructure and microstructure of the corpus callosum in typically developing and dyslexic children.

    PubMed

    Hasan, Khader M; Molfese, David L; Walimuni, Indika S; Stuebing, Karla K; Papanicolaou, Andrew C; Narayana, Ponnada A; Fletcher, Jack M

    2012-11-01

    Noninvasive quantitative MRI methods, such as diffusion tensor imaging (DTI), can offer insights into the structure-function relationships in human developmental brain disorders. In this article, we quantified the macrostructural and microstructural attributes of the corpus callosum (CC) in children with dyslexia and in typically developing readers of comparable age and gender. Diffusion anisotropy, and mean, radial and axial diffusivities of cross-sectional CC subregions were computed using a validated DTI methodology. The normalized posterior CC area was enlarged in children with dyslexia relative to that in typically developing children. Moreover, the callosal microstructural attributes, such as the mean diffusivity of the posterior middle sector of the CC, correlated significantly with measures of word reading and reading comprehension. Reading group differences in fractional anisotropy, mean diffusivity and radial diffusivity were observed in the posterior CC (CC5). This study demonstrates the utility of regional DTI measurements of the CC in understanding the neurobiology of reading disorders.

  9. Surface-based vertexwise analysis of morphometry and microstructural integrity for white matter tracts in diffusion tensor imaging: With application to the corpus callosum in Alzheimer's disease.

    PubMed

    Tang, Xiaoying; Qin, Yuanyuan; Zhu, Wenzhen; Miller, Michael I

    2017-04-01

    In this article, we present a unified statistical pipeline for analyzing the white matter (WM) tracts morphometry and microstructural integrity, both globally and locally within the same WM tract, from diffusion tensor imaging. Morphometry is quantified globally by the volumetric measurement and locally by the vertexwise surface areas. Meanwhile, microstructural integrity is quantified globally by the mean fractional anisotropy (FA) and trace values within the specific WM tract and locally by the FA and trace values defined at each vertex of its bounding surface. The proposed pipeline consists of four steps: (1) fully automated segmentation of WM tracts in a multi-contrast multi-atlas framework; (2) generation of the smooth surface representations for the WM tracts of interest; (3) common template surface generation on which the localized morphometric and microstructural statistics are defined and a variety of statistical analyses can be conducted; (4) multiple comparison correction to determine the significance of the statistical analysis results. Detailed herein, this pipeline has been applied to the corpus callosum in Alzheimer's disease (AD) with significantly decreased FA values and increased trace values, both globally and locally, being detected in patients with AD when compared to normal aging populations. A subdivision of the corpus callosum in both hemispheres revealed that the AD pathology primarily affects the body and splenium of the corpus callosum. Validation analyses and two multiple comparison correction strategies are provided. Hum Brain Mapp 38:1875-1893, 2017. © 2017 Wiley Periodicals, Inc.

  10. Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function

    PubMed Central

    Smolker, H. R.; Reineberg, A. E.; Orr, J. M.; Banich, M. T.

    2015-01-01

    Although the relationship between structural differences within the prefrontal cortex (PFC) and executive function (EF) has been widely explored in cognitively impaired populations, little is known about this relationship in healthy young adults. Using optimized voxel-based morphometry (VBM), surface-based morphometry (SBM), and fractional anisotropy (FA) we determined the association between regional PFC grey matter (GM) morphometry and white matter tract diffusivity with performance on tasks that tap different aspects of EF as drawn from Miyake et al.’s three-factor model of EF. Reductions in both GM volume (VBM) and cortical folding (SBM) in the ventromedial PFC (vmPFC), ventrolateral PFC (vlPFC), and dorsolateral PFC (dlPFC) predicted better common EF, shifting-specific, and updating-specific performance, respectively. Despite capturing different components of GM morphometry, voxel- and surface-based findings were highly related, exhibiting regionally overlapping relationships with EF. Increased white matter FA in fiber tracts that connect the vmPFC and vlPFC with posterior regions of the brain also predicted better common EF and shifting-specific performance, respectively. These results suggest that the neural mechanisms supporting distinct aspects of EF may differentially rely on distinct regions of the PFC, and at least in healthy young adults, are influenced by regional morphometry of the PFC and the FA of major white matter tracts that connect the PFC with posterior cortical and subcortical regions. PMID:24562372

  11. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    PubMed Central

    Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing

    2016-01-01

    Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371

  12. Correlation of fractional anisotropy and metabolite concentrations measured using 1H-MRS of cerebral white matter in healthy adults.

    PubMed

    Cheng, Sainan; Liu, Qiang; Lv, Yubo; Han, Wenwen; Yu, Ke; Li, Yuchao; Gong, Tao; Zhang, Yi

    2014-01-01

    Fractional anisotropy (FA) is currently an ideal index capable of reflecting the white matter structure. 1H magnetic resonance spectroscopy (1H-MRS) is often used as a noninvasive concentration measurement of important neurochemicals in vivo. This study was conducted to investigate the relationship between FA and metabolite concentrations by comparing 1H-MRS of bilateral medium corona radiata in healthy adults. The data of diffusion tensor imaging (DTI) and 1H-MRS were acquired from 31 healthy adults using a 3.0 T MR system. All subjects were divided into three groups: the total group (mean age=42 years), the junior group (mean age=29 years) and the senior group (mean age=56 years). There was a negative correlation between FA and age in three groups (r=-0.146, r=-0.204, r=-0.162, p<0.05). The positive correlation of FA with corresponding concentrations of N-acetylaspartate (NAA) was significant in three groups (r=0.339, r=0.213, r=0.430, respectively, p<0.05). The positive correlation of FA with the corresponding NAA/Cr was only significant difference between the total 353 samples and the junior group (r=0.166, r=0.305, respectively, p<0.05). Combining 1H-MRS with DTI reveals the relationship between structure and metabolic characteristics of white matter.

  13. Automated assessment of the quality of diffusion tensor imaging data using color cast of color-encoded fractional anisotropy images.

    PubMed

    He, Xiaofu; Liu, Wei; Li, Xuzhou; Li, Qingli; Liu, Feng; Rauh, Virginia A; Yin, Dazhi; Bansal, Ravi; Duan, Yunsuo; Kangarlu, Alayar; Peterson, Bradley S; Xu, Dongrong

    2014-06-01

    Diffusion tensor imaging (DTI) data often suffer from artifacts caused by motion. These artifacts are especially severe in DTI data from infants, and implementing tight quality controls is therefore imperative for DTI studies of infants. Currently, routine procedures for quality assurance of DTI data involve the slice-wise visual inspection of color-encoded, fractional anisotropy (CFA) images. Such procedures often yield inconsistent results across different data sets, across different operators who are examining those data sets, and sometimes even across time when the same operator inspects the same data set on two different occasions. We propose a more consistent, reliable, and effective method to evaluate the quality of CFA images automatically using their color cast, which is calculated on the distribution statistics of the 2D histogram in the color space as defined by the International Commission on Illumination (CIE) on lightness and a and b (LAB) for the color-opponent dimensions (also known as the CIELAB color space) of the images. Experimental results using DTI data acquired from neonates verified that this proposed method is rapid and accurate. The method thus provides a new tool for real-time quality assurance for DTI data.

  14. Children with Poor Reading Skills at the Word Level Show Reduced Fractional Anisotropy in White Matter Tracts of Both Hemispheres.

    PubMed

    de Moura, Luciana Monteiro; Cogo-Moreira, Hugo; de Ávila, Clara Regina Brandão; Pan, Pedro Mario; Gadelha, Ary; Moriyama, Tais; Del Aquilla, Marco Antonio; Hoexter, Marcelo; Salum, Giovanni Abrahão; Picon, Felipe Almeida; Anés, Mauricio; Mercadante, Marcos Tomanik; Lacerda, Acioly; Amaro, Edson; Miguel, Euripedes Constantino; Rohde, Luis Augusto; Bressan, Rodrigo Affonseca; McGuire, Philip; Sato, João Ricardo; de Jesus Mari, Jair; Jackowski, Andrea Parolin

    2016-09-01

    Diffusion tensor imaging (DTI) studies showed that microstructural alterations are correlated to reading skills. In this study, we aim to investigate white matter microstructure of a group of Portuguese speakers with poor reading level, using different parameters of DTI. To perform this analysis, we selected children ranging from 8 to 12 years of age, poor readers (n = 17) and good readers (n = 23), evaluated in the word-level ability based on a Latent Class Analysis (LCA) of Academic Performance Test (TDE). Poor readers exhibited significant fractional anisotropy (FA) reductions in many tracts of both hemispheres, but small and restricted clusters of increased radial diffusivity (RD) in the left hemisphere. Spatial coherence of fibers might be the main source of differences, as changes in FA were not similarly accompanied in terms of extension by changes in RD. Widespread structural alterations in the white matter could prevent good reading ability at word level, which is consistent with recent studies demonstrating the involvement of multiple cortical regions and white matter tracts in reading disabilities.

  15. Associations between autistic traits and fractional anisotropy values in white matter tracts in a nonclinical sample of young adults.

    PubMed

    Bradstreet, Lauren E; Hecht, Erin E; King, Tricia Z; Turner, Jessica L; Robins, Diana L

    2017-01-01

    Whereas a number of studies have examined relationships among brain activity, social cognitive skills, and autistic traits, fewer studies have evaluated whether structural connections among brain regions relate to these traits and skills. Uncinate fasciculus (UF) and inferior longitudinal fasciculus (ILF) are white matter tracts that may underpin the behavioral expression of these skills because they connect regions within or provide sensory information to brain areas implicated in social cognition, and structural differences in these tracts have been associated with autistic traits. We examined relationships among self-reported autistic traits, mentalizing, and water diffusivity in UF and ILF in a nonclinical sample of 24 young adults (mean age = 21.92 years, SD = 4.72 years; 15 women). We measured autistic traits using the Autism-Spectrum Quotient, and we measured mentalizing using the Dynamic Interactive Shapes Clips task. We used Tract-Based Spatial Statistics and randomize to examine relationships among fractional anisotropy (FA) values in bilateral ILF and UF, age, cognitive abilities, autistic traits, and mentalizing. Autistic traits were positively related to FA values in left ILF. No other relationships between FA values and other variables were significant. Results suggest that left ILF may be involved in the expression of autistic traits in individuals without clinical diagnoses.

  16. Conduct disorder in females is associated with reduced corpus callosum structural integrity independent of comorbid disorders and exposure to maltreatment

    PubMed Central

    Lindner, P; Savic, I; Sitnikov, R; Budhiraja, M; Liu, Y; Jokinen, J; Tiihonen, J; Hodgins, S

    2016-01-01

    The behavioral phenotype and genotype of conduct disorder (CD) differ in males and females. Abnormalities of white matter integrity have been reported among males with CD and antisocial personality disorder (ASPD). Little is known about white matter integrity in females with CD. The present study aimed to determine whether abnormalities of white matter are present among young women who presented CD before the age of 15, and whether abnormalities are independent of the multiple comorbid disorders and experiences of maltreatment characterizing females with CD that may each in themselves be associated with alterations of the white matter. Three groups of women, aged on average 24 years, were scanned using diffusion tensor imaging and compared: 28 with prior CD, three of whom presented ASPD; a clinical comparison (CC) group of 15 women with no history of CD but with similar proportions who presented alcohol dependence, drug dependence, anxiety disorders, depression disorders and physical and sexual abuse as the CD group; and 24 healthy women. Whole-brain, tract-based spatial statistics were computed to investigate differences in fractional anisotropy, axial diffusivity and radial diffusivity. Compared with healthy women, women with prior CD showed widespread reductions in axial diffusivity primarily in frontotemporal regions. After statistically adjusting for comorbid disorders and maltreatment, group differences in the corpus callosum body and genu (including forceps minor) remained significant. Compared with the CC group, women with CD showed reduced fractional anisotropy in the body and genu of the corpus callosum. No differences were detected between the CD and healthy women in the uncinate fasciculus. PMID:26784968

  17. Heritability of Fractional Anisotropy in Human White Matter: A Comparison of Human Connectome Project and ENIGMA-DTI Data

    PubMed Central

    Kochunov, Peter; Jahanshad, Neda; Marcus, Daniel; Winkler, Anderson; Sprooten, Emma; Nichols, Thomas E.; Wright, Susan N; Hong, L Elliot; Patel, Binish; Behrens, Timothy; Jbabdi, Saad; Andersson, Jesper; Lenglet, Christophe; Yacoub, Essa; Moeller, Steen; Auerbach, Eddie; Ugurbil, Kamil; Sotiropoulos, Stamatios N; Brouwer, Rachel M.; Landman, Bennett; Lemaitre, Hervé; den Braber, Anouk; Zwiers, Marcel P.; Ritchie, Stuart; vanHulzen, Kimm; Almasy, Laura; Curran, Joanne; deZubicaray, Greig I; Duggirala, Ravi; Fox, Peter; Martin, Nicholas G.; McMahon, Katie L.; Mitchell, Braxton; Olvera, Rene L; Peterson, Charles; Starr, John; Sussmann, Jessika; Wardlaw, Joanna; Wright, Margie; Boomsma, Dorret I.; Kahn, Rene; de Geus, Eco JC; Williamson, Douglas E; Hariri, Ahmad; van t Ent, Dennis; Bastin, Mark E.; McIntosh, Andrew; Deary, Ian J.; Hulshoff pol, Hilleke E.; Blangero, John; Thompson, Paul M.; Glahn, David C.; Van Essen, David C.

    2015-01-01

    The degree to which genetic factors influence brain connectivity is beginning to be understood. Large-scale efforts are underway to map the profile of genetic effects in various brain regions. The NIH-funded Human Connectome Project (HCP) is providing data valuable for analyzing the degree of genetic influence underlying brain connectivity revealed by state-of-the-art neuroimaging methods. We calculated the heritability of the fractional anisotropy (FA) measure derived from diffusion tensor imaging (DTI) reconstruction in 481 HCP subjects (194/287 M/F) consisting of 57/60 pairs of mono- and dizygotic twins, and 246 siblings. FA measurements were derived using (Enhancing NeuroImaging Genetics through Meta-Analysis) ENIGMA DTI protocols and heritability estimates were calculated using the SOLAR-Eclipse imaging genetic analysis package. We compared heritability estimates derived from HCP data to those publicly available through the ENIGMA-DTI consortium, which were pooled together from five-family based studies across the US, Europe, and Australia. FA measurements from the HCP cohort for eleven major white matter tracts were highly heritable (h2=0.53–0.90, p<10−5), and were significantly correlated with the joint-analytical estimates from the ENIGMA cohort on the tract and voxel-wise levels. The similarity in regional heritability suggests that the additive genetic contribution to white matter microstructure is consistent across populations and imaging acquisition parameters. It also suggests the overarching genetic influence provides an opportunity to define a common genetic search space for future gene-discovery studies. Uniquely, the measurements of additive genetic contribution performed in this study can be repeated using online genetic analysis tools provided by the HCP ConnectomeDB web application. PMID:25747917

  18. Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data.

    PubMed

    Kochunov, Peter; Jahanshad, Neda; Marcus, Daniel; Winkler, Anderson; Sprooten, Emma; Nichols, Thomas E; Wright, Susan N; Hong, L Elliot; Patel, Binish; Behrens, Timothy; Jbabdi, Saad; Andersson, Jesper; Lenglet, Christophe; Yacoub, Essa; Moeller, Steen; Auerbach, Eddie; Ugurbil, Kamil; Sotiropoulos, Stamatios N; Brouwer, Rachel M; Landman, Bennett; Lemaitre, Hervé; den Braber, Anouk; Zwiers, Marcel P; Ritchie, Stuart; van Hulzen, Kimm; Almasy, Laura; Curran, Joanne; deZubicaray, Greig I; Duggirala, Ravi; Fox, Peter; Martin, Nicholas G; McMahon, Katie L; Mitchell, Braxton; Olvera, Rene L; Peterson, Charles; Starr, John; Sussmann, Jessika; Wardlaw, Joanna; Wright, Margie; Boomsma, Dorret I; Kahn, Rene; de Geus, Eco J C; Williamson, Douglas E; Hariri, Ahmad; van 't Ent, Dennis; Bastin, Mark E; McIntosh, Andrew; Deary, Ian J; Hulshoff Pol, Hilleke E; Blangero, John; Thompson, Paul M; Glahn, David C; Van Essen, David C

    2015-05-01

    The degree to which genetic factors influence brain connectivity is beginning to be understood. Large-scale efforts are underway to map the profile of genetic effects in various brain regions. The NIH-funded Human Connectome Project (HCP) is providing data valuable for analyzing the degree of genetic influence underlying brain connectivity revealed by state-of-the-art neuroimaging methods. We calculated the heritability of the fractional anisotropy (FA) measure derived from diffusion tensor imaging (DTI) reconstruction in 481 HCP subjects (194/287 M/F) consisting of 57/60 pairs of mono- and dizygotic twins, and 246 siblings. FA measurements were derived using (Enhancing NeuroImaging Genetics through Meta-Analysis) ENIGMA DTI protocols and heritability estimates were calculated using the SOLAR-Eclipse imaging genetic analysis package. We compared heritability estimates derived from HCP data to those publicly available through the ENIGMA-DTI consortium, which were pooled together from five-family based studies across the US, Europe, and Australia. FA measurements from the HCP cohort for eleven major white matter tracts were highly heritable (h(2)=0.53-0.90, p<10(-5)), and were significantly correlated with the joint-analytical estimates from the ENIGMA cohort on the tract and voxel-wise levels. The similarity in regional heritability suggests that the additive genetic contribution to white matter microstructure is consistent across populations and imaging acquisition parameters. It also suggests that the overarching genetic influence provides an opportunity to define a common genetic search space for future gene-discovery studies. Uniquely, the measurements of additive genetic contribution performed in this study can be repeated using online genetic analysis tools provided by the HCP ConnectomeDB web application.

  19. Corpus Callosum Volume and Neurocognition in Autism

    ERIC Educational Resources Information Center

    Keary, Christopher J.; Minshew, Nancy J.; Bansal, Rahul; Goradia, Dhruman; Fedorov, Serguei; Keshavan, Matcheri S.; Hardan, Antonio Y.

    2009-01-01

    The corpus callosum has recently been considered as an index of interhemispheric connectivity. This study applied a novel volumetric method to examine the size of the corpus callosum in 32 individuals with autism and 34 age-, gender- and IQ-matched controls and to investigate the relationship between this structure and cognitive measures linked to…

  20. Altered microstructure rather than morphology in the corpus callosum after lower limb amputation

    PubMed Central

    Li, Zhichao; Li, Chuanming; Fan, Lingzhong; Jiang, Guangyao; Wu, Jixiang; Jiang, Tianzi; Yin, Xuntao; Wang, Jian

    2017-01-01

    The corpus callosum (CC) has been implicated in the reorganization of the brain following amputation. However, it is unclear which regions of the CC are involved in this process. In this study, we explored the morphometric and microstructural changes in CC subregions in patients with unilateral lower limb amputation. Thirty-eight patients and 38 age- and gender-matched normal controls were included. The CC was divided into five regions, and the area, thickness and diffusion parameters of each region were investigated. While morphometric analysis showed no significant differences between the two groups, amputees showed significant higher values in axial diffusivity, radial diffusivity and mean diffusivity in region II of the CC, which connects the bilateral premotor and supplementary motor areas. In contrast, the mean fractional anisotropy value of the fibers generated by these cortical areas, as measured by tractography, was significantly smaller in amputees. These results demonstrate that the interhemispheric pathways contributing to motor coordination and imagery are reorganized in lower limb amputees. PMID:28303959

  1. Watershed-based segmentation of the corpus callosum in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto

    2012-02-01

    The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.

  2. Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study.

    PubMed

    Sivagnanasundaram, Sinthuja; Crossett, Ben; Dedova, Irina; Cordwell, Stuart; Matsumoto, Izuru

    2007-10-01

    Abnormalities within the corpus callosum (CC) have been identified in schizophrenia brains and are thought to affect inter-hemispheric communication, which in-turn is postulated to underlie some schizophrenia symptoms. Furthermore, hemisphere asymmetry of fractional anisotropy, detected by diffusion tensor imaging, left-higher-than-right- has been observed in normal individuals in the CC genu. This asymmetry is significantly reduced in the left CC genu of first-episode and chronic schizophrenia subjects. We examined the protein expression profile of the CC genu, including the profiles from the left and right hemisphere, in schizophrenia brains compared to controls using two-dimensional gel electrophoresis and mass spectrometry techniques. Proteins involved in cytoskeletal structure and function, neuroprotective function and energy metabolism were identified as differentially expressed, suggesting these proteins may underlie abnormal CC genu structure and function. Proteins in these functional categories also displayed different expression levels in the left CC genu compared to the right in both control and schizophrenia brains and therefore may be involved in normal CC asymmetry and reduced asymmetry in schizophrenia individuals. This initial pool of protein candidates and abnormal functional pathways opens up avenues for further investigation of molecular mechanisms involving the CC in schizophrenia pathogenesis and symptoms.

  3. Role of corpus callosum integrity in arm function differs based on motor severity after stroke.

    PubMed

    Stewart, Jill Campbell; Dewanjee, Pritha; Tran, George; Quinlan, Erin Burke; Dodakian, Lucy; McKenzie, Alison; See, Jill; Cramer, Steven C

    2017-01-01

    While the corpus callosum (CC) is important to normal sensorimotor function, its role in motor function after stroke is less well understood. This study examined the relationship between structural integrity of the motor and sensory sections of the CC, as reflected by fractional anisotropy (FA), and motor function in individuals with a range of motor impairment level due to stroke. Fifty-five individuals with chronic stroke (Fugl-Meyer motor score range 14 to 61) and 18 healthy controls underwent diffusion tensor imaging and a set of motor behavior tests. Mean FA from the motor and sensory regions of the CC and from corticospinal tract (CST) were extracted and relationships with behavioral measures evaluated. Across all participants, FA in both CC regions was significantly decreased after stroke (p < 0.001) and showed a significant, positive correlation with level of motor function. However, these relationships varied based on degree of motor impairment: in individuals with relatively less motor impairment (Fugl-Meyer motor score > 39), motor status correlated with FA in the CC but not the CST, while in individuals with relatively greater motor impairment (Fugl-Meyer motor score ≤ 39), motor status correlated with FA in the CST but not the CC. The role interhemispheric motor connections play in motor function after stroke may differ based on level of motor impairment. These findings emphasize the heterogeneity of stroke, and suggest that biomarkers and treatment approaches targeting separate subgroups may be warranted.

  4. Fiber composition of the human corpus callosum.

    PubMed

    Aboitiz, F; Scheibel, A B; Fisher, R S; Zaidel, E

    1992-12-11

    The densities of fibers of different sizes were calculated in ten regions of the corpus callosum of twenty human brains (ten females, ten males). Light microscopic examination revealed a consistent pattern of regional differentiation of fiber types in the corpus callosum. Thin fibers are most dense in the anterior corpus callosum (genu), and decrease in density posteriorly towards the posterior midbody, where they reach a minimum. Towards the posterior corpus callosum (splenium), the density of thin fibers increases again, but in the posterior pole of the callosum the density decreases locally. Large-diameter fibers show a pattern complementary to that of thin fibers, having a peak of density in the posterior midbody and a local increase of density in the posterior pole of the corpus callosum. Across subjects, the overall density of callosal fibers had no significant correlation with callosal area and an increased callosal area indicated an increased total number of fibers crossing through. Considering different fiber sizes, this was only true for small diameter fibers, whose large majority is believed to interconnect association cortex. No sex differences in fiber composition of the corpus callosum were found.

  5. Corpus Callosum MR Image Classification

    NASA Astrophysics Data System (ADS)

    Elsayed, A.; Coenen, F.; Jiang, C.; García-Fiñana, M.; Sluming, V.

    An approach to classifying Magnetic Resonance (MR) image data is described. The specific application is the classification of MRI scan data according to the nature of the corpus callosum, however the approach has more general applicability. A variation of the “spectral segmentation with multi-scale graph decomposition” mechanism is introduced. The result of the segmentation is stored in a quad-tree data structure to which a weighted variation (also developed by the authors) of the gSpan algorithm is applied to identify frequent sub-trees. As a result the images are expressed as a set frequent sub-trees. There may be a great many of these and thus a decision tree based feature reduction technique is applied before classification takes place. The results show that the proposed approach performs both efficiently and effectively, obtaining a classification accuracy of over 95% in the case of the given application.

  6. Response inhibition deficits in children with Fetal Alcohol Spectrum Disorder: Relationship between diffusion tensor imaging of the corpus callosum and eye movement control

    PubMed Central

    Paolozza, Angelina; Treit, Sarah; Beaulieu, Christian; Reynolds, James N.

    2014-01-01

    Response inhibition is the ability to suppress irrelevant impulses to enable goal-directed behavior. The underlying neural mechanisms of inhibition deficits are not clearly understood, but may be related to white matter connectivity, which can be assessed using diffusion tensor imaging (DTI). The goal of this study was to investigate the relationship between response inhibition during the performance of saccadic eye movement tasks and DTI measures of the corpus callosum in children with or without Fetal Alcohol Spectrum Disorder (FASD). Participants included 43 children with an FASD diagnosis (12.3 ± 3.1 years old) and 35 typically developing children (12.5 ± 3.0 years old) both aged 7–18, assessed at three sites across Canada. Response inhibition was measured by direction errors in an antisaccade task and timing errors in a delayed memory-guided saccade task. Manual deterministic tractography was used to delineate six regions of the corpus callosum and calculate fractional anisotropy (FA), mean diffusivity (MD), parallel diffusivity, and perpendicular diffusivity. Group differences in saccade measures were assessed using t-tests, followed by partial correlations between eye movement inhibition scores and corpus callosum FA and MD, controlling for age. Children with FASD made more saccade direction errors and more timing errors, which indicates a deficit in response inhibition. The only group difference in DTI metrics was significantly higher MD of the splenium in FASD compared to controls. Notably, direction errors in the antisaccade task were correlated negatively to FA and positively to MD of the splenium in the control, but not the FASD group, which suggests that alterations in connectivity between the two hemispheres of the brain may contribute to inhibition deficits in children with FASD. PMID:24967159

  7. Facial emotion recognition in agenesis of the corpus callosum

    PubMed Central

    2014-01-01

    Background Impaired social functioning is a common symptom of individuals with developmental disruptions in callosal connectivity. Among these developmental conditions, agenesis of the corpus callosum provides the most extreme and clearly identifiable example of callosal disconnection. To date, deficits in nonliteral language comprehension, humor, theory of mind, and social reasoning have been documented in agenesis of the corpus callosum. Here, we examined a basic social ability as yet not investigated in this population: recognition of facial emotion and its association with social gaze. Methods Nine individuals with callosal agenesis and nine matched controls completed four tasks involving emotional faces: emotion recognition from upright and inverted faces, gender recognition, and passive viewing. Eye-tracking data were collected concurrently on all four tasks and analyzed according to designated facial regions of interest. Results Individuals with callosal agenesis exhibited impairments in recognizing emotions from upright faces, in particular lower accuracy for fear and anger, and these impairments were directly associated with diminished attention to the eye region. The callosal agenesis group exhibited greater consistency in emotion recognition across conditions (upright vs. inverted), with poorest performance for fear identification in both conditions. The callosal agenesis group also had atypical facial scanning (lower fractional dwell time in the eye region) during gender naming and passive viewing of faces, but they did not differ from controls on gender naming performance. The pattern of results did not differ when taking into account full-scale intelligence quotient or presence of autism spectrum symptoms. Conclusions Agenesis of the corpus callosum results in a pattern of atypical facial scanning characterized by diminished attention to the eyes. This pattern suggests that reduced callosal connectivity may contribute to the development and

  8. Corpus Callosum Area in Children and Adults with Autism

    ERIC Educational Resources Information Center

    Prigge, Molly B. D.; Lange, Nicholas; Bigler, Erin D.; Merkley, Tricia L.; Neeley, E. Shannon; Abildskov, Tracy J.; Froehlich, Alyson L.; Nielsen, Jared A.; Cooperrider, Jason R.; Cariello, Annahir N.; Ravichandran, Caitlin; Alexander, Andrew L.; Lainhart, Janet E.

    2013-01-01

    Despite repeated findings of abnormal corpus callosum structure in autism, the developmental trajectories of corpus callosum growth in the disorder have not yet been reported. In this study, we examined corpus callosum size from a developmental perspective across a 30-year age range in a large cross-sectional sample of individuals with autism…

  9. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players

    PubMed Central

    Stamm, Julie M.; Koerte, Inga K.; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P.; Baugh, Christine M.; Giwerc, Michelle Y.; Zhu, Anni; Coleman, Michael J.; Bouix, Sylvain; Fritts, Nathan G.; Martin, Brett M.; Chaisson, Christine; McClean, Michael D.; Lin, Alexander P.; Cantu, Robert C.; Tripodis, Yorghos; Shenton, Martha E.

    2015-01-01

    Abstract Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40–65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure. PMID:26200068

  10. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    PubMed

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  11. Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis

    PubMed Central

    Roura, Eloy; Schneider, Torben; Modat, Marc; Daga, Pankaj; Muhlert, Nils; Chard, Declan; Ourselin, Sebastien; Lladó, Xavier; Wheeler-Kingshott, Claudia Gandini

    2015-01-01

    Summary Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) maps to a common space is of particular interest in neuroimaging, as T1w scans can be used for brain segmentation while DTI can provide microstructural tissue information. While the effect of lesions on registration has been tackled and solutions are available, the issue of atrophy is still open to discussion. Multi-channel (MC) registration algorithms have the advantage of maintaining anatomical correspondence between different contrast images after registration to any target space. In this work, we test the performance of an MC registration approach applied to T1w and FA data using simulated brain atrophy images. Experimental results are compared with a standard single-channel registration approach. Both qualitative and quantitative evaluations are presented, showing that the MC approach provides better alignment with the target while maintaining better T1w and FA co-alignment. PMID:26727703

  12. Tract-specific fractional anisotropy predicts cognitive outcome in a community sample of middle-aged participants with white matter lesions

    PubMed Central

    Soriano-Raya, Juan José; Miralbell, Júlia; López-Cancio, Elena; Bargalló, Núria; Arenillas, Juan Francisco; Barrios, Maite; Cáceres, Cynthia; Toran, Pere; Alzamora, Maite; Dávalos, Antoni; Mataró, Maria

    2014-01-01

    Cerebral white matter lesions (WMLs) have been consistently related to cognitive dysfunction but the role of white matter (WM) damage in cognitive impairment is not fully determined. Diffusion tensor imaging is a promising tool to explain impaired cognition related to WMLs. We investigated the separate association of high-grade periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) with fractional anisotropy (FA) in middle-aged individuals. We also assessed the predictive value to cognition of FA within specific WM tracts associated with high-grade WMLs. One hundred participants from the Barcelona-AsIA Neuropsychology Study were divided into groups based on low- and high-grade WMLs. Voxel-by-voxel FA were compared between groups, with separate analyses for high-grade PVHs and DWMHs. The mean FA within areas showing differences between groups was extracted in each tract for linear regression analyses. Participants with high-grade PVHs and participants with high-grade DWMHs showed lower FA in different areas of specific tracts. Areas showing decreased FA in high-grade DWMHs predicted lower cognition, whereas areas with decreased FA in high-grade PVHs did not. The predictive value to cognition of specific WM tracts supports the involvement of cortico-subcortical circuits in cognitive deficits only in DWMHs. PMID:24549185

  13. Fractional anisotropy shows differential reduction in frontal-subcortical fiber bundles—A longitudinal MRI study of 76 middle-aged and older adults

    PubMed Central

    Vik, Alexandra; Hodneland, Erlend; Haász, Judit; Ystad, Martin; Lundervold, Astri J.; Lundervold, Arvid

    2015-01-01

    Motivated by the frontal- and white matter (WM) retrogenesis hypotheses and the assumptions that fronto-striatal circuits are especially vulnerable in normal aging, the goal of the present study was to identify fiber bundles connecting subcortical nuclei and frontal areas and obtain site-specific information about age related fractional anisotropy (FA) changes. Multimodal magnetic resonance image acquisitions [3D T1-weighted and diffusion weighted imaging (DWI)] were obtained from healthy older adults (N = 76, range 49–80 years at inclusion) at two time points, 3 years apart. A subset of the participants (N = 24) was included at a third time-point. In addition to the frontal-subcortical fibers, the anterior callosal fiber (ACF) and the corticospinal tract (CST) was investigated by its mean FA together with tract parameterization analysis. Our results demonstrated fronto-striatal structural connectivity decline (reduced FA) in normal aging with substantial inter-individual differences. The tract parameterization analysis showed that the along tract FA profiles were characterized by piece-wise differential changes along their extension rather than being uniformly affected. To the best of our knowledge, this is the first longitudinal study detecting age-related changes in frontal-subcortical WM connections in normal aging. PMID:26029102

  14. Diffusion tensor imaging of the human calf muscle: distinct changes in fractional anisotropy and mean diffusion due to passive muscle shortening and stretching.

    PubMed

    Schwenzer, Nina F; Steidle, Günter; Martirosian, Petros; Schraml, Christina; Springer, Fabian; Claussen, Claus D; Schick, Fritz

    2009-12-01

    The influence of passive shortening and stretching of the calf muscles on diffusion characteristics was investigated. The diffusion tensor was measured in transverse slices through the lower leg of eight healthy volunteers (29 +/- 7 years) on a 3 T whole-body MR unit in three different positions of the foot (40 degrees plantarflexion, neutral ankle position (0 degrees ), and -10 degrees dorsiflexion in the ankle). Maps of the mean diffusivity, the three eigenvalues of the tensor and fractional anisotropy (FA) were calculated. Results revealed a distinct dependence of the mean diffusivity and FA on the foot position and the related shortening and stretching of the muscle groups. The tibialis anterior muscle showed a significant increase of 19% in FA with increasing dorsiflexion, while the FA of the antagonists significantly decreased ( approximately 20%). Regarding the mean diffusivity of the diffusion tensor, the muscle groups showed an opposed response to muscle elongation and shortening. Regarding the eigenvalues of the diffusion tensor, lambda(2) and lambda(3) showed significant changes in relation to muscle length. In contrast, no change in lambda(1) could be found. This work reveals significant changes in diffusional characteristics induced by passive muscle shortening and stretching.

  15. Quantitative assessment of corpus callosum morphology in periventricular nodular heterotopia.

    PubMed

    Pardoe, Heath R; Mandelstam, Simone A; Hiess, Rebecca Kucharsky; Kuzniecky, Ruben I; Jackson, Graeme D

    2015-01-01

    We investigated systematic differences in corpus callosum morphology in periventricular nodular heterotopia (PVNH). Differences in corpus callosum mid-sagittal area and subregional area changes were measured using an automated software-based method. Heterotopic gray matter deposits were automatically labeled and compared with corpus callosum changes. The spatial pattern of corpus callosum changes were interpreted in the context of the characteristic anterior-posterior development of the corpus callosum in healthy individuals. Individuals with periventricular nodular heterotopia were imaged at the Melbourne Brain Center or as part of the multi-site Epilepsy Phenome Genome project. Whole brain T1 weighted MRI was acquired in cases (n=48) and controls (n=663). The corpus callosum was segmented on the mid-sagittal plane using the software "yuki". Heterotopic gray matter and intracranial brain volume was measured using Freesurfer. Differences in corpus callosum area and subregional areas were assessed, as well as the relationship between corpus callosum area and heterotopic GM volume. The anterior-posterior distribution of corpus callosum changes and heterotopic GM nodules were quantified using a novel metric and compared with each other. Corpus callosum area was reduced by 14% in PVNH (p=1.59×10(-9)). The magnitude of the effect was least in the genu (7% reduction) and greatest in the isthmus and splenium (26% reduction). Individuals with higher heterotopic GM volume had a smaller corpus callosum. Heterotopic GM volume was highest in posterior brain regions, however there was no linear relationship between the anterior-posterior position of corpus callosum changes and PVNH nodules. Reduced corpus callosum area is strongly associated with PVNH, and is probably associated with abnormal brain development in this neurological disorder. The primarily posterior corpus callosum changes may inform our understanding of the etiology of PVNH. Our results suggest that

  16. Global fractional anisotropy and mean diffusivity together with segmented brain volumes assemble a predictive discriminant model for young and elderly healthy brains: a pilot study at 3T

    PubMed Central

    Garcia-Lazaro, Haydee Guadalupe; Becerra-Laparra, Ivonne; Cortez-Conradis, David; Roldan-Valadez, Ernesto

    2016-01-01

    Summary Several parameters of brain integrity can be derived from diffusion tensor imaging. These include fractional anisotropy (FA) and mean diffusivity (MD). Combination of these variables using multivariate analysis might result in a predictive model able to detect the structural changes of human brain aging. Our aim was to discriminate between young and older healthy brains by combining structural and volumetric variables from brain MRI: FA, MD, and white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) volumes. This was a cross-sectional study in 21 young (mean age, 25.71±3.04 years; range, 21–34 years) and 10 elderly (mean age, 70.20±4.02 years; range, 66–80 years) healthy volunteers. Multivariate discriminant analysis, with age as the dependent variable and WM, GM and CSF volumes, global FA and MD, and gender as the independent variables, was used to assemble a predictive model. The resulting model was able to differentiate between young and older brains: Wilks’ λ = 0.235, χ2 (6) = 37.603, p = .000001. Only global FA, WM volume and CSF volume significantly discriminated between groups. The total accuracy was 93.5%; the sensitivity, specificity and positive and negative predictive values were 91.30%, 100%, 100% and 80%, respectively. Global FA, WM volume and CSF volume are parameters that, when combined, reliably discriminate between young and older brains. A decrease in FA is the strongest predictor of membership of the older brain group, followed by an increase in WM and CSF volumes. Brain assessment using a predictive model might allow the follow-up of selected cases that deviate from normal aging. PMID:27027893

  17. Utility of fractional anisotropy imaging analyzed by statistical parametric mapping for detecting minute brain lesions in chronic-stage patients who had mild or moderate traumatic brain injury.

    PubMed

    Asano, Yoshitaka; Shinoda, Jun; Okumura, Ayumi; Aki, Tatsuki; Takenaka, Shunsuke; Miwa, Kazuhiro; Yamada, Mikito; Ito, Takeshi; Yokoyama, Kazutoshi

    2012-01-01

    Diffusion tensor imaging (DTI) has recently evolved as valuable technique to investigate diffuse axonal injury (DAI). This study examined whether fractional anisotropy (FA) images analyzed by statistical parametric mapping (FA-SPM images) are superior to T(2)*-weighted gradient recalled echo (T2*GRE) images or fluid-attenuated inversion recovery (FLAIR) images for detecting minute lesions in traumatic brain injury (TBI) patients. DTI was performed in 25 patients with cognitive impairments in the chronic stage after mild or moderate TBI. The FA maps obtained from the DTI were individually compared with those from age-matched healthy control subjects using voxel-based analysis and FA-SPM images (p < 0.001). Abnormal low-intensity areas on T2*GRE images (T2* lesions) were found in 10 patients (40.0%), abnormal high-intensity areas on FLAIR images in 4 patients (16.0%), and areas with significantly decreased FA on FA-SPM image in 16 patients (64.0%). Nine of 10 patients with T2* lesions had FA-SPM lesions. FA-SPM lesions topographically included most T2* lesions in the white matter and the deep brain structures, but did not include T2* lesions in the cortex/near-cortex or lesions containing substantial hemosiderin regardless of location. All 4 patients with abnormal areas on FLAIR images had FA-SPM lesions. FA-SPM imaging is useful for detecting minute lesions because of DAI in the white matter and the deep brain structures, which may not be visualized on T2*GRE or FLAIR images, and may allow the detection of minute brain lesions in patients with post-traumatic cognitive impairment.

  18. Agenesis of the Corpus Callosum and Generalized Epilepsy.

    PubMed

    Ilik, Faik; Bilgilisoy, Ugur T

    2015-07-01

    The corpus callosum is the main band of interhemispheric axonal fibers in the human brain. Corpus callosum agenesis has widely varying symptoms, mainly associated with epilepsy, cognitive failure, and different neuropsychiatric disorders. Our case of corpus callosum agenesis includes eyelid myoclonia with absences. In the literature, there is no reported case of this combination. We report this case because it is rare, and relevant for the understanding of interhemispheric communications, based on our electrophysiological findings.

  19. Delusional Disorder in a Patient with Corpus Callosum Agenesis.

    PubMed

    Bhatia, M S; Saha, Rashmita; Doval, Nimisha

    2016-12-01

    Agenesis of corpus callosum is rare and associated neuropsychiatric abnormalities reported are epilepsy, Asperger's syndrome, learning problems, depression, schizophrenia, conduct disorder and conversion symptoms. Schizophrenia is the most common psychiatric disorder reported among corpus callosum agenesis. We report a rare case of delusional disorder with corpus callosum agenesis and seizure disorder. The patient presented with delusions of persecution towards younger brother and mother, disturbed sleep and reduced appetite. She had a history of seizure disorder of ten years duration, which was controlled with carbamazepine and levetiracetam. Neurological examination was normal. On MRI, corpus callosum agenesis was detected. She was put on an atypical antipsychotic quetiapine to which her psychiatric symptoms responded completely.

  20. Depressive symptoms related to low fractional anisotropy of white matter underlying the right ventral anterior cingulate in older adults with atherosclerotic vascular disease

    PubMed Central

    Bijanki, Kelly R.; Matsui, Joy T.; Mayberg, Helen S.; Magnotta, Vincent A.; Arndt, Stephan; Johnson, Hans J.; Nopoulos, Peg; Paradiso, Sergio; McCormick, Laurie M.; Fiedorowicz, Jess G.; Epping, Eric A.; Moser, David J.

    2015-01-01

    We sought to characterize the relationship between integrity of the white matter underlying the ventral anterior cingulate (vAC) and depressive symptoms in older adults with atherosclerotic vascular disease (AVD), a condition associated with preferential degeneration of the white matter. The vAC was defined as including white matter underlying ventral Brodmann Area 24 and Brodmann Area 25, corresponding with the “subcallosal” and “subgenual” cingulate respectively. This region of interest was chosen based on the preponderance of evidence that the white matter in the region plays a critical role in the manifestation of depressive symptoms. Participants had current unequivocal diagnoses of AVD and were between 55 and 90 years-old. Fractional anisotropy (FA) was used as an index of white matter integrity and organization. Whole-brain mean diffusivity (MD) was used as an index of global white matter lesion burden. Depressive symptoms were measured using the Symptom Checklist-90-Revised (SCL-90-R) Depression Scale. Depressive symptoms were significantly related to low FA in the right vAC (r = -0.356, df = 30, p = 0.045) but not the left vAC (r = 0.024, df = 30, p = 0.896) after controlling for total brain MD (a statistical control for global white matter lesion burden). Further, depressive symptoms were significantly related to low FA in the right vAC (r = -0.361, df = 31, p = 0.039), but not the left vAC (r = 0.259, df = 31, p = 0.145) when controlled for the contralateral vAC FA. The correlation coefficients for this follow-up analysis were found to be significantly different between left and right vAC (Z = 2.310, p = 0.021). Poor white matter health in the vAC may be a biological mechanism for depressive symptoms in older adults with vascular disease. Further studies may corroborate that the right vAC plays a unique role in depressive symptom manifestation in cases where the white matter is preferentially affected, as is the case in AVD. This could lead to

  1. Educational Implications for Agenesis of the Corpus Callosum.

    ERIC Educational Resources Information Center

    Ritter, Shirley A.

    This case study evaluates the case of a 20-year-old young Australian adult born with agenesis of the corpus callosum, the area of the brain uniting the hemispheres. Deficits commonly associated with agenesis of the corpus callosum are mental retardation, motor involvement, seizure activity, and lateral transfer difficulties. The report: (1)…

  2. Corpus Callosum Morphometrics in Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Boger-Megiddo, Inbal; Shaw, Dennis W. W.; Friedman, Seth D.; Sparks, Bobbi F.; Artru, Alan A.; Giedd, Jay N.; Dawson, Geraldine; Dager, Stephen R.

    2006-01-01

    This study assessed digital corpus callosum cross sectional areas in 3-4 year olds with autism spectrum disorder (ASD) compared to typically developing (TD) and developmentally delayed (DD) children. Though not different in absolute size compared to TD, ASD callosums were disproportionately small adjusted for increased ASD cerebral volume. ASD…

  3. Corpus callosum involvement and postoperative outcomes of patients with gliomas.

    PubMed

    Chen, Ko-Ting; Wu, Tai-Wei Erich; Chuang, Chi-Cheng; Hsu, Yung-Hsin; Hsu, Peng-Wei; Huang, Yin-Cheng; Lin, Tzu-Kang; Chang, Chen-Nen; Lee, Shih-Tseng; Wu, Chieh-Tsai; Tseng, Chen-Kan; Wang, Chun-Chieh; Pai, Ping-Ching; Wei, Kuo-Chen; Chen, Pin-Yuan

    2015-09-01

    Corpus callosum involvement is associated with poorer survival in high grade glioma (HGG), but the prognostic value in low grade glioma (LGG) is unclear. To determine the prognostic impact of corpus callosum involvement on progression free survival (PFS) and overall survival (OS) in HGG and LGG, the records of 233 glioma patients treated from 2008 to 2011 were retrospectively reviewed. Preoperative magnetic resonance (MR) images were used to identify corpus callosum involvement. Age, sex, preoperative Karnofsky performance scale, postoperative Eastern Cooperative Oncology Group (ECOG) score and extent of resection (EOR) were evaluated with respect to PFS and OS. The incidence of corpus callosum involvement was similar among HGG (14 %) and LGG (14.5 %). Univariate analysis revealed that PFS and OS were significantly shorter in both WHO grade II and grade IV glioma with corpus callosum involvement (both, p < 0.05). Multivariate analysis showed that grade II glioma with corpus callosum involvement have shorter PFS (p = 0.03), while EOR, instead of corpus callosum involvement (p = 0.16), was an independent factor associated with PFS in grade IV glioma (p < 0.05). Corpus callosum involvement was no longer significantly associated with OS after adjusting age, gender, EOR, preoperative and postoperative performance status (p = 0.16, 0.17 and 0.56 in grade II, III and IV gliomas, respectively). Corpus callosum involvement happened in both LGG and HGG, and is associated with lower EOR and higher postoperative ECOG score both in LGG and HGG. Corpus callosum involvement tends to be an independent prognostic factor for PFS in LGG, but not for OS in LGG or in HGG.

  4. Influence of Corpus Callosum Damage on Cognition and Physical Disability in Multiple Sclerosis: A Multimodal Study

    PubMed Central

    Llufriu, Sara; Blanco, Yolanda; Martinez-Heras, Eloy; Casanova-Molla, Jordi; Gabilondo, Iñigo; Sepulveda, Maria; Falcon, Carles; Berenguer, Joan; Bargallo, Nuria; Villoslada, Pablo; Graus, Francesc; Valls-Sole, Josep; Saiz, Albert

    2012-01-01

    Background Corpus callosum (CC) is a common target for multiple sclerosis (MS) pathology. We investigated the influence of CC damage on physical disability and cognitive dysfunction using a multimodal approach. Methods Twenty-one relapsing-remitting MS patients and 13 healthy controls underwent structural MRI and diffusion tensor of the CC (fractional anisotropy; mean diffusivity, MD; radial diffusivity, RD; axial diffusivity). Interhemisferic transfer of motor inhibition was assessed by recording the ipsilateral silent period (iSP) to transcranial magnetic stimulation. We evaluated cognitive function using the Brief Repeatable Battery and physical disability using the Expanded Disability Status Scale (EDSS) and the MS Functional Composite (MSFC) z-score. Results The iSP latency correlated with physical disability scores (r ranged from 0.596 to 0.657, P values from 0.004 to 0.001), and with results of visual memory (r = −0.645, P = 0.002), processing speed (r = −0.51, P = 0.018) and executive cognitive domain tests (r = −0.452, P = 0.039). The area of the rostrum correlated with the EDSS (r = −0.442, P = 0.045). MD and RD correlated with cognitive performance, mainly with results of visual and verbal memory tests (r ranged from −0.446 to −0.546, P values from 0.048 to 0.011). The iSP latency correlated with CC area (r = −0.345, P = 0.049), volume (r = −0.401, P = 0.002), MD (r = 0.404, P = 0.002) and RD (r = 0.415, P = 0.016). Conclusions We found evidence for structural and microstructural CC abnormalities associated with impairment of motor callosal inhibitory conduction in MS. CC damage may contribute to cognitive dysfunction and in less extent to physical disability likely through a disconnection mechanism. PMID:22606347

  5. Working memory and corpus callosum microstructural integrity after pediatric traumatic brain injury: a diffusion tensor tractography study.

    PubMed

    Treble, Amery; Hasan, Khader M; Iftikhar, Amal; Stuebing, Karla K; Kramer, Larry A; Cox, Charles S; Swank, Paul R; Ewing-Cobbs, Linda

    2013-10-01

    Deficits in working memory (WM) are a common consequence of pediatric traumatic brain injury (TBI) and are believed to contribute to difficulties in a range of cognitive and academic domains. Reduced integrity of the corpus callosum (CC) after TBI may disrupt the connectivity between bilateral frontoparietal neural networks underlying WM. In the present investigation, diffusion tensor imaging (DTI) tractography of eight callosal subregions (CC1-CC8) was examined in relation to measures of verbal and visuospatial WM in 74 children sustaining TBI and 49 typically developing comparison children. Relative to the comparison group, children with TBI demonstrated poorer visuospatial WM, but comparable verbal WM. Microstructure of the CC was significantly compromised in brain-injured children, with lower fractional anisotropy (FA) and higher axial and radial diffusivity metrics in all callosal subregions. In both groups of children, lower FA and/or higher radial diffusivity in callosal subregions connecting anterior and posterior parietal cortical regions predicted poorer verbal WM, whereas higher radial diffusivity in callosal subregions connecting anterior and posterior parietal, as well as temporal, cortical regions predicted poorer visuospatial WM. DTI metrics, especially radial diffusivity, in predictive callosal subregions accounted for significant variance in WM over and above remaining callosal subregions. Reduced microstructural integrity of the CC, particularly in subregions connecting parietal and temporal cortices, may act as a neuropathological mechanism contributing to long-term WM deficits. The future clinical use of neuroanatomical biomarkers may allow for the early identification of children at highest risk for WM deficits and earlier provision of interventions for these children.

  6. Working Memory and Corpus Callosum Microstructural Integrity after Pediatric Traumatic Brain Injury: A Diffusion Tensor Tractography Study

    PubMed Central

    Treble, Amery; Hasan, Khader M.; Iftikhar, Amal; Stuebing, Karla K.; Kramer, Larry A.; Cox, Charles S.; Swank, Paul R.

    2013-01-01

    Abstract Deficits in working memory (WM) are a common consequence of pediatric traumatic brain injury (TBI) and are believed to contribute to difficulties in a range of cognitive and academic domains. Reduced integrity of the corpus callosum (CC) after TBI may disrupt the connectivity between bilateral frontoparietal neural networks underlying WM. In the present investigation, diffusion tensor imaging (DTI) tractography of eight callosal subregions (CC1–CC8) was examined in relation to measures of verbal and visuospatial WM in 74 children sustaining TBI and 49 typically developing comparison children. Relative to the comparison group, children with TBI demonstrated poorer visuospatial WM, but comparable verbal WM. Microstructure of the CC was significantly compromised in brain-injured children, with lower fractional anisotropy (FA) and higher axial and radial diffusivity metrics in all callosal subregions. In both groups of children, lower FA and/or higher radial diffusivity in callosal subregions connecting anterior and posterior parietal cortical regions predicted poorer verbal WM, whereas higher radial diffusivity in callosal subregions connecting anterior and posterior parietal, as well as temporal, cortical regions predicted poorer visuospatial WM. DTI metrics, especially radial diffusivity, in predictive callosal subregions accounted for significant variance in WM over and above remaining callosal subregions. Reduced microstructural integrity of the CC, particularly in subregions connecting parietal and temporal cortices, may act as a neuropathological mechanism contributing to long-term WM deficits. The future clinical use of neuroanatomical biomarkers may allow for the early identification of children at highest risk for WM deficits and earlier provision of interventions for these children. PMID:23627735

  7. Comparison between skeleton-based and atlas-based approach in the assessment of corpus callosum damages in Mild Cognitive Impairment and Alzheimer Disease.

    PubMed

    Preti, Maria Giulia; Laganà, Maria Marcella; Baglio, Francesca; Griffanti, Ludovica; Nemni, Raffaello; Cecconi, Pietro; Baselli, Giuseppe

    2011-01-01

    The damage of specific bundles in the brain white matter (WM) is currently assessed in Alzheimer Disease (AD) and amnestic Mild Cognitive Impairment (aMCI) by tractography based on diffusion tensor imaging (DTI) and the consequent evaluation of diffusion parameters in reconstructed tracts. Controversial results may be due to the use of different techniques. This work aims at comparing an atlas-based technique to compute fractional anisotropy (FA) in specific tracts with the voxelwise approach of Tract-Based Spatial Statistics (TBSS). FA was evaluated in 7 portions of the corpus callosum (CC) of 10 elderly healthy controls (HC), 10 aMCI and 10 mild AD patients with both approaches. Atlas-based tractography revealed concordant results with TBSS, displaying the same significant differences between AD and HC and no significant difference between aMCI and HC. However, as regards the AD to aMCI contrast only the atlas-based method was able to find significantly lowered FA in AD in frontal and parietal CC portions. This finding shows that a proper analysis which considers a higher number of voxels, not restricting the observation to the skeleton in the assessment of CC damages, could be useful for AD to aMCI differential diagnosis and prognosis.

  8. Mirror Motor Activity During Right-Hand Contractions and Its Relation to White Matter in the Posterior Midbody of the Corpus Callosum.

    PubMed

    Sehm, Bernhard; Steele, Christoper J; Villringer, Arno; Ragert, Patrick

    2015-09-22

    Cortical activity during simple unimanual actions is typically lateralized to contralateral sensorimotor areas, while a more bilateral pattern is observed with an increase in task demands. In parallel, increasing task demands are associated with subtle mirror muscle activity in the resting hand, implying a relative loss in motor selectivity. The corpus callosum (CC) is crucially involved in unimanual tasks by mediating both facilitatory and inhibitory interactions between bilateral motor cortical systems, but its association with mirror motor activity is yet unknown. Here, we used diffusion-weighted imaging and bilateral electromyographic (EMG) measurements during a unimanual task to investigate potential relationships between white matter microstructure of the CC and mirror EMG activity. Participants performed an unimanual pinch force task with both hands alternatively. Four parametrically increasing force levels were exerted while EMG activity was recorded bilaterally from first dorsal interosseus muscles. Consistent with previous findings, mirror EMG activity increased as a function of force. Additionally, there was a significant relationship between the slope of increasing mirror EMG during right-hand contractions and fractional anisotropy in transcallosal fibers connecting both M1. No significant relationships were found for fibers connecting dorsal premotor cortices or supplementary motor area, indicating the local specificity of the observed brain-physiology relationship.

  9. A discrete chemo-dynamical model of the giant elliptical galaxy NGC 5846: dark matter fraction, internal rotation, and velocity anisotropy out to six effective radii

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline

    2016-11-01

    We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored dark matter halo which contributes ˜10 per cent of the total mass within 1 Re, and 67 per cent ± 10 per cent within 6 Re, although a cusped dark matter halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.

  10. [Modern diagnostic of agenesis of the corpus callosum in children].

    PubMed

    Milovanova, O A; Alikhanov, A A; Tambiev, I E; Tarakanova, T Yu

    2017-01-01

    Observations of the authors regarding main MRI symptoms of agenesis of the corpus callosum (ACC) and literature review on the structure of the corpus callosum in normalcy and pathology are presented. The authors emphasize that some cases of isolated ACC has been found during routine prenatal ultrasound examination. In this regard, prenatal MRI is more effective. In 74% patients with ACC, MRI results are consistent with the results of ultrasound and CT. MRI has advantages in the differentiation of inherited corpus callosum malformation as well as concomitant CNS abnormalities.

  11. Automatic recognition of corpus callosum from sagittal brain MR images

    NASA Astrophysics Data System (ADS)

    Lee, Chulhee; Unser, Michael A.; Ketter, Terence A.

    1995-08-01

    We propose a new method to find the corpus callosum from sagittal brain MR images automatically. First, we calculate the statistical characteristics of the corpus callosum and obtain shape information. The recognition algorithm consists of two stages: extracting regions satisfying the statistical characteristics (gray level distribtuions) of the corpus callosum, and finding a region matching the shape information. An innovative feature of the algorithm is that we adaptively relax the statistical requirement until we find a region matching the shape information. In order to match the shape information, we propose a new directed window region growing algorithm instead of using conventional contour matching. Experiments show promising results.

  12. Cavernous angioma of the corpus callosum presenting with acute psychosis.

    PubMed

    Pavesi, Giacomo; Causin, Francesco; Feletti, Alberto

    2014-01-01

    Psychiatric symptoms may occasionally be related to anatomic alterations of brain structures. Particularly, corpus callosum lesions seem to play a role in the change of patients' behavior. We present a case of a sudden psychotic attack presumably due to a hemorrhagic cavernous angioma of the corpus callosum, which was surgically removed with complete resolution of symptoms. Although a developmental defect like agenesis or lipoma is present in the majority of these cases, a growing lesion of the corpus callosum can rarely be the primary cause. Since it is potentially possible to cure these patients, clinicians should be aware of this association.

  13. Corpus Callosum Shape Analysis with Application to Dyslexia

    PubMed Central

    Casanova, Manuel F.; El-Baz, Ayman; Elnakib, Ahmed; Giedd, Jay; Rumsey, Judith M.; Williams, Emily L.; Switala, Andrew E.

    2012-01-01

    Morphometric studies of the corpus callosum suggest its involvement in a number of psychiatric conditions. In the present study we introduce a novel pattern recognition technique that offers a point-by-point shape descriptor of the corpus callosum. The method uses arc lengths of electric field lines in order to avoid discontinuities caused by folding anatomical contours. We tested this technique by comparing the shape of the corpus callosum in a series of dyslexic men (n = 16) and age-matched controls (n = 14). The results indicate a generalized increase in size of the corpus callosum in dyslexia with a concomitant diminution at its rostral and caudal poles. The reported shape analysis and 2D-reconstruction provide information of anatomical importance that would otherwise passed unnoticed when analyzing size information alone. PMID:22545196

  14. Anatomy of corpus callosum in prenatally malnourished rats.

    PubMed

    Olivares, Ricardo; Morgan, Carlos; Pérez, Hernán; Hernández, Alejandro; Aboitiz, Francisco; Soto-Moyano, Rubén; Gil, Julio; Ortiz, Alexis; Flores, Osvaldo; Gimeno, Miguel; Laborda, Jesús

    2012-01-01

    The effect of prenatal malnutrition on the anatomy of the corpus callosum was assessed in adult rats (45-52 days old). In the prenatally malnourished animals we observed a significant reduction of the corpus callosum total area, partial areas, and perimeter, as compared with normal animals. In addition, the splenium of corpus callosum (posterior fifth) showed a significant decrease of fiber diameters in the myelinated fibers without changing density. There was also a significant decrease in diameter and a significant increase in density of unmyelinated fibers. Measurements of perimeter's fractal dimensions from sagittal sections of the brain and corpus callosum did not show significant differences between malnourished and control animals. These findings indicate that cortico-cortical connections are vulnerable to the prenatal malnutrition, and suggest this may affect interhemispheric conduction velocity, particularly in visual connections (splenium).

  15. Delusional Disorder in a Patient with Corpus Callosum Agenesis

    PubMed Central

    Saha, Rashmita; Doval, Nimisha

    2016-01-01

    Agenesis of corpus callosum is rare and associated neuropsychiatric abnormalities reported are epilepsy, Asperger’s syndrome, learning problems, depression, schizophrenia, conduct disorder and conversion symptoms. Schizophrenia is the most common psychiatric disorder reported among corpus callosum agenesis. We report a rare case of delusional disorder with corpus callosum agenesis and seizure disorder. The patient presented with delusions of persecution towards younger brother and mother, disturbed sleep and reduced appetite. She had a history of seizure disorder of ten years duration, which was controlled with carbamazepine and levetiracetam. Neurological examination was normal. On MRI, corpus callosum agenesis was detected. She was put on an atypical antipsychotic quetiapine to which her psychiatric symptoms responded completely. PMID:28208982

  16. Morphometric changes of the corpus callosum in congenital blindness.

    PubMed

    Tomaiuolo, Francesco; Campana, Serena; Collins, D Louis; Fonov, Vladimir S; Ricciardi, Emiliano; Sartori, Giuseppe; Pietrini, Pietro; Kupers, Ron; Ptito, Maurice

    2014-01-01

    We examined the effects of visual deprivation at birth on the development of the corpus callosum in a large group of congenitally blind individuals. We acquired high-resolution T1-weighted MRI scans in 28 congenitally blind and 28 normal sighted subjects matched for age and gender. There was no overall group effect of visual deprivation on the total surface area of the corpus callosum. However, subdividing the corpus callosum into five subdivisions revealed significant regional changes in its three most posterior parts. Compared to the sighted controls, congenitally blind individuals showed a 12% reduction in the splenium, and a 20% increase in the isthmus and the posterior part of the body. A shape analysis further revealed that the bending angle of the corpus callosum was more convex in congenitally blind compared to the sighted control subjects. The observed morphometric changes in the corpus callosum are in line with the well-described cross-modal functional and structural neuroplastic changes in congenital blindness.

  17. The Contribution of the Corpus Callosum to Language Lateralization

    PubMed Central

    Hinkley, Leighton B.N.; Marco, Elysa J.; Brown, Ethan G.; Bukshpun, Polina; Gold, Jacquelyn; Hill, Susanna; Findlay, Anne M.; Jeremy, Rita J.; Wakahiro, Mari L.; Barkovich, A. James; Mukherjee, Pratik

    2016-01-01

    The development of hemispheric lateralization for language is poorly understood. In one hypothesis, early asymmetric gene expression assigns language to the left hemisphere. In an alternate view, language is represented a priori in both hemispheres and lateralization emerges via cross-hemispheric communication through the corpus callosum. To address this second hypothesis, we capitalized on the high temporal and spatial resolution of magnetoencephalographic imaging to measure cortical activity during language processing, speech preparation, and speech execution in 25 participants with agenesis of the corpus callosum (AgCC) and 21 matched neurotypical individuals. In contrast to strongly lateralized left hemisphere activations for language in neurotypical controls, participants with complete or partial AgCC exhibited bilateral hemispheric activations in both auditory or visually driven language tasks, with complete AgCC participants showing significantly more right hemisphere activations than controls or than individuals with partial AgCC. In AgCC individuals, language laterality positively correlated with verbal IQ. These findings suggest that the corpus callosum helps to drive language lateralization. SIGNIFICANCE STATEMENT The role that corpus callosum development has on the hemispheric specialization of language is poorly understood. Here, we used magnetoencephalographic imaging during linguistic tests (verb generation, picture naming) to test for hemispheric dominance in patients with agenesis of the corpus callosum (AgCC) and found reduced laterality (i.e., greater likelihood of bilaterality or right hemisphere dominance) in this cohort compared with controls, especially in patients with complete agenesis. Laterality was positively correlated with behavioral measures of verbal intelligence. These findings provide support for the hypothesis that the callosum aids in functional specialization throughout neural development and that the loss of this mechanism

  18. Agenesis of corpus callosum and frontotemporal dementia: a casual finding?

    PubMed

    Calabrò, Rocco Salvatore; Spadaro, Letteria; Marra, Angela; Balletta, Tina; Cammaroto, Simona; Bramanti, Placido

    2015-06-01

    Agenesis of corpus callosum (AgCC) is a congenital malformation characterized by total or partial absence of corpus callosum with a good neuropsychological profile. Frontotemporal dementia (FTD) is the third most common cause of cortical dementia, and it is characterized by alterations in personality and social relationship, often associated with deficits in attention, abstraction, planning, and problem solving. Herein, we report a case of a 73-year-old woman presenting with FTD associated with primary AgCC. The possible "causal or casual" relationship between these 2 different conditions should be investigated in large prospective studies.

  19. Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis.

    PubMed

    Jakab, András; Kasprian, Gregor; Schwartz, Ernst; Gruber, Gerlinde Maria; Mitter, Christian; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2015-05-01

    Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity. We challenge this hypothesis and assume a globally different network organization of the structural interconnections already in the fetal acallosal brain. Twenty fetuses with isolated corpus callosum agenesis with or without associated malformations were enrolled and fiber connectivity among 90 brain regions was assessed using in utero diffusion tensor imaging and streamline tractography. Macroscopic scale connectomes were compared to 20 gestational age-matched normally developing fetuses with multiple granularity of network analysis. Gradually increasing connectivity strength and tract diffusion anisotropy during gestation were dominant in antero-posteriorly running paramedian and antero-laterally running aberrant pathways, and in short-range connections in the temporoparietal regions. In fetuses with associated abnormalities, more diffuse reduction of cortico-cortical and cortico-subcortical connectivity was observed than in cases with isolated callosal agenesis. The global organization of anatomical networks consisted of less segregated nodes in acallosal brains, and hubs of dense connectivity, such as the thalamus and cingulate cortex, showed reduced network centrality. Acallosal fetal brains show a globally altered connectivity network structure compared to normals. Besides the previously described Probst and sigmoid bundles, we revealed a prenatally differently organized macroconnectome, dominated by increased connectivity. These findings provide evidence that abnormal pathways are already present during at early stages of fetal brain development in the majority of cerebral white matter.

  20. Impairment in explicit visuomotor sequence learning is related to loss of microstructural integrity of the corpus callosum in multiple sclerosis patients with minimal disability.

    PubMed

    Bonzano, L; Tacchino, A; Roccatagliata, L; Sormani, M P; Mancardi, G L; Bove, M

    2011-07-15

    Sequence learning can be investigated by serial reaction-time (SRT) paradigms. Explicit learning occurs when subjects have to recognize a test sequence and has been shown to activate the frontoparietal network in both contralateral and ipsilateral hemispheres. Thus, the left and right superior longitudinal fasciculi (SLF), connecting the intra-hemispheric frontoparietal circuits, could have a role in explicit unimanual visuomotor learning. Also, as both hemispheres are involved, we could hypothesize that the corpus callosum (CC) has a role in this process. Pathological damage in both SLF and CC has been detected in patients with Multiple Sclerosis (PwMS), and microstructural alterations can be quantified by Diffusion Tensor Imaging (DTI). In light of these findings, we inquired whether PwMS with minimal disability showed impairments in explicit visuomotor sequence learning and whether this could be due to loss of white matter integrity in these intra- and inter-hemispheric white matter pathways. Thus, we combined DTI analysis with a modified version of SRT task based on finger opposition movements in a group of PwMS with minimal disability. We found that the performance in explicit sequence learning was significantly reduced in these patients with respect to healthy subjects; the amount of sequence-specific learning was found to be more strongly correlated with fractional anisotropy (FA) in the CC (r=0.93) than in the left (r=0.28) and right SLF (r=0.27) (p for interaction=0.005 and 0.04 respectively). This finding suggests that an inter-hemispheric information exchange between the homologous areas is required to successfully accomplish the task and indirectly supports the role of the right (ipsilateral) hemisphere in explicit visuomotor learning. On the other hand, we found no significant correlation of the FA in the CC and in the SLFs with nonspecific learning (assessed when stimuli are randomly presented), supporting the hypothesis that inter

  1. The Microstructural Status of the Corpus Callosum Is Associated with the Degree of Motor Function and Neurological Deficit in Stroke Patients

    PubMed Central

    Liang, Fanrong; Huang, Wenhua

    2015-01-01

    Human neuroimaging studies and animal models have suggested that white matter damage from ischemic stroke leads to the functional and structural reorganization of perilesional and remote brain regions. However, the quantitative relationship between the transcallosal tract integrity and clinical motor performance score after stroke remains unexplored. The current study employed a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) to investigate the relationship between white matter diffusivity changes and the clinical scores in stroke patients. Probabilistic fiber tracking was also used to identify structural connectivity patterns in the patients. Thirteen ischemic stroke patients and fifteen healthy control subjects participated in this study. TBSS analyses showed that the corpus callosum (CC) and bilateral corticospinal tracts (CST) in the stroke patients exhibited significantly decreased fractional anisotropy and increased axial and radial diffusivity compared with those of the controls. Correlation analyses revealed that the motor and neurological deficit scores in the stroke patients were associated with the value of diffusivity indices in the CC. Compared with the healthy control group, probabilistic fiber tracking analyses revealed that significant changes in the inter-hemispheric fiber connections between the left and right motor cortex in the stroke patients were primarily located in the genu and body of the CC, left anterior thalamic radiation and inferior fronto-occipital fasciculus, bilateral CST, anterior/superior corona radiate, cingulum and superior longitudinal fasciculus, strongly suggesting that ischemic induces inter-hemispheric network disturbances and disrupts the white matter fibers connecting motor regions. In conclusion, the results of the present study show that DTI-derived measures in the CC can be used to predict the severity of motor skill and neurological deficit in stroke patients. Changes in structural

  2. Perspectives on Dichotic Listening and the Corpus Callosum

    ERIC Educational Resources Information Center

    Musiek, Frank E.; Weihing, Jeffrey

    2011-01-01

    The present review summarizes historic and recent research which has investigated the role of the corpus callosum in dichotic processing within the context of audiology. Examination of performance by certain clinical groups, including split brain patients, multiple sclerosis cases, and other types of neurological lesions is included. Maturational,…

  3. The Corpus Callosum and Reading: An MRI Volumetric Study

    ERIC Educational Resources Information Center

    Fine, Jodene Goldenring

    2006-01-01

    Researchers have long been interested in the role of the corpus callosum in reading disorder, but existing studies have yielded inconsistent results. Some have found larger corpus callosa in those with reading disorder, others have found smaller corpus callosa, and some have found no differences in the corpus callosa of persons with and without…

  4. Corpus Callosum Anatomy in Chronically Treated and Stimulant Naive ADHD

    ERIC Educational Resources Information Center

    Schnoebelen, Sarah; Semrud-Clikeman, Margaret; Pliszka, Steven R.

    2010-01-01

    Objective: To determine the effect of chronic stimulant treatment on corpus callosum (CC) size in children with ADHD using volumetric and area measurements. Previously published research indicated possible medication effects on specific areas of the CC. Method: Measurements of the CC from anatomical MRIs were obtained from children aged 9-16 in…

  5. Agenesis of the corpus callosum. An autopsy study in fetuses.

    PubMed

    Kidron, Debora; Shapira, Daniel; Ben Sira, Liat; Malinger, Gustavo; Lev, Dorit; Cioca, Andreea; Sharony, Reuven; Lerman Sagie, Tally

    2016-02-01

    Agenesis of the corpus callosum is currently diagnosed prenatally with ultrasound and MRI. While the diagnostic aspects of callosal defects are widely addressed, anatomo-histological data from fetal autopsies are sparse. Callosal defects were present in 50 fetal autopsies. Four distinct groups of complete, partial, hypoplastic, and mixed defects were determined by the gross and histologic details of the corpus callosum. These details helped to rule out other midline defects such as holoprosencephaly. Additional autopsy findings enabled specific diagnoses and suggested etiopathogeneses. Hypoplastic and mixed defects were associated with more abnormalities of the cerebral hemispheres and internal organs. The four groups did not differ according to gender, external dysmorphism, or cerebellar and brainstem anomalies. Defects were classified as syndromic (68 %), encephaloclastic (8 %), undetermined (14 %), or isolated (10 %) based on the autopsy findings. Isolated agenesis of the corpus callosum was diagnosed in only 10 % of the cases in this series, compared to higher numbers diagnosed by prenatal ultrasonography and MRI. Therefore, the autopsy, through its detailed, careful evaluation of external, as well as gross and histological internal features, can elucidate the etiopathogenesis of agenesis of the corpus callosum and suggest specific diagnoses which cannot be ascertained by prenatal imaging.

  6. Corpus Callosum Differences Associated with Persistent Stuttering in Adults

    ERIC Educational Resources Information Center

    Choo, Ai Leen; Kraft, Shelly Jo; Olivero, William; Ambrose, Nicoline G.; Sharma, Harish; Chang, Soo-Eun; Loucks, Torrey M.

    2011-01-01

    Recent studies have implicated anatomical differences in speech-relevant brain regions of adults who stutter (AWS) compared to normally fluent adults (NFA). The present study focused on the region of the corpus callosum (CC) which is involved in interhemispheric processing between the left and right cerebral hemispheres. Two-dimensional…

  7. Autism Traits in Individuals with Agenesis of the Corpus Callosum

    ERIC Educational Resources Information Center

    Lau, Yolanda C.; Hinkley, Leighton B. N.; Bukshpun, Polina; Strominger, Zoe A.; Wakahiro, Mari L. J.; Baron-Cohen, Simon; Allison, Carrie; Auyeung, Bonnie; Jeremy, Rita J.; Nagarajan, Srikantan S.; Sherr, Elliott H.; Marco, Elysa J.

    2013-01-01

    Autism spectrum disorders (ASD) have numerous etiologies, including structural brain malformations such as agenesis of the corpus callosum (AgCC). We sought to directly measure the occurrence of autism traits in a cohort of individuals with AgCC and to investigate the neural underpinnings of this association. We screened a large AgCC cohort (n =…

  8. Parenting, corpus callosum, and executive function in preschool children.

    PubMed

    Kok, Rianne; Lucassen, Nicole; Bakermans-Kranenburg, Marian J; van IJzendoorn, Marinus H; Ghassabian, Akhgar; Roza, Sabine J; Govaert, Paul; Jaddoe, Vincent W; Hofman, Albert; Verhulst, Frank C; Tiemeier, Henning

    2014-01-01

    In this longitudinal population-based study (N = 544), we investigated whether early parenting and corpus callosum length predict child executive function abilities at 4 years of age. The length of the corpus callosum in infancy was measured using postnatal cranial ultrasounds at 6 weeks of age. At 3 years, two aspects of parenting were observed: maternal sensitivity during a teaching task and maternal discipline style during a discipline task. Parents rated executive function problems at 4 years of age in five domains of inhibition, shifting, emotional control, working memory, and planning/organizing, using the Behavior Rating Inventory of Executive Function-Preschool Version. Maternal sensitivity predicted less executive function problems at preschool age. A significant interaction was found between corpus callosum length in infancy and maternal use of positive discipline to determine child inhibition problems: The association between a relatively shorter corpus callosum in infancy and child inhibition problems was reduced in children who experienced more positive discipline. Our results point to the buffering potential of positive parenting for children with biological vulnerability.

  9. Commissurotomy of the Corpus Callosum and the Remedial Reader.

    ERIC Educational Resources Information Center

    Albert, Elaine

    Testimony presented at a congressional hearing on illiteracy (March 1986) indicated that good readers use their myelinated corpus callosum fibers (which connect the left and right hemispheres of the brain) at millisecond speeds to coordinate the two brain hemispheres. Students taught using the whole-word recognition method (also called the…

  10. Proteome dynamics during postnatal mouse corpus callosum development

    PubMed Central

    Son, Alexander I.; Fu, Xiaoqin; Suto, Fumikazu; Liu, Judy S.; Hashimoto-Torii, Kazue; Torii, Masaaki

    2017-01-01

    Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure. PMID:28349996

  11. Microstructural Integrity of the Corpus Callosum Linked with Neuropsychological Performance in Adolescents

    ERIC Educational Resources Information Center

    Fryer, Susanna L.; Frank, Lawrence R.; Spadoni, Andrea D.; Theilmann, Rebecca J.; Nagel, Bonnie J.; Schweinsburg, Alecia D.; Tapert, Susan F.

    2008-01-01

    Background: Diffusion tensor imaging (DTI) has revealed microstructural aspects of adolescent brain development, the cognitive correlates of which remain relatively uncharacterized. Methods: DTI was used to assess white matter microstructure in 18 typically developing adolescents (ages 16-18). Fractional anisotropy (FA) and mean diffusion (MD)…

  12. Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention.

    PubMed

    Tuch, David S; Salat, David H; Wisco, Jonathan J; Zaleta, Alexandra K; Hevelone, Nathanael D; Rosas, H Diana

    2005-08-23

    Humans exhibit significant interindividual variability in behavioral reaction time (RT) performance yet the underlying neural mechanisms for this variability remain largely unknown. It has been proposed that interindividual variability in RT performance may be due to differences in white matter (WM) physiological properties, although such a relationship has never been demonstrated in cortical projection or association pathways in healthy young adults. Using diffusion tensor MRI (DTI), we sought to test whether diffusion tensor fractional anisotropy (FA), a measure of the orientational coherence of water self-diffusion, is regionally correlated with RT on a visual self-paced choice RT (CRT) task. CRT was found to be significantly correlated with FA in projection and association pathways supporting visuospatial attention including the right optic radiation, right posterior thalamus, and right medial precuneus WM. Significant correlations were also observed in left superior temporal sulcus WM and the left parietal operculum. The lateralization of the CRT-FA correlation to right visual and parietal WM pathways is consistent with the specialization of right visual and parietal cortices for visuospatial attention. The localization of the CRT-FA correlations to predominantly visual and parietal WM pathways, but not to motor pathways or the corpus callosum indicates that individual differences in visual CRT performance are associated with variations in the WM underlying the visuospatial attention network as opposed to pathways supporting motor movement or interhemispheric transmission.

  13. Agenesis of the corpus callosum and autism: a comprehensive comparison

    PubMed Central

    Corsello, Christina; Kennedy, Daniel P.; Adolphs, Ralph

    2014-01-01

    The corpus callosum, with its ∼200 million axons, remains enigmatic in its contribution to cognition and behaviour. Agenesis of the corpus callosum is a congenital condition in which the corpus callosum fails to develop; such individuals exhibit localized deficits in non-literal language comprehension, humour, theory of mind and social reasoning. These findings together with parent reports suggest that behavioural and cognitive impairments in subjects with callosal agenesis may overlap with the profile of autism spectrum disorders, particularly with respect to impairments in social interaction and communication. To provide a comprehensive test of this hypothesis, we directly compared a group of 26 adults with callosal agenesis to a group of 28 adults with a diagnosis of autism spectrum disorder but no neurological abnormality. All participants had full-scale intelligence quotient scores >78 and groups were matched on age, handedness, and gender ratio. Using the Autism Diagnostic Observation Schedule together with current clinical presentation to assess autistic symptomatology, we found that 8/26 (about a third) of agenesis subjects presented with autism. However, more formal diagnosis additionally involving recollective parent-report measures regarding childhood behaviour showed that only 3/22 met complete formal criteria for an autism spectrum disorder (parent reports were unavailable for four subjects). We found no relationship between intelligence quotient and autism symptomatology in callosal agenesis, nor evidence that the presence of any residual corpus callosum differentiated those who exhibited current autism spectrum symptoms from those who did not. Relative to the autism spectrum comparison group, parent ratings of childhood behaviour indicated children with agenesis were less likely to meet diagnostic criteria for autism, even for those who met autism spectrum criteria as adults, and even though there was no group difference in parent report of current

  14. Agenesis of the corpus callosum and autism: a comprehensive comparison.

    PubMed

    Paul, Lynn K; Corsello, Christina; Kennedy, Daniel P; Adolphs, Ralph

    2014-06-01

    The corpus callosum, with its ∼200 million axons, remains enigmatic in its contribution to cognition and behaviour. Agenesis of the corpus callosum is a congenital condition in which the corpus callosum fails to develop; such individuals exhibit localized deficits in non-literal language comprehension, humour, theory of mind and social reasoning. These findings together with parent reports suggest that behavioural and cognitive impairments in subjects with callosal agenesis may overlap with the profile of autism spectrum disorders, particularly with respect to impairments in social interaction and communication. To provide a comprehensive test of this hypothesis, we directly compared a group of 26 adults with callosal agenesis to a group of 28 adults with a diagnosis of autism spectrum disorder but no neurological abnormality. All participants had full-scale intelligence quotient scores >78 and groups were matched on age, handedness, and gender ratio. Using the Autism Diagnostic Observation Schedule together with current clinical presentation to assess autistic symptomatology, we found that 8/26 (about a third) of agenesis subjects presented with autism. However, more formal diagnosis additionally involving recollective parent-report measures regarding childhood behaviour showed that only 3/22 met complete formal criteria for an autism spectrum disorder (parent reports were unavailable for four subjects). We found no relationship between intelligence quotient and autism symptomatology in callosal agenesis, nor evidence that the presence of any residual corpus callosum differentiated those who exhibited current autism spectrum symptoms from those who did not. Relative to the autism spectrum comparison group, parent ratings of childhood behaviour indicated children with agenesis were less likely to meet diagnostic criteria for autism, even for those who met autism spectrum criteria as adults, and even though there was no group difference in parent report of current

  15. Partial agenesis of corpus callosum--case study.

    PubMed

    Zamurović, M; Andjelic, S

    2014-01-01

    Agenesis of the corpus callosum is an uncommon cerebral malformation usually of unknown etiology. It can be associated with other brain abnormalities, such as ventriculomegaly, or in combination with problems with other organs, such as congenital heart defect, as well as with chromosome anomalies. Diagnosis of this rare anomaly is important not only because of possible association with other developmental anomalies but also because of postnatal treatment and evaluation of children with this disorder. This paper presents prenatal diagnosis of partial agenesis of the posterior part of corpus callosum of a fetus detected in gestational week 33 by ultrasonography as an isolated developmental disorder, i.e., not accompanied by other morphological anomalies of the fetus or chromosome aberrations or other genetic defects.

  16. Emotional Intelligence in Agenesis of the Corpus Callosum.

    PubMed

    Anderson, Luke B; Paul, Lynn K; Brown, Warren S

    2017-01-23

    People with agenesis of the corpus callosum (AgCC) with normal general intelligence have deficits in complex cognitive processing, as well as in social cognition. It is uncertain the extent to which impoverished processing of emotions may contribute to social processing deficiencies. We used the Mayer-Salovey-Caruso Emotional Intelligence Test to clarify the nature of emotional intelligence in 16 adults with AgCC. As hypothesized, persons with AgCC exhibited greater disparities from norms on tests involving more socially complex aspects of emotions. The AgCC group did not differ from norms on the Experiential subscale, but they were significantly below norms on the Strategic subscale. These findings suggest that the corpus callosum is not essential for experiencing and thinking about basic emotions in a "normal" way, but is necessary for more complex processes involving emotions in the context of social interactions.

  17. Prenatal PCB exposure, the corpus callosum, and response inhibition.

    PubMed Central

    Stewart, Paul; Fitzgerald, Susan; Reihman, Jacqueline; Gump, Brooks; Lonky, Edward; Darvill, Thomas; Pagano, Jim; Hauser, Peter

    2003-01-01

    The present study reports the association between prenatal exposure to polychlorinated biphenyls (PCBs), the corpus callosum, and response inhibition in children who are 4.5 years old. Children (n = 189) enrolled in the Oswego study were tested using a continuous performance test. We measured (square millimeters) the splenium of the corpus callosum, a pathway implicated in the regulation of response inhibition, using magnetic resonance imaging. Results indicated a dose-dependent association between cord blood PCBs and errors of commission. Splenium size but not other brain areas predicted errors of commission (r(2) = 0.20), with smaller size associated with more errors of commission. There was an interaction between splenium size and PCB exposure. The smaller the splenium, the larger the association between PCBs and errors of commission. If the association between PCBs and response inhibition is indeed causal, then children with suboptimal development of the splenium are particularly vulnerable to these effects. These data await replication. PMID:14527849

  18. Diffusion Tensor Magnetic Resonance Imaging Finding of Discrepant Fractional Anisotropy Between the Frontal and Parietal Lobes After Whole-Brain Irradiation in Childhood Medulloblastoma Survivors: Reflection of Regional White Matter Radiosensitivity?

    SciTech Connect

    Qiu Deqiang; Kwong, Dora; Chan, Godfrey; Leung, Lucullus; Khong, P.-L.

    2007-11-01

    Purpose: To test the hypothesis that fractional anisotropy (FA) is more severely reduced in white matter of the frontal lobe compared with the parietal lobe after receiving the same whole-brain irradiation dose in a cohort of childhood medulloblastoma survivors. Methods and Materials: Twenty-two medulloblastoma survivors (15 male, mean [{+-} SD] age = 12.1 {+-} 4.6 years) and the same number of control subjects (15 male, aged 12.0 {+-} 4.2 years) were recruited for diffusion tensor magnetic resonance imaging scans. Using an automated tissue classification method and the Talairach Daemon atlas, FA values of frontal and parietal lobes receiving the same radiation dose, and the ratio between them were quantified and denoted as FFA, PFA, and FA{sub f/p}, respectively. The Mann-Whitney U test was used to test for significant differences of FFA, PFA, and FA{sub f/p} between medulloblastoma survivors and control subjects. Results: Frontal lobe and parietal lobe white matter FA were found to be significantly less in medulloblastoma survivors compared with control subjects (frontal p = 0.001, parietal p = 0.026). Moreover, these differences were found to be discrepant, with the frontal lobe having a significantly larger difference in FA compared with the parietal lobe. The FA{sub f/p} of control and medulloblastoma survivors was 1.110 and 1.082, respectively (p = 0.029). Conclusion: Discrepant FA changes after the same irradiation dose suggest radiosensitivity of the frontal lobe white matter compared with the parietal lobe. Special efforts to address the potentially vulnerable frontal lobe after treatment with whole-brain radiation may be needed so as to balance disease control and treatment-related morbidity.

  19. Anterior commissure versus corpus callosum: A quantitative comparison across mammals.

    PubMed

    Ashwell, Ken W S

    2016-04-01

    Mammals rely on two major pathways to transfer information between the two hemispheres of the brain: the anterior commissure and the corpus callosum. Metatheria and monotremes rely exclusively on the anterior commissure for interhemispheric transfer between the isocortices and olfactory allocortices of each side, whereas Eutheria use a combination of the anterior commissure and an additional pathway exclusive to Eutheria, the corpus callosum. Midline cross-sectional area of the anterior commissure and corpus callosum were measured in a range of mammals from all three infraclasses and plotted against brain volume to determine how midline anterior commissure area and its size relative to the corpus callosum vary with brain size and taxon. In Metatheria, the square root of anterior commissure area rises in almost direct proportion with the cube root of brain volume (i.e. the ratio of the two is relatively constant), whereas among Eutheria the ratio of the square root of anterior commissure area to the cube root of brain volume declines slightly with increasing brain size. The total of isocortical and olfactory allocortical commissure area rises more rapidly with increasing brain volume among Eutheria than among Metatheria. This means that the midline isocortical and olfactory allocortical commissural area of metatherians with large brains (about 70 ml) is only about 50% of that among eutherians with similarly sized brains. On the other hand, isocortical and olfactory allocortical commissural area is similar in Metatheria and Eutheria at brain volumes around 1 ml. Among the Eutheria, some groups make less use of the anterior commissure pathway than do others: soricomorphs, rodents and cetaceans have smaller anterior commissures for their brain size than do afrosoricids, erinaceomorphs and proboscideans. The findings suggest that use of the anterior commissural route for isocortical commissural connections may have placed limitations on interhemispheric transfer of

  20. Anatomical-behavioral relationships: corpus callosum morphometry and hemispheric specialization.

    PubMed

    Clarke, J M; Zaidel, E

    1994-10-20

    We obtained midsagittal measures of the corpus callosum in 60 healthy young adults (right-handed and left-handed males and females), and examined whether individual differences in anatomical measures of callosal connectivity are related to behavioral laterality measures in the same subjects. In an attempt to tap functionally-distinct callosal "channels", four behavioral laterality tasks were used that differed in sensory modality (visual, auditory, tactile) and/or level of cognitive processing (sensory versus semantic). In addition, the tasks had both intrahemispheric and interhemispheric conditions. Sex differences were found for measures of the posterior body (i.e. isthmus) of the corpus callosum, which, in turn, interacted with handedness. In contrast, only handedness effects were found for the behavioral laterality measures. Anatomical-behavioral correlations did not disclose relationships between callosal size and performance on task conditions requiring sensory interhemispheric integration or transfer. Instead, the correlational findings are consistent with the view that the corpus callosum participates in such higher order "control" functions as the support of bilateral representation of language, functional interhemispheric inhibition, and the maintenance of hemispheric differences in arousal. This is consistent with the finding that regional callosal size is related to the number of small diameter fibers, which are presumed to interconnect homologous association cortices in the two hemispheres.

  1. Lesions of the corpus callosum and other commissural fibers: diffusion tensor studies.

    PubMed

    Filippi, Christopher G; Cauley, Keith A

    2014-10-01

    The corpus callosum is the largest white matter tract in the brain, connecting the 2 hemispheres. The functions of the corpus callosum are many and varied, and lesions frequently cause only subtle clinical findings. The range of diseases that can affect the corpus callosum is vast and includes all potential white matter disease. The distribution of lesions in the corpus callosum is disease specific in only a few entities such as Susac syndrome and Marchiafava-Bignami disease. Group studies have found significant differences of diffusivity metrics in the corpus callosum in preterm infants, patients suffering seizure activity, and patients with early-onset Alzheimer's disease. Given the challenges that multiple orientation of fibers within the callosum presents, advanced postprocessing methods may be required to reveal ultrastructural disease.

  2. Shale seismic anisotropy vs. compaction trend

    NASA Astrophysics Data System (ADS)

    Pervukhina, M.

    2015-12-01

    Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. Shales are notorious for their strong elastic anisotropy, so-called, vertical transverse isotropy or VTI. This VTI anisotropy is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie and azimuth versus offset analysis. A number of competing factors are responsible for VTI anisotropy in shales, namely, (1) micro-scale elastic anisotropy of clay particles, (2) anisotropic orientation distribution function of clay particles, (3) anisotropic orientation of pores and organic matter. On the contrary, silt (non-clay mineralogy grains with size between 0.06 -0.002 mm) is known to reduce elastic anisotropy of shales. Methods developed for calculations of anisotropy in polycrystalline materials can be used to estimate elastic anisotropy of shales from orientation distribution function (ODF) of clay platelets if elastic properties of individual clay platelets are known. Unfortunately, elastic properties of individual clay platelets cannot be directly measured. Recently, elastic properties of properties of individual clay platelets with different mineralogy were calculated from first principles based on density functional theory. In this work we use these elastic properties of individual platelets of muscovite, illite-smectite and kaolinite to obtain correlations between elastic anisotropy and Legendre coefficients W200 and W400 of different ODFs. Comparison of the Legendre coefficients calculated for more than 800 shales from depths 0 - 6 km (www.rockphysicists.org/data) with those of compaction ODFs shows that compaction has no first order effect on elastic anisotropy. Thus, elastic anisotropy is to large extent determined by factors other than compaction processes, such as depositional environment, chemical composition of fluid, silt fraction, etc.

  3. Corpus callosum thickness in children: an MR pattern-recognition approach on the midsagittal image.

    PubMed

    Andronikou, Savvas; Pillay, Tanyia; Gabuza, Lungile; Mahomed, Nasreen; Naidoo, Jaishree; Hlabangana, Linda Tebogo; du Plessis, Vicci; Prabhu, Sanjay P

    2015-02-01

    Thickening of the corpus callosum is an important feature of development, whereas thinning of the corpus callosum can be the result of a number of diseases that affect development or cause destruction of the corpus callosum. Corpus callosum thickness reflects the volume of the hemispheres and responds to changes through direct effects or through Wallerian degeneration. It is therefore not only important to evaluate the morphology of the corpus callosum for congenital anomalies but also to evaluate the thickness of specific components or the whole corpus callosum in association with other findings. The goal of this pictorial review is raise awareness that the thickness of the corpus callosum can be a useful feature of pathology in pediatric central nervous system disease and must be considered in the context of the stage of development of a child. Thinning of the corpus callosum can be primary or secondary, and generalized or focal. Primary thinning is caused by abnormal or failed myelination related to the hypomyelinating leukoencephalopathies, metabolic disorders affecting white matter, and microcephaly. Secondary thinning of the corpus callosum can be caused by diffuse injury such as hypoxic-ischemic encephalopathy, human immunodeficiency virus (HIV) encephalopathy, hydrocephalus, dysmyelinating conditions and demyelinating conditions. Focal disturbance of formation or focal injury also causes localized thinning, e.g., callosal dysgenesis, metabolic disorders with localized effects, hypoglycemia, white matter injury of prematurity, HIV-related atrophy, infarction and vasculitis, trauma and toxins. The corpus callosum might be too thick because of a primary disorder in which the corpus callosum finding is essential to diagnosis; abnormal thickening can also be secondary to inflammation, infection and trauma.

  4. Corpus Callosum and Prefrontal Functions in Adolescents with History of Very Preterm Birth

    ERIC Educational Resources Information Center

    Narberhaus, Ana; Segarra, Dolors; Caldu, Xavier; Gimenez, Monica; Pueyo, Roser; Botet, Francesc; Junque, Carme

    2008-01-01

    Very preterm (VPT) birth can account for thinning of the corpus callosum and poorer cognitive performance. Research findings about preterm and VPT adolescents usually describe a small posterior corpus callosum, although our research group has also found reductions of the anterior part, specifically the genu. The aim of the present study was to…

  5. Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective.

    PubMed

    Ling, Josef M; Peña, Amanda; Yeo, Ronald A; Merideth, Flannery L; Klimaj, Stefan; Gasparovic, Charles; Mayer, Andrew R

    2012-04-01

    Mild traumatic brain injury is the most prevalent neurological insult and frequently results in neurobehavioural sequelae. However, little is known about the pathophysiology underlying the injury and how these injuries change as a function of time. Although diffusion tensor imaging holds promise for in vivo characterization of white matter pathology, both the direction and magnitude of anisotropic water diffusion abnormalities in axonal tracts are actively debated. The current study therefore represents both an independent replication effort (n = 28) of our previous findings (n = 22) of increased fractional anisotropy during semi-acute injury, as well as a prospective study (n = 26) on the putative recovery of diffusion abnormalities. Moreover, new analytical strategies were applied to capture spatially heterogeneous white matter injuries, which minimize implicit assumptions of uniform injury across diverse clinical presentations. Results indicate that whereas a general pattern of high anisotropic diffusion/low radial diffusivity was present in various white matter tracts in both the replication and original cohorts, this pattern was only consistently observed in the genu of the corpus callosum across both samples. Evidence for a greater number of localized clusters with increased anisotropic diffusion was identified across both cohorts at trend levels, confirming heterogeneity in white matter injury. Pooled analyses (50 patients; 50 controls) suggested that measures of diffusion within the genu were predictive of patient classification, albeit at very modest levels (71% accuracy). Finally, we observed evidence of recovery in lesion load in returning patients across a 4-month interval, which was correlated with a reduction in self-reported post-concussive symptomatology. In summary, the corpus callosum may serve as a common point of injury in mild traumatic brain injury secondary to anatomical (high frequency of long unmyelinated fibres) and biomechanics factors. A

  6. A computerized approach for morphological analysis of the corpus callosum

    SciTech Connect

    Davatzikos, C.; Vaillant, M.; Letovsky, S.; Bryan, R.N.; Prince, J.L.; Resnick, S.M.

    1996-01-01

    A new technique for analyzing the morphology of the corpus callosum is presented, and it is applied to a group of elderly subjects. The proposed approach normalizes subject data into the Talairach space using an elastic deformation transformation. The properties of this transformation are used as a quantitative description of the callosal shape with respect to the Talairach atlas, which is treated as a standard. In particular, a deformation function measures the enlargement/shrinkage associated with this elastic deformation. Intersubject comparisons are made by comparing deformation functions. This technique was applied to eight male and eight female subjects. Based on the average deformation functions of each group, the posterior region of the female corpus callosum was found to be larger than its corresponding region in the males. The average callosal shape of each group was also found, demonstrating visually the callosal shape differences between the two groups in this sample. The proposed methodology utilizes the full resolution of the data, rather than relying on global descriptions such as area measurements. The application of this methodology to an elderly group indicated sex-related differences in the callosal shape and size. 29 refs., 16 figs.

  7. Verbal learning and memory in agenesis of the corpus callosum

    PubMed Central

    Erickson, Roger L.; Paul, Lynn K.; Brown, Warren S.

    2015-01-01

    The role of interhemispheric interactions in the encoding, retention, and retrieval of verbal memory can be clarified by assessing individuals with complete or partial agenesis of the corpus callosum (AgCC), but who have normal intelligence. This study assessed verbal learning and memory in AgCC using the California Verbal Learning Test—Second Edition (CVLT-II). Twenty-six individuals with AgCC were compared to 24 matched controls on CVLT-II measures, as well as Donders’ four CVLT-II factors (i.e., Attention Span, Learning Efficiency, Delayed Memory, and Inaccurate Memory). Individuals with AgCC performed significantly below healthy controls on the Delayed Memory factor, confirmed by significant deficits in short and long delayed free recall and cued recall. They also performed less well in original learning. Deficient performance by individuals with AgCC during learning trials, as well as deficits in all forms of delayed memory, suggest that the corpus callosum facilitates interhemispheric elaboration and encoding of verbal information. PMID:24933663

  8. Automated segmentation of the corpus callosum in midsagittal brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Lee, Chulhee; Huh, Shin; Ketter, Terence A.; Unser, Michael A.

    2000-04-01

    We propose a new algorithm to find the corpus callosum automatically from midsagittal brain MR (magnetic resonance) images using the statistical characteristics and shape information of the corpus callosum. We first extract regions satisfying the statistical characteristics (gray level distributions) of the corpus callosum that have relatively high intensity values. Then we try to find a region matching the shape information of the corpus callosum. In order to match the shape information, we propose a new directed window region growing algorithm instead of using conventional contour matching. An innovative feature of the algorithm is that we adaptively relax the statistical requirement until we find a region matching the shape information. After the initial segmentation, a directed border path pruning algorithm is proposed in order to remove some undesired artifacts, especially on the top of the corpus callosum. The proposed algorithm was applied to over 120 images and provided promising results.

  9. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults.

    PubMed

    Menegaux, Aurore; Meng, Chun; Neitzel, Julia; Bäuml, Josef G; Müller, Hermann J; Bartmann, Peter; Wolke, Dieter; Wohlschläger, Afra M; Finke, Kathrin; Sorg, Christian

    2017-02-07

    Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery.

  10. Connectivity and the corpus callosum in autism spectrum conditions: insights from comparison of autism and callosal agenesis.

    PubMed

    Booth, Rhonda; Wallace, Gregory L; Happé, Francesca

    2011-01-01

    Neural models of autism spectrum disorders (ASDs) have moved, in recent years, from a lesion model to a focus on abnormal connectivity. In this chapter, we review this work and summarize findings from our recent research comparing autism and agenesis of the corpus callosum (AgCC). We discuss our findings in the context of the "fractionable triad" account and highlight three main points. First, the social aspects of autism can be found in isolation, not accompanied by the nonsocial features of this disorder, supporting a view of autism as a "compound," rather than "monolithic," condition. Second, many young people with callosal agenesis show theory of mind- and emotion-processing deficits akin to those seen in autism. Diagnostic overshadowing may mean these people do not receive interventions that have proven beneficial in ASD. Last, study of AgCC shows that it is possible, in some cases, to develop good social cognitive skills in the absence of the corpus callosum, presenting a challenge to future connectivity models of autism.

  11. Morphologic alterations in the corpus callosum in abuse-related posttraumatic stress disorder: a preliminary study.

    PubMed

    Kitayama, Noriyuki; Brummer, Marijn; Hertz, Lois; Quinn, Sinead; Kim, Yoshiharu; Bremner, J Douglas

    2007-12-01

    Magnetic resonance imaging (MRI) studies in children with maltreatment-related posttraumatic stress disorder (PTSD) have demonstrated smaller corpus callosum area, with the greatest magnitude of change in posterior portions of the corpus callosum. The purpose of this study was to measure corpus callosum area in adult female patients with childhood abuse-related PTSD and comparison subjects. MRI was used to measure the midsagittal area of the corpus callosum as well as subregions of the corpus callosum in 9 female subjects with abuse-related PTSD and 9 healthy female subjects. No differences were found in total area of the corpus callosum or in individual subregions, but the subregion/total area ratio was significantly smaller in posterior midbody in PTSD compared with the healthy subjects. These results suggest that relatively smaller areas of the posterior midbody of the corpus callosum are associated with childhood abuse related PTSD in adults; these findings are consistent with findings in children with abuse-related PTSD.

  12. Magnetic resonance findings of the corpus callosum in canine and feline lysosomal storage diseases.

    PubMed

    Hasegawa, Daisuke; Tamura, Shinji; Nakamoto, Yuya; Matsuki, Naoaki; Takahashi, Kimimasa; Fujita, Michio; Uchida, Kazuyuki; Yamato, Osamu

    2013-01-01

    Several reports have described magnetic resonance (MR) findings in canine and feline lysosomal storage diseases such as gangliosidoses and neuronal ceroid lipofuscinosis. Although most of those studies described the signal intensities of white matter in the cerebrum, findings of the corpus callosum were not described in detail. A retrospective study was conducted on MR findings of the corpus callosum as well as the rostral commissure and the fornix in 18 cases of canine and feline lysosomal storage diseases. This included 6 Shiba Inu dogs and 2 domestic shorthair cats with GM1 gangliosidosis; 2 domestic shorthair cats, 2 familial toy poodles, and a golden retriever with GM2 gangliosidosis; and 2 border collies and 3 chihuahuas with neuronal ceroid lipofuscinoses, to determine whether changes of the corpus callosum is an imaging indicator of those diseases. The corpus callosum and the rostral commissure were difficult to recognize in all cases of juvenile-onset gangliosidoses (GM1 gangliosidosis in Shiba Inu dogs and domestic shorthair cats and GM2 gangliosidosis in domestic shorthair cats) and GM2 gangliosidosis in toy poodles with late juvenile-onset. In contrast, the corpus callosum and the rostral commissure were confirmed in cases of GM2 gangliosidosis in a golden retriever and canine neuronal ceroid lipofuscinoses with late juvenile- to early adult-onset, but were extremely thin. Abnormal findings of the corpus callosum on midline sagittal images may be a useful imaging indicator for suspecting lysosomal storage diseases, especially hypoplasia (underdevelopment) of the corpus callosum in juvenile-onset gangliosidoses.

  13. Ultrasound measurement of the corpus callosum and neural development of premature infants.

    PubMed

    Liu, Fang; Cao, Shikao; Liu, Jiaoran; Du, Zhifang; Guo, Zhimei; Ren, Changjun

    2013-09-15

    Length and thickness of 152 corpus callosa were measured in neonates within 24 hours of birth. Using ultrasonic diagnostic equipment with a neonatal brain-specific probe, corpus callosum length and thickness of the genu, body, and splenium were measured on the standard mid-sagittal plane, and the anteroposterior diameter of the genu was measured in the coronal plane. Results showed that corpus callosum length as well as thickness of the genu and splenium increased with tional age and birth weight, while other measures did not. These three factors on the standard mid-sagittal plane are therefore likely to be suitable for real-time evaluation of corpus callosum velopment in premature infants using cranial ultrasound. Further analysis revealed that thickness of the body and splenium and the anteroposterior diameter of the genu were greater in male infants than in female infants, suggesting that there are sex differences in corpus callosum size during the neonatal period. A second set of measurements were taken from 40 premature infants whose gestational age was 34 weeks or less. Corpus callosum measurements were corrected to a gestational age of 40 weeks, and infants were grouped for analysis depending on the outcome of a neonatal behavioral neurological assessment. Compared with infants with a normal neurological assessment, corpus callosum length and genu and splenium thicknesses were less in those with abnormalities, indicating that corpus callosum growth in premature infants is associated with neurobehavioral development during the early extrauterine stage.

  14. Corpus callosum shape is altered in individuals with nonsyndromic cleft lip and palate.

    PubMed

    Weinberg, Seth M; Parsons, Trish E; Fogel, Melissa R; Walter, Courtney P; Conrad, Amy L; Nopoulos, Peg

    2013-05-01

    Individuals with nonsyndromic cleft lip with or without cleft palate (CL/P) have altered brain structure compared with healthy controls. Preliminary evidence suggests that the corpus callosum may be dysmorphic in orofacial clefting; however, this midline brain structure has not been systematically assessed in this population. The goal of the present study was to carry out a morphometric assessment of the corpus callosum and its relationship to cognitive performance in a well-characterized patient cohort with orofacial cleft. Midline brain images were obtained from previously collected MRI scans of 24 CL/P subjects and 40-adult-male controls. Eight landmarks on the corpus callosum were digitized on each image and their x,y coordinate locations saved. A geometric morphometrics analysis was applied to the landmark coordinate data to test for shape differences across groups. The relationship between corpus callosum shape and IQ was explored with nonparametric correlation coefficients. Results revealed significant differences in mean corpus callosum shape between CL/P cases and controls (P = 0.029). The CL/P corpus callosum was characterized by increased overall convexity resulting from a superior and posterior displacement. Within CL/P cases, increased corpus callosum shape dysmorphology was moderately correlated with reduced performance IQ (r = 0.546). These results provide additional evidence that midline brain changes may be an important part of the orofacial cleft phenotype.

  15. Agenesis of the Corpus Callosum in Two Sisters

    PubMed Central

    Shapira, Yehuda; Cohen, Tirza

    1973-01-01

    Two sisters are described. They are offspring of Arabic parents who are both first and second cousins, through both sets of grandparents; additionally the father's parents are first cousins. The diagnosis of agenesis of the corpus callosum in the propositae was made by the characteristic picture on the pneumoencephalogram. The clinical symptoms in the two sisters varied considerably. The older sister had shown delayed psychomotor development in infancy, mild mental retardation, and developed seizures at 7 years of age of both the grand mal and akinetic types. Her physical and neurological examination did not show any abnormalities. The EEG was severely abnormal with slow wave activity over the posterior parts of the brain and focal spiking. The younger sister presented at 6 months of age with failure to thrive, generalized hypotonia, but without seizures. Her EEG was within normal limits. This anomaly was probably transmitted by an autosomal recessive gene. The clinical and genetic aspects of this syndrome are discussed. Images PMID:4204338

  16. Cross-sectional area of the elephant corpus callosum: comparison to other eutherian mammals.

    PubMed

    Manger, P R; Hemingway, J; Haagensen, M; Gilissen, E

    2010-05-19

    The current study reports our findings of the relationship between cross-sectional area of the corpus callosum and brain mass in over 100 eutherian mammal species. We were specifically interested in determining whether the elephant had a corpus callosum the size that would be expected for eutherian mammal with a brain mass of approximately 5000 g, or whether a different morphology had evolved. To answer this question we first analysed data from primates, other eutherian mammals and cetaceans, finding that primates and other eutherian mammals showed a positive allometric relationship between the two variables, such that larger brains had a relatively larger corpus callosum. Interestingly, primates have a slightly larger corpus callosum than other eutherian mammals, but showed a similar allometric scaling to this group. The cetaceans had a both absolutely and relatively small corpus callosum compared to other mammals and showed isometric scaling with brain mass. The six elephants studied herein had the largest absolute corpus callosums recorded to date; however, relative to the mass of their brain, the size of the corpus callosum was what would be expected of a typical eutherian mammal with a brain mass of approximately 5000 g. The data for elephants hinted at sexual dimorphism in size of the corpus callosum, with female elephants having both an absolute and relatively larger callosum than the males. If this observation is supported in future studies, the elephants will be the first non-primate species to show sexual dimorphism in this neural character. The results are discussed in both an evolutionary and functional context.

  17. Clinical features of acute corpus callosum infarction patients

    PubMed Central

    Yang, Li-Li; Huang, Yi-Ning; Cui, Zhi-Tang

    2014-01-01

    The clinical manifestation of acute corpus callosum (CC) infarction is lack of specificity and complex, so it is easily missed diagnosis and misdiagnosis in the early stage. The present study aims to describe the clinical features of the acute CC infarction. In this study, 25 patients with corpus callosum infarction confirmed by the brain MRI/DWI and the risk factors were summarized. Patients were classified into genu infarction (3 cases), body infarction (4cases), body and genu infarction (4 cases), body and splenium infarction (1 case), splenium infarction (13 cases) according to lesion location. Clinical manifestation and prognosis were analyzed among groups. The results indicated that CC infarction in patients with high-risk group accounted for 72%, moderate-risk group accounted for 20%, low-risk group (8%). The main risk factors are carotid intimal thickening or plaque formation, hypertension, hyperlipidemia, cerebral artery stenosis, and so on. The CC infarction often merged with other parts infarction, and splenium infarction had the highest incidence, the clinical symptoms in the body infarction which can appear typical signs and symptoms, but in other parts infarction which always merged many nerve defect symptoms. The body infarction prognosis is poor; the rest parts of infarction are more favorable prognosis. In conclusion, CC infarction has the highest incidence in the stroke of high-risk group; neck color Doppler and TCD examination can be found as early as possible to explore the pathogenic factors. Prognosis is usually much better by treatment according to the location and risk factors. PMID:25197390

  18. Clinics in diagnostic imaging (175). Corpus callosum glioblastoma multiforme (GBM): butterfly glioma.

    PubMed

    Krishnan, Vijay; Lim, Tze Chwan; Ho, Francis Cho Hao; Peh, Wilfred Cg

    2017-03-01

    A 54-year-old man presented with change in behaviour, nocturnal enuresis, abnormal limb movement and headache of one week's duration. The diagnosis of butterfly glioma (glioblastoma multiforme) was made based on imaging characteristics and was further confirmed by biopsy findings. As the corpus callosum is usually resistant to infiltration by tumours, a mass that involves and crosses the corpus callosum is suggestive of an aggressive neoplasm. Other neoplastic and non-neoplastic conditions that may involve the corpus callosum and mimic a butterfly glioma, as well as associated imaging features, are discussed.

  19. Diffusion Tensor Quantification and Cognitive Correlates of the Macrostructure and Microstructure of the Corpus Callosum in Typically Developing Children and Dyslexics

    PubMed Central

    Hasan, Khader M.; Molfese, David L.; Walimuni, Indika S.; Stuebing, Karla K.; Papanicolaou, Andrew C.; Narayana, Ponnada A.; Fletcher, Jack M.

    2012-01-01

    Noninvasive quantitative magnetic resonance imaging methods such as diffusion tensor imaging (DTI), can offer insights into structure/function relationships in human developmental brain disorders. In this report, we quantified macrostructural and microstructural attributes of the corpus callosum (CC) in children with dyslexia and typically developing readers of comparable age and gender. Diffusion anisotropy, mean, radial and axial diffusivities of cross-sectional CC sub-regions were computed using a validated DTI methodology. The normalized posterior CC area was enlarged in children with dyslexia compared to typically developing children. Moreover, the callosal microstructural attributes, such as mean diffusivity of the posterior middle sector of the CC, significantly correlated with measures of word reading and reading comprehension. Reading group differences in FA, MD, and RD were observed in the posterior CC (CC5). This study demonstrates the utility of regional DTI measurements of the CC in understanding the neurobiology of reading disorders. PMID:22411286

  20. Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance.

    PubMed

    Marsh, Ashley P L; Heron, Delphine; Edwards, Timothy J; Quartier, Angélique; Galea, Charles; Nava, Caroline; Rastetter, Agnès; Moutard, Marie-Laure; Anderson, Vicki; Bitoun, Pierre; Bunt, Jens; Faudet, Anne; Garel, Catherine; Gillies, Greta; Gobius, Ilan; Guegan, Justine; Heide, Solveig; Keren, Boris; Lesne, Fabien; Lukic, Vesna; Mandelstam, Simone A; McGillivray, George; McIlroy, Alissandra; Méneret, Aurélie; Mignot, Cyril; Morcom, Laura R; Odent, Sylvie; Paolino, Annalisa; Pope, Kate; Riant, Florence; Robinson, Gail A; Spencer-Smith, Megan; Srour, Myriam; Stephenson, Sarah E M; Tankard, Rick; Trouillard, Oriane; Welniarz, Quentin; Wood, Amanda; Brice, Alexis; Rouleau, Guy; Attié-Bitach, Tania; Delatycki, Martin B; Mandel, Jean-Louis; Amor, David J; Roze, Emmanuel; Piton, Amélie; Bahlo, Melanie; Billette de Villemeur, Thierry; Sherr, Elliott H; Leventer, Richard J; Richards, Linda J; Lockhart, Paul J; Depienne, Christel

    2017-04-01

    Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.

  1. Restricted diffusion in the corpus callosum: A neuroradiological marker in hypoxic–ischemic encephalopathy

    PubMed Central

    Kale, Alok; Joshi, Priscilla; Kelkar, A B

    2016-01-01

    Background: Restricted diffusion within the splenium of the corpus callosum has been described by other authors in various conditions, however, restricted diffusion in the entire corpus callosum or isolated involvement of the splenium, genu, or body has been infrequently reported on magnetic resonance imaging (MRI) in neonatal hypoxic–ischemic encephalopathy. We report a series of cases showing different patterns of involvement. Methods and Materials: Perinatal imaging with MRI including diffusion-weighted imaging was performed in 40 neonates with hypoxic–ischemic encephalopathy, including 11 premature neonates. Sixteen out of 40 patients demonstrated restricted diffusion within the corpus callosum. Out of 16 patients, 9 showed restricted diffusion in the entire corpus callosum, 4 had isolated splenium involvement, 2 had body and splenium signal abnormality, and 1 showed diffusion restriction only in the genu. Conclusions: Changes in the corpus callosum were also associated with more severe clinical presentation of encephalopathy. Restricted diffusion within the corpus callosum in infants with hypoxic–ischemic encephalopathy is often associated with extensive brain injury and appears to be an early neuroradiologic marker of adverse neurologic outcome. PMID:28104944

  2. Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    PubMed Central

    2012-01-01

    Background This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity). PMID:22591335

  3. Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum.

    PubMed

    Sullivan, Genevieve M; Mierzwa, Amanda J; Kijpaisalratana, Naruchorn; Tang, Haiying; Wang, Yong; Song, Sheng-Kwei; Selwyn, Reed; Armstrong, Regina C

    2013-12-01

    Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreER(T):R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury.

  4. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1992-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the ransition temperature.

  5. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum.

    PubMed

    Sepehrband, Farshid; Alexander, Daniel C; Clark, Kristi A; Kurniawan, Nyoman D; Yang, Zhengyi; Reutens, David C

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  6. Viscoelasticity of brain corpus callosum in biaxial tension

    NASA Astrophysics Data System (ADS)

    Labus, Kevin M.; Puttlitz, Christian M.

    2016-11-01

    Computational models of the brain rely on accurate constitutive relationships to model the viscoelastic behavior of brain tissue. Current viscoelastic models have been derived from experiments conducted in a single direction at a time and therefore lack information on the effects of multiaxial loading. It is also unclear if the time-dependent behavior of brain tissue is dependent on either strain magnitude or the direction of loading when subjected to tensile stresses. Therefore, biaxial stress relaxation and cyclic experiments were conducted on corpus callosum tissue isolated from fresh ovine brains. Results demonstrated the relaxation behavior to be independent of strain magnitude, and a quasi-linear viscoelastic (QLV) model was able to accurately fit the experimental data. Also, an isotropic reduced relaxation tensor was sufficient to model the stress-relaxation in both the axonal and transverse directions. The QLV model was fitted to the averaged stress relaxation tests at five strain magnitudes while using the measured strain history from the experiments. The resulting model was able to accurately predict the stresses from cyclic tests at two strain magnitudes. In addition to deriving a constitutive model from the averaged experimental data, each specimen was fitted separately and the resulting distributions of the model parameters were reported and used in a probabilistic analysis to determine the probability distribution of model predictions and the sensitivity of the model to the variance of the parameters. These results can be used to improve the viscoelastic constitutive models used in computational studies of the brain.

  7. Automatic corpus callosum segmentation for standardized MR brain scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Chen, Hong; Zhang, Li; Novak, Carol L.

    2007-03-01

    Magnetic Resonance (MR) brain scanning is often planned manually with the goal of aligning the imaging plane with key anatomic landmarks. The planning is time-consuming and subject to inter- and intra- operator variability. An automatic and standardized planning of brain scans is highly useful for clinical applications, and for maximum utility should work on patients of all ages. In this study, we propose a method for fully automatic planning that utilizes the landmarks from two orthogonal images to define the geometry of the third scanning plane. The corpus callosum (CC) is segmented in sagittal images by an active shape model (ASM), and the result is further improved by weighting the boundary movement with confidence scores and incorporating region based refinement. Based on the extracted contour of the CC, several important landmarks are located and then combined with landmarks from the coronal or transverse plane to define the geometry of the third plane. Our automatic method is tested on 54 MR images from 24 patients and 3 healthy volunteers, with ages ranging from 4 months to 70 years old. The average accuracy with respect to two manually labeled points on the CC is 3.54 mm and 4.19 mm, and differed by an average of 2.48 degrees from the orientation of the line connecting them, demonstrating that our method is sufficiently accurate for clinical use.

  8. Social cognition in individuals with agenesis of the corpus callosum.

    PubMed

    Symington, Scott H; Paul, Lynn K; Symington, Melissa F; Ono, Makoto; Brown, Warren S

    2010-01-01

    Past research has revealed that individuals with agenesis of the corpus callosum (ACC) have deficits in interhemispheric transfer, complex novel problem-solving, and the comprehension of paralinguistic aspects of language. Case studies and family reports also suggest problems in social cognition. The performance of 11 individuals with complete ACC and with normal intelligence was compared to that of 13 IQ- and age-matched controls on three measures of social cognition. Individuals with ACC were indistinguishable from controls on the Happe Theory of Mind Stories and the Adult Faux Pas Test, but performed significantly worse on various portions of the Thames Awareness of Social Inference Test (TASIT) involving interpretations of videotaped social vignettes. Further analysis of the TASIT indicated that individuals with ACC showed deficiency in the recognition of emotion, weakness in understanding paradoxical sarcasm, and particular difficulty interpreting textual versus visual social cues. These results suggest that the tendency for deficient social cognition in individuals with ACC stems from a combination of difficulty integrating information from multiple sources, using paralinguistic cues for emotion, and understanding nonliteral speech. Together, these deficits would contribute to a less robust theory of mind.

  9. Acute infarction of corpus callosum due to transient obstructive hydrocephalus.

    PubMed

    Kaymakamzade, Bahar; Eker, Amber

    2016-01-01

    Acute ischemia of the corpus callosum (CC) is not a well-known feature in patients with acute hydrocephalus. Herein, we describe a case with acute CC infarction due to another rare entity; transient obstructive hydrocephalus. A 66-year-old male was admitted with sudden onset right-sided hemiparesia. CT demonstrated a hematoma on the left basal ganglia with extension to all ventricles. The following day, the patient's neurological status progressed to coma and developed bilateral pyramidal signs. MRI demonstrated obstructive hydrocephalus and acute diffuse infarction accompanied by elevation of the CC. On the same day there was improvement in his neurological status with significant decrease in ventricular size and complete resolution of the clot in the third ventricle. The mechanism of signal abnormalities is probably related with the neural compression of the CC against the falx. Presumably, the clot causing obstruction in the third ventricle dissolved or decayed by the help of fibrinolytic activity of CSF, which was raised after IVH and caused spontaneous improvement of hydrocephalus. Bilateral neurological symptoms suggest diffuse axonal damage and normalization of the intracranial pressure should be performed on the early onset of clinical detorioration in order to prevent axonal injury.

  10. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    PubMed Central

    Sepehrband, Farshid; Alexander, Daniel C.; Clark, Kristi A.; Kurniawan, Nyoman D.; Yang, Zhengyi; Reutens, David C.

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273

  11. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1990-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependent FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers is contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the transition temperature. During the next project period the P.I. proposes to (1) extend the variable frequency FMR measurements to low temperature, where extremely large interface anisotropies are known to obtain in Ni/Mo and Ni/V and are proposed to exist in Ni/W; (2) obtain accurate dc anisotropies via a novel, variable temperature torque magnetometer currently under construction; (3) expand upon his initial findings in Fe/Cu multilayer investigations; (4) begin anisotropy investigations on Co/Ag and CoCr/Ag multilayers where the easy magnetization direction depends upon the Cr concentration; (4) make and characterize Bi based superconductors according to resistivity, thermal conductivity and thermoelectric power and construct YBaCuO based superconducting loop-gap'' resonators for use in his magnetic resonance work.

  12. Magnetic multilayer interface anisotropy

    SciTech Connect

    Pechan, M.J.

    1991-01-01

    Ni/Mo and Ni/V multilayer magnetic anisotropy has been investigated as a function of Ni layer thickness, frequency and temperature. Variable frequency ferromagnetic resonance (FMR) measurements show, for the first time, significant frequency dependence associated with the multilayer magnetic anisotropy. The thickness dependence allows one to extract the interface contribution from the total anisotropy. Temperature dependant FMR (9 GHz) and room temperature magnetization indicate that strain between Ni and the non-magnetic layers if contributing significantly to the source of the interface anisotropy and the state of the interfacial magnetization. In order to examine the interface properties of other transition metal multilayer systems, investigations on Fe/Cu are underway and CoCr/Ag is being proposed. ESR measurements have been reported on Gd substituted YBaCuO superconductors and a novel quasi-equilibrium method has been developed to determine quickly and precisely the transition temperature. During the next project the P.I. proposes to (1) extend the variable frequency FMR measurements to low temperature, where extremely large interface anisotropies are known to obtain in Ni/Mo and Ni/V and are proposed to exist in Ni/W; (2) obtain accurate dc anisotropies via a novel, variable temperature torque magnetometer currently under construction; (3) expand upon his initial findings in Fe/Cu multilayer investigations; (4) begin anisotropy investigations on Co/Ag and CoCr/Ag multilayers where the easy magnetization direction depends upon the Cr concentration; (4) make and characterize Bi based superconductors according to resistivity, thermal conductivity and thermoelectric power and construct YBaCuO based superconducting loop-gap'' resonators for use in his magnetic resonance work. 2 figs.

  13. [GENERAL PRINCIPLE OF THE CORPUS CALLOSUM INTERNAL STRUCTURE IN ADULT HUMAN].

    PubMed

    Boiagina, O

    2017-01-01

    The structure of the corpus callosum is a certain form of order of the nerve fibers, glial cells and blood microvessels and it is actually unexplored. We set the goal to understand the general constructive principle of the myeloarchitectonics of human corpus callosum. We used whole mounts of the corpus callosum (5 men and 5 women aged from 36 to 60 years) after their two-week fixation in 10% formalin solution. The next stage was to dissect plate sections of the corpus callosum brainstem in two mutually perpendicular planes. Some of them were subjected to impregnation in 1% osmium tetroxide solution, according to the method adopted in transmission electron microscopy. To prepare these plate sections of the corpus callosum for further study in the light microscope we used the method of plastination in epoxy resin. After complete polymerization plastinated mounts were used for making slices. For further research at high magnification light microscopy they were thinned up to 0.3 mm thickness and were subjected to coloration using 1% solution of methylene blue on 1% borax solution. They were studied using a binocular microscope МБС-9 and microscope "Konus" equipped with digital camera. It was found that the human corpus callosum consists of a number of transversely oriented bands of nerve fibers (commissural cords). Each of them consists of a tightly appressed stratified sections, fascicular rations, which are separated by interstitial layers. In turn, these interfascicular layers give short lateral spurs that divide fascicular rations into individual segments - subfascicular rations. Multiple cells containing interfascicular oligodendrocytes associated with individual subfascicular sets of nerve tracts are dispersed in the cluster order among myelinated nerve fibers of fascicular rations. Fundamentally important point is that the interstitial layers in the corpus callosum as a whole form a complex three-dimensional network structure which is subordinated to the

  14. The combination of thermal dysregulation and agenesis of corpus callosum: Shapiro's or/and reverse Shapiro's syndrome

    PubMed Central

    Topcu, Yasemin; Bayram, Erhan; Karaoglu, Pakize; Yis, Uluc; Kurul, Semra Hiz

    2013-01-01

    Shapiro syndrome is an extremely rare condition consisting the clinical triad of recurrent hypothermia, hyperhydrosis and agenesis of the corpus callosum. On the other hand, reverse Shapiro's sydrome is characterized periodic hyperthermia and agenesis of the corpus callosum. Here, we describe a 3.5-year-old girl with complete agenesis of corpus callosum presenting with recurrent fever and vomiting. She also had hypothermia attacks with accompanying diaphoresis. To the best of our knowledge, there is no described case with episodes of hyperthermia, hypothermia, and vomiting associated with agenesis of the corpus callosum. Recurrent vomiting may be a newly defined symptom associated with these syndromes. PMID:24339619

  15. Proverb comprehension in individuals with agenesis of the corpus callosum.

    PubMed

    Rehmel, Jamie L; Brown, Warren S; Paul, Lynn K

    2016-09-01

    Comprehension of non-literal language involves multiple neural systems likely involving callosal connections. We describe proverb comprehension impairments in individuals with isolated agenesis of the corpus callosum (AgCC) and normal-range general intelligence. Experiment 1 compared Gorham Proverb Test (Gorham, 1956) performance in 19 adults with AgCC and 33 neurotypical control participants of similar age, sex, and intelligence. Experiment 2 used the Proverbs subtest of the Delis-Kaplan Executive Function System (D-KEFS, 2001) to compare 19 adults with AgCC and 17 control participants with similar age, sex, and intelligence. Gorham Proverbs performance was impaired in the AgCC group for both the free-response and multiple-choice tasks. On the D-KEFS proverbs test, the AgCC group performed significantly worse on the free-response task (and all derivative scores) despite normal levels of performance on the multiple-choice task. Covarying verbal intelligence did not alter these outcomes. However, covarying a measure of non-literal language comprehension considerably reduced group differences in proverb comprehension on the Gorham test, but had little effect on the D-KEFS group differences. The difference between groups seemed to be greatest when participants had to generate their own interpretation (free response), or in the multiple choice format when the test included many proverbs that were likely to be less familiar. Taken together, the results of this study clearly show that proverb comprehension is diminished in individuals with AgCC compared to their peers.

  16. Comprehension of humor in primary agenesis of the corpus callosum.

    PubMed

    Brown, Warren S; Paul, Lynn K; Symington, Melissa; Dietrich, Rosalind

    2005-01-01

    Individuals with agenesis of the corpus callosum (ACC) can, in some cases, perform normally on standardized intelligence tests. Nevertheless, recent studies suggest that individuals with ACC and normal IQ scores have deficits in domains of fluid and social intelligence. Anecdotal reports from families suggest diminished appreciation of the subtleties of social interactions, and deficits in the comprehension of jokes and stories. In this research, both the cartoon and narrative joke subtests of a humor test (developed by Brownell et al. [Brownell, H., Michel, D., Powelson, J., & Gardner, H. (1983). Surprise but not coherence: sensitivity to verbal humor in right-hemisphere patients. Brain and language, 18(1), 20-27] and Bihrle et al. [Bihrle, A. M., Brownell, H. H., Powelson, J. A., & Gardner, H. (1986). Comprehension of humorous and non-humorous materials by left and right brain-damaged patients. Brain and Cognition, 5(4), 399-411]) were given to 16 adults with complete ACC (all with IQs>80) and 31 controls of similar age and IQ. Individuals with ACC performed worse than controls on the narrative joke subtest (p<.025) when VIQ was controlled. However, on the cartoon subtest the two groups were not significantly different. Covarying age, forms of IQ, narrative memory, set-switching, and literal language comprehension did not substantially alter the group difference. However, covarying comprehension of nonliteral language and proverbs eliminated the difference, suggesting a common origin for the comprehension of jokes, nonliteral language, and proverbs, most likely related to capacity for understanding second-order meanings.

  17. PEDF is a novel oligodendrogenic morphogen acting on the adult SVZ and corpus callosum.

    PubMed

    Sohn, Jiho; Selvaraj, Vimal; Wakayama, Kouji; Orosco, Lori; Lee, Eunyoung; Crawford, Susan E; Guo, Fuzheng; Lang, Jordan; Horiuchi, Makoto; Zarbalis, Konstantinos; Itoh, Takayuki; Deng, Wenbin; Pleasure, David

    2012-08-29

    Pigment epithelium-derived factor (PEDF) is a serine protease inhibitor (serpin) protein with well established neuroprotective and anti-angiogenic properties. Recent studies have also shown that PEDF enhances renewal of adult subventricular zone (SVZ) neural precursors. In neurosphere cultures prepared from the SVZ of adult mice, we found that addition of recombinant PEDF to the medium enhanced expressions of oligodendroglial lineage markers (NG2 and PDGFrα) and transcription factors (Olig1, Olig2, and Sox10). Similarly, continuous PEDF administration into the lateral ventricles of adult glial fibrillary acidic protein:green fluorescent protein (GFAP:GFP) transgenic mice increased the proportions of GFAP:GFP+ and GFAP:GFP- SVZ neural precursors coexpressing oligodendroglial lineage markers and transcription factors. Notably, PEDF infusion also resulted in an induction of doublecortin- and Sox10 double-positive cells in the adult SVZ. Immunoreactive PEDF receptor was detectable in multiple cell types in both adult SVZ and corpus callosum. Furthermore, PEDF intracerebral infusion enhanced survival and maturation of newly born oligodendroglial progenitor cells in the normal corpus callosum, and accelerated oligodendroglial regeneration in lysolecithin-induced corpus callosum demyelinative lesions. Western blot analysis showed a robust upregulation of endogenous PEDF in the corpus callosum upon lysolecithin-induced demyelination. Our results document previously unrecognized oligodendrotrophic effects of recombinant PEDF on the adult SVZ and corpus callosum, demonstrate induction of endogenous CNS PEDF production following demyelination, and make PEDF a strong candidate for pharmacological intervention in demyelinative diseases.

  18. Anisotropy across Superplume Boundaries

    NASA Astrophysics Data System (ADS)

    Cottaar, S.; Romanowicz, B. A.

    2011-12-01

    Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an

  19. Alien hand syndrome following corpus callosum infarction: A case report and review of the literature.

    PubMed

    Gao, Xiaoyu; Li, Bing; Chu, Wenzheng; Sun, Xuwen; Sun, Chunjuan

    2016-10-01

    Alien hand syndrome (AHS) is characterized by involuntary and autonomous activity of the affected limbs, and consists of the frontal, callosal and posterior AHS variants. The callosal subtype, resulting from damage to the corpus callosum, frequently features intermanual conflict. However, infarction of the corpus callosum is rare due to abundant blood supply. The present study reported a case of AHS (callosal subtype, in the right hand) caused by callosal infarction. Infarction of the left corpus callosum was confirmed with magnetic resonance imaging. In addition, magnetic resonance angiography and digital subtraction angiography examinations revealed multiple lesions in the feeding arteries. Subsequent to antiplatelet therapy for 2 weeks following admission, the patient gradually recovered. Furthermore, the current study reviewed 31 previously reported cases of AHS following callosal infarction in the literature.

  20. Alien hand syndrome following corpus callosum infarction: A case report and review of the literature

    PubMed Central

    Gao, Xiaoyu; Li, Bing; Chu, Wenzheng; Sun, Xuwen; Sun, Chunjuan

    2016-01-01

    Alien hand syndrome (AHS) is characterized by involuntary and autonomous activity of the affected limbs, and consists of the frontal, callosal and posterior AHS variants. The callosal subtype, resulting from damage to the corpus callosum, frequently features intermanual conflict. However, infarction of the corpus callosum is rare due to abundant blood supply. The present study reported a case of AHS (callosal subtype, in the right hand) caused by callosal infarction. Infarction of the left corpus callosum was confirmed with magnetic resonance imaging. In addition, magnetic resonance angiography and digital subtraction angiography examinations revealed multiple lesions in the feeding arteries. Subsequent to antiplatelet therapy for 2 weeks following admission, the patient gradually recovered. Furthermore, the current study reviewed 31 previously reported cases of AHS following callosal infarction in the literature. PMID:27698701

  1. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  2. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database

    ERIC Educational Resources Information Center

    Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.

    2015-01-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…

  3. Volatiles emitted from single flower buds of the lilium longiflorum × L. callosum interspecific hybrid and its parents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was initiated to analyze the volatiles emitted from a single flower bud of Lilium longiflorum Thunb., L. callosum Sieb. et Zucc., and interspecific hybrids of L. longiflorum × L. callosum (L. longi × L. cal IH). Volatiles, collected automatically every 6-hour intervals at 20oC before ...

  4. Reversible cerebral periventricular white matter changes with corpus callosum involvement in acute toluene-poisoning.

    PubMed

    Lin, Chih-Ming; Liu, Chi-Kuang

    2015-01-01

    Substance poisoning, such as toluene intoxication, has seldom been reported in the relevant literature. The documented cerebral neuroimaging has mostly described reversible symmetrical white matter changes in both the cerebral and cerebellar hemispheres. This paper presents 2 patients with toluene poisoning, whose brain magnetic resonance imaging studies showed a similar picture that included extra involvement over the corpus callosum; however, such corpus callosum involvement has never been mentioned and is quite rare in the literature. We discussed the underlying neuropathological pathways in this article. Hopefully, these cases will provide first-line clinicians with some valuable information with regard to toluene intoxication and clinical neuroimaging presentations.

  5. Right hand predominant constructional apraxia due to right hemisphere infarction without corpus callosum lesions.

    PubMed

    Kobayashi, Zen; Watanabe, Mayumi; Karibe, Yuri; Nakazawa, Chika; Numasawa, Yoshiyuki; Tomimitsu, Hiroyuki; Shintani, Shuzo

    2014-01-01

    A 74-year-old right-handed woman without cognitive impairment suddenly developed nonfluent aphasia. Brain MRI showed acute infarction in the right frontal lobe and insula without involvement of the corpus callosum. A neurological examination demonstrated not only transcortical motor aphasia, but also ideomotor apraxia and right hand predominant constructional apraxia (CA). To date, right hand predominant CA has only been reported in patients with corpus callosum lesions. The right hand predominant CA observed in our patient may be associated with the failure to transfer information on the spatial structure from the right hemisphere to the motor cortex of the left hemisphere.

  6. A solution to the cosmic ray anisotropy problem

    NASA Astrophysics Data System (ADS)

    Mertsch, P.; Funk, S.

    2015-10-01

    Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.

  7. The gene responsible for a severe form of peripheral neuropathy and agenesis of the corpus callosum maps to chromosome 15q

    SciTech Connect

    Casaubon, L.K.; Melanson, M.; Marineau, C. |

    1996-01-01

    Peripheral neuropathy with or without agenesis of the corpus callosum (ACCPN) is a devastating neurodegenerative disorder that is transmitted as an autosomal recessive trait. Genealogical studies in a large number of affected French Canadian individuals suggest that ACCPN results from a single founder mutation. A genomewide search using 120 microsatellite DNA markers in 14 French Canadian families allowed the mapping of the ACCPN gene to a 5-cM region on chromosome 15q13-q15 that is flanked by markers D15S1040 and D15S118. A maximum two-point LOD score of 11.1 was obtained with the marker D15S971 at a recombination fraction of 0. Haplotype analysis and linkage disequilibrium support a founder effect. These findings are the first step in the identification of the gene responsible for ACCPN, which may shed some light on the numerous conditions associated with progressive peripheral neuropathy or agenesis of the corpus callosum. 28 refs., 2 figs., 3 tabs.

  8. The gene responsible for a severe form of peripheral neuropathy and agenesis of the corpus callosum maps to chromosome 15q.

    PubMed Central

    Casaubon, L. K.; Melanson, M.; Lopes-Cendes, I.; Marineau, C.; Andermann, E.; Andermann, F.; Weissenbach, J.; Prévost, C.; Bouchard, J. P.; Mathieu, J.; Rouleau, G. A.

    1996-01-01

    Peripheral neuropathy with or without agenesis of the corpus callosum (ACCPN) is a devastating neurodegenerative disorder that is transmitted as an autosomal recessive trait. Genealogical studies in a large number of affected French Canadian individuals suggest that ACCPN results from a single founder mutation. A genomewide search using 120 microsatellite DNA markers in 14 French Canadian families allowed the mapping of the ACCPN gene to a 5-cM region on chromosome 15q13-q15 that is flanked by markers D15S1040 and D15S118. A maximum two-point LOD score of 11.1 was obtained with the marker D15S971 at a recombination fraction of 0. Haplotype analysis and linkage disequilibrium support a founder effect. These findings are the first step in the identification of the gene responsible for ACCPN, which may shed some light on the numerous conditions associated with the progressive peripheral neuropathy or agenesis of the corpus callosum. PMID:8554065

  9. Exuberant projection into the corpus callosum from the visual cortex of newborn cats.

    PubMed

    Innocenti, G M; Fiore, L; Caminiti, R

    1977-04-01

    In the first postnatal week, neurones projecting into the corpus callosum can be identified in kitten's visual cortex by retrograde transport of HRP. The neurones are located in layers III, IV, and VI. The region of cortex which gives rise to the callosal projection extends beyond its adult boundaries over most of area 17, 18, 19 and in the suprasylvian sulcus.

  10. Moebius syndrome with Dandy-Walker variant and agenesis of corpus callosum.

    PubMed

    John, Jomol Sara; Vanitha, R

    2013-09-01

    Moebius syndrome is a rare congenital neurological disorder. The most frequent mode of presentation is facial diplegia with bilateral lateral rectus palsy, but there are variations. Here, we report a rare case of Moebius syndrome in a 15-month-old child with unilateral facial palsy, bilateral abducens nerve palsy with Dandy Walker variant, and complete agenesis of corpus callosum.

  11. Corpus Callosum Size is Linked to Dichotic Deafness and Hemisphericity, Not Sex or Handedness

    ERIC Educational Resources Information Center

    Morton, Bruce E.; Rafto, Stein E.

    2006-01-01

    Individuals differ in the number of corpus callosum (CC) nerve fibers interconnecting their cerebral hemispheres by about threefold. Early reports suggested that males had smaller CCs than females. This was often interpreted to support the concept that the male brain is more "lateralized" or "specialized," thus accounting for presumed male…

  12. Mental State Understanding in Children with Agenesis of the Corpus Callosum

    PubMed Central

    Lábadi, Beatrix; Beke, Anna M.

    2017-01-01

    Impaired social functioning is a well-known outcome of individuals with agenesis of the corpus callosum. Social deficits in nonliteral language comprehension, humor, social reasoning, and recognition of facial expression have all been documented in adults with agenesis of the corpus callosum. In the present study, we examined the emotional and mentalizing deficits that contributing to the social-cognitive development in children with isolated corpus callosum agenesia, including emotion recognition, theory of mind, executive function, working memory, and behavioral impairments as assessed by the parents. The study involved children between the age of 6 and 8 years along with typically developing children who were matched by IQ, age, gender, education, and caregiver's education. The findings indicated that children with agenesis of the corpus callosum exhibited mild impairments in all social factors (recognizing emotions, understanding theory of mind), and showed more behavioral problems than control children. Taken together, these findings suggest that reduced callosal connectivity may contribute to the development of higher-order social-cognitive deficits, involving limits of complex and rapidly occurring social information to be processed. The studies of AgCC shed lights of the role of structural connectivity across the hemispheres in neurodevelopmental disorders. PMID:28220087

  13. A Two-Year Longitudinal MRI Study of the Corpus Callosum in Autism

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Keshavan, Matcheri S.; Minshew, Nancy J.; Hardan, Antonio Y.

    2012-01-01

    A growing body of literature has identified size reductions of the corpus callosum (CC) in autism. However, to our knowledge, no published studies have reported on the growth of CC volumes in youth with autism. Volumes of the total CC and its sub-divisions were obtained from 23 male children with autism and 23 age- and gender-matched controls at…

  14. Intrahemispheric dysfunction in primary motor cortex without corpus callosum: a transcranial magnetic stimulation study

    PubMed Central

    Fecteau, Shirley; Lassonde, Maryse; Théoret, Hugo

    2006-01-01

    Background The two human cerebral hemispheres are continuously interacting, through excitatory and inhibitory influences and one critical structure subserving this interhemispheric balance is the corpus callosum. Interhemispheric neurophysiological abnormalities and intrahemispheric behavioral impairments have been reported in individuals lacking the corpus callosum. The aim of this study was to examine intrahemispheric neurophysiological function in primary motor cortex devoid of callosal projections. Methods Intracortical excitatory and inhibitory systems were tested in three individuals with complete agenesis of the corpus callosum and sixteen healthy individuals. These systems were assessed using transcranial magnetic stimulation (TMS) protocols: motor threshold at rest, paired-pulse curve, and cortical silent period. Results TMS revealed no difference between the patient and control groups on the motor threshold measure, as well as intracortical facilitation and intracortical inhibition systems as tested by paired stimulation. However, intrahemispheric inhibitory function was found to be abnormal in participants without callosal projections, as the cortical silent period duration was significantly increased in the patient group. Conclusion These data suggest that in addition to previously reported impaired interhemispheric function, patients lacking the entire corpus callosum also display abnormal intrahemispheric excitability of the primary motor cortex. PMID:16790050

  15. Quantitative Analysis of the Shape of the Corpus Callosum in Patients with Autism and Comparison Individuals

    ERIC Educational Resources Information Center

    Casanova, Manuel F.; El-Baz, Ayman; Elnakib, Ahmed; Switala, Andrew E.; Williams, Emily L.; Williams, Diane L.; Minshew, Nancy J.; Conturo, Thomas E.

    2011-01-01

    Multiple studies suggest that the corpus callosum in patients with autism is reduced in size. This study attempts to elucidate the nature of this morphometric abnormality by analyzing the shape of this structure in 17 high-functioning patients with autism and an equal number of comparison participants matched for age, sex, IQ, and handedness. The…

  16. Social and Behavioral Problems of Children with Agenesis of the Corpus Callosum

    ERIC Educational Resources Information Center

    Badaruddin, Denise H.; Andrews, Glena L.; Bolte, Sven; Schilmoeller, Kathryn J.; Schilmoeller, Gary; Paul, Lynn K.; Brown, Warren S.

    2007-01-01

    Archival data from a survey of parent observations was used to determine the prevalence of social and behavioral problems in children with agenesis of the corpus callosum (ACC). Parent observations were surveyed using the Child Behavior Checklist (CBCL) for 61 children with ACC who were selected from the archive based on criteria of motor…

  17. The Brain Connection: The Corpus Callosum is Larger in Left-Handers.

    ERIC Educational Resources Information Center

    Witelson, Sandra F.

    1985-01-01

    Discusses the neurobiological basis for functional specialization of the cerebral hemispheres, indicating that the size of the corpus callosum is correlated with the neurophysiological measure of hand preference. In postmortem examinations of 42 subjects there were no sex differences, but mixed-handers had significantly larger total areas of the…

  18. Mental State Understanding in Children with Agenesis of the Corpus Callosum.

    PubMed

    Lábadi, Beatrix; Beke, Anna M

    2017-01-01

    Impaired social functioning is a well-known outcome of individuals with agenesis of the corpus callosum. Social deficits in nonliteral language comprehension, humor, social reasoning, and recognition of facial expression have all been documented in adults with agenesis of the corpus callosum. In the present study, we examined the emotional and mentalizing deficits that contributing to the social-cognitive development in children with isolated corpus callosum agenesia, including emotion recognition, theory of mind, executive function, working memory, and behavioral impairments as assessed by the parents. The study involved children between the age of 6 and 8 years along with typically developing children who were matched by IQ, age, gender, education, and caregiver's education. The findings indicated that children with agenesis of the corpus callosum exhibited mild impairments in all social factors (recognizing emotions, understanding theory of mind), and showed more behavioral problems than control children. Taken together, these findings suggest that reduced callosal connectivity may contribute to the development of higher-order social-cognitive deficits, involving limits of complex and rapidly occurring social information to be processed. The studies of AgCC shed lights of the role of structural connectivity across the hemispheres in neurodevelopmental disorders.

  19. Corpus Callosum Morphology in Attention Deficit-Hyperactivity Disorder: Morphometric Analysis of MRI.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    1991-01-01

    Morphometric analysis of magnetic resonance imaging scans revealed that, compared to nondisabled controls, the seven children with attention deficit hyperactivity disorder had a smaller corpus callosum. Results suggest that subtle differences may exist in the brains of these children and that deviations in normal corticogenesis may underlie the…

  20. A 23-Year Review of Communication Development in an Individual with Agenesis of the Corpus Callosum.

    ERIC Educational Resources Information Center

    Stickles, Judith L.; Schilmoeller, Gary L.; Schilmoeller, Kathryn J.

    2002-01-01

    Twenty-three years of observation and testing of the communication skills of a male with agenesis of the corpus callosum and normal IQ revealed initial weakness in language. Difficulties with fluent speech persisted into young adulthood. With intensive intervention, communication and academic skills developed and the participant completed high…

  1. The indusium griseum and the longitudinal striae of the corpus callosum.

    PubMed

    Di Ieva, Antonio; Fathalla, Hussein; Cusimano, Michael D; Tschabitscher, Manfred

    2015-01-01

    In the eighteenth century, Lancisi described the indusium griseum (IG) and the longitudinal striae (LS) of the corpus callosum. The IG is a thin neuronal lamina above the corpus callosum, covered on each side of the midline by the medial and lateral LS. The medial LS (nerves of Lancisi) and lateral LS are two pairs of myelinated fiber bands found in the gray matter of the IG on the dorsal aspect of the corpus callosum. Embryologically, the IG and LS are dorsal remnants of the archicortex of the hippocampus and fornix and thus they are considered components of the limbic system. Recent studies using immunohistochemistry reported that acetylcholine, dopamine, noradrenaline, 5-hydroxytryptamine and GABA neurons innervate the IG. Newer imaging techniques, such as high field MRI and diffusion tensor imaging, provide new tools for studying these structures, whose true function remains still unclear. The present paper reviews the history of the discovery of the IG and LS of the corpus callosum, with a holistic overview on these interesting structures from the anatomical, embryological, neurochemical, radiological and clinical perspective.

  2. Agenesis of the Corpus Callosum: Assessment and Remediation of School-Related Problems.

    ERIC Educational Resources Information Center

    Puente, Antonio, E.

    The paper examines three cases of children born with brain damage (absence of corpus callosum). Common problems (attentional, cognitive, visuo-motor, and motor deficits) are noted, and the impact of secondary emotional involvement is considered. Intervention approaches with two of the children are described as inconsistent and inadequate, while…

  3. Psychological Correlates of Handedness and Corpus Callosum Asymmetry in Autism: The Left Hemisphere Dysfunction Theory Revisited

    ERIC Educational Resources Information Center

    Floris, Dorothea L.; Chura, Lindsay R.; Holt, Rosemary J.; Suckling, John; Bullmore, Edward T.; Baron-Cohen, Simon; Spencer, Michael D.

    2013-01-01

    Rightward cerebral lateralization has been suggested to be involved in the neuropathology of autism spectrum conditions. We investigated functional and neuroanatomical asymmetry, in terms of handedness and corpus callosum measurements in male adolescents with autism, their unaffected siblings and controls, and their associations with executive…

  4. Reduced White Matter Connectivity in the Corpus Callosum of Children with Tourette Syndrome

    ERIC Educational Resources Information Center

    Plessen, Kerstin J.; Gruner, Renate; Lundervold, Arvid; Hirsch, Jochen G.; Xu, Dongrong; Bansal, Ravi; Hammar, Asa; Lundervold, Astri J.; Wentzel-Larsen, Tore; Lie, Stein Atle; Gass, Achim; Peterson, Bradley S.; Hugdahl, Kenneth

    2006-01-01

    Background: Brain imaging studies have revealed anatomical anomalies in the brains of individuals with Tourette syndrome (TS). Prefrontal regions have been found to be larger and the corpus callosum (CC) area smaller in children and young adults with TS compared with healthy control subjects, and these anatomical features have been understood to…

  5. Cognitive impairments associated with corpus callosum infarction: a ten cases study.

    PubMed

    Huang, Xiaoqin; Du, Xiangnan; Song, Haiqing; Zhang, Qian; Jia, Jianping; Xiao, Tianyi; Wu, Jian

    2015-01-01

    The aim of this study was to determine whether the cognitive impairment is associated with corpus callosum infarctions. Ten corpus callosum infarction patients were enrolled in this study. Their emotions, cognitive and language abilities, memory, comprehensive perception were assessed using the Chinese version of following measures: Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), World Health Organization-University of California-Los Angeles Auditory Verbal Learning Test (WHO-UCLA AVLT), Wechsler Adult Intelligence Scale (WAIS) Digit Span subtest and so on. The same measurements were performed on healthy control participants as contrast for analysis. Infarction most frequently occurred in the body and/or splenium of the corpus callosum. The scores of the most cognitive tests in the corpus callosum infarction patients were significantly worse than those of the control participants (P<0.05). Except for the naming ability, the patients showed significantly poorer performance at the overall level of MMSE than the controls did (P<0.05). Consistently, the results of MoCA suggested a significant reduction in visuospatial abilities of execution, orientation, attention, calculation, delayed memory, language, and repetition capabilities in the patients with respect to the control (P<0.05). In addition, the scores in the case group were significantly worse than those in the control group in the auditory word learning test, digital span and Rey complex figure test (P<0.05). Corpus callosum infarction can cause cognitive dysfunction, which poses obstacles to memory in the acute phase, accompanied by different degrees of decline in visuospatial abilities, attention and calculating abilities.

  6. Associated anisotropy decays of ethidium bromide interacting with DNA

    NASA Astrophysics Data System (ADS)

    Chib, Rahul; Raut, Sangram; Sabnis, Sarika; Singhal, Preeti; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-03-01

    Ethidium Bromide (EB) is a commonly used dye in a deoxyribonucleic acid (DNA) study. Upon an intercalation, this dye significantly increases its brightness and fluorescence lifetime. In this report we have studied the time resolved fluorescence properties of EB existing simultaneously in free and DNA-bound forms in the solution. Fluorescence intensity decays were fitted globally to a double exponential model with lifetimes corresponding to free (1.6 ns) and bound (22 ns) forms, and molar fractions were determined for all used solutions. Anisotropy decays displayed characteristic time dependence with an initial rapid decline followed by recovery and slow decay. The short-lived fraction associated with free EB molecules decreases faster than long-lived fraction associated with EB bound to DNA. Consequently, contribution from fast rotation leads to initial rapid decay in anisotropy. On the other hand bound fraction, due to slow rotation helps recover anisotropy in time. This effect of associated anisotropy decays in systems such as EB free/EB-DNA is clearly visible in a wide range of concentrations, and should be taken into account in polarization assays and biomolecule dynamics studies.

  7. COBE anisotropy from supercluster gas

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1992-01-01

    It is suggested that the microwave background anisotropy detected by the COBE DMR might be dominated not by the direct gravitational effect of primordial fluctuations in the last scattering surface, but by scattering off of moving electrons in optically thin, nearby superclusters. Hot diffuse clouds of ionized gas created during supercluster collapse produce Sunyaev-Zel'dovich and Doppler background anisotropy whose properties may closely mimic those of primordial anisotropy in current data. Strategies for and difficulties in separating the effects are discussed, based on the anisotropy spectrum, autocorrelation, correlation with galaxy catalogs, X-ray emission, and integrated spectral distortions.

  8. Corpus callosum area and brain volume in autism spectrum disorder: quantitative analysis of structural MRI from the ABIDE database.

    PubMed

    Kucharsky Hiess, R; Alter, R; Sojoudi, S; Ardekani, B A; Kuzniecky, R; Pardoe, H R

    2015-10-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial region. No difference in the corpus callosum area was found between ASD participants and healthy controls (ASD 598.53 ± 109 mm(2); control 596.82 ± 102 mm(2); p = 0.76). The ASD participants had increased intracranial volume (ASD 1,508,596 ± 170,505 mm(3); control 1,482,732 ± 150,873.5 mm(3); p = 0.042). No evidence was found for overall ASD differences in the corpus callosum subregions.

  9. Non-surgical treatment of massive traumatic corpus callosum hematoma after blunt head injury: A case report.

    PubMed

    Elsayed, A; Elgamal, E; Elsayed, A A; Wasserberg, J; Kuncz, A

    2016-01-01

    Massive hematoma of the corpus callosum caused by blunt head trauma is an extremely rare lesion. Most frequent traumatic lesions involve the corpus callosum are diffuse axonal injuries. They might be associated with small hemorrhagic foci in the hemispheric and brain stem white matter, intraventricular hemorrhages, subarachnoid hemorrhages, traumatic lesions of the septum pellucidum and fornix. Many cases of corpus callosum injury present with permanent disconnection syndrome. We present a case of a 32-year-old female suffered blunt head trauma resulted in massive corpus callosum hematoma which was managed non-surgically. The patient initially had a reduced conscious level and symptoms of disconnection syndrome, and significant recovery was observed at 6 months follow up.

  10. Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study.

    PubMed

    Tanaka-Arakawa, Megumi M; Matsui, Mie; Tanaka, Chiaki; Uematsu, Akiko; Uda, Satoshi; Miura, Kayoko; Sakai, Tomoko; Noguchi, Kyo

    2015-01-01

    Previous research has reported on the development trajectory of the corpus callosum morphology. However, there have been only a few studies that have included data on infants. The goal of the present study was to examine the morphology of the corpus callosum in healthy participants of both sexes, from infancy to early adulthood. We sought to characterize normal development of the corpus callosum and possible sex differences in development. We performed a morphometric magnetic resonance imaging (MRI) study of 114 healthy individuals, aged 1 month to 25 years old, measuring the size of the corpus callosum. The corpus callosum was segmented into seven subareas of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus and splenium. Locally weighted regression analysis (LOESS) indicated significant non-linear age-related changes regardless of sex, particularly during the first few years of life. After this increase, curve slopes gradually became flat during adolescence and adulthood in both sexes. Age of local maximum for each subarea of the corpus callosum differed across the sexes. Ratios of total corpus callosum and genu, posterior midbody, as well as splenium to the whole brain were significantly higher in females compared with males. The present results demonstrate that the developmental trajectory of the corpus callosum during early life in healthy individuals is non-linear and dynamic. This pattern resembles that found for the cerebral cortex, further suggesting that this period plays a very important role in neural and functional development. In addition, developmental trajectories and changes in growth do show some sex differences.

  11. Diffusion tensor MR microscopy of tissues with low diffusional anisotropy

    PubMed Central

    Bajd, Franci; Mattea, Carlos; Stapf, Siegfried

    2016-01-01

    Abstract Background Diffusion tensor imaging exploits preferential diffusional motion of water molecules residing within tissue compartments for assessment of tissue structural anisotropy. However, instrumentation and post-processing errors play an important role in determination of diffusion tensor elements. In the study, several experimental factors affecting accuracy of diffusion tensor determination were analyzed. Materials and methods Effects of signal-to-noise ratio and configuration of the applied diffusion-sensitizing gradients on fractional anisotropy bias were analyzed by means of numerical simulations. In addition, diffusion tensor magnetic resonance microscopy experiments were performed on a tap water phantom and bovine articular cartilage-on-bone samples to verify the simulation results. Results In both, the simulations and the experiments, the multivariate linear regression of the diffusion-tensor analysis yielded overestimated fractional anisotropy with low SNRs and with low numbers of applied diffusion-sensitizing gradients. Conclusions An increase of the apparent fractional anisotropy due to unfavorable experimental conditions can be overcome by applying a larger number of diffusion sensitizing gradients with small values of the condition number of the transformation matrix. This is in particular relevant in magnetic resonance microscopy, where imaging gradients are high and the signal-to-noise ratio is low. PMID:27247550

  12. Individual differences in brain asymmetries and fiber composition in the human corpus callosum.

    PubMed

    Aboitiz, F; Scheibel, A B; Fisher, R S; Zaidel, E

    1992-12-11

    There have been several recent reports concerning individual differences in the gross morphometry of the human corpus callosum. However, no studies exist on individual differences in the fiber composition of the corpus callosum. Here we report for the first time the relation of fiber composition in specific callosal segments (as seen in light microscopy) to anatomical asymmetries in language-gifted cortex, as a function of sex. We found a significant negative correlation between Sylvian fissure asymmetries and the total numbers of fibers in the isthmus of males, and in the anterior splenium of females. In addition, a population of relatively large fibers (between 1 micron and 3 microns in diameter) in the isthmus showed a strong negative correlation with perisylvian asymmetries only in males. These findings suggest a sex-dependent, pathway-specific decrease in interhemispheric connectivity with increasing lateralization.

  13. Shape analysis of corpus callosum in phenylketonuria using a new 3D correspondence algorithm

    NASA Astrophysics Data System (ADS)

    He, Qing; Christ, Shawn E.; Karsch, Kevin; Peck, Dawn; Duan, Ye

    2010-03-01

    Statistical shape analysis of brain structures has gained increasing interest from neuroimaging community because it can precisely locate shape differences between healthy and pathological structures. The most difficult and crucial problem is establishing shape correspondence among individual 3D shapes. This paper proposes a new algorithm for 3D shape correspondence. A set of landmarks are sampled on a template shape, and initial correspondence is established between the template and the target shape based on the similarity of locations and normal directions. The landmarks on the target are then refined by iterative thin plate spline. The algorithm is simple and fast, and no spherical mapping is needed. We apply our method to the statistical shape analysis of the corpus callosum (CC) in phenylketonuria (PKU), and significant local shape differences between the patients and the controls are found in the most anterior and posterior aspects of the corpus callosum.

  14. Contralateral targeting of the corpus callosum in normal and pathological brain function.

    PubMed

    Fenlon, Laura R; Richards, Linda J

    2015-05-01

    The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptible to structural defects during development, which often result in significant neuropsychological dysfunction. To date, such individuals have been studied primarily with regards to the integrity of the callosal tract at the midline. However, the mechanisms regulating the contralateral targeting of the corpus callosum, after midline crossing has occurred, are less well understood. Recent evidence suggests that defects in contralateral targeting can occur in isolation from midline-tract malformations, and may have significant functional implications. We propose that contralateral targeting is a crucially important and relatively under-investigated event in callosal development, and that defects in this process may constitute an undiagnosed phenotype in several neurological disorders.

  15. Germinoma with an extensive rhabdoid cell component centered at the corpus callosum.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2017-03-01

    Intracranial germinomas comprise 0.5-2.0 % of all central nervous system (CNS) tumors and 50-60 % of CNS germ cell tumors. They most frequently originate in the pineal gland and the suprasellar region. The corpus callosum is an extremely uncommon location for germinoma formation. Herein, we report about a 20-year-old man with a germinoma centered at the corpus callosum and that extended to both cerebral hemispheres. In addition to its location, this case is unique in that the amount of tumor cells with rhabdoid morphology exceeded that of tumor cells with typical morphology. The rhabdoid cell component showed an immunophenotype compatible with germinoma. While the presence of rhabdoid cells is generally regarded as a sign of aggressive behavior, the patient has been doing well for at least 4 years since undergoing radiation therapy and chemotherapy. The cellular composition of germinoma might not critically affect prognosis with adequate treatment.

  16. Corpus callosum size is highly heritable in humans, and may reflect distinct genetic influences on ventral and rostral regions.

    PubMed

    Woldehawariat, Girma; Martinez, Pedro E; Hauser, Peter; Hoover, David M; Drevets, Wayne W C; McMahon, Francis J

    2014-01-01

    Anatomical differences in the corpus callosum have been found in various psychiatric disorders, but data on the genetic contributions to these differences have been limited. The current study used morphometric MRI data to assess the heritability of corpus callosum size and the genetic correlations among anatomical sub-regions of the corpus callosum among individuals with and without mood disorders. The corpus callosum (CC) was manually segmented at the mid-sagittal plane in 42 women (healthy, n = 14; major depressive disorder, n = 15; bipolar disorder, n = 13) and their 86 child or adolescent offspring. Four anatomical sub-regions (CC-genu, CC2, CC3 and CC-splenium) and total CC were measured and analyzed. Heritability and genetic correlations were estimated using a variance components method, with adjustment for age, sex, diagnosis, and diagnosis x age, where appropriate. Significant heritability was found for several CC sub-regions (P<0.01), with estimated values ranging from 48% (splenium) to 67% (total CC). There were strong and significant genetic correlations among most sub regions. Correlations between the genu and mid-body, between the genu and total corpus callosum, and between anterior and mid body were all >90%, but no significant genetic correlations were detected between ventral and rostral regions in this sample. Genetic factors play an important role in corpus callosum size among individuals. Distinct genetic factors seem to be involved in caudal and rostral regions, consistent with the divergent functional specialization of these brain areas.

  17. A de novo mutation in PRICKLE1 in fetal agenesis of the corpus callosum and polymicrogyria

    PubMed Central

    Bassuk, Alexander G.; Sherr, Elliott H.

    2016-01-01

    Homozygous recessive mutations in the PRICKLE1 gene were originally reported in three consanguineous families with myoclonic epilepsy. Subsequently, several studies have identified neurological abnormalities in animal models with both heterozygous and homozygous mutations in PRICKLE1 orthologues, including epilepsy in flies and in mice with heterozygous PRICKLE1 mutations. We describe a fetus with a novel de novo mutation in PRICKLE1 associated with agenesis of the corpus callosum. PMID:26727662

  18. Rare combination of gelastic epilepsy, agenesis of the corpus callosum, and hamartoma.

    PubMed

    Chen, Chia-Chun; Lin, Yu-Ting; Chang, Wen-Cheng; Hsieh, Li-Chun; Liang, Jao-Shwann

    2011-10-01

    Gelastic seizures are rare and are associated with different conditions, but mainly with hypothalamic hamartoma. We report on a boy who presented with mental retardation, aggressive behavior, and generalized tonic-clonic and gelastic seizures. Cranial imaging studies revealed a very rare combination of hypothalamic hamartoma and agenesis of the corpus callosum, which was only reported once previously. His seizure activities demonstrated a modest response to anticonvulsants.

  19. CORPUS CALLOSUM AND EXPERIMENTAL STROKE: STUDIES IN CALLOSOTOMIZED RATS AND ACALLOSAL MICE

    PubMed Central

    Jin, Kunlin; Xie, Lin; Sun, Fen; Mao, XiaoOu; Greenberg, David A.

    2011-01-01

    Background and Purpose Interhemispheric inhibition via the corpus callosum has been proposed as an exacerbating factor in outcome from stroke. Methods We measured infarct volume and behavioral outcome following middle cerebral artery occlusion in callosotomized rats and acallosal mice. Results Neither callosotomy in rats nor callosal agenesis in mice improved infarct volume or behavioral outcome after middle cerebral artery occlusion. Conclusions These findings argue against a role for transcallosal projections in exacerbating focal cerebral ischemia. PMID:21737800

  20. Altered corpus callosum morphology associated with autism over the first 2 years of life.

    PubMed

    Wolff, Jason J; Gerig, Guido; Lewis, John D; Soda, Takahiro; Styner, Martin A; Vachet, Clement; Botteron, Kelly N; Elison, Jed T; Dager, Stephen R; Estes, Annette M; Hazlett, Heather C; Schultz, Robert T; Zwaigenbaum, Lonnie; Piven, Joseph

    2015-07-01

    Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder and 108 low-risk controls at 6, 12 and 24 months of age, with 83% of infants contributing two or more data points. Fifty-seven children met criteria for ASD based on clinical-best estimate diagnosis at age 2 years. Corpora callosa were measured for area, length and thickness by automated segmentation. We found significantly increased corpus callosum area and thickness in children with autism spectrum disorder starting at 6 months of age. These differences were particularly robust in the anterior corpus callosum at the 6 and 12 month time points. Regression analysis indicated that radial diffusivity in this region, measured by diffusion tensor imaging, inversely predicted thickness. Measures of area and thickness in the first year of life were correlated with repetitive behaviours at age 2 years. In contrast to work from older children and adults, our findings suggest that the corpus callosum may be larger in infants who go on to develop autism spectrum disorder. This result was apparent with or without adjustment for total brain volume. Although we did not see a significant interaction between group and age, cross-sectional data indicated that area and thickness differences diminish by age 2 years. Regression data incorporating diffusion tensor imaging suggest that microstructural properties of callosal white matter, which includes myelination and axon composition, may explain group differences in morphology.

  1. Posterior polymorphous corneal dystrophy 3 is associated with agenesis and hypoplasia of the corpus callosum.

    PubMed

    Jang, Michelle S; Roldan, Ashley N; Frausto, Ricardo F; Aldave, Anthony J

    2014-07-01

    Posterior polymorphous corneal dystrophy (PPCD) is a dominantly inherited disorder of the corneal endothelium that has been associated with mutations in the zinc-finger E-box binding homeobox 1 gene (ZEB1) gene in approximately one-third of affected families. While the corneal dystrophies have traditionally been considered isolated disorders of the corneal endothelium, we have recently identified two cases of maldevelopment of the corpus callosum in unrelated individuals with PPCD. The proband of the first family was diagnosed shortly after birth with agenesis of the corpus callosum and several other developmental abnormalities. Karyotype, FISH and whole genome copy number variant analyses were normal. She was subsequently diagnosed with PPCD, prompting screening of the ZEB1 gene, which identified a novel deletion (c.449delG; p.(Gly150Alafs*36)) present in the heterozygous state that was not identified in either unaffected parent. The proband of the second family was diagnosed several months after birth with thinning of the corpus callosum and PPCD. Whole genome copy number variant analysis revealed a 1.79 Mb duplication of 17q12 in the proband and her father and brother, neither of whom had PPCD. ZEB1 sequencing identified a novel deletion (c.1913-1914delCA; p.(Ser638Cysfs*5)) present in the heterozygous state, which was also identified in the proband's affected mother. Thus, we report the first two cases of the association of PPCD with a developmental abnormality of the brain, in this case maldevelopment of the corpus callosum.

  2. Lipoma of corpus callosum associated with dysraphic lesions and trisomy 13

    SciTech Connect

    Wainwright, H.; Bowen, R.; Radcliffe, M.

    1995-05-22

    We report on a further case of corpus callosal lipoma and frontal cranial defects. Most cases in the literature of corpus callosal lipoma in association with {open_quotes}dysraphic{close_quotes} lesions have been frontal in location. Malformation of the corpus callosum is said to be associated with 50% of these lipomas. Trisomy 13 was confirmed by the 13q14 cosmid probe on paraffin-embedded liver tissue. 19 refs., 5 figs.

  3. Repeated prenatal corticosteroid administration delays myelination of the corpus callosum in fetal sheep.

    PubMed

    Huang, W L; Harper, C G; Evans, S F; Newnham, J P; Dunlop, S A

    2001-07-01

    Glucocorticoids regulate oligodendrocyte maturation and the myelin biosynthetic pathways. Synthetic glucocorticoids, the corticosteroids have been successfully used in clinical practice as a single course to enhance lung maturation and reduce mortality and morbidity in preterm infants with no long-term neurologic or cognitive side effects. However, a trend has arisen to use repeated courses despite an absence of safety data from clinical trials. We examined the effects of clinically appropriate, maternally administrated, repeated courses of corticosteroids on myelination of the corpus callosum using sheep as a large animal model. The corpus callosum is a major white matter tract that undergoes protracted myelination, underpins higher order cognitive processing and developmental damage to which is associated with, for example, cerebral palsy, mental retardation and attention deficit hyperactivity disorder. Pregnant ewes were given saline or betamethasone (0.5 mg/kg) at 104,111,118 and 124 days gestation, stages equivalent to the third trimester in humans. Lambs were delivered at 145 days (term), perfused and the corpus callosum examined light and electron microscopically. Total axon numbers were unaffected (P>0.05). However, myelination was significantly delayed. Myelinated axons were 5.7% in the experimental group and 9.2% in controls (P<0.05); conversely, unmyelinated axons were 88.3 and 83.7% (P<0.05). Myelinated axon diameter and myelin sheath thickness were also reduced (0.68 vs. 0.94 and 0.11 vs. 0.14 microm, P<0.05). Our data suggest that repeated prenatal corticosteroid administration delays myelination of the corpus callosum and that further safety data are needed to evaluate clinical practice.

  4. Thick corpus callosum: a clue to the diagnosis of fetal septopreoptic holoprosencephaly?

    PubMed

    Koob, Mériam; Weingertner, Anne-sophie; Gasser, Bernard; Oubel, Estanislao; Dietemann, Jean-Louis

    2012-07-01

    We describe fetal septopreoptic holoprosencephaly (HPE) associated with a thick corpus callosum (CC) diagnosed with MRI in a fetus at 31 weeks' gestation. Our report supports a recently published study connecting a thick fetal CC to other brain abnormalities. On diffusion tensor imaging (DTI), the body of the CC contained an abnormal longitudinal bundle, presumed to be a congenital heterotopic cingulum. Prenatal and postmortem brain MRI with DTI, CT, and pathological analyses are described and illustrated.

  5. Functional topography of the corpus callosum investigated by DTI and fMRI

    PubMed Central

    Fabri, Mara; Pierpaoli, Chiara; Barbaresi, Paolo; Polonara, Gabriele

    2014-01-01

    This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI. PMID:25550994

  6. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes

    PubMed Central

    Edwards, Timothy J.; Sherr, Elliott H.; Barkovich, A. James

    2014-01-01

    The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field. PMID:24477430

  7. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes.

    PubMed

    Edwards, Timothy J; Sherr, Elliott H; Barkovich, A James; Richards, Linda J

    2014-06-01

    The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.

  8. Agenesis of the Corpus Callosum Due to Defective Glial Wedge Formation in Lhx2 Mutant Mice.

    PubMed

    Chinn, Gregory A; Hirokawa, Karla E; Chuang, Tony M; Urbina, Cecilia; Patel, Fenil; Fong, Jeanette; Funatsu, Nobuo; Monuki, Edwin S

    2015-09-01

    Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC.

  9. MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia.

    PubMed

    Patel, Veena S; Kelly, Sinead; Wright, Carrie; Gupta, Cota Navin; Arias-Vasquez, Alejandro; Perrone-Bizzozero, Nora; Ehrlich, Stefan; Wang, Lei; Bustillo, Juan R; Morris, Derek; Corvin, Aiden; Cannon, Dara M; McDonald, Colm; Donohoe, Gary; Calhoun, Vince D; Turner, Jessica A

    2015-08-18

    Genome-wide association studies implicate the MIR137HG risk variant rs1625579 (MIR137HGrv) within the host gene for microRNA-137 as a potential regulator of schizophrenia susceptibility. We examined the influence of MIR137HGrv genotype on 17 subcortical and callosal volumes in a large sample of individuals with schizophrenia and healthy controls (n=841). Although the volumes were overall reduced relative to healthy controls, for individuals with schizophrenia the homozygous MIR137HGrv risk genotype was associated with attenuated reduction of mid-posterior corpus callosum volume (p=0.001), along with trend-level effects in the adjacent central and posterior corpus callosum. These findings are unique in the literature and remain robust after analysis in ethnically homogenous and single-scanner subsets of the larger sample. Thus, our study suggests that the mechanisms whereby MIR137HGrv works to increase schizophrenia risk are not those that generate the corpus callosum volume reductions commonly found in the disorder.

  10. Shape-based normalization of the corpus callosum for DTI connectivity analysis.

    PubMed

    Sun, Hui; Yushkevich, Paul A; Zhang, Hui; Cook, Philip A; Duda, Jeffrey T; Simon, Tony J; Gee, James C

    2007-09-01

    The continuous medial representation (cm-rep) is an approach that makes it possible to model, normalize, and analyze anatomical structures on the basis of medial geometry. Having recently presented a partial differential equation (PDE)-based approach for 3-D cm-rep modeling [1], here we present an equivalent 2-D approach that involves solving an ordinary differential equation. This paper derives a closed form solution of this equation and shows how Pythagorean hodograph curves can be used to express the solution as a piecewise polynomial function, allowing efficient and robust medial modeling. The utility of the approach in medical image analysis is demonstrated by applying it to the problem of shape-based normalization of the midsagittal section of the corpus callosum. Using diffusion tensor tractography, we show that shape-based normalization aligns subregions of the corpus callosum, defined by connectivity, more accurately than normalization based on volumetric registration. Furthermore, shape-based normalization helps increase the statistical power of group analysis in an experiment where features derived from diffusion tensor tractography are compared between two cohorts. These results suggest that cm-rep is an appropriate tool for normalizing the corpus callosum in white matter studies.

  11. Pediatric neurofunctional intervention in agenesis of the corpus callosum: a case report☆

    PubMed Central

    Pacheco, Sheila Cristina da Silva; Queiroz, Ana Paula Adriano; Niza, Nathália Tiepo; da Costa, Letícia Miranda Resende; Ries, Lilian Gerdi Kittel

    2014-01-01

    Objective: To describe a clinical report pre- and post-neurofunctional intervention in a case of agenesis of the corpus callosum. Case description: Preterm infant with corpus callosum agenesis and hypoplasia of the cerebellum vermis and lateral ventricles, who, at the age of two years, started the proposed intervention. Functional performance tests were used such as the neurofunctional evaluation, the Gross Motor Function Measure and the Gross Motor Function Classification System. In the initial evaluation, absence of equilibrium reactions, postural transfers, deficits in manual and trunk control were observed. The intervention was conducted with a focus on function, prioritizing postural control and guidance of the family to continue care in the home environment. After the intervention, there was an improvement of body reactions, postural control and movement acquisition of hands and limbs. The intervention also showed improvement in functional performance. Comments: Postural control and transfers of positions were benefited by the neurofunction intervention in this case of agenesis of the corpus callosum. The approach based on function with activities that involve muscle strengthening and balance reactions training, influenced the acquisition of a more selective motor behavior. PMID:25479858

  12. Bilateral sensorineural deafness, partial agenesis of the corpus callosum, and arachnoid cysts in two sisters.

    PubMed

    Hendriks, Y M; Laan, L A; Vielvoye, G J; van Haeringen, A

    1999-09-10

    We describe two sisters (ages 10 and 3 years, respectively) with a normal development and a combination of congenital sensorineural hearing loss, partial agenesis of the corpus callosum, arachnoid cyst, and hydrocephalus. Neither girl has distinctive physical anomalies. In the oldest girl, there was a hearing loss of 80 dB bilaterally, and the most severe loss on audiogram was seen at 2,000-4,000 Hz. In the youngest girl, there was a hearing loss of 100 dB bilaterally. Above 2,000 Hz no neural reactions were seen. Cerebral magnetic resonance imaging in one girl and computed tomography in the other showed a partial agenesis of the corpus callosum and a cyst in the pineal region, causing an aqueduct stenosis by compression and consequent hydrocephalus. The parents have normal hearing, and brain magnetic resonance imaging showed no abnormalities. They are nonconsanguineous but from the same small village. This is the first report of a combination of congenital sensorineural hearing loss, partial agenesis of the corpus callosum, and an arachnoid cyst. The pattern of inheritance is probably autosomal recessive.

  13. White matter fractional anisotropy predicts balance performance in older adults.

    PubMed

    Van Impe, Annouchka; Coxon, James P; Goble, Daniel J; Doumas, Mihail; Swinnen, Stephan P

    2012-09-01

    Aging is characterized by brain structural changes that may compromise motor functions. In the context of postural control, white matter integrity is crucial for the efficient transfer of visual, proprioceptive and vestibular feedback in the brain. To determine the role of age-related white matter decline as a function of the sensory feedback necessary to correct posture, we acquired diffusion weighted images in young and old subjects. A force platform was used to measure changes in body posture under conditions of compromised proprioceptive and/or visual feedback. In the young group, no significant brain structure-balance relations were found. In the elderly however, the integrity of a cluster in the frontal forceps explained 21% of the variance in postural control when proprioceptive information was compromised. Additionally, when only the vestibular system supplied reliable information, the occipital forceps was the best predictor of balance performance (42%). Age-related white matter decline may thus be predictive of balance performance in the elderly when sensory systems start to degrade.

  14. Selective increase in posterior corpus callosum thickness between the age of 4 and 11years.

    PubMed

    Westerhausen, René; Fjell, Anders M; Krogsrud, Stine K; Rohani, Darius A; Skranes, Jon S; Håberg, Asta K; Walhovd, Kristine B

    2016-06-07

    Establishing an efficient functional and structural connectivity between the two cerebral hemispheres is an important developmental task during childhood, and alterations in this development have accordingly been linked to a series of neurodevelopmental and pediatric disorders. The corpus callosum, the major white-matter structure connecting the hemispheres, has been shown to increase in size throughout the three first decades of life. However, behavioral studies indicate that adult-like performance levels of functional hemispheric interaction are already reached during middle and late childhood. Thus, here we specifically examine the structural development of the corpus callosum during the functionally relevant time period by for the first time (a) selectively addressing prospective childhood development and (b) analyzing a sample in which also younger children are well represented. Corpus callosum anatomy was assessed from 732 T1-weighted MRI datasets acquired from 428 children (213 boys, 215 girls) aged of 4.1 and 10.9years, of which 304 were scanned at two time points. Regional callosal thickness was determined from an outline-based segmentation of the mid-sagittal cross-sectional surface area. Linear-mixed model analyses revealed a significant increase in thickness with age (effect size: up to 15% explained variance) equivalent to a growth in callosal thickness of up to 0.19mm per year in the posterior corpus callosum. The age effect was found to be stronger in posterior segments (i.e., splenium) than in other callosal subregions. Also, the age effect was found to be comparable between boys and girls, and was detected irrespective of whether developmental or individual differences in overall brain size where accounted for or not. Our results demonstrate a selective increase in posterior corpus-callosum thickness during middle and late childhood. Since axons crossing the midline in the splenium mainly connect occipital and parietal cortices, the accentuated

  15. Linking strain anisotropy and plasticity in copper metallization

    SciTech Connect

    Murray, Conal E. Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son

    2015-05-04

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments.

  16. Fractional randomness

    NASA Astrophysics Data System (ADS)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  17. Anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Ricciardone, Angelo; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: angelo.ricciardone@pd.infn.it

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F{sup 2} model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F{sup 2} model.

  18. Anisotropy in solid inflation

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(phi)F2 model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton phi and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(phi)F2 model.

  19. Anisotropy in rotating drums

    NASA Astrophysics Data System (ADS)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  20. Corpus callosum atrophy is associated with mental slowing and executive deficits in subjects with age‐related white matter hyperintensities: the LADIS Study

    PubMed Central

    Jokinen, Hanna; Ryberg, Charlotte; Kalska, Hely; Ylikoski, Raija; Rostrup, Egill; Stegmann, Mikkel B; Waldemar, Gunhild; Madureira, Sofia; Ferro, José M; van Straaten, Elizabeth C W; Scheltens, Philip; Barkhof, Frederik; Fazekas, Franz; Schmidt, Reinhold; Carlucci, Giovanna; Pantoni, Leonardo; Inzitari, Domenico; Erkinjuntti, Timo

    2007-01-01

    Background Previous research has indicated that corpus callosum atrophy is associated with global cognitive decline in neurodegenerative diseases, but few studies have investigated specific cognitive functions. Objective To investigate the role of regional corpus callosum atrophy in mental speed, attention and executive functions in subjects with age‐related white matter hyperintensities (WMH). Methods In the Leukoaraiosis and Disability Study, 567 subjects with age‐related WMH were examined with a detailed neuropsychological assessment and quantitative magnetic resonance imaging. The relationships of the total corpus callosum area and its subregions with cognitive performance were analysed using multiple linear regression, controlling for volume of WMH and other confounding factors. Results Atrophy of the total corpus callosum area was associated with poor performance in tests assessing speed of mental processing—namely, trail making A and Stroop test parts I and II. Anterior, but not posterior, corpus callosum atrophy was associated with deficits of attention and executive functions as reflected by the symbol digit modalities and digit cancellation tests, as well as by the subtraction scores in the trail making and Stroop tests. Furthermore, semantic verbal fluency was related to the total corpus callosum area and the isthmus subregion. Conclusions Corpus callosum atrophy seems to contribute to cognitive decline independently of age, education, coexisting WMH and stroke. Anterior corpus callosum atrophy is related to the frontal‐lobe‐mediated executive functions and attention, whereas overall corpus callosum atrophy is associated with the slowing of processing speed. PMID:17028118

  1. Enriched environment increases the total number of CNPase positive cells in the corpus callosum of middle-aged rats.

    PubMed

    Zhao, Yuan-Yu; Shi, Xiao-Yan; Qiu, Xuan; Zhang, Lei; Lu, Wei; Yang, Shu; Li, Chen; Cheng, Guo-Hua; Yang, Zheng-Wei; Tang, Yong

    2011-01-01

    It had been reported that enriched environment was beneficial for the brain cognition, neurons and synapses in cortex and hippocampus. With diffusion tensor imaging (DTI), several studies recently found the trained-induced larger corpus callosum. However, the effect of enriched environment on the oligodendrocytes in corpus callosum has not been explored with the unbiased stereological methods. In current study, the effect of enriched environment on the total number of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) positive cells in middle-aged rat corpus callosum was investigated by means of immunohistochemical techniques and the unbiased stereological methods. We found that, when compared to standard rats, the spatial learning capacity of enriched-environment rats was significantly increased. The total number of the CNPase positive cells in the corpus callosum of enriched-environment middle-aged rats was significantly increased when compared to standard rats. The present study provided, to the best of our knowledge, the first evidence of environmental enrichment-induced increases in the total number of CNPase positive cells in the corpus callosum of middle-aged rats.

  2. Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation.

    PubMed

    Pont-Lezica, Lorena; Beumer, Wouter; Colasse, Sabrina; Drexhage, Hemmo; Versnel, Marjan; Bessis, Alain

    2014-05-01

    Microglia colonise the brain parenchyma at early stages of development and accumulate in specific regions where they participate in cell death, angiogenesis, neurogenesis and synapse elimination. A recurring feature of embryonic microglial is their association with developing axon tracts, which, together with in vitro data, supports the idea of a physiological role for microglia in neurite development. Yet the demonstration of this role of microglia is lacking. Here, we have studied the consequences of microglial dysfunction on the formation of the corpus callosum, the largest commissure of the mammalian brain, which shows consistent microglial accumulation during development. We studied two models of microglial dysfunction: the loss-of-function of DAP12, a key microglial-specific signalling molecule, and a model of maternal inflammation by peritoneal injection of lipopolysaccharide at embryonic day (E)15.5. We also took advantage of the Pu.1(-/-) mouse line, which is devoid of microglia. We performed transcriptional profiling of maternally inflamed and Dap12-mutant microglia at E17.5. The two treatments principally down-regulated genes involved in nervous system development and function, particularly in neurite formation. We then analysed the developmental consequences of these microglial dysfunctions on the formation of the corpus callosum. We show that all three models of altered microglial activity resulted in the defasciculation of dorsal callosal axons. Our study demonstrates that microglia display a neurite-development-promoting function and are genuine actors of corpus callosum development. It further shows that microglial activation impinges on this function, thereby revealing that prenatal inflammation impairs neuronal development through a loss of trophic support.

  3. Effects of prenatal irradiation on the development of cerebral cortex and corpus callosum of the mouse

    SciTech Connect

    Schmidt, S.L.; Lent, R.

    1987-10-08

    Defects of the cerebral cortex and corpus callosum of mice subjected prenatally to gamma irradiation were evaluated as a function of dose and of embryonic age at irradiation. Pregnant mice were exposed to a gamma source at 16, 17, and 19 days of gestation (E16, E17, and E19, respectively), with total doses of 2 Gy and 3 Gy, in order to produce brain defects on their progeny. At 60 postnatal days, the brains of the offspring were analyzed qualitatively and quantitatively and compared with those of nonirradiated animals. Mice irradiated at E16 were all acallosal. Those that were exposed to 2 Gy displayed an aberrant longitudinal bundle typical of other acallosals, but this was not the case in those irradiated with 3 Gy. The corpus callosum of animals irradiated at E17 with 3 Gy was pronouncedly hypotrophic, but milder effects were observed in the other groups. Quantitative analysis confirmed a dependence of callosal midsagittal area upon dose and age at irradiation, and, in addition, indicated an interaction between these variables. The neocortex of irradiated animals was hypotrophic: layers II-III were much more affected than layer V, and this was more affected than layer VI. Quantitative analysis indicated that this effect also depended on dose and age at irradiation and that it was due to a loss of cortical neurons. Furthermore, a positive correlation was found between the number of neurons within layers II-III, and V and the midsagittal area of the corpus callosum. Ectopic neurons were found in the white matter and in layer I of animals irradiated at E16 and E17, indicating that fetal exposure to ionizing radiation interfered with the migration of cortical neuroblasts.

  4. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    NASA Astrophysics Data System (ADS)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  5. Wnt/Calcium Signaling Mediates Axon Growth and Guidance in the Developing Corpus Callosum

    PubMed Central

    Hutchins, B Ian; Li, Li; Kalil, Katherine

    2011-01-01

    It has been shown in vivo that Wnt5a gradients surround the corpus callosum and guide callosal axons after the midline (postcrossing) by Wnt5a-induced repulsion via Ryk receptors. In dissociated cortical cultures we showed that Wnt5a simultaneously promotes axon outgrowth and repulsion by calcium signaling. Here to test the role of Wnt5a/calcium signaling in a complex in vivo environment we used sensorimotor cortical slices containing the developing corpus callosum. Plasmids encoding the cytoplasmic marker DsRed and the genetically encoded calcium indicator GCaMP2 were electroporated into one cortical hemisphere. Postcrossing callosal axons grew 50% faster than pre-crossing axons and higher frequencies of calcium transients in axons and growth cones correlated well with outgrowth. Application of pharmacological inhibitors to the slices showed that signaling pathways involving calcium release through IP3 receptors and calcium entry through TRP channels regulate post-crossing axon outgrowth and guidance. Co-electroporation of Ryk siRNA and DsRed revealed that knock down of the Ryk receptor reduced outgrowth rates of postcrossing but not precrossing axons by 50% and caused axon misrouting. Guidance errors in axons with Ryk knockdown resulted from reduced calcium activity. In the corpus callosum CaMKII inhibition reduced the outgrowth rate of postcrossing (but not precrossing) axons and caused severe guidance errors which resulted from reduced CaMKII-dependent repulsion downstream of Wnt/calcium. We show for the first time that Wnt/Ryk calcium signaling mechanisms regulating axon outgrowth and repulsion in cortical cultures are also essential for the proper growth and guidance of postcrossing callosal axons which involve axon repulsion through CaMKII. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 269–283, 2011. PMID:20936661

  6. Agenesis of the corpus callosum in a child with Leber's congenital amaurosis.

    PubMed

    Kiratli, H; Tatlipinar, S

    1999-09-01

    A 2.5-year-old male infant with agenesis of the corpus callosum and Leber's congenital amaurosis is described. The infant had nystagmus as the presenting sign. The fundi showed circumscribed macular atrophy with encircling retinal pigment epithelial hyperplasia (macular coloboma-like lesions), attenuation of the retinal arterioles, and very fine pigment dusting in the peripheral retina. Photopic and scotopic ERG were extinguished. Even though this is an exceedingly rare association, these findings along with neurological symptoms should alert the physician to conduct prompt cranial imaging.

  7. Humero-radial synostosis, microcephaly, short corpus callosum, and abnormal genitalia in sibs.

    PubMed

    Guilherme, Romain; Baumann, Clarisse; Garel, Catherine; Huten, Yolène; Oury, Jean-François; Delezoide, Anne-Lise

    2008-07-15

    We report on two male sib fetuses with humero-radial synostosis and thumb hypoplasia, microcephaly with simplified gyral pattern, short corpus callosum and ambiguous genitalia. The main clinical, anatomopathological and imaging findings are presented and compared with previous cases of humero-radial synostosis as a prominent manifestation and with the X-linked lissencephaly with ambiguous genitalia syndrome (X-LAG). To our knowledge, this combination of anomalies has never been described before, and we propose that this disorder comprises a new humero-radial synostosis syndrome with an autosomal recessive or X-linked pattern of inheritance.

  8. Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation

    PubMed Central

    Humphreys, Glyn W.; Sotiropoulos, Stamatios N.; Kennard, Christopher; Cazzoli, Dario

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space

  9. Constraining crustal anisotropy: The anisotropic H-κ stacking technique

    NASA Astrophysics Data System (ADS)

    Hammond, James

    2014-05-01

    Measuring anisotropy in the crust and mantle is commonly performed to make inferences on crust/upper mantle deformation, tectonic history or the presence of fluids. However, separating the contribution of the crust and mantle to the anisotropic signature remains a challenge. This is because common seismic techniques to determine anisotropy (e.g., SKS splitting, surface waves) lack the resolution to distinguish between the two, particular in regions where deep crustal earthquakes are lacking. Receiver functions offer the chance to determine anisotropy in the crust alone, offering both the depth resolution that shear-wave splitting lacks and the lateral resolution that surface waves are unable to provide. Here I present a new anisotropic H-κ stacking technique which constrains anisotropy in the crust. I show that in a medium with horizontally transverse isotropy a strong variation in κ (VP-to-VS ratio) with back azimuth is present which characterises the anisotropic medium. In a vertically transverse isotropic medium no variation in κ with back azimuth is observed, but κ is increased across all back azimuths. While, these results show that estimates of κ are more difficult to relate to composition than previously thought, they offer the opportunity to constrain anisotropy in the crust. Based on these observations I develop a new anisotropic H-κ stacking technique which inverts H-κ data for anisotropy. I apply these new techniques to data from the Afar Depression, Ethiopia and extend the technique to invert for melt induced anisotropy solving for melt fraction, aspect ratio and orientation of melt inclusions. I show that melt is stored in interconnected stacked sills in the lower crust, which likely supply the recent volcanic eruptions and dike intrusions. The crustal anisotropic signal can explain much of the SKS-splitting results, suggesting minimal influence from the mantle. This results show that it is essential to consider anisotropy when performing H

  10. Gender-based differences in the shape of the human corpus callosum are associated with allometric variations.

    PubMed

    Bruner, Emiliano; de la Cuétara, José Manuel; Colom, Roberto; Martin-Loeches, Manuel

    2012-04-01

    The corpus callosum displays considerable morphological variability between individuals. Although some characteristics are thought to differ between male and female brains, there is no agreement regarding the source of this variation. Biomedical imaging and geometric morphometrics have provided tools to investigate shape and size variation in terms of integration and correlation. Here we analyze variations at the midsagittal outline of the corpus callosum in a sample of 102 young adults in order to describe and quantify the pattern of covariation associated with its morphology. Our results suggest that the shape of the corpus callosum is characterized by low levels of morphological integration, which explains the large variability. In larger brains, a minor allometric component involves a relative reduction of the splenium. Small differences between males and?females are associated with this allometric pattern, induced primarily by size variation rather than gender-specific characteristics.

  11. Age-Specific Dynamics of Corpus Callosum Development in Children and its Peculiarities in Infantile Cerebral Palsy.

    PubMed

    Krasnoshchekova, E I; Zykin, P A; Tkachenko, L A; Aleksandrov, T A; Sereda, V M; Yalfimov, A N

    2016-10-01

    The age dynamics of corpus callosum development was studied on magnetic resonance images of the brain in children aged 2-11 years without neurological abnormalities and with infantile cerebral palsy. The areas of the total corpus callosum and its segments are compared in the midsagittal images. Analysis is carried out with the use of an original formula: proportion of areas of the anterior (genu, CC2; and anterior part, CC3) and posterior (isthmus, CC6 and splenium, CC7) segments: kCC=(CC2+CC3)×CC6/CC7. The results characterize age-specific dynamics of the corpus callosum development and can be used for differentiation, with high confidence, of the brain of children without neurological abnormalities from the brain patients with infantile cerebral palsy.

  12. Msh2 deficiency leads to dysmyelination of the corpus callosum, impaired locomotion, and altered sensory function in mice

    PubMed Central

    Diouf, Barthelemy; Devaraju, Prakash; Janke, Laura J.; Fan, Yiping; Frase, Sharon; Eddins, Donnie; Peters, Jennifer L.; Kim, Jieun; Pei, Deqing; Cheng, Cheng; Zakharenko, Stanislav S.; Evans, William E.

    2016-01-01

    A feature in patients with constitutional DNA-mismatch repair deficiency is agenesis of the corpus callosum, the cause of which has not been established. Here we report a previously unrecognized consequence of deficiency in MSH2, a protein known primarily for its function in correcting nucleotide mismatches or insertions and deletions in duplex DNA caused by errors in DNA replication or recombination. We documented that Msh2 deficiency causes dysmyelination of the axonal projections in the corpus callosum. Evoked action potentials in the myelinated corpus callosum projections of Msh2-null mice were smaller than wild-type mice, whereas unmyelinated axons showed no difference. Msh2-null mice were also impaired in locomotive activity and had an abnormal response to heat. These findings reveal a novel pathogenic consequence of MSH2 deficiency, providing a new mechanistic hint to previously recognized neurological disorders in patients with inherited DNA-mismatch repair deficiency. PMID:27476972

  13. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE PAGES

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-06-26

    This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  14. Heliospheric influence on the anisotropy of TeV cosmic rays

    SciTech Connect

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-06-26

    This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy. When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.

  15. Heliospheric influence on the anisotropy of TeV cosmic rays

    SciTech Connect

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-07-20

    This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy. When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.

  16. Polymicrogyria, Large Corpus Callosum and Psychomotor Retardation in Four-Year-Old Girl: Potential Association Based on MR Findings

    PubMed Central

    Budai, Caterina; Moscato, Giulia; Patruno, Francesco; Leonardi, Marco; Maffei, Monica

    2014-01-01

    Summary We describe a child from consanguineous parents presenting mega corpus callosum (MegaCC), polymicrogyria, psychomotor retardation with swallowing difficulties and language impairment perhaps linked to the syndrome of megalencephaly-polymicrogyria-mega corpus callosum (MEG-PMG-MegaCC). Reviewing the literature, we speculate that MegaCC, psychomotor retardation and anomalies in cortical migration are the three pathognomonic features. The presence of additional possibly associated anomalies such as megalencephaly, indicates that the spectrum of linked malformations with this rare syndrome is broad and yet to be defined. PMID:25260206

  17. Myelination of the corpus callosum in male and female rats following complex environment housing during adulthood

    PubMed Central

    Markham, Julie A.; Herting, Megan M.; Luszpak, Agatha E.; Juraska, Janice M.; Greenough, William T.

    2009-01-01

    Myelination is an important process in brain development, and delays or abnormalities in this process have been associated with a number of conditions including autism, developmental delay, attention deficit disorder, and schizophrenia. Myelination can be sensitive to developmental experience; however, although the adult brain remains highly plastic, it is unknown whether myelination continues to be sensitive to experience during adulthood. Male and female rats were socially housed until four months of age, at which time they were moved into either a complex or “enriched” environment (EC) or an isolated condition (IC). Although the area of the splenium (posterior 20% of the callosum, which contains axons from visual cortical neurons) increased by about 10% following two months of EC housing, the area occupied by myelinated axons was not influenced by adult housing condition. Instead, it was the area occupied by glial cell processes and unmyelinated axons which significantly increased following EC housing. Neither the size nor the myelin content of the genu (anterior 15% of the callosum) was sensitive to manipulations of adult housing condition, but males had more area occupied by myelinated axons in both callosal regions. Finally, the inability of two months of complex environment housing during adulthood to impact the number of myelinated axons in the splenium was confirmed in a subset of animals using quantitative electron microscopy. We conclude that the sensitivity of myelination to experience is reduced in adulthood relative to development in both sexes. PMID:19596280

  18. The corpus callosum in monozygotic twins concordant and discordant for handedness and language dominance.

    PubMed

    Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C

    2012-10-01

    We used diffusion tensor imaging to assess callosal morphology in 35 pairs of monozygotic twins, of which 17 pairs were concordant for handedness and 18 pairs were discordant for handedness. Functional hemispheric language dominance was established for each twin member using fMRI, resulting in 26 twin pairs concordant and 9 twin pairs discordant for language dominance. On the basis of genetic models of handedness and language dominance, which assume one "right shift" (RS) gene with two alleles, an RS+ allele biasing toward right-handedness and left cerebral language dominance and an RS- allele leaving both asymmetries to chance, all twins were classified according to their putative genotypes, and the possible effects of the gene on callosal morphology was assessed. Whereas callosal size was under a high genetic control that was independent of handedness and language dominance, twin pairs with a high probability of carrying the putative RS+ allele showed a connectivity pattern characterized by a genetically controlled, low anisotropic diffusion over the whole corpus callosum. In contrast, the high connectivity pattern exhibited by twin pairs more likely to lack the RS+ allele was under significantly less genetic influence. The data suggest that handedness and hemispheric dominance for speech production might be at least partly dependent on genetically controlled processes of axonal pruning in the corpus callosum.

  19. Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models

    PubMed Central

    Di Pardo, Alba; Amico, Enrico; Maglione, Vittorio

    2016-01-01

    Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease. Semi-quantitative analysis of GM1, GD1a, and GT1b content indicated that ganglioside metabolism is a common feature in two different HD animal models (YAC128 and R6/2 mice) and importantly, demonstrated that levels of these gangliosides were significantly reduced in the corpus callosum white matter of both models starting from the early stages of the disease. Besides corroborating the evidence of aberrant ganglioside metabolism in HD, here, we found out for the first time, that ganglioside dysfunction is an early event in HD models and it may potentially represent a critical molecular change influencing the pathogenesis of the disease. PMID:27766070

  20. The Corpus Callosum and the Visual Cortex: Plasticity Is a Game for Two

    PubMed Central

    Pietrasanta, Marta; Restani, Laura; Caleo, Matteo

    2012-01-01

    Throughout life, experience shapes and selects the most appropriate brain functional connectivity to adapt to a changing environment. An ideal system to study experience-dependent plasticity is the visual cortex, because visual experience can be easily manipulated. In this paper, we focus on the role of interhemispheric, transcallosal projections in experience-dependent plasticity of the visual cortex. We review data showing that deprivation of sensory experience can modify the morphology of callosal fibres, thus altering the communication between the two hemispheres. More importantly, manipulation of callosal input activity during an early critical period alters developmental maturation of functional properties in visual cortex and modifies its ability to remodel in response to experience. We also discuss recent data in rat visual cortex, demonstrating that the corpus callosum plays a role in binocularity of cortical neurons and is involved in the plastic shift of eye preference that follows a period of monocular eyelid suture (monocular deprivation) in early age. Thus, experience can modify the fine connectivity of the corpus callosum, and callosal connections represent a major pathway through which experience can mediate functional maturation and plastic rearrangements in the visual cortex. PMID:22792494

  1. Shape analysis of corpus callosum in autism subtype using planar conformal mapping

    NASA Astrophysics Data System (ADS)

    He, Qing; Duan, Ye; Yin, Xiaotian; Gu, Xianfeng; Karsch, Kevin; Miles, Judith

    2009-02-01

    A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this study, we aimed at analyzing highly localized shape abnormalities of the corpus callosum in a homogeneous group of autism children. Thirty patients with essential autism and twenty-four controls participated in this study. 2D contours of the corpus callosum were extracted from MR images by a semiautomatic segmentation method, and the 3D model was constructed by stacking the contours. The resulting 3D model had two openings at the ends, thus a new conformal parameterization for high genus surfaces was applied in our shape analysis work, which mapped each surface onto a planar domain. Surface matching among different individual meshes was achieved by re-triangulating each mesh according to a template surface. Statistical shape analysis was used to compare the 3D shapes point by point between patients with autism and their controls. The results revealed significant abnormalities in the anterior most and anterior body in essential autism group.

  2. Corpus callosum analysis using MDL-based sequential models of shape and appearance

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Davies, Rhodri H.; Ryberg, Charlotte

    2004-05-01

    This paper describes a method for automatically analysing and segmenting the corpus callosum from magnetic resonance images of the brain based on the widely used Active Appearance Models (AAMs) by Cootes et al. Extensions of the original method, which are designed to improve this specific case are proposed, but all remain applicable to other domain problems. The well-known multi-resolution AAM optimisation is extended to include sequential relaxations on texture resolution, model coverage and model parameter constraints. Fully unsupervised analysis is obtained by exploiting model parameter convergence limits and a maximum likelihood estimate of shape and pose. Further, the important problem of modelling object neighbourhood is addressed. Finally, we describe how correspondence across images is achieved by selecting the minimum description length (MDL) landmarks from a set of training boundaries using the recently proposed method of Davies et al. This MDL-approach ensures a unique parameterisation of corpus callosum contour variation, which is crucial for neurological studies that compare reference areas such as rostrum, splenium, et cetera. We present quantitative and qualitative results that show that the method produces accurate, robust and rapid segmentations in a cross sectional study of 17 subjects, establishing its feasibility as a fully automated clinical tool for analysis and segmentation.

  3. Structural and Functional Reorganization of the Corpus Callosum between the Age of 6 and 8 Years

    PubMed Central

    Luders, Eileen; Specht, Karsten; Ofte, Sonja H.; Toga, Arthur W.; Thompson, Paul M.; Helland, Turid; Hugdahl, Kenneth

    2011-01-01

    The establishment of an efficient exchange of information between the cerebral hemispheres is of crucial importance in the developing functionally lateralized brain. The corpus callosum, the major connection between the cerebral hemispheres, grows constantly throughout childhood and adolescence. However, behavioral studies suggest the existence of a critical time period for callosal functional development starting around the age of 6 years. In the present longitudinal study, examining a cohort of 20 children at the age of 6 and 8 years, we assessed the relationship between structural and functional callosal development during this time period. The structural development was quantified by calculating the increase in callosal thickness using a shape-based computational analysis of the mid-sagittal corpus callosum as obtained with magnetic resonance imaging. The functional development was assessed with a speech discrimination task based on the dichotic presentation of consonant–vowel syllables. The statistical analysis revealed that children whose callosal isthmus increased in thickness over the course of 2 years showed a decrease in interhemispheric information transfer. However, children exhibiting a decrease in isthmus thickness revealed an increase in information transfer. These results might indicate a refinement process of the callosal connections to optimize the neuronal communication between the developing cerebral hemispheres. PMID:20847151

  4. Temperature dependence of the effective anisotropies in magnetic nanoparticles with Néel surface anisotropy

    NASA Astrophysics Data System (ADS)

    Yanes, R.; Chubykalo-Fesenko, O.; Evans, R. F. L.; Chantrell, R. W.

    2010-12-01

    We discuss the physical concept of the effective anisotropy in magnetic nanoparticles with surface anisotropy. A recently developed constrained Monte Carlo method allows evaluation of the temperature dependence of the energy surface in the whole temperature range, from which the effective anisotropy is determined. We consider nanoparticles of different shapes with cubic or uniaxial core anisotropy and Néel surface anisotropy. We demonstrate that at low temperatures surface effects can be dominant, leading to an overall cubic effective anisotropy even in spherical nanoparticles with uniaxial core anisotropy. This cubic anisotropy contribution decreases more rapidly with increasing temperature than the uniaxial core anisotropy, leading to a temperature-induced reorientation transition. We discuss the scaling behaviour of the effective anisotropy with magnetization in nanoparticles with surface anisotropy contribution. The scaling exponent deviates from that expected from Callen-Callen theory due to increased fluctuations of the surface spins.

  5. Anisotropy of machine building materials

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.

  6. Understanding Multiplication of Fractions.

    ERIC Educational Resources Information Center

    Sweetland, Robert D.

    1984-01-01

    Discussed the use of Cuisenaire rods in teaching the multiplication of fractions. Considers whole number times proper fraction, proper fraction multiplied by proper fraction, mixed number times proper fraction, and mixed fraction multiplied by mixed fractions. (JN)

  7. The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice.

    PubMed

    Sohn, Jiho; Orosco, Lori; Guo, Fuzheng; Chung, Seung-Hyuk; Bannerman, Peter; Mills Ko, Emily; Zarbalis, Kostas; Deng, Wenbin; Pleasure, David

    2015-03-04

    Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.

  8. [STRUCTURE OF HUMAN CORPUS CALLOSUM IN AFTER-DEATH STATE COMPARED TO INTRA-VITAM MRI IMAGES].

    PubMed

    Boiagina, O

    2016-05-01

    Our preliminary results suggest that the corpus callosum is composed of a certain number of stringy formations visualized on macroscopic and microscopic level that we proposed to call commissural funiculi. They are treated as subcallous units of the first order. The purpose of this research is to find out the form of the above-mentioned corpus callosum formations as being displayed on its sagittal profile as well as the extent to which they are displayed. The material used was male and female cerebrum of mature age people, who died for reasons not related to the pathology of the central nervous system. Cerebrum extracted from the skull after being washed was exposed to a two week fixation in 10% formalin solution. The sagittal plane slicer was used for brain dissection. Photo fixation of the medial surface of hemispheres was implemented with a digital camera. It was found out that the sagittal cut of the corpus callosum can be represented as a formation having segmental structure principle. Also, according to our observations, the trunk of the corpus callosum has distinct morphological features of bilateral asymmetry.

  9. Corpus Callosum Size, Reaction Time Speed and Variability in Mild Cognitive Disorders and in a Normative Sample

    ERIC Educational Resources Information Center

    Anstey, Kaarin J.; Mack, Holly A.; Christensen, Helen; Li, Shu-Chen; Reglade-Meslin, Chantal; Maller, Jerome; Kumar, Rajeev; Dear, Keith; Easteal, Simon; Sachdev, Perminder

    2007-01-01

    Intra-individual variability in reaction time increases with age and with neurological disorders, but the neural correlates of this increased variability remain uncertain. We hypothesized that both faster mean reaction time (RT) and less intra-individual RT variability would be associated with larger corpus callosum (CC) size in older adults, and…

  10. A case report: corpus callosum dysgenesis, microcephaly, infantile spasm, cleft lip-palate, exophthalmos and psychomotor retardation.

    PubMed

    Tütüncüoglu, S; Ozkinay, F; Genel, F; Uran, N; Ozgür, T

    1996-04-01

    In this report, a case with corpus callosum dysgenesis, infantile spasm, microcephaly, psychomotor retardation, exophthalmos, cleft lip-palate and abnormal EEG findings is presented. His parents are first-degree relatives. We could not fully match the findings of our patient with the criteria of any syndrome published to date.

  11. Neurotransmitter receptors and voltage-dependent Ca2+ channels encoded by mRNA from the adult corpus callosum.

    PubMed Central

    Matute, C; Miledi, R

    1993-01-01

    The presence of mRNAs encoding neurotransmitter receptors and voltage-gated channels in the adult human and bovine corpus callosum was investigated using Xenopus oocytes. Oocytes injected with mRNA extracted from the corpus callosum expressed functional receptors to glutamate, acetylcholine, and serotonin, and also voltage-operated Ca2+ channels, all with similar properties in the two species studied. Acetylcholine and serotonin elicited oscillatory Cl- currents due to activation of the inositol phosphate-Ca2+ receptor-channel coupling system. Glutamate and its analogs N-methyl-D-aspartate (NMDA), kainate, quisqualate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) induced smooth currents. The non-NMDA responses showed a strong inward rectification at positive potentials and were potently blocked by 6,7-dinitroquinoxaline-2,3-dione, as observed for the AMPA/kainate glutamate receptors GLUR1 and GLUR3. Furthermore, in situ hybridization experiments showed that GLUR1 and GLUR3 mRNAs are present in corpus callosum cells that were labeled with antiserum to glial fibrillary acid protein and that, in primary cell cultures, had the morphology of type 2 astrocytes. These results indicate that glial cells in the adult corpus callosum possess mRNA encoding functional neurotransmitter receptors and Ca2+ channels. These molecules may provide a mechanism for glial-neuronal interactions. Images Fig. 1 Fig. 5 Fig. 6 Fig. 7 PMID:7682696

  12. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey.

    PubMed

    Peters, Alan; Sethares, Claire

    2002-01-14

    In the rhesus monkey, the myelin sheaths of nerve fibers in area 46 of prefrontal cortex and in splenium of the corpus callosum show age-related alterations in their structure. The alterations are of four basic types. Most common is splitting of the dense line of myelin sheaths to accommodate electron dense cytoplasm derived from the oligodendroglia. Less common are splits of the intraperiod line to form balloons or blisters that appear to contain fluid, the occurrence of sheaths with redundant myelin, and thick sheaths that are almost completely split so that one set of compact lamellae is surrounded by another set. But despite these alterations in the sheaths, few nerve fibers show axonal degeneration. To quantify the frequency of the age-related alterations in myelin, transversely sectioned nerve fibers from the splenium of the corpus callosum and from the vertical bundles of nerve fibers within area 46 were examined in electron photomicrographs. The material was taken from 19 monkeys, ranging between 5 and 35 years of age. It was found that the frequency of alterations in myelin sheaths from both locations correlates significantly with age. In area 46, the age-related alterations also significantly correlate (P < 0.001) with an overall assessment of impairment in cognition, i.e., the cognitive impairment index, displayed by individual monkeys. The correlation is also significant when only the old monkeys are considered as a group. A similar result was obtained previously in our examination of the effects of age on the myelin sheaths of nerve fibers in primary visual cortex (Peters et al. [2000] J Comp Neurol. 419:364-376). However, in the corpus callosum the myelin alterations correlate significantly with only one component of the cognitive impairment index, namely the delayed nonmatching to sample task with a 2-minute delay. It is proposed that age-related myelin alterations are ubiquitous and that the correlations between their frequency and impairments in

  13. Can we understand rocks without anisotropy?

    NASA Astrophysics Data System (ADS)

    Dabrowski, Marcin

    2014-05-01

    An effectively isotropic heterogeneous medium subject to deformation should develop compositional layering parallel to stretching direction. A layered anisotropic rock subject to layer-parallel extension may undergo mechanical instability leading to internal boudinage development. The question that arises is as to whether the formation of layering could be hampered by boudinage formation before the compositional layering is well developed. With regard to the issue, the three critical questions are: (1) How does the rock fabric evolution depend on the mechanical properties of rock constituents and the initial microstructure? (2) How does the mechanical (viscous) anisotropy relate to the shape anisotropy of a composite rock? (3) How does the internal boudinage development manifest in a rock consisting of elongated elements rather than well-developed layers? I will numerically investigate the development of shape preferred orientation and mechanical anisotropy in a composite two-phase rock undergoing stretching. A two-dimensional inclusion-host type of composite, in which an interconnected host embeds non-overlapping inclusions, is considered. Different inclusion fractions, shapes and size distributions are studied. The initial spatial distribution of the inclusions is intended to be random, statistically homogeneous (no clustering) and isotropic. In a series of complementary simulation runs, periodic inclusion arrays are analyzed. Both the inclusion and host materials are considered as viscous fluids and the intrinsic viscosities of the inclusion and the host phases are isotropic. A coherent inclusion-host interface is assumed and interfacial processes such as surface tension or diffusional mass transfer are neglected. The deformation is studied in the Stokes limit and under no gravity. A self-developed FEM code (www.milamin.org, Dabrowski et al., 2008) is used to find the velocity vectors at the inclusion interfaces. Unstructured triangular computational meshes

  14. In Vivo Longitudinal Monitoring of Changes in the Corpus Callosum Integrity During Disease Progression in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kara, F; Höfling, C; Roßner, S; Schliebs, R; Van der Linden, A; Groot, H J M; Alia, A

    2015-01-01

    The corpus callosum is the largest commissural fiber connecting left and right hemisphere of the brain. Emerging evidence suggests that a variety of abnormalities detected in the microstructure of this white matter fiber can be an early event in Alzheimer's disease (AD) pathology. However, little is known about tissue characteristics of these abnormalities and how these abnormalities evolve during AD progression. In this study, we measured in vivo magnetic resonance transverse relaxation times (T2) to longitudinally monitor changes in tissue integrity and abnormalities related to myelination and demyelination processes in corpus callosum of AD mouse models. The most striking finding of our study was a significant elongation of T2 values in the corpus callosum at 10, 14, 16 and 18 months of age compared to age-matched wild-type mice. In contrast, the gray matter regions surrounding the corpus callosum, such as the cortex and hippocampus, showed a significant T2 decrease compared to wild-type mice. Histological analyses clearly revealed demyelination, gliosis and amyloid-plaque deposition in the corpus callosum. Our results suggest that demyelinating and inflammatory pathology may result in prolonged relaxation time during AD progression. To our knowledge, this is the first in vivo T2 study assessing the microstructural changes with age in the corpus callosum of the Tg2576 mouse model and it demonstrates the application of T2 measurement to noninvasively detect tissue integrity of the corpus callosum, which can be an early event in disease progression.

  15. Anisotropy Studies in Central Greece

    NASA Astrophysics Data System (ADS)

    Kaviris, G.; Papadimitriou, P.; Makropoulos, K.

    2007-12-01

    The Gulf of Corinth, located in Central Greece, is a tectonic graben characterized by high seismicity level. GPS measurements indicate extension of the Gulf in an approximately N-S direction, with a rate of 10 to 15 mm/year. The southern part of the Gulf is dominated by the presence of large active normal faults in an almost E-W direction, dipping north, resulting to the subsidence of the central part of the graben. Analysis of data recorded by the Cornet network, which is the permanent network of the University of Athens, revealed the existence of an anisotropic upper crust at the eastern part of the Gulf of Corinth. Anisotropy was also observed at the western part of Corinth Gulf, using data recorded by a temporary seismological network installed in the area. Furthermore, shear wave splitting analysis was performed in the region of Attica (to the NE of the Gulf) that hosts Athens, the capital of Greece, using aftershocks of the 1999 Athens earthquake (Mw=6.0) that caused 143 fatalities. The methods used for the determination of the splitting parameters are the polarization vector as a function of time (polarigram) and the hodogram. For each selected event the direction of polarization of the fast shear wave, the delay between the two split shear waves and the polarization of the source were measured. Concerning both parts of the Gulf of Corinth, the obtained mean values of anisotropy vary between N90° and N142°. In the region of Attica the mean values of the anisotropy direction of all stations vary between N95° and N100°, almost parallel to the azimuth of the Parnitha fault. The time delay between the split shear waves vary between 0.020s and 0.130s. The obtained anisotropy measurements are in agreement with the extensive dilatancy anisotropy (EDA) model, since the direction of anisotropy is independent from the event-station azimuth and perpendicular to the direction of extension. ACKNOWLEDGMENTS The present study was co-funded by the European Social Fund

  16. Topographical organization of human corpus callosum: an fMRI mapping study.

    PubMed

    Fabri, Mara; Polonara, Gabriele; Mascioli, Giulia; Salvolini, Ugo; Manzoni, Tullio

    2011-01-25

    The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from anatomical tracing investigations in other mammals. Over the last few years, a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study, the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI data on the cortical representation of tactile, gustatory, and visual sensitivity and of motor activation, obtained in 36 volunteers. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (visual stimuli). These findings demonstrate that the functional topography of the CC can be explored with fMRI.

  17. Correlation between Corpus Callosum Sub-Segmental Area and Cognitive Processes in School-Age Children

    PubMed Central

    Moreno, Martha Beatriz; Concha, Luis; González-Santos, Leopoldo; Ortiz, Juan Jose; Barrios, Fernando Alejandro

    2014-01-01

    We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood. PMID:25170897

  18. Properties of angiotensin II receptors in glial cells from the adult corpus callosum.

    PubMed Central

    Matute, C; Pulakat, L; Río, C; Valcárcel, C; Miledi, R

    1994-01-01

    The existence and the properties of angiotensin II receptors in the adult bovine and human corpus callosum (CC) were investigated by using Xenopus oocytes and primary glial cell cultures. In oocytes injected with CC mRNA, angiotensin II elicited oscillatory Cl- currents due to activation of the inositol phosphate/Ca(2+)-receptor-channel coupling system. The receptors expressed in oocytes and in CC cultures were pharmacologically similar to the AT1 receptor type as assayed by binding. Northern blot analysis and in situ hybridization studies in sections from CC and in glial cultures revealed that the receptors were molecularly related to the AT1 receptor and that they were present in astrocytes. In these cells, activation of the receptors with angiotensin II increased de novo DNA synthesis, promoted the release of aldosterone, and induced c-Fos expression. These findings indicate that CC astrocytes possess functional AT1 receptors that participate in various physiological processes. Images PMID:8170986

  19. Age effects in identifying and localising dichotic stimuli: a corpus callosum deficit?

    PubMed

    Gootjes, Liselotte; Van Strien, Jan W; Bouma, Anke

    2004-09-01

    In the present study, dichotic listening performance of 31 older adults was compared with performance of 25 younger adults under free and focused attention conditions. In addition to an age-related general decrease in performance, we observed in the focused attention condition increased asymmetry in the elderly group: the decrease of recall performance was stronger for the left ear (LE) then for the right ear (RE), while the increase of localisation errors were greater for the RE than for LE. Identifying and localising digits appear to be different process mediated predominantly by the left and right hemisphere, respectively. Since age-related reduced performance is strongest for the ear ipsilateral to the hemisphere dominant to that particular function, these finding may be ascribed to decline of corpus callosum functioning resulting in decrease interhemispheric interaction rather than to a selective decline of right hemisphere functions.

  20. Truncated Cables1 causes agenesis of the corpus callosum in mice.

    PubMed

    Mizuno, Seiya; Tra, Dinh T H; Mizobuchi, Atsushi; Iseki, Hiroyoshi; Mizuno-Iijima, Saori; Kim, Jun-Dal; Ishida, Junji; Matsuda, Yoichi; Kunita, Satoshi; Fukamizu, Akiyoshi; Sugiyama, Fumihiro; Yagami, Ken-ichi

    2014-03-01

    Agenesis of the corpus callosum (ACC) is a congenital abnormality of the brain structure. More than 60 genes are known to be involved in corpus callosum development. However, the molecular mechanisms underlying ACC are not fully understood. Previously, we produced a novel transgenic mouse strain, TAS, carrying genes of the tetracycline-inducible expression system that are not involved in brain development, and inherited ACC was observed in the brains of all homozygous TAS mice. Although ACC was probably induced by transgene insertion mutation, the causative gene and the molecular mechanism of its pathogenesis remain unclear. Here, we first performed interphase three-color fluorescence in situ hybridization (FISH) analysis to determine the genomic insertion site. Transgenes were inserted into chromosome 18 ∼12.0 Mb from the centromere. Gene expression analysis and genomic PCR walking showed that the genomic region containing exon 4 of Cables1 was deleted by transgene insertion and the other exons of Cables1 were intact. The mutant allele was designated as Cables1(TAS). Interestingly, Cables1(TAS) mRNA consisted of exons 1-3 of Cables1 and part of the transgene that encoded a novel truncated Cables1 protein. Homozygous TAS mice exhibited mRNA expression of Cables1(TAS) in the fetal cerebrum, but not that of wild-type Cables1. To investigate whether a dominant negative effect of Cables1(TAS) or complete loss of function of Cables1 gives rise to ACC, we produced Cables1-null mutant mice. ACC was not observed in Cables1-null mutant mice, suggesting that a dominant negative effect of Cables1(TAS) impairs callosal formation. Moreover, ACC frequency in Cables1(+/TAS) mice was significantly lower than that in Cables1(-/TAS) mice, indicating that wild-type Cables1 interfered with the dominant negative effect of Cables1(TAS). This study indicated that truncated Cables1 causes ACC and wild-type Cables1 contributes to callosal formation.

  1. Learning and memory in individuals with agenesis of the corpus callosum.

    PubMed

    Paul, Lynn K; Erickson, Roger L; Hartman, Jo Ann; Brown, Warren S

    2016-06-01

    Damage to long white matter pathways in the cerebral cortex is known to affect memory capacity. However, the specific contribution of interhemispheric connectivity in memory functioning is only beginning to become understood. The present study examined verbal and visual memory processing in individuals with agenesis of the corpus callosum (AgCC) using the Wechsler Memory Scale-Third Edition (WMS-III; Wechsler, 1997b). Thirty participants with AgCC (FSIQ >78) were compared against 30 healthy age and IQ matched controls on auditory/verbal (Logical Memory, Verbal Paired Associates) and visual (Visual Reproduction, Faces) memory subtests. Performance was worse in AgCC than controls on immediate and delayed verbal recall for rote word pairs and on delayed recall of faces, as well as on percent recall for these tasks. Immediate recall for thematic information from stories was also worse in AgCC, but groups did not differ on memory for details from narratives or on recall for thematic information following a time delay. Groups also did not differ on memory for abstract figures or immediate recall of faces. On all subtests, individuals with AgCC had greater frequency of clinically significant impairments than predicted by the normal distribution. Results suggest less efficient overall verbal and visual learning and memory with relative weaknesses processing verbal pairs and delayed recall for faces. These findings suggest that the corpus callosum facilitates more efficient learning and recall for both verbal and visual information, that individuals with AgCC may benefit from receiving verbal information within semantic context, and that known deficits in facial processing in individuals with AgCC may contribute to their impairments in recall for faces.

  2. Local-global interference is modulated by age, sex and anterior corpus callosum size

    PubMed Central

    Müller-Oehring, Eva M.; Schulte, Tilman; Raassi, Carla; Pfefferbaum, Adolf; Sullivan, Edith V.

    2007-01-01

    To identify attentional and neural mechanisms affecting global and local feature extraction, we devised a global-local hierarchical letter paradigm to test the hypothesis that aging reduces functional cerebral lateralization through corpus callosum (CC) degradation. Participants (37 men and women, 26–79 years) performed a task requiring global, local, or global+local attention and underwent structural MRI for CC measurement. Although reaction time (RT) slowed with age, all participants had faster RTs to local than global targets. This local precedence effect together with greater interference from incongruent local information and greater response conflict from local targets each correlated with older age and smaller callosal genu (anterior) areas. These findings support the hypothesis that the CC mediates lateralized local-global processes by inhibition of task-irrelevant information under selective attention conditions. Further, with advancing age smaller genu size leads to less robust inhibition, thereby reducing cerebral lateralization and permitting interference to influence processing. Sex was an additional modifier of interference, in that callosum-interference relationships were evident in women but not in men. Regardless of age, smaller splenium (posterior) areas correlated with less response facilitation from repetition priming of global targets in men, but with greater response facilitation from repetition priming of local targets in women. Our data indicate the following dissociation: Anterior callosal structure was associated with inhibitory processes (i.e., interference from incongruency and response conflict), which are vulnerable to the effects of age and sex, whereas posterior callosal structure was associated with facilitation processes from repetition priming dependent on sex and independent of age. PMID:17335783

  3. Androstenediol Reduces Demyelination-Induced Axonopathy in the Rat Corpus Callosum: Impact on Microglial Polarization

    PubMed Central

    Kalakh, Samah; Mouihate, Abdeslam

    2017-01-01

    Aims: We have previously shown that the neurosteroid androstenediol (ADIOL) promotes remyelination following gliotoxin-induced demyelination. However, the impact of this ADIOL on axonal recovery is not yet known. In the present study, we investigated the impact of ADIOL on axonal integrity following a focal demyelination in the corpus callosum. Methods: A 2 μl solution of either ethidium bromide (EB; 0.04%) or pyrogen-free saline were stereotaxically injected into the corpus callosum of Sprague Dawley rats. Each of these two rat groups was divided into two subgroups and received daily subcutaneous injections of either ADIOL (5 mg/kg) or vehicle. The brains were collected at 2, 7 and 14 days post-stereotaxic injection. Immunofluorescent staining was used to explore the impact of ADIOL on axonal integrity (neurofilament (NF)-M) and microglial activation (ionized calcium binding adapter molecule 1, Iba1). The inducible nitric oxide synthase (iNOS) and arginase-1 (arg-1), two major markers of microglial polarization towards the proinflammatory M1 and the regulatory M2 phenotypes respectively, were monitored using western blot. Results: ADIOL increased the density of NF fibers and decreased the extent of axonal damage in the vicinity of the demyelination lesion. ADIOL-induced decrease in axonal damage was manifested by decreased number of axonal spheroids at both 2 and 7 days post-demyelination insult. This reduced axonopathy was associated with decreased expression of iNOS and enhanced expression of arg-1 during the acute phase. Conclusion: These data strongly suggest that ADIOL reduces demyelination-induced axonal damage, likely by dampening the local inflammatory response in the white matter and shifting microglial polarization towards a reparative mode. PMID:28280460

  4. The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    PubMed Central

    Findlay, Anne M.; Honma, Susanne; Jeremy, Rita J.; Strominger, Zoe; Bukshpun, Polina; Wakahiro, Mari; Brown, Warren S.; Paul, Lynn K.; Barkovich, A. James; Mukherjee, Pratik; Nagarajan, Srikantan S.; Sherr, Elliott H.

    2012-01-01

    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step

  5. Exploring the relative contribution of mineralogy and CPO to the seismic velocity anisotropy of evaporites

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David; Alsop, G. Ian; Timms, Nicholas E.

    2015-01-01

    We present the influence of mineralogy and microstructure on the seismic velocity anisotropy of evaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporite samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock. Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until an estimated threshold proportion after which anisotropy increases again. The difference between the predicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites.

  6. Mystery Fractions

    ERIC Educational Resources Information Center

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  7. Pitch Fractionation.

    DTIC Science & Technology

    1981-12-15

    13 3. Solvent Fractionation Experiments .................................... 15 4. Fourier Transform Infrared Spectra for A240 Petrolem Pitch AG 12...34 and Mesophase Pitch AG 164B ............................... 21 5. Fourier Transform Infrared Spectra ................................... 23 6...compared by Fourier transform infrared (FTIR) analysis using a Digilab Model FTS 14 spectrophotometer (Rockwell International, Anaheim, California

  8. Magnetic anisotropy in single clusters

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Wernsdorfer, Wolfgang; Thirion, Christophe; Dupuis, Véronique; Mélinon, Patrice; Pérez, Alain; Mailly, Dominique

    2004-01-01

    The magnetic measurements on single cobalt and iron nanoclusters containing almost 1000 atoms are presented. Particles are directly buried within the superconducting film of a micro-SQUID (superconducting quantum interference device) which leads to the required sensitivity. The angular dependence of the switching field in three dimensions turns out to be in good agreement with a uniform rotation of cluster magnetization. The Stoner and Wohlfarth model yields therefore an estimation of magnetic anisotropy in a single cluster. In particular, uniaxial, biaxial, and cubic contributions can be separated. Results are interpreted on the basis of a simple atomic model in which clusters are assimilated to “giant spins.” We present an extension of the Néel model to clusters in order to estimate surface anisotropy. In the case of cobalt, this last contribution dominates and numerical simulations allow us to get the morphology of the investigated clusters.

  9. Elliptic Anisotropy ν2 May Be Dominated by Particle Escape instead of Hydrodynamic Flow

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Wei; He, Liang; Edmonds, Terrence; Liu, Feng; Molnar, Denes; Wang, Fuqiang

    2016-12-01

    It is commonly believed that azimuthal anisotropies in relativistic heavy ion collisions are generated by hydrodynamic evolution of the strongly interacting quark-gluon plasma. Here we use transport models to study how azimuthal anisotropies depend on the number of collisions that each parton suffers. We find that the majority of ν2 comes from the anisotropic escape of partons, not from the parton collective flow, for semi-central Au+Au collisions at 200A GeV. As expected, the fraction of ν2 from the anisotropic particle escape is even higher for smaller systems such as d+Au. Our transport model results also confirm that azimuthal anisotropies would be dominated by hydrodynamic flow at unrealistically-high parton cross sections. Our finding thus naturally explains the similarity of azimuthal anisotropies in small and large systems; however, it presents a challenge to the paradigm of anisotropic flow.

  10. Magnetic anisotropy of some phyllosilicates

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Werner, Tomasz

    1994-08-01

    Magnetic susceptibility, anisotropy of susceptibility and hysteresis of single microcrystals of chlorite, biotite, phlogopite, muscovite, zinnwaldite and fuchsite were measured in low and high magnetic fields with an alternating gradient force magnetometer (Micromag). Their properties are sufficient to account for the low field susceptibility (AMS) of most micaceous rocks. Nearly all samples show some ferromagnetic contribution at low fields due to inclusions of pseudosingle domain and multidomain magnetite. The paramagnetic contribution isolated at high fields usually exceeds the ferromagnetic contribution. The paramagnetic susceptibility is intrinsic to the silicate lattice and agrees with values predicted from chemical composition within the limits of error. The minimum susceptibility is nearly parallel to c, another axis is parallel to b and the third susceptibility (usually the maximum) is close to a. The paramagnetic susceptibility has a disk-shaped magnitude ellipsoid with strong anisotropy ( P' < 2). The ferromagnetic contributions at low fields have more variably shaped ellipsoids with greater eccentricity ( P' < 5). The silicate lattice does not constrain their orientation. Our technique cannot determine the principal axes of the ferromagnetic component. However, its principal values usually correspond with the paramagnetic principal susceptibilities in order of magnitude. Thus, the combined paramagnetic-ferromagnetic anisotropy recognised in routine studies of AMS should faithfully represent the petrofabric of most micaceous rocks. Nevertheless, nearly 10% of our samples have incompatible anisotropy ellipsoids for the silicate host and magnetite inclusions. These yield a net inverse AMS that does not correctly represent the orientation of the silicate lattice. Therefore, some caution is necessary in petrofabric-AMS studies of micaceous rocks.

  11. Mechanical Anisotropy of Ankyrin Repeats

    PubMed Central

    Lee, Whasil; Zeng, Xiancheng; Rotolo, Kristina; Yang, Ming; Schofield, Christopher J.; Bennett, Vann; Yang, Weitao; Marszalek, Piotr E.

    2012-01-01

    Red blood cells are frequently deformed and their cytoskeletal proteins such as spectrin and ankyrin-R are repeatedly subjected to mechanical forces. While the mechanics of spectrin was thoroughly investigated in vitro and in vivo, little is known about the mechanical behavior of ankyrin-R. In this study, we combine coarse-grained steered molecular dynamics simulations and atomic force spectroscopy to examine the mechanical response of ankyrin repeats (ARs) in a model synthetic AR protein NI6C, and in the D34 fragment of native ankyrin-R when these proteins are subjected to various stretching geometry conditions. Our steered molecular dynamics results, supported by AFM measurements, reveal an unusual mechanical anisotropy of ARs: their mechanical stability is greater when their unfolding is forced to propagate from the N-terminus toward the C-terminus (repeats unfold at ∼60 pN), as compared to the unfolding in the opposite direction (unfolding force ∼ 30 pN). This anisotropy is also reflected in the complex refolding behavior of ARs. The origin of this unfolding and refolding anisotropy is in the various numbers of native contacts that are broken and formed at the interfaces between neighboring repeats depending on the unfolding/refolding propagation directions. Finally, we discuss how these complex mechanical properties of ARs in D34 may affect its behavior in vivo. PMID:22404934

  12. Fraction Reduction through Continued Fractions

    ERIC Educational Resources Information Center

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  13. Isotope fractionation

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A rash of new controversy has emerged around the subject of mass-independent isotope fractionation effects, particularly in the case of the oxygen isotopes. To be sure, the controversy has been around for awhile, but it has been given new impetus by the results of a recent study by Mark H. Thiemens and John E. Heidenreich III of the University of California, San Diego (Science, March 4, 1983).Gustav Arrhenius has been trying to convince the planetary science community that chemical effects in isotope fractionation processes could explain observations in meteorites that appear to be outside of the traditionally understood mass-dependent fractionations (G. Arrhenius, J . L. McCrumb, and N. F. Friedman, Astrophys. Space Sci, 65, 297, 1974). Robert Clayton had made the basic observations of oxygen in carbonaceous chondrites that the slope of the δ17 versus δ18 line was 1 instead of the slope of ½ characteristic of terrestrial rocks and lunar samples (Ann. Rev. Nucl. Part. Sci., 28, 501, 1978). The mass-independent effects were ascribed to the apparent contribution of an ancient presolar system component of O16.

  14. Search for a positron anisotropy with PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Panico, B.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A. M.; Giaccari, U.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2015-09-01

    The PAMELA experiment has been collecting data since 2006; its results indicate a rise in the positron fraction with respect to the sum of electrons and positrons in the cosmic-ray (CR) spectrum above 10 GeV. This excess can be due to additional sources, as SNRs or pulsars, which can lead to an anisotropy in the local CR positron, detectable from current experiments. We report on the analysis on spatial distributions of positron events collected by PAMELA, taking into account also the geomagnetic field effects. No significant deviation from the isotropy has been observed.

  15. Acute infarct of the corpus callosum presenting as alien hand syndrome: evidence of diffusion weighted imaging and magnetic resonance angiography

    PubMed Central

    2011-01-01

    Background Infarcts of the corpus callosum are rare and have not been well documented previously. As for a variety of signs and symptoms presented, alien hand syndrome (AHS) can be easily overlooked. Case presentation In this report, we present a patient with a mixed types of AHS coexistence secondary to the corpus callosum infarction, including a motor type of AHS by intermanual conflict (callosal type AHS) and a sensory type of AHS by alien hand and left hemianesthesia (posterior AHS). Conclusions Our case may contribute to the early recognition of AHS and to explore the abnormal neural mechanism of AHS. To our knowledge, rare reports have ever documented such mixed AHS coexisting secondary to the callosal lesion, based on advanced neuroimaging methods as in our case. PMID:22067592

  16. Magnetic Anisotropy in the Radula of Chiton

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Gao; Qian, Xia; Liu, Wei; Liu, Chuan-Lin; Zhan, Wen-Shan

    2000-07-01

    Radular teeth of chitons were studied by using magnetic torque-meter and transmission electron microscopy (TEM). The magnetic torque curves give clear evidence of presence of strong uni-axial magnetic anisotropy. The easy axis is along the length direction of tongue-like radula. The TEM pattern shows that long chip-like magnetite nano-scaled particles packed in the radular teeth with both uni-axial shape anisotropy and magneto-crystalline anisotropy.

  17. Clinical Characterization, Genetics, and Long-Term Follow-up of a Large Cohort of Patients With Agenesis of the Corpus Callosum.

    PubMed

    Romaniello, Romina; Marelli, Susan; Giorda, Roberto; Bedeschi, Maria F; Bonaglia, Maria C; Arrigoni, Filippo; Triulzi, Fabio; Bassi, Maria T; Borgatti, Renato

    2017-01-01

    To gain a better understanding of the clinical and genetic features associated with agenesis of corpus callosum, we enrolled and characterized 162 patients with complete or partial agenesis of corpus callosum. Clinical and genetic protocols allowed us to categorize patients as syndromic subjects, affected by complex extra-brain malformations, and nonsyndromic subjects without any additional anomalies. We observed slight differences in sex ratio (56% males) and agenesis type (52% complete). Syndromic agenesis of corpus callosum subjects were prevalent (69%). We detected associated cerebral malformations in 48% of patients. Neuromotor impairment, cognitive and language disorders, and epilepsy were frequently present, regardless of the agenesis of corpus callosum subtype. Long-term follow-up allowed us to define additional indicators: syndromic agenesis of corpus callosum plus patients showed the most severe clinical features while isolated complete agenesis of corpus callosum patients had the mildest symptoms, although we observed intellectual disability (64%) and epilepsy (15%) in both categories. We achieved a definitive (clinical and/or genetic) diagnosis in 42% of subjects.

  18. Chemical Shift Anisotropy Selective Inversion*

    PubMed Central

    Caporini, Marc. A.; Turner, Christopher. J.; Bielecki, Anthony; Griffin, Robert G.

    2009-01-01

    Magic Angle Spinning (MAS) is used in solid-state NMR to remove the broadening effects of the chemical shift anisotropy (CSA). In this work we investigate a technique that can reintroduce the CSA in order to selectively invert transverse magnetization. The technique involves an amplitude sweep of the radio frequency field through a multiple of the spinning frequency. The selectivity of this inversion mechanism is determined by the size of the CSA. We develop a theoretical framework to describe this process and demonstrate the CSA selective inversion with numerical simulations and experimental data. We combine this approach with cross polarization (CP) for potential applications in multi-dimensional MAS NMR. PMID:19648036

  19. Effects of Severing the Corpus Callosum on Electrical and BOLD Functional Connectivity and Spontaneous Dynamic Activity in the Rat Brain

    PubMed Central

    Magnuson, Matthew E.; Thompson, Garth J.; Pan, Wen-Ju

    2014-01-01

    Abstract Functional networks, defined by synchronous spontaneous blood oxygenation level-dependent (BOLD) oscillations between spatially distinct brain regions, appear to be essential to brain function and have been implicated in disease states, cognitive capacity, and sensing and motor processes. While the topographical extent and behavioral function of these networks has been extensively investigated, the neural functions that create and maintain these synchronizations remain mysterious. In this work callosotomized rodents are examined, providing a unique platform for evaluating the influence of structural connectivity via the corpus callosum on bilateral resting state functional connectivity. Two experimental groups were assessed, a full callosotomy group, in which the corpus callosum was completely sectioned, and a sham callosotomy group, in which the gray matter was sectioned but the corpus callosum remained intact. Results indicated a significant reduction in interhemispheric connectivity in the full callosotomy group as compared with the sham group in primary somatosensory cortex and caudate-putamen regions. Similarly, electrophysiology revealed significantly reduced bilateral correlation in band limited power. Bilateral gamma Band-limited power connectivity was most strongly affected by the full callosotomy procedure. This work represents a robust finding indicating the corpus callosum's influence on maintaining integrity in bilateral functional networks; further, functional magnetic resonance imaging (fMRI) and electrophysiological connectivity share a similar decrease in connectivity as a result of the callosotomy, suggesting that fMRI-measured functional connectivity reflects underlying changes in large-scale coordinated electrical activity. Finally, spatiotemporal dynamic patterns were evaluated in both groups; the full callosotomy rodents displayed a striking loss of bilaterally synchronous propagating waves of cortical activity. PMID:24117343

  20. Rapidly progressive dementia due to bilateral internal carotid artery occlusion with infarction of the total length of the corpus callosum.

    PubMed

    Rabinstein, Alejandro A; Romano, Jose G; Forteza, Alejandro M; Koch, Sebastian

    2004-04-01

    The authors report a patient with rapidly progressive cognitive decline due to bilateral internal carotid artery occlusion (ICAO) resulting in multiple pathologically proven cerebral infarctions including the entire length of the corpus callosum. The gradual evolution of the deficits was suggestive of hemodynamic ischemia. Bilateral ICAO should be considered in the differential diagnosis of patients with rapidly cognitive decline. Although ICAO commonly spares the splenium, complete callosal infarction is possible in the presence of bilateral ICAO.

  1. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  2. A5 segment aneurysm of the anterior cerebral artery, imbedded into the body of the corpus callosum: A case report

    PubMed Central

    Sharafeddin, Fransua; Hafez, Ahmad; Lehecka, Martin; Raj, Rahul; Colasanti, Roberto; Rafiei, Ahmadreza; Choque, Joham; Jahromi, Behnam R.; Niemelä, Mika; Hernesniemi, Juha

    2017-01-01

    Background: The A5 segment aneurysms of the anterior cerebral artery are rare, approximately 0.5% of all intracranial aneurysms. They are small with a wide base located in the midline, with the domes mostly projecting upward or backward. Case Description: The authors describe a unique case of A5 segment aneurysm, with the dome embedded into the body of the corpus callosum. This 41-year-old female was admitted to the neurology department for possible multiple sclerosis investigation. Computed tomography angiogram (CTA) revealed a 4-mm right-sided pericallosal artery aneurysm, with rare configuration, which was caudally projected, embedded into the body of the corpus callosum. Considering the family history, patient underwent a prophylactic ligation surgery. The postoperative CT and CTA showed no complication and successful occlusion of the aneurysm with no ischemia or hemorrhage in the corpus callosum. Conclusion: To the best of our knowledge, this is the first case of an aneurysm with this configuration. Our rare case of A5 segment aneurysm demonstrates the importance of planning of the surgery, choosing the appropriate approach, and knowing the detailed anatomy of the region, as well as the necessity of microsurgical clipping of small unruptured AdistAs. PMID:28217397

  3. Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement.

    PubMed

    Paul, Lynn K

    2011-03-01

    This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)-the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome).

  4. Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B.

    PubMed

    Halgren, C; Kjaergaard, S; Bak, M; Hansen, C; El-Schich, Z; Anderson, C M; Henriksen, K F; Hjalgrim, H; Kirchhoff, M; Bijlsma, E K; Nielsen, M; den Hollander, N S; Ruivenkamp, C A L; Isidor, B; Le Caignec, C; Zannolli, R; Mucciolo, M; Renieri, A; Mari, F; Anderlid, B-M; Andrieux, J; Dieux, A; Tommerup, N; Bache, I

    2012-09-01

    Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B. Corpus callosum abnormalities are common brain malformations with a wide clinical spectrum ranging from severe intellectual disability to normal cognitive function. The etiology is expected to be genetic in as much as 30-50% of the cases, but the underlying genetic cause remains unknown in the majority of cases. By next-generation mate-pair sequencing we mapped the chromosomal breakpoints of a patient with a de novo balanced translocation, t(1;6)(p31;q25), agenesis of corpus callosum (CC), intellectual disability, severe speech impairment, and autism. The chromosome 6 breakpoint truncated ARID1B which was also truncated in a recently published translocation patient with a similar phenotype. Quantitative polymerase chain reaction (Q-PCR) data showed that a primer set proximal to the translocation showed increased expression of ARID1B, whereas primer sets spanning or distal to the translocation showed decreased expression in the patient relative to a non-related control set. Phenotype-genotype comparison of the translocation patient to seven unpublished patients with various sized deletions encompassing ARID1B confirms that haploinsufficiency of ARID1B is associated with CC abnormalities, intellectual disability, severe speech impairment, and autism. Our findings emphasize that ARID1B is important in human brain development and function in general, and in the development of CC and in speech development in particular.

  5. A Study of the Link Between Seismic Anisotropy and the G Discontinuity Based on LPO Modeling in Oceanic Basins

    NASA Astrophysics Data System (ADS)

    Hedjazian, N.; Garel, F.; Davies, R.; Kaminski, E. C.

    2015-12-01

    Seismic anisotropy in oceanic basin inferred from surface waves shows a controversial discontinuity near the lithosphere-asthenosphere boundary (LAB). Radial anisotropy displays an age independent positive gradient, that may correspond to a shallow discontinuity at ~70km depth. This is at odds with the view of a mechanical and age dependent LAB, expected to roughly follow the isotherms. To model the development of seismic anisotropy in oceanic basins, and its potential implications for the interpretation of the G discontinuity, we use the model of lattice preferred orientation (LPO) evolution D-Rex, coupled with a two dimensional model of a plate-driven flow in a fluid with a viscosity depending mainly on stress and temperature. We perform a systematic investigation of the influence on seismic anisotropy of the parameters controlling olivine LPO development. We find that the fraction of deformation accommodated by dislocation creep relative to diffusion creep, the strength of the slip systems involved in plastic deformation, and the efficiency of dynamic recrystallization are key parameters for the production of seismic anisotropy. For a wide range of parameters, the predicted radial anisotropy displays an age independent positive gradient near the depth of the G discontinuity. We thus conclude that this is an ubiquitus characteristic of the seismic anisotropy produced by the 2-D plate driven flow in oceanic basins. If not excluded, no additional ingredients such as partial melting, or change in water content are thus required to explain the radial anisotropy pattern near the LAB.

  6. Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information.

    PubMed

    Fabri, Mara; Del Pesce, Maria; Paggi, Aldo; Polonara, Gabriele; Bartolini, Marco; Salvolini, Ugo; Manzoni, Tullio

    2005-06-01

    Three total and three partial callosotomy patients underwent neuropsychological testing to evaluate interhemispheric transfer of tactile information. Tactile transfer is required to name objects presented to the left hand, to compare objects held in either hand, and to transfer topological information between hands. Tactile Naming, Same-Different Recognition, and Tactile Finger Localization Tests (intra- and intermanual tasks) were administered as specific tools. Results were compared with previous fMRI data from the same subjects and with the performance of a control group (20 age-matched subjects). Total callosotomy patients performed modestly: mean correct responses were 93% and 30% (right and left hand, respectively) in Tactile Naming; 68% in Same-Different Recognition; 84% and 76% (right and left hand stimulation, respectively) in intermanual Tactile Finger Localization, and 100% in the intramanual task. Partial callosotomy patients achieved 93-100% accuracy: all have an intact splenium, and one, and possibly all, also an intact posterior callosal body. Controls scored 99% in Tactile Naming, both hands, and Same-Different Recognition; 100% in intramanual Tactile Finger Localization; and 96% and 95%, with right and left hand stimulation, respectively, in the intermanual task. Differences between the two callosotomy groups were significant, as were those between total callosotomy patients and controls. The partial callosotomy group scored like the control subjects. Neuropsychological data agree with previous functional findings, further demonstrating that interhemispheric tactile transfer requires posterior corpus callosum integrity.

  7. Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum

    PubMed Central

    Tovar-Moll, Fernanda; Monteiro, Myriam; Andrade, Juliana; Bramati, Ivanei E.; Vianna-Barbosa, Rodrigo; Marins, Theo; Rodrigues, Erika; Dantas, Natalia; Behrens, Timothy E. J.; de Oliveira-Souza, Ricardo; Moll, Jorge; Lent, Roberto

    2014-01-01

    Why do humans born without the corpus callosum, the major interhemispheric commissure, lack the disconnection syndrome classically described in callosotomized patients? This paradox was discovered by Nobel laureate Roger Sperry in 1968, and has remained unsolved since then. To tackle the hypothesis that alternative neural pathways could explain this puzzle, we investigated patients with callosal dysgenesis using structural and functional neuroimaging, as well as neuropsychological assessments. We identified two anomalous white-matter tracts by deterministic and probabilistic tractography, and provide supporting resting-state functional neuroimaging and neuropsychological evidence for their functional role in preserved interhemispheric transfer of complex tactile information, such as object recognition. These compensatory pathways connect the homotopic posterior parietal cortical areas (Brodmann areas 39 and surroundings) via the posterior and anterior commissures. We propose that anomalous brain circuitry of callosal dysgenesis is determined by long-distance plasticity, a set of hardware changes occurring in the developing brain after pathological interference. So far unknown, these pathological changes somehow divert growing axons away from the dorsal midline, creating alternative tracts through the ventral forebrain and the dorsal midbrain midline, with partial compensatory effects to the interhemispheric transfer of cortical function. PMID:24821757

  8. Congenital cataract, microphthalmia, hypoplasia of corpus callosum and hypogenitalism: report and review of Micro syndrome.

    PubMed

    Derbent, Murat; Agras, Pinar Isik; Gedik, Sansal; Oto, Sibel; Alehan, Füsun; Saatçi, Umit

    2004-07-30

    We report on a 7-month-old boy with Micro syndrome who was referred for assessment of mental-motor retardation and reduced vision with cataract. The characteristics of Micro syndrome are mental retardation, microcephaly, congenital cataract, microcornea, microphthalmia, agenesis/hypoplasia of the corpus callosum, and hypogenitalism. The differential diagnosis includes cerebro-oculo-facio-skeletal syndrome (COFS); a syndrome involving cataract, arthrogryposis, microcephaly, and kyphoscoliosis (CAMAK); a syndrome with cataract, microcephaly, failure to thrive, and kyphoscoliosis (CAMFAK); Martsolf syndrome; Neu-Laxova syndrome; Lenz microphthalmia syndrome; and Smith-Lemli-Opitz syndrome. Till date, no renal malformations have been reported in Micro syndrome. Our patient had fusion of the lower poles of the kidneys and his left kidney was ectopic. Ocular findings are the most reliable neonatal diagnostic signs of Micro syndrome. Minör anomalies in Micro syndrome may be subtle and therefore not of significant diagnostic value. Micro syndrome is an autosomal recessive trait. Till date, most reported cases have been in individuals of Muslim origin. In countries with high rates of consanguineous marriage, such as Turkey, it is important that physicians be able to recognize this syndrome. Micro syndrome should be considered in any infant with congenital cataract.

  9. Corpus Callosum and Neglect Syndrome: Clinical Findings After Meningioma Removal and Anatomical Review

    PubMed Central

    Gomes, David; Fonseca, Madalena; Garrotes, Maria; Lima, Maria Rita; Mendonça, Marta; Pereira, Mariana; Lourenço, Miguel; Oliveira, Edson; Lavrador, José Pedro

    2017-01-01

    Two types of neglect are described: hemispatial and motivational neglect syndromes. Neglect syndrome is a neurophysiologic condition characterized by a malfunction in one hemisphere of the brain, resulting in contralateral hemispatial neglect in the absence of sensory loss and the right parietal lobe lesion being the most common anatomical site leading to it. In motivational neglect, the less emotional input is considered from the neglected side where anterior cingulate cortex harbors the most frequent lesions. Nevertheless, there are reports of injuries in the corpus callosum (CC) causing hemispatial neglect syndrome, particularly located in the splenium. It is essential for a neurosurgeon to recognize this clinical syndrome as it can be either a primary manifestation of neurosurgical pathology (tumor, vascular lesion) or as a postoperative iatrogenic clinical finding. The authors report a postoperative hemispatial neglect syndrome after a falcotentorial meningioma removal that recovered 10 months after surgery and performs a clinical, anatomical, and histological review centered in CC as key agent in neglect syndrome. PMID:28149091

  10. Planimetry investigation of the corpus callosum in temporal lobe epilepsy patients

    PubMed Central

    Caglar, Veli; Alp, Selen I.; Demir, Berrin T.; Sener, Umit; Ozen, Oguz A.; Alp, Recep

    2016-01-01

    Objective: To evaluate the effects of temporal lobe epilepsy (TLE) on corpus callosum (CC) morphometry in patients with TLE. Methods: This retrospective study was conducted at the Faculty of Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey between November 2010 and December 2013. The epileptic syndrome diagnosis was based on International League Against Epilepsy criteria, and this study was conducted on the MRIs of 25 epilepsy patients and 25 control subjects. We classified the patients according to their duration of epilepsy <10 and ≥10 years. The projection area length (PAL) of the CC was also estimated. Total brain volumes (TBV) were measured on CT images. Results: The mean values of TBV for patients with TLE and the control group were not statistically different, but the CC PAL values were statistically different. The mean CC PAL values of under and over 25 years of age in patients with TLE were statistically different. The mean values of TBV of under and over 10 years duration of TLE were small statistically, but the CC PAL values were statistically different. Conclusion: The results indicate a clear influence of TLE on the structure of the CC rather than TBV. PMID:27094525

  11. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    PubMed

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin.

  12. The development of the corpus callosum in the healthy human brain.

    PubMed

    Luders, Eileen; Thompson, Paul M; Toga, Arthur W

    2010-08-18

    The corpus callosum changes structurally throughout life, but most dramatically during childhood and adolescence. Even so, existing studies of callosal development tend to use parcellation schemes that may not capture the complex spatial profile of anatomical changes. Thus, more detailed mapping of callosal growth processes is desirable to create a normative reference. This will help to relate and interpret other structural, functional, and behavioral measurements, both from healthy subjects and pediatric patients. We applied computational surface-based mesh-modeling methods to analyze callosal morphology at extremely high spatial resolution. We mapped callosal development and explored sex differences in a large and well matched sample of healthy children and adolescents (n = 190) aged 5-18 years. Except for the rostrum in females, callosal thickness increased across the whole surface, with sex- and region-specific rates of growth, and at times shrinkage. The temporally distinct changes in callosal thickness are likely to be a consequence of varying degrees of axonal myelination, redirection, and pruning. Alternating phases of callosal growth and shrinkage may reflect a permanent adjustment and fine-tuning of fibers connecting homologous cortical areas during childhood and adolescence. Our findings emphasize the importance of taking into account sex differences in future studies, as existing developmental effects might remain disguised (or biased toward the effect of the dominant sex in unbalanced statistical designs) when pooling male and female samples.

  13. Light microscopic identification of immature glial cells in semithin sections of the developing mouse corpus callosum.

    PubMed Central

    Sturrock, R R

    1976-01-01

    Four distinct types of glial cell were recognized in the corpus callosum of young postnatal mice: the early glioblast; the small glioblast; the large glioblast; and the young astrocyte. As well as these, mature microglia could be recognized from birth. In semithin, toluidine blue stained sections early glioblasts had large, fair to moderately stained nuclei, and a thin rim of pale cytoplasm; small glioblasts had small, dark nuclei and a rim of darkly stained cytoplasm; large glioblasts had moderately unevenly stained nuclei and a thin rim of moderately stained cytoplasm; and young astrocytes had fairly small nuclei, moderately stained cytoplasm, and one or more processes, which could usually be seen extending for 5 mum or more from the perikaryon. Differential glial counts using the criteria described above, in conjunction with electron microscopic analysis, suggested that early glioblasts gave rise to small glioblasts and large glioblasts; that small glioblasts gave rise directly to astrocytes, large glioblasts, oligodendrocytes and possibly microglia; that large glioblasts formed oligodendrocytes only, and might be immature light oligodendrocytes; and that part of the microglial population might arise from vascular pericytes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:795801

  14. A Case of a Newborn with Agenesis of the Corpus Callosum Complicated with Ocular Albinism

    PubMed Central

    Miki, Michiko; Miyamoto, Makiko; Mitsutsuji, Tatsuma; Watanabe, Hiroko; Shimizu, Kazuhiro; Matsuo, Junko; Tonari, Masahiro; Kida, Teruyo; Sugasawa, Jun; Ikeda, Tsunehiko

    2016-01-01

    Purpose To report a case of ocular albinism found in a newborn infant in whom agenesis of the corpus callosum (ACC) was indicated in utero. Case Report This study involved a female newborn who was delivered after a gestational period of 41 weeks. The patient was referred to the Obstetrics Department at Takatsuki Hospital, Takatsuki City, Japan, after the indication of ACC by magnetic resonance imaging (MRI) at a nearby clinic during the fetal period. At birth, the baby's weight was 2,590 g, and ACC and ventricular enlargement were found by cranial sonography and cranial MRI. While initial ophthalmic findings noted partial loss of pigmentation of the iris and hypopigmentation of broad areas of the fundus in both eyes, nystagmus was not observed. The patient's hair pigment was slightly diluted, and the color of her skin was slightly off-white. At 2 years after birth, obvious mental retardation was observed. With regard to other systemic findings, no apparent heart, kidney, or immune system abnormalities were found. Conclusion Although the patient in question is presently growing without any major systemic problems, it will be necessary in the future to pay attention to any changes in systemic and ophthalmic findings. PMID:27462254

  15. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry

    PubMed Central

    Phillips, Kimberley A.; Stimpson, Cheryl D.; Smaers, Jeroen B.; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R.; Sherwood, Chet C.

    2015-01-01

    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047

  16. Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning.

    PubMed

    Magnani, Dario; Hasenpusch-Theil, Kerstin; Benadiba, Carine; Yu, Tian; Basson, M Albert; Price, David J; Lebrand, Cécile; Theil, Thomas

    2014-01-01

    The corpus callosum (CC) represents the major forebrain commissure connecting the 2 cerebral hemispheres. Midline crossing of callosal axons is controlled by several glial and neuronal guideposts specifically located along the callosal path, but it remains unknown how these cells acquire their position. Here, we show that the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn) displays agenesis of the CC and mislocation of the glial and neuronal guidepost cells. Using transplantation experiments, we demonstrate that agenesis of the CC is primarily caused by midline defects. These defects originate during telencephalic patterning and involve an up-regulation of Slit2 expression and altered Fgf and Wnt/β-catenin signaling. Mutations in sprouty1/2 which mimic the changes in these signaling pathways cause a disorganization of midline guideposts and CC agenesis. Moreover, a partial recovery of midline abnormalities in Pdn/Pdn;Slit2(-/-) embryos mutants confirms the functional importance of correct Slit2 expression levels for callosal development. Hence, Gli3 controlled restriction of Fgf and Wnt/β-catenin signaling and of Slit2 expression is crucial for positioning midline guideposts and callosal development.

  17. Splenium of Corpus Callosum: Patterns of Interhemispheric Interaction in Children and Adults

    PubMed Central

    Knyazeva, Maria G.

    2013-01-01

    The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain. PMID:23577273

  18. Dehydration-Induced Anorexia Reduces Astrocyte Density in the Rat Corpus Callosum

    PubMed Central

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2015-01-01

    Anorexia nervosa is an eating disorder associated with severe weight loss as a consequence of voluntary food intake avoidance. Animal models such as dehydration-induced anorexia (DIA) mimic core features of the disorder, including voluntary reduction in food intake, which compromises the supply of energy to the brain. Glial cells, the major population of nerve cells in the central nervous system, play a crucial role in supplying energy to the neurons. The corpus callosum (CC) is the largest white matter tract in mammals, and more than 99% of the cell somata correspond to glial cells in rodents. Whether glial cell density is altered in anorexia is unknown. Thus, the aim of this study was to estimate glial cell density in the three main regions of the CC (genu, body, and splenium) in a murine model of DIA. The astrocyte density was significantly reduced (~34%) for the DIA group in the body of the CC, whereas in the genu and the splenium no significant changes were observed. DIA and forced food restriction (FFR) also reduced the ratio of astrocytes to glial cells by 57.5% and 22%, respectively, in the body of CC. Thus, we conclude that DIA reduces astrocyte density only in the body of the rat CC. PMID:26090235

  19. Biallelic SZT2 Mutations Cause Infantile Encephalopathy with Epilepsy and Dysmorphic Corpus Callosum

    PubMed Central

    Basel-Vanagaite, Lina; Hershkovitz, Tova; Heyman, Eli; Raspall-Chaure, Miquel; Kakar, Naseebullah; Smirin-Yosef, Pola; Vila-Pueyo, Marta; Kornreich, Liora; Thiele, Holger; Bode, Harald; Lagovsky, Irina; Dahary, Dvir; Haviv, Ami; Hubshman, Monika Weisz; Pasmanik-Chor, Metsada; Nürnberg, Peter; Gothelf, Doron; Kubisch, Christian; Shohat, Mordechai; Macaya, Alfons; Borck, Guntram

    2013-01-01

    Epileptic encephalopathies are genetically heterogeneous severe disorders in which epileptic activity contributes to neurological deterioration. We studied two unrelated children presenting with a distinctive early-onset epileptic encephalopathy characterized by refractory epilepsy and absent developmental milestones, as well as thick and short corpus callosum and persistent cavum septum pellucidum on brain MRI. Using whole-exome sequencing, we identified biallelic mutations in seizure threshold 2 (SZT2) in both affected children. The causative mutations include a homozygous nonsense mutation and a nonsense mutation together with an exonic splice-site mutation in a compound-heterozygous state. The latter mutation leads to exon skipping and premature termination of translation, as shown by RT-PCR in blood RNA of the affected boy. Thus, all three mutations are predicted to result in nonsense-mediated mRNA decay and/or premature protein truncation and thereby loss of SZT2 function. Although the molecular role of the peroxisomal protein SZT2 in neuronal excitability and brain development remains to be defined, Szt2 has been shown to influence seizure threshold and epileptogenesis in mice, consistent with our findings in humans. We conclude that mutations in SZT2 cause a severe type of autosomal-recessive infantile encephalopathy with intractable seizures and distinct neuroradiological anomalies. PMID:23932106

  20. Fluorescence anisotropy of UV-irradiated viruses.

    PubMed

    Hörer, O L

    1989-01-01

    The steady-state fluorescence anisotropy measurements on influenza and parainfluenza viruses, showed no changes in the microviscosity of the viral membranes after exposure to UV-irradiation, when a fluorescent probe was used, but the intrinsic fluorescence of viral proteins presented, under the same experimental conditions, a significant difference of anisotropy behaviour in the two viruses used.

  1. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.

  2. Texture induced microwave background anisotropies

    SciTech Connect

    Borrill, Julian; Copeland, Edmund J.; Liddle, Andrew R.; Stebbins, Albert; Veeraraghavan, Shoba

    1994-03-01

    We use numerical simulations to calculate the cosmic microwave background anisotropy induced by the evolution of a global texture field, with special emphasis on individual textures. Both spherically symmetric and general configurations are analyzed, and in the latter case we consider field configurations which exhibit unwinding events and also ones which do not. We compare the results given by evolving the field numerically under both the expanded core (XCORE) and non-linear sigma model (NLSM) approximations with the analytic predictions of the NLSM exact solution for a spherically symmetric self-similar (SSSS) unwinding. We find that the random unwinding configuration spots' typical peak height is 60-75\\% and angular size typically only 10% of those of the SSSS unwinding, and that random configurations without an unwinding event nonetheless may generate indistinguishable hot and cold spots. A brief comparison is made with other work.

  3. Ratcheting fluid with geometric anisotropy

    NASA Astrophysics Data System (ADS)

    Thiria, Benjamin; Zhang, Jun

    2015-02-01

    We investigate a mechanism that effectively transports fluids using vibrational motion imposed onto fluid boundary with anisotropy. In our experiment, two asymmetric, sawtooth-like structures are placed facing each other and form a corrugated fluid channel. This channel is then forced to open and close periodically. Under reciprocal motion, fluid fills in the gap during the expansion phase of the channel and is then forced out during contraction. Since the fluid experiences different impedances when flowing in different directions, the stagnation point that separates flows of two directions changes within each driving period. As a result, fluid is transported unidirectionally. This ratcheting effect of fluid is demonstrated through our measurements and its working principle discussed in some detail.

  4. On Possible Variation in the Cosmological Baryon Fraction

    NASA Astrophysics Data System (ADS)

    Holder, Gilbert P.; Nollett, Kenneth M.; van Engelen, Alexander

    2010-06-01

    The fraction of matter that is in the form of baryons or dark matter could have spatial fluctuations in the form of baryon-dark matter isocurvature fluctuations. We use big bang nucleosynthesis calculations compared with observed light-element abundances as well as galaxy cluster gas fractions to constrain cosmological variations in the baryon fraction. Light-element abundances constrain spatial variations to be less than 26%-27%, while a sample of "relaxed" galaxy clusters shows spatial variations in gas fractions less than 8%. Larger spatial variations could cause differential screening of the primary cosmic microwave background (CMB) anisotropies, leading to asymmetries in the fluctuations, and ease some tension with the halo-star 7Li abundance. We also show that fluctuations within our allowed bounds can lead to "B-mode" CMB polarization anisotropies at a non-negligible level.

  5. Indication for primordial anisotropies in the neutrino background from the Wilkinson microwave anisotropy probe and the Sloan digital sky survey.

    PubMed

    Trotta, Roberto; Melchiorri, Alessandro

    2005-07-01

    We demonstrate that combining cosmic microwave background anisotropy measurements from the 1st year Wilkinson Microwave Anisotropy Probe observations with clustering data from the Sloan galaxy redshift survey yields an indication for primordial anisotropies in the cosmological neutrino background.

  6. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies

    PubMed Central

    2014-01-01

    Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups. PMID:25780557

  7. Neurons in the corpus callosum of the cat during postnatal development.

    PubMed

    Riederer, Beat M; Berbel, Pere; Innocenti, Giorgio M

    2004-04-01

    The corpus callosum (CC) is a major telencephalic commissure containing mainly cortico-cortical axons and glial cells. We have identified neurons in the CC of the cat and quantified their number at different postnatal ages. An antibody against microtubule-associated protein 2 was used as a marker of neurons. Immunocytochemical double-labelling with neuron-specific enolase or gamma-aminobutyric acid antibodies in the absence of glial fibrillary acidic protein positivity confirmed the neuronal phenotype of these cells. CC neurons were also stained with anti-calbindin and anti-calretinin antibodies, typical for interneurons, and with an anti-neurofilament antibody, which in neocortex detects pyramidal neurons. Together, these findings suggest that the CC contains a mixed population of neuronal types. The quantification was corrected for double counting of adjacent sections and volume changes during CC development. Our data show that CC neurons are numerous early postnatally, and their number decreases with age. At birth, about 570 neurons are found within the CC boundaries and their number drops to about 200 in the adult. The distribution of the neurons within the CC also changes in development. Initially, many neurons are found throughout the CC, while at later ages they become restricted to the boundaries of the CC, and in the adult to the rostrum of the CC close to the septum pellucidum or to the indusium griseum. Although origin and function of transient CC neurons in development and in adulthood remain unknown, they are likely to be interstitial neurons. Some of them have well-developed and differentiated processes and resemble pyramidal cells or interneurons. An axon-guiding function during the early postnatal period can not be excluded.

  8. Neuropeptide Y immunoreactive axons in the corpus callosum of the cat during postnatal development.

    PubMed

    Ding, S L; Elberger, A J

    1994-07-01

    Many immunocytochemical studies have identified different types of neurotransmitters localized in the corpus callosum (CC) axons in the adult mammal. Few studies have looked at the development of different neurochemically identified CC systems. Previous studies on the development of cat CC axons have indicated that a large number of transitory CC axons project to the cortex during early postnatal development. The present study focuses on the development of one neurochemically identified group of CC axons in the cat, labeled with an antibody against neuropeptide Y (NPY), to determine if this group participates in transitory CC axonal growth. Cats at specified ages from birth to adulthood were studied with a routine method of immunocytochemistry for antiserum to NPY. NPY-immunoreactive (ir) CC axons were detected at all stages examined, from newborn to adult; the peak density occurred during postnatal weeks (PNW) 3-4. During PNW 1-2, the density of NPY-ir CC axons increased gradually; some NPY-ir axons at this age had growth cones located within the CC bundle between the cerebral hemispheres. The density of the NPY-ir CC axons decreased gradually during PNW 5-7, and from PNW 8 to maturity only a few NPY-ir CC axons were observed. These results indicate that at least two types of NPY-ir CC axons (i.e., transitory and permanent) exist during development, and that most of these axons are eliminated or only express NPY-ir for a short period during development. The results also indicate that neurochemical subsets of CC axons participate in the extensive transitory growth observed by means of the membrane tracer DiI but they may follow unique developmental timetables.

  9. Effect of registration on corpus callosum population differences found with DBM analysis

    NASA Astrophysics Data System (ADS)

    Han, Zhaoying; Thornton-Wells, Tricia A.; Gore, John C.; Dawant, Benoit M.

    2011-03-01

    Deformation Based Morphometry (DBM) is a relatively new method used for characterizing anatomical differences among populations. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to one standard coordinate system. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithm on population differences that may be uncovered through DBM. In this study, we compared DBM results obtained with five well established non-rigid registration algorithms on the corpus callosum (CC) in thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Basis Algorithm (ABA); (2) Image Registration Toolkit (IRTK); (3) FSL Nonlinear Image Registration Tool (FSL); (4) Automatic Registration Tools (ART); and (5) the normalization algorithm available in SPM8. For each algorithm, the 3D deformation fields from all subjects to the atlas were obtained and used to calculate the Jacobian determinant (JAC) at each voxel in the mid-sagittal slice of the CC. The mean JAC maps for each group were compared quantitatively across different nonrigid registration algorithms. An ANOVA test performed on the means of the JAC over the Genu and the Splenium ROIs shows the JAC differences between nonrigid registration algorithms are statistically significant over the Genu for both groups and over the Splenium for the NC group. These results suggest that it is important to consider the effect of registration when using DBM to compute morphological differences in populations.

  10. Arteriovenous malformations of the corpus callosum: Pooled analysis and systematic review of literature

    PubMed Central

    Pabaney, Aqueel H.; Ali, Rushna; Kole, Maximillian; Malik, Ghaus M.

    2016-01-01

    Background: Arteriovenous malformations (AVMs) of the corpus callosum (CC) are rare entities. We performed a systematic review of the available literature to better define the natural history, patient characteristics, and treatment options for these lesions. Methods: A MEDLINE, Google Scholar, and The Cochrane Library search were performed for studies published through June 2015. Data from all eligible studies were used to examine epidemiology, natural history, clinical features, treatment strategies, and outcomes of patients with CC-AVMs. A systematic review and pooled analysis of the literature were performed. Results: Our search yielded 37 reports and 230 patients. Mean age at presentation was 26.8 years (±13.12 years). AVMs were most commonly located in the splenium (43%), followed by the body (31%), and then the genu (23%) of the CC. A Spetzler-Martin grade of III was the most common (37%). One hundred eighty-seven (81.3%) patients presented with hemorrhage, 91 (40%) underwent microsurgical excision, and 87 (38%) underwent endovascular embolization. Radiosurgery was performed on 57 (25%) patients. Complete obliteration of the AVM was achieved in 102 (48.1%) patients and approximately twice as often when microsurgery was performed alone or in combination with other treatment modalities (94% vs. 49%; P < 0.001). Mean modified Rankin Scale (mRS) at presentation was 1.54 and mean mRS at last follow-up was 1.31. This difference was not statistically significant (P = 0.35). Conclusion: We present an analysis of the pooled data in the form of a systematic review focusing on management of CC-AVMs. This review aims to provide a valuable tool to aid in decision making when dealing with this particular subtype of AVM. PMID:27127713

  11. Social communication in young children with traumatic brain injury: relations with corpus callosum morphometry.

    PubMed

    Ewing-Cobbs, Linda; Prasad, Mary R; Swank, Paul; Kramer, Larry; Mendez, Donna; Treble, Amery; Payne, Christa; Bachevalier, Jocelyne

    2012-05-01

    The purpose of the present investigation was to characterize the relations of specific social communication behaviors, including joint attention, gestures, and verbalization, with surface area of midsagittal corpus callosum (CC) subregions in children who sustained traumatic brain injury (TBI) before 7 years of age. Participants sustained mild (n=10) or moderate-severe (n=26) noninflicted TBI. The mean age at injury was 33.6 months; mean age at MRI was 44.4 months. The CC was divided into seven subregions. Relative to young children with mild TBI, those with moderate-severe TBI had smaller surface area of the isthmus. A semi-structured sequence of social interactions between the child and an examiner was videotaped and coded for specific social initiation and response behaviors. Social responses were similar across severity groups. Even though the complexity of their language was similar, children with moderate-severe TBI used more gestures than those with mild TBI to initiate social overtures; this may indicate a developmental lag or deficit as the use of gestural communication typically diminishes after age 2. After controlling for age at scan and for total brain volume, the correlation of social interaction response and initiation scores with the midsagittal surface area of the CC regions was examined. For the total group, responding to a social overture using joint attention was significantly and positively correlated with surface area of all regions, except the rostrum. Initiating joint attention was specifically and negatively correlated with surface area of the anterior midbody. Use of gestures to initiate a social interaction correlated significantly and positively with surface area of the anterior and posterior midbody. Social response and initiation behaviors were selectively related to regional callosal surface areas in young children with TBI. Specific brainbehavior relations indicate early regional specialization of anterior and posterior CC for social

  12. N-Methyl-D-Aspartate Receptor-Mediated Axonal Injury in Adult Rat Corpus Callosum

    PubMed Central

    Zhang, Jingdong; Liu, Jianuo; Fox, Howard S.; Xiong, Huangui

    2013-01-01

    Damage to white matter such as corpus callosum (CC) is a pathological characteristic in many brain disorders. Glutamate (Glut) excitotoxicity through AMPA receptors on oligodendrocyte (OL) was previously considered as a mechanism for white matter damage. Recent studies have shown that N-methyl-D-aspartate receptors (NMDARs) are expressed on myelin sheath of neonatal rat OL processes and that activation of these receptors mediated demyelization. Whether NMDARs are expressed in the adult CC and are involved in excitotoxic axonal injury remains to be determined. In this study, we demonstrate the presence of NMDARs in the adult rat CC and their distributions in myelinated nerve fibers and OL somata by means of immunocytochemical staining and Western blot. Incubation of the CC slices with Glut or NMDA induced axonal injury as revealed by analyzing amplitude of CC fiber compound action potentials (CAPs) and input–output response. Both Glut and NMDA decreased the CAP amplitude and input–output responses, suggesting an involvement of NMDARs in Glut- and NMDA-induced axonal injury. The involvement of NMDAR in Glut-induced axonal injury was further assayed by detection of β-amyloid precursor protein (β-APP) in the CC axonal fibers. Treatment of the CC slices with Glut resulted in β-APP accumulation in the CC fibers as detected by Western blot, reflecting an impairment of axonal transport function. This injurious effect of Glut on CC axonal transport was significantly blocked by MK801. Taken together, these results show that NMDARs are expressed in the adult CC and are involved in excitotoxic activity in adult CC slices in vitro. PMID:23161705

  13. Clinical utility of corpus callosum measurements in head sonograms of preterm infants: a cohort study

    PubMed Central

    Perenyi, Agnes; Amodio, John; Katz, Joanne S; Stefanov, Dimitre G

    2013-01-01

    Objective To assess the clinical usefulness of measurement of corpus callosum (CC) size in head ultrasound (HUS) to predict short-term neurodevelopmental (ND) outcomes in preterm infants. We hypothesised that including CC measurements in routine HUS will be an additional tool for early identification of infants at risk of adverse short-term ND outcome, over and above the predictive power of perinatal morbidities. Design Retrospective cohort study. Setting Level III neonatal intensive care unit (NICU) and outpatient NICU follow-up clinic of an academic medical centre in New York City. Participants 929 HUS of 502 infants with gestational age of 23–36 weeks in African-American infants were initially studied. Exclusion criteria included those who died, had gross abnormalities in HUS, infants with race other than African-American, infants with suboptimal quality of HUS, late preterm infants and infants who did not participate in ND follow-up. A total of 173 infants completed the study. Interventions CC size (length and thickness) was measured in a subset of 87 infants who had routine HUS between 23 and 29 weeks (0–6 postnatal weeks). Relevant clinical variables were collected from chart reviews. ND assessments were completed in outpatient follow-up clinics. A statistical model was developed to assess the clinical utility and possible predictive value of CC measurements for adverse short-term ND outcome, while adjusting for perinatal morbidities. Primary and secondary outcome measures CC size and ND status. Results Measurements of CC size did not add substantial predictive power to predict short-term ND outcome beyond the information provided by the presence of morbidities related to prematurity. Conclusions No association was found between morbidities related to prematurity and short-term ND outcome and CC size in preterm infants. CC measurements in HUS early in life did not have an additional value in predicting short-term ND outcome, therefore did not seem to

  14. Primordial anisotropies in gauged hybrid inflation

    NASA Astrophysics Data System (ADS)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  15. The Stereoscopic Anisotropy Develops During Childhood

    PubMed Central

    Serrano-Pedraza, Ignacio; Herbert, William; Villa-Laso, Laura; Widdall, Michael; Vancleef, Kathleen; Read, Jenny C. A.

    2016-01-01

    Purpose Human vision has a puzzling stereoscopic anisotropy: horizontal depth corrugations are easier to detect than vertical depth corrugations. To date, little is known about the function or the underlying mechanism responsible for this anisotropy. Here, we aim to find out whether this anisotropy is independent of age. To answer this, we compare detection thresholds for horizontal and vertical depth corrugations as a function of age. Methods The depth corrugations were defined solely by the horizontal disparity of random dot patterns. The disparities depicted a horizontal or vertical sinusoidal depth corrugation of spatial frequency 0.1 cyc/deg. Detection thresholds were obtained using Bayesian adaptive staircases from a total of 159 subjects aged from 3 to 73 years. For each participant we computed the anisotropy index, defined as the log10-ratio of the detection threshold for vertical corrugations divided by that for horizontal. Results Anisotropy index was highly variable between individuals but was positive in 87% of the participants. There was a significant correlation between anisotropy index and log-age (r = 0.21, P = 0.008) mainly driven by a significant difference between children and adults. In 67 children aged 3 to 13 years, the mean anisotropy index was 0.34 ± 0.38 (mean ± SD, meaning that vertical thresholds were on average 2.2 times the horizontal ones), compared with 0.59 ± 0.55 in 84 adults aged 18 to 73 years (vertical 3.9 times horizontal). This was mainly driven by a decline in the sensitivity to vertical corrugations. Children had poorer stereoacuity than adults, but had similar sensitivity to adults for horizontal corrugations and were actually more sensitive than adults to vertical corrugations. Conclusions The fact that adults show stronger stereo anisotropy than children raises the possibility that visual experience plays a critical role in developing and strengthening the stereo anisotropy. PMID:26962692

  16. X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hossein Nedjad, S.; Hosseini Nasab, F.; Movaghar Garabagh, M. R.; Damadi, S. R.; Nili Ahmadabadi, M.

    2011-08-01

    18Ni (300) maraging steel possessing lath martensite structure was deformed by four passes of equal-channel angular pressing (ECAP) at ambient temperature. Line profile analysis (LPA) of X-ray diffraction (XRD) patterns identified strong strain anisotropy and remarkable increases in the relative fraction of screw dislocations after ECAP. The strain anisotropy was reasonably accounted for by the anisotropy of elastic constants. Domination of screw dislocations in the deformed structure was attributed to the preferred annihilation of edge dislocations in the early stages of deformation along with the difficulties for annihilation of screw dislocations by cross slipping. Cobalt addition was mainly assumed to make cross slipping difficult by reducing stacking-fault energy and favoring short-range ordering.

  17. Orthogonal Invariant Sets of the Diffusion Tensor and the Development of a Curvilinear Set Suitable for Low-Anisotropy Tissues

    PubMed Central

    Damion, Robin A.; Radjenovic, Aleksandra; Ingham, Eileen; Jin, Zhongmin; Ries, Michael E.

    2013-01-01

    We develop a curvilinear invariant set of the diffusion tensor which may be applied to Diffusion Tensor Imaging measurements on tissues and porous media. This new set is an alternative to the more common invariants such as fractional anisotropy and the diffusion mode. The alternative invariant set possesses a different structure to the other known invariant sets; the second and third members of the curvilinear set measure the degree of orthotropy and oblateness/prolateness, respectively. The proposed advantage of these invariants is that they may work well in situations of low diffusion anisotropy and isotropy, as is often observed in tissues such as cartilage. We also explore the other orthogonal invariant sets in terms of their geometry in relation to eigenvalue space; a cylindrical set, a spherical set (including fractional anisotropy and the mode), and a log-Euclidean set. These three sets have a common structure. The first invariant measures the magnitude of the diffusion, the second and third invariants capture aspects of the anisotropy; the magnitude of the anisotropy and the shape of the diffusion ellipsoid (the manner in which the anisotropy is realised). We also show a simple method to prove the orthogonality of the invariants within a set. PMID:24244366

  18. A perturbative DFT approach for magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Khoo, Khoong Hong; Laskowski, Robert

    2017-04-01

    We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin-orbit Hamiltonian for selected spin polarizations, as in the conventional ;force theorem; approach, we show that the effect can be cast into a redefined form of the spin-orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.

  19. Mechanical anisotropy of the Yucca Mountain tuffs

    SciTech Connect

    Price, R.H.; Boyd, P.J.; Martin, R.J.; Haupt, R.W.; Noel, J.S.

    1991-12-31

    Three series of measurements were performed on oriented cores of several Yucca Mountain tuffs to determine the importance of mechanical anisotropy in the intact rock. Outcrop and drillhole samples were tested for acoustic velocities, linear compressibilities, and strengths in different orientations. The present data sets are preliminary, but suggest the tuffs are transversely anisotropic for these mechanical properties. The planar fabric that produces the anisotropy is believed to be predominantly the result of the preferred orientation of shards and pumice fragments. The potential of significant anisotropy has direct relevance to the formulation of constitutive formulation and the analyses of an underground opening within the Yucca Mountain.

  20. Macroscopic anisotropy in AA5019A sheets

    SciTech Connect

    Choi, S.H.; Brem, J.C.; Barlat, F.; Oh, K.H.

    2000-05-11

    The macroscopic anisotropy for typical texture components in aluminum alloys and AA5019A sheet samples (H48 and O temper conditions) were investigated. In order to simultaneously consider the effects of morphological texture and crystallographic texture on macroscopic anisotropy, predictions of plastic properties were carried out using a full-constraints Taylor model and a visco-plastic self-consistent (VPSC) polycrystal model. The yield stress and r-value (width-to-thickness plastic strain ratio in uniaxial tension) anisotropy predicted using the VPSC model were in good agreement with experimental data.

  1. Non-Bunch-Davies statistical anisotropies

    SciTech Connect

    Chen, Xingang; Wang, Yi E-mail: yi.wang@ipmu.jp

    2014-07-01

    We introduce a generic mechanism that can extend the effects of relic anisotropies at the beginning of inflation to relatively much shorter scales in density perturbations. This is induced by non-Bunch-Davies states of the quantum fluctuations, and can show up in the non-oscillatory components of the density perturbations. This mechanism works for general forms of anisotropies, and, to illustrate it, we use an example of relic vector field. The detailed scale-dependence of these anisotropies can be used to probe the initial quantum state of our universe.

  2. Dielectric determination of rock fabric anisotropy

    NASA Astrophysics Data System (ADS)

    Hawton, M.; Borradaile, G.

    1989-09-01

    We have measured the dielectric anisotropy of specimens of a slate that formed by a single episode of metamorphism and deformation of a volcanic tuff. The dielectric anisotropies can be represented by oblate ellipsoids that are comparable in shape with the strain ellipsoids determined from the changes in thickness of the rims of accretionary lapilli in the slate. The rocks studied are largely made up of platy chlorite grains, and discs cut parallel to the schistosity often exhibit an anomalous low-frequency dispersion. The magnetic susceptibility anisotropies are also oblate but their shapes do not compare as well with the strain as they have less extreme ellipsoidal shapes.

  3. ANISOTROPY OF X-RAY BURSTS FROM NEUTRON STARS WITH CONCAVE ACCRETION DISKS

    SciTech Connect

    He, C.-C.; Keek, L.

    2016-03-01

    Emission from neutron stars and accretion disks in low-mass X-ray binaries is anisotropic. The non-spherical shape of the disk as well as blocking of the neutron star by the disk make the observed flux dependent on the inclination angle of the disk with respect to the line of sight. This is of importance for the interpretation of thermonuclear X-ray bursts from neutron stars. Because part of the X-ray burst is reflected off the disk, the observed burst flux depends on the anisotropies for both direct emission from the neutron star and reflection off the disk. This influences measurements of source distance, mass accretion rate, and constraints on the neutron star’s equation of state. Previous predictions of the anisotropy factors assumed a geometrically flat disk. Detailed observations of two so-called superbursts allowed for the direct and the reflected burst fluxes to each be measured separately. The reflection fraction was much higher than what the anisotropies of a flat disk can account for. We create numerical models to calculate the anisotropy factors for different disk shapes, including concave disks. We present the anisotropy factors of the direct and reflected burst fluxes separately, as well as the anisotropy of the persistent flux. Reflection fractions substantially larger than unity are produced in the case where the inner accretion disk increases steeply in height, such that part of the star is blocked from view. Such a geometry could possibly be induced by the X-ray burst if X-ray heating causes the inner disk to puff up.

  4. Fracture toughness anisotropy in shale

    NASA Astrophysics Data System (ADS)

    Chandler, Michael R.; Meredith, Philip G.; Brantut, Nicolas; Crawford, Brian R.

    2016-03-01

    The use of hydraulic fracturing to recover shale gas has focused attention on the fundamental fracture properties of gas-bearing shales, but there remains a paucity of available experimental data on their mechanical and physical properties. Such shales are strongly anisotropic, so that their fracture propagation trajectories depend on the interaction between their anisotropic mechanical properties and the anisotropic in situ stress field in the shallow crust. Here we report fracture toughness measurements on Mancos shale determined in all three principal fracture orientations: Divider, Short Transverse, and Arrester, using a modified short-rod methodology. Experimental results for a range of other sedimentary and carbonate rocks are also reported for comparison purposes. Significant anisotropy is observed in shale fracture toughness measurements at ambient conditions, with values, as high as 0.72 MPa m1/2 where the crack plane is normal to the bedding, and values as low as 0.21 MPa m1/2 where the crack plane is parallel to the bedding. For cracks propagating nonparallel to bedding, we observe a tendency for deviation toward the bedding-parallel orientation. Applying a maximum energy release rate criterion, we determined the conditions under which such deviations are more or less likely to occur under more generalized mixed-mode loading conditions. We find for Mancos shale that the fracture should deviate toward the plane with lowest toughness regardless of the loading conditions.

  5. SOLARMAX/Electron Pitch Angle Anisotropy Distributions

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This final research report summarizes the scientific work performed by The Aerospace Corporation on SOLARMAX/Electron Pitch Angle Anisotropy Distributions. The period of performance was from June 1, 2000 to December 31, 2001.

  6. Magnetic anisotropy due to the Casimir effect

    SciTech Connect

    Metalidis, G.; Bruno, P.

    2010-02-15

    We consider the Casimir interaction between a ferromagnetic and a nonmagnetic mirror and show how the Casimir effect gives rise to a magnetic anisotropy in the ferromagnetic layer. The anisotropy is out of plane if the nonmagnetic plate is optically isotropic. If the nonmagnetic plate shows a uniaxial optical anisotropy (with optical axis in the plate plane), we find an in-plane magnetic anisotropy. In both cases, the energetically most favorable magnetization orientation is given by the competition between polar, longitudinal, and transverse contributions to the magneto-optical Kerr effect and will therefore depend on the interplate distance. Numerical results will be presented for a magnetic plate made out of Fe and nonmagnetic plates of Au (optically isotropic), quartz, calcite, and barium titanate (all uniaxially birefringent).

  7. Cellulose and the Control of Growth Anisotropy

    SciTech Connect

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  8. Elastic anisotropy of Earth's inner core.

    PubMed

    Belonoshko, Anatoly B; Skorodumova, Natalia V; Rosengren, Anders; Johansson, Börje

    2008-02-08

    Earth's solid-iron inner core is elastically anisotropic. Sound waves propagate faster along Earth's spin axis than in the equatorial plane. This anisotropy has previously been explained by a preferred orientation of the iron alloy hexagonal crystals. However, hexagonal iron becomes increasingly isotropic on increasing temperature at pressures of the inner core and is therefore unlikely to cause the anisotropy. An alternative explanation, supported by diamond anvil cell experiments, is that iron adopts a body-centered cubic form in the inner core. We show, by molecular dynamics simulations, that the body-centered cubic iron phase is extremely anisotropic to sound waves despite its high symmetry. Direct simulations of seismic wave propagation reveal an anisotropy of 12%, a value adequate to explain the anisotropy of the inner core.

  9. IMPRINT OF A 2 MILLION YEAR OLD SOURCE ON THE COSMIC-RAY ANISOTROPY

    SciTech Connect

    Savchenko, V.; Semikoz, D. V.; Kachelrieß, M.

    2015-08-20

    We study numerically the anisotropy of the cosmic-ray (CR) flux emitted by a single source calculating the trajectories of individual CRs. We show that the contribution of a single source to the observed anisotropy is determined solely by the fraction the source contributes to the total CR intensity, its age, and its distance and does not depend on the CR energy at late times. Therefore, the observation of a constant dipole anisotropy indicates that a single source dominates the CR flux in the corresponding energy range. A natural explanation for the plateau between 2–20 TeV observed in the CR anisotropy is thus the presence of a single, nearby source. For the source age of 2 Myr, as suggested by the explanation of the antiproton and positron data from PAMELA and AMS-02 through a local source, we determine the source distance as ∼200 pc. Combined with the contribution of the global CR sea calculated in the escape model, we can explain qualitatively the data for the dipole anisotropy. Our results suggest that the assumption of a smooth CR source distribution should be abandoned between ≃200 GeV and 1 PeV.

  10. Cortical Depth Dependence of the Diffusion Anisotropy in the Human Cortical Gray Matter In Vivo

    PubMed Central

    Truong, Trong-Kha; Guidon, Arnaud; Song, Allen W.

    2014-01-01

    Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625×0.625×3 mm) and high spatial fidelity with no scan time penalty. The results show: (i) a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii) a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo. PMID:24608869

  11. Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo.

    PubMed

    Truong, Trong-Kha; Guidon, Arnaud; Song, Allen W

    2014-01-01

    Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625 × 0.625 × 3 mm) and high spatial fidelity with no scan time penalty. The results show: (i) a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii) a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo.

  12. Imprint of a 2 Million Year Old Source on the Cosmic-Ray Anisotropy

    NASA Astrophysics Data System (ADS)

    Savchenko, V.; Kachelrieß, M.; Semikoz, D. V.

    2015-08-01

    We study numerically the anisotropy of the cosmic-ray (CR) flux emitted by a single source calculating the trajectories of individual CRs. We show that the contribution of a single source to the observed anisotropy is determined solely by the fraction the source contributes to the total CR intensity, its age, and its distance and does not depend on the CR energy at late times. Therefore, the observation of a constant dipole anisotropy indicates that a single source dominates the CR flux in the corresponding energy range. A natural explanation for the plateau between 2-20 TeV observed in the CR anisotropy is thus the presence of a single, nearby source. For the source age of 2 Myr, as suggested by the explanation of the antiproton and positron data from PAMELA and AMS-02 through a local source, we determine the source distance as ˜200 pc. Combined with the contribution of the global CR sea calculated in the escape model, we can explain qualitatively the data for the dipole anisotropy. Our results suggest that the assumption of a smooth CR source distribution should be abandoned between ≃200 GeV and 1 PeV.

  13. Temperature dependent magnetization in Co-base nanowire arrays: Role of crystalline anisotropy

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Vázquez, M.; Vega, V.; García, J.; Rosa, W. O.; del Real, R. P.; Prida, V. M.

    2012-04-01

    Co, Co(1-x)Pdx, and Co(1-y)Niy nanowire arrays have been prepared by electrochemical template-assisted growth. Hcp, fcc or both phases are detected in Co nanowires depending on their length (300 nm to 40 μm) and on the content of Pd (0 ≤ x ≤ 0.4) and Ni (0 ≤ y ≤ 0.8). Their magnetic behavior has been studied under longitudinal and perpendicular applied fields. The effective magnetic anisotropy is mostly determined by the balance between the shape and the crystalline terms, the latter depending on the fractional volume of hcp phase with strong perpendicular anisotropy and fcc phase with weaker longitudinal anisotropy. The temperature dependence of remanence and coercivity and the eventual observation of compensation temperature is interpreted as due to the different temperature dependence of shape and hcp crystalline anisotropy. Optimum longitudinal magnetic anisotropy is achieved in low Pd-content CoPd nanowires and in short Co nanowires.

  14. Apparent anisotropy in inhomogeneous isotropic media

    NASA Astrophysics Data System (ADS)

    Lin, Fan-Chi; Ritzwoller, Michael H.

    2011-09-01

    Surface waves propagating through a laterally inhomogeneous medium undergo wavefield complications such as multiple scattering, wave front healing, and backward scattering. Unless accounted for accurately, these effects will introduce a systematic isotropic bias in estimates of azimuthal anisotropy. We demonstrate with synthetic experiments that backward scattering near an observing station will introduce an apparent 360° periodicity into the azimuthal distribution of anisotropy near strong lateral variations in seismic wave speeds that increases with period. Because it violates reciprocity, this apparent 1ψ anisotropy, where ψ is the azimuthal angle, is non-physical for surface waves and is, therefore, a useful indicator of isotropic bias. Isotropic bias of the 2ψ (180° periodicity) component of azimuthal anisotropy, in contrast, is caused mainly by wave front healing, which results from the broad forward scattering part of the surface wave sensitivity kernel. To test these predictions, we apply geometrical ray theoretic (eikonal) tomography to teleseismic Rayleigh wave measurements across the Transportable Array component of USArray to measure the directional dependence of phase velocities between 30 and 80 s period. Eikonal tomography accounts for multiple scattering (ray bending) but not finite frequency effects such as wave front healing or backward scattering. At long periods (>50 s), consistent with the predictions from the synthetic experiments, a significant 1ψ component of azimuthal anisotropy is observed near strong isotropic structural contrasts with fast directions that point in the direction of increasing phase speeds. The observed 2ψ component of azimuthal anisotropy is more weakly correlated with synthetic predictions of isotropic bias, probably because of the imprint of intrinsic structural anisotropy. The observation of a 1ψ component of azimuthal anisotropy is a clear indicator of isotropic bias in the inversion caused by unmodelled

  15. The Kondo necklace model with planar anisotropy

    NASA Astrophysics Data System (ADS)

    Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.

    2009-10-01

    We study the one-dimensional anisotropic Kondo necklace model at zero temperature through White's density matrix renormalization group technique. The ground state energy and the spin gap were calculated as a function of the exchange parameter for two anisotropy values. We found a finite critical point separating a Kondo singlet from an antiferromagnetic phase. The transition is highly congruent with a Kosterlitz-Thouless form. We observed that the critical point increases with the anisotropy.

  16. ANISOTROPY DETERMINATIONS IN EXCHANGE SPRING MAGNETS.

    SciTech Connect

    LEWIS,L.H.; HARLAND,C.L.

    2002-08-18

    Ferromagnetic nanocomposites, or ''exchange spring'' magnets, possess a nanoscaled microstructure that allows intergrain magnetic exchange forces to couple the constituent grains and alter the system's effective magnetic anisotropies. While the effects of the anisotropy alterations are clearly seen in macroscopic magnetic measurement, it is extremely difficult to determine the detailed effects of the system's exchange coupling, such as the interphase exchange length, the inherent domain wall widths or the effective anisotropies of the system. Clarification of these materials parameters may be obtained from the ''micromagnetic'' phenomenological model, where the assumption of magnetic reversal initiating in the magnetically-soft regions of the exchange-spring maqet is explicitly included. This approach differs from that typically applied by other researchers and allows a quantitative estimate of the effective anisotropies of an exchange spring system. Hysteresis loops measured on well-characterized nanocomposite alloys based on the composition Nd{sub 2}Fe{sub 14}B + {alpha}-Fe at temperatures above the spin reorientation temperature were analyzed within the framework of the micromagnetic phenomenological model. Preliminary results indicate that the effective anisotropy constant in the material is intermediate to that of bulk {alpha}-Fe and bulk Nd{sub 2}Fe{sub 14}B and increases with decreasing temperature. These results strongly support the idea that magnetic reversal in nanocomposite systems initiates in the lower-anisotropy regions of the system, and that the soft-phase regions become exchange-hardened by virtue of their proximity to the magnetically-hard regions.

  17. Polymicrogyria, Large Corpus Callosum and Psychomotor Retardation in Four-Year-Old Girl: Potential Association Based on MR Findings. A Case Report and Literature Review.

    PubMed

    Budai, Caterina; Moscato, Giulia; Patruno, Francesco; Leonardi, Marco; Maffei, Monica

    2014-10-01

    SUMMARY - We describe a child from consanguineous parents presenting mega corpus callosum (MegaCC), polymicrogyria, psychomotor retardation with swallowing difficulties and language impairment perhaps linked to the syndrome of megalencephaly-polymicrogyria-mega corpus callosum (MEG-PMG-MegaCC). Reviewing the literature, we speculate that MegaCC, psychomotor retardation and anomalies in cortical migration are the three pathognomonic features. The presence of additional possibly associated anomalies such as megalencephaly, indicates that the spectrum of linked malformations with this rare syndrome is broad and yet to be defined.

  18. Low-cost, rapidly-developed, 3D printed in vitro corpus callosum model for mucopolysaccharidosis type I

    PubMed Central

    Tabet, Anthony; Gardner, Matthew; Swanson, Sebastian; Crump, Sydney; McMeekin, Austin; Gong, Diana; Tabet, Rebecca; Hacker, Benjamin; Nestrasil, Igor

    2017-01-01

    The rising prevalence of high throughput screening and the general inability of (1) two dimensional (2D) cell culture and (2) in vitro release studies to predict in vivo neurobiological and pharmacokinetic responses in humans has led to greater interest in more realistic three dimensional (3D) benchtop platforms. Advantages of 3D human cell culture over its 2D analogue, or even animal models, include taking the effects of microgeometry and long-range topological features into consideration. In the era of personalized medicine, it has become increasingly valuable to screen candidate molecules and synergistic therapeutics at a patient-specific level, in particular for diseases that manifest in highly variable ways. The lack of established standards and the relatively arbitrary choice of probing conditions has limited in vitro drug release to a largely qualitative assessment as opposed to a predictive, quantitative measure of pharmacokinetics and pharmacodynamics in tissue. Here we report the methods used in the rapid, low-cost development of a 3D model of a mucopolysaccharidosis type I patient’s corpus callosum, which may be used for cell culture and drug release. The CAD model is developed from in vivo brain MRI tracing of the corpus callosum using open-source software, printed with poly (lactic-acid) on a Makerbot Replicator 5X, UV-sterilized, and coated with poly (lysine) for cellular adhesion. Adaptations of material and 3D printer for expanded applications are also discussed. PMID:28357042

  19. A T1 and DTI fused 3D corpus callosum analysis in pre- vs. post-season contact sports players

    NASA Astrophysics Data System (ADS)

    Lao, Yi; Law, Meng; Shi, Jie; Gajawelli, Niharika; Haas, Lauren; Wang, Yalin; Leporé, Natasha

    2015-01-01

    Sports related traumatic brain injury (TBI) is a worldwide public health issue, and damage to the corpus callosum (CC) has been considered as an important indicator of TBI. However, contact sports players suffer repeated hits to the head during the course of a season even in the absence of diagnosed concussion, and less is known about their effect on callosal anatomy. In addition, T1-weighted and diffusion tensor brain magnetic resonance images (DTI) have been analyzed separately, but a joint analysis of both types of data may increase statistical power and give a more complete understanding of anatomical correlates of subclinical concussions in these athletes. Here, for the first time, we fuse T1 surface-based morphometry and a new DTI analysis on 3D surface representations of the CCs into a single statistical analysis on these subjects. Our new combined method successfully increases detection power in detecting differences between pre- vs. post-season contact sports players. Alterations are found in the ventral genu, isthmus, and splenium of CC. Our findings may inform future health assessments in contact sports players. The new method here is also the first truly multimodal diffusion and T1-weighted analysis of the CC, and may be useful to detect anatomical changes in the corpus callosum in other multimodal datasets.

  20. Anisotropy in solar wind plasma turbulence

    PubMed Central

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  1. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  2. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    SciTech Connect

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-15

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  3. Abnormal Corpus Callosum Connectivity, Socio-Communicative Deficits, and Motor Deficits in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study

    ERIC Educational Resources Information Center

    Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako

    2014-01-01

    In addition to social and communicative deficits, many studies have reported motor deficits in autism spectrum disorder (ASD). This study investigated the macro and microstructural properties of the corpus callosum (CC) of 18 children with ASD and 12 typically developing controls using diffusion tensor imaging tractography. We aimed to explore…

  4. Identification of a de novo microdeletion 1q44 in a patient with hypogenesis of the corpus callosum, seizures and microcephaly - A case report.

    PubMed

    Westphal, Dominik S; Andres, Stephanie; Beitzel, Kirsten I; Makowski, Christine; Meitinger, Thomas; Hoefele, Julia

    2017-03-21

    Microdeletion 1q44 on the long arm of chromosome 1 leads to a phenotype that includes microcephaly, seizure, agenesis or hypogenesis of the corpus callosum, polydactyly, congenital heart defects and severe developmental delay along with characteristic facial dysmorphic signs. Until today, the distinct genetic causes for the different symptoms remain unclear. We here report a 1.2Mb de novo microdeletion 1q44 identified by performing a SNP array analysis. The female patient presented with microcephaly, seizure, hypogenesis of corpus callosum, postaxial hexadactyly, an atrial septal defect, a ventricular septal defect, hypertelorism, a long and smooth philtrum, thin vermilion borders, and micrognathia, all common features of microdeletion 1q44. An additionally performed chromosome analysis excluded any chromosomal rearrangements. The deleted region included the genes ZBTB18 as well as HNRNPU amongst others. Both are possibly candidate genes for the dysgenesis of the corpus callosum. AKT3, another candidate gene, was not affected by the deletion in this patient. Thus, the genetic findings in this case report spotlight ZBTB18 and HNRNPU in the genesis of the typical microdeletion 1q44 symptoms, especially concerning the dysgenesis of the corpus callosum, and therefore could help to unveil more of the genetic background of this syndrome.

  5. Introducing anisotropic Minkowski functionals and quantitative anisotropy measures for local structure analysis in biomedical imaging

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; De, Titas; Lochmüller, Eva; Eckstein, Felix; Nagarajan, Mahesh B.

    2013-03-01

    The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck regions when compared to the trochanter region (p < 10-4). We also evaluated the ability of such AMFs to predict bone strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging applications.

  6. Abnormal increase of neuronal precursor cells and exacerbated neuroinflammation in the corpus callosum in murine model of systemic lupus erythematosus

    PubMed Central

    Leung, Joseph Wai-Hin; Lau, Benson Wui-Man; Chan, Vera Sau-Fong; Lau, Chak-Sing; So, Kwok-Fai

    2016-01-01

    Purpose: Systemic Lupus Erythematosus (SLE) is an autoimmune disease which is characterised by elevated levels of autoantibodies and cytokines in the body. Via alteration of the regulation of inflammation, damage to different organ systems, including the central nervous system (CNS), was found in SLE patients. Patients diagnosed with SLE were reported to suffer from different kinds of psychiatric signs and symptoms. As neurogenesis has been suggested to be a potential key player of psychiatric symptoms and emotional behavior disturbances, this study aims to investigate whether neurogenesis is altered in an animal model of SLE. Also, neuroinflammation was studied. Methods: Female NZB/W F1 mice were used as an animal model of SLE. Animals were divided into two groups: 1. pre-diseased mice (lupus-prone NZB/W F1 female mice, age 10–15 weeks, negative for proteinuria and with basal levels of serum anti-dsDNA autoantibodies) and 2. diseased mice (NZB/W F1 female mice, > 25 weeks of age, with elevated serum levels of anti-dsDNA autoantibodies and with persistent proteinuria of > 3 mg/ml for more than 2 weeks). Comparisons of the levels of neurogenesis and neuroinflammtion between two groups of mice were studied by the immunohistochemistry. Results: After the onset of SLE symptoms, a reduction of neurogenesis in the hippocampus was found, while there was a dramatic increase of doublecortin (DCX+) neuronal precursor cells in the corpus callosum (CC) and in the subventricular zone (SVZ). Meanwhile, exacerbated inflammation was present in the corpus callosum of the diseased mice, which was suggested by the increased number of GFAP+ cells and IBA-1+ cells. Conclusions: To the best of our knowledge, this is the first study showing an increase of neuronal precursor cells in the corpus callosum of the female NZB/W F1 mice. The present study suggests a coincidence but not a causal relationship between neurogenesis and neuroinflammation. The present results have

  7. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  8. The electromagnetic ion cyclotron beam anisotropy instability

    NASA Technical Reports Server (NTRS)

    Peter Gary, S.; Schriver, David

    1987-01-01

    Electromagnetic instabilities driven by an anisotropic, relatively cool ion beam are studied for the case in which both the beam and the instabilities propagate parallel or antiparallel to a uniform magnetic field. At modest beam-core relative drift speeds, sufficiently large perpendicular-to-parallel beam temperature ratios and sufficiently large plasma beta, the mode of fastest growth rate is the ion cyclotron beam anisotropy instability. Because the right-hand polarized waves observed upstream of slow shocks in the earth's magnetotail can lead to the appropriate beam anisotropy, the ion cyclotron instability may be present and account for the left-hand polarized magnetic waves observed there. Also, because of its relatively low phase speed, the ion cyclotron beam anisotropy instability may provide the scattering necessary for ion Fermi acceleration at slow shocks of sufficiently high plasma beta.

  9. Radial anisotropy ambient noise tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  10. Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem, and thalamus in different magnetic resonance imaging sequences.

    PubMed

    Moen, Kent G; Brezova, Veronika; Skandsen, Toril; Håberg, Asta K; Folvik, Mari; Vik, Anne

    2014-09-01

    The aim of this study was to explore the prognostic value of visible traumatic axonal injury (TAI) loads in different MRI sequences from the early phase after adjusting for established prognostic factors. Likewise, we sought to explore the prognostic role of early apparent diffusion coefficient (ADC) values in normal-appearing corpus callosum. In this prospective study, 128 patients (mean age, 33.9 years; range, 11-69) with moderate (n = 64) and severe traumatic brain injury (TBI) were examined with MRI at a median of 8 days (range, 0-28) postinjury. TAI lesions in fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and T2*-weighted gradient echo (T2*GRE) sequences were counted and FLAIR lesion volumes estimated. In patients and 47 healthy controls, mean ADC values were computed in 10 regions of interests in the normal-appearing corpus callosum. Outcome measure was the Glasgow Outcome Scale-Extended (GOS-E) at 12 months. In patients with severe TBI, number of DWI lesions and volume of FLAIR lesions in the corpus callosum, brain stem, and thalamus predicted outcome in analyses with adjustment for age, Glasgow Coma Scale score, and pupillary dilation (odds ratio, 1.3-6.9; p = <0.001-0.017). The addition of Rotterdam CT score and DWI lesions in the corpus callosum yielded the highest R2 (0.24), compared to all other MRI variables, including brain stem lesions. For patients with moderate TBI only the number of cortical contusions (p = 0.089) and Rotterdam CT score (p = 0.065) tended to predict outcome. Numbers of T2*GRE lesions did not affect outcome. Mean ADC values in the normal-appearing corpus callosum did not differ from controls. In conclusion, the loads of visible TAI lesions in the corpus callosum, brain stem, and thalamus in DWI and FLAIR were independent prognostic factors in patients with severe TBI. DWI lesions in the corpus callosum were the most important predictive MRI variable. Interestingly, number of cortical

  11. The effect of sex and handedness on white matter anisotropy: a diffusion tensor magnetic resonance imaging study.

    PubMed

    Powell, J L; Parkes, L; Kemp, G J; Sluming, V; Barrick, T R; García-Fiñana, M

    2012-04-05

    Diffusion tensor magnetic resonance imaging provides a way of assessing the asymmetry of white matter (WM) connectivity, the degree of anisotropic diffusion within a given voxel being a marker of coherently bundled myelinated fibers. Voxel-based statistical analysis was performed on fractional anisotropy (FA) images of 42 right- and 40 left-handers, to assess differences in underlying WM anisotropy and FA asymmetry across the whole brain. Right-handers show greater anisotropy than left-handers in the uncinate fasciculus (UF) within the limbic lobe, and WM underlying prefrontal cortex, medial and inferior frontal gyri. Significantly greater leftward FA asymmetry in cerebellum posterior lobe is seen in left- than right-handers, and males show significantly greater rightward (right-greater-than-left) FA asymmetry in regions of middle occipital lobe, medial temporal gyrus, and a region of the superior longitudinal fasciculus underlying the supramarginal gyrus. Leftward (left-greater-than-right) anisotropy is found in regions of the arcuate fasciculus (AF), UF, and WM underlying pars triangularis in both handedness groups, with right-handers alone showing additional leftward FA asymmetry along the length of the superior temporal gyrus. Overall results indicate that although both handedness groups show anisotropy in similar WM regions, greater anisotropy is observed in right-handers compared with left-handers. The largest differences in FA asymmetry are found between males and females, suggesting a greater effect of sex than handedness on FA asymmetry.

  12. Fractional vector calculus and fractional Maxwell's equations

    SciTech Connect

    Tarasov, Vasily E.

    2008-11-15

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered.

  13. General quadrupolar statistical anisotropy: Planck limits

    NASA Astrophysics Data System (ADS)

    Ramazanov, S.; Rubtsov, G.; Thorsrud, M.; Urban, F. R.

    2017-03-01

    Several early Universe scenarios predict a direction-dependent spectrum of primordial curvature perturbations. This translates into the violation of the statistical isotropy of cosmic microwave background radiation. Previous searches for statistical anisotropy mainly focussed on a quadrupolar direction-dependence characterised by a single multipole vector and an overall amplitude g*. Generically, however, the quadrupole has a more complicated geometry described by two multipole vectors and g*. This is the subject of the present work. In particular, we limit the amplitude g* for different shapes of the quadrupole by making use of Planck 2015 maps. We also constrain certain inflationary scenarios which predict this kind of more general quadrupolar statistical anisotropy.

  14. Mobility anisotropy of two-dimensional semiconductors

    NASA Astrophysics Data System (ADS)

    Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong

    2016-12-01

    The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.

  15. Anisotropy of the Topopah Spring Member Tuff

    SciTech Connect

    Martin, R.J. III; Boyd, P.J.; Haupt, R.W.; Price, R.H.

    1992-07-01

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed.

  16. Effects of anisotropy on dynamic tensile behavior

    SciTech Connect

    Schifert, S.K.; Davidson, R.F.; Maudlin, P.J.

    1991-01-01

    A stability analysis for an anisotropic stretching rod is presented. We consider the particular case of a rapidly stretching titanium jet using a continuum code to examine anisotropic plastic response in the finite-neck regime. It was found that the classical analysis (yield strength is inversely proportional to stability) is insufficient; anisotropic jets can be more or less stable than their maximum or minimum yield strengths, depending on initial perturbations and the orientation of the anisotropy. One particular anisotropy -- with the weak direction along the jet axis -- appears to be generally stabilizing. 10 refs., 6 figs.

  17. Magnetic anisotropy of YFe3 compound

    NASA Astrophysics Data System (ADS)

    Bolyachkin, A. S.; Neznakhin, D. S.; Garaeva, T. V.; Andreev, A. V.; Bartashevich, M. I.

    2017-03-01

    Magnetization curves of an YFe3 single crystal were measured along the basal plane and the c-axis within the temperature range of 2-600 K. Their analysis provided temperature dependencies of the parameter p = (Mep -Mha) /Mep characterizing saturation magnetization anisotropy and magnetocrystalline anisotropy constants K1 and K2. The latter was obtained using the modified Sucksmith-Thompson method and the numeric technique of approximation which takes into account slight misorientation between applied magnetic field and the hard magnetization axis allowing to describe magnetization curves accurately.

  18. Weak Elastic Anisotropy in Global Seismology

    NASA Astrophysics Data System (ADS)

    Thomsen, L.; Anderson, D. L.

    2014-12-01

    Most of the major features of the Earth's interior were discovered using the concepts of isotropic seismology; however, subtle features require more realistic concepts. Although the importance of anisotropy has been known for over 50 years, only in the last decade has the increasing quality and quantity of data forced the wide recognition that anisotropyis crucial for accurate descriptions of upper mantle structure. The persistence of the "plume hypothesis", in spite of abundant evidence to the contrary, is partly based on the neglect of anisotropy, sparse and biased ray coverage, and the misuse of Occam's razor. Whereas isotropic inversion of teleseismic near-vertical travel-time datasets suggests the presence of deep vertical zones of low velocity (interpreted as mantle plumes), anisotropic inversion of data having a range of polarizations and directions of approach suggests instead shallow zones of relatively high anisotropy. This raises the possibility that current understanding of manyof the subtle features of Earth structure could be erroneous, caused by over-simplified analysis. The simplest plausible anisotropic model is that of polar anisotropy ("VTI" [sic!]), with a radial symmetry axis. The essential idea which makes anisotropic seismology feasible is the recognition that, in the Earth, the anisotropy is almost invariably weak, and the anisotropic equations (linearized in appropriately chosen small parameters) are quite simple (see below). These equations show that, to first order, the anisotropic variation of velocity is not governed by the individual Cab , but rather by the combinations of parameters given above. Hence, inversions should seek these combinations, rather than the individual moduli. The Rayleigh velocity VR is a simple function of VS0 and the P- and SV- anisotropies. The Love velocity VL is a complicated function of VS0 and the SH anisotropy γ. The simplest plausible model of azimuthal anisotropy is orthorhombic (not ("HTI" [sic

  19. Initialized Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  20. Binocular Interactions in the Lateral Suprasylvian Visual Area of Strabismic Cats Following Section of the Corpus Callosum.

    PubMed

    Di Stefano, M.; Lepore, F.; Ptito, M.; Bédard, S.; Marzi, C. A.; Guillemot, J. P.

    1991-01-01

    Visually responsive neurons have been recorded in the lateral suprasylvian area (LSA) of cats raised with either a convergent or a divergent strabismus. In contrast to areas 17 and 18, where many studies have documented a profound loss of binocularly activated neurons following early strabismus, in the LSA the majority of cells could still be binocularly driven. Acute or chronic section of the splenium of the corpus callosum reduced but did not abolish binocularity in the LSA. We propose that the widespread callosal connections, the large size of the receptive fields and the peculiar internal circuitry of the LSA all concur in permitting the maintenance of binocular coding in spite of early misalignment of the eyes.

  1. Hyperlexia and ambient echolalia in a case of cerebral infarction of the left anterior cingulate cortex and corpus callosum.

    PubMed

    Suzuki, Tadashi; Itoh, Shouichi; Hayashi, Mototaka; Kouno, Masako; Takeda, Katsuhiko

    2009-10-01

    We report the case of a 69-year-old woman with cerebral infarction in the left anterior cingulate cortex and corpus callosum. She showed hyperlexia, which was a distinctive reading phenomenon, as well as ambient echolalia. Clinical features also included complex disorders such as visual groping, compulsive manipulation of tools, and callosal disconnection syndrome. She read words written on the cover of a book and repeated words emanating from unrelated conversations around her or from hospital announcements. The combination of these two features due to a focal lesion has never been reported previously. The supplementary motor area may control the execution of established subroutines according to external and internal inputs. Hyperlexia as well as the compulsive manipulation of tools could be interpreted as faulty inhibition of preexisting essentially intact motor subroutines by damage to the anterior cingulate cortex reciprocally interconnected with the supplementary motor area.

  2. Agenesis of the corpus callosum in Turner's syndrome: report of a case and review of the literature.

    PubMed

    Lee, Ying-Ying; Hung, June; Chang, Ting-Yu; Huang, Chin-Chang

    2008-09-01

    Turner's syndrome (TS) is a genetic disorder caused by loss of entire or a substantial part of the X-chromosome, but association with central nervous system (CNS) abnormalities is rarely reported. A 32-year-old female with TS was found to have agenesis of the corpus callosum (ACC) and various clinical features including coarctation of aorta, hypertelorism, small jaw, short and webbed neck, cubitus valgus, and absence of the uterus. Karyotype analysis revealed X monosomy cell line (45, X). There have been only three other cases of TS associated with ACC. High prenatal lethality of TS fetuses with congenital CNS malformations may decrease the incidence of this association. Neuropsychological studies showed a normal intelligence neither prominent learning disability nor discrepancy between verbal and non-verbal items.

  3. Blindness, dancing extremities, and corpus callosum and brain stem involvement: an unusual presentation of fulminant subacute sclerosing panencephalitis.

    PubMed

    Singhi, Pratibha; Saini, Arushi Gahlot; Sankhyan, Naveen; Gupta, Pankaj; Vyas, Sameer

    2015-01-01

    A 4-year-old girl presented with acute visual loss followed 2 weeks later with loss of speech and audition, fulminant neuroregression, and choreo-athetoid movements of extremities. Fundus showed bilateral chorioretinitis. Electroencephalography showed periodic complexes. Measles antibody titers were elevated in both serum and cerebrospinal fluid, consistent with subacute sclerosing panencephalitis. Neuroimaging showed discontiguous involvement of splenium of the corpus callosum and ventral pons with sparing of cortical white matter. Our case highlights the atypical clinical and radiologic presentations of subacute sclerosing panencephalitis. Pediatricians need to be aware that necrotizing chorioretinitis in a child and/or atypical brain stem changes could be the heralding feature of this condition in endemic countries.

  4. Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats.

    PubMed

    Gu, Y; Zhao, Y; Qian, K; Sun, M

    2015-04-16

    The protective effects of taurine against closed head injury (CHI) have been reported. This study was designed to investigate whether taurine reduced white matter damage and hippocampal neuronal death through suppressing calpain activation after CHI in rats. Taurine (50 mg/kg) was administered intravenously 30 min and 4 h again after CHI. It was found that taurine lessened the corpus callosum damage, attenuated the neuronal cell death in hippocampal CA1 and CA3 subfields and improved the neurological functions 7 days after CHI. Moreover, it suppressed the over-activation of calpain, enhanced the levels of calpastatin, and reduced the degradation of neurofilament heavy protein, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. These data confirm the protective effects of taurine against gray and white matter damage due to CHI, and suggest that down-regulating calpain activation could be one of the protective mechanisms of taurine against CHI.

  5. Agenesis of the corpus callosum in ddN strain mouse associated with unusual facial appearance (flat-face).

    PubMed

    Ozaki, H S; Murakami, T H; Toyoshima, T; Shimada, M

    1984-02-01

    In the course of an experiment involving brother-sister matings between ddN strain mice, mice occurred with an unusual facial appearance (flat-face). Subsequently, 4 mice with flat-face were bred from the litters of the second birth (ca. 10% frequency). This flat-face was assumed to be the result of a malformed short nose, hypoplastic maxilla and mandible, and hypertelorism. These 4 flat-face mice exhibited no significant delays in growth, motor ability or the development of learning ability. Histologically, they were all characterized by an almost total absence of callosal fibers and the presence of abnormal longitudinal neuromatous bundles. Therefore, the flat-face mice may be useful as experimental animals for brain research, as one can easily judge that they lack the corpus callosum from the facial appearance.

  6. [Tachistoscope and dichotic listening test of the subject after the transection of the posterior part of the corpus callosum].

    PubMed

    Watanabe, S; Tasaki, H; Hojo, K; Yoshimura, I; Sato, T; Nakaoka, T; Iwabuchi, T

    1982-06-01

    The authors made neuropsychological studies by the tachistoscope and the dichotic listening test on a subject who had undergone the transection of the posterior part of the corpus callosum. As to the tachistoscopic recognition, stimulus material was composed with the various Japanese letters (Katakana, Hiragana, Kanji), various faces (variations of the eyebrow form and the mouth form) and various slopes of line. Table 1 shows results of the cases (the subject was the present case, subjects 1 and subject 2 were past cases). It was seen that the performance of the subject on Japanese letters tasks showed greater right visual field superiority than the one of subject 1 and subject 2. As to the auditory recognition, the tasks used for the dichotic listening test were the following (Table 2, 3, 4). Different digits (three pairs) of the subject showed greater right ear superiority (right ear: 61.1, left ear 5.9) than the ones of subject 1 and subject 2.

  7. Auditory interhemispheric transfer in relation to patterns of partial agenesis and hypoplasia of the corpus callosum in spina bifida meningomyelocele

    PubMed Central

    Hannay, H. Julia; Walker, Amy; Dennis, Maureen; Kramer, Larry; Blaser, Susan; Fletcher, Jack M.

    2009-01-01

    Spina bifida meningomyelocele with hydrocephalus (SBM) is commonly associated with anomalies of the corpus callosum (CC). We describe MRI patterns of regional CC agenesis and relate CC anomalies to functional laterality based on a dichotic listening test in 90 children with SBM and 27 typically developing controls. Many children with SBM (n = 40) showed regional CC anomalies in the form of agenesis of the rostrum and0or splenium, and a smaller number (n = 20) showed hypoplasia (thinning) of all CC regions (rostrum, genu, body, and splenium). The expected right ear advantage (REA) was exhibited by normal controls and children with SBM having a normal or hypoplastic splenium. It was not shown by children with SBM who were left handed, missing a splenium, or had a higher level spinal cord lesion. Perhaps the right hemisphere of these children is more involved in processing some aspects of linguistic stimuli. PMID:18764972

  8. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    PubMed Central

    Ghazikhanlou-sani, K.; Firoozabadi, S. M. P.; Agha-ghazvini, L.; Mahmoodzadeh, H.

    2016-01-01

    Introduction There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690.  With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). Conclusion DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues.  It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments. PMID:27672627

  9. Estimation of anisotropy parameters for shales based on an improved rock physics model, part 2: case study

    NASA Astrophysics Data System (ADS)

    Zhang, Feng

    2017-03-01

    Part 1 of this paper presented an improved shale rock physics model to enable the prediction of anisotropy parameters from both vertical and horizontal well logs. The predicted elastic constants were demonstrated using the published laboratory measurements of a Greenhorn shale in paper 1, and are more accurate than the estimations in the existing literature. In this paper, this model is applied to the well log data of an Upper Triassic shale formation to predict the VTI anisotropy parameters, which are usually difficult to measure directly in the borehole. The effective elastic constants are calculated for solid clay, aligned clay-fluid-kerogen, a rotated clay-fluid-kerogen mixture and shale step by step using different effective medium theories. The input to this workflow includes the volume fraction of minerals, kerogen and two different pore spaces. Two parameters (the lamination index and pore aspect ratio) need to be inverted simultaneously by fitting the vertical or horizontal logs. An estimation of the anisotropy parameters from the vertical well logs uses a least square inversion in terms of C 33 and C 44. The result is demonstrated by calibration with the seismic amplitude versus angle (AVA) response. Correlations are found between the anisotropy parameters (ε and δ) and rock properties (pore aspect ratio, lamination index, clay content and total porosity). In the horizontal well, the anisotropy parameters are predicted by minimizing the objective function in terms of C 11 and C 44. The overestimated qP-wave velocity of clay-rich shales in the horizontal well is anisotropy-corrected and thus provides a more appropriate V p–V s relation. The impact of strong VTI anisotropy on Poisson’s ratio is also overcome by the anisotropy-correction, thus improving the brittleness characterization of shale reservoirs.

  10. Tempered fractional calculus

    SciTech Connect

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  11. Relative sensitivity of formability to anisotropy

    SciTech Connect

    Logan, R.W.; Maker, B.N.

    1997-01-01

    This work compares the relative importance of material anisotropy in sheet forming as compared to other material and process variables. The comparison is made quantitative by the use of normalized dependencies of depth to failure (forming limit is reached) on various measures of anisotropy, as well as strain and rate sensitivity, friction, and tooling. Comparisons are made for a variety of forming processes examined previously in the literature as well as two examples of complex stampings in this work. 7 The examples rover a range from nearly pure draw to nearly pure stretch situations, and show that for materials following a quadratic yield criterion, anisotropy is among the most sensitive parameters influencing formability. For materials following higher-exponent yield criteria, the dependency is milder but is still of the order of most other process parameters. However, depending on the particular forming operation, it is shown that in some cases anisotropy may be ignored, whereas in others its consideration is crucial to a good quality analysis.

  12. Knitted Patterns as a Model for Anisotropy

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2012-01-01

    Anisotropy is a difficult concept, although it is often met in everyday life. This paper describes a simple model--knitted patterns--having anisotropic elastic properties. The elastic constant is measured for the force applied in different directions with respect to the knitting direction. It is also shown that the deformation of the knitted…

  13. Anisotropy of Wood in the Microwave Region

    ERIC Educational Resources Information Center

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  14. Global anisotropy and the thickness of continents.

    PubMed

    Gung, Yuancheng; Panning, Mark; Romanowicz, Barbara

    2003-04-17

    For decades there has been a vigorous debate about the depth extent of continental roots. The analysis of heat-flow, mantle-xenolith and electrical-conductivity data all indicate that the coherent, conductive part of continental roots (the 'tectosphere') is at most 200-250 km thick. Some global seismic tomographic models agree with this estimate, but others suggest that a much thicker zone of high velocities lies beneath continental shields, reaching a depth of at least 400 km. Here we show that this disagreement can be reconciled by taking into account seismic anisotropy. We show that significant radial anisotropy, with horizontally polarized shear waves travelling faster than those that are vertically polarized, is present under most cratons in the depth range 250-400 km--similar to that found under ocean basins at shallower depths of 80-250 km. We propose that, in both cases, the anisotropy is related to shear in a low-viscosity asthenospheric channel, located at different depths under continents and oceans. The seismically defined 'tectosphere' is then at most 200-250 km thick under old continents. The 'Lehmann discontinuity', observed mostly under continents at about 200-250 km, and the 'Gutenberg discontinuity', observed under oceans at depths of about 60-80 km, may both be associated with the bottom of the lithosphere, marking a transition to flow-induced asthenospheric anisotropy.

  15. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  16. The role of geological structure in crustal seismic anisotropy: identification and quantification of "structural anisotropy"

    NASA Astrophysics Data System (ADS)

    Okaya, D. A.; Johnson, S. E.; Vel, S.

    2010-12-01

    Seismic anisotropy is the cumulative interplay between propagating elastic waves and anisotropic earth material. Unraveling this effect in deformed crustal terranes is complex due to the roles of microscale fabric and macroscale structural geometry, the bending of seismic raypaths due to velocity gradients, and often the observation of anisotropy as second-order waveform/traveltime effects. While seismologists recognize that seismic anisotropy can originate from upper crustal fractures or by organized fine-scale layering of isotropic material, we focus on crustal anisotropy produced by the combined effects of microscale deformational fabrics and macroscale structural geometries formed during tectonic deformation and/or regional metamorphism. Material anisotropy involves at least four factors that contribute to seismic anisotropy: (1) microstructural characteristics including spatial arrangement, modal abundances, and crystallographic and shape orientations of constituent minerals, (2) inherent azimuthal variation of properties and approximation using symmetry classes, (3) bulk representation (effective media) of material properties at different scales, and (4) the types and internal geometries of macroscale structures. Based on the relative scales of fabric-filled geological structures and seismic wavelengths, a seismic wave may sample sub-portions of a structure or may pass through, responding to the bulk average of fine structure. While many seismologists focus on lattice preferred orientation (LPO), crystallographic preferred orientation (CPO), or shape preferred orientation (SPO) as the fine-scale cause of seismic anisotropy, we also recognize that a rock at the thin section to hand sample scale will define an amount of potential seismic anisotropy. However, the reorienting of sample-scale anisotropy by macroscale structures imparts its own effect. We define this response to larger-scale structure as "structural anisotropy". Furthermore, via the use of

  17. Fraction Sense: Foundational Understandings.

    PubMed

    Fennell, Francis Skip; Karp, Karen

    2016-08-09

    The intent of this commentary is to identify elements of fraction sense and note how the research studies provided in this special issue, in related but somewhat different ways, validate the importance of such understandings. Proficiency with fractions serves as a prerequisite for student success in higher level mathematics, as well as serving as a gateway to many occupations and varied contexts beyond the mathematics classroom. Fraction sense is developed through instructional opportunities involving fraction equivalence and magnitude, comparing and ordering fractions, using fraction benchmarks, and computational estimation. Such foundations are then extended to operations involving fractions and decimals and applications involving proportional reasoning. These components of fraction sense are all addressed in the studies provided in this issue, with particular consideration devoted to the significant importance of the use of the number line as a central representational tool for conceptually understanding fraction magnitude.

  18. TEMPERED FRACTIONAL CALCULUS

    PubMed Central

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2014-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690

  19. The microwave background anisotropies: Observations

    PubMed Central

    Wilkinson, David

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  20. Orbital anisotropy in cosmological haloes revisited

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Gottlöber, Stefan; Klypin, Anatoly

    2013-09-01

    The velocity anisotropy of particles inside dark matter (DM) haloes is an important physical quantity, which is required for the accurate modelling of mass profiles of galaxies and clusters of galaxies. It is typically measured using the ratio of the radial to tangential velocity dispersions at a given distance from the halo centre. However, this measure is insufficient to describe the dynamics of realistic haloes, which are not spherical and are typically quite elongated. Studying the velocity distribution in massive DM haloes in cosmological simulations, we find that in the inner parts of the haloes, the local velocity ellipsoids are strongly aligned with the major axis of the halo, the alignment being stronger for more relaxed haloes. In the outer regions of the haloes, the alignment becomes gradually weaker and the orientation is more random. These two distinct regions of different degree of the alignment coincide with two characteristic regimes of the DM density profile: a shallow inner cusp and a steep outer profile that are separated by a characteristic radius at which the density declines as ρ ∝ r-2. This alignment of the local velocity ellipsoids requires reinterpretation of features found in measurements based on the spherically averaged ratio of the radial to tangential velocity dispersions. In particular, we show that the velocity distribution in the central halo regions is highly anisotropic. For cluster-size haloes with mass 1014-1015 h-1 M⊙, the velocity anisotropy along the major axis is nearly independent of radius and is equal to β = 1 - σ ^2_perp/σ ^2_radial≈ 0.4, which is significantly larger than the previously estimated spherically averaged velocity anisotropy. The alignment of density and velocity anisotropies and the radial trends may also have some implications for the mass modelling based on kinematical data of objects such as galaxy clusters or dwarf spheroidals, where the orbital anisotropy is a key element in an unbiased mass

  1. A Modal Investigation of Elastic Anisotropy in Shallow Water Environments: A Study of Anisotropy Beyond VTI

    DTIC Science & Technology

    2010-10-01

    anisotropy in marine sediments are reported to be the alignment of cracks and/or pores in the sediment structure , preferred orientation of mineral...point out that the structure of the sediments evolves towards anisotropy with time. Hamilton (1978) reports results from the Deep Sea Drilling Project...somewhat tutorial in nature. The ultimate goal is to provide the background for the incorporation of range dependent structure in a coupled local

  2. Anisotropy in MHD turbulence due to a mean magnetic field

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.

    1982-01-01

    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.

  3. Effect of anisotropy on the scaling of connectivity and conductivity in continuum percolation theory.

    PubMed

    Sadeghnejad, S; Masihi, M; King, P R; Shojaei, A; Pishvaei, M

    2010-06-01

    We investigate the effects of anisotropy on the finite-size scaling of connectivity and conductivity of continuum percolation in three dimensions. We consider a system of size X×Y×Z in which cubic bodies of size a×b×c are placed randomly. We define two aspect ratios to request anisotropy then we expect that the displacement of average connected fraction P (averaged over the realizations), about the isotropic universal curves will be a function of the two aspect ratios. This is accounted by considering an apparent percolation threshold in each direction which leads to 50% of realizations connecting in that direction. We find the aspect ratios' dependency of the apparent threshold and investigate the finite-size scaling transformations for the mean connected fraction and its associated fluctuations. Moreover, we apply a single phase pressure solver to determine the conductivity of various realizations of the system. Finally we apply the same idea to account for the effect of anisotropy on the conductivity scaling.

  4. Cosmic microwave background anisotropies in the timescape cosmology

    NASA Astrophysics Data System (ADS)

    Nazer, M. Ahsan; Wiltshire, David L.

    2015-03-01

    We analyze the spectrum of cosmic microwave background (CMB) anisotropies in the timescape cosmology: a potentially viable alternative to homogeneous isotropic cosmologies without dark energy. We exploit the fact that the timescape cosmology is extremely close to the standard cosmology at early epochs to adapt existing numerical codes to produce CMB anisotropy spectra, and to match these as closely as possible to the timescape expansion history. A variety of matching methods are studied and compared. We perform Markov chain Monte Carlo analyses on the parameter space, and fit CMB multipoles 50 ≤ℓ≤2500 to the Planck satellite data. Parameter fits include a dressed Hubble constant, H0=61.0 km sec-1 Mpc-1 (±1.3 % stat) (±8 % sys), and a present void volume fraction fv 0=0.627 (±2.3 % stat) (±13 % sys). We find best fit likelihoods which are comparable to that of the best fit Λ CDM cosmology in the same multipole range. In contrast to earlier results, the parameter constraints afforded by this analysis no longer admit the possibility of a solution to the primordial lithium abundance anomaly. This issue is related to a strong constraint between the ratio of baryonic to nonbaryonic dark matter and the ratio of heights of the second and third acoustic peaks, which cannot be changed as long as the standard cosmology is assumed up to the surface of last scattering. These conclusions may change if backreaction terms are also included in the radiation-dominated primordial plasma.

  5. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Aüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schöder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cáardenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-06-01

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 × 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  6. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    DOE PAGES

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrativemore » values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.« less

  7. Anisotropy engineering in Co nanodiscs fabricated using prepatterned silicon pillars

    NASA Astrophysics Data System (ADS)

    Thirion, C.; Wernsdorfer, W.; Kläui, M.; Vaz, C. A. F.; Lewis, P.; Ahmed, H.; Bland, J. A. C.; Mailly, D.

    2006-04-01

    Magnetic nanodiscs are fabricated by depositing cobalt onto 10-30 nm diameter silicon nanopillars, which were prepatterned using gold colloids as etch masks. The magnetic anisotropy energy of individual nanodiscs is studied by measuring the angular dependence of switching fields using the micro-SQUID technique. The Stoner-Wohlfarth model, describing the magnetization reversal by unifom rotation, is used to analyse the data. The switching astroids of pure Co exhibit a cubic magnetocrystalline anisotropy indicating that the Co crystallites are fcc. After controlled oxidation of the nanoparticles, the anisotropy is dominated by a defect-induced uniaxial anisotropy, which means that the anisotropy can be used as a quality gauge.

  8. Anisotropy of magnetic susceptibility of some metamorphic minerals

    NASA Astrophysics Data System (ADS)

    Borradaile, G.; Keeler, W.; Alford, C.; Sarvas, P.

    1987-09-01

    The anisotropy of susceptibility of metamorphic rocks can be due to paramagnetic rock-forming silicates such as amphiboles, chlorites and micas. It is not always necessary to invoke fabrics of separate grains of iron oxide to explain the anisotropy. Minimum estimates of lattice anisotropies of typical samples of silicates have maximum-to-minimum ratios of 1.1-1.7. Since the magnetic anisotropies of most metamorphic rocks are less than this, these minerals can control the anisotropy of susceptibility because their preferred crystallographic orientations are usually very strong in comparison with the preferred dimensional orientation of magnetite and because they are more abundant than magnetite.

  9. Effect of Microstructural Anisotropy on the Electrochemical Behavior of Rolled Mild Steel

    NASA Astrophysics Data System (ADS)

    Choudhary, S.; Nanda, V.; Shekhar, S.; Garg, A.; Mondal, K.

    2017-01-01

    Warm rolling of a mild steel at 600 °C generates a microstructural anisotropy in the different planes corresponding to rolling direction, normal direction and transverse direction manifested by differences in the grain structure and the type of grain boundaries. The work concentrates on studying the effect of this microstructural anisotropy on the electrochemical behavior of the steel plates using microscopic examination and electron backscattered diffraction. The results show that the corrosion behavior of the samples depends mainly on the fraction of high-angle grain boundaries or corresponding average grain size, which, in turn, depends on the degree of deformation on different planes determined by the extent of thickness reduction. On the other hand, low-angle grain boundaries have little effect on the corrosion of all the three different planes.

  10. DIY Fraction Pack.

    ERIC Educational Resources Information Center

    Graham, Alan; Graham, Louise

    2003-01-01

    Describes a very successful attempt to teach fractions to year 5 pupils based on pupils making their own fraction pack. Children decided for themselves how to make the fractional slices used in the activity using colored cardboard sheets and templates of a paper circle consisting of 24 equal slices. (Author/NB)

  11. Plagioclase preferred orientation and induced seismic anisotropy in mafic igneous rocks

    NASA Astrophysics Data System (ADS)

    Ji, Shaocheng; Shao, Tongbin; Salisbury, Matthew H.; Sun, Shengsi; Michibayashi, Katsuyoshi; Zhao, Weihua; Long, Changxing; Liang, Fenghua; Satsukawa, Takako

    2014-11-01

    Fractional crystallization and crystal segregation controlled by settling or floating of minerals during the cooling of magma can lead to layered structures in mafic and ultramafic intrusions in continental and oceanic settings in the lower crust. Thus, the seismic properties and fabrics of layered intrusions must be calibrated to gain insight into the origin of seismic reflections and anisotropy in the deep crust. To this end, we have measured P and S wave velocities and anisotropy in 17 plagioclase-rich mafic igneous rocks such as anorthosite and gabbro at hydrostatic pressures up to 650 MPa. Anorthosites and gabbroic anorthosites containing >80 vol% plagioclase and gabbros consisting of nearly equal modal contents of plagioclase and pyroxene display distinctive seismic anisotropy patterns: Vp(Z)/Vp(Y) ≥ 1 and Vp(Z)/Vp(X) ≥ 1 for anorthosites while 0.8 < Vp(Z)/Vp(Y) ≤ 1 and 0.8 < Vp(Z)/Vp(X) ≤ 1 for gabbros. Amphibolites lie in the same domain as gabbros, but show a significantly stronger tendency of Vp(X) > Vp(Y) than the gabbros. Laminated anorthosites with Vp(X) ≈ Vp(Y) ≪ Vp(Z) display a strong crystal preferred orientation (CPO) of plagioclase whose (010) planes and [100] and [001] directions parallel to the foliation. For the gabbros and amphibolites characterized by Vp(X) ≈ Vp(Y) > Vp(Z) and Vp(X) > Vp(Y) > Vp(Z), respectively, pyroxene and amphibole play a dominant role over plagioclase in the formation of seismic anisotropy. The Poisson's ratio calculated using the average P and S wave velocities from the three principal propagation-polarization directions (X, Y, and Z) of a highly anisotropic anorthosite cannot represent the value of a true isotropic equivalent. The CPO-induced anisotropy enhances and decreases the foliation-normal incidence reflectivity at gabbro-peridotite and anorthosite-peridotite interfaces, respectively.

  12. Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.; Warren, Jessica M.; Zimmerman, Mark E.; Kohlstedt, David L.

    2016-07-01

    The development of crystallographic textures in olivine-rich rocks leads to a marked anisotropy in viscosity of the upper mantle, strongly influencing a variety of large-scale geodynamic processes. Most estimates of the magnitude of viscous anisotropy in the upper mantle are derived from micromechanical models that predict textural and mechanical evolution numerically. Unfortunately, relatively few data exist with which to benchmark these models, and therefore their applicability to geodynamic processes remains in question. Here we present the results from a series of laboratory deformation experiments that yield insight into the magnitude and evolution of the anisotropy of olivine aggregates during deformation along complex loading paths. Aggregates of Fo50 olivine were first deformed in extension in a gas-medium apparatus at a temperature of 1473 K, confining pressure of 300 MPa, and a variety of stresses and strain rates. Early in the extension experiments, samples exhibited viscosities similar to those previously determined for isotropic aggregates. Extensional deformation was accompanied by formation of crystallographic textures with [100] axes dominantly aligned with the extension axis. Samples were subsequently deformed in torsion under similar conditions to shear strains of up to 15.5. Early in the torsion experiments, samples supported stresses a factor of ∼2 larger than measured at the end of extension experiments, demonstrating a marked anisotropy in viscosity. Textures at the end of torsion experiments exhibited [100] axes dominantly aligned with the shear direction, comparable to previous experimental observations. Evolution of the textures resulting from extension to those resulting from torsion was analyzed through examination of radial sections of torsion samples. Our results confirm that texture produces viscous anisotropy in olivine aggregates, and we provide a simple, calibrated parameterization of viscous anisotropy for use in geodynamic

  13. Perpendicular magnetic anisotropy of two-dimensional Rashba ferromagnets

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Lee, Hyun-Woo; Stiles, M. D.

    2016-11-01

    We compute the magnetocrystalline anisotropy energy within two-dimensional Rashba models. For a ferromagnetic free-electron Rashba model, the magnetic anisotropy is exactly zero regardless of the strength of the Rashba coupling, unless only the lowest band is occupied. For this latter case, the model predicts in-plane anisotropy. For a more realistic Rashba model with finite band width, the magnetic anisotropy evolves from in-plane to perpendicular and back to in-plane as bands are progressively filled. This evolution agrees with first-principles calculations on the interfacial anisotropy, suggesting that the Rashba model captures energetics leading to anisotropy originating from the interface provided that the model takes account of the finite Brillouin zone. The results show that the electron density modulation by doping or an external voltage is more important for voltage-controlled magnetic anisotropy than the modulation of the Rashba parameter.

  14. Magnetic anisotropy of grain boundaries in nanocrystalline Ni

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2017-01-01

    Temperature-dependent magnetic anisotropy due to grain boundaries in nanocrystalline Ni has been studied by simulating experimental magnetization data with the stochastic Landau-Lifshitz-Gilbert theory. In the model the grain boundary magnetic anisotropy energy is expressed as the sum of the uniaxial anisotropy and the cubic anisotropy, characterized by Kua and Kca anisotropy constants. By comparing the calculated magnetization with the experimental magnetization measurements at finite temperatures, the values of Kua and Kca can be determined. For nanocrystalline Ni it is found that with increasing temperature Kua decreases and Kca increases. At low temperatures Kua dominates the grain boundary anisotropy energy, whereas Kca is very small and it can be neglected. At room temperature Kua and Kca are of the same order with the corresponding ratio Kua /Kca ≈ 1.9 , both coefficients are much larger than the magnetocrystalline anisotropy constant.

  15. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  16. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  17. Anisotropies in the cosmic microwave background: Theory

    SciTech Connect

    Dodelson, S.

    1998-02-01

    Anisotropies in the Cosmic Microwave Background (CMB) contain a wealth of information about the past history of the universe and the present values of cosmological parameters. I online some of the theoretical advances of the last few years. In particular, I emphasize that for a wide class of cosmological models, theorists can accurately calculate the spectrum to better than a percent. The spectrum of anisotropies today is directly related to the pattern of inhomogeneities present at the time of recombination. This recognition leads to a powerful argument that will enable us to distinguish inflationary models from other models of structure formation. If the inflationary models turn out to be correct, the free parameters in these models will be determined to unprecedented accuracy by the upcoming satellite missions.

  18. Resolving the Problem of Stellar Orbital Anisotropy

    NASA Astrophysics Data System (ADS)

    Humphrey, Philip

    2006-09-01

    Mass profiles of elliptical galaxies provide an insight into dark matter (DM) halo formation, while orbital structure is tied to evolutionary history. Unfortunately the mass-anisotropy degeneracy prevents either from being uniquely determined by stellar kinematics measurements alone. A recent controversy suggesting no DM in elliptical galaxies may be explained by this effect, illustrating the urgent need for better constraints. We propose a 75ks Chandra exposure of NGC4649 to break this degeneracy in a carefully-chosen galaxy. Combined with our deep optical spectra and PN and GC kinematics, this will provide definitive constraints on the mass and orbital anisotropy profiles. By combining all techniques for one galaxy, this will provide a textbook example of how to overcome the degeneracy.

  19. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  20. Cosmic-ray streaming and anisotropies

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Gleeson, L. J.

    1975-01-01

    The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.

  1. Tailored magnetic anisotropy in an amorphous trilayer

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Barsukov, I.; Raanaei, H.; Spasova, M.; Lindner, J.; Meckenstock, R.; Farle, M.; Hjörvarsson, B.

    2011-06-01

    An amorphous Co68Fe24Zr8(3 nm)/Al70Zr30(3 nm)/Co68Fe24Zr8(3 nm) trilayer system has been investigated using in-plane and out-of-plane angular dependent ferromagnetic resonance at different frequencies. The in-plane magnetic anisotropy is uniaxial, retaining its value of (2.9 ± 0.1) × 103 J/m3 for each magnetic layer, whereas its direction was tailored independently in an arbitrary manner by applying an external magnetic field during the film deposition. The perpendicular anisotropy constant, supposed to reflect the interface quality, is nearly identical for both layers. Furthermore, the magnetic layers act independently upon each other due to the absence of interlayer coupling.

  2. Microwave background anisotropies in quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  3. Fetal development of the corpus callosum: Insights from a 3T DTI and tractography study in a patient with segmental callosal agenesis.

    PubMed

    Scola, Elisa; Sirgiovanni, Ida; Avignone, Sabrina; Cinnante, Claudia Maria; Biffi, Riccardo; Fumagalli, Monica; Triulzi, Fabio

    2016-10-01

    Commissural embryology mechanisms are not yet completely understood. The study and comprehension of callosal dysgenesis can provide remarkable insights into embryonic or fetal commissural development. The diffusion tensor imaging (DTI) technique allows the in vivo analyses of the white-matter microstructure and is a valid tool to clarify the disturbances of brain connections in patients with dysgenesis of the corpus callosum (CC). The segmental callosal agenesis (SCAG) is a rare partial agenesis of the corpus callosum (ACC). In a newborn with SCAG the DTI and tractography analyses proved that the CC was made of two separate segments consisting respectively of the ventral part in the genu and body of the CC, connecting the frontal lobes, and the dorsal part in the CC splenium and the attached hippocampal commissure (HC), connecting the parietal lobes and the fornix. These findings support the embryological thesis of a separated origin of the ventral and the dorsal parts of the CC.

  4. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure.

    PubMed

    Robichaux, Michael A; Chenaux, George; Ho, Hsin-Yi Henry; Soskis, Michael J; Greenberg, Michael E; Henkemeyer, Mark; Cowan, Christopher W

    2016-04-01

    The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.

  5. Pitch fractionation. Technical report

    SciTech Connect

    Weinberg, V.L.; White, J.L.

    1981-12-15

    Petroleum pitch (Ashland A240) has been subjected to thermal treatment and solvent fractionation to produce refined pitches to be evaluated as impregnants for carbon-carbon composites. The solvent fractions were obtained by sequential Soxhlet extraction with solvents such as hexane, cyclohexane, toluene, and pyridine. The most severe thermal treatment produced a mesophase pitch (approximately 50% mesophase); an appreciable portion of the mesophase was soluble in strong solvents. There were substantial differences in chemical composition and in pyrolysis behavior of the fractions. As the depth of fraction increased, the pyrolysis yield and bloating increased, and the microstructure of the coke became finer until glassy microconstituents were formed in the deepest fractions.

  6. Optical and neural anisotropy in peripheral vision

    PubMed Central

    Zheleznyak, Len; Barbot, Antoine; Ghosh, Atanu; Yoon, Geunyoung

    2016-01-01

    Optical blur in the peripheral retina is known to be highly anisotropic due to nonrotationally symmetric wavefront aberrations such as astigmatism and coma. At the neural level, the visual system exhibits anisotropies in orientation sensitivity across the visual field. In the fovea, the visual system shows higher sensitivity for cardinal over diagonal orientations, which is referred to as the oblique effect. However, in the peripheral retina, the neural visual system becomes more sensitive to radially-oriented signals, a phenomenon known as the meridional effect. Here, we examined the relative contributions of optics and neural processing to the meridional effect in 10 participants at 0°, 10°, and 20° in the temporal retina. Optical anisotropy was quantified by measuring the eye's habitual wavefront aberrations. Alternatively, neural anisotropy was evaluated by measuring contrast sensitivity (at 2 and 4 cyc/deg) while correcting the eye's aberrations with an adaptive optics vision simulator, thus bypassing any optical factors. As eccentricity increased, optical and neural anisotropy increased in magnitude. The average ratio of horizontal to vertical optical MTF (at 2 and 4 cyc/deg) at 0°, 10°, and 20° was 0.96 ± 0.14, 1.41 ± 0.54 and 2.15 ± 1.38, respectively. Similarly, the average ratio of horizontal to vertical contrast sensitivity with full optical correction at 0°, 10°, and 20° was 0.99 ± 0.15, 1.28 ± 0.28 and 1.75 ± 0.80, respectively. These results indicate that the neural system's orientation sensitivity coincides with habitual blur orientation. These findings support the neural origin of the meridional effect and raise important questions regarding the role of peripheral anisotropic optical quality in developing the meridional effect and emmetropization. PMID:26928220

  7. Anisotropy of Bottom Loss in Marine Sediments

    DTIC Science & Technology

    2010-06-01

    variations in the reflectivity are due to scattering and from heterogeneity. I . INTRODUCTION The vast majority of current and past research into...analyzed data acquired by N. Bangs and I . Pecher of the Jackson School of Geosciences, University of Texas at Austin during a shear wave study of Hydrate...providing us with these data. ONR program element # 62435. REFERENCES [1] D. Kumar, M. K. Sen, N. L. Bangs, C. Wang, and I . Pecher, “Seismic anisotropy

  8. Random anisotropy induced by structural disorder

    NASA Astrophysics Data System (ADS)

    Martinez, B.; Labarta, A.; Badia, F.; Tejada, J.

    1992-02-01

    As a direct consequence of the structural disorder, inherent to the amorphous state, local electrostatic fields are highly irregular. Due to the interplay between those highly irregular local electrostatic fields and the aspherical 4f electron clouds of the rare earth atoms, local anisotropy axis, directed along directions that vary randomly in space, may be generated. These directions are determined by the local arrangement of atoms; therefore, some information about amorphous structure may be obtained through the study of the magnetization curve.

  9. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum.

    PubMed

    Luders, Eileen; Toga, Arthur W; Thompson, Paul M

    2014-01-01

    Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum.

  10. Anisotropy of permeability in faulted porous sandstones

    NASA Astrophysics Data System (ADS)

    Farrell, N. J. C.; Healy, D.; Taylor, C. W.

    2014-06-01

    Studies of fault rock permeabilities advance the understanding of fluid migration patterns around faults and contribute to predictions of fault stability. In this study a new model is proposed combining brittle deformation structures formed during faulting, with fluid flow through pores. It assesses the impact of faulting on the permeability anisotropy of porous sandstone, hypothesising that the formation of fault related micro-scale deformation structures will alter the host rock porosity organisation and create new permeability pathways. Core plugs and thin sections were sampled around a normal fault and oriented with respect to the fault plane. Anisotropy of permeability was determined in three orientations to the fault plane at ambient and confining pressures. Results show that permeabilities measured parallel to fault dip were up to 10 times higher than along fault strike permeability. Analysis of corresponding thin sections shows elongate pores oriented at a low angle to the maximum principal palaeo-stress (σ1) and parallel to fault dip, indicating that permeability anisotropy is produced by grain scale deformation mechanisms associated with faulting. Using a soil mechanics 'void cell model' this study shows how elongate pores could be produced in faulted porous sandstone by compaction and reorganisation of grains through shearing and cataclasis.

  11. CMB anisotropies: Total angular momentum method

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; White, Martin

    1997-07-01

    A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the cosmic microwave background (CMB). Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector, and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g., defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic-type parity at small angles (a factor of 6 in power compared with 0 for the scalars and 8/13 for the tensors) and hence potentially distinguishable independent of the model for the seed. The tensor modes produce a different sign from the scalars and vectors for the temperature-polarization correlations at large angles. We explore conditions under which one perturbation type may dominate over the others including a detailed treatment of the photon-baryon fluid before recombination.

  12. Microstructure and Elastic Anisotropy of Shales

    NASA Astrophysics Data System (ADS)

    Kanitpanyacharoen, W.; Wenk, H.; Kets, F.; Mokso, R.

    2009-12-01

    Shales compose large parts of sedimentary basins and form the seal and source rocks for many hydrocarbon reservoirs. An understanding of their properties is critically important for seismic imaging, particularly due to the high anisotropy that is caused by the alignment of clay minerals during compaction and diagenesis. In this study we quantify composition and crystal preferred orientation of component minerals of a range of shales, using high energy synchrotron X-rays. From diffraction images we can infer composition and texture (relying on the Rietveld method), and from tomography we can determine 3D microstructures, including porosity. Averaging single crystal properties over orientation distributions provides estimates of polycrystal elastic properties. A comparison of shallow shales from Montana, the North Sea and Nigeria with deep shales from the Middle East and Central Europe documents that anisotropy increases with increasing phyllosilicates content (mainly illite and kaolinite) and increasing burial. The crystallite preferred orientation strengths, measured as (001) pole figure maxima, range for illite from 2.3 to 9.8 multiples of random distribution (m.r.d.) and for kaolinite from 1.2 to 9.3 m.r.d. P-wave anisotropies, obtained by averaging over the orientation distributions of mineral phases have been calculated (Vp = (200*Vpmax-Vpmin)/(Vpmax+Vpmin) and range between 10% and 40%.

  13. Fluorescence Anisotropy Studies of Molecularly Imprinted Polymers

    SciTech Connect

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2006-01-01

    A molecularly imprinted polymer (MIP) is a biomimetic material that can be used as a biochemical sensing element. We studied the steady-state and time-resolved fluorescence and fluorescence anisotropy of anthracene imprinted polyurethane. We compared MIPs with imprinted analytes present, MIPs with the imprinted analytes extracted, MIPs with rebound analytes, non-imprinted control polymers (non-MIPs), and non-MIPs bound with analytes to understand MIP’s binding behavior. MIPs and non-MIPs had similar steady-state fluorescence anisotropy in the range of 0.11–0.24. Anthracene rebound in MIPs and non-MIPs had a fluorescence lifetime _=0.64 ns and a rotational correlation time _F =1.2–1.5 ns, both of which were shorter than that of MIPs with imprinted analytes present (_=2.03 ns and _F =2.7 ns). The steady-state anisotropy of polymer solutions increased exponentially with polymerization time and might be used to characterize the polymerization extent in-situ.

  14. Engineering functional anisotropy in fibrocartilage neotissues.

    PubMed

    MacBarb, Regina F; Chen, Alison L; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-12-01

    The knee meniscus, intervertebral disc, and temporomandibular joint (TMJ) disc all possess complex geometric shapes and anisotropic matrix organization. While these characteristics are imperative for proper tissue function, they are seldom recapitulated following injury or disease. Thus, this study's objective was to engineer fibrocartilages that capture both gross and molecular structural features of native tissues. Self-assembled TMJ discs were selected as the model system, as the disc exhibits a unique biconcave shape and functional anisotropy. To drive anisotropy, 50:50 co-cultures of meniscus cells and articular chondrocytes were grown in biconcave, TMJ-shaped molds and treated with two exogenous stimuli: biomechanical (BM) stimulation via passive axial compression and bioactive agent (BA) stimulation via chondroitinase-ABC and transforming growth factor-β1. BM + BA synergistically increased Col/WW, Young's modulus, and ultimate tensile strength 5.8-fold, 14.7-fold, and 13.8-fold that of controls, respectively; it also promoted collagen fibril alignment akin to native tissue. Finite element analysis found BM stimulation to create direction-dependent strains within the neotissue, suggesting shape plays an essential role toward driving in vitro anisotropic neotissue development. Methods used in this study offer insight on the ability to achieve physiologic anisotropy in biomaterials through the strategic application of spatial, biomechanical, and biochemical cues.

  15. Modulation Cycles of GCR Diurnal Anisotropy Variation

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Oh, S. Y.

    The diurnal variations of GCR intensity observed by the ground NM stations represent the anisotropic GCR flow at 1 AU. It is generally believed that the variation of the local time of the GCR maximum intensity (phase) has 22-year period of two sunspot cycles. However, there even exists doubt on such anisotropy variation cycle. Those different interpretations come from the lack of enough data since determining the cycle of variation in precision requires data archived over long time of at least two cycles. In order to determine the cycle of GCR anisotropy variation, we carried out the statistical study on the diurnal variation of phase. We examined the 52 years data of Huancayo (Haleakala), 38-year data from Rome, 42-year data from Oulu NM stations. We used new method in determining the yearly mean phase. We applied the F-test to determine the statistically meaningful period of anisotropy phase variation. We found that the coupling coefficients indicating the differences in phase between the NM stations are not constant but dependent on the solar cycle. The phase variation has two components of 22-year and 11-year cycles. The NM station in the high latitude (low cut-off rigidity) shows mainly the 22-year cycle in phase controlled by the diffusion effect with the solar polar magnetic field reversal. However, the lower the latitude of NM station is, the higher contribution from 11-year cycle associated with the solar sunspot cycle. This additional phase variation might be regulated by the drift effect.

  16. Influence of ferroelectric polarization on magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mardana, A.; Ducharme, S.; Adenwalla, S.

    2010-03-01

    Thin film heterostructures of transition metal ferromagnets (FM) and polymer ferroelectrics (FE) are investigated to look for changes in the magnetic anisotropy of the FM layer that occur on switching the FE polarization (with an ensuing change in the electric field direction).[1] Samples of [Glass/ Pd (50 nm)/Co wedge (0.9-2.6nm)/ferroelectric P(VDF-TrFE) (53 nm)/Al (30nm)] are deposited via sputtering or evaporation for the metallic layers and via Langmuir-Schaefer deposition for the polymer ferroelectric. [2] Magnetic and FE properties have been characterized using the Magneto-Optical Kerr Effect (MOKE) and the pyroelectric effect. Polar and longitudinal MOKE loops are measured across the Co wedge for both positive and negative FE polarization and the difference in the two MOKE loops is ascribed to the changes in the magnetic anisotropy of the FM layer. [3] These changes are most apparent in the region where the Co undergoes a transition from in-plane to out-of-plane anisotropy. This research is supported by the NSF MRSEC through Grant No. DMR- 0820521 1. Chun-Gang Duan et al, Appl. Phys. Lett. 92, 122905 (2008) 2. A. V. Bune, et al, Nature (London) 391, 874 (1998) 3. P. F. Carcia, J.Appl. Phys. 63, 5066 (1988)

  17. Contribution of the corpus callosum to bilateral representation of the trunk midline in the human brain: an fMRI study of callosotomized patients.

    PubMed

    Fabri, M; Polonara, G; Mascioli, G; Paggi, A; Salvolini, U; Manzoni, T

    2006-06-01

    Human brain studies have shown that the cutaneous receptors of trunk regions close to the midline are represented in the first somatosensory cortex (SI) of both hemispheres. The present study aims to establish whether in humans, as in non-human primates, the bilateral representation of the trunk midline in area SI depends on the corpus callosum. Data were obtained from eight callosotomized patients: three with complete callosal resection, one with a partial posterior resection including the splenium and the callosal trunk, and four with partial anterior resections sparing the splenium and in one case also the posterior part of the callosal trunk. The investigation was carried out with functional magnetic resonance imaging. Unilateral tactile stimulation was applied by rubbing ventral trunk regions close to the midline (about 20 x 10 cm in width) with a soft cotton pad (frequency 1 Hz). Cortical activation foci elicited by unilateral stimulation of cutaneous regions adjacent to the midline were detected in the contralateral post-central gyrus (PCG), in a region corresponding to the trunk ventral midline representation zone of area SI, as described in a previous study of intact subjects. In most patients, activation foci were also found in the ipsilateral PCG, again as in subjects with an intact corpus callosum. The data confirm that the skin regions adjacent to the trunk midline are represented bilaterally in SI, and indicate that ipsilateral activation is at least partially independent of the corpus callosum.

  18. [A case of left hemi-facial metamorphopsia induced by infarction of the right side of the splenium of the corpus callosum].

    PubMed

    Saito, Yuki; Matsunaga, Akiko; Yamamura, Osamu; Ikawa, Masamichi; Hamano, Tadanori; Yoneda, Makoto

    2014-01-01

    We describe a patient, 61-year-old left-handed Japanese woman, who presented with left hemi-facial metamorphopsia after infarct that extended from the splenium of the corpus callosum to the major forceps on the right side. Past medical history revealed a right putaminal hemorrhage with amnesic aphasia. She complained that the right side of people's faces, that is, the left side when visualized by her, seemed distorted. When she looked at other people's faces, the right half of the faces looked smaller than the left half, and the eyes, noses, and mouths appeared to be hanging toward the center of their faces. This phenomenon was observed for whomever she visualized. She stated that objects other than the face looked normal. Her visual acuity and visual field were normal. Callosal disconnection syndrome was not presented. Magnetic resonance imaging of the brain on diffusion weighted image revealed a high intensity area that extended from the splenium of the corpus callosum to the major forceps on the right side. Electroencephalography did not show any epileptic discharge. Her visual symptoms improved gradually. The mechanism of hemi-facial metamorphopsia remains obscure. We hypothesized that this patient developed left hemi-facial metamorphopsia because of the disrupted transfer of visual information of the left side of face at the splenium of the corpus callosum and the major forceps, which may be the responsible lesion of hemi-facial metamorphopsia.

  19. Dividing Fractions: A Pedagogical Technique

    ERIC Educational Resources Information Center

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  20. Osseous oral hyaline ring granuloma mimicking a mandible tumor in a child with congenital agenesis of the corpus callosum

    PubMed Central

    Neves-Silva, Rodrigo; Ferreira-Gomes, Camilla-Borges; Palmier, Natalia; Brum-Corrêa, Marcelo; Paes-Almeida, Oslei; Ajudarte-Lopes, Marcio; Agustin-Vargas, Pablo

    2017-01-01

    Background Hyaline ring granuloma (HRG) of the oral cavity is an uncommon disorder considered to be a foreign-body reaction resulting from implantation of food vegetable particles. Microscopically, it is characterized by the presence of structures of hyaline rings in an inflamed fibrous tissue background, which contains multinucleated giant cells. Material and Methods We present the case of a 4-year-old boy diagnosed with a mandible osseous HRG, which showed clinical and tomographic aspects suggestive of an aggressive bone tumor. Results The patient underwent surgical exploration and histopathologic analysis showed fragments composed predominantly of widespread dense connective tissue with an acute and chronic inflammatory infiltrate containing multinucleated giant cells and scattered areas of eosinophilic material associated with hyaline rings, strongly suggestive of vegetable particles. The eosinophilic material was positive for periodic acid-Schiff (PAS) and resistant to diastase digestion. These features led to diagnosis of osseous HRG. Scanning electron microscopy (SEM) analysis was performed for illustrative purposes and the multiple structures resembling vegetable particles were characterized in more detail. Conclusions Although rare, this case highlights the importance of the clinician’s awareness regarding the existence of an osseous counterpart of HRG. Key words:Agenesis of the corpus callosum, child, hyaline ring granuloma, intraosseous, mandible, pulse granuloma. PMID:28210458

  1. Decreased survival in glioblastomas is specific to contact with the ventricular-subventricular zone, not subgranular zone or corpus callosum.

    PubMed

    Mistry, Akshitkumar M; Dewan, Michael C; White-Dzuro, Gabrielle A; Brinson, Philip R; Weaver, Kyle D; Thompson, Reid C; Ihrie, Rebecca A; Chambless, Lola B

    2017-04-01

    The clinical effect of radiographic contact of glioblastoma (GBM) with neurogenic zones (NZ)-the ventricular-subventricular (VSVZ) and subgranular (SGZ) zones-and the corpus callosum (CC) remains unclear and, in the case of the SGZ, unexplored. We investigated (1) if GBM contact with a NZ correlates with decreased survival; (2) if so, whether this effect is associated with a specific NZ; and (3) if radiographic contact with or invasion of the CC by GBM is associated with decreased survival. We retrospectively identified 207 adult patients who underwent cytoreductive surgery for GBM followed by chemotherapy and/or radiation. Age, preoperative Karnofsky performance status score (KPS), and extent of resection were recorded. Preoperative MRIs were blindly analyzed to calculate tumor volume and assess its contact with VSVZ, SGZ, CC, and cortex. Overall (OS) and progression free (PFS) survivals were calculated and analyzed with multivariate Cox analyses. Among the 207 patients, 111 had GBM contacting VSVZ (VSVZ+GBMs), 23 had SGZ+GBMs, 52 had CC+GBMs, and 164 had cortex+GBMs. VSVZ+, SGZ+, and CC+ GBMs were significantly larger in size relative to their respective non-contacting controls. Multivariate Cox survival analyses revealed GBM contact with the VSVZ, but not SGZ, CC, or cortex, as an independent predictor of lower OS, PFS, and early recurrence. We hypothesize that the VSVZ niche has unique properties that contribute to GBM pathobiology in adults.

  2. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach.

  3. Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome.

    PubMed

    Baas, Annette F; Gabbett, Michael; Rimac, Milan; Kansikas, Minttu; Raphael, Martine; Nievelstein, Rutger Aj; Nicholls, Wayne; Offerhaus, Johan; Bodmer, Danielle; Wernstedt, Annekatrin; Krabichler, Birgit; Strasser, Ulrich; Nyström, Minna; Zschocke, Johannes; Robertson, Stephen P; van Haelst, Mieke M; Wimmer, Katharina

    2013-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.

  4. Application of fractal and grey level co-occurrence matrix analysis in evaluation of brain corpus callosum and cingulum architecture.

    PubMed

    Pantic, Igor; Dacic, Sanja; Brkic, Predrag; Lavrnja, Irena; Pantic, Senka; Jovanovic, Tomislav; Pekovic, Sanja

    2014-10-01

    This aim of this study was to assess the discriminatory value of fractal and grey level co-occurrence matrix (GLCM) analysis methods in standard microscopy analysis of two histologically similar brain white mass regions that have different nerve fiber orientation. A total of 160 digital micrographs of thionine-stained rat brain white mass were acquired using a Pro-MicroScan DEM-200 instrument. Eighty micrographs from the anterior corpus callosum and eighty from the anterior cingulum areas of the brain were analyzed. The micrographs were evaluated using the National Institutes of Health ImageJ software and its plugins. For each micrograph, seven parameters were calculated: angular second moment, inverse difference moment, GLCM contrast, GLCM correlation, GLCM variance, fractal dimension, and lacunarity. Using the Receiver operating characteristic analysis, the highest discriminatory value was determined for inverse difference moment (IDM) (area under the receiver operating characteristic (ROC) curve equaled 0.925, and for the criterion IDM≤0.610 the sensitivity and specificity were 82.5 and 87.5%, respectively). Most of the other parameters also showed good sensitivity and specificity. The results indicate that GLCM and fractal analysis methods, when applied together in brain histology analysis, are highly capable of discriminating white mass structures that have different axonal orientation.

  5. Inter-hemispheric functional dysconnectivity mediates the association of corpus callosum degeneration with memory impairment in AD and amnestic MCI

    PubMed Central

    Qiu, Yingwei; Liu, Siwei; Hilal, Saima; Loke, Yng Miin; Ikram, Mohammad Kamran; Xu, Xin; Yeow Tan, Boon; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan

    2016-01-01

    Evidences suggested that both corpus callosum (CC) degeneration and alternations of homotopic inter-hemispheric functional connectivity (FC) are present in Alzheimer’s disease (AD). However, the associations between region-specific CC degeneration and homotopic inter-hemispheric FC and their relationships with memory deficits in AD remain uncharacterized. We hypothesized that selective CC degeneration is associated with memory impairment in AD and amnestic mild cognitive impairment (aMCI), which is mediated by homotopic inter-hemispheric functional dysconnectivity. Using structural magnetic resonance imaging (MRI) and task-free functional MRI, we assessed the CC volume and inter-hemispheric FC in 66 healthy controls, 41 aMCI and 41 AD. As expected, AD had CC degeneration and attenuated inter-hemispheric homotopic FC. Nevertheless, aMCI had relatively less severe CC degeneration (mainly in mid-anterior, central, and mid-posterior) and no reduction in inter-hemispheric homotopic FC. The degeneration of each CC sub-region was associated with specific inter-hemispheric homotopic functional disconnections in AD and aMCI. More importantly, impairment of inter-hemispheric homotopic FC partially mediated the association between CC (particularly the central and posterior parts) degeneration and memory deficit. Notably, these results remained after controlling for hippocampal volume. Our findings shed light on how CC degeneration and the related inter-hemispheric FC impact memory impairment in early stage of AD. PMID:27581062

  6. FRACTIONAL PEARSON DIFFUSIONS.

    PubMed

    Leonenko, Nikolai N; Meerschaert, Mark M; Sikorskii, Alla

    2013-07-15

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change.

  7. FRACTIONAL PEARSON DIFFUSIONS

    PubMed Central

    Leonenko, Nikolai N.; Meerschaert, Mark M.

    2013-01-01

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377

  8. Thermal expansion and thermal expansion anisotropy of SiC polytypes

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1987-01-01

    The principal axial coefficients of thermal expansion for the (3C), (4H), and (6H) polytypes of SiC are considered to identify the structural role of the stacking layer sequence as it affects the thermal expansion. A general equation based on the fractions of cubic and hexagonal layer stacking is developed that expresses the principal axial thermal expansion coefficients of all of the SiC polytypes. It is then applied to address the thermal expansion anisotropy of the noncubic SiC structures.

  9. Fabrication and characterization of ultrahigh-volume- fraction aligned carbon nanotube-polymer composites.

    PubMed

    Wardle, Brian L; Saito, Diego S; García, Enrique J; Hart, A John; de Villoria, Roberto Guzmán; Verploegen, Eric A

    2008-07-17

    Aligned CNT nanocomposites with variable volume fraction, up to 20%, are demonstrated. Biaxial mechanical densification of aligned CNT forests, followed by capillarity-driven wetting using unmodified aerospace-grade polymers, creates centimeter-scale specimens. Characterizations confirm CNT alignment and dispersion in the thermosets, providing a useful platform for controlled nanoscale interaction and nanocomposite property studies that emphasize anisotropy.

  10. Time Evolution of the Anisotropies of the Hydrodynamically Expanding Sqgp

    NASA Astrophysics Data System (ADS)

    Bagoly, A.; Csanád, M.

    In high energy heavy ion collisions of RHIC and LHC, a strongly interacting quark gluon plasma (sQGP) is created. This medium undergoes a hydrodynamic evolution, before it freezes out to form a hadronic matter. The initial state of the sQGP is determined by the initial distribution of the participating nucleons and their interactions. Due to the finite number of nucleons, the initial distribution fluctuates on an event-by-event basis. The transverse plane anisotropy of the initial state can be translated into a series of anisotropy coefficients or eccentricities: second, third, fourth-order anisotropy etc. These anisotropies then evolve in time, and result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we investigate the time evolution of the anisotropies. With a numerical hydrodynamic code, we analyze how the speed of sound and viscosity influence this evolution.

  11. Reading Skill-Fractional Anisotropy Relationships in Visuospatial Tracts Diverge Depending on Socioeconomic Status

    ERIC Educational Resources Information Center

    Gullick, Margaret M.; Demir-Lira, Özlem Ece; Booth, James R.

    2016-01-01

    Low socioeconomic status (SES) has been repeatedly linked with decreased academic achievement, including lower reading outcomes. Some lower SES children do show skills and scores commensurate with those of their higher SES peers, but whether their abilities stem from the same systems as high SES children or are based on divergent strategies is…

  12. Magnetic logic using nanowires with perpendicular anisotropy.

    PubMed

    Jaworowicz, J; Vernier, N; Ferré, J; Maziewski, A; Stanescu, D; Ravelosona, D; Jacqueline, A S; Chappert, C; Rodmacq, B; Diény, B

    2009-05-27

    In addition to a storage function through the magnetization of nanowires, domain wall propagation can be used to trigger magnetic logic functions. Here, we present a new way to realize a pure magnetic logic operation by using magnetic nanowires with perpendicular anisotropy. Emphasis is given on the generation of the logic function 'NOT' that is based on the dipolar interaction between two neighbouring magnetic wires, which favours the creation of a domain wall. This concept has been validated on several prototypes and the results fit well with the expectations.

  13. Concave nanomagnets with widely tunable anisotropy

    DOEpatents

    Lambson, Brian; Gu, Zheng; Carlton, David; Bokor, Jeffrey

    2014-07-01

    A nanomagnet having widely tunable anisotropy is disclosed. The disclosed nanomagnet is a magnetic particle with a convex shape having a first magnetically easy axis. The convex shape is modified to include at least one concavity to urge a second magnetically easy axis to form substantially offset from the first magnetically easy axis. In at least one embodiment, the convex shape is also modified to include at least one concavity to urge a second magnetically easy axis to form with a magnetic strength substantially different from the first magnetically easy axis.

  14. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  15. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  16. Seismic anisotropy above a subducting plate

    SciTech Connect

    Shih, X.R.; Meyer, R.P. ); Schneider, J.F. )

    1991-08-01

    Shear-wave splitting observed in northeastern Colombia has provided evidence of seismic anisotropy in a shear zone immediately above a subducting plate. In an upper mantle composed mainly of olivine (57%) and orthopyroxene (17%), the splitting can be interpreted by wave propagation in an anisotropic medium of orthorhombic symmetry that results from alignment of these intrinsically anisotropic minerals. The mechanism of alignment is most likely the shearing associated with the subduction, aided by fluids migrating from the subducting plate when the plate exceeds 100 km in depth.

  17. Phase coexistence and magnetic anisotropy in polycrystalline and nanocrystalline LaMnO3+δ

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Figueroa, A. I.; Ghosh, Barnali; Phan, M. H.; Srikanth, H.; Raychaudhuri, A. K.

    2011-04-01

    We report on the phase coexistence and magnetic anisotropy in polycrystalline (bulk) and nanocrystalline (˜15 nm) LaMnO3+δ materials, which were prepared by solid state reaction and sol-gel methods, respectively. In addition to standard magnetization measurements, radio-frequency transverse susceptibility (TS) based on a very sensitive, self-resonant tunnel diode oscillator method was used to probe magnetic anisotropy and switching fields in the samples. The results revealed a coexistence of the ferromagnetic (FM) and antiferromagnetic (AFM) phases in both samples. For the bulk sample, the AFM phase significantly changed in volume fraction at ˜30 K and completely vanished around 120 K. Size reduction to the nanometer scale (˜15 nm) significantly suppressed the AFM phase while inducing surface spin disorder in the material. The large magnetic anisotropies were probed by TS experiments in both samples. Our studies showed that the magnetic properties of bulk LaMnO3+δ were strongly modified by size reduction.

  18. Electron Anisotropy as a Signature of Mode Specific Isomerization in Vinylidene

    NASA Astrophysics Data System (ADS)

    Gibson, Stephen T.; Laws, Benjamin A.; Mabbs, Richard; Neumark, Daniel; Lineberger, Carl; Field, Robert W.

    2016-06-01

    he nature of the isomerization process that turns vinylidene into acetylene has been awaiting advances in experimental methods, to better define fractionation widths beyond those available in the seminal 1989 photoelectron spectrum measurement. This has proven a challenge. The technique of velocity-map imaging (VMI) is one avenue of approach. Images of electrons photodetached from vinylidene negative-ions, at various wavelengths, 1064 nm shown, provide more detail, including unassigned structure, but only an incremental improvement in the instrument line width. Intriguingly, the VMIs demonstrate a mode dependent variation in the electron anisotropy. Most notable in the figure, the inner-ring transition clusters are discontinuously, more isotropic. Electron anisotropy may provide an alternative key to examine the character of vinylidene transitions, mediating the necessity for an extreme resolution measurement. Vibrational dependent anisotropy has previously been observed in diatomic photoelectron spectra, associated with the coupling of electronic and nuclear motions. Research supported by the Australian Research Council Discovery Project Grant DP160102585. K. M. Ervin, J. Ho, and W. C. Lineberger, J. Chem. Phys. 91, 5974 (1989). doi:10.1063/1.457415 M. van Duzor et al. J. Chem. Phys. 133, 174311 (2010). doi:10.1063/1.3493349

  19. Magnetoelastic nature of the dodecagonal anisotropy in holmium metal.

    PubMed

    Benito, L; Ciria, M; Fraile, A; Fort, D; Abell, J S; Arnaudas, J I

    2007-06-29

    We have investigated the magnetoelastic nature of the dodecagonal anisotropy in the magnetic anisotropy energy (MAE) in the basal plane of the hcp crystalline structure in holmium single crystal. We have proved that the origin of the second harmonic of the hexagonal symmetry in MAE clearly lies on a sixth-order magnetoelastic coupling term. The appearance of a 12-fold anisotropy in MAE in a single crystal having hexagonal symmetry provides a new insight on how the magnetic anisotropy can be modified in a magnetic material with giant spin-lattice coupling.

  20. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    PubMed

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer.

  1. Effects of anisotropy on the two-dimensional inversion procedure

    NASA Astrophysics Data System (ADS)

    Heise, Wiebke; Pous, Jaume

    2001-12-01

    In this paper we show some of the effects that appear in magnetotelluric measurements over 2-D anisotropic structures, and propose a procedure to recover the anisotropy using 2-D inversion algorithms for isotropic models. First, we see how anisotropy affects the usual interpretation steps: dimensionality analysis and 2-D inversion. Two models containing general 2-D azimuthal anisotropic features were chosen to illustrate this approach: an anisotropic block and an anisotropic layer, both forming part of general 2-D models. In addition, a third model with dipping anisotropy was studied. For each model we examined the influence of various anisotropy strikes and resistivity contrasts on the dimensionality analysis and on the behaviour of the induction arrows. We found that, when the anisotropy ratio is higher than five, even if the strike is frequency-dependent it is possible to decide on a direction close to the direction of anisotropy. Then, if the data are rotated to this angle, a 2-D inversion reproduces the anisotropy reasonably well by means of macro-anisotropy. This strategy was tested on field data where anisotropy had been previously recognized.

  2. Correlation of strain with anisotropy of magnetic susceptibility (AMS)

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.

    1991-01-01

    Existing correlations between strain and anisotropy of low-field magnetic susceptibility (AMS) have been re-assessed using a single parameter to express both anisotropies. The P' parameter ( Hrouda, 1982) shows potential as a powerful single expression of the intensity of strain and of AMS. Previous correlations are improved by use of this parameter. Cautious optimism is justified for correlations between strain and susceptibility in a certain strain window between a lower limit (excluding the incomplete overprint of predeformation anisotropy) and an upper limit (excluding the effects of saturation anisotropy). For successful correlations the influence of stress-controlled recrystallisation should be minimal and the mineralogical sources of susceptibility must predate deformation.

  3. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    SciTech Connect

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  4. Can Kindergartners Do Fractions?

    ERIC Educational Resources Information Center

    Cwikla, Julie

    2014-01-01

    Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems (Empson…

  5. An Appetite for Fractions

    ERIC Educational Resources Information Center

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  6. On fractional programming

    SciTech Connect

    Bajona-Xandri, C.; Martinez-Legaz, J.E.

    1994-12-31

    This paper studies the minimax fractional programming problem, assuming quasiconvexity of the objective function, under the lower subdifferentiability viewpoint. Necessary and sufficient optimality conditions and dual properties are found. We present applications of this theory to find the Pareto efficient solutions of a multiobjective fractional problem and to solve several economic models.

  7. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  8. Fractional dissipative standard map.

    PubMed

    Tarasov, Vasily E; Edelman, M

    2010-06-01

    Using kicked differential equations of motion with derivatives of noninteger orders, we obtain generalizations of the dissipative standard map. The main property of these generalized maps, which are called fractional maps, is long-term memory. The memory effect in the fractional maps means that their present state of evolution depends on all past states with special forms of weights. Already a small deviation of the order of derivative from the integer value corresponding to the regular dissipative standard map (small memory effects) leads to the qualitatively new behavior of the corresponding attractors. The fractional dissipative standard maps are used to demonstrate a new type of fractional attractors in the wide range of the fractional orders of derivatives.

  9. Cosmic microwave anisotropies from BPS semilocal strings

    SciTech Connect

    Urrestilla, Jon; Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Liddle, Andrew R E-mail: n.bevis@imperial.ac.uk E-mail: martin.kunz@physics.unige.ch

    2008-07-15

    We present the first ever calculation of cosmic microwave background (CMB) anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter {mu}, from fits to cosmological data, and find that in this regard Bogomol'nyi-Prasad-Sommerfield (BPS) semilocal strings resemble global textures more than topological strings. The observed microwave anisotropy at l=10 is reproduced if G{mu} = 5.3 Multiplication-Sign 10{sup -6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is G{mu}<2.0 Multiplication-Sign 10{sup -6} when CMB, Hubble key project and big bang nucleosynthesis data are used (cf G{mu}<0.9 Multiplication-Sign 10{sup -6} for cosmic strings). We additionally carry out a Bayesian model comparison of several models with and without defects, showing that models with defects are neither conclusively favoured nor disfavoured at present.

  10. The Background Emission Anisotropy Scanning Telescope (BEAST)

    NASA Astrophysics Data System (ADS)

    Seiffert, M.

    1996-12-01

    Since 1988 the UCSB Cosmology Group has performed a number of measurements of the degree scale structure in the Cosmic Background Radiation. These include 3 South Pole expeditions in 1989, 91 and 94. and 8 balloon flights using SIS, HEMTs and bolometer based detectors. We will present a summary of these measurements focusing onthe recent results. In addition, we will describe the recent flight of HACME, a balloon- borne experiment to map CMB anisotropies with 0.75 degree angular resolution over several hundred square degrees. This experiment is a prototype for our next generation CMB experiment, the Background Emission Anisotropy Scanning Telescope (BEAST). BEAST will feature a 2 m diameter carbon fiber composite primary mirror for high angular resolution and a sensitive array of ultra-low noise HEMT amplifiers at 30, 40, and 90 GHz. BEAST is designed for an Antarctic long duration balloon flight allowing an observing time of order two weeks. This experiment will provide an unprecedented combination of sensitivty and angular resolution across a significant region of sky.

  11. Magnetic anisotropy of FeGa alloys

    NASA Astrophysics Data System (ADS)

    Rafique, Sadia; Cullen, James R.; Wuttig, Manfred; Cui, Jun

    2004-06-01

    Cubic magnetocrystalline anisotropy constants, K1 and K2, for Fe1-xGax alloys were measured using magnetization curves with x=0.05, 0.125, 0.14, 0.18, and 0.20. Thin circular (110) disks all with <100>, <110>, and <111> in the plane of the disk were used to measure K1 and K2. K1 was also measured with (100) circular disks. K1 for 5 at. % Ga content was found to be larger than that of pure Fe. (All compositions mentioned hereafter are atomic percents.) K1 and K2 both drop gradually up to 18 at. % Ga substitution. Then there is a sharp drop in the magnitude of both constants. K2 was found to be equal to -9K1/4 and the <110> and <111> directions were equally hard magnetically for all compositions considered in this study. Calculation of the anisotropy energy density verifies this result. K1 measured from both (110) and (100) disks was reasonably consistent.

  12. Results from the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.

  13. Anisotropy and Crystalline Structure in Polyaniline Films

    NASA Astrophysics Data System (ADS)

    Minto, C. D. G.; Vaughan, A. S.

    1996-03-01

    Films of polyaniline -- camphor sulphonic acid cast from m-cresol exhibit transport properties characteristic of a material stradelling the metal/insulator transition. This improvement in properties over traditional methods of polyaniline production has been suggested as being caused by the macromolecule adopting an expanded coil configuration in this solvent. Such films have been shown to be semi--crystalline and are presumed to be completely isotropic. We present here new results which demonstrate that such films are in fact appreciably aligned. X-ray scattering is utilised to expose the presence of molecular anisotropy within such films, the polymers forming a stacked structure with the molecules preferentially oriented parallel to the plane of the film. Similar measurements confirm that the molecules are randomly oriented within this plane. Such alignment considerably improves the transport properties. Anisotropy and the crystalline structure within these films, those cast from chloroform and those using the isolated enantiomeric counter ion are quantified and discussed. The results demonstrate that improved transport properties have arisen as a result of both polymer--solvent interactions and as a result of improved chain alignment.

  14. The Ciliogenic Transcription Factor RFX3 Regulates Early Midline Distribution of Guidepost Neurons Required for Corpus Callosum Development

    PubMed Central

    Benadiba, Carine; Magnani, Dario; Niquille, Mathieu; Morlé, Laurette; Valloton, Delphine; Nawabi, Homaira; Ait-Lounis, Aouatef; Otsmane, Belkacem; Reith, Walter; Theil, Thomas; Hornung, Jean-Pierre

    2012-01-01

    The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3–deficient mice show several hallmarks of ciliopathies including left–right asymmetry defects and hydrocephalus. Here we show that Rfx3–deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies. PMID:22479201

  15. A novel tool for the morphometric analysis of corpus callosum: applications to the diagnosis of autism - biomed 2009.

    PubMed

    Vatta, Federica; Mininel, Stefano; Colafati, Stefania G; D'Errico, Luigia; Malena, Saverio; Di Salle, Francesco

    2009-01-01

    Autism is a developmental disorder characterized by social deficits, impaired communication, and restricted and repetitive patterns of behaviour. Emerging theories indicate interregional functional and anatomical brain connectivity as a likely key feature in autism pathophysiology. Corpus callosum (CC) represents a natural target of autism connectivity research, being the expression of interhemispheric communication. In this paper, a novel method for a robust morphometric analysis of CC data is presented. The standard morphometric approach is based on the analysis of the size and shape of the CC midsagittal cross-section. As there are no gross anatomical landmarks that clearly delimit anatomically or functionally distinct CC regions, several geometric partitioning schemes have been proposed in the literature for morphometric analysis, subdividing CC into subregions whose fiber topography is expected to target different hemispheric cortical regions. A novel tool of morphometric analysis, based on the automated subdivision of a high number of partitions from a CC centroid and on the consequent determination of the CC anatomical landmarks is presented, allowing an automated analysis of CC volumes, shapes and curvatures, suitable for an automated application in clinical environment. Moreover the proposed tool can be used for original post-processing and visualization techniques that may help in the analysis of possible alterations of CC and in the correlations with autism-related diseases. The proposed morphometric tool has been validated and applied for clinical investigation on brain morphometry in children (age 3-11 years) with autism or with other autism spectrum disorders (DSA) and on healthy control subjects who underwent volumetric MRI T1 weighted acquisitions.

  16. Segmentation and Analysis of Corpus Callosum in Alzheimer MR Images using Total Variation Based Diffusion Filter and Level Set Method.

    PubMed

    Anandh, K R; Sujatha, C M; Ramakrishnan, S

    2015-01-01

    Alzheimer’s Disease (AD) is a common form of dementia that affects gray and white matter structures of brain. Manifestation of AD leads to cognitive deficits such as memory impairment problems, ability to think and difficulties in performing day to day activities. Although the etiology of this disease is unclear, imaging biomarkers are highly useful in the early diagnosis of AD. Magnetic resonance imaging is an indispensible non-invasive imaging modality that reflects both the geometry and pathology of the brain. Corpus Callosum (CC) is the largest white matter structure as well as the main inter-hemispheric fiber connection that undergoes regional alterations due to AD. Therefore, segmentation and feature extraction are predominantly essential to characterize the CC atrophy. In this work, an attempt has been made to segment CC using edge based level set method. Prior to segmentation, the images are pre-processed using Total Variation (TV) based diffusion filtering to enhance the edge information. Shape based geometric features are extracted from the segmented CC images to analyze the CC atrophy. Results show that the edge based level set method is able to segment CC in both the normal and AD images. TV based diffusion filtering has performed uniform region specific smoothing thereby preserving the texture and small scale details of the image. Consequently, the edge map of CC in both the normal and AD are apparently sharp and distinct with continuous boundaries. This facilitates the final contour to correctly segment CC from the nearby structures. The extracted geometric features such as area, perimeter and minor axis are found to have the percentage difference of 5.97%, 22.22% and 9.52% respectively in the demarcation of AD subjects. As callosal atrophy is significant in the diagnosis of AD, this study seems to be clinically useful.

  17. Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse.

    PubMed

    Clarke, Laura E; Young, Kaylene M; Hamilton, Nicola B; Li, Huiliang; Richardson, William D; Attwell, David

    2012-06-13

    Oligodendrocyte progenitor cells (OPCs) in the postnatal mouse corpus callosum (CC) and motor cortex (Ctx) reportedly generate only oligodendrocytes (OLs), whereas those in the piriform cortex may also generate neurons. OPCs have also been subdivided based on their expression of voltage-gated ion channels, ability to respond to neuronal activity, and proliferative state. To determine whether OPCs in the piriform cortex have inherently different physiological properties from those in the CC and Ctx, we studied acute brain slices from postnatal transgenic mice in which GFP expression identifies OL lineage cells. We whole-cell patch clamped GFP-expressing (GFP(+)) cells within the CC, Ctx, and anterior piriform cortex (aPC) and used prelabeling with 5-ethynyl-2'-deoxyuridine (EdU) to assess cell proliferation. After recording, slices were immunolabeled and OPCs were defined by strong expression of NG2. NG2(+) OPCs in the white and gray matter proliferated and coexpressed PDGFRα and voltage-gated Na(+) channels (I(Na)). Approximately 70% of OPCs were capable of generating regenerative depolarizations. In addition to OLIG2(+) NG2(+) I(Na)(+) OPCs and OLIG2(+) NG2(neg) I(Na)(neg) OLs, we identified cells with low levels of NG2 limited to the soma or the base of some processes. These cells had a significantly reduced I(Na) and a reduced ability to incorporate EdU when compared with OPCs and probably correspond to early differentiating OLs. By combining EdU labeling and lineage tracing using Pdgfrα-CreER(T2) : R26R-YFP transgenic mice, we double labeled OPCs and traced their fate in the postnatal brain. These OPCs generated OLs but did not generate neurons in the aPC or elsewhere at any time that we examined.

  18. Clinical outcomes and neurodevelopmental outcome of prenatally diagnosed agenesis of corpus callosum in single center of Korea

    PubMed Central

    Kim, Sung Eun; Jang, Hye-In; Chang, Kylie Hae-jin; Sung, Ji-Hee; Lee, Jiwon; Lee, Jeehun; Choi, Suk-Joo; Roh, Cheong-Rae; Kim, Jong-Hwa

    2017-01-01

    Objective With recent advances and frequent use of prenatal ultrasound, the antenatal diagnosis of agenesis of the corpus callosum (ACC) is not rare in obstetrics practices. However, information regarding the long-term neurological outcome remains uncertain. The aim of this study was to investigate clinical outcomes of prenatally diagnosed ACC and to analyze postnatal neurodevelopmental outcomes of ACC neonates born in our single center. Methods We retrospectively reviewed 56 cases of prenatally suspected ACC referred to our center. Results Fifty-six fetuses were diagnosed with ACC, and 12 of those were followed-up in our center until delivery. Of the remaining 44, 7 were delivered after being referred back to the original hospital, 23 were lost to follow-up, and 14 had unknown outcomes. Among all 56, 29 were considered to have isolated ACC and 27 were considered to have non-isolated ACC. Of the 10 live fetuses delivered in our center, four had isolated ACC, three had non-isolated ACC, and the rest had outcomes unrelated to ACC. Neurodevelopmental outcome was followed-up until approximately age 3 years. Of the four with isolated ACC, three (75%) had normal neurodevelopmental outcomes. Conclusion Similar to other studies, the results of our single-center study included positive neurodevelopmental outcomes for those with isolated ACC. However, despite our endeavor to counsel patients with prenatally diagnosed ACC, the delivery rate in our center was quite low. Therefore, larger, multicenter, retrospective studies including long-term neurological development outcomes are crucial and urgently needed to provide better counseling. PMID:28217666

  19. Corpus callosum area in patients with bipolar disorder with and without psychotic features: an international multicentre study

    PubMed Central

    Sarrazin, Samuel; d’Albis, Marc-Antoine; McDonald, Colm; Linke, Julia; Wessa, Michèle; Phillips, Mary; Delavest, Marine; Emsell, Louise; Versace, Amelia; Almeida, Jorge; Mangin, Jean-François; Poupon, Cyril; Le Dudal, Katia; Daban, Claire; Hamdani, Nora; Leboyer, Marion; Houenou, Josselin

    2015-01-01

    Background Previous studies have reported MRI abnormalities of the corpus callosum (CC) in patients with bipolar disorder (BD), although only a few studies have directly compared callosal areas in psychotic versus nonpsychotic patients with this disorder. We sought to compare regional callosal areas in a large international multicentre sample of patients with BD and healthy controls. Methods We analyzed anatomic T1 MRI data of patients with BD-I and healthy controls recruited from 4 sites (France, Germany, Ireland and the United States). We obtained the mid-sagittal areas of 7 CC subregions using an automatic CC delineation. Differences in regional callosal areas between patients and controls were compared using linear mixed models (adjusting for age, sex, handedness, brain volume, history of alcohol abuse/dependence, lithium or antipsychotic medication status, symptomatic status and site) and multiple comparisons correction. We also compared regional areas of the CC between patients with BD with and without a history of psychotic features. Results We included 172 patients and 146 controls in our study. Patients with BD had smaller adjusted mid-sagittal CC areas than controls along the posterior body, the isthmus and the splenium of the CC. Patients with a positive history of psychotic features had greater adjusted area of the rostral CC region than those without a history of psychotic features. Limitations We found small to medium effect sizes, and there was no calibration technique among the sites. Conclusion Our results suggest that BD with psychosis is associated with a different pattern of interhemispheric connectivity than BD without psychosis and could be considered a relevant neuroimaging subtype of BD. PMID:26151452

  20. Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination.

    PubMed

    Hibbits, Norah; Pannu, Ravinder; Wu, T John; Armstrong, Regina C

    2009-08-14

    For studies of remyelination in demyelinating diseases, the cuprizone model of CC (corpus callosum) demyelination has experimental advantages that include overall size, proximity to neural stem cells of the subventricular zone, and correlation with a lesion predilection site in multiple sclerosis. In addition, cuprizone treatment can be ended to allow more direct analysis of remyelination than with viral or autoimmune models. However, CC demyelination lacks a useful functional correlate in rodents for longitudinal analysis throughout the course of demyelination and remyelination. In the present study, we tested two distinct behavioural measurements in mice fed 0.2% cuprizone. Running on a 'complex' wheel with varied rung intervals requires integration between cerebral hemispheres for rapid bilateral sensorimotor coordination. Maximum running velocity on the 'complex' wheel decreased during acute (6 week) and chronic (12 week) cuprizone demyelination. Running velocity on the complex wheel distinguished treated (for 6 weeks) from non-treated mice, even after a 6-week recovery period for spontaneous remyelination. A second behavioural assessment was a resident-intruder test of social interaction. The frequency of interactive behaviours increased among resident mice after acute or chronic demyelination. Differences in both sensorimotor coordination and social interaction correlated with demonstrated CC demyelination. The wheel assay is applicable for longitudinal studies. The resident-intruder assay provides a complementary assessment of a distinct modality at a specific time point. These behavioural measurements are sufficiently robust for small cohorts as a non-invasive assessment of demyelination to facilitate analysis of subsequent remyelination. These measurements may also identify CC involvement in other mouse models of central nervous system injuries and disorders.

  1. Negative Associations between Corpus Callosum Midsagittal Area and IQ in a Representative Sample of Healthy Children and Adolescents

    PubMed Central

    Ganjavi, Hooman; Lewis, John D.; Bellec, Pierre; MacDonald, Penny A.; Waber, Deborah P.; Evans, Alan C.; Karama, Sherif

    2011-01-01

    Documented associations between corpus callosum size and cognitive ability have heretofore been inconsistent potentially owing to differences in sample characteristics, differing methodologies in measuring CC size, or the use of absolute versus relative measures. We investigated the relationship between CC size and intelligence quotient (IQ) in the NIH MRI Study of Normal Brain Development sample, a large cohort of healthy children and adolescents (aged six to 18, n = 198) recruited to be representative of the US population. CC midsagittal area was measured using an automated system that partitioned the CC into 25 subregions. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). After correcting for total brain volume and age, a significant negative correlation was found between total CC midsagittal area and IQ (r = −0.147; p = 0.040). Post hoc analyses revealed a significant negative correlation in children (age<12) (r = −0.279; p = 0.004) but not in adolescents (age≥12) (r = −0.005; p = 0.962). Partitioning the subjects by gender revealed a negative correlation in males (r = −0.231; p = 0.034) but not in females (r = 0.083; p = 0.389). Results suggest that the association between CC and intelligence is mostly driven by male children. In children, a significant gender difference was observed for FSIQ and PIQ, and in males, a significant age-group difference was observed for FSIQ and PIQ. These findings suggest that the correlation between CC midsagittal area and IQ may be related to age and gender. PMID:21625542

  2. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor.

    PubMed

    Laclef, Christine; Anselme, Isabelle; Besse, Laurianne; Catala, Martin; Palmyre, Aurélien; Baas, Dominique; Paschaki, Marie; Pedraza, Maria; Métin, Christine; Durand, Bénédicte; Schneider-Maunoury, Sylvie

    2015-09-01

    Agenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain. We show that AgCC in Rpgrip1l(-/-) mouse is associated with a disturbed location of guidepost cells in the dorsomedial telencephalon. This mislocalization results from early patterning defects and abnormal cortico-septal boundary (CSB) formation in the medial telencephalon. We demonstrate that all these defects primarily result from altered GLI3 processing. Indeed, AgCC, together with patterning defects and mispositioning of guidepost cells, is rescued by overexpressing in Rpgrip1l(-/-) embryos, the short repressor form of the GLI3 transcription factor (GLI3R), provided by the Gli3(Δ699) allele. Furthermore, Gli3(Δ699) also rescues AgCC in Rfx3(-/-) embryos deficient for the ciliogenic RFX3 transcription factor that regulates the expression of several ciliary genes. These data demonstrate that GLI3 processing is a major outcome of primary cilia function in dorsal telencephalon morphogenesis. Rescuing CC formation in two independent ciliary mutants by GLI3(Δ699) highlights the crucial role of primary cilia in maintaining the proper level of GLI3R required for morphogenesis of the CC.

  3. Mode of Anisotropy Reveals Global Diffusion Alterations in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Yoncheva, Yuliya N.; Somandepalli, Krishna; Reiss, Philip T.; Kelly, Clare; Di Martino, Adriana; Lazar, Mariana; Zhou, Juan; Milham, Michael P.; Castellanos, F. Xavier

    2016-01-01

    Objective Diffusion tensor imaging (DTI) can identify structural connectivity alterations in attention-deficit/hyperactivity disorder (ADHD). Most ADHD DTI studies have concentrated on regional differences in fractional anisotropy (FA) despite its limited sensitivity to complex white matter architecture and increasing evidence of global brain differences in ADHD. Here, we examine multiple DTI metrics in separate samples of children and adults with and without ADHD with a principal focus on global between-group differences. Method Two samples: adults with ADHD (n = 42) and without (n = 65) and children with ADHD (n = 82) and without (n = 80) were separately group matched for age, sex, and head motion. Five DTI metrics (FA, axial diffusivity, radial diffusivity, mean diffusivity, and mode of anisotropy) were analyzed via tract-based spatial statistics. Group analyses tested for diagnostic differences at the global (averaged across the entire white matter skeleton) and regional level for each metric. Results Robust global group differences in diffusion indices were found in adults, with the largest effect size for mode of anisotropy (MA; Cohen’s d = 1.45). Global MA also differed significantly between groups in the pediatric sample (d = 0.68). In both samples, global MA increased classification accuracy compared to the model with clinical Conners’ ADHD ratings alone. Regional diagnostic differences did not survive familywise correction for multiple comparisons. Conclusion Global DTI metrics, particularly the mode of anisotropy, which is sensitive to crossing fibers, capture connectivity abnormalities in ADHD across both pediatric and adult samples. These findings highlight potential diffuse white matter microarchitecture differences in ADHD. PMID:26802781

  4. THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION

    SciTech Connect

    Cooray, Asantha; Gong Yan; Smidt, Joseph; Santos, Mario G.

    2012-09-01

    A fraction of the extragalactic near-infrared (near-IR) background light involves redshifted photons from the ultraviolet (UV) emission from galaxies present during reionization at redshifts above 6. The absolute intensity and the anisotropies of the near-IR background provide an observational probe of the first-light galaxies and their spatial distribution. We estimate the extragalactic background light intensity during reionization by accounting for the stellar and nebular emission from first-light galaxies. We require the UV photon density from these galaxies to generate a reionization history that is consistent with the optical depth to electron scattering from cosmic microwave background measurements. We also require the bright-end luminosity function (LF) of galaxies in our models to reproduce the measured Lyman-dropout LFs at redshifts of 6-8. The absolute intensity is about 0.1-0.4 nW m{sup -2} sr{sup -1} at the peak of its spectrum at {approx}1.1 {mu}m. We also discuss the anisotropy power spectrum of the near-IR background using a halo model to describe the galaxy distribution. We compare our predictions for the anisotropy power spectrum to existing measurements from deep near-IR imaging data from Spitzer/IRAC, Hubble/NICMOS, and AKARI. The predicted rms fluctuations at tens of arcminute angular scales are roughly an order of magnitude smaller than the existing measurements. While strong arguments have been made that the measured fluctuations do not have an origin involving faint low-redshift galaxies, we find that measurements in the literature are also incompatible with galaxies present during the era of reionization. The measured near-IR background anisotropies remain unexplained with an unknown origin.

  5. Fractional calculus in bioengineering.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  6. Mechanical Response Anisotropy in Hot-Pressed Silicon Carbide

    DTIC Science & Technology

    2013-01-07

    Research Laboratory, Aberdeen Proving Ground, MD 21005. ABSTRACT Property anisotropy can exist in sintered ceramics and composites formed by...processes occur independent of material processing orientation. Uniaxial pressure-assisted sintering of ceramics and composites tends to promote a...Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Property anisotropy can exist in sintered ceramics and

  7. Extending velocity channel analysis for studying turbulence anisotropies

    NASA Astrophysics Data System (ADS)

    Kandel, D.; Lazarian, A.; Pogosyan, D.

    2016-09-01

    We extend the velocity channel analysis (VCA), introduced by Lazarian & Pogosyan, of the intensity fluctuations in the velocity slices of position-position-velocity (PPV) spectroscopic data from Doppler broadened lines to study statistical anisotropy of the underlying velocity and density that arises in a turbulent medium from the presence of magnetic field. In particular, we study analytically how the anisotropy of the intensity correlation in the channel maps changes with the thickness of velocity channels. In agreement with the earlier VCA studies, we find that the anisotropy in the thick channels reflects the anisotropy of the density field, while the relative contribution of density and velocity fluctuations to the thin velocity channels depends on the density spectral slope. We show that the anisotropies arising from Alfvén, slow and fast magnetohydrodynamical modes are different; in particular, the anisotropy in PPV created by fast modes is opposite to that created by Alfvén and slow modes, and this can be used to separate their contributions. We successfully compare our results with the recent numerical study of the PPV anisotropies measured with synthetic observations. We also extend our study to the medium with self-absorption as well as to the case of absorption lines. In addition, we demonstrate how the studies of anisotropy can be performed using interferometers.

  8. Unidirectional Anisotropy in Manganite Based Ferromagnetic-Antiferromagnetic Multilayers

    DTIC Science & Technology

    2000-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11814 TITLE: Unidirectional Anisotropy in Manganite Based...component part numbers comprise the compilation report: ADPO11800 thru ADP011832 UNCLASSIFIED UNIDIRECTIONAL ANISOTROPY IN MANGANITE BASED FERROMAGNETIC...Introduction In mixed valence manganites a large negative magnetoresistance (MR), termed colossal magnetoresistance [1] (CMR), can be obtained due to a

  9. CMB anisotropies in the presence of a stochastic magnetic field

    SciTech Connect

    Kunze, Kerstin E.

    2011-01-15

    Primordial magnetic fields present since before the epoch of matter-radiation equality have an effect on the anisotropies of the cosmic microwave background (CMB). The CMB anisotropies due to scalar perturbations are calculated in the gauge-invariant formalism for magnetized adiabatic initial conditions. Furthermore, the linear matter power spectrum is calculated. Numerical solutions are complemented by a qualitative analysis.

  10. STUDYING THE INTERSTELLAR MAGNETIC FIELD FROM ANISOTROPIES IN VELOCITY CHANNELS

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Pogosyan, D. E-mail: lazarian@astro.wisc.edu

    2015-11-20

    Turbulence in the interstellar medium is anisotropic due to the ubiquitous magnetic fields. This anisotropy depends on the strength of the magnetic field and leaves an imprint on observations of spectral line maps. We use a grid of ideal magnetohydrodynamic simulations of driven turbulence and produce synthetic position–position–velocity maps to study the turbulence anisotropy in velocity channels of various resolutions. We found that the average structure function of velocity channels is aligned with the projection of the magnetic field on the plane of the sky. We also found that the degree of such anisotropy increases with the magnitude of the magnetic field. For thick velocity channels (low velocity resolution), the anisotropy is dominated by density, and the degree of anisotropy in these maps allows one to distinguish sub-Alfvénic and super-Alfvénic turbulence regimes, but it also depends strongly on the sonic Mach number. For thin channels (high velocity resolution), we find that the anisotropy depends less on the sonic Mach number. An important limitation of this technique is that it only gives a lower limit on the magnetic field strength because the anisotropy is related only to the magnetic field component on the plane of the sky. It can, and should, be used in combination with other techniques to estimate the magnetic field, such as the Fermi-Chandrasekhar method, anisotropies in centroids, Faraday rotation measurements, or direct line-of-sight determinations of the field from Zeeman effect observations.

  11. Structural anisotropy in metallic glasses induced by mechanical deformation

    SciTech Connect

    Dmowski, W.; Egami, T.

    2009-03-06

    We observed structural anisotropy in metallic glasses samples deformed by homogenous mechanical creep and by inhomogeneous compression using high energy X-ray diffraction. Pair distribution function analysis indicates bond anisotropy in the first atomic shell. This suggests that mechanical deformation involves rearrangements in a cluster of atoms by a bond reformation.

  12. Fractional market dynamics

    NASA Astrophysics Data System (ADS)

    Laskin, Nick

    2000-12-01

    A new extension of a fractality concept in financial mathematics has been developed. We have introduced a new fractional Langevin-type stochastic differential equation that differs from the standard Langevin equation: (i) by replacing the first-order derivative with respect to time by the fractional derivative of order μ; and (ii) by replacing “white noise” Gaussian stochastic force by the generalized “shot noise”, each pulse of which has a random amplitude with the α-stable Lévy distribution. As an application of the developed fractional non-Gaussian dynamical approach the expression for the probability distribution function (pdf) of the returns has been established. It is shown that the obtained fractional pdf fits well the central part and the tails of the empirical distribution of S&P 500 returns.

  13. Catalytic reforming of naphtha fractions

    SciTech Connect

    Bishop, K.C.; Vorhis, F.H.

    1980-09-16

    Production of motor gasoline and a btx-enriched reformate by fractionating a naphtha feedstock into a mid-boiling btxprecursor fraction, a relatively high-boiling fraction and a relatively low-boiling fraction; catalytically reforming the btxprecursor fraction in a first reforming zone; combining the relatively high-boiling and low-boiling fractions and catalytically reforming the combined fractions in a second reforming zone.

  14. Surface Structure and Electron Density Dependence of Scattered Ne+ Ion Fractions from Cd- and S-Terminated CdS\\{0001\\} Surfaces

    NASA Astrophysics Data System (ADS)

    Houssiau, L.; Rabalais, J. W.; Wolfgang, J.; Nordlander, P.

    1998-12-01

    Experimental measurements of the magnitudes and azimuthal anisotropies of 4 keV Ne+ scattered ion fractions from both the Cd- and S-terminated surfaces of CdS\\{0001\\} exhibit high sensitivity to both surface structure and electron density. Using a density functional approach, a clear correlation has been demonstrated between these Ne+ ion fractions and the lateral variation of the electrostatic potential along the outgoing trajectories of the scattered Ne atoms. The observed anisotropy in the ion fractions is a result of the variations in surface to atom electron transfer rates due to tunneling barriers introduced by the electrostatic potentials.

  15. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  16. Thermodynamics in Fractional Calculus

    NASA Astrophysics Data System (ADS)

    Meilanov, R. P.; Magomedov, R. A.

    2014-11-01

    A generalization of thermodynamics in the formalism of fractional-order derivatives is given. Results of the traditional thermodynamics of Carnot, Clausius, and Helmholtz are obtained in the particular case where the exponent of a fractional-order derivative is equal to unity. A one-parametric "fractal" equation of state is obtained with account of the second virial coefficient. The application of the resulting equation of state in the case of the gas argon is considered.

  17. Symmetric continued fractions

    SciTech Connect

    Panprasitwech, Oranit; Laohakosol, Vichian; Chaichana, Tuangrat

    2010-11-11

    Explicit formulae for continued fractions with symmetric patterns in their partial quotients are constructed in the field of formal power series. Similar to the work of Cohn in 1996, which generalized the so-called folding lemma to {kappa}-fold symmetry, the notion of {kappa}-duplicating symmetric continued fractions is investigated using a modification of the 1995 technique due to Clemens, Merrill and Roeder.

  18. Geomechanics and elastic anisotropy of the Bakken Formation, Williston Basin

    NASA Astrophysics Data System (ADS)

    Ostadhassan, Mehdi

    Many of the earth's rocks exhibit anisotropic characteristics. Anisotropy is particularly common in many sedimentary rocks, such as shales. Anisotropy is defined as the spatial alignment of mineral grains, layers, fractures and stresses which causes elastic wave velocity and other elastic properties to vary with direction. There are two types of anisotropy: intrinsic and stress-induced. Intrinsic anisotropy is caused by beddings, microstructures or aligned fractures formed during deposition. Stress-induced anisotropy is caused by strain associated with external stresses. Intrinsic anisotropy originates in the absence of external stresses, while stress-induced anisotropy results from tectonic and overburden stresses. The style of earth material alignment causes two simplified, but convenient models of anisotropy: vertically transverse isotropy (VTI), like shale, and horizontally transverse isotropy (HTI), like vertically fractured medium. These models have been used to describe how physical properties of rock vary in a medium. Identifying the anisotropy in a formation is important in reservoir characterization seismic data processing and oil-field development. Deep shales are the most abundant yet least characterized sedimentary rocks in the Williston Basin of North Dakota. They are significant sources of hydrocarbon unconventional resources in this basin. This dissertation aims to fulfill an investigation of anisotropy in this rock type in several different facets through exploiting of field data. I seek to generate key information for better interplay of field in-situ stress and the existing natural fracture systems for the purpose of drilling, well completion, perforating, hydraulic fracturing and defining reservoir properties. In this study advanced sonic logging data has been processed and interpreted to calculate three independent shear moduli. These parameters then will be used to estimate Thomsen (1986) anisotropy parameters, elastic stiffness coefficients

  19. Tuning the Magnetic Anisotropy at a Molecule-Metal Interface.

    PubMed

    Bairagi, K; Bellec, A; Repain, V; Chacon, C; Girard, Y; Garreau, Y; Lagoute, J; Rousset, S; Breitwieser, R; Hu, Yu-Cheng; Chao, Yen Cheng; Pai, Woei Wu; Li, D; Smogunov, A; Barreteau, C

    2015-06-19

    We demonstrate that a C(60) overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the (60)/Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the (60) coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between (60) p(z) and Co d(z(2)) orbitals. By generalizing these arguments, we also demonstrate that the hybridization of (60) with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems.

  20. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    SciTech Connect

    Barton, C. W. Thomson, T.

    2015-08-14

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol would provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.

  1. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    PubMed

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-07

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.

  2. Anisotropy of strong pinning in multi-band superconductors

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Konczykowski, M.; Prozorov, R.

    2012-08-01

    The field-angular dependence and anisotropy of the critical current density in iron-based superconductors is evaluated using a phenomenological approach featuring distinct anisotropy factors for the penetration depth and the coherence length. Both the weak collective pinning limit and the strong pinning limit relevant for iron-based superconductors at low magnetic fields are considered. It is found that in the more anisotropic materials, such as SmFeAsO and NdFeAsO, the field-angular dependence is completely dominated by the coherence length (upper critical field) anisotropy, thereby explaining recent results on the critical current in these materials. In less anisotropic superconductors, strong pinning can lead to an apparent inversion of the anisotropy. Finally, it is shown that, under all circumstances, the ratio of the c-axis and ab-plane critical current densities for the magnetic field along the ab-plane directly yields the coherence length anisotropy factor ɛξ.

  3. Polarization and dilepton anisotropy in pion-nucleon collisions

    NASA Astrophysics Data System (ADS)

    Speranza, Enrico; Zétényi, Miklós; Friman, Bengt

    2017-01-01

    Hadronic polarization and the related anisotropy of the dilepton angular distribution are studied for the reaction πN → Ne+e-. We employ consistent effective interactions for baryon resonances up to spin-5/2, where non-physical degrees of freedom are eliminated, to compute the anisotropy coefficients for isolated intermediate baryon resonances. It is shown that the spin and parity of the intermediate baryon resonance is reflected in the angular dependence of the anisotropy coefficient. We then compute the anisotropy coefficient including the N (1520) and N (1440) resonances, which are essential at the collision energy of the recent data obtained by the HADES Collaboration on this reaction. We conclude that the anisotropy coefficient provides useful constraints for unraveling the resonance contributions to this process.

  4. Primordial statistical anisotropy generated at the end of inflation

    SciTech Connect

    Yokoyama, Shuichiro; Soda, Jiro E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2008-08-15

    We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum.

  5. Tuning the Magnetic Anisotropy at a Molecule-Metal Interface

    NASA Astrophysics Data System (ADS)

    Bairagi, K.; Bellec, A.; Repain, V.; Chacon, C.; Girard, Y.; Garreau, Y.; Lagoute, J.; Rousset, S.; Breitwieser, R.; Hu, Yu-Cheng; Chao, Yen Cheng; Pai, Woei Wu; Li, D.; Smogunov, A.; Barreteau, C.

    2015-06-01

    We demonstrate that a C60 overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the C60/Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the C60 coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between C60 pz and Co dz2 orbitals. By generalizing these arguments, we also demonstrate that the hybridization of C60 with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems.

  6. Anisotropy of strong pinning in multi-band superconductors

    SciTech Connect

    van der Beek, C.J.; Konczykowski, M.; Prozorov, Ruslan

    2012-07-17

    The field-angular dependence and anisotropy of the critical current density in iron-based superconductors is evaluated using a phenomenological approach featuring distinct anisotropy factors for the penetration depth and the coherence length. Both the weak collective pinning limit and the strong pinning limit relevant for iron-based superconductors at low magnetic fields are considered. It is found that in the more anisotropic materials, such as SmFeAsO and NdFeAsO, the field-angular dependence is completely dominated by the coherence length (upper critical field) anisotropy, thereby explaining recent results on the critical current in these materials. In less anisotropic superconductors, strong pinning can lead to an apparent inversion of the anisotropy. Finally, it is shown that, under all circumstances, the ratio of the c-axis and ab-plane critical current densities for the magnetic field along the ab-plane directly yields the coherence length anisotropy factor εξ.

  7. Chromatographic methods of fractionation.

    PubMed

    Friesen, A D

    1987-01-01

    Chromatography's functional versatility, separation efficiency, gentle non-denaturing separating process and ease of automation and scale-up make it attractive for industrial scale protein purification. The Winnipeg Rh Institute's new Plasma Fractionation facility is an example of the use of chromatography for the large scale purification of plasma protein fractions. The fractionation facility has a capacity to process 800 litres of plasma per batch into blood clotting factor VIII and IX, albumin and intravenous immune serum globulin (i.v. ISG). Albumin and i.v. ISG are purified using ion exchange columns of DEAE-Sepharose (230 litre size), DEAE-Biogel (150 litre size) and CM-Sepharose (150 litre size). The chromatographic process is automated using a Modicon 584 Programmable Logic Controller to regulate valves, pumps and sensors which control plasma flow during fractionation. The stainless steel tanks and piping are automatically cleaned-in-place. The high degree of automation and cleaning provides efficient operation and sanitary processing. Chromatographic methods (DEAE-Sepharose and metal chelation) are also being used at the pilot scale to purify the human blood products superoxide dismutase and hemoglobin from outdated red blood cells. Characterization of the protein fractions produced by chromatography has shown them to be of equal or higher quality than fractions produced by other techniques.

  8. Fractional laser skin resurfacing.

    PubMed

    Alexiades-Armenakas, Macrene R; Dover, Jeffrey S; Arndt, Kenneth A

    2012-11-01

    Laser skin resurfacing (LSR) has evolved over the past 2 decades from traditional ablative to fractional nonablative and fractional ablative resurfacing. Traditional ablative LSR was highly effective in reducing rhytides, photoaging, and acne scarring but was associated with significant side effects and complications. In contrast, nonablative LSR was very safe but failed to deliver consistent clinical improvement. Fractional LSR has achieved the middle ground; it combined the efficacy of traditional LSR with the safety of nonablative modalities. The first fractional laser was a nonablative erbium-doped yttrium aluminum garnet (Er:YAG) laser that produced microscopic columns of thermal injury in the epidermis and upper dermis. Heralding an entirely new concept of laser energy delivery, it delivered the laser beam in microarrays. It resulted in microscopic columns of treated tissue and intervening areas of untreated skin, which yielded rapid reepithelialization. Fractional delivery was quickly applied to ablative wavelengths such as carbon dioxide, Er:YAG, and yttrium scandium gallium garnet (2,790 nm), providing more significant clinical outcomes. Adjustable laser parameters, including power, pitch, dwell time, and spot density, allowed for precise determination of percent surface area, affected penetration depth, and clinical recovery time and efficacy. Fractional LSR has been a significant advance to the laser field, striking the balance between safety and efficacy.

  9. PROBING THE PULSAR ORIGIN OF THE ANOMALOUS POSITRON FRACTION WITH AMS-02 AND ATMOSPHERIC CHERENKOV TELESCOPES

    SciTech Connect

    Linden, Tim; Profumo, Stefano

    2013-07-20

    Recent observations by PAMELA, Fermi-LAT, and AMS-02 have conclusively indicated a rise in the cosmic-ray positron fraction above 10 GeV, a feature which is impossible to mimic under the paradigm of secondary positron production with self-consistent Galactic cosmic-ray propagation models. A leading explanation for the positron fraction rise is an additional source of electron-positron pairs, for example one or more mature, energetic, and relatively nearby pulsars. We point out that any one of two well-known nearby pulsars, Geminga and Monogem, can satisfactorily provide enough positrons to reproduce AMS-02 observations. A smoking-gun signature of this scenario is an anisotropy in the arrival direction of the cosmic-ray electrons and positrons, which may be detectable by existing, or future, telescopes. The predicted anisotropy level is, at present, consistent with limits from Fermi-LAT and AMS-02. We argue that the large collecting area of atmospheric Cherenkov telescopes (ACTs) makes them optimal tools for detecting such an anisotropy. Specifically, we show that much of the proton and {gamma}-ray background which affects measurements of the cosmic-ray electron-positron spectrum with ACTs may be controlled in the search for anisotropies. We conclude that observations using archival ACT data could already constrain or substantiate the pulsar origin of the positron anomaly, while upcoming instruments (such as the Cherenkov Telescope Array) will provide strong constraints on the source of the rising positron fraction.

  10. Texture-induced microwave background anisotropies

    SciTech Connect

    Borrill, J.; Copeland, E.J.; Liddle, A.R.; Stebbins, A.; Veeraraghavan, S. Blackett Laboratory, Imperial College of Science and Technology, Prince Consort Road, London SW7 2BZ NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laoratory, Batavia, Illinois 60510 NASA Goddard Space Flight Center, Code 685, Greenbelt, Maryland 20771 Steward Observatory, University of Arizona, Tucson, Arizona 85721 )

    1994-08-15

    We use numerical simulations to calculate the cosmic microwave background anisotropy induced by the evolution of a global texture field, with special emphasis on individual textures. Both spherically symmetric and general configurations are analyzed, and in the latter case we consider field configurations which exhibit unwinding events and also ones which do not. We compare the results given by evolving the field numerically under both the expanded core (XCORE) and nonlinear [sigma] model (NLSM) approximations with the analytic predictions of the NLSM exact solution for a spherically symmetric self-similar (SSSS) unwinding. We find that the random unwinding configuration spots' typical peak height is 60--75 % and angular size typically only 10% of those of the SSSS unwinding, and that random configurations without an unwinding event nonetheless may generate indistinguishable hot and cold spots. A brief comparison is made with other work.

  11. Effect of anisotropy in explosive fragmentation

    SciTech Connect

    Dienes, J.K.

    1981-01-01

    The behavior of rocks at large deformations is characterized, including the effects of crack growth when unstable, the effects of anisotropy, the distinction between open and closed cracks, the influence of crack intersections, the role of pore pressure, and a calculation of permeability. The theory is quite general, and is intended for use in a computer program rather than as a vehicle for obtaining analytic results. When a spherical explosive charge is embedded in oil shale it produces an aspirin-shaped cavity at late times as a result of the bedded structure of the rock. In this paper a calculation of the cavity produced by a spherical explosive is compared with a radiograph, showing remarkable agreement between the two. The shape of the cavity is explained by the behavior of cracks lying in the bedding planes.

  12. Cosmic Microwave Background Anisotropy: Python V Results

    NASA Astrophysics Data System (ADS)

    Coble, K.; Dragovan, M.; Kovac, J.; Halverson, N. W.; Holzapfel, W. L.; Knox, L.; Dodelson, S.; Ganga, K.; Peterson, J. B.; Alvarez, D.; Griffin, G.; Newcomb, M.; Miller, K.; Platt, S. R.; Novak, G.

    1999-05-01

    Observations of the microwave sky using the Python telescope in its fifth season of operation at the Amundsen-Scott South Pole Station in Antarctica are presented. The system consists of a 0.75 m off-axis telescope instrumented with a HEMT amplifier-based radiometer having continuum sensitivity from 37-45 GHz in two frequency bands. With a 0.91 x 1.02 deg beam the instrument fully sampled 598 deg(2) of sky, including fields measured during the previous four seasons of Python observations. Interpreting the observed fluctuations as anisotropy in the cosmic microwave background, we place constraints on the angular power spectrum of fluctuations in multipole bands up to l ~ 260. The observed spectrum is consistent with both the COBE experiment and previous Python results. There is no significant contamination from known foregrounds. The results show a discernible rise in the angular power spectrum from large (l ~ 40) to small (l ~ 200) angular scales.

  13. Anisotropy and Formability in Sheet Metal Forming

    SciTech Connect

    Houtte, P. van; Bael, A.; He, S. van

    2007-05-17

    Two types of anisotropy have been introduced in the Marciniak model for the prediction of forming limit diagrams (FLDs) of sheet material. One type is due to crystallographic texture, the other is due to dislocation substructure. First, an anisotropic plastic potential is derived from a measured crystallographic texture using a multilevel model. The yield locus can be derived from this plastic potential. In addition to this, a model is used to simulate microstructure-induced work hardening and softening. This model can take effects of strain path changes into account. Both the texture-based and microstructure-based anisotropic model are then implemented in the Marciniak model and used for FLD calculation. Examples of application are given for IOF steel and for aluminium alloys. Recent research has focused on the physical basis of the microstructure-induced work hardening and softening. The principles of this model will be elucidated.

  14. Stratification of Seismic Anisotropy Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Eaton, D. W.; Bastow, I. D.

    2012-12-01

    The Hudson Bay region has a complex tectonic history spanning ~4 Ga of Earth's evolution. During the ~1.8 Ga Trans-Hudson orogeny, the Archean Superior and Western Churchill cratons collided following the subduction of a Pacific-scale ocean. It is thought that a significant amount of juvenile material is preserved in the Trans-Hudson Orogen, in part due to the complex double-indentor geometry of the Superior-Churchill collision. In the region of interest, the orogen lies beneath a large but shallow Paleozoic intra-cratonic basin. Studies of the crust and upper mantle beneath this region have been enabled through the HuBLE (Hudson Bay Lithospheric Experiment) project, through the deployment of broadband seismographs around the Bay and across the islands to the north. A surface-wave tomography study has taken advantage of the data coverage, providing new information on phase velocity heterogeneity and anisotropy for wave periods of 25-200 seconds (equivalent to depths from the lower crust to ~300 km). On a large scale, our results show that the entire region is underlain by a seismically fast lithospheric lid corresponding to the continental keel. The lithospheric thickness ranges from ~180km in the northeast, beneath a zone of Paleozoic rifting, to ~280km beneath central Hudson Bay. Within the lithosphere, seismic velocities vary laterally, including high-velocity material wrapping around the Bay in the uppermost mantle. In the mid-lithosphere, two high-velocity cores are imaged, with a zone of lower velocity between them beneath the Bay. We interpret these high-velocity structures to represent the strongest central cores of the Superior and Churchill cratons, with more-juvenile material preserved between them. The near-vertical geometry of the lower-velocity zone suggests that it is only the effects of terminal collision of the cratonic cores, rather than any preceding subduction, that is preserved today. The lowermost lithosphere has a more uniform velocity, and

  15. Nonaxisymmetric anisotropy of solar wind turbulence.

    PubMed

    Turner, A J; Gogoberidze, G; Chapman, S C; Hnat, B; Müller, W-C

    2011-08-26

    A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, nonaxisymmetry across the inertial and dissipation ranges is quantified using in situ observations from Cluster. The observed inertial range nonaxisymmetry is reproduced by a "fly through" sampling of a direct numerical simulation of MHD turbulence. Furthermore, fly through sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in nonaxisymmetry with power spectral exponent. The observed nonaxisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself.

  16. The mirror and ion cyclotron anisotropy instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1992-01-01

    The linear dispersion equation for fully electromagnetic waves and instabilities at arbitrary directions of propagation relative to a background magnetic field B(0) in a homogeneous Vlasov plasma is solved numerically for bi-Maxwellian particle distributions. For isotropic plasmas the dispersion and damping of the three modes below the proton cyclotron frequency are studied as functions of Beta(i) and T(e)/T(i). The transport ratios of helicity, cross-helicity, Alfven ratio, compressibility, and parallel compressibility are defined. Under the condition that the proton temperature perpendicular to B(0) is greater than the parallel temperature, the growth rates and transport ratios of the mirror instability and the ion cyclotron anisotropy instability are examined and compared. Both the proton parallel compressibility and the proton Alfven ratio are significantly different for the two growing modes.

  17. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  18. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  19. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  20. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy.

    PubMed

    Campanella, H; Jaafar, M; Llobet, J; Esteve, J; Vázquez, M; Asenjo, A; del Real, R P; Plaza, J A

    2011-12-16

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials-used in magnetic storage media-or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.