Science.gov

Sample records for callosum fractional anisotropy

  1. Reduced fractional anisotropy in the anterior corpus callosum is associated with reduced speech fluency in persistent developmental stuttering.

    PubMed

    Civier, Oren; Kronfeld-Duenias, Vered; Amir, Ofer; Ezrati-Vinacour, Ruth; Ben-Shachar, Michal

    2015-04-01

    Developmental stuttering is a speech disorder that severely limits one's ability to communicate. White matter anomalies were reported in stuttering, but their functional significance is unclear. We analyzed the relation between white matter properties and speech fluency in adults who stutter (AWS). We used diffusion tensor imaging with tract-based spatial statistics, and examined group differences as well as correlations with behavioral fluency measures. We detected a region in the anterior corpus callosum with significantly lower fractional anisotropy in AWS relative to controls. Within the AWS group, reduced anisotropy in that region is associated with reduced fluency. A statistically significant interaction was found between group and age in two additional regions: the left Rolandic operculum and the left posterior corpus callosum. Our findings suggest that anterior callosal anomaly in stuttering may represent a maladaptive reduction in interhemispheric inhibition, possibly leading to a disadvantageous recruitment of right frontal cortex in speech production.

  2. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia.

    PubMed

    Balevich, Emily C; Haznedar, M Mehmet; Wang, Eugene; Newmark, Randall E; Bloom, Rachel; Schneiderman, Jason S; Aronowitz, Jonathan; Tang, Cheuk Y; Chu, King-Wai; Byne, William; Buchsbaum, Monte S; Hazlett, Erin A

    2015-03-30

    The corpus callosum has been implicated as a region of dysfunctional connectivity in schizophrenia, but the association between age and callosal pathology is unclear. Magnetic resonance imaging (MRI) and diffusion-tensor imaging (DTI) were performed on adults (n=34) and adolescents (n=17) with schizophrenia and adult (n=33) and adolescent (n=15) age- and sex-matched healthy controls. The corpus callosum was manually traced on each participant׳s MRI, and the DTI scan was co-registered to the MRI. The corpus callosum was divided into five anteroposterior segments. Area and anisotropy were calculated for each segment. Both patient groups demonstrated reduced callosal anisotropy; however, the adolescents exhibited reductions mostly in anterior regions while the reductions were more prominent in posterior regions of the adults. The adolescent patients showed greater decreases in absolute area as compared with the adult patients, particularly in the anterior segments. However, the adults showed greater reductions when area was considered relative to whole brain white matter volume. Our results suggest that the initial stages of the illness are characterized by deficiencies in frontal connections, and the chronic phase is characterized by deficits in the posterior corpus callosum; or, alternatively, adolescent-onset schizophrenia may represent a different or more severe form of the illness.

  3. Cosmic ray anisotropy in fractional differential models of anomalous diffusion

    SciTech Connect

    Uchaikin, V. V.

    2013-06-15

    The problem of galactic cosmic ray anisotropy is considered in two versions of the fractional differential model for anomalous diffusion. The simplest problem of cosmic ray propagation from a point instantaneous source in an unbounded medium is used as an example to show that the transition from the standard diffusion model to the Lagutin-Uchaikin fractional differential model (with characteristic exponent {alpha} = 3/5 and a finite velocity of free particle motion), which gives rise to a knee in the energy spectrum at 10{sup 6} GeV, increases the anisotropy coefficient only by 20%, while the anisotropy coefficient in the Lagutin-Tyumentsev model (with exponents {alpha} = 0.3 and {beta} = 0.8, a long stay of particles in traps, and an infinite velocity of their jumps) is close to one. This is because the parameters of the Lagutin-Tyumentsev model have been chosen improperly.

  4. Kurtosis fractional anisotropy, its contrast and estimation by proxy

    PubMed Central

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    The diffusion kurtosis observed with diffusion magnetic resonance imaging (dMRI) may vary with direction. This directional variation is summarized in the scalar kurtosis fractional anisotropy (KFA). Recent studies suggest that kurtosis anisotropy offers microstructural contrast not contained in other commonly used dMRI markers. We compare KFA to other dMRI contrasts in fixed rat brain and in human brain. We then investigate the observed contrast differences using data obtained in a physical phantom and simulations based on data from the phantom, rat spinal cord, and human brain. Lastly, we assess a strategy for rapid estimation of a computationally modest KFA proxy by evaluating its correlation to true KFA for varying number of sampling directions and signal-to-noise ratio (SNR) levels. We also map this proxy’s b-value dependency. We find that KFA supplements the contrast of other dMRI metrics – particularly fractional anisotropy (FA) which vanishes in near orthogonal fiber arrangements where KFA does not. Simulations and phantom data support this interpretation. KFA therefore supplements FA and could be useful for evaluation of complex tissue arrangements. The KFA proxy is strongly correlated to true KFA when sampling is performed along at least nine directions and SNR is high. PMID:27041679

  5. Kurtosis fractional anisotropy, its contrast and estimation by proxy.

    PubMed

    Hansen, Brian; Jespersen, Sune Nørhøj

    2016-01-01

    The diffusion kurtosis observed with diffusion magnetic resonance imaging (dMRI) may vary with direction. This directional variation is summarized in the scalar kurtosis fractional anisotropy (KFA). Recent studies suggest that kurtosis anisotropy offers microstructural contrast not contained in other commonly used dMRI markers. We compare KFA to other dMRI contrasts in fixed rat brain and in human brain. We then investigate the observed contrast differences using data obtained in a physical phantom and simulations based on data from the phantom, rat spinal cord, and human brain. Lastly, we assess a strategy for rapid estimation of a computationally modest KFA proxy by evaluating its correlation to true KFA for varying number of sampling directions and signal-to-noise ratio (SNR) levels. We also map this proxy's b-value dependency. We find that KFA supplements the contrast of other dMRI metrics - particularly fractional anisotropy (FA) which vanishes in near orthogonal fiber arrangements where KFA does not. Simulations and phantom data support this interpretation. KFA therefore supplements FA and could be useful for evaluation of complex tissue arrangements. The KFA proxy is strongly correlated to true KFA when sampling is performed along at least nine directions and SNR is high. PMID:27041679

  6. White Matter Fractional Anisotropy Correlates With Speed of Processing and Motor Speed in Young Childhood Cancer Survivors

    SciTech Connect

    Aukema, Eline J.; Oudhuis, Nienke; Vos, Frans M.; Reneman, Liesbeth; Last, Bob F.; Grootenhuis, Martha A.

    2009-07-01

    Purpose: To determine whether childhood medulloblastoma and acute lymphoblastic leukemia (ALL) survivors have decreased white matter fractional anisotropy (WMFA) and whether WMFA is related to the speed of processing and motor speed. Methods and Materials: For this study, 17 patients (6 medulloblastoma, 5 ALL treated with high-dose methotrexate (MTX) (4 x 5 g/m{sup 2}) and 6 with low-dose MTX (3 x 2 g/m{sup 2})) and 17 age-matched controls participated. On a 3.0-T magnetic resonance imaging (MRI) scanner, diffusion tensor imaging (DTI) was performed, and WMFA values were calculated, including specific regions of interest (ROIs), and correlated with the speed of processing and motor speed. Results: Mean WMFA in the patient group, mean age 14 years (range 8.9 - 16.9), was decreased compared with the control group (p = 0.01), as well as WMFA in the right inferior fronto-occipital fasciliculus (IFO) (p = 0.03) and in the genu of the corpus callosum (gCC) (p = 0.01). Based on neurocognitive results, significant positive correlations were present between processing speed and WMFA in the splenium (sCC) (r = 0.53, p = 0.03) and the body of the corpus callosum (bCC) (r = 0.52, p = 0.03), whereas the right IFO WMFA was related to motor speed (r = 0.49, p < 0.05). Conclusions: White matter tracts, using a 3.0-T MRI scanner, show impairment in childhood cancer survivors, medulloblastoma survivors, and also those treated with high doses of MTX. In particular, white matter tracts in the sCC, bCC and right IFO are positively correlated with speed of processing and motor speed.

  7. Tractography of the spider monkey (Ateles geoffroyi) corpus callosum using diffusion tensor magnetic resonance imaging.

    PubMed

    Platas-Neri, Diana; Hidalgo-Tobón, Silvia; de Celis Alonso, Benito; da Celis Alonso, Benito; de León, Fernando Chico-Ponce; Muñoz-Delgado, Jairo; Phillips, Kimberley A

    2015-01-01

    The objective of this research was to describe the organization, connectivity and microstructure of the corpus callosum of the spider monkey (Ateles geoffroyi). Non-invasive magnetic resonance imaging and diffusion-tensor imaging were obtained from three subjects using a 3T Philips scanner. We hypothesized that the arrangement of fibers in spider monkeys would be similar to that observed in other non-human primates. A repeated measure (n = 3) of fractional anisotropy values was obtained of each subject and for each callosal subdivision. Measurements of the diffusion properties of corpus callosum fibers exhibited a similar pattern to those reported in the literature for humans and chimpanzees. No statistical difference was reached when comparing this parameter between the different CC regions (p = 0.066). The highest fractional anisotropy values corresponded to regions projecting from the corpus callosum to the posterior cortical association areas, premotor and supplementary motor cortices. The lowest fractional anisotropy corresponded to projections to motor and sensory cortical areas. Analyses indicated that approximately 57% of the fibers projects to the frontal cortex and 43% to the post-central cortex. While this study had a small sample size, the results provided important information concerning the organization of the corpus callosum in spider monkeys.

  8. Characterization of the corpus callosum in very preterm and full-term infants utilizing MRI

    PubMed Central

    Thompson, Deanne K.; Inder, Terrie E.; Faggian, Nathan; Johnston, Leigh; Warfield, Simon K.; Anderson, Peter J.; Doyle, Lex W.; Egan, Gary F.

    2011-01-01

    The corpus callosum is the largest white matter tract, important for interhemispheric communication. The aim of this study was to investigate and compare corpus callosum size, shape and diffusion characteristics in 106 very preterm infants and 22 full-term infants. Structural and diffusion magnetic resonance images were obtained at term equivalent. The corpus callosum was segmented, cross-sectional areas were calculated, and shape was analyzed. Fractional anisotropy, mean, axial and radial diffusivity measures were obtained from within the corpus callosum, with additional probabilistic tractography analysis. Very preterm infants had significantly reduced callosal cross sectional area compared with term infants (p=0.004), particularly for the mid-body and posterior sub-regions. Very preterm callosi were more circular (p=0.01). Fractional anisotropy was lower (p=0.007) and mean (p=0.006) and radial (p=0.001) diffusivity values were higher in very preterm infants’ callosi, particularly at the anterior and posterior ends. The volume of tracts originating from the corpus callosum was reduced in very preterm infants (p=0.001), particularly for anterior mid-body (p=0.01) and isthmus tracts (p=0.04). This study characterizes callosal size, shape and diffusion in typically developing infants at term equivalent age, and reports macro- and micro-structural abnormalities as a result of prematurity. PMID:21168519

  9. Bi-directional changes in fractional anisotropy after experiment TBI: Disorganization and reorganization?

    PubMed

    Harris, N G; Verley, D R; Gutman, B A; Sutton, R L

    2016-06-01

    The current dogma to explain the extent of injury-related changes following rodent controlled cortical impact (CCI) injury is a focal injury with limited axonal pathology. However, there is in fact good, published histologic evidence to suggest that axonal injury is far more widespread in this model than generally thought. One possibility that might help to explain this is the often-used region-of-interest data analysis approach taken by experimental traumatic brain injury (TBI) diffusion tensor imaging (DTI) or histologic studies that might miss more widespread damage, when compared to the whole brain, statistically robust method of tract-based analysis used more routinely in clinical research. To determine the extent of DTI changes in this model, we acquired in vivo DTI data before and at 1 and 4weeks after CCI injury in 17 adult male rats and analyzed parametric maps of fractional anisotropy (FA), axial, radial, and mean diffusivity (AD, RD, MD), tensor mode (MO), and fiber tract density (FTD) using tract-based spatial statistics. Contusion volume was used as a surrogate marker of injury severity and as a covariate for investigating severity dependence of the data. Mean fiber tract length was also computed from seeds in the cortical spinal tract regions. In parallel experiments (n=3-5/group), we investigated corpus callosum neurofilaments and demyelination using immunohistochemistry (IHC) at 3days and 6weeks, callosal tract patency using dual-label retrograde tract tracing at 5weeks, and the contribution of gliosis to DTI parameter maps using GFAP IHC at 4weeks post-injury. The data show widespread ipsilateral regions of significantly reduced FA at 1week post-injury, driven by temporally changing values of AD, RD, and MD that persist to 4weeks. Demyelination, retrograde label tract loss, and reductions in MO (tract degeneration) and FTD were shown to underpin these data. Significant FA increases occurred in subcortical and corticospinal tract regions that were

  10. Concomitant Fractional Anisotropy and Volumetric Abnormalities in Temporal Lobe Epilepsy: Cross-Sectional Evidence for Progressive Neurologic Injury

    PubMed Central

    Gerdes, Jan S.; Weber, Bernd; Deppe, Michael

    2012-01-01

    Background In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). Methodology/Principal Findings For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Conclusions/Significance Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients. PMID:23071638

  11. Simultaneous changes in gray matter volume and white matter fractional anisotropy in Alzheimer's disease revealed by multimodal CCA and joint ICA.

    PubMed

    Ouyang, X; Chen, K; Yao, L; Hu, B; Wu, X; Ye, Q; Guo, X

    2015-08-20

    The prominent morphometric alterations of Alzheimer's disease (AD) occur both in gray matter and in white matter. Multimodal fusion can examine joint information by combining multiple neuroimaging datasets to identify the covariant morphometric alterations in AD in greater detail. In the current study, we conducted a multimodal canonical correlation analysis and joint independent component analysis to identify the covariance patterns of the gray and white matter by fusing structural magnetic resonance imaging and diffusion tensor imaging data of 39 AD patients (23 males and 16 females, mean age: 74.91±8.13years) and 41 normal controls (NCs) (20 males and 21 females, mean age: 73.97±6.34years) derived from the Alzheimer's Disease Neuroimaging Initiative database. The results revealed 25 joint independent components (ICs), of which three joint ICs exhibited strong links between the gray matter volume and the white matter fractional anisotropy (FA) and significant differences between the AD and NC group. The joint IC maps revealed that the simultaneous changes in the gray matter and FA values primarily involved the following areas: (1) the temporal lobe/hippocampus-cingulum, (2) the frontal/cingulate gyrus-corpus callosum, and (3) the temporal/occipital/parietal lobe-corpus callosum/corona radiata. Our findings suggest that gray matter atrophy is associated with reduced white matter fiber integrity in AD and possibly expand the understanding of the neuropathological mechanisms in AD.

  12. Hippocampal volume and cingulum bundle fractional anisotropy are independently associated with verbal memory in older adults.

    PubMed

    Ezzati, Ali; Katz, Mindy J; Lipton, Michael L; Zimmerman, Molly E; Lipton, Richard B

    2016-09-01

    The objective of this study was to investigate the relationship of medial temporal lobe and posterior cingulate cortex (PCC) volumetrics as well as fractional anisotropy of the cingulum angular bundle (CAB) and the cingulum cingulate gyrus (CCG) bundle to performance on measures of verbal memory in non-demented older adults. The participants were 100 non-demented adults over the age of 70 years from the Einstein Aging Study. Volumetric data were estimated from T1-weighted images. The entire cingulum was reconstructed using diffusion tensor MRI and probabilistic tractography. Association between verbal episodic memory and MRI measures including volume of hippocampus (HIP), entorhinal cortex (ERC), PCC and fractional anisotropy of CAB and CCG bundle were modeled using linear regression. Relationships between atrophy of these structures and regional cingulum fractional anisotropy were also explored. Decreased HIP volume on the left and decreased fractional anisotropy of left CAB were associated with lower memory performance. Volume changes in ERC, PCC and CCG disruption were not associated with memory performance. In regression models, left HIP volume and left CAB-FA were each independently associated with episodic memory. The results suggest that microstructural changes in the left CAB and decreased left HIP volume independently influence episodic memory performance in older adults without dementia. The importance of these findings in age and illness-related memory decline require additional exploration. PMID:26424564

  13. Connecting fractional anisotropy from medical images with mechanical anisotropy of a hyperviscoelastic fibre-reinforced constitutive model for brain tissue.

    PubMed

    Giordano, Chiara; Kleiven, Svein

    2014-02-01

    Brain tissue modelling has been an active area of research for years. Brain matter does not follow the constitutive relations for common materials and loads applied to the brain turn into stresses and strains depending on tissue local morphology. In this work, a hyperviscoelastic fibre-reinforced anisotropic law is used for computational brain injury prediction. Thanks to a fibre-reinforcement dispersion parameter, this formulation accounts for anisotropic features and heterogeneities of the tissue owing to different axon alignment. The novelty of the work is the correlation of the material mechanical anisotropy with fractional anisotropy (FA) from diffusion tensor images. Finite-element (FE) models are used to investigate the influence of the fibre distribution for different loading conditions. In the case of tensile-compressive loads, the comparison between experiments and simulations highlights the validity of the proposed FA-k correlation. Axon alignment affects the deformation predicted by FE models and, when the strain in the axonal direction is large with respect to the maximum principal strain, decreased maximum deformations are detected. It is concluded that the introduction of fibre dispersion information into the constitutive law of brain tissue affects the biofidelity of the simulations. PMID:24258158

  14. Vestibular loss and balance training cause similar changes in human cerebral white matter fractional anisotropy.

    PubMed

    Hummel, Nadine; Hüfner, Katharina; Stephan, Thomas; Linn, Jennifer; Kremmyda, Olympia; Brandt, Thomas; Flanagin, Virginia L

    2014-01-01

    Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI) to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction). Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation.

  15. Maturation of Corpus Callosum Anterior Midbody Is Associated with Neonatal Motor Function in Eight Preterm-Born Infants

    PubMed Central

    Mathew, Preethi; Pannek, Kerstin; D'Acunto, M. Giulia; Guzzetta, Andrea; Rose, Stephen E.; Colditz, Paul B.; Finnigan, Simon

    2013-01-01

    Background. The etiology of motor impairments in preterm infants is multifactorial and incompletely understood. Whether corpus callosum development is related to impaired motor function is unclear. Potential associations between motor-related measures and diffusion tensor imaging (DTI) of the corpus callosum in preterm infants were explored. Methods. Eight very preterm infants (gestational age of 28–32 weeks) underwent the Hammersmith neonatal neurological examination and DTI assessments at gestational age of 42 weeks. The total Hammersmith score and a motor-specific score (sum of Hammersmith motor subcategories) were calculated. Six corpus callosum regions of interest were defined on the mid-sagittal DTI slice—genu, rostral body, anterior midbody, posterior midbody, isthmus, and splenium. The fractional anisotropy (FA) and mean diffusivity (MD) of these regions were computed, and correlations between these and Hammersmith measures were sought. Results. Anterior midbody FA measures correlated positively with total Hammersmith (rho = 0.929, P = 0.001) and motor-specific scores (rho = 0.857, P = 0.007). Total Hammersmith scores also negatively correlated with anterior midbody MD measures (rho = −0.714, P = 0.047). Discussion. These results suggest the integrity of corpus callosum axons, particularly anterior midbody axons, is important in mediating neurological functions. Greater callosal maturation was associated with greater motor function. Corpus callosum DTI may prove to be a valuable screening or prognostic marker. PMID:23509639

  16. Bilingual Corpus Callosum Variability

    ERIC Educational Resources Information Center

    Coggins, Porter E., III.; Kennedy, Teresa J.; Armstrong, Terry A.

    2004-01-01

    Magnetic resonance imaging was used to produce midsagittal images of the corpus callosum of 19 right-handed adult male and female subjects. The preliminary findings of this study indicate that significant adaptation in the anterior midbody of the corpus callosum has occurred to accommodate multiple language capacity in bilingual individuals…

  17. Diffusion Tensor Imaging, White Matter lesions, the Corpus Callosum and Gait in the Elderly

    PubMed Central

    Bhadelia, Refeeque A.; Price, Lori Lyn; Tedesco, Kurtis L.; Scott, Tammy; Qiu, Wei Qiao; Patz, Samuel; Folstein, Marshal; Rosenberg, Irwin; Caplan, Louis R.; Bergethon, Peter

    2009-01-01

    Background and Purpose Gait impairment is common in the elderly, especially those with stroke and white matter hyperintensities (WMH) on conventional brain MRI. Diffusion Tensor Imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measures and gait has not been previously evaluated. Our purpose was to investigate the relationship between the integrity of white matter in the corpus callosum as determined by DTI and quantitative measures of gait in the elderly. Methods One hundred seventy-three participants of a community-dwelling elderly cohort had neurological and neuropsychological examinations and brain MRI. Gait function was measured by Tinetti gait (0-12), balance (0-16) and total (0-28) scores. DTI assessed Fractional Anisotropy in the genu and splenium of the corpus callosum. Conventional MRI was used to evaluate for brain infarcts and WMH volume. Results Participants with abnormal gait had low fractional anisotropy in the genu of the corpus callosum but not the splenium. Multiple regressions analyses showed an independent association between these genu abnormalities and all three Tinetti scores (p <0.001). This association remained significant after adding MRI infarcts and WMH volume to the analysis. Conclusions The independent association between quantitative measures of gait function and DTI findings shows that white matter integrity in the genu of corpus callosum is an important marker of gait in the elderly. DTI analyses of white matter tracts in brain and spinal cord may improve knowledge about the pathophysiology of gait impairment and help target clinical interventions. PMID:19797696

  18. Reading skill-fractional anisotropy relationships in visuospatial tracts diverge depending on socioeconomic status.

    PubMed

    Gullick, Margaret M; Demir-Lira, Özlem Ece; Booth, James R

    2016-07-01

    Low socioeconomic status (SES) has been repeatedly linked with decreased academic achievement, including lower reading outcomes. Some lower SES children do show skills and scores commensurate with those of their higher SES peers, but whether their abilities stem from the same systems as high SES children or are based on divergent strategies is unknown. We here investigated a potential interactive relationship between SES and real-word reading skill in the white matter in 42 typically developing children. SES was determined based on parental education; reading skill and age were not significantly related to SES. There was a significant neural interaction: Clusters in the bilateral inferior longitudinal fasciculus (ILF), left superior longitudinal fasciculus, and left corticospinal tract demonstrated interactive skill-SES relationships in fractional anisotropy. Follow-up analyses demonstrated that higher SES children showed a positive relationship between fractional anisotropy, reflecting tract coherence, and reading skill in left hemisphere tract clusters, whereas lower SES children showed a positive relationship in the right hemisphere homologues. Broadly, the ILF has been demonstrated to support orthographic skill on the left and more general visuospatial processing on the right, so high reading achievement in lower SES children may rely on supplementary visuospatial processing more than for higher SES readers. This pattern is consistent with previous work reporting low SES children's environments to include less rich verbal experience, which may lead them to disproportionately draw on visuospatial skills for success. Further, these results indicate that group SES differences may be best described by an adaptive, not a deficit, model.

  19. Corpus Callosum Pathology as a Potential Surrogate Marker of Cognitive Impairment in Diffuse Axonal Injury.

    PubMed

    Ubukata, Shiho; Ueda, Keita; Sugihara, Genichi; Yassin, Walid; Aso, Toshihiko; Fukuyama, Hidenao; Murai, Toshiya

    2016-01-01

    Diffuse axonal injury is a major form of traumatic brain injury. Neuropsychological assessments and high-resolution structural MRI were conducted using T1-weighted and diffusion tensor imaging. This study included 10 patients with diffuse axonal injury (all men, mean age 30.8±10.5 years) and 12 age- and sex-matched normal control participants. Patients with diffuse axonal injury had widespread volume reductions and lower fractional anisotropy in the corpus callosum (CC) compared with controls. Furthermore, cognitive processing speed was associated with reductions in white matter volume and fractional anisotropy in the CC. These findings suggest that CC pathology may be a potential surrogate marker of the cognitive deficits in these patients. PMID:26569151

  20. Organising white matter in a brain without corpus callosum fibres.

    PubMed

    Bénézit, Audrey; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Germanaud, David; Duclap, Delphine; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Moutard, Marie-Laure; Dubois, Jessica

    2015-02-01

    Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles' anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles' organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis.

  1. Regional Microstructural and Volumetric Magnetic Resonance Imaging (MRI) Abnormalities in the Corpus Callosum of Neonates With Congenital Heart Defect Undergoing Cardiac Surgery.

    PubMed

    Hagmann, Cornelia; Singer, Jitka; Latal, Beatrice; Knirsch, Walter; Makki, Malek

    2016-03-01

    The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants.

  2. Reading skill-fractional anisotropy relationships in visuospatial tracts diverge depending on socioeconomic status.

    PubMed

    Gullick, Margaret M; Demir-Lira, Özlem Ece; Booth, James R

    2016-07-01

    Low socioeconomic status (SES) has been repeatedly linked with decreased academic achievement, including lower reading outcomes. Some lower SES children do show skills and scores commensurate with those of their higher SES peers, but whether their abilities stem from the same systems as high SES children or are based on divergent strategies is unknown. We here investigated a potential interactive relationship between SES and real-word reading skill in the white matter in 42 typically developing children. SES was determined based on parental education; reading skill and age were not significantly related to SES. There was a significant neural interaction: Clusters in the bilateral inferior longitudinal fasciculus (ILF), left superior longitudinal fasciculus, and left corticospinal tract demonstrated interactive skill-SES relationships in fractional anisotropy. Follow-up analyses demonstrated that higher SES children showed a positive relationship between fractional anisotropy, reflecting tract coherence, and reading skill in left hemisphere tract clusters, whereas lower SES children showed a positive relationship in the right hemisphere homologues. Broadly, the ILF has been demonstrated to support orthographic skill on the left and more general visuospatial processing on the right, so high reading achievement in lower SES children may rely on supplementary visuospatial processing more than for higher SES readers. This pattern is consistent with previous work reporting low SES children's environments to include less rich verbal experience, which may lead them to disproportionately draw on visuospatial skills for success. Further, these results indicate that group SES differences may be best described by an adaptive, not a deficit, model. PMID:27412229

  3. Apparent diffusion coefficient and fractional anisotropy of newly diagnosed grade II gliomas†

    PubMed Central

    Khayal, Inas S.; McKnight, Tracy R.; McGue, Colleen; Vandenberg, Scott; Lamborn, Kathleen R.; Chang, Susan M.; Cha, Soonmee; Nelson, Sarah J.

    2013-01-01

    Distinguishing between low-grade oligodendrogliomas (ODs) and astrocytomas (AC) is of interest for defining prognosis and stratifying patients to specific treatment regimens. The purpose of this study was to determine if the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) from diffusion imaging can help to differentiate between newly diagnosed grade II OD and AC subtypes and to evaluate the ADC and FA values for the mixed population of oligoastrocytomas (OA). Fifty-three patients with newly diagnosed grade II gliomas were studied using a 1.5T whole body scanner (23 ODs, 16 ACs, and 14 OAs). The imaging protocol included post-gadolinium T1-weighted images, T2-weighted images, and either three and/or six directional diffusion imaging sequence with b = 1000 s/mm2. Diffusion-weighted images were analyzed using in-house software to calculate maps of ADC and for six directional acquisitions, FA. The intensity values were normalized by values from normal appearing white matter (NAWM) to generate maps of normalized apparent diffusion coefficient (nADC) and normalized fractional anisotropy (nFA). The hyperintense region in the T2 weighted image was defined as the T2All region. A Mann–Whitney rank-sum test was performed on the 25th, median, and 75th nADC and nFA among the three subtypes. Logistic regression was performed to determine how well the nADC and nFA predict subtype. Lesions diagnosed as being OD had significantly lower nADC and significantly higher nFA, compared to AC. The nADC and nFA values individually classified the data with an accuracy of 87%. Combining the two did not enhance the classification. The patients with OA had nADC and nFA values between those of OD and AC. This suggests that ADC and FA may be helpful in directing tissue sampling to the most appropriate regions for taking biopsies in order to make a definitive diagnosis. PMID:19125391

  4. Bilingual corpus callosum variability.

    PubMed

    Coggins, Porter E; Kennedy, Teresa J; Armstrong, Terry A

    2004-04-01

    Magnetic resonance imaging was used to produce midsagittal images of the corpus callosum of 19 right-handed adult male and female subjects. The preliminary findings of this study indicate that significant adaptation in the anterior midbody of the corpus callosum has occurred to accommodate multiple language capacity in bilingual individuals compared to monolingual individuals. The main interpretation of this finding is that the precentral gyrus is involved in bilingual faculty adaptation assuming a role consistent with the somatotopical input to areas dedicated to the mouth, and input to association tracts connecting the premotor and supplementary motor cortices. This paper discusses possible implications to neuroscientists, second language educators, and their students.

  5. Fractional Anisotropy of the Fornix and Hippocampal Atrophy in Alzheimer’s Disease

    PubMed Central

    Kantarci, Kejal

    2014-01-01

    Decrease in the directionality of water diffusion measured with fractional anisotropy (FA) on diffusion tensor imaging has been linked to loss of myelin and axons in the white matter. Fornix FA is consistently decreased in patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Furthermore, decreased fornix FA is one of the earliest MRI abnormalities observed in cognitively normal individuals who are at an increased risk for AD, such as in pre-symptomatic carriers of familial AD mutations and in pre-clinical AD. Reductions of FA at these early stages, which predicted the decline in memory function. Fornix carries the efferent projections from the CA1 and CA3 pyramidal neurons of the hippocampus and subiculum, connecting these structures to the septal nuclei, anterior thalamic nucleus, mammillary bodies, and medial hypothalamus. Fornix also carries the afferent cholinergic and GABAergic projections from the medial septal nuclei and the adjacent diagonal band back to the medial temporal lobe, interconnecting the core limbic structures. Because fornix carries the axons projecting from the hippocampus, integrity of the fornix is in-part linked to the integrity of the hippocampus. In keeping with that, fornix FA is reduced in subjects with hippocampal atrophy, correlating with memory function. The literature on FA reductions in the fornix in the clinical spectrum of AD from pre-symptomatic carriers of familial AD mutations to pre-clinical AD, MCI, and dementia stages is reviewed. PMID:25431558

  6. White matter microstructure asymmetry: effects of volume asymmetry on fractional anisotropy asymmetry.

    PubMed

    Takao, H; Hayashi, N; Ohtomo, K

    2013-02-12

    Diffusion tensor imaging (DTI) provides information regarding white matter microstructure; however, macroscopic fiber architectures can affect DTI measures. A larger brain (fiber tract) has a 'relatively' smaller voxel size, and the voxels are less likely to contain more than one fiber orientation and more likely to have higher fractional anisotropy (FA). Previous DTI studies report left-to-right differences in the white matter; however, these may reflect true microscopic differences or be caused purely by volume differences. Using tract-based spatial statistics, we investigated left-to-right differences in white matter microstructure across the whole brain. Voxel-wise analysis revealed a large number of white matter volume asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. In many white matter regions, FA asymmetry was positively correlated with volume asymmetry. Voxel-wise analysis with adjustment for volume asymmetry revealed many white matter FA asymmetries, including leftward asymmetry of the arcuate fasciculus and cingulum. The voxel-wise analysis showed a reduced number of regions with significant FA asymmetry compared with analysis performed without adjustment for volume asymmetry; however, the overall trend of the results was unchanged. The results of the present study suggest that these FA asymmetries are not caused by volume differences and reflect microscopic differences in the white matter.

  7. Higher diffusion in striatum and lower fractional anisotropy in white matter of methamphetamine users

    PubMed Central

    Alicata, Daniel; Chang, Linda; Cloak, Christine; Abe, Kylie; Ernst, Thomas

    2010-01-01

    Methamphetamine (METH) users showed structural and chemical abnormalities on magnetic resonance (MRI) studies, particularly in the frontal and basal ganglia brain regions. Diffusion tensor imaging (DTI) may provide further insights regarding the microstructural changes in METH users. We investigated diffusion tensor measures in frontal white matter and basal ganglia of 30 adult METH users and 30 control subjects using a 3 T MR scanner. Compared with healthy control subjects, METH users showed lower fractional anisotropy (FA) in right frontal white matter, and higher apparent diffusion coefficient (ADC) in left caudate and bilateral putamen. Higher left putamen ADC was associated with earlier initiation of METH use, greater daily amounts, and a higher cumulative lifetime dose. Similarly, higher right putamen ADC was associated with greater daily amounts and a higher cumulative lifetime dose. The lower FA in the right frontal white matter suggests axonal injury in these METH users. The higher ADC in the basal ganglia suggests greater inflammation or less myelination in these brain regions of those with younger age of first METH use and greater METH usage. PMID:19782540

  8. Reduced Fractional Anisotropy in the Visual Limbic Pathway of Young Adults Witnessing Domestic Violence in Childhood

    PubMed Central

    Choi, Jeewook; Jeong, Bumseok; Polcari, Ann; Rohan, Michael L.; Teicher, Martin H.

    2011-01-01

    Witnessing domestic violence (WDV) is a traumatic childhood experience associated with increased risk for depression, posttraumatic stress disorder and reduced IQ scores. Specific affects of WDV on brain development have not been assessed. We sought to ascertain whether WDV was associated with abnormalities in white matter (WM) tract integrity using diffusion tensor imaging (DTI). Twenty subjects who witnessed domestic violence (16F/ 4M, mean age 22.4±2.48 yrs) but were not physically or sexually abused were compared to 27 healthy controls (19F/ 8M, 21.9±1.97 yrs) without exposure to trauma or Axis I and II disorders. DTI images were acquired with a 3T Siemens Trio scanner. Group differences in fractional anisotropy (FA), covaried by age, gender, parental education, perceived financial sufficiency, IQ and degree of exposure to parental verbal aggression were assessed using tract-based spatial statistics (TBSS), which projects FA values onto an alignment-invariant fiber tract representation. FA values in the inferior longitudinal fasciculus of left lateral occipital lobe were significantly lower (p<0.05 corrected for multiple comparison) in the WDV group. FA values correlated inversely with ratings of depression, anxiety, somatization, ‘limbic irritability’ and neuropsychological measures of processing speed. Measures of radial but not axial diffusivity were affected suggesting alterations in myelination. Degree of FA reduction was associated with duration of witnessing interparental verbal aggression and with exposure between ages 7 – 13 years. The inferior longitudinal fasciculus connects occipital and temporal cortex and is the main component of the visual–limbic pathway that subserves emotional, learning and memory functions that are modality specific to vision. This finding is consistent with the hypothesis that exposure to childhood maltreatment is associated with alterations in fiber pathways that convey the adverse experience to frontal, temporal

  9. Enlarged Thalamic Volumes and Increased Fractional Anisotropy in the Thalamic Radiations in Veterans with Suicide Behaviors

    PubMed Central

    Lopez-Larson, Melissa; King, Jace B.; McGlade, Erin; Bueler, Elliott; Stoeckel, Amanda; Epstein, Daniel J.; Yurgelun-Todd, Deborah

    2013-01-01

    Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR) in a group of Veterans with and without a history of suicidal behavior (SB) to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI) and no SB (TBI-SB), 19 Veterans with mild TBI and a history of SB (TB + SB), and 15 healthy controls (HC) underwent magnetic resonance imaging scanning including a structural and diffusion tensor imaging scan. SBs were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS). Differences in thalamic volumes and ATR fractional anisotropy (FA) were examined between (1) TBI + SB versus HC and (2) TBI + SB versus combined HC and TBI-SB and (3) between TBI + SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI + SB compared to the HC, TBI-SB, and the combined group. Veterans with TBI + SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI + SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI + SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide. PMID:23964245

  10. Influence of the packing fraction and host matrix on the magnetoelastic anisotropy in Ni nanowire composite arrays

    NASA Astrophysics Data System (ADS)

    Piraux, Luc; Hamoir, Gaël; Encinas, Armando; De La Torre Medina, Joaquin; Abreu Araujo, Flavio

    2013-09-01

    The influence of the packing fraction on thermally induced magnetoelastic effects has been studied in Ni nanowires embedded in polycarbonate, poly(vinylidene difluoride), and alumina nanoporous membranes of different porosities for temperatures between 77 K and 345 K. For nanowires embedded in polymer membranes, the contrasting shift in the ferromagnetic resonance frequency when the temperature is either above or below ambient temperature is consistent with the occurrence of uniaxial magnetoelastic anisotropy effects due to the large thermal expansion coefficient mismatch between the metal nanowires and the membrane. A model which considers the influence of the nanowires packing fraction and the membrane material on the magnetoelastic effects, arising from the matrix-assisted deformation process, is proposed. The model is able to successfully explain the experimentally observed effects for the Ni nanowire arrays embedded in the different porous membranes and their variation with the packing fraction. The possibility to modulate the magnetic anisotropy of such nanocomposites by an appropriate choice of membrane material, packing fraction, and sample temperature is of considerable importance to achieve magnetically tunable devices.

  11. The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review.

    PubMed

    Siasios, Ioannis; Kapsalaki, Eftychia Z; Fountas, Kostas N; Fotiadou, Aggeliki; Dorsch, Alexander; Vakharia, Kunal; Pollina, John; Dimopoulos, Vassilios

    2016-09-01

    OBJECTIVE Diffusion tensor imaging (DTI) for the assessment of fractional anisotropy (FA) and involving measurements of mean diffusivity (MD) and apparent diffusion coefficient (ADC) represents a novel, MRI-based, noninvasive technique that may delineate microstructural changes in cerebral white matter (WM). For example, DTI may be used for the diagnosis and differentiation of idiopathic normal pressure hydrocephalus (iNPH) from other neurodegenerative diseases with similar imaging findings and clinical symptoms and signs. The goal of the current study was to identify and analyze recently published series on the use of DTI as a diagnostic tool. Moreover, the authors also explored the utility of DTI in identifying patients with iNPH who could be managed by surgical intervention. METHODS The authors performed a literature search of the PubMed database by using any possible combinations of the following terms: "Alzheimer's disease," "brain," "cerebrospinal fluid," "CSF," "diffusion tensor imaging," "DTI," "hydrocephalus," "idiopathic," "magnetic resonance imaging," "normal pressure," "Parkinson's disease," and "shunting." Moreover, all reference lists from the retrieved articles were reviewed to identify any additional pertinent articles. RESULTS The literature search retrieved 19 studies in which DTI was used for the identification and differentiation of iNPH from other neurodegenerative diseases. The DTI protocols involved different approaches, such as region of interest (ROI) methods, tract-based spatial statistics, voxel-based analysis, and delta-ADC analysis. The most studied anatomical regions were the periventricular WM areas, such as the internal capsule (IC), the corticospinal tract (CST), and the corpus callosum (CC). Patients with iNPH had significantly higher MD in the periventricular WM areas of the CST and the CC than had healthy controls. In addition, FA and ADCs were significantly higher in the CST of iNPH patients than in any other patients with other

  12. The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review.

    PubMed

    Siasios, Ioannis; Kapsalaki, Eftychia Z; Fountas, Kostas N; Fotiadou, Aggeliki; Dorsch, Alexander; Vakharia, Kunal; Pollina, John; Dimopoulos, Vassilios

    2016-09-01

    OBJECTIVE Diffusion tensor imaging (DTI) for the assessment of fractional anisotropy (FA) and involving measurements of mean diffusivity (MD) and apparent diffusion coefficient (ADC) represents a novel, MRI-based, noninvasive technique that may delineate microstructural changes in cerebral white matter (WM). For example, DTI may be used for the diagnosis and differentiation of idiopathic normal pressure hydrocephalus (iNPH) from other neurodegenerative diseases with similar imaging findings and clinical symptoms and signs. The goal of the current study was to identify and analyze recently published series on the use of DTI as a diagnostic tool. Moreover, the authors also explored the utility of DTI in identifying patients with iNPH who could be managed by surgical intervention. METHODS The authors performed a literature search of the PubMed database by using any possible combinations of the following terms: "Alzheimer's disease," "brain," "cerebrospinal fluid," "CSF," "diffusion tensor imaging," "DTI," "hydrocephalus," "idiopathic," "magnetic resonance imaging," "normal pressure," "Parkinson's disease," and "shunting." Moreover, all reference lists from the retrieved articles were reviewed to identify any additional pertinent articles. RESULTS The literature search retrieved 19 studies in which DTI was used for the identification and differentiation of iNPH from other neurodegenerative diseases. The DTI protocols involved different approaches, such as region of interest (ROI) methods, tract-based spatial statistics, voxel-based analysis, and delta-ADC analysis. The most studied anatomical regions were the periventricular WM areas, such as the internal capsule (IC), the corticospinal tract (CST), and the corpus callosum (CC). Patients with iNPH had significantly higher MD in the periventricular WM areas of the CST and the CC than had healthy controls. In addition, FA and ADCs were significantly higher in the CST of iNPH patients than in any other patients with other

  13. Intercentre reproducibility of cardiac apparent diffusion coefficient and fractional anisotropy in healthy volunteers

    PubMed Central

    2014-01-01

    Background Diffusion tensor cardiac magnetic resonance (DT-CMR) enables probing of the microarchitecture of the myocardium, but the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) reported in healthy volunteers have been inconsistent. The aim of this study was to validate a stimulated-echo diffusion sequence using phantoms, and to assess the intercentre reproducibility of in-vivo diffusion measures using the sequence. Methods and results A stimulated-echo, cardiac-gated DT-CMR sequence with a reduced-field-of-view, single-shot EPI readout was used at two centres with 3 T MRI scanners. Four alkane phantoms with known diffusivities were scanned at a single centre using a stimulated echo sequence and a spin-echo Stejskal-Tanner diffusion sequence. The median (maximum, minimum) difference between the DT-CMR sequence and Stejskal-Tanner sequence was 0.01 (0.04, 0.0006) × 10-3 mm2/s (2%), and between the DT-CMR sequence and literature diffusivities was 0.02 (0.05, 0.006) × 10-3 mm2/s (4%). The same ten healthy volunteers were scanned using the DT-CMR sequence at the two centres less than seven days apart. Average ADC and FA were calculated in a single mid-ventricular, short axis slice. Intercentre differences were tested for statistical significance at the p < 0.05 level using paired t-tests. The mean ADC ± standard deviation for all subjects averaged over both centres was 1.10 ± 0.06 × 10-3 mm2/s in systole and 1.20 ± 0.09 × 10-3 mm2/s in diastole; FA was 0.41 ± 0.04 in systole and 0.54 ± 0.03 in diastole. With similarly-drawn regions-of-interest, systolic ADC (difference 0.05 × 10-3 mm2/s), systolic FA (difference 0.003) and diastolic FA (difference 0.01) were not statistically significantly different between centres (p > 0.05), and only the diastolic ADC showed a statistically significant, but numerically small, difference of 0.07 × 10-3 mm2/s (p = 0.047). The intercentre, intrasubject coefficients

  14. Diffusion tensor imaging and myelin composition analysis reveal abnormal myelination in corpus callosum of canine mucopolysaccharidosis I.

    PubMed

    Provenzale, James M; Nestrasil, Igor; Chen, Steven; Kan, Shih-Hsin; Le, Steven Q; Jens, Jacqueline K; Snella, Elizabeth M; Vondrak, Kristen N; Yee, Jennifer K; Vite, Charles H; Elashoff, David; Duan, Lewei; Wang, Raymond Y; Ellinwood, N Matthew; Guzman, Miguel A; Shapiro, Elsa G; Dickson, Patricia I

    2015-11-01

    Children with mucopolysaccharidosis I (MPS I) develop hyperintense white matter foci on T2-weighted brain magnetic resonance (MR) imaging that are associated clinically with cognitive impairment. We report here a diffusion tensor imaging (DTI) and tissue evaluation of white matter in a canine model of MPS I. We found that two DTI parameters, fractional anisotropy (a measure of white matter integrity) and radial diffusivity (which reflects degree of myelination) were abnormal in the corpus callosum of MPS I dogs compared to carrier controls. Tissue studies of the corpus callosum showed reduced expression of myelin-related genes and an abnormal composition of myelin in MPS I dogs. We treated MPS I dogs with recombinant alpha-L-iduronidase, which is the enzyme that is deficient in MPS I disease. The recombinant alpha-L-iduronidase was administered by intrathecal injection into the cisterna magna. Treated dogs showed partial correction of corpus callosum myelination. Our findings suggest that abnormal myelination occurs in the canine MPS I brain, that it may underlie clinically-relevant brain imaging findings in human MPS I patients, and that it may respond to treatment.

  15. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.

    PubMed

    Maquer, Ghislain; Musy, Sarah N; Wandel, Jasmin; Gross, Thomas; Zysset, Philippe K

    2015-06-01

    As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj  = 0.889), especially in combination with fabric anisotropy (r(2) adj  = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj  = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric anisotropy are the best determinants of trabecular bone stiffness and show, against common belief, that other

  16. Abnormality of the corpus callosum in coalmine gas explosion-related posttraumatic stress disorder.

    PubMed

    Zhang, Yang; Li, Huabing; Lang, Xu; Zhuo, Chuanjun; Qin, Wen; Zhang, Quan

    2015-01-01

    Abnormal corpus callosum (CC) has been reported in childhood trauma-related posttraumatic stress disorder (PTSD); however, the nature of white matter (WM) integrity alterations in the CC of young adult-onset PTSD patients is unknown. In this study, 14 victims of a coal mine gas explosion with PTSD and 23 matched coal miners without experiencing the coal mine explosion were enrolled. The differences in fractional anisotropy (FA) within 7 sub-regions of the CC were compared between the two groups. Compared to the controls, PTSD coal miners exhibited significantly reduced FA values in the anterior sub-regions of the CC (P < 0.05, Bonferroni-corrected), which mainly interconnect the bilateral frontal cortices. Our findings indicated that the anterior part of the CC was more severely impaired than the posterior part in young adult-onset PTSD, which suggested the patterns of CC impairment may depend on the developmental stage of the structure when the PTSD occurs.

  17. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    NASA Astrophysics Data System (ADS)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  18. Early Idiopathic Normal Pressure Hydrocephalus Patients With Neuropsychological Impairment Are Associated With Increased Fractional Anisotropy in the Anterior Thalamic Nucleus

    PubMed Central

    Chen, Yung-Chieh; Chiang, Shih-Wei; Chi, Chia-Hsing; Liou, Michelle; Kuo, Duen-Pang; Kao, Hung-Wen; Chung, Hsiao-Wen; Ma, Hsin I.; Peng, Giia-Sheun; Wu, Yu-Te; Chen, Cheng-Yu

    2016-01-01

    Abstract In this study, we aimed to investigate the reactive changes in diffusion tensor imaging (DTI)-derived diffusion metrics of the anterior thalamic nucleus (AN), a relaying center for the Papez circuit, in early idiopathic normal pressure hydrocephalus (iNPH) patients with memory impairment, as well as its correlation with the patients’ neuropsychological performances. In total, 28 probable iNPH patients with symptom onset within 1 year and 17 control subjects were prospectively recruited between 2010 and 2013 for this institutional review board-approved study. Imaging studies including DTI and a neuropsychological assessment battery were performed in all subjects. Diffusion metrics were measured from the region of the AN using tract-deterministic seeding method by reconstructing the mammillo–thalamo–cingulate connections within the Papez circuit. Differences in diffusion metrics and memory assessment scores between the patient and control group were examined via the Mann–Whitney U test. Spearman correlation analyses were performed to examine associations between diffusion metrics of AN and neuropsychological tests within the patient group. We discovered that early iNPH patients exhibited marked elevations in fractional anisotropy, pure diffusion anisotropy, and axial diffusivity (all P < 0.01), as well as lower neuropsychological test scores including verbal and nonverbal memory (all P < 0.05) compared with normal control. Spearman rank correlation analyses did not disclose significant correlations between AN diffusion metrics and neuropsychological test scores in the patient group, whereas ranked scatter plots clearly demonstrated a dichotic sample distribution between patient and control samples. In summary, our study highlighted the potential compensatory role of the AN by increasing thalamocortical connectivity within the Papez circuit because memory function declines in early iNPH when early shunt treatment may potentially reverse the

  19. Oculomotor-corpus callosum dysplasia.

    PubMed

    Acers, T E; Blackwell, C

    1982-01-01

    An infant with congenital bilateral ophthalmoplegia with levator and pupillary sparing is presented. The eyes are fixed in a divergent position with no apparent motility. The baby is otherwise clinically normal and is developing in a normal fashion except for delayed growth pattern. Visual attention is present and he fixates with either eye. Computed tomography demonstrates an associated dysplasia of the corpus callosum and an abnormal ventricular system. Neuroendocrine studies performed at one year of age demonstrate subnormal levels of growth hormone. It is postulated that this represents an embryodysgenesis involving the developing mesencephalic tegmentum (oculomotor nuclei) and the diencephalic lamina reuniens (corpus callosum). It is the first reported case of congenital ophthalmoplegia with corpus callosum dysplasia. The "embryodysgenic" relationship with other forebrain-ocular anomalies has been alluded to and remains speculative. PMID:7182958

  20. Longitudinal assessment of fractional anisotropy alterations caused by simian immunodeficiency virus infection: a preliminary diffusion tensor imaging study.

    PubMed

    Tang, Zhenchao; Dong, Enqing; Liu, Jiaojiao; Liu, Zhenyu; Wei, Wenjuan; Wang, Bo; Li, Hongjun; Tian, Jie

    2016-04-01

    Previous diffusion tensor imaging (DTI) studies found that human immunodeficiency virus (HIV) infection led to white matter (WM) microstructure degeneration. Most of the DTI studies were cross-sectional and thus merely investigated only one specific point in the disease. In order to systematically study the WM impairments caused by HIV infection, more longitudinal studies are needed. However, longitudinal studies on HIV patients are very difficult to conduct. To address this question, we employed the simian immunodeficiency virus (SIV)-infected rhesus monkeys model to carry out a longitudinal DTI study. We aimed to longitudinally access the WM abnormalities of SIV-infected rhesus monkeys by studying the fractional anisotropy (FA) alterations with Tract Based Spatial Statistic (TBSS) analysis. Four rhesus monkeys inoculated intravenously with SIVmac239 were utilized in the study. DTI scans and peripheral blood CD4(+) and CD8(+) T cell counts were acquired prior to virus inoculation (as the baseline) and in the 12th and 24th week postvirus inoculation. Significant FA alterations were found in the two areas of the inferotemporal regions (iTE), respectively located in the ventral subregion of posterior iTE (iTEpv) and the dorsal subregion of iTE (iTEpd). The decreased FA values in iTEpd were found significantly negatively correlated with the elevated peripheral blood CD4(+)/CD8(+) ratios. It might suggest that WM in iTEpd was still impaired even though the immune dysfunction alleviated temporally. PMID:26438160

  1. Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function

    PubMed Central

    Smolker, H. R.; Reineberg, A. E.; Orr, J. M.; Banich, M. T.

    2015-01-01

    Although the relationship between structural differences within the prefrontal cortex (PFC) and executive function (EF) has been widely explored in cognitively impaired populations, little is known about this relationship in healthy young adults. Using optimized voxel-based morphometry (VBM), surface-based morphometry (SBM), and fractional anisotropy (FA) we determined the association between regional PFC grey matter (GM) morphometry and white matter tract diffusivity with performance on tasks that tap different aspects of EF as drawn from Miyake et al.’s three-factor model of EF. Reductions in both GM volume (VBM) and cortical folding (SBM) in the ventromedial PFC (vmPFC), ventrolateral PFC (vlPFC), and dorsolateral PFC (dlPFC) predicted better common EF, shifting-specific, and updating-specific performance, respectively. Despite capturing different components of GM morphometry, voxel- and surface-based findings were highly related, exhibiting regionally overlapping relationships with EF. Increased white matter FA in fiber tracts that connect the vmPFC and vlPFC with posterior regions of the brain also predicted better common EF and shifting-specific performance, respectively. These results suggest that the neural mechanisms supporting distinct aspects of EF may differentially rely on distinct regions of the PFC, and at least in healthy young adults, are influenced by regional morphometry of the PFC and the FA of major white matter tracts that connect the PFC with posterior cortical and subcortical regions. PMID:24562372

  2. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    PubMed Central

    Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing

    2016-01-01

    Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371

  3. Longitudinal assessment of fractional anisotropy alterations caused by simian immunodeficiency virus infection: a preliminary diffusion tensor imaging study.

    PubMed

    Tang, Zhenchao; Dong, Enqing; Liu, Jiaojiao; Liu, Zhenyu; Wei, Wenjuan; Wang, Bo; Li, Hongjun; Tian, Jie

    2016-04-01

    Previous diffusion tensor imaging (DTI) studies found that human immunodeficiency virus (HIV) infection led to white matter (WM) microstructure degeneration. Most of the DTI studies were cross-sectional and thus merely investigated only one specific point in the disease. In order to systematically study the WM impairments caused by HIV infection, more longitudinal studies are needed. However, longitudinal studies on HIV patients are very difficult to conduct. To address this question, we employed the simian immunodeficiency virus (SIV)-infected rhesus monkeys model to carry out a longitudinal DTI study. We aimed to longitudinally access the WM abnormalities of SIV-infected rhesus monkeys by studying the fractional anisotropy (FA) alterations with Tract Based Spatial Statistic (TBSS) analysis. Four rhesus monkeys inoculated intravenously with SIVmac239 were utilized in the study. DTI scans and peripheral blood CD4(+) and CD8(+) T cell counts were acquired prior to virus inoculation (as the baseline) and in the 12th and 24th week postvirus inoculation. Significant FA alterations were found in the two areas of the inferotemporal regions (iTE), respectively located in the ventral subregion of posterior iTE (iTEpv) and the dorsal subregion of iTE (iTEpd). The decreased FA values in iTEpd were found significantly negatively correlated with the elevated peripheral blood CD4(+)/CD8(+) ratios. It might suggest that WM in iTEpd was still impaired even though the immune dysfunction alleviated temporally.

  4. Conduct disorder in females is associated with reduced corpus callosum structural integrity independent of comorbid disorders and exposure to maltreatment

    PubMed Central

    Lindner, P; Savic, I; Sitnikov, R; Budhiraja, M; Liu, Y; Jokinen, J; Tiihonen, J; Hodgins, S

    2016-01-01

    The behavioral phenotype and genotype of conduct disorder (CD) differ in males and females. Abnormalities of white matter integrity have been reported among males with CD and antisocial personality disorder (ASPD). Little is known about white matter integrity in females with CD. The present study aimed to determine whether abnormalities of white matter are present among young women who presented CD before the age of 15, and whether abnormalities are independent of the multiple comorbid disorders and experiences of maltreatment characterizing females with CD that may each in themselves be associated with alterations of the white matter. Three groups of women, aged on average 24 years, were scanned using diffusion tensor imaging and compared: 28 with prior CD, three of whom presented ASPD; a clinical comparison (CC) group of 15 women with no history of CD but with similar proportions who presented alcohol dependence, drug dependence, anxiety disorders, depression disorders and physical and sexual abuse as the CD group; and 24 healthy women. Whole-brain, tract-based spatial statistics were computed to investigate differences in fractional anisotropy, axial diffusivity and radial diffusivity. Compared with healthy women, women with prior CD showed widespread reductions in axial diffusivity primarily in frontotemporal regions. After statistically adjusting for comorbid disorders and maltreatment, group differences in the corpus callosum body and genu (including forceps minor) remained significant. Compared with the CC group, women with CD showed reduced fractional anisotropy in the body and genu of the corpus callosum. No differences were detected between the CD and healthy women in the uncinate fasciculus. PMID:26784968

  5. Conduct disorder in females is associated with reduced corpus callosum structural integrity independent of comorbid disorders and exposure to maltreatment.

    PubMed

    Lindner, P; Savic, I; Sitnikov, R; Budhiraja, M; Liu, Y; Jokinen, J; Tiihonen, J; Hodgins, S

    2016-01-19

    The behavioral phenotype and genotype of conduct disorder (CD) differ in males and females. Abnormalities of white matter integrity have been reported among males with CD and antisocial personality disorder (ASPD). Little is known about white matter integrity in females with CD. The present study aimed to determine whether abnormalities of white matter are present among young women who presented CD before the age of 15, and whether abnormalities are independent of the multiple comorbid disorders and experiences of maltreatment characterizing females with CD that may each in themselves be associated with alterations of the white matter. Three groups of women, aged on average 24 years, were scanned using diffusion tensor imaging and compared: 28 with prior CD, three of whom presented ASPD; a clinical comparison (CC) group of 15 women with no history of CD but with similar proportions who presented alcohol dependence, drug dependence, anxiety disorders, depression disorders and physical and sexual abuse as the CD group; and 24 healthy women. Whole-brain, tract-based spatial statistics were computed to investigate differences in fractional anisotropy, axial diffusivity and radial diffusivity. Compared with healthy women, women with prior CD showed widespread reductions in axial diffusivity primarily in frontotemporal regions. After statistically adjusting for comorbid disorders and maltreatment, group differences in the corpus callosum body and genu (including forceps minor) remained significant. Compared with the CC group, women with CD showed reduced fractional anisotropy in the body and genu of the corpus callosum. No differences were detected between the CD and healthy women in the uncinate fasciculus.

  6. Microstructural White Matter Changes in the Corpus Callosum of Young People with Bipolar Disorder: A Diffusion Tensor Imaging Study

    PubMed Central

    Lagopoulos, Jim; Hermens, Daniel F.; Hatton, Sean N.; Tobias-Webb, Juliette; Griffiths, Kristi; Naismith, Sharon L.; Scott, Elizabeth M.; Hickie, Ian B.

    2013-01-01

    To date, most studies of white matter changes in Bipolar Disorder (BD) have been conducted in older subjects and with well-established disorders. Studies of young people who are closer to their illness onset may help to identify core neurobiological characteristics and separate these from consequences of repeated illness episodes or prolonged treatment. Diffusion tensor imaging (DTI) was used to examine white matter microstructural changes in 58 young patients with BD (mean age 23 years; range 16–30 years) and 40 controls. Whole brain voxelwise measures of fractional anisotropy (FA), parallel diffusivity (λ//) and radial diffusivity (λ⊥) were calculated for all subjects. White matter microstructure differences (decreased FA corrected p<.05) were found between the patients with BD and controls in the genu, body and splenium of the corpus callosum as well as the superior and anterior corona radiata. In addition, significantly increased radial diffusivity (p<.01) was found in the BD group. Neuroimaging studies of young patients with BD may help to clarify neurodevelopmental aspects of the illness and for identifying biomarkers of disease onset and progression. Our findings provide evidence of microstructural white matter changes early in the course of illness within the corpus callosum and the nature of these changes suggest they are associated with abnormalities in the myelination of axons. PMID:23527101

  7. Heritability of Fractional Anisotropy in Human White Matter: A Comparison of Human Connectome Project and ENIGMA-DTI Data

    PubMed Central

    Kochunov, Peter; Jahanshad, Neda; Marcus, Daniel; Winkler, Anderson; Sprooten, Emma; Nichols, Thomas E.; Wright, Susan N; Hong, L Elliot; Patel, Binish; Behrens, Timothy; Jbabdi, Saad; Andersson, Jesper; Lenglet, Christophe; Yacoub, Essa; Moeller, Steen; Auerbach, Eddie; Ugurbil, Kamil; Sotiropoulos, Stamatios N; Brouwer, Rachel M.; Landman, Bennett; Lemaitre, Hervé; den Braber, Anouk; Zwiers, Marcel P.; Ritchie, Stuart; vanHulzen, Kimm; Almasy, Laura; Curran, Joanne; deZubicaray, Greig I; Duggirala, Ravi; Fox, Peter; Martin, Nicholas G.; McMahon, Katie L.; Mitchell, Braxton; Olvera, Rene L; Peterson, Charles; Starr, John; Sussmann, Jessika; Wardlaw, Joanna; Wright, Margie; Boomsma, Dorret I.; Kahn, Rene; de Geus, Eco JC; Williamson, Douglas E; Hariri, Ahmad; van t Ent, Dennis; Bastin, Mark E.; McIntosh, Andrew; Deary, Ian J.; Hulshoff pol, Hilleke E.; Blangero, John; Thompson, Paul M.; Glahn, David C.; Van Essen, David C.

    2015-01-01

    The degree to which genetic factors influence brain connectivity is beginning to be understood. Large-scale efforts are underway to map the profile of genetic effects in various brain regions. The NIH-funded Human Connectome Project (HCP) is providing data valuable for analyzing the degree of genetic influence underlying brain connectivity revealed by state-of-the-art neuroimaging methods. We calculated the heritability of the fractional anisotropy (FA) measure derived from diffusion tensor imaging (DTI) reconstruction in 481 HCP subjects (194/287 M/F) consisting of 57/60 pairs of mono- and dizygotic twins, and 246 siblings. FA measurements were derived using (Enhancing NeuroImaging Genetics through Meta-Analysis) ENIGMA DTI protocols and heritability estimates were calculated using the SOLAR-Eclipse imaging genetic analysis package. We compared heritability estimates derived from HCP data to those publicly available through the ENIGMA-DTI consortium, which were pooled together from five-family based studies across the US, Europe, and Australia. FA measurements from the HCP cohort for eleven major white matter tracts were highly heritable (h2=0.53–0.90, p<10−5), and were significantly correlated with the joint-analytical estimates from the ENIGMA cohort on the tract and voxel-wise levels. The similarity in regional heritability suggests that the additive genetic contribution to white matter microstructure is consistent across populations and imaging acquisition parameters. It also suggests the overarching genetic influence provides an opportunity to define a common genetic search space for future gene-discovery studies. Uniquely, the measurements of additive genetic contribution performed in this study can be repeated using online genetic analysis tools provided by the HCP ConnectomeDB web application. PMID:25747917

  8. Relationships between brain water content and diffusion tensor imaging parameters (apparent diffusion coefficient and fractional anisotropy) in multiple sclerosis.

    PubMed

    Sijens, Paul E; Irwan, Roy; Potze, Jan Hendrik; Mostert, Jop P; De Keyser, Jacques; Oudkerk, Matthijs

    2006-04-01

    Fifteen multiple sclerosis patients were examined by diffusion tensor imaging (DTI) to determine fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in a superventricular volume of interest of 8 x 8 x 2 cm(3) containing gray matter (GM) and white matter (WM) tissue. Point resolved spectroscopy 2D-chemical shift imaging of the same volume was performed without water suppression. The water contents and DTI parameters in 64 voxels of 2 cm(3) were compared. The water content was increased in patients compared with controls (GM: 244+/-21 vs. 194+/-10 a.u.; WM: 245+/-32 vs. 190+/-11 a.u.), FA decreased (GM: 0.226+/-0.038 vs. 0.270+/-0.020; WM: 0.337+/-0.044 vs. 0.402+/-0.011) and ADC increased [GM: 1134+/-203 vs. 899+/-28 (x10(-6) mm(2)/s); WM: 901+/-138 vs. 751+/-17 (x10(-6) mm(2)/s)]. Correlations of water content with FA and ADC in WM were strong (r=-0.68, P<0.02; r=0.75; P<0.01, respectively); those in GM were weaker (r=-0.50, P<0.05; r=0.45, P<0.1, respectively). Likewise, FA and ADC were more strongly correlated in WM (r=-0.88; P<0.00001) than in GM (r=-0.69, P<0.01). The demonstrated relationship between DTI parameters and water content in multiple sclerosis patients suggests a potential for therapy monitoring in normal-appearing brain tissue.

  9. Heterogeneity of Fractional Anisotropy and Mean Diffusivity Measurements by In Vivo Diffusion Tensor Imaging in Normal Human Hearts

    PubMed Central

    Ferreira, Pedro F.; Nielles-Vallespin, Sonia; Ismail, Tevfik; Kilner, Philip J.; Gatehouse, Peter D.; de Silva, Ranil; Prasad, Sanjay K.; Giannakidis, Archontis; Firmin, David N.; Pennell, Dudley J.

    2015-01-01

    Background Cardiac diffusion tensor imaging (cDTI) by cardiovascular magnetic resonance has the potential to assess microstructural changes through measures of fractional anisotropy (FA) and mean diffusivity (MD). However, normal variation in regional and transmural FA and MD is not well described. Methods Twenty normal subjects were scanned using an optimised cDTI sequence at 3T in systole. FA and MD were quantified in 3 transmural layers and 4 regional myocardial walls. Results FA was higher in the mesocardium (0.46 ±0.04) than the endocardium (0.40 ±0.04, p≤0.001) and epicardium (0.39 ±0.04, p≤0.001). On regional analysis, the FA in the septum was greater than the lateral wall (0.44 ±0.03 vs 0.40 ±0.05 p = 0.04). There was a transmural gradient in MD increasing towards the endocardium (epicardium 0.87 ±0.07 vs endocardium 0.91 ±0.08×10-3 mm2/s, p = 0.04). With the lateral wall (0.87 ± 0.08×10-3 mm2/s) as the reference, the MD was higher in the anterior wall (0.92 ±0.08×10-3 mm2/s, p = 0.016) and septum (0.92 ±0.07×10-3 mm2/s, p = 0.028). Transmurally the signal to noise ratio (SNR) was greatest in the mesocardium (14.5 ±2.5 vs endocardium 13.1 ±2.2, p<0.001; vs epicardium 12.0 ± 2.4, p<0.001) and regionally in the septum (16.0 ±3.4 vs lateral wall 11.5 ± 1.5, p<0.001). Transmural analysis suggested a relative reduction in the rate of change in helical angle (HA) within the mesocardium. Conclusions In vivo FA and MD measurements in normal human heart are heterogeneous, varying significantly transmurally and regionally. Contributors to this heterogeneity are many, complex and interactive, but include SNR, variations in cardiac microstructure, partial volume effects and strain. These data indicate that the potential clinical use of FA and MD would require measurement standardisation by myocardial region and layer, unless pathological changes substantially exceed the normal variation identified. PMID:26177211

  10. Corpus Callosum Volume and Neurocognition in Autism

    ERIC Educational Resources Information Center

    Keary, Christopher J.; Minshew, Nancy J.; Bansal, Rahul; Goradia, Dhruman; Fedorov, Serguei; Keshavan, Matcheri S.; Hardan, Antonio Y.

    2009-01-01

    The corpus callosum has recently been considered as an index of interhemispheric connectivity. This study applied a novel volumetric method to examine the size of the corpus callosum in 32 individuals with autism and 34 age-, gender- and IQ-matched controls and to investigate the relationship between this structure and cognitive measures linked to…

  11. Watershed-based segmentation of the corpus callosum in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto

    2012-02-01

    The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.

  12. Abnormality of the Corpus Callosum in Coalmine Gas Explosion-Related Posttraumatic Stress Disorder

    PubMed Central

    Lang, Xu; Zhuo, Chuanjun; Qin, Wen; Zhang, Quan

    2015-01-01

    Abnormal corpus callosum (CC) has been reported in childhood trauma-related posttraumatic stress disorder (PTSD); however, the nature of white matter (WM) integrity alterations in the CC of young adult-onset PTSD patients is unknown. In this study, 14 victims of a coal mine gas explosion with PTSD and 23 matched coal miners without experiencing the coal mine explosion were enrolled. The differences in fractional anisotropy (FA) within 7 sub-regions of the CC were compared between the two groups. Compared to the controls, PTSD coal miners exhibited significantly reduced FA values in the anterior sub-regions of the CC (P < 0.05, Bonferroni-corrected), which mainly interconnect the bilateral frontal cortices. Our findings indicated that the anterior part of the CC was more severely impaired than the posterior part in young adult-onset PTSD, which suggested the patterns of CC impairment may depend on the developmental stage of the structure when the PTSD occurs. PMID:25799310

  13. Corpus Callosum MR Image Classification

    NASA Astrophysics Data System (ADS)

    Elsayed, A.; Coenen, F.; Jiang, C.; García-Fiñana, M.; Sluming, V.

    An approach to classifying Magnetic Resonance (MR) image data is described. The specific application is the classification of MRI scan data according to the nature of the corpus callosum, however the approach has more general applicability. A variation of the “spectral segmentation with multi-scale graph decomposition” mechanism is introduced. The result of the segmentation is stored in a quad-tree data structure to which a weighted variation (also developed by the authors) of the gSpan algorithm is applied to identify frequent sub-trees. As a result the images are expressed as a set frequent sub-trees. There may be a great many of these and thus a decision tree based feature reduction technique is applied before classification takes place. The results show that the proposed approach performs both efficiently and effectively, obtaining a classification accuracy of over 95% in the case of the given application.

  14. Association between reduced white matter integrity in the corpus callosum and serotonin transporter gene DNA methylation in medication-naive patients with major depressive disorder.

    PubMed

    Won, E; Choi, S; Kang, J; Kim, A; Han, K-M; Chang, H S; Tae, W S; Son, K R; Joe, S-H; Lee, M-S; Ham, B-J

    2016-08-09

    Previous evidence suggests that the serotonin transporter gene (SLC6A4) is associated with the structure of brain regions that are critically involved in dysfunctional limbic-cortical network activity associated with major depressive disorder (MDD). Diffusion tensor imaging (DTI) and tract-based spatial statistics were used to investigate changes in white matter integrity in patients with MDD compared with healthy controls. A possible association between structural alterations in white matter tracts and DNA methylation of the SLC6A4 promoter region was also assessed. Thirty-five medication-naive patients with MDD (mean age: 40.34, male/female: 10/25) and age, gender and education level matched 49 healthy controls (mean age: 41.12, male/female: 15/34) underwent DTI. SLC6A4 DNA methylation was also measured at five CpG sites of the promoter region, and the cell type used was whole-blood DNA. Patients with MDD had significantly lower fractional anisotropy (FA) values for the genu of the corpus callosum and body of the corpus callosum than that in healthy controls (family-wise error corrected, P<0.01). Significant inverse correlations were observed between SLC6A4 DNA methylation and FA (CpG3, Pearson's correlation: r=-0.493, P=0.003) and axial diffusivity (CpG3, Pearson's correlation: r=-0.478, P=0.004) values of the body of the corpus callosum in patients with MDD. These results contribute to evidence indicating an association between epigenetic gene regulation and structural brain alterations in depression. Moreover, we believe this is the first report of a correlation between DNA methylation of the SLC6A4 promoter region and white matter integrity in patients with MDD.

  15. Association between reduced white matter integrity in the corpus callosum and serotonin transporter gene DNA methylation in medication-naive patients with major depressive disorder.

    PubMed

    Won, E; Choi, S; Kang, J; Kim, A; Han, K-M; Chang, H S; Tae, W S; Son, K R; Joe, S-H; Lee, M-S; Ham, B-J

    2016-01-01

    Previous evidence suggests that the serotonin transporter gene (SLC6A4) is associated with the structure of brain regions that are critically involved in dysfunctional limbic-cortical network activity associated with major depressive disorder (MDD). Diffusion tensor imaging (DTI) and tract-based spatial statistics were used to investigate changes in white matter integrity in patients with MDD compared with healthy controls. A possible association between structural alterations in white matter tracts and DNA methylation of the SLC6A4 promoter region was also assessed. Thirty-five medication-naive patients with MDD (mean age: 40.34, male/female: 10/25) and age, gender and education level matched 49 healthy controls (mean age: 41.12, male/female: 15/34) underwent DTI. SLC6A4 DNA methylation was also measured at five CpG sites of the promoter region, and the cell type used was whole-blood DNA. Patients with MDD had significantly lower fractional anisotropy (FA) values for the genu of the corpus callosum and body of the corpus callosum than that in healthy controls (family-wise error corrected, P<0.01). Significant inverse correlations were observed between SLC6A4 DNA methylation and FA (CpG3, Pearson's correlation: r=-0.493, P=0.003) and axial diffusivity (CpG3, Pearson's correlation: r=-0.478, P=0.004) values of the body of the corpus callosum in patients with MDD. These results contribute to evidence indicating an association between epigenetic gene regulation and structural brain alterations in depression. Moreover, we believe this is the first report of a correlation between DNA methylation of the SLC6A4 promoter region and white matter integrity in patients with MDD. PMID:27505229

  16. Association between reduced white matter integrity in the corpus callosum and serotonin transporter gene DNA methylation in medication-naive patients with major depressive disorder

    PubMed Central

    Won, E; Choi, S; Kang, J; Kim, A; Han, K-M; Chang, H S; Tae, W S; Son, K R; Joe, S-H; Lee, M-S; Ham, B-J

    2016-01-01

    Previous evidence suggests that the serotonin transporter gene (SLC6A4) is associated with the structure of brain regions that are critically involved in dysfunctional limbic-cortical network activity associated with major depressive disorder (MDD). Diffusion tensor imaging (DTI) and tract-based spatial statistics were used to investigate changes in white matter integrity in patients with MDD compared with healthy controls. A possible association between structural alterations in white matter tracts and DNA methylation of the SLC6A4 promoter region was also assessed. Thirty-five medication-naive patients with MDD (mean age: 40.34, male/female: 10/25) and age, gender and education level matched 49 healthy controls (mean age: 41.12, male/female: 15/34) underwent DTI. SLC6A4 DNA methylation was also measured at five CpG sites of the promoter region, and the cell type used was whole-blood DNA. Patients with MDD had significantly lower fractional anisotropy (FA) values for the genu of the corpus callosum and body of the corpus callosum than that in healthy controls (family-wise error corrected, P<0.01). Significant inverse correlations were observed between SLC6A4 DNA methylation and FA (CpG3, Pearson's correlation: r=−0.493, P=0.003) and axial diffusivity (CpG3, Pearson's correlation: r=−0.478, P=0.004) values of the body of the corpus callosum in patients with MDD. These results contribute to evidence indicating an association between epigenetic gene regulation and structural brain alterations in depression. Moreover, we believe this is the first report of a correlation between DNA methylation of the SLC6A4 promoter region and white matter integrity in patients with MDD. PMID:27505229

  17. Corpus callosum volume and neurocognition in autism

    PubMed Central

    Keary, Christopher J.; Minshew, Nancy J.; Bansal, Rahul; Goradia, Dhruman; Fedorov, Serguei; Keshavan, Matcheri S.; Hardan, Antonio Y.

    2011-01-01

    The corpus callosum has recently been considered as an index of interhemispheric connectivity. This study applied a novel volumetric method to examine the size of the corpus callosum in 32 individuals with autism and 34 age-, gender- and IQ-matched controls and to investigate the relationship between this structure and cognitive measures linked to interhemispheric functioning. Participants with autism displayed reductions in total corpus callosum volume and in several of its subdivisions. Relationships were also observed between volumetric alterations and performance on several cognitive tests including the Tower of Hanoi test. These findings provide further evidence for volumetric alterations in the corpus callosum in autism, but warrant additional studies examining the relationship of this structure and specific measures of interhemispheric connectivity. PMID:19165587

  18. Corpus callosum volume and neurocognition in autism.

    PubMed

    Keary, Christopher J; Minshew, Nancy J; Bansal, Rahul; Goradia, Dhruman; Fedorov, Serguei; Keshavan, Matcheri S; Hardan, Antonio Y

    2009-06-01

    The corpus callosum has recently been considered as an index of interhemispheric connectivity. This study applied a novel volumetric method to examine the size of the corpus callosum in 32 individuals with autism and 34 age-, gender- and IQ-matched controls and to investigate the relationship between this structure and cognitive measures linked to interhemispheric functioning. Participants with autism displayed reductions in total corpus callosum volume and in several of its subdivisions. Relationships were also observed between volumetric alterations and performance on several cognitive tests including the Tower of Hanoi test. These findings provide further evidence for anatomical alterations in the corpus callosum in autism, but warrant additional studies examining the relationship of this structure and specific measures of interhemispheric connectivity. PMID:19165587

  19. White matter fractional anisotropy over two time points in early onset schizophrenia and adolescent cannabis use disorder: A naturalistic diffusion tensor imaging study.

    PubMed

    Epstein, Katherine A; Kumra, Sanjiv

    2015-04-30

    Recurrent exposure to cannabis in adolescence increases the risk for later development of psychosis, but there are sparse data regarding the impact of cannabis use on brain structure during adolescence. This pilot study investigated the effect of cannabis use disorder (CUD) upon white matter fractional anisotropy (WM FA) values in non-psychotic treatment-seeking adolescents relative to adolescents with early onset schizophrenia-spectrum disorders (EOSS) and to healthy control (HC) participants. Diffusion tensor imaging (DTI) and tractography methods were used to examine fractional anisotropy (FA) of the cingulum bundle, superior longitudinal fasciculus (SLF), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus in adolescents with EOSS (n=34), CUD (n=19) and HC (n=29). Participants received DTI and substance use assessments at baseline and at 18-month follow-up. Using multivariate analysis of variance, a significant main effect of diagnostic group was observed. Post-hoc testing revealed that adolescents with CUD showed an altered change in FA values in the left ILF and in the left IFOF (trend level) compared with HC adolescents. Greater consumption of cannabis during the inter-scan interval predicted a greater decrease in left ILF FA in CUD. These preliminary longitudinal data suggest that heavy cannabis use during adolescence, or some factor associated with cannabis use, is associated with an altered change in WM FA values in a fiber bundle that has been implicated in the pathophysiology of EOSS (i.e., the left ILF). Additional studies are needed to clarify the clinical significance of these findings.

  20. Facial emotion recognition in agenesis of the corpus callosum

    PubMed Central

    2014-01-01

    Background Impaired social functioning is a common symptom of individuals with developmental disruptions in callosal connectivity. Among these developmental conditions, agenesis of the corpus callosum provides the most extreme and clearly identifiable example of callosal disconnection. To date, deficits in nonliteral language comprehension, humor, theory of mind, and social reasoning have been documented in agenesis of the corpus callosum. Here, we examined a basic social ability as yet not investigated in this population: recognition of facial emotion and its association with social gaze. Methods Nine individuals with callosal agenesis and nine matched controls completed four tasks involving emotional faces: emotion recognition from upright and inverted faces, gender recognition, and passive viewing. Eye-tracking data were collected concurrently on all four tasks and analyzed according to designated facial regions of interest. Results Individuals with callosal agenesis exhibited impairments in recognizing emotions from upright faces, in particular lower accuracy for fear and anger, and these impairments were directly associated with diminished attention to the eye region. The callosal agenesis group exhibited greater consistency in emotion recognition across conditions (upright vs. inverted), with poorest performance for fear identification in both conditions. The callosal agenesis group also had atypical facial scanning (lower fractional dwell time in the eye region) during gender naming and passive viewing of faces, but they did not differ from controls on gender naming performance. The pattern of results did not differ when taking into account full-scale intelligence quotient or presence of autism spectrum symptoms. Conclusions Agenesis of the corpus callosum results in a pattern of atypical facial scanning characterized by diminished attention to the eyes. This pattern suggests that reduced callosal connectivity may contribute to the development and

  1. Corpus Callosum Area in Children and Adults with Autism

    ERIC Educational Resources Information Center

    Prigge, Molly B. D.; Lange, Nicholas; Bigler, Erin D.; Merkley, Tricia L.; Neeley, E. Shannon; Abildskov, Tracy J.; Froehlich, Alyson L.; Nielsen, Jared A.; Cooperrider, Jason R.; Cariello, Annahir N.; Ravichandran, Caitlin; Alexander, Andrew L.; Lainhart, Janet E.

    2013-01-01

    Despite repeated findings of abnormal corpus callosum structure in autism, the developmental trajectories of corpus callosum growth in the disorder have not yet been reported. In this study, we examined corpus callosum size from a developmental perspective across a 30-year age range in a large cross-sectional sample of individuals with autism…

  2. A Preliminary Investigation of Corpus Callosum and Anterior Commissure Aberrations in Aggressive Youth with Bipolar Disorders

    PubMed Central

    Tamm, Leanne; Walley, Annie; Simmons, Alex; Rollins, Nancy; Chia, Jonathan; Soares, Jair C.; Emslie, Graham J.; Fan, Xin; Huang, Hao

    2012-01-01

    Abstract Objective Although behavioral deficits in bipolar disorder (BPD) are well described, the specific brain white matter (WM) disruptions have not been completely characterized, and neural mechanisms underlying dysfunction in BPD are not well established, particularly for youth with BPD and aggression. This preliminary study utilized diffusion tensor imaging (DTI) to investigate commissural tracts (corpus callosum [CC] and anterior commissure [AC]) in youth with BPD, because disruption of interhemispheric communication may contribute to the emotional deficits that are characteristic of the illness. Method DTI was used to investigate WM in 10 youth (7–17 years of age) with BPD and 10 typically developing age-matched controls. Tract-based spatial statistics voxel-wise analysis was used to compare fractional anisotropy (FA) of the two groups. We specifically focused on five subdivisions of the midsagittal CC as well as on the decussation of AC, which connects the temporal lobes. Exploratory correlations between FA values and life history of aggression scores were calculated for the BPD group. Results Youth with BPD had significantly lower FA values in the callosal genu and AC. FA values in the AC were negatively correlated with a life history of aggression in the BPD group. Conclusions These results contribute to a growing literature implicating a role for the genu of the CC in BPD and are the first to report WM variations in the AC of children with BPD. Taken together with the correlational data for aggression and the role of the AC in emotional processing, our data provide preliminary evidence for a possible association between the structural integrity of the WM of the AC and aggression in pediatric BPD. PMID:22375854

  3. Neural net simulation of the corpus callosum.

    PubMed

    Anninos, P A; Cook, N D

    1988-02-01

    The effects of simulated anatomical and physiological parameters were investigated in a "neural net" model, where two neural nets corresponding to two small patches of cerebral cortex were connected by a simulated "corpus callosum." The isolated neural nets have previously been shown to exhibit oscillatory activity similar to the raw EEG. By connecting the nets with fibers which have a specified percentage of inhibition and a specified percentage of homotopicity, the effects of such parameters on the cyclic activity of the nets were studied. It was found that, regardless of the inhibitory-excitatory nature of the simulated corpus callosum, the cyclic activity established in one hemisphere is more readily transferred to the contralateral hemisphere, the greater the percentage of homotopic callosal fibers. Learning was more rapid when the effect of the corpus callosum was primarily excitatory, but learning also took place over inhibitory or mixed callosal tracts. The simulation does not therefore resolve the issue of the predominant physiological effect of the corpus callosum, but does indicate that, given the assumptions of the simulation, "learning" can occur regardless of the percentage of excitatory or inhibitory fibers. It is noteworthy that homotopicity was more important for learning across an inhibitory tract than across an excitatory tract.

  4. Plasticity of Interhemispheric Temporal Lobe White Matter Pathways Due to Early Disruption of Corpus Callosum Development in Spina Bifida.

    PubMed

    Bradley, Kailyn A; Juranek, Jenifer; Romanowska-Pawliczek, Anna; Hannay, H Julia; Cirino, Paul T; Dennis, Maureen; Kramer, Larry A; Fletcher, Jack M

    2016-04-01

    Spina bifida myelomeningocele (SBM) is commonly associated with anomalous development of the corpus callosum (CC) because of congenital partial hypogenesis and hydrocephalus-related hypoplasia. It represents a model disorder to examine the effects of early disruption of CC neurodevelopment and the plasticity of interhemispheric white matter connections. Diffusion tensor imaging was acquired on 76 individuals with SBM and 27 typically developing individuals, aged 8-36 years. Probabilistic tractography was used to isolate the interhemispheric connections between the posterior superior temporal lobes, which typically traverse the posterior third of the CC. Early disruption of CC development resulted in restructuring of interhemispheric connections through alternate commissures, particularly the anterior commissure (AC). These rerouted fibers were present in people with SBM and both CC hypoplasia and hypogenesis. In addition, microstructural integrity was reduced in the interhemispheric temporal tract in people with SBM, indexed by lower fractional anisotropy, axial diffusivity, and higher radial diffusivity. Interhemispheric temporal tract volume was positively correlated with total volume of the CC, such that more severe underdevelopment of the CC was associated with fewer connections between the posterior temporal lobes. Therefore, both the macrostructure and microstructure of this interhemispheric tract were reduced, presumably as a result of more extensive CC malformation. The current findings suggest that early disruption in CC development reroutes interhemispheric temporal fibers through both the AC and more anterior sections of the CC in support of persistent hypotheses that the AC may serve a compensatory function in atypical CC development. PMID:26798959

  5. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    PubMed

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure. PMID:26200068

  6. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    PubMed

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  7. Evolution of Apparent Diffusion Coefficient and Fractional Anisotropy in the Cerebrum of Asphyxiated Newborns Treated with Hypothermia over the First Month of Life.

    PubMed

    Kwan, Saskia; Boudes, Elodie; Benseler, Anouk; Gilbert, Guillaume; Saint-Martin, Christine; Shevell, Michael; Wintermark, Pia

    2015-01-01

    The objective of this study was to assess the evolution of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) over the first month of life in asphyxiated newborns treated with hypothermia and to compare it with that of healthy newborns. Asphyxiated newborns treated with hypothermia were enrolled prospectively; and the presence and extent of brain injury were scored on each MRI. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured in the basal ganglia, in the white matter and in the cortical grey matter. Sixty-one asphyxiated newborns treated with hypothermia had a total of 126 ADC and FA maps. Asphyxiated newborns developing brain injury eventually had significantly decreased ADC values on days 2-3 of life and decreased FA values around day 10 and 1 month of life compared with those not developing brain injury. Despite hypothermia treatment, asphyxiated newborns may develop brain injury that still can be detected with advanced neuroimaging techniques such as DWI and DTI as early as days 2-3 of life. A study of ADC and FA values over time may aid in the understanding of how brain injury develops in these newborns despite hypothermia treatment.

  8. Multi-channel registration of fractional anisotropy and T1-weighted images in the presence of atrophy: application to multiple sclerosis

    PubMed Central

    Roura, Eloy; Schneider, Torben; Modat, Marc; Daga, Pankaj; Muhlert, Nils; Chard, Declan; Ourselin, Sebastien; Lladó, Xavier; Wheeler-Kingshott, Claudia Gandini

    2015-01-01

    Summary Co-registration of structural T1-weighted (T1w) scans and diffusion tensor imaging (DTI)-derived fractional anisotropy (FA) maps to a common space is of particular interest in neuroimaging, as T1w scans can be used for brain segmentation while DTI can provide microstructural tissue information. While the effect of lesions on registration has been tackled and solutions are available, the issue of atrophy is still open to discussion. Multi-channel (MC) registration algorithms have the advantage of maintaining anatomical correspondence between different contrast images after registration to any target space. In this work, we test the performance of an MC registration approach applied to T1w and FA data using simulated brain atrophy images. Experimental results are compared with a standard single-channel registration approach. Both qualitative and quantitative evaluations are presented, showing that the MC approach provides better alignment with the target while maintaining better T1w and FA co-alignment. PMID:26727703

  9. Adding insult to injury: childhood and adolescent risk factors for psychosis predict lower fractional anisotropy in the superior longitudinal fasciculus in healthy adults.

    PubMed

    DeRosse, Pamela; Ikuta, Toshikazu; Peters, Bart D; Karlsgodt, Katherine H; Szeszko, Philip R; Malhotra, Anil K

    2014-12-30

    Although epidemiological studies provide strong support for demographic and environmental risk factors in psychotic disorders, few data examine how these risk factors relate to the putative aberrant neurodevelopment associated with illness. The present study examined how the accumulation of risk factors including low IQ, low parental socioeconomic status (SES), history of adolescent cannabis use and childhood trauma, and high levels of subclinical psychotic-like experiences (PLEs) contributed to aberrant neurodevelopmental outcomes in 112 otherwise healthy adults recruited from the community. Participants were studied with diffusion tensor imaging (DTI), and voxel-wise statistical analysis of fractional anisotropy (FA) using tract-based spatial statistics (TBSS) was used to examine the relation between cumulative risk (CR) for psychosis and white matter (WM) integrity across the whole brain. Analyses revealed that higher CR was significantly associated with lower FA in a cluster in the left superior longitudinal fasciculus (SLF). These results suggest that risk factors previously associated with psychotic disorders are associated with WM integrity even in otherwise healthy adults and may provide insight into how previously identified risk factors contribute to the structural brain abnormalities associated with psychotic illness. Prospective longitudinal studies examining the effect of risk factors on the developmental trajectory of brain WM are warranted. PMID:25277095

  10. Differences in the architecture of low-grade and high-grade gliomas evaluated using fiber density index and fractional anisotropy.

    PubMed

    Chen, Yiyong; Shi, Yonghong; Song, Zhijian

    2010-07-01

    Accurate pre-operative assessment of tumor grade is important for the selection of appropriate treatment strategies. The aim of this study was to retrospectively evaluate whether the fiber density index (FDi) and fractional anisotropy (FA) via diffusion tensor MRI (DTI) could assist with pre-operative diagnosis of glioma grade. A total of 31 patients who had histologically confirmed gliomas underwent DTI performed using a 1.5-Tesla magnetic resonance scanner. To reconstruct the white matter adjacent to the tumor, DTI fiber tracking (DTI-FT) using an FA threshold of 0.15 was implemented. Regions of interest (ROIs) were defined (i-iv) as: the tumor center (ROI i); white matter adjacent to the tumor (ROI ii); contralateral centrum semiovale (ROI iii); and the homologous fiber tracts to ROI ii in the contralateral hemisphere (ROI iv). We calculated six parameters from different ROIs and compared high-grade and low-grade gliomas: FA values and ratios; FDi values and ratios with an FA threshold of 0.15; and FDi values and ratios with an FA threshold of 0.25. The results showed that FA ratios and FDi ratios with FA thresholds of 0.25 were significantly different between patients with high-grade and low-grade gliomas. This may be useful for developing surgical strategies and appraising patient prognosis.

  11. Adding insult to injury: childhood and adolescent risk factors for psychosis predict lower fractional anisotropy in the superior longitudinal fasciculus in healthy adults.

    PubMed

    DeRosse, Pamela; Ikuta, Toshikazu; Peters, Bart D; Karlsgodt, Katherine H; Szeszko, Philip R; Malhotra, Anil K

    2014-12-30

    Although epidemiological studies provide strong support for demographic and environmental risk factors in psychotic disorders, few data examine how these risk factors relate to the putative aberrant neurodevelopment associated with illness. The present study examined how the accumulation of risk factors including low IQ, low parental socioeconomic status (SES), history of adolescent cannabis use and childhood trauma, and high levels of subclinical psychotic-like experiences (PLEs) contributed to aberrant neurodevelopmental outcomes in 112 otherwise healthy adults recruited from the community. Participants were studied with diffusion tensor imaging (DTI), and voxel-wise statistical analysis of fractional anisotropy (FA) using tract-based spatial statistics (TBSS) was used to examine the relation between cumulative risk (CR) for psychosis and white matter (WM) integrity across the whole brain. Analyses revealed that higher CR was significantly associated with lower FA in a cluster in the left superior longitudinal fasciculus (SLF). These results suggest that risk factors previously associated with psychotic disorders are associated with WM integrity even in otherwise healthy adults and may provide insight into how previously identified risk factors contribute to the structural brain abnormalities associated with psychotic illness. Prospective longitudinal studies examining the effect of risk factors on the developmental trajectory of brain WM are warranted.

  12. Fractional anisotropy shows differential reduction in frontal-subcortical fiber bundles—A longitudinal MRI study of 76 middle-aged and older adults

    PubMed Central

    Vik, Alexandra; Hodneland, Erlend; Haász, Judit; Ystad, Martin; Lundervold, Astri J.; Lundervold, Arvid

    2015-01-01

    Motivated by the frontal- and white matter (WM) retrogenesis hypotheses and the assumptions that fronto-striatal circuits are especially vulnerable in normal aging, the goal of the present study was to identify fiber bundles connecting subcortical nuclei and frontal areas and obtain site-specific information about age related fractional anisotropy (FA) changes. Multimodal magnetic resonance image acquisitions [3D T1-weighted and diffusion weighted imaging (DWI)] were obtained from healthy older adults (N = 76, range 49–80 years at inclusion) at two time points, 3 years apart. A subset of the participants (N = 24) was included at a third time-point. In addition to the frontal-subcortical fibers, the anterior callosal fiber (ACF) and the corticospinal tract (CST) was investigated by its mean FA together with tract parameterization analysis. Our results demonstrated fronto-striatal structural connectivity decline (reduced FA) in normal aging with substantial inter-individual differences. The tract parameterization analysis showed that the along tract FA profiles were characterized by piece-wise differential changes along their extension rather than being uniformly affected. To the best of our knowledge, this is the first longitudinal study detecting age-related changes in frontal-subcortical WM connections in normal aging. PMID:26029102

  13. Quantitative assessment of corpus callosum morphology in periventricular nodular heterotopia.

    PubMed

    Pardoe, Heath R; Mandelstam, Simone A; Hiess, Rebecca Kucharsky; Kuzniecky, Ruben I; Jackson, Graeme D

    2015-01-01

    We investigated systematic differences in corpus callosum morphology in periventricular nodular heterotopia (PVNH). Differences in corpus callosum mid-sagittal area and subregional area changes were measured using an automated software-based method. Heterotopic gray matter deposits were automatically labeled and compared with corpus callosum changes. The spatial pattern of corpus callosum changes were interpreted in the context of the characteristic anterior-posterior development of the corpus callosum in healthy individuals. Individuals with periventricular nodular heterotopia were imaged at the Melbourne Brain Center or as part of the multi-site Epilepsy Phenome Genome project. Whole brain T1 weighted MRI was acquired in cases (n=48) and controls (n=663). The corpus callosum was segmented on the mid-sagittal plane using the software "yuki". Heterotopic gray matter and intracranial brain volume was measured using Freesurfer. Differences in corpus callosum area and subregional areas were assessed, as well as the relationship between corpus callosum area and heterotopic GM volume. The anterior-posterior distribution of corpus callosum changes and heterotopic GM nodules were quantified using a novel metric and compared with each other. Corpus callosum area was reduced by 14% in PVNH (p=1.59×10(-9)). The magnitude of the effect was least in the genu (7% reduction) and greatest in the isthmus and splenium (26% reduction). Individuals with higher heterotopic GM volume had a smaller corpus callosum. Heterotopic GM volume was highest in posterior brain regions, however there was no linear relationship between the anterior-posterior position of corpus callosum changes and PVNH nodules. Reduced corpus callosum area is strongly associated with PVNH, and is probably associated with abnormal brain development in this neurological disorder. The primarily posterior corpus callosum changes may inform our understanding of the etiology of PVNH. Our results suggest that

  14. Global fractional anisotropy and mean diffusivity together with segmented brain volumes assemble a predictive discriminant model for young and elderly healthy brains: a pilot study at 3T

    PubMed Central

    Garcia-Lazaro, Haydee Guadalupe; Becerra-Laparra, Ivonne; Cortez-Conradis, David; Roldan-Valadez, Ernesto

    2016-01-01

    Summary Several parameters of brain integrity can be derived from diffusion tensor imaging. These include fractional anisotropy (FA) and mean diffusivity (MD). Combination of these variables using multivariate analysis might result in a predictive model able to detect the structural changes of human brain aging. Our aim was to discriminate between young and older healthy brains by combining structural and volumetric variables from brain MRI: FA, MD, and white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) volumes. This was a cross-sectional study in 21 young (mean age, 25.71±3.04 years; range, 21–34 years) and 10 elderly (mean age, 70.20±4.02 years; range, 66–80 years) healthy volunteers. Multivariate discriminant analysis, with age as the dependent variable and WM, GM and CSF volumes, global FA and MD, and gender as the independent variables, was used to assemble a predictive model. The resulting model was able to differentiate between young and older brains: Wilks’ λ = 0.235, χ2 (6) = 37.603, p = .000001. Only global FA, WM volume and CSF volume significantly discriminated between groups. The total accuracy was 93.5%; the sensitivity, specificity and positive and negative predictive values were 91.30%, 100%, 100% and 80%, respectively. Global FA, WM volume and CSF volume are parameters that, when combined, reliably discriminate between young and older brains. A decrease in FA is the strongest predictor of membership of the older brain group, followed by an increase in WM and CSF volumes. Brain assessment using a predictive model might allow the follow-up of selected cases that deviate from normal aging. PMID:27027893

  15. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: comparing meta and mega analytical approaches for data pooling

    PubMed Central

    Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E.; Mandl, René C.; Almasy, Laura; Booth, Tom; Brouwer, Rachel M.; Curran, Joanne E.; de Zubicaray, Greig I.; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T.; Hong, L. Elliot; Landman, Bennett A.; Lemaitre, Hervé; Lopez, Lorna; Martin, Nicholas G.; McMahon, Katie L.; Mitchell, Braxton D.; Olvera, Rene L.; Peterson, Charles P.; Starr, John M.; Sussmann, Jessika E.; Toga, Arthur W.; Wardlaw, Joanna M.; Wright, Margaret J.; Wright, Susan N.; Bastin, Mark E.; McIntosh, Andrew M.; Boomsma, Dorret I.; Kahn, René S.; den Braber, Anouk; de Geus, Eco JC; Deary, Ian J.; Hulshoff Pol, Hilleke E.; Williamson, Douglas E.; Blangero, John; van ’t Ent, Dennis; Thompson, Paul M.; Glahn, David C.

    2014-01-01

    Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9–85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large “mega-family”. We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. PMID:24657781

  16. Agenesis of the Corpus Callosum and Generalized Epilepsy.

    PubMed

    Ilik, Faik; Bilgilisoy, Ugur T

    2015-07-01

    The corpus callosum is the main band of interhemispheric axonal fibers in the human brain. Corpus callosum agenesis has widely varying symptoms, mainly associated with epilepsy, cognitive failure, and different neuropsychiatric disorders. Our case of corpus callosum agenesis includes eyelid myoclonia with absences. In the literature, there is no reported case of this combination. We report this case because it is rare, and relevant for the understanding of interhemispheric communications, based on our electrophysiological findings.

  17. Educational Implications for Agenesis of the Corpus Callosum.

    ERIC Educational Resources Information Center

    Ritter, Shirley A.

    This case study evaluates the case of a 20-year-old young Australian adult born with agenesis of the corpus callosum, the area of the brain uniting the hemispheres. Deficits commonly associated with agenesis of the corpus callosum are mental retardation, motor involvement, seizure activity, and lateral transfer difficulties. The report: (1)…

  18. Corpus Callosum Morphometrics in Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Boger-Megiddo, Inbal; Shaw, Dennis W. W.; Friedman, Seth D.; Sparks, Bobbi F.; Artru, Alan A.; Giedd, Jay N.; Dawson, Geraldine; Dager, Stephen R.

    2006-01-01

    This study assessed digital corpus callosum cross sectional areas in 3-4 year olds with autism spectrum disorder (ASD) compared to typically developing (TD) and developmentally delayed (DD) children. Though not different in absolute size compared to TD, ASD callosums were disproportionately small adjusted for increased ASD cerebral volume. ASD…

  19. Corpus callosum involvement and postoperative outcomes of patients with gliomas.

    PubMed

    Chen, Ko-Ting; Wu, Tai-Wei Erich; Chuang, Chi-Cheng; Hsu, Yung-Hsin; Hsu, Peng-Wei; Huang, Yin-Cheng; Lin, Tzu-Kang; Chang, Chen-Nen; Lee, Shih-Tseng; Wu, Chieh-Tsai; Tseng, Chen-Kan; Wang, Chun-Chieh; Pai, Ping-Ching; Wei, Kuo-Chen; Chen, Pin-Yuan

    2015-09-01

    Corpus callosum involvement is associated with poorer survival in high grade glioma (HGG), but the prognostic value in low grade glioma (LGG) is unclear. To determine the prognostic impact of corpus callosum involvement on progression free survival (PFS) and overall survival (OS) in HGG and LGG, the records of 233 glioma patients treated from 2008 to 2011 were retrospectively reviewed. Preoperative magnetic resonance (MR) images were used to identify corpus callosum involvement. Age, sex, preoperative Karnofsky performance scale, postoperative Eastern Cooperative Oncology Group (ECOG) score and extent of resection (EOR) were evaluated with respect to PFS and OS. The incidence of corpus callosum involvement was similar among HGG (14 %) and LGG (14.5 %). Univariate analysis revealed that PFS and OS were significantly shorter in both WHO grade II and grade IV glioma with corpus callosum involvement (both, p < 0.05). Multivariate analysis showed that grade II glioma with corpus callosum involvement have shorter PFS (p = 0.03), while EOR, instead of corpus callosum involvement (p = 0.16), was an independent factor associated with PFS in grade IV glioma (p < 0.05). Corpus callosum involvement was no longer significantly associated with OS after adjusting age, gender, EOR, preoperative and postoperative performance status (p = 0.16, 0.17 and 0.56 in grade II, III and IV gliomas, respectively). Corpus callosum involvement happened in both LGG and HGG, and is associated with lower EOR and higher postoperative ECOG score both in LGG and HGG. Corpus callosum involvement tends to be an independent prognostic factor for PFS in LGG, but not for OS in LGG or in HGG.

  20. Influence of Corpus Callosum Damage on Cognition and Physical Disability in Multiple Sclerosis: A Multimodal Study

    PubMed Central

    Llufriu, Sara; Blanco, Yolanda; Martinez-Heras, Eloy; Casanova-Molla, Jordi; Gabilondo, Iñigo; Sepulveda, Maria; Falcon, Carles; Berenguer, Joan; Bargallo, Nuria; Villoslada, Pablo; Graus, Francesc; Valls-Sole, Josep; Saiz, Albert

    2012-01-01

    Background Corpus callosum (CC) is a common target for multiple sclerosis (MS) pathology. We investigated the influence of CC damage on physical disability and cognitive dysfunction using a multimodal approach. Methods Twenty-one relapsing-remitting MS patients and 13 healthy controls underwent structural MRI and diffusion tensor of the CC (fractional anisotropy; mean diffusivity, MD; radial diffusivity, RD; axial diffusivity). Interhemisferic transfer of motor inhibition was assessed by recording the ipsilateral silent period (iSP) to transcranial magnetic stimulation. We evaluated cognitive function using the Brief Repeatable Battery and physical disability using the Expanded Disability Status Scale (EDSS) and the MS Functional Composite (MSFC) z-score. Results The iSP latency correlated with physical disability scores (r ranged from 0.596 to 0.657, P values from 0.004 to 0.001), and with results of visual memory (r = −0.645, P = 0.002), processing speed (r = −0.51, P = 0.018) and executive cognitive domain tests (r = −0.452, P = 0.039). The area of the rostrum correlated with the EDSS (r = −0.442, P = 0.045). MD and RD correlated with cognitive performance, mainly with results of visual and verbal memory tests (r ranged from −0.446 to −0.546, P values from 0.048 to 0.011). The iSP latency correlated with CC area (r = −0.345, P = 0.049), volume (r = −0.401, P = 0.002), MD (r = 0.404, P = 0.002) and RD (r = 0.415, P = 0.016). Conclusions We found evidence for structural and microstructural CC abnormalities associated with impairment of motor callosal inhibitory conduction in MS. CC damage may contribute to cognitive dysfunction and in less extent to physical disability likely through a disconnection mechanism. PMID:22606347

  1. The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801.

    PubMed

    Xiu, Yun; Kong, Xiang-ru; Zhang, Lei; Qiu, Xuan; Gao, Yuan; Huang, Chun-xia; Chao, Feng-lei; Wang, San-rong; Tang, Yong

    2015-04-01

    Previous magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) investigations have shown that the white matter volume and fractional anisotropy (FA) were decreased in schizophrenia (SZ), which indicated impaired white matter integrity in SZ. However, the mechanism underlying these abnormalities has been less studied. The current study was designed to investigate the possible reasons for white matter abnormalities in the mouse model of SZ induced by NMDA receptor antagonist using the unbiased stereological methods and transmission electron microscope technique. We found that the mice treated with MK-801 demonstrated a series of schizophrenia-like behaviors including hyperlocomotor activity and more anxiety. The myelinated fibers in the corpus callosum (CC) of the mice treated with MK-801 were impaired with splitting lamellae of myelin sheaths and segmental demyelination. The CC volume and the total length of the myelinated fibers in the CC of the mice treated with MK-801 were significantly decreased by 9.4% and 16.8% when compared to those of the mice treated with saline. We further found that the loss of the myelinated fibers length was mainly due to the marked loss of the myelinated nerve fibers with the diameter of 0.4-0.5 μm. These results indicated that the splitting myelin sheaths, demyelination and the loss of myelinated fibers with small diameter might provide one of the structural bases for impaired white matter integrity of CC in the mouse model of SZ. These results might also provide a baseline for further studies searching for the treatment of SZ through targeting white matter.

  2. Maximum Principal Strain and Strain Rate Associated with Concussion Diagnosis Correlates with Changes in Corpus Callosum White Matter Indices

    PubMed Central

    MCALLISTER, THOMAS W.; FORD, JAMES C.; JI, SONGBAI; BECKWITH, JONATHAN G.; FLASHMAN, LAURA A.; PAULSEN, KEITH; GREENWALD, RICHARD M.

    2014-01-01

    On-field monitoring of head impacts, combined with finite element (FE) biomechanical simulation, allow for predictions of regional strain associated with a diagnosed concussion. However, attempts to correlate these predictions with in vivo measures of brain injury have not been published. This article reports an approach to and preliminary results from the correlation of subject-specific FE model-predicted regions of high strain associated with diagnosed concussion and diffusion tensor imaging to assess changes in white matter integrity in the corpus callosum (CC). Ten football and ice hockey players who wore instrumented helmets to record head impacts sustained during play completed high field magnetic resonance imaging preseason and within 10 days of a diagnosed concussion. The Dartmouth Subject-Specific FE Head model was used to generate regional predictions of strain and strain rate following each impact associated with concussion. Maps of change in fractional anisotropy (FA) and median diffusivity (MD) were generated for the CC of each athlete to correlate strain with change in FA and MD. Mean and maximum strain rate correlated with change in FA (Spearman ρ = 0.77, p = 0.01; 0.70, p = 0.031), and there was a similar trend for mean and maximum strain (0.56, p = 0.10; 0.6, p = 0.07), as well as for maximum strain with change in MD (−0.63, p = 0.07). Change in MD correlated with injury-to-imaging interval (ρ = −0.80, p = 0.006) but change in FA did not (ρ = 0.18, p = 0.62). These results provide preliminary confirmation that model-predicted strain and strain rate in the CC correlate with changes in indices of white matter integrity. PMID:21994062

  3. Relationship between Stereoscopic Vision, Visual Perception, and Microstructure Changes of Corpus Callosum and Occipital White Matter in the 4-Year-Old Very Low Birth Weight Children

    PubMed Central

    Kwinta, Przemko; Herman-Sucharska, Izabela; Leśniak, Anna; Klimek, Małgorzata; Karcz, Paulina; Durlak, Wojciech; Nitecka, Magdalena; Dutkowska, Grażyna; Kubatko-Zielińska, Anna; Romanowska-Dixon, Bożena; Pietrzyk, Jacek Józef

    2015-01-01

    Aim. To assess the relationship between stereoscopic vision, visual perception, and microstructure of the corpus callosum (CC) and occipital white matter, 61 children born with a mean birth weight of 1024 g (SD 270 g) were subjected to detailed ophthalmologic evaluation, Developmental Test of Visual Perception (DTVP-3), and diffusion tensor imaging (DTI) at the age of 4. Results. Abnormal stereoscopic vision was detected in 16 children. Children with abnormal stereoscopic vision had smaller CC (CC length: 53 ± 6 mm versus 61 ± 4 mm; p < 0.01; estimated CC area: 314 ± 106 mm2 versus 446 ± 79 mm2; p < 0.01) and lower fractional anisotropy (FA) values in CC (FA value of rostrum/genu: 0.7 ± 0.09 versus 0.79 ± 0.07; p < 0.01; FA value of CC body: 0.74 ± 0.13 versus 0.82 ± 0.09; p = 0.03). We found a significant correlation between DTVP-3 scores, CC size, and FA values in rostrum and body. This correlation was unrelated to retinopathy of prematurity. Conclusions. Visual perceptive dysfunction in ex-preterm children without major sequelae of prematurity depends on more subtle changes in the brain microstructure, including CC. Role of interhemispheric connections in visual perception might be more complex than previously anticipated. PMID:26451381

  4. A discrete chemo-dynamical model of the giant elliptical galaxy NGC 5846: dark matter fraction, internal rotation and velocity anisotropy out to six effective radii

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline

    2016-08-01

    We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored DM halo which contributes ˜10% of the total mass within 1 Re, and 67% ± 10% within 6 Re, although a cusped DM halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.

  5. A discrete chemo-dynamical model of the giant elliptical galaxy NGC 5846: dark matter fraction, internal rotation, and velocity anisotropy out to six effective radii

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Romanowsky, Aaron J.; van de Ven, Glenn; Long, R. J.; Watkins, Laura L.; Pota, Vincenzo; Napolitano, Nicola R.; Forbes, Duncan A.; Brodie, Jean; Foster, Caroline

    2016-11-01

    We construct a suite of discrete chemo-dynamical models of the giant elliptical galaxy NGC 5846. These models are a powerful tool to constrain both the mass distribution and internal dynamics of multiple tracer populations. We use Jeans models to simultaneously fit stellar kinematics within the effective radius Re, planetary nebula (PN) radial velocities out to 3 Re, and globular cluster (GC) radial velocities and colours out to 6 Re. The best-fitting model is a cored dark matter halo which contributes ˜10 per cent of the total mass within 1 Re, and 67 per cent ± 10 per cent within 6 Re, although a cusped dark matter halo is also acceptable. The red GCs exhibit mild rotation with vmax/σ0 ˜ 0.3 in the region R > Re, aligned with but counter-rotating to the stars in the inner parts, while the blue GCs and PNe kinematics are consistent with no rotation. The red GCs are tangentially anisotropic, the blue GCs are mildly radially anisotropic, and the PNe vary from radially to tangentially anisotropic from the inner to the outer region. This is confirmed by general made-to-measure models. The tangential anisotropy of the red GCs in the inner regions could stem from the preferential destruction of red GCs on more radial orbits, while their outer tangential anisotropy - similar to the PNe in this region - has no good explanation. The mild radial anisotropy of the blue GCs is consistent with an accretion scenario.

  6. Automatic recognition of corpus callosum from sagittal brain MR images

    NASA Astrophysics Data System (ADS)

    Lee, Chulhee; Unser, Michael A.; Ketter, Terence A.

    1995-08-01

    We propose a new method to find the corpus callosum from sagittal brain MR images automatically. First, we calculate the statistical characteristics of the corpus callosum and obtain shape information. The recognition algorithm consists of two stages: extracting regions satisfying the statistical characteristics (gray level distribtuions) of the corpus callosum, and finding a region matching the shape information. An innovative feature of the algorithm is that we adaptively relax the statistical requirement until we find a region matching the shape information. In order to match the shape information, we propose a new directed window region growing algorithm instead of using conventional contour matching. Experiments show promising results.

  7. Anatomy of corpus callosum in prenatally malnourished rats.

    PubMed

    Olivares, Ricardo; Morgan, Carlos; Pérez, Hernán; Hernández, Alejandro; Aboitiz, Francisco; Soto-Moyano, Rubén; Gil, Julio; Ortiz, Alexis; Flores, Osvaldo; Gimeno, Miguel; Laborda, Jesús

    2012-01-01

    The effect of prenatal malnutrition on the anatomy of the corpus callosum was assessed in adult rats (45-52 days old). In the prenatally malnourished animals we observed a significant reduction of the corpus callosum total area, partial areas, and perimeter, as compared with normal animals. In addition, the splenium of corpus callosum (posterior fifth) showed a significant decrease of fiber diameters in the myelinated fibers without changing density. There was also a significant decrease in diameter and a significant increase in density of unmyelinated fibers. Measurements of perimeter's fractal dimensions from sagittal sections of the brain and corpus callosum did not show significant differences between malnourished and control animals. These findings indicate that cortico-cortical connections are vulnerable to the prenatal malnutrition, and suggest this may affect interhemispheric conduction velocity, particularly in visual connections (splenium).

  8. Corpus callosum: normal imaging appearance, variants and pathologic conditions.

    PubMed

    Battal, B; Kocaoglu, M; Akgun, V; Bulakbasi, N; Tayfun, C

    2010-12-01

    Various types of lesions can occur within the corpus callosum (CC) which is a white matter tract communicating corresponding regions of the cerebral hemispheres. Magnetic resonance imaging is the modality of choice for the evaluation of the CC. In addition, diffusion weighted imaging and diffusion tensor imaging can provide additional information about the CC. The aim of this study is to illustrate the imaging features of the corpus callosum and its pathologies. PMID:21199431

  9. Neuronal fiber composition of the corpus callosum within some odontocetes.

    PubMed

    Keogh, Mandy J; Ridgway, Sam H

    2008-07-01

    Odontocetes (toothed whales) evolved from terrestrial mammals approximately 55 million years ago and have since remained on a unique evolutionary trajectory. This study used formalin-fixed tissue and light microscopy to quantify the size and number of fibers along the corpus callosum of the bottlenose dolphin (n = 8). Two other species, the Amazon River dolphin (n = 1) and the killer whale (n = 1), were included for comparison. A large amount of variation in the shape and area of the corpus callosum was observed. The odontocete corpus callosum is a heterogeneous structure with variation in fiber size and density along the length of the corpus callosum in all specimens examined. Using the species with the largest sample size, the bottlenose dolphin, comparisons by sex and age (sexually mature verses immature) were made for the area of the corpus callosum, five subregions, and fiber densities. Although no sex differences were detected, age appeared to affect the size, shape, and fiber composition of the bottlenose dolphin corpus callosum. PMID:18493931

  10. How does the corpus callosum mediate interhemispheric transfer? A review.

    PubMed

    van der Knaap, Lisette J; van der Ham, Ineke J M

    2011-09-30

    The corpus callosum is the largest white matter structure in the human brain, connecting cortical regions of both hemispheres. Complete and partial callosotomies or callosal lesion studies have granted more insight into the function of the corpus callosum, namely the facilitation of communication between the cerebral hemispheres. How the corpus callosum mediates this information transfer is still a topic of debate. Some pose that the corpus callosum maintains independent processing between the two hemispheres, whereas others say that the corpus callosum shares information between hemispheres. These theories of inhibition and excitation are further explored by reviewing recent behavioural studies and morphological findings to gain more information about callosal function. Additional information regarding callosal function in relation to altered morphology and dysfunction in disorders is reviewed to add to the discussion of callosal involvement in interhemispheric transfer. Both the excitatory and inhibitory theories seem likely candidates to describe callosal function, however evidence also exists for both functions within the same corpus callosum. For future research it would be beneficial to investigate the functional role of the callosal sub regions to get a better understanding of function and use more appropriate experimental methods to determine functional connectivity when looking at interhemispheric transfer.

  11. Prosody meets syntax: the role of the corpus callosum.

    PubMed

    Sammler, Daniela; Kotz, Sonja A; Eckstein, Korinna; Ott, Derek V M; Friederici, Angela D

    2010-09-01

    Contemporary neural models of auditory language comprehension proposed that the two hemispheres are differently specialized in the processing of segmental and suprasegmental features of language. While segmental processing of syntactic and lexical semantic information is predominantly assigned to the left hemisphere, the right hemisphere is thought to have a primacy for the processing of suprasegmental prosodic information such as accentuation and boundary marking. A dynamic interplay between the hemispheres is assumed to allow for the timely coordination of both information types. The present event-related potential study investigated whether the anterior and/or posterior portion of the corpus callosum provide the crucial brain basis for the online interaction of syntactic and prosodic information. Patients with lesions in the anterior two-thirds of the corpus callosum connecting orbital and frontal structures, or the posterior third of the corpus callosum connecting temporal, parietal and occipital areas, as well as matched healthy controls, were tested in a paradigm that crossed syntactic and prosodic manipulations. An anterior negativity elicited by a mismatch between syntactically predicted phrase structure and prosodic intonation was analysed as a marker for syntax-prosody interaction. Healthy controls and patients with lesions in the anterior corpus callosum showed this anterior negativity demonstrating an intact interplay between syntax and prosody. No such effect was found in patients with lesions in the posterior corpus callosum, although they exhibited intact, prosody-independent syntactic processing comparable with healthy controls and patients with lesions in the anterior corpus callosum. These data support the interplay between the speech processing streams in the left and right hemispheres via the posterior portion of the corpus callosum, building the brain basis for the coordination and integration of local syntactic and prosodic features during

  12. MR spectroscopy and diffusion tensor imaging of the brain in congenital muscular dystrophy with merosin deficiency: metabolite level decreases, fractional anisotropy decreases, and apparent diffusion coefficient increases in the white matter.

    PubMed

    Sijens, P E; Fock, J M; Meiners, L C; Potze, J H; Irwan, R; Oudkerk, M

    2007-06-01

    Brain magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in one patient with merosin-deficient congenital muscular dystrophy (MDCMD) revealed significant metabolite (choline, creatine, N-acetyl aspartate) level reductions, fractional anisotropy (FA) reduction and increased apparent diffusion coefficient (ADC) in the white matter (p<0.01, all). In the gray matter, the MRS properties did not differ significantly from those in controls. The ADC and FA, however, differed significantly as in the white matter, although the differences were less pronounced. This is the first quantitative MR study of the brain in a patient with MDCMD, which revealed that the concentrations of all MRS measured metabolites were decreased only in the white matter. This observation, combined with the DTI observed ADC increases and FA decrease, indicated a presence of vasogenic edema in the white matter.

  13. The Corpus Callosum and Forensic Issues-An Overview.

    PubMed

    Byard, Roger W

    2016-07-01

    The corpus callosum is a large central white matter tract that connects the right and left cerebral hemispheres. It permits placental mammals to have a more sophisticated interhemispheric integration of sensory cortices and allows communication between cortical and subcortical neurons. Search of the literature and the pathology archives at The University of Adelaide was undertaken to identify lesions and injuries within the corpus callosum that may have forensic significance. These include developmental/congenital lesions with agenesis/dysgenesis, vascular malformations, and lipomas; inherited syndromes such as neurofibromatosis; and acquired lesions involving trauma, neoplasia, demyelination, vascular conditions, infections, fat embolism, aging/dementia, and the effects of toxins. The finding of lesions within the corpus callosum should initiate careful examination of the adjacent brain and other organ systems for related phenomena as this may shed some light on the nature of the underlying condition, and also help to determine whether there are any forensic implications.

  14. The Contribution of the Corpus Callosum to Language Lateralization

    PubMed Central

    Hinkley, Leighton B.N.; Marco, Elysa J.; Brown, Ethan G.; Bukshpun, Polina; Gold, Jacquelyn; Hill, Susanna; Findlay, Anne M.; Jeremy, Rita J.; Wakahiro, Mari L.; Barkovich, A. James; Mukherjee, Pratik

    2016-01-01

    The development of hemispheric lateralization for language is poorly understood. In one hypothesis, early asymmetric gene expression assigns language to the left hemisphere. In an alternate view, language is represented a priori in both hemispheres and lateralization emerges via cross-hemispheric communication through the corpus callosum. To address this second hypothesis, we capitalized on the high temporal and spatial resolution of magnetoencephalographic imaging to measure cortical activity during language processing, speech preparation, and speech execution in 25 participants with agenesis of the corpus callosum (AgCC) and 21 matched neurotypical individuals. In contrast to strongly lateralized left hemisphere activations for language in neurotypical controls, participants with complete or partial AgCC exhibited bilateral hemispheric activations in both auditory or visually driven language tasks, with complete AgCC participants showing significantly more right hemisphere activations than controls or than individuals with partial AgCC. In AgCC individuals, language laterality positively correlated with verbal IQ. These findings suggest that the corpus callosum helps to drive language lateralization. SIGNIFICANCE STATEMENT The role that corpus callosum development has on the hemispheric specialization of language is poorly understood. Here, we used magnetoencephalographic imaging during linguistic tests (verb generation, picture naming) to test for hemispheric dominance in patients with agenesis of the corpus callosum (AgCC) and found reduced laterality (i.e., greater likelihood of bilaterality or right hemisphere dominance) in this cohort compared with controls, especially in patients with complete agenesis. Laterality was positively correlated with behavioral measures of verbal intelligence. These findings provide support for the hypothesis that the callosum aids in functional specialization throughout neural development and that the loss of this mechanism

  15. Primary human chorionic gonadotropin secreting germinoma of the corpus callosum

    PubMed Central

    Chuan Aaron, Foo Song; Dawn, Chong Q. Q.; Kenneth, Chang T. E.; Hoe, Ng Wai; Yen, Soh Shui; Chee Kian, Tham

    2013-01-01

    Background: Primary intracranial germinomas are a rare subset of intracranial tumors derived from mis-incorporated germ cells within the folding neural plate during embryogenesis. Though known to arise from midline structures in the central nervous system (CNS), occurrence within the corpus callosum is exceedingly rare. Case Description: We present a rare case of secreting primary intracranial germinoma with extensive intraventricular metastasis presenting as a multi-cystic butterfly lesion in the genu of the corpus callosum in a young boy. Conclusion: Intracranial germ cell tumors must be considered for any multi-cystic lesion arising from midline structures in the CNS in the preadult population. PMID:24233184

  16. Agenesis of corpus callosum and frontotemporal dementia: a casual finding?

    PubMed

    Calabrò, Rocco Salvatore; Spadaro, Letteria; Marra, Angela; Balletta, Tina; Cammaroto, Simona; Bramanti, Placido

    2015-06-01

    Agenesis of corpus callosum (AgCC) is a congenital malformation characterized by total or partial absence of corpus callosum with a good neuropsychological profile. Frontotemporal dementia (FTD) is the third most common cause of cortical dementia, and it is characterized by alterations in personality and social relationship, often associated with deficits in attention, abstraction, planning, and problem solving. Herein, we report a case of a 73-year-old woman presenting with FTD associated with primary AgCC. The possible "causal or casual" relationship between these 2 different conditions should be investigated in large prospective studies.

  17. Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis.

    PubMed

    Jakab, András; Kasprian, Gregor; Schwartz, Ernst; Gruber, Gerlinde Maria; Mitter, Christian; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2015-05-01

    Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity. We challenge this hypothesis and assume a globally different network organization of the structural interconnections already in the fetal acallosal brain. Twenty fetuses with isolated corpus callosum agenesis with or without associated malformations were enrolled and fiber connectivity among 90 brain regions was assessed using in utero diffusion tensor imaging and streamline tractography. Macroscopic scale connectomes were compared to 20 gestational age-matched normally developing fetuses with multiple granularity of network analysis. Gradually increasing connectivity strength and tract diffusion anisotropy during gestation were dominant in antero-posteriorly running paramedian and antero-laterally running aberrant pathways, and in short-range connections in the temporoparietal regions. In fetuses with associated abnormalities, more diffuse reduction of cortico-cortical and cortico-subcortical connectivity was observed than in cases with isolated callosal agenesis. The global organization of anatomical networks consisted of less segregated nodes in acallosal brains, and hubs of dense connectivity, such as the thalamus and cingulate cortex, showed reduced network centrality. Acallosal fetal brains show a globally altered connectivity network structure compared to normals. Besides the previously described Probst and sigmoid bundles, we revealed a prenatally differently organized macroconnectome, dominated by increased connectivity. These findings provide evidence that abnormal pathways are already present during at early stages of fetal brain development in the majority of cerebral white matter. PMID:25725467

  18. Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis.

    PubMed

    Jakab, András; Kasprian, Gregor; Schwartz, Ernst; Gruber, Gerlinde Maria; Mitter, Christian; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2015-05-01

    Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity. We challenge this hypothesis and assume a globally different network organization of the structural interconnections already in the fetal acallosal brain. Twenty fetuses with isolated corpus callosum agenesis with or without associated malformations were enrolled and fiber connectivity among 90 brain regions was assessed using in utero diffusion tensor imaging and streamline tractography. Macroscopic scale connectomes were compared to 20 gestational age-matched normally developing fetuses with multiple granularity of network analysis. Gradually increasing connectivity strength and tract diffusion anisotropy during gestation were dominant in antero-posteriorly running paramedian and antero-laterally running aberrant pathways, and in short-range connections in the temporoparietal regions. In fetuses with associated abnormalities, more diffuse reduction of cortico-cortical and cortico-subcortical connectivity was observed than in cases with isolated callosal agenesis. The global organization of anatomical networks consisted of less segregated nodes in acallosal brains, and hubs of dense connectivity, such as the thalamus and cingulate cortex, showed reduced network centrality. Acallosal fetal brains show a globally altered connectivity network structure compared to normals. Besides the previously described Probst and sigmoid bundles, we revealed a prenatally differently organized macroconnectome, dominated by increased connectivity. These findings provide evidence that abnormal pathways are already present during at early stages of fetal brain development in the majority of cerebral white matter.

  19. Corpus Callosum Anatomy in Chronically Treated and Stimulant Naive ADHD

    ERIC Educational Resources Information Center

    Schnoebelen, Sarah; Semrud-Clikeman, Margaret; Pliszka, Steven R.

    2010-01-01

    Objective: To determine the effect of chronic stimulant treatment on corpus callosum (CC) size in children with ADHD using volumetric and area measurements. Previously published research indicated possible medication effects on specific areas of the CC. Method: Measurements of the CC from anatomical MRIs were obtained from children aged 9-16 in…

  20. Perspectives on Dichotic Listening and the Corpus Callosum

    ERIC Educational Resources Information Center

    Musiek, Frank E.; Weihing, Jeffrey

    2011-01-01

    The present review summarizes historic and recent research which has investigated the role of the corpus callosum in dichotic processing within the context of audiology. Examination of performance by certain clinical groups, including split brain patients, multiple sclerosis cases, and other types of neurological lesions is included. Maturational,…

  1. Agenesis of the corpus callosum. An autopsy study in fetuses.

    PubMed

    Kidron, Debora; Shapira, Daniel; Ben Sira, Liat; Malinger, Gustavo; Lev, Dorit; Cioca, Andreea; Sharony, Reuven; Lerman Sagie, Tally

    2016-02-01

    Agenesis of the corpus callosum is currently diagnosed prenatally with ultrasound and MRI. While the diagnostic aspects of callosal defects are widely addressed, anatomo-histological data from fetal autopsies are sparse. Callosal defects were present in 50 fetal autopsies. Four distinct groups of complete, partial, hypoplastic, and mixed defects were determined by the gross and histologic details of the corpus callosum. These details helped to rule out other midline defects such as holoprosencephaly. Additional autopsy findings enabled specific diagnoses and suggested etiopathogeneses. Hypoplastic and mixed defects were associated with more abnormalities of the cerebral hemispheres and internal organs. The four groups did not differ according to gender, external dysmorphism, or cerebellar and brainstem anomalies. Defects were classified as syndromic (68 %), encephaloclastic (8 %), undetermined (14 %), or isolated (10 %) based on the autopsy findings. Isolated agenesis of the corpus callosum was diagnosed in only 10 % of the cases in this series, compared to higher numbers diagnosed by prenatal ultrasonography and MRI. Therefore, the autopsy, through its detailed, careful evaluation of external, as well as gross and histological internal features, can elucidate the etiopathogenesis of agenesis of the corpus callosum and suggest specific diagnoses which cannot be ascertained by prenatal imaging. PMID:26573426

  2. Autism Traits in Individuals with Agenesis of the Corpus Callosum

    ERIC Educational Resources Information Center

    Lau, Yolanda C.; Hinkley, Leighton B. N.; Bukshpun, Polina; Strominger, Zoe A.; Wakahiro, Mari L. J.; Baron-Cohen, Simon; Allison, Carrie; Auyeung, Bonnie; Jeremy, Rita J.; Nagarajan, Srikantan S.; Sherr, Elliott H.; Marco, Elysa J.

    2013-01-01

    Autism spectrum disorders (ASD) have numerous etiologies, including structural brain malformations such as agenesis of the corpus callosum (AgCC). We sought to directly measure the occurrence of autism traits in a cohort of individuals with AgCC and to investigate the neural underpinnings of this association. We screened a large AgCC cohort (n =…

  3. Agenesis of the corpus callosum. An autopsy study in fetuses.

    PubMed

    Kidron, Debora; Shapira, Daniel; Ben Sira, Liat; Malinger, Gustavo; Lev, Dorit; Cioca, Andreea; Sharony, Reuven; Lerman Sagie, Tally

    2016-02-01

    Agenesis of the corpus callosum is currently diagnosed prenatally with ultrasound and MRI. While the diagnostic aspects of callosal defects are widely addressed, anatomo-histological data from fetal autopsies are sparse. Callosal defects were present in 50 fetal autopsies. Four distinct groups of complete, partial, hypoplastic, and mixed defects were determined by the gross and histologic details of the corpus callosum. These details helped to rule out other midline defects such as holoprosencephaly. Additional autopsy findings enabled specific diagnoses and suggested etiopathogeneses. Hypoplastic and mixed defects were associated with more abnormalities of the cerebral hemispheres and internal organs. The four groups did not differ according to gender, external dysmorphism, or cerebellar and brainstem anomalies. Defects were classified as syndromic (68 %), encephaloclastic (8 %), undetermined (14 %), or isolated (10 %) based on the autopsy findings. Isolated agenesis of the corpus callosum was diagnosed in only 10 % of the cases in this series, compared to higher numbers diagnosed by prenatal ultrasonography and MRI. Therefore, the autopsy, through its detailed, careful evaluation of external, as well as gross and histological internal features, can elucidate the etiopathogenesis of agenesis of the corpus callosum and suggest specific diagnoses which cannot be ascertained by prenatal imaging.

  4. Prenatal diagnosis of colpocephaly with absent corpus callosum.

    PubMed

    Ansary, Althaf; Manjunatha, C M; Ibhanesebhor, Samuel

    2015-02-01

    Colpocephaly is a rare abnormality of the brain, described as persistence of primitive foetal configuration of lateral ventricles. It has been found in association with several abnormalities of the brain. Herein we report a case of colpocephaly with absent corpus callosum, confirmed antenatally with foetal MRI following diagnostic suspicion based on absent septum pellucidum at prenatal sonography.

  5. Commissurotomy of the Corpus Callosum and the Remedial Reader.

    ERIC Educational Resources Information Center

    Albert, Elaine

    Testimony presented at a congressional hearing on illiteracy (March 1986) indicated that good readers use their myelinated corpus callosum fibers (which connect the left and right hemispheres of the brain) at millisecond speeds to coordinate the two brain hemispheres. Students taught using the whole-word recognition method (also called the…

  6. Corpus Callosum Differences Associated with Persistent Stuttering in Adults

    ERIC Educational Resources Information Center

    Choo, Ai Leen; Kraft, Shelly Jo; Olivero, William; Ambrose, Nicoline G.; Sharma, Harish; Chang, Soo-Eun; Loucks, Torrey M.

    2011-01-01

    Recent studies have implicated anatomical differences in speech-relevant brain regions of adults who stutter (AWS) compared to normally fluent adults (NFA). The present study focused on the region of the corpus callosum (CC) which is involved in interhemispheric processing between the left and right cerebral hemispheres. Two-dimensional…

  7. Microstructural Integrity of the Corpus Callosum Linked with Neuropsychological Performance in Adolescents

    ERIC Educational Resources Information Center

    Fryer, Susanna L.; Frank, Lawrence R.; Spadoni, Andrea D.; Theilmann, Rebecca J.; Nagel, Bonnie J.; Schweinsburg, Alecia D.; Tapert, Susan F.

    2008-01-01

    Background: Diffusion tensor imaging (DTI) has revealed microstructural aspects of adolescent brain development, the cognitive correlates of which remain relatively uncharacterized. Methods: DTI was used to assess white matter microstructure in 18 typically developing adolescents (ages 16-18). Fractional anisotropy (FA) and mean diffusion (MD)…

  8. Agenesis of the corpus callosum and autism: a comprehensive comparison.

    PubMed

    Paul, Lynn K; Corsello, Christina; Kennedy, Daniel P; Adolphs, Ralph

    2014-06-01

    The corpus callosum, with its ∼200 million axons, remains enigmatic in its contribution to cognition and behaviour. Agenesis of the corpus callosum is a congenital condition in which the corpus callosum fails to develop; such individuals exhibit localized deficits in non-literal language comprehension, humour, theory of mind and social reasoning. These findings together with parent reports suggest that behavioural and cognitive impairments in subjects with callosal agenesis may overlap with the profile of autism spectrum disorders, particularly with respect to impairments in social interaction and communication. To provide a comprehensive test of this hypothesis, we directly compared a group of 26 adults with callosal agenesis to a group of 28 adults with a diagnosis of autism spectrum disorder but no neurological abnormality. All participants had full-scale intelligence quotient scores >78 and groups were matched on age, handedness, and gender ratio. Using the Autism Diagnostic Observation Schedule together with current clinical presentation to assess autistic symptomatology, we found that 8/26 (about a third) of agenesis subjects presented with autism. However, more formal diagnosis additionally involving recollective parent-report measures regarding childhood behaviour showed that only 3/22 met complete formal criteria for an autism spectrum disorder (parent reports were unavailable for four subjects). We found no relationship between intelligence quotient and autism symptomatology in callosal agenesis, nor evidence that the presence of any residual corpus callosum differentiated those who exhibited current autism spectrum symptoms from those who did not. Relative to the autism spectrum comparison group, parent ratings of childhood behaviour indicated children with agenesis were less likely to meet diagnostic criteria for autism, even for those who met autism spectrum criteria as adults, and even though there was no group difference in parent report of current

  9. Autism traits in individuals with agenesis of the corpus callosum

    PubMed Central

    Lau, Yolanda C.; Hinkley, Leighton B. N.; Bukshpun, Polina; Strominger, Zoe A.; Wakahiro, Mari L. J.; Baron-Cohen, Simon; Allison, Carrie; Auyeung, Bonnie; Jeremy, Rita J.; Nagarajan, Srikantan S.; Sherr, Elliott H.; Marco, Elysa J.

    2013-01-01

    Autism spectrum disorders (ASD) have numerous etiologies, including structural brain malformations such as agenesis of the corpus callosum (AgCC). We sought to directly measure the occurrence of autism traits in a cohort of individuals with AgCC and to investigate the neural underpinnings of this association. We screened a large AgCC cohort (n = 106) with the Autism Spectrum Quotient (AQ) and found that 45% of children, 35% of adolescents, and 18% of adults exceeded the predetermined autism-screening cut-off. Interestingly, performance on the AQ’s imagination domain was inversely correlated with magnetoencephalography measures of resting-state functional connectivity in the right superior temporal gyrus. Individuals with AgCC should be screened for ASD and disorders of the corpus callosum should be considered in autism diagnostic evaluations as well. PMID:23054201

  10. Cortical thickness in adults with agenesis of the corpus callosum.

    PubMed

    Beaulé, Vincent; Tremblay, Sara; Lafleur, Louis-Philippe; Tremblay, Sébastien; Lassonde, Maryse; Lepage, Jean-François; Théoret, Hugo

    2015-10-01

    Agenesis of the corpus callosum (AgCC) is a congenital malformation that can occur in isolation or in association with other neurological conditions. Although the behavioral manifestations associated with AgCC have been widely studied, the effects of complete absence of the corpus callosum (CC) on cerebral cortex anatomy are still not completely understood. In this study, cortical thickness in adults with complete AgCC was compared to a group of healthy controls. Results showed highly variable patterns of cortical thickness in AgCC individuals, with few areas showing significant and consistent alterations including primary visual cortex, primary somatosensory cortex and primary motor cortex. These results suggest relatively limited effects of AgCC on cortical morphology, which are mostly restricted to primary sensory and motor areas.

  11. Anterior commissure versus corpus callosum: A quantitative comparison across mammals.

    PubMed

    Ashwell, Ken W S

    2016-04-01

    Mammals rely on two major pathways to transfer information between the two hemispheres of the brain: the anterior commissure and the corpus callosum. Metatheria and monotremes rely exclusively on the anterior commissure for interhemispheric transfer between the isocortices and olfactory allocortices of each side, whereas Eutheria use a combination of the anterior commissure and an additional pathway exclusive to Eutheria, the corpus callosum. Midline cross-sectional area of the anterior commissure and corpus callosum were measured in a range of mammals from all three infraclasses and plotted against brain volume to determine how midline anterior commissure area and its size relative to the corpus callosum vary with brain size and taxon. In Metatheria, the square root of anterior commissure area rises in almost direct proportion with the cube root of brain volume (i.e. the ratio of the two is relatively constant), whereas among Eutheria the ratio of the square root of anterior commissure area to the cube root of brain volume declines slightly with increasing brain size. The total of isocortical and olfactory allocortical commissure area rises more rapidly with increasing brain volume among Eutheria than among Metatheria. This means that the midline isocortical and olfactory allocortical commissural area of metatherians with large brains (about 70 ml) is only about 50% of that among eutherians with similarly sized brains. On the other hand, isocortical and olfactory allocortical commissural area is similar in Metatheria and Eutheria at brain volumes around 1 ml. Among the Eutheria, some groups make less use of the anterior commissure pathway than do others: soricomorphs, rodents and cetaceans have smaller anterior commissures for their brain size than do afrosoricids, erinaceomorphs and proboscideans. The findings suggest that use of the anterior commissural route for isocortical commissural connections may have placed limitations on interhemispheric transfer of

  12. Anterior commissure versus corpus callosum: A quantitative comparison across mammals.

    PubMed

    Ashwell, Ken W S

    2016-04-01

    Mammals rely on two major pathways to transfer information between the two hemispheres of the brain: the anterior commissure and the corpus callosum. Metatheria and monotremes rely exclusively on the anterior commissure for interhemispheric transfer between the isocortices and olfactory allocortices of each side, whereas Eutheria use a combination of the anterior commissure and an additional pathway exclusive to Eutheria, the corpus callosum. Midline cross-sectional area of the anterior commissure and corpus callosum were measured in a range of mammals from all three infraclasses and plotted against brain volume to determine how midline anterior commissure area and its size relative to the corpus callosum vary with brain size and taxon. In Metatheria, the square root of anterior commissure area rises in almost direct proportion with the cube root of brain volume (i.e. the ratio of the two is relatively constant), whereas among Eutheria the ratio of the square root of anterior commissure area to the cube root of brain volume declines slightly with increasing brain size. The total of isocortical and olfactory allocortical commissure area rises more rapidly with increasing brain volume among Eutheria than among Metatheria. This means that the midline isocortical and olfactory allocortical commissural area of metatherians with large brains (about 70 ml) is only about 50% of that among eutherians with similarly sized brains. On the other hand, isocortical and olfactory allocortical commissural area is similar in Metatheria and Eutheria at brain volumes around 1 ml. Among the Eutheria, some groups make less use of the anterior commissure pathway than do others: soricomorphs, rodents and cetaceans have smaller anterior commissures for their brain size than do afrosoricids, erinaceomorphs and proboscideans. The findings suggest that use of the anterior commissural route for isocortical commissural connections may have placed limitations on interhemispheric transfer of

  13. Thickness profile generation for the corpus callosum using Laplace's equation.

    PubMed

    Adamson, Christopher L; Wood, Amanda G; Chen, Jian; Barton, Sarah; Reutens, David C; Pantelis, Christos; Velakoulis, Dennis; Walterfang, Mark

    2011-12-01

    The corpus callosum facilitates communication between the cerebral hemispheres. Morphological abnormalities of the corpus callosum have been identified in numerous psychiatric and neurological disorders. To quantitatively analyze the thickness profile of the corpus callosum, we adapted an automatic thickness measurement method, which was originally used on magnetic resonance (MR) images of the cerebral cortex (Hutton et al. [2008]: NeuroImage 40:1701-10; Jones et al. [2002]: Hum Brain Mapp 11:12-32; Schmitt and Böhme [2002]: NeuroImage 16:1103-9; Yezzi and Prince [2003]: IEEE Trans Med Imaging 22:1332-9), to MR images of the corpus callosum. The thickness model was derived by computing a solution to Laplace's equation evaluated on callosal voxels. The streamlines from this solution form non-overlapping, cross-sectional contours the lengths of which are modeled as the callosal thickness. Apart from the semi-automated segmentation and endpoint selection procedures, the method is fully automated, robust, and reproducible. We compared the Laplace method with the orthogonal projection technique previously published (Walterfang et al. [2009a]: Psych Res Neuroimaging 173:77-82; Walterfang et al. [2008a]: Br J Psychiatry 192:429-34; Walterfang et al. [2008b]: Schizophr Res 103:1-10) on a cohort of 296 subjects, composed of 86 patients with chronic schizophrenia (CSZ), 110 individuals with first-episode psychosis, 100 individuals at ultra-high risk for psychosis (UHR; 27 of whom later developed psychosis, UHR-P, and 73 who did not, UHR-NP), and 55 control subjects (CTL). We report similar patterns of statistically significant differences in regional callosal thickness with respect to the comparisons CSZ vs. CTL, UHR vs. CTL, UHR-P vs. UHR-NP, and UHR vs. CTL.

  14. Diffusion Tensor Magnetic Resonance Imaging Finding of Discrepant Fractional Anisotropy Between the Frontal and Parietal Lobes After Whole-Brain Irradiation in Childhood Medulloblastoma Survivors: Reflection of Regional White Matter Radiosensitivity?

    SciTech Connect

    Qiu Deqiang; Kwong, Dora; Chan, Godfrey; Leung, Lucullus; Khong, P.-L.

    2007-11-01

    Purpose: To test the hypothesis that fractional anisotropy (FA) is more severely reduced in white matter of the frontal lobe compared with the parietal lobe after receiving the same whole-brain irradiation dose in a cohort of childhood medulloblastoma survivors. Methods and Materials: Twenty-two medulloblastoma survivors (15 male, mean [{+-} SD] age = 12.1 {+-} 4.6 years) and the same number of control subjects (15 male, aged 12.0 {+-} 4.2 years) were recruited for diffusion tensor magnetic resonance imaging scans. Using an automated tissue classification method and the Talairach Daemon atlas, FA values of frontal and parietal lobes receiving the same radiation dose, and the ratio between them were quantified and denoted as FFA, PFA, and FA{sub f/p}, respectively. The Mann-Whitney U test was used to test for significant differences of FFA, PFA, and FA{sub f/p} between medulloblastoma survivors and control subjects. Results: Frontal lobe and parietal lobe white matter FA were found to be significantly less in medulloblastoma survivors compared with control subjects (frontal p = 0.001, parietal p = 0.026). Moreover, these differences were found to be discrepant, with the frontal lobe having a significantly larger difference in FA compared with the parietal lobe. The FA{sub f/p} of control and medulloblastoma survivors was 1.110 and 1.082, respectively (p = 0.029). Conclusion: Discrepant FA changes after the same irradiation dose suggest radiosensitivity of the frontal lobe white matter compared with the parietal lobe. Special efforts to address the potentially vulnerable frontal lobe after treatment with whole-brain radiation may be needed so as to balance disease control and treatment-related morbidity.

  15. Lesions of the corpus callosum and other commissural fibers: diffusion tensor studies.

    PubMed

    Filippi, Christopher G; Cauley, Keith A

    2014-10-01

    The corpus callosum is the largest white matter tract in the brain, connecting the 2 hemispheres. The functions of the corpus callosum are many and varied, and lesions frequently cause only subtle clinical findings. The range of diseases that can affect the corpus callosum is vast and includes all potential white matter disease. The distribution of lesions in the corpus callosum is disease specific in only a few entities such as Susac syndrome and Marchiafava-Bignami disease. Group studies have found significant differences of diffusivity metrics in the corpus callosum in preterm infants, patients suffering seizure activity, and patients with early-onset Alzheimer's disease. Given the challenges that multiple orientation of fibers within the callosum presents, advanced postprocessing methods may be required to reveal ultrastructural disease.

  16. Elastic anisotropy of crystals

    NASA Astrophysics Data System (ADS)

    Kube, Christopher M.

    2016-09-01

    An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-6-041609) provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  17. Corpus callosum thickness in children: an MR pattern-recognition approach on the midsagittal image.

    PubMed

    Andronikou, Savvas; Pillay, Tanyia; Gabuza, Lungile; Mahomed, Nasreen; Naidoo, Jaishree; Hlabangana, Linda Tebogo; du Plessis, Vicci; Prabhu, Sanjay P

    2015-02-01

    Thickening of the corpus callosum is an important feature of development, whereas thinning of the corpus callosum can be the result of a number of diseases that affect development or cause destruction of the corpus callosum. Corpus callosum thickness reflects the volume of the hemispheres and responds to changes through direct effects or through Wallerian degeneration. It is therefore not only important to evaluate the morphology of the corpus callosum for congenital anomalies but also to evaluate the thickness of specific components or the whole corpus callosum in association with other findings. The goal of this pictorial review is raise awareness that the thickness of the corpus callosum can be a useful feature of pathology in pediatric central nervous system disease and must be considered in the context of the stage of development of a child. Thinning of the corpus callosum can be primary or secondary, and generalized or focal. Primary thinning is caused by abnormal or failed myelination related to the hypomyelinating leukoencephalopathies, metabolic disorders affecting white matter, and microcephaly. Secondary thinning of the corpus callosum can be caused by diffuse injury such as hypoxic-ischemic encephalopathy, human immunodeficiency virus (HIV) encephalopathy, hydrocephalus, dysmyelinating conditions and demyelinating conditions. Focal disturbance of formation or focal injury also causes localized thinning, e.g., callosal dysgenesis, metabolic disorders with localized effects, hypoglycemia, white matter injury of prematurity, HIV-related atrophy, infarction and vasculitis, trauma and toxins. The corpus callosum might be too thick because of a primary disorder in which the corpus callosum finding is essential to diagnosis; abnormal thickening can also be secondary to inflammation, infection and trauma.

  18. Shale seismic anisotropy vs. compaction trend

    NASA Astrophysics Data System (ADS)

    Pervukhina, M.

    2015-12-01

    Shales comprise more than 60% of sedimentary rocks and form natural seals above hydrocarbon reservoirs. Their sealing capacity is also used for storage of nuclear wastes. Shales are notorious for their strong elastic anisotropy, so-called, vertical transverse isotropy or VTI. This VTI anisotropy is of practical importance as it is required for correct surface seismic data interpretation, seismic to well tie and azimuth versus offset analysis. A number of competing factors are responsible for VTI anisotropy in shales, namely, (1) micro-scale elastic anisotropy of clay particles, (2) anisotropic orientation distribution function of clay particles, (3) anisotropic orientation of pores and organic matter. On the contrary, silt (non-clay mineralogy grains with size between 0.06 -0.002 mm) is known to reduce elastic anisotropy of shales. Methods developed for calculations of anisotropy in polycrystalline materials can be used to estimate elastic anisotropy of shales from orientation distribution function (ODF) of clay platelets if elastic properties of individual clay platelets are known. Unfortunately, elastic properties of individual clay platelets cannot be directly measured. Recently, elastic properties of properties of individual clay platelets with different mineralogy were calculated from first principles based on density functional theory. In this work we use these elastic properties of individual platelets of muscovite, illite-smectite and kaolinite to obtain correlations between elastic anisotropy and Legendre coefficients W200 and W400 of different ODFs. Comparison of the Legendre coefficients calculated for more than 800 shales from depths 0 - 6 km (www.rockphysicists.org/data) with those of compaction ODFs shows that compaction has no first order effect on elastic anisotropy. Thus, elastic anisotropy is to large extent determined by factors other than compaction processes, such as depositional environment, chemical composition of fluid, silt fraction, etc.

  19. Corpus Callosum and Prefrontal Functions in Adolescents with History of Very Preterm Birth

    ERIC Educational Resources Information Center

    Narberhaus, Ana; Segarra, Dolors; Caldu, Xavier; Gimenez, Monica; Pueyo, Roser; Botet, Francesc; Junque, Carme

    2008-01-01

    Very preterm (VPT) birth can account for thinning of the corpus callosum and poorer cognitive performance. Research findings about preterm and VPT adolescents usually describe a small posterior corpus callosum, although our research group has also found reductions of the anterior part, specifically the genu. The aim of the present study was to…

  20. Verbal learning and memory in agenesis of the corpus callosum.

    PubMed

    Erickson, Roger L; Paul, Lynn K; Brown, Warren S

    2014-07-01

    The role of interhemispheric interactions in the encoding, retention, and retrieval of verbal memory can be clarified by assessing individuals with complete or partial agenesis of the corpus callosum (AgCC), but who have normal intelligence. This study assessed verbal learning and memory in AgCC using the California Verbal Learning Test-Second Edition (CVLT-II). Twenty-six individuals with AgCC were compared to 24 matched controls on CVLT-II measures, as well as Donders׳ four CVLT-II factors (i.e., Attention Span, Learning Efficiency, Delayed Memory, and Inaccurate Memory). Individuals with AgCC performed significantly below healthy controls on the Delayed Memory factor, confirmed by significant deficits in short and long delayed free recall and cued recall. They also performed less well in original learning. Deficient performance by individuals with AgCC during learning trials, as well as deficits in all forms of delayed memory, suggest that the corpus callosum facilitates interhemispheric elaboration and encoding of verbal information. PMID:24933663

  1. Verbal learning and memory in agenesis of the corpus callosum

    PubMed Central

    Erickson, Roger L.; Paul, Lynn K.; Brown, Warren S.

    2015-01-01

    The role of interhemispheric interactions in the encoding, retention, and retrieval of verbal memory can be clarified by assessing individuals with complete or partial agenesis of the corpus callosum (AgCC), but who have normal intelligence. This study assessed verbal learning and memory in AgCC using the California Verbal Learning Test—Second Edition (CVLT-II). Twenty-six individuals with AgCC were compared to 24 matched controls on CVLT-II measures, as well as Donders’ four CVLT-II factors (i.e., Attention Span, Learning Efficiency, Delayed Memory, and Inaccurate Memory). Individuals with AgCC performed significantly below healthy controls on the Delayed Memory factor, confirmed by significant deficits in short and long delayed free recall and cued recall. They also performed less well in original learning. Deficient performance by individuals with AgCC during learning trials, as well as deficits in all forms of delayed memory, suggest that the corpus callosum facilitates interhemispheric elaboration and encoding of verbal information. PMID:24933663

  2. A computerized approach for morphological analysis of the corpus callosum

    SciTech Connect

    Davatzikos, C.; Vaillant, M.; Letovsky, S.; Bryan, R.N.; Prince, J.L.; Resnick, S.M.

    1996-01-01

    A new technique for analyzing the morphology of the corpus callosum is presented, and it is applied to a group of elderly subjects. The proposed approach normalizes subject data into the Talairach space using an elastic deformation transformation. The properties of this transformation are used as a quantitative description of the callosal shape with respect to the Talairach atlas, which is treated as a standard. In particular, a deformation function measures the enlargement/shrinkage associated with this elastic deformation. Intersubject comparisons are made by comparing deformation functions. This technique was applied to eight male and eight female subjects. Based on the average deformation functions of each group, the posterior region of the female corpus callosum was found to be larger than its corresponding region in the males. The average callosal shape of each group was also found, demonstrating visually the callosal shape differences between the two groups in this sample. The proposed methodology utilizes the full resolution of the data, rather than relying on global descriptions such as area measurements. The application of this methodology to an elderly group indicated sex-related differences in the callosal shape and size. 29 refs., 16 figs.

  3. Automated segmentation of the corpus callosum in midsagittal brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Lee, Chulhee; Huh, Shin; Ketter, Terence A.; Unser, Michael A.

    2000-04-01

    We propose a new algorithm to find the corpus callosum automatically from midsagittal brain MR (magnetic resonance) images using the statistical characteristics and shape information of the corpus callosum. We first extract regions satisfying the statistical characteristics (gray level distributions) of the corpus callosum that have relatively high intensity values. Then we try to find a region matching the shape information of the corpus callosum. In order to match the shape information, we propose a new directed window region growing algorithm instead of using conventional contour matching. An innovative feature of the algorithm is that we adaptively relax the statistical requirement until we find a region matching the shape information. After the initial segmentation, a directed border path pruning algorithm is proposed in order to remove some undesired artifacts, especially on the top of the corpus callosum. The proposed algorithm was applied to over 120 images and provided promising results.

  4. Biomarkers of increased diffusion anisotropy in semi-acute mild traumatic brain injury: a longitudinal perspective.

    PubMed

    Ling, Josef M; Peña, Amanda; Yeo, Ronald A; Merideth, Flannery L; Klimaj, Stefan; Gasparovic, Charles; Mayer, Andrew R

    2012-04-01

    Mild traumatic brain injury is the most prevalent neurological insult and frequently results in neurobehavioural sequelae. However, little is known about the pathophysiology underlying the injury and how these injuries change as a function of time. Although diffusion tensor imaging holds promise for in vivo characterization of white matter pathology, both the direction and magnitude of anisotropic water diffusion abnormalities in axonal tracts are actively debated. The current study therefore represents both an independent replication effort (n = 28) of our previous findings (n = 22) of increased fractional anisotropy during semi-acute injury, as well as a prospective study (n = 26) on the putative recovery of diffusion abnormalities. Moreover, new analytical strategies were applied to capture spatially heterogeneous white matter injuries, which minimize implicit assumptions of uniform injury across diverse clinical presentations. Results indicate that whereas a general pattern of high anisotropic diffusion/low radial diffusivity was present in various white matter tracts in both the replication and original cohorts, this pattern was only consistently observed in the genu of the corpus callosum across both samples. Evidence for a greater number of localized clusters with increased anisotropic diffusion was identified across both cohorts at trend levels, confirming heterogeneity in white matter injury. Pooled analyses (50 patients; 50 controls) suggested that measures of diffusion within the genu were predictive of patient classification, albeit at very modest levels (71% accuracy). Finally, we observed evidence of recovery in lesion load in returning patients across a 4-month interval, which was correlated with a reduction in self-reported post-concussive symptomatology. In summary, the corpus callosum may serve as a common point of injury in mild traumatic brain injury secondary to anatomical (high frequency of long unmyelinated fibres) and biomechanics factors. A

  5. Associated brain abnormalities in patients with corpus callosum anomalies.

    PubMed

    Tekgül, H; Dizdarer, G; Yalman, O; Sener, N; Yünten, N; Tütüncüoğlu, S

    1999-01-01

    Forty-nine patients with corpus callosum (CC) anomalies were evaluated in terms of the clinical features and magnetic resonance imaging (MRI) findings. CC anomalies were classified as CC agenesis: 6 (12%), CC hypogenesis: 5 (10%), and CC hypoplasia: 38 (78%). In the CC hypoplasia group the mean value of the genu thickness of the CC was 0.29 +/- 0.1 cm, which was less than the normal value of the age-matched normal children (normal range: 0.6-1.2 cm). The associated brain abnormalities were in five distinct groups: gray matter abnormalities, white matter abnormalities, midline brain structure defects, cortical atrophy, and encephalomalacia. There was no uniformity for the clinical spectrum of CC anomalies. Microcephaly, developmental delay and seizures were the prominent findings in patients. The clinical features were more severe in cases with associated brain anomalies.

  6. Velocity anisotropy in tidally limited star clusters

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria A.; Vesperini, Enrico; Varri, Anna Lisa

    2016-02-01

    We explore the long-term evolution of the anisotropy in the velocity space of star clusters starting with different structural and kinematical properties. We show that the evolution of the radial anisotropy strength and its radial variation within a cluster contain distinct imprints of the cluster initial structural properties, dynamical history, and of the external tidal field of its host galaxy. Initially isotropic and compact clusters with small initial values of the ratio of the half-mass to Jacobi radius, rh/rJ, develop a strong radial anisotropy during their long-term dynamical evolution. Many clusters, if formed with small values of rh/rJ, should now be characterized by a significant radial anisotropy increasing with the distance from the cluster centre, reaching its maximum at a distance between 0.2 rJ and 0.4 rJ, and then becoming more isotropic or mildly tangentially anisotropic in the outermost regions. A similar radial variation of the anisotropy can also result from an early violent relaxation phase. In both cases, as a cluster continues its evolution and loses mass, the anisotropy eventually starts to decrease and the system evolves towards an isotropic velocity distribution. However, in order to completely erase the strong anisotropy developed by these compact systems during their evolution, they must be in the advanced stages of their evolution and lose a large fraction of their initial mass. Clusters that are initially isotropic and characterized by larger initial values of rh/rJ, on the other hand, never develop a significant radial anisotropy.

  7. Magnetic surface anisotropy

    NASA Astrophysics Data System (ADS)

    Rado, George T.

    1992-02-01

    Selected aspects of magnetic surface anisotropy are reviewed. The emphasis is on methods for deducing reliable surface anisotropy values from experiments such as ferromagnetic resonance at microwave frequencies and Brillouin scattering at optical frequencies. The methods used are the "general exchange boundary condition method" and the "effective volume anisotropy method". The essence of the former is the supplementing of the equation of motion of the magnetization with the general exchange boundary condition whereas the latter consists of using the "stratagem" of effective volume anisotropy. We find that use of the general exchange boundary condition method is not only preferable in principle but often actually necessary to prevent the prediction of wrong surface anisotropy values and to permit the prediction of some observable Brillouin shifts.

  8. MRI evaluation of pathologies affecting the corpus callosum: A pictorial essay.

    PubMed

    Kazi, Aamish Z; Joshi, Priscilla C; Kelkar, Abhimanyu B; Mahajan, Mangal S; Ghawate, Amit S

    2013-10-01

    The corpus callosum is a midline cerebral structure and has a unique embryological development pattern. In this article, we describe the pathophysiology and present imaging findings of various typical/atypical conditions affecting the corpus callosum. Since many of these pathologies have characteristic appearances on magnetic resonance imaging (MRI) and their therapeutic approaches are poles apart, ranging from medical to surgical, the neuroradiologist should be well aware of them.

  9. Oligodendrocyte Lineage and Subventricular Zone Response to Traumatic Axonal Injury in the Corpus Callosum

    PubMed Central

    Sullivan, Genevieve M.; Mierzwa, Amanda J.; Kijpaisalratana, Naruchorn; Tang, *Haiying; Wang, Yong; Song, Sheng-Kwei; Selwyn, Reed

    2013-01-01

    Abstract Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreERT:R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury. PMID:24226267

  10. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    PubMed Central

    Sepehrband, Farshid; Alexander, Daniel C.; Clark, Kristi A.; Kurniawan, Nyoman D.; Yang, Zhengyi; Reutens, David C.

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273

  11. Clinical manifestations in children and adolescents with corpus callosum abnormalities.

    PubMed

    Margari, Lucia; Palumbi, Roberto; Campa, Maria Gloria; Operto, Francesca Felicia; Buttiglione, Maura; Craig, Francesco; Matricardi, Sara; Verrotti, Alberto

    2016-10-01

    Corpus callosum abnormality (CCA) outcomes are quite unpredictable and variable, from asymptomatic forms to mild or severe neurodevelopment disorders. The aim of this study was to examine clinical outcomes in CCA patients. The study included 61 children and adolescents in whom brain magnetic resonance imaging (MRI) scans showed CCA, isolated or associated to other central nervous system lesions. All patients underwent anamnesis, physical and neurological examination, routine laboratory tests, electroencephalogram (EEG), and MRI scans. In all participants, the intelligence quotient (IQ) was determined. We divided the participants into two subgroups: the first subgroup included patients with an isolated CCA, and the second subgroup included patients with CCA associated with extra-callosal brain lesions (complex CCA). We found that CCA were associated with elevated frequency to intellectual disability (ID), other neurodevelopment disorders, epilepsy, and isolated EEG anomalies. Mild ID (p = 0.003) was more frequent in the isolated subgroup, while epilepsy (p = 0.036) and pre-perinatal risk factors (p = 0.023) were more frequent in the complex CCA subgroup. Although the role of the CC in the interhemispheric communication is known, neurological and neurodevelopment outcomes of CCA are extremely variable and unpredictable. The presence of extra-callosal brain anomalies is one of the major prognostic factor, and probably, they have an important impact on the clinical outcome.

  12. Automatic corpus callosum segmentation for standardized MR brain scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Chen, Hong; Zhang, Li; Novak, Carol L.

    2007-03-01

    Magnetic Resonance (MR) brain scanning is often planned manually with the goal of aligning the imaging plane with key anatomic landmarks. The planning is time-consuming and subject to inter- and intra- operator variability. An automatic and standardized planning of brain scans is highly useful for clinical applications, and for maximum utility should work on patients of all ages. In this study, we propose a method for fully automatic planning that utilizes the landmarks from two orthogonal images to define the geometry of the third scanning plane. The corpus callosum (CC) is segmented in sagittal images by an active shape model (ASM), and the result is further improved by weighting the boundary movement with confidence scores and incorporating region based refinement. Based on the extracted contour of the CC, several important landmarks are located and then combined with landmarks from the coronal or transverse plane to define the geometry of the third plane. Our automatic method is tested on 54 MR images from 24 patients and 3 healthy volunteers, with ages ranging from 4 months to 70 years old. The average accuracy with respect to two manually labeled points on the CC is 3.54 mm and 4.19 mm, and differed by an average of 2.48 degrees from the orientation of the line connecting them, demonstrating that our method is sufficiently accurate for clinical use.

  13. Viscoelasticity of brain corpus callosum in biaxial tension

    NASA Astrophysics Data System (ADS)

    Labus, Kevin M.; Puttlitz, Christian M.

    2016-11-01

    Computational models of the brain rely on accurate constitutive relationships to model the viscoelastic behavior of brain tissue. Current viscoelastic models have been derived from experiments conducted in a single direction at a time and therefore lack information on the effects of multiaxial loading. It is also unclear if the time-dependent behavior of brain tissue is dependent on either strain magnitude or the direction of loading when subjected to tensile stresses. Therefore, biaxial stress relaxation and cyclic experiments were conducted on corpus callosum tissue isolated from fresh ovine brains. Results demonstrated the relaxation behavior to be independent of strain magnitude, and a quasi-linear viscoelastic (QLV) model was able to accurately fit the experimental data. Also, an isotropic reduced relaxation tensor was sufficient to model the stress-relaxation in both the axonal and transverse directions. The QLV model was fitted to the averaged stress relaxation tests at five strain magnitudes while using the measured strain history from the experiments. The resulting model was able to accurately predict the stresses from cyclic tests at two strain magnitudes. In addition to deriving a constitutive model from the averaged experimental data, each specimen was fitted separately and the resulting distributions of the model parameters were reported and used in a probabilistic analysis to determine the probability distribution of model predictions and the sensitivity of the model to the variance of the parameters. These results can be used to improve the viscoelastic constitutive models used in computational studies of the brain.

  14. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum.

    PubMed

    Sepehrband, Farshid; Alexander, Daniel C; Clark, Kristi A; Kurniawan, Nyoman D; Yang, Zhengyi; Reutens, David C

    2016-01-01

    Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy), or to infer them indirectly (e.g., using diffusion-weighted MRI). The gamma distribution is a common choice for this purpose (particularly for the inferential approach) because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions. PMID:27303273

  15. Acute infarction of corpus callosum due to transient obstructive hydrocephalus.

    PubMed

    Kaymakamzade, Bahar; Eker, Amber

    2016-01-01

    Acute ischemia of the corpus callosum (CC) is not a well-known feature in patients with acute hydrocephalus. Herein, we describe a case with acute CC infarction due to another rare entity; transient obstructive hydrocephalus. A 66-year-old male was admitted with sudden onset right-sided hemiparesia. CT demonstrated a hematoma on the left basal ganglia with extension to all ventricles. The following day, the patient's neurological status progressed to coma and developed bilateral pyramidal signs. MRI demonstrated obstructive hydrocephalus and acute diffuse infarction accompanied by elevation of the CC. On the same day there was improvement in his neurological status with significant decrease in ventricular size and complete resolution of the clot in the third ventricle. The mechanism of signal abnormalities is probably related with the neural compression of the CC against the falx. Presumably, the clot causing obstruction in the third ventricle dissolved or decayed by the help of fibrinolytic activity of CSF, which was raised after IVH and caused spontaneous improvement of hydrocephalus. Bilateral neurological symptoms suggest diffuse axonal damage and normalization of the intracranial pressure should be performed on the early onset of clinical detorioration in order to prevent axonal injury. PMID:27375144

  16. Acute infarction of corpus callosum due to transient obstructive hydrocephalus.

    PubMed

    Kaymakamzade, Bahar; Eker, Amber

    2016-01-01

    Acute ischemia of the corpus callosum (CC) is not a well-known feature in patients with acute hydrocephalus. Herein, we describe a case with acute CC infarction due to another rare entity; transient obstructive hydrocephalus. A 66-year-old male was admitted with sudden onset right-sided hemiparesia. CT demonstrated a hematoma on the left basal ganglia with extension to all ventricles. The following day, the patient's neurological status progressed to coma and developed bilateral pyramidal signs. MRI demonstrated obstructive hydrocephalus and acute diffuse infarction accompanied by elevation of the CC. On the same day there was improvement in his neurological status with significant decrease in ventricular size and complete resolution of the clot in the third ventricle. The mechanism of signal abnormalities is probably related with the neural compression of the CC against the falx. Presumably, the clot causing obstruction in the third ventricle dissolved or decayed by the help of fibrinolytic activity of CSF, which was raised after IVH and caused spontaneous improvement of hydrocephalus. Bilateral neurological symptoms suggest diffuse axonal damage and normalization of the intracranial pressure should be performed on the early onset of clinical detorioration in order to prevent axonal injury.

  17. Proverb comprehension in individuals with agenesis of the corpus callosum.

    PubMed

    Rehmel, Jamie L; Brown, Warren S; Paul, Lynn K

    2016-09-01

    Comprehension of non-literal language involves multiple neural systems likely involving callosal connections. We describe proverb comprehension impairments in individuals with isolated agenesis of the corpus callosum (AgCC) and normal-range general intelligence. Experiment 1 compared Gorham Proverb Test (Gorham, 1956) performance in 19 adults with AgCC and 33 neurotypical control participants of similar age, sex, and intelligence. Experiment 2 used the Proverbs subtest of the Delis-Kaplan Executive Function System (D-KEFS, 2001) to compare 19 adults with AgCC and 17 control participants with similar age, sex, and intelligence. Gorham Proverbs performance was impaired in the AgCC group for both the free-response and multiple-choice tasks. On the D-KEFS proverbs test, the AgCC group performed significantly worse on the free-response task (and all derivative scores) despite normal levels of performance on the multiple-choice task. Covarying verbal intelligence did not alter these outcomes. However, covarying a measure of non-literal language comprehension considerably reduced group differences in proverb comprehension on the Gorham test, but had little effect on the D-KEFS group differences. The difference between groups seemed to be greatest when participants had to generate their own interpretation (free response), or in the multiple choice format when the test included many proverbs that were likely to be less familiar. Taken together, the results of this study clearly show that proverb comprehension is diminished in individuals with AgCC compared to their peers. PMID:27448531

  18. Anisotropy across Superplume Boundaries

    NASA Astrophysics Data System (ADS)

    Cottaar, S.; Romanowicz, B. A.

    2011-12-01

    Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an

  19. A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation.

    PubMed

    Choe, Youngshik; Siegenthaler, Julie A; Pleasure, Samuel J

    2012-02-23

    The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development.

  20. Alien hand syndrome following corpus callosum infarction: A case report and review of the literature

    PubMed Central

    Gao, Xiaoyu; Li, Bing; Chu, Wenzheng; Sun, Xuwen; Sun, Chunjuan

    2016-01-01

    Alien hand syndrome (AHS) is characterized by involuntary and autonomous activity of the affected limbs, and consists of the frontal, callosal and posterior AHS variants. The callosal subtype, resulting from damage to the corpus callosum, frequently features intermanual conflict. However, infarction of the corpus callosum is rare due to abundant blood supply. The present study reported a case of AHS (callosal subtype, in the right hand) caused by callosal infarction. Infarction of the left corpus callosum was confirmed with magnetic resonance imaging. In addition, magnetic resonance angiography and digital subtraction angiography examinations revealed multiple lesions in the feeding arteries. Subsequent to antiplatelet therapy for 2 weeks following admission, the patient gradually recovered. Furthermore, the current study reviewed 31 previously reported cases of AHS following callosal infarction in the literature.

  1. Alien hand syndrome following corpus callosum infarction: A case report and review of the literature

    PubMed Central

    Gao, Xiaoyu; Li, Bing; Chu, Wenzheng; Sun, Xuwen; Sun, Chunjuan

    2016-01-01

    Alien hand syndrome (AHS) is characterized by involuntary and autonomous activity of the affected limbs, and consists of the frontal, callosal and posterior AHS variants. The callosal subtype, resulting from damage to the corpus callosum, frequently features intermanual conflict. However, infarction of the corpus callosum is rare due to abundant blood supply. The present study reported a case of AHS (callosal subtype, in the right hand) caused by callosal infarction. Infarction of the left corpus callosum was confirmed with magnetic resonance imaging. In addition, magnetic resonance angiography and digital subtraction angiography examinations revealed multiple lesions in the feeding arteries. Subsequent to antiplatelet therapy for 2 weeks following admission, the patient gradually recovered. Furthermore, the current study reviewed 31 previously reported cases of AHS following callosal infarction in the literature. PMID:27698701

  2. Killing vectors and anisotropy

    SciTech Connect

    Krisch, J. P.; Glass, E. N.

    2009-08-15

    We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.

  3. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database

    ERIC Educational Resources Information Center

    Kucharsky Hiess, R.; Alter, R.; Sojoudi, S.; Ardekani, B. A.; Kuzniecky, R.; Pardoe, H. R.

    2015-01-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial…

  4. Reversible cerebral periventricular white matter changes with corpus callosum involvement in acute toluene-poisoning.

    PubMed

    Lin, Chih-Ming; Liu, Chi-Kuang

    2015-01-01

    Substance poisoning, such as toluene intoxication, has seldom been reported in the relevant literature. The documented cerebral neuroimaging has mostly described reversible symmetrical white matter changes in both the cerebral and cerebellar hemispheres. This paper presents 2 patients with toluene poisoning, whose brain magnetic resonance imaging studies showed a similar picture that included extra involvement over the corpus callosum; however, such corpus callosum involvement has never been mentioned and is quite rare in the literature. We discussed the underlying neuropathological pathways in this article. Hopefully, these cases will provide first-line clinicians with some valuable information with regard to toluene intoxication and clinical neuroimaging presentations.

  5. The gene responsible for a severe form of peripheral neuropathy and agenesis of the corpus callosum maps to chromosome 15q

    SciTech Connect

    Casaubon, L.K.; Melanson, M.; Marineau, C. |

    1996-01-01

    Peripheral neuropathy with or without agenesis of the corpus callosum (ACCPN) is a devastating neurodegenerative disorder that is transmitted as an autosomal recessive trait. Genealogical studies in a large number of affected French Canadian individuals suggest that ACCPN results from a single founder mutation. A genomewide search using 120 microsatellite DNA markers in 14 French Canadian families allowed the mapping of the ACCPN gene to a 5-cM region on chromosome 15q13-q15 that is flanked by markers D15S1040 and D15S118. A maximum two-point LOD score of 11.1 was obtained with the marker D15S971 at a recombination fraction of 0. Haplotype analysis and linkage disequilibrium support a founder effect. These findings are the first step in the identification of the gene responsible for ACCPN, which may shed some light on the numerous conditions associated with progressive peripheral neuropathy or agenesis of the corpus callosum. 28 refs., 2 figs., 3 tabs.

  6. A Two-Year Longitudinal MRI Study of the Corpus Callosum in Autism

    ERIC Educational Resources Information Center

    Frazier, Thomas W.; Keshavan, Matcheri S.; Minshew, Nancy J.; Hardan, Antonio Y.

    2012-01-01

    A growing body of literature has identified size reductions of the corpus callosum (CC) in autism. However, to our knowledge, no published studies have reported on the growth of CC volumes in youth with autism. Volumes of the total CC and its sub-divisions were obtained from 23 male children with autism and 23 age- and gender-matched controls at…

  7. The indusium griseum and the longitudinal striae of the corpus callosum.

    PubMed

    Di Ieva, Antonio; Fathalla, Hussein; Cusimano, Michael D; Tschabitscher, Manfred

    2015-01-01

    In the eighteenth century, Lancisi described the indusium griseum (IG) and the longitudinal striae (LS) of the corpus callosum. The IG is a thin neuronal lamina above the corpus callosum, covered on each side of the midline by the medial and lateral LS. The medial LS (nerves of Lancisi) and lateral LS are two pairs of myelinated fiber bands found in the gray matter of the IG on the dorsal aspect of the corpus callosum. Embryologically, the IG and LS are dorsal remnants of the archicortex of the hippocampus and fornix and thus they are considered components of the limbic system. Recent studies using immunohistochemistry reported that acetylcholine, dopamine, noradrenaline, 5-hydroxytryptamine and GABA neurons innervate the IG. Newer imaging techniques, such as high field MRI and diffusion tensor imaging, provide new tools for studying these structures, whose true function remains still unclear. The present paper reviews the history of the discovery of the IG and LS of the corpus callosum, with a holistic overview on these interesting structures from the anatomical, embryological, neurochemical, radiological and clinical perspective.

  8. The Brain Connection: The Corpus Callosum is Larger in Left-Handers.

    ERIC Educational Resources Information Center

    Witelson, Sandra F.

    1985-01-01

    Discusses the neurobiological basis for functional specialization of the cerebral hemispheres, indicating that the size of the corpus callosum is correlated with the neurophysiological measure of hand preference. In postmortem examinations of 42 subjects there were no sex differences, but mixed-handers had significantly larger total areas of the…

  9. Social and Behavioral Problems of Children with Agenesis of the Corpus Callosum

    ERIC Educational Resources Information Center

    Badaruddin, Denise H.; Andrews, Glena L.; Bolte, Sven; Schilmoeller, Kathryn J.; Schilmoeller, Gary; Paul, Lynn K.; Brown, Warren S.

    2007-01-01

    Archival data from a survey of parent observations was used to determine the prevalence of social and behavioral problems in children with agenesis of the corpus callosum (ACC). Parent observations were surveyed using the Child Behavior Checklist (CBCL) for 61 children with ACC who were selected from the archive based on criteria of motor…

  10. Agenesis of the Corpus Callosum: Assessment and Remediation of School-Related Problems.

    ERIC Educational Resources Information Center

    Puente, Antonio, E.

    The paper examines three cases of children born with brain damage (absence of corpus callosum). Common problems (attentional, cognitive, visuo-motor, and motor deficits) are noted, and the impact of secondary emotional involvement is considered. Intervention approaches with two of the children are described as inconsistent and inadequate, while…

  11. A 23-Year Review of Communication Development in an Individual with Agenesis of the Corpus Callosum.

    ERIC Educational Resources Information Center

    Stickles, Judith L.; Schilmoeller, Gary L.; Schilmoeller, Kathryn J.

    2002-01-01

    Twenty-three years of observation and testing of the communication skills of a male with agenesis of the corpus callosum and normal IQ revealed initial weakness in language. Difficulties with fluent speech persisted into young adulthood. With intensive intervention, communication and academic skills developed and the participant completed high…

  12. Corpus Callosum Morphology in Attention Deficit-Hyperactivity Disorder: Morphometric Analysis of MRI.

    ERIC Educational Resources Information Center

    Hynd, George W.; And Others

    1991-01-01

    Morphometric analysis of magnetic resonance imaging scans revealed that, compared to nondisabled controls, the seven children with attention deficit hyperactivity disorder had a smaller corpus callosum. Results suggest that subtle differences may exist in the brains of these children and that deviations in normal corticogenesis may underlie the…

  13. Corpus Callosum Size is Linked to Dichotic Deafness and Hemisphericity, Not Sex or Handedness

    ERIC Educational Resources Information Center

    Morton, Bruce E.; Rafto, Stein E.

    2006-01-01

    Individuals differ in the number of corpus callosum (CC) nerve fibers interconnecting their cerebral hemispheres by about threefold. Early reports suggested that males had smaller CCs than females. This was often interpreted to support the concept that the male brain is more "lateralized" or "specialized," thus accounting for presumed male…

  14. Psychological Correlates of Handedness and Corpus Callosum Asymmetry in Autism: The Left Hemisphere Dysfunction Theory Revisited

    ERIC Educational Resources Information Center

    Floris, Dorothea L.; Chura, Lindsay R.; Holt, Rosemary J.; Suckling, John; Bullmore, Edward T.; Baron-Cohen, Simon; Spencer, Michael D.

    2013-01-01

    Rightward cerebral lateralization has been suggested to be involved in the neuropathology of autism spectrum conditions. We investigated functional and neuroanatomical asymmetry, in terms of handedness and corpus callosum measurements in male adolescents with autism, their unaffected siblings and controls, and their associations with executive…

  15. Reduced White Matter Connectivity in the Corpus Callosum of Children with Tourette Syndrome

    ERIC Educational Resources Information Center

    Plessen, Kerstin J.; Gruner, Renate; Lundervold, Arvid; Hirsch, Jochen G.; Xu, Dongrong; Bansal, Ravi; Hammar, Asa; Lundervold, Astri J.; Wentzel-Larsen, Tore; Lie, Stein Atle; Gass, Achim; Peterson, Bradley S.; Hugdahl, Kenneth

    2006-01-01

    Background: Brain imaging studies have revealed anatomical anomalies in the brains of individuals with Tourette syndrome (TS). Prefrontal regions have been found to be larger and the corpus callosum (CC) area smaller in children and young adults with TS compared with healthy control subjects, and these anatomical features have been understood to…

  16. Quantitative Analysis of the Shape of the Corpus Callosum in Patients with Autism and Comparison Individuals

    ERIC Educational Resources Information Center

    Casanova, Manuel F.; El-Baz, Ayman; Elnakib, Ahmed; Switala, Andrew E.; Williams, Emily L.; Williams, Diane L.; Minshew, Nancy J.; Conturo, Thomas E.

    2011-01-01

    Multiple studies suggest that the corpus callosum in patients with autism is reduced in size. This study attempts to elucidate the nature of this morphometric abnormality by analyzing the shape of this structure in 17 high-functioning patients with autism and an equal number of comparison participants matched for age, sex, IQ, and handedness. The…

  17. Agenesis of the corpus callosum associated with paroxysmal hypothermia: Shapiro's syndrome.

    PubMed

    Segeren, C M; Polderman, K H; Lips, P

    1997-01-01

    Spontaneous recurrent hypothermia and hyperhidrosis associated with agenesis of the corpus callosum was first described by Shapiro and Plum in 1967. Since then, several cases with similar symptoms (now known as Shapiro's syndrome or spontaneous periodic hypothermia) have been described. We report another case of this syndrome in a 21-year-old-man, and discuss possible pathogenetic mechanisms and therapeutic approaches. PMID:9038041

  18. A solution to the cosmic ray anisotropy problem

    NASA Astrophysics Data System (ADS)

    Mertsch, P.; Funk, S.

    2015-10-01

    Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.

  19. Cognitive impairments associated with corpus callosum infarction: a ten cases study

    PubMed Central

    Huang, Xiaoqin; Du, Xiangnan; Song, Haiqing; Zhang, Qian; Jia, Jianping; Xiao, Tianyi; Wu, Jian

    2015-01-01

    The aim of this study was to determine whether the cognitive impairment is associated with corpus callosum infarctions. Ten corpus callosum infarction patients were enrolled in this study. Their emotions, cognitive and language abilities, memory, comprehensive perception were assessed using the Chinese version of following measures: Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), World Health Organization-University of California-Los Angeles Auditory Verbal Learning Test (WHO-UCLA AVLT), Wechsler Adult Intelligence Scale (WAIS) Digit Span subtest and so on. The same measurements were performed on healthy control participants as contrast for analysis. Infarction most frequently occurred in the body and/or splenium of the corpus callosum. The scores of the most cognitive tests in the corpus callosum infarction patients were significantly worse than those of the control participants (P<0.05). Except for the naming ability, the patients showed significantly poorer performance at the overall level of MMSE than the controls did (P<0.05). Consistently, the results of MoCA suggested a significant reduction in visuospatial abilities of execution, orientation, attention, calculation, delayed memory, language, and repetition capabilities in the patients with respect to the control (P<0.05). In addition, the scores in the case group were significantly worse than those in the control group in the auditory word learning test, digital span and Rey complex figure test (P<0.05). Corpus callosum infarction can cause cognitive dysfunction, which poses obstacles to memory in the acute phase, accompanied by different degrees of decline in visuospatial abilities, attention and calculating abilities. PMID:26885171

  20. Cognitive impairments associated with corpus callosum infarction: a ten cases study.

    PubMed

    Huang, Xiaoqin; Du, Xiangnan; Song, Haiqing; Zhang, Qian; Jia, Jianping; Xiao, Tianyi; Wu, Jian

    2015-01-01

    The aim of this study was to determine whether the cognitive impairment is associated with corpus callosum infarctions. Ten corpus callosum infarction patients were enrolled in this study. Their emotions, cognitive and language abilities, memory, comprehensive perception were assessed using the Chinese version of following measures: Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), World Health Organization-University of California-Los Angeles Auditory Verbal Learning Test (WHO-UCLA AVLT), Wechsler Adult Intelligence Scale (WAIS) Digit Span subtest and so on. The same measurements were performed on healthy control participants as contrast for analysis. Infarction most frequently occurred in the body and/or splenium of the corpus callosum. The scores of the most cognitive tests in the corpus callosum infarction patients were significantly worse than those of the control participants (P<0.05). Except for the naming ability, the patients showed significantly poorer performance at the overall level of MMSE than the controls did (P<0.05). Consistently, the results of MoCA suggested a significant reduction in visuospatial abilities of execution, orientation, attention, calculation, delayed memory, language, and repetition capabilities in the patients with respect to the control (P<0.05). In addition, the scores in the case group were significantly worse than those in the control group in the auditory word learning test, digital span and Rey complex figure test (P<0.05). Corpus callosum infarction can cause cognitive dysfunction, which poses obstacles to memory in the acute phase, accompanied by different degrees of decline in visuospatial abilities, attention and calculating abilities.

  1. Cognitive impairments associated with corpus callosum infarction: a ten cases study.

    PubMed

    Huang, Xiaoqin; Du, Xiangnan; Song, Haiqing; Zhang, Qian; Jia, Jianping; Xiao, Tianyi; Wu, Jian

    2015-01-01

    The aim of this study was to determine whether the cognitive impairment is associated with corpus callosum infarctions. Ten corpus callosum infarction patients were enrolled in this study. Their emotions, cognitive and language abilities, memory, comprehensive perception were assessed using the Chinese version of following measures: Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), World Health Organization-University of California-Los Angeles Auditory Verbal Learning Test (WHO-UCLA AVLT), Wechsler Adult Intelligence Scale (WAIS) Digit Span subtest and so on. The same measurements were performed on healthy control participants as contrast for analysis. Infarction most frequently occurred in the body and/or splenium of the corpus callosum. The scores of the most cognitive tests in the corpus callosum infarction patients were significantly worse than those of the control participants (P<0.05). Except for the naming ability, the patients showed significantly poorer performance at the overall level of MMSE than the controls did (P<0.05). Consistently, the results of MoCA suggested a significant reduction in visuospatial abilities of execution, orientation, attention, calculation, delayed memory, language, and repetition capabilities in the patients with respect to the control (P<0.05). In addition, the scores in the case group were significantly worse than those in the control group in the auditory word learning test, digital span and Rey complex figure test (P<0.05). Corpus callosum infarction can cause cognitive dysfunction, which poses obstacles to memory in the acute phase, accompanied by different degrees of decline in visuospatial abilities, attention and calculating abilities. PMID:26885171

  2. COBE anisotropy from supercluster gas

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1992-01-01

    It is suggested that the microwave background anisotropy detected by the COBE DMR might be dominated not by the direct gravitational effect of primordial fluctuations in the last scattering surface, but by scattering off of moving electrons in optically thin, nearby superclusters. Hot diffuse clouds of ionized gas created during supercluster collapse produce Sunyaev-Zel'dovich and Doppler background anisotropy whose properties may closely mimic those of primordial anisotropy in current data. Strategies for and difficulties in separating the effects are discussed, based on the anisotropy spectrum, autocorrelation, correlation with galaxy catalogs, X-ray emission, and integrated spectral distortions.

  3. Non-surgical treatment of massive traumatic corpus callosum hematoma after blunt head injury: A case report.

    PubMed

    Elsayed, A; Elgamal, E; Elsayed, A A; Wasserberg, J; Kuncz, A

    2016-01-01

    Massive hematoma of the corpus callosum caused by blunt head trauma is an extremely rare lesion. Most frequent traumatic lesions involve the corpus callosum are diffuse axonal injuries. They might be associated with small hemorrhagic foci in the hemispheric and brain stem white matter, intraventricular hemorrhages, subarachnoid hemorrhages, traumatic lesions of the septum pellucidum and fornix. Many cases of corpus callosum injury present with permanent disconnection syndrome. We present a case of a 32-year-old female suffered blunt head trauma resulted in massive corpus callosum hematoma which was managed non-surgically. The patient initially had a reduced conscious level and symptoms of disconnection syndrome, and significant recovery was observed at 6 months follow up. PMID:27375150

  4. Corpus callosum area and brain volume in autism spectrum disorder: quantitative analysis of structural MRI from the ABIDE database.

    PubMed

    Kucharsky Hiess, R; Alter, R; Sojoudi, S; Ardekani, B A; Kuzniecky, R; Pardoe, H R

    2015-10-01

    Reduced corpus callosum area and increased brain volume are two commonly reported findings in autism spectrum disorder (ASD). We investigated these two correlates in ASD and healthy controls using T1-weighted MRI scans from the Autism Brain Imaging Data Exchange (ABIDE). Automated methods were used to segment the corpus callosum and intracranial region. No difference in the corpus callosum area was found between ASD participants and healthy controls (ASD 598.53 ± 109 mm(2); control 596.82 ± 102 mm(2); p = 0.76). The ASD participants had increased intracranial volume (ASD 1,508,596 ± 170,505 mm(3); control 1,482,732 ± 150,873.5 mm(3); p = 0.042). No evidence was found for overall ASD differences in the corpus callosum subregions.

  5. Non-surgical treatment of massive traumatic corpus callosum hematoma after blunt head injury: A case report.

    PubMed

    Elsayed, A; Elgamal, E; Elsayed, A A; Wasserberg, J; Kuncz, A

    2016-01-01

    Massive hematoma of the corpus callosum caused by blunt head trauma is an extremely rare lesion. Most frequent traumatic lesions involve the corpus callosum are diffuse axonal injuries. They might be associated with small hemorrhagic foci in the hemispheric and brain stem white matter, intraventricular hemorrhages, subarachnoid hemorrhages, traumatic lesions of the septum pellucidum and fornix. Many cases of corpus callosum injury present with permanent disconnection syndrome. We present a case of a 32-year-old female suffered blunt head trauma resulted in massive corpus callosum hematoma which was managed non-surgically. The patient initially had a reduced conscious level and symptoms of disconnection syndrome, and significant recovery was observed at 6 months follow up.

  6. Ion Temperature Anisotropy across Reconnection Exhaust Jets

    NASA Astrophysics Data System (ADS)

    Hietala, H.; Drake, J. F.; Phan, T. D.; Eastwood, J. P.; McFadden, J. P.

    2014-12-01

    Magnetic reconnection redistributes energy by releasing magnetic energy into plasma kinetic energy - high speed bulk flows, heating, and particle acceleration. In the magnetotail, most of the released energy appears to go into ion heating. However, previous observations and simulations show that this heating is anisotropic with the plasma temperature parallel to the magnetic field generally increasing more than the perpendicular temperature. Simulations and theory indicate that this temperature anisotropy can balance part of the magnetic tension force that accelerates the jet, and may even exceed it leading to firehose instability.Here we report the results of a new study of ion temperature anisotropy in reconnection exhausts generated by anti-parallel reconnection. We have examined ARTEMIS dual-spacecraft observations of long-duration magnetotail exhausts at lunar distances in conjunction with Particle-In-Cell simulations. In particular, we have studied spatial variations in the ion temperature anisotropy across the outflows far away (>100 ion inertial lengths) from the X-line. A consistent pattern is found in both the spacecraft data and the simulations: whilst the total temperature profile across the exhaust is flat, near the exhaust boundaries the parallel temperature dominates. A consequence of this is that firehose threshold is greatly exceeded in a significant fraction of the exhaust. In contrast, the perpendicular temperature dominates at the neutral plane (|BX| < 0.1 B0), indicating that, despite the turbulence and the large distance to the X-line, particles undergo Speiser-like motion (rather than isotropization by scattering). We also analyse the characteristics of the particle distributions leading to these anisotropies at different distances from the mid-plane.

  7. Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study.

    PubMed

    Tanaka-Arakawa, Megumi M; Matsui, Mie; Tanaka, Chiaki; Uematsu, Akiko; Uda, Satoshi; Miura, Kayoko; Sakai, Tomoko; Noguchi, Kyo

    2015-01-01

    Previous research has reported on the development trajectory of the corpus callosum morphology. However, there have been only a few studies that have included data on infants. The goal of the present study was to examine the morphology of the corpus callosum in healthy participants of both sexes, from infancy to early adulthood. We sought to characterize normal development of the corpus callosum and possible sex differences in development. We performed a morphometric magnetic resonance imaging (MRI) study of 114 healthy individuals, aged 1 month to 25 years old, measuring the size of the corpus callosum. The corpus callosum was segmented into seven subareas of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus and splenium. Locally weighted regression analysis (LOESS) indicated significant non-linear age-related changes regardless of sex, particularly during the first few years of life. After this increase, curve slopes gradually became flat during adolescence and adulthood in both sexes. Age of local maximum for each subarea of the corpus callosum differed across the sexes. Ratios of total corpus callosum and genu, posterior midbody, as well as splenium to the whole brain were significantly higher in females compared with males. The present results demonstrate that the developmental trajectory of the corpus callosum during early life in healthy individuals is non-linear and dynamic. This pattern resembles that found for the cerebral cortex, further suggesting that this period plays a very important role in neural and functional development. In addition, developmental trajectories and changes in growth do show some sex differences.

  8. Contralateral targeting of the corpus callosum in normal and pathological brain function.

    PubMed

    Fenlon, Laura R; Richards, Linda J

    2015-05-01

    The corpus callosum connects the two cortical hemispheres of the mammalian brain and is susceptible to structural defects during development, which often result in significant neuropsychological dysfunction. To date, such individuals have been studied primarily with regards to the integrity of the callosal tract at the midline. However, the mechanisms regulating the contralateral targeting of the corpus callosum, after midline crossing has occurred, are less well understood. Recent evidence suggests that defects in contralateral targeting can occur in isolation from midline-tract malformations, and may have significant functional implications. We propose that contralateral targeting is a crucially important and relatively under-investigated event in callosal development, and that defects in this process may constitute an undiagnosed phenotype in several neurological disorders.

  9. Shape analysis of corpus callosum in phenylketonuria using a new 3D correspondence algorithm

    NASA Astrophysics Data System (ADS)

    He, Qing; Christ, Shawn E.; Karsch, Kevin; Peck, Dawn; Duan, Ye

    2010-03-01

    Statistical shape analysis of brain structures has gained increasing interest from neuroimaging community because it can precisely locate shape differences between healthy and pathological structures. The most difficult and crucial problem is establishing shape correspondence among individual 3D shapes. This paper proposes a new algorithm for 3D shape correspondence. A set of landmarks are sampled on a template shape, and initial correspondence is established between the template and the target shape based on the similarity of locations and normal directions. The landmarks on the target are then refined by iterative thin plate spline. The algorithm is simple and fast, and no spherical mapping is needed. We apply our method to the statistical shape analysis of the corpus callosum (CC) in phenylketonuria (PKU), and significant local shape differences between the patients and the controls are found in the most anterior and posterior aspects of the corpus callosum.

  10. Altered corpus callosum morphology associated with autism over the first 2 years of life

    PubMed Central

    Gerig, Guido; Lewis, John D.; Soda, Takahiro; Styner, Martin A.; Vachet, Clement; Botteron, Kelly N.; Elison, Jed T.; Dager, Stephen R.; Estes, Annette M.; Hazlett, Heather C.; Schultz, Robert T.; Zwaigenbaum, Lonnie; Piven, Joseph

    2015-01-01

    Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder and 108 low-risk controls at 6, 12 and 24 months of age, with 83% of infants contributing two or more data points. Fifty-seven children met criteria for ASD based on clinical-best estimate diagnosis at age 2 years. Corpora callosa were measured for area, length and thickness by automated segmentation. We found significantly increased corpus callosum area and thickness in children with autism spectrum disorder starting at 6 months of age. These differences were particularly robust in the anterior corpus callosum at the 6 and 12 month time points. Regression analysis indicated that radial diffusivity in this region, measured by diffusion tensor imaging, inversely predicted thickness. Measures of area and thickness in the first year of life were correlated with repetitive behaviours at age 2 years. In contrast to work from older children and adults, our findings suggest that the corpus callosum may be larger in infants who go on to develop autism spectrum disorder. This result was apparent with or without adjustment for total brain volume. Although we did not see a significant interaction between group and age, cross-sectional data indicated that area and thickness differences diminish by age 2 years. Regression data incorporating diffusion tensor imaging suggest that microstructural properties of callosal white matter, which includes myelination and axon composition, may explain group differences in morphology. PMID:25937563

  11. Altered corpus callosum morphology associated with autism over the first 2 years of life.

    PubMed

    Wolff, Jason J; Gerig, Guido; Lewis, John D; Soda, Takahiro; Styner, Martin A; Vachet, Clement; Botteron, Kelly N; Elison, Jed T; Dager, Stephen R; Estes, Annette M; Hazlett, Heather C; Schultz, Robert T; Zwaigenbaum, Lonnie; Piven, Joseph

    2015-07-01

    Numerous brain imaging studies indicate that the corpus callosum is smaller in older children and adults with autism spectrum disorder. However, there are no published studies examining the morphological development of this connective pathway in infants at-risk for the disorder. Magnetic resonance imaging data were collected from 270 infants at high familial risk for autism spectrum disorder and 108 low-risk controls at 6, 12 and 24 months of age, with 83% of infants contributing two or more data points. Fifty-seven children met criteria for ASD based on clinical-best estimate diagnosis at age 2 years. Corpora callosa were measured for area, length and thickness by automated segmentation. We found significantly increased corpus callosum area and thickness in children with autism spectrum disorder starting at 6 months of age. These differences were particularly robust in the anterior corpus callosum at the 6 and 12 month time points. Regression analysis indicated that radial diffusivity in this region, measured by diffusion tensor imaging, inversely predicted thickness. Measures of area and thickness in the first year of life were correlated with repetitive behaviours at age 2 years. In contrast to work from older children and adults, our findings suggest that the corpus callosum may be larger in infants who go on to develop autism spectrum disorder. This result was apparent with or without adjustment for total brain volume. Although we did not see a significant interaction between group and age, cross-sectional data indicated that area and thickness differences diminish by age 2 years. Regression data incorporating diffusion tensor imaging suggest that microstructural properties of callosal white matter, which includes myelination and axon composition, may explain group differences in morphology.

  12. A de novo mutation in PRICKLE1 in fetal agenesis of the corpus callosum and polymicrogyria.

    PubMed

    Bassuk, Alexander G; Sherr, Elliott H

    2015-01-01

    Homozygous recessive mutations in the PRICKLE1 gene were originally reported in three consanguineous families with myoclonic epilepsy. Subsequently, several studies have identified neurological abnormalities in animal models with both heterozygous and homozygous mutations in PRICKLE1 orthologues, including epilepsy in flies and in mice with heterozygous PRICKLE1 mutations. We describe a fetus with a novel de novo mutation in PRICKLE1 associated with agenesis of the corpus callosum.

  13. Lipoma of corpus callosum associated with dysraphic lesions and trisomy 13

    SciTech Connect

    Wainwright, H.; Bowen, R.; Radcliffe, M.

    1995-05-22

    We report on a further case of corpus callosal lipoma and frontal cranial defects. Most cases in the literature of corpus callosal lipoma in association with {open_quotes}dysraphic{close_quotes} lesions have been frontal in location. Malformation of the corpus callosum is said to be associated with 50% of these lipomas. Trisomy 13 was confirmed by the 13q14 cosmid probe on paraffin-embedded liver tissue. 19 refs., 5 figs.

  14. Posterior polymorphous corneal dystrophy 3 is associated with agenesis and hypoplasia of the corpus callosum.

    PubMed

    Jang, Michelle S; Roldan, Ashley N; Frausto, Ricardo F; Aldave, Anthony J

    2014-07-01

    Posterior polymorphous corneal dystrophy (PPCD) is a dominantly inherited disorder of the corneal endothelium that has been associated with mutations in the zinc-finger E-box binding homeobox 1 gene (ZEB1) gene in approximately one-third of affected families. While the corneal dystrophies have traditionally been considered isolated disorders of the corneal endothelium, we have recently identified two cases of maldevelopment of the corpus callosum in unrelated individuals with PPCD. The proband of the first family was diagnosed shortly after birth with agenesis of the corpus callosum and several other developmental abnormalities. Karyotype, FISH and whole genome copy number variant analyses were normal. She was subsequently diagnosed with PPCD, prompting screening of the ZEB1 gene, which identified a novel deletion (c.449delG; p.(Gly150Alafs*36)) present in the heterozygous state that was not identified in either unaffected parent. The proband of the second family was diagnosed several months after birth with thinning of the corpus callosum and PPCD. Whole genome copy number variant analysis revealed a 1.79 Mb duplication of 17q12 in the proband and her father and brother, neither of whom had PPCD. ZEB1 sequencing identified a novel deletion (c.1913-1914delCA; p.(Ser638Cysfs*5)) present in the heterozygous state, which was also identified in the proband's affected mother. Thus, we report the first two cases of the association of PPCD with a developmental abnormality of the brain, in this case maldevelopment of the corpus callosum.

  15. Functional topography of the corpus callosum investigated by DTI and fMRI

    PubMed Central

    Fabri, Mara; Pierpaoli, Chiara; Barbaresi, Paolo; Polonara, Gabriele

    2014-01-01

    This short review examines the most recent functional studies of the topographic organization of the human corpus callosum, the main interhemispheric commissure. After a brief description of its anatomy, development, microstructure, and function, it examines and discusses the latest findings obtained using diffusion tensor imaging (DTI) and tractography (DTT) and functional magnetic resonance imaging (fMRI), three recently developed imaging techniques that have significantly expanded and refined our knowledge of the commissure. While DTI and DTT have been providing insights into its microstructure, integrity and level of myelination, fMRI has been the key technique in documenting the activation of white matter fibers, particularly in the corpus callosum. By combining DTT and fMRI it has been possible to describe the trajectory of the callosal fibers interconnecting the primary olfactory, gustatory, motor, somatic sensory, auditory and visual cortices at sites where the activation elicited by peripheral stimulation was detected by fMRI. These studies have demonstrated the presence of callosal fiber tracts that cross the commissure at the level of the genu, body, and splenium, at sites showing fMRI activation. Altogether such findings lend further support to the notion that the corpus callosum displays a functional topographic organization that can be explored with fMRI. PMID:25550994

  16. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes

    PubMed Central

    Edwards, Timothy J.; Sherr, Elliott H.; Barkovich, A. James

    2014-01-01

    The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field. PMID:24477430

  17. MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia.

    PubMed

    Patel, Veena S; Kelly, Sinead; Wright, Carrie; Gupta, Cota Navin; Arias-Vasquez, Alejandro; Perrone-Bizzozero, Nora; Ehrlich, Stefan; Wang, Lei; Bustillo, Juan R; Morris, Derek; Corvin, Aiden; Cannon, Dara M; McDonald, Colm; Donohoe, Gary; Calhoun, Vince D; Turner, Jessica A

    2015-08-18

    Genome-wide association studies implicate the MIR137HG risk variant rs1625579 (MIR137HGrv) within the host gene for microRNA-137 as a potential regulator of schizophrenia susceptibility. We examined the influence of MIR137HGrv genotype on 17 subcortical and callosal volumes in a large sample of individuals with schizophrenia and healthy controls (n=841). Although the volumes were overall reduced relative to healthy controls, for individuals with schizophrenia the homozygous MIR137HGrv risk genotype was associated with attenuated reduction of mid-posterior corpus callosum volume (p=0.001), along with trend-level effects in the adjacent central and posterior corpus callosum. These findings are unique in the literature and remain robust after analysis in ethnically homogenous and single-scanner subsets of the larger sample. Thus, our study suggests that the mechanisms whereby MIR137HGrv works to increase schizophrenia risk are not those that generate the corpus callosum volume reductions commonly found in the disorder.

  18. Agenesis of the Corpus Callosum Due to Defective Glial Wedge Formation in Lhx2 Mutant Mice.

    PubMed

    Chinn, Gregory A; Hirokawa, Karla E; Chuang, Tony M; Urbina, Cecilia; Patel, Fenil; Fong, Jeanette; Funatsu, Nobuo; Monuki, Edwin S

    2015-09-01

    Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC.

  19. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes.

    PubMed

    Edwards, Timothy J; Sherr, Elliott H; Barkovich, A James; Richards, Linda J

    2014-06-01

    The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.

  20. Pediatric neurofunctional intervention in agenesis of the corpus callosum: a case report☆

    PubMed Central

    Pacheco, Sheila Cristina da Silva; Queiroz, Ana Paula Adriano; Niza, Nathália Tiepo; da Costa, Letícia Miranda Resende; Ries, Lilian Gerdi Kittel

    2014-01-01

    Objective: To describe a clinical report pre- and post-neurofunctional intervention in a case of agenesis of the corpus callosum. Case description: Preterm infant with corpus callosum agenesis and hypoplasia of the cerebellum vermis and lateral ventricles, who, at the age of two years, started the proposed intervention. Functional performance tests were used such as the neurofunctional evaluation, the Gross Motor Function Measure and the Gross Motor Function Classification System. In the initial evaluation, absence of equilibrium reactions, postural transfers, deficits in manual and trunk control were observed. The intervention was conducted with a focus on function, prioritizing postural control and guidance of the family to continue care in the home environment. After the intervention, there was an improvement of body reactions, postural control and movement acquisition of hands and limbs. The intervention also showed improvement in functional performance. Comments: Postural control and transfers of positions were benefited by the neurofunction intervention in this case of agenesis of the corpus callosum. The approach based on function with activities that involve muscle strengthening and balance reactions training, influenced the acquisition of a more selective motor behavior. PMID:25479858

  1. MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia

    PubMed Central

    Patel, Veena S.; Kelly, Sinead; Wright, Carrie; Gupta, Cota Navin; Arias-Vasquez, Alejandro; Perrone-Bizzozero, Nora; Ehrlich, Stefan; Wang, Lei; Bustillo, Juan R.; Morris, Derek; Corvin, Aiden; Cannon, Dara M.; McDonald, Colm; Donohoe, Gary; Calhoun, Vince D.; Turner, Jessica A.

    2015-01-01

    Genome-wide association studies implicate the MIR137HG risk variant rs1625579 (MIR137HGrv) within the host gene for microRNA-137 as a potential regulator of schizophrenia susceptibility. We examined the influence of MIR137HGrv genotype on 17 subcortical and callosal volumes in a large sample of individuals with schizophrenia and healthy controls (n=841). Although the volumes were overall reduced relative to healthy controls, for individuals with schizophrenia the homozygous MIR137HGrv risk genotype was associated with attenuated reduction of mid-posterior corpus callosum volume (p=0.001), along with trend-level effects in the adjacent central and posterior corpus callosum. These findings are unique in the literature and remain robust after analysis in ethnically homogenous and single-scanner subsets of the larger sample. Thus, our study suggests that the mechanisms whereby MIR137HGrv works to increase schizophrenia risk are not those that generate the corpus callosum volume reductions commonly found in the disorder. PMID:26123324

  2. Anisotropy and AVO from walkaways

    SciTech Connect

    Leaney, W.S.

    1994-12-31

    A multi-offset VSP or ``walkaway`` is a wide aperture borehole seismic experiment ideal for studying angle-dependent wave propagation. In this paper, two aspects of elastic wave propagation are studied with walkaways: anisotropy (transverse isotropy) and AVO (amplitude variation with offset). Anisotropy is measured from walkaway data using extracted vertical and horizontal phase slownesses. Results are shown for a Java Sea walkaway data set and tabulated for walkaways from different locations. The anisotropy measurements are classified using Schoenberg`s parameters of ellipticity and anellipticity. Shale anisotropy is found to be significant and variable. Anisotropic AVO is studied on Ostrander`s shale-sand model and through the computation of anisotropic ray-trace synthetics. The ratio of ellipticity to anellipticity is found to be a good measure of shale anisotropy in the context of AVO. Depending on the ``flavor`` of shale anisotropy, AVO can be significantly reduced or exaggerated. The AVO response of a reservoir sequence can also be measured (as opposed to modeled) with a properly designed walkaway. The results of processing a walkaway for AVO are shown. Such a seismic experiment is arguably the best way to determine the AVO response of a reservoir or reservoir sequence. Together, these two new applications of walkaways -- to measure anisotropy and AVO -- can be used to: (1) Establish the viability of using AVO to map a reservoir. (2) Reduce the risk involved with the added cost of AVO studies. (3) Improve the reliability of AVO interpretations.

  3. Linking strain anisotropy and plasticity in copper metallization

    NASA Astrophysics Data System (ADS)

    Murray, Conal E.; Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son

    2015-05-01

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments.

  4. Linking strain anisotropy and plasticity in copper metallization

    SciTech Connect

    Murray, Conal E. Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son

    2015-05-04

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments.

  5. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands

    SciTech Connect

    Middleton, E.M. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on a study to quantify the reflectance anisotropy of the photosynthetically active radiation (PAR) for grasslands. PAR falls in the wavelength range 0.4 to 0.7[mu]m. The study looks at the variation of PAR with illumination and vegetative canopy conditions. It uses bidirectional reflectance distribution function data, and measures of anisotropy derived from reflectance factor and reflectance fraction data to aid in the analysis. The data used for this analysis came from an intense effort mounted to measure diurnal changes in the anisotropy of surface reflectance from prairie grassland as a function of the vegetative canopy.

  6. Anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Matarrese, Sabino; Ricciardone, Angelo; Peloso, Marco E-mail: sabino.matarrese@pd.infn.it E-mail: angelo.ricciardone@pd.infn.it

    2013-08-01

    In the model of solid / elastic inflation, inflation is driven by a source that has the field theoretical description of a solid. To allow for prolonged slow roll inflation, the solid needs to be extremely insensitive to the spatial expansion. We point out that, because of this property, the solid is also rather inefficient in erasing anisotropic deformations of the geometry. This allows for a prolonged inflationary anisotropic solution, providing the first example with standard gravity and scalar fields only which evades the conditions of the so called cosmic no-hair conjecture. We compute the curvature perturbations on the anisotropic solution, and the corresponding phenomenological bound on the anisotropy. Finally, we discuss the analogy between this model and the f(φ)F{sup 2} model, which also allows for anisotropic inflation thanks to a suitable coupling between the inflaton φ and a vector field. We remark that the bispectrum of the curvature perturbations in solid inflation is enhanced in the squeezed limit and presents a nontrivial angular dependence, as had previously been found for the f(φ)F{sup 2} model.

  7. Anisotropy in rotating drums

    NASA Astrophysics Data System (ADS)

    Povall, Timothy; McBride, Andrew; Govender, Indresan

    2015-11-01

    An anisotropic relationship between the stress and the strain rate has been observed in two-dimensional simulations of rotating drums. The objective of this work is to investigate the structure of the constitutive relation using three-dimensional discrete-element-method simulations of a rotating drum containing identical rigid spheres for a range of rotational speeds. Anisotropy is quantified from the alignment of the stress and strain rate tensors, with the strain rate computed using a least-squares fit. It is shown that in certain regions there is a strong anisotropic relationship, regardless of the speed of rotation. The effective friction coefficient is examined in order to determine the phase space in which the μ (I) rheology is valid. Lastly, a depth-averaged approach through the flowing layer is employed to determine the relationship between the velocity tangential to the equilibrium surface and the height of the flowing layer. A power-law relationship that approaches linear at high speeds is observed. Supported by NRF/DST Scarce Skills (South Africa).

  8. Fractional randomness

    NASA Astrophysics Data System (ADS)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  9. Structural origins of diamagnetic anisotropy in proteins.

    PubMed Central

    Worcester, D L

    1978-01-01

    Magnetic anisotropy in proteins and polypeptides can be attributed to the diamagnetic anisotropy of the planar peptide bonds. The alpha helix in particular has large anisotropy due to the axial alignment of the peptide bonds. The regular arrangements of the peptide bonds in beta pleated sheet and collagen structures also produce substantial anisotropy, but less than for alpha helix. The anisotropy permits orientation of small structures of these types in magnetic fields of several kilogauss. PMID:281695

  10. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    NASA Astrophysics Data System (ADS)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  11. Effects of prenatal irradiation on the development of cerebral cortex and corpus callosum of the mouse

    SciTech Connect

    Schmidt, S.L.; Lent, R.

    1987-10-08

    Defects of the cerebral cortex and corpus callosum of mice subjected prenatally to gamma irradiation were evaluated as a function of dose and of embryonic age at irradiation. Pregnant mice were exposed to a gamma source at 16, 17, and 19 days of gestation (E16, E17, and E19, respectively), with total doses of 2 Gy and 3 Gy, in order to produce brain defects on their progeny. At 60 postnatal days, the brains of the offspring were analyzed qualitatively and quantitatively and compared with those of nonirradiated animals. Mice irradiated at E16 were all acallosal. Those that were exposed to 2 Gy displayed an aberrant longitudinal bundle typical of other acallosals, but this was not the case in those irradiated with 3 Gy. The corpus callosum of animals irradiated at E17 with 3 Gy was pronouncedly hypotrophic, but milder effects were observed in the other groups. Quantitative analysis confirmed a dependence of callosal midsagittal area upon dose and age at irradiation, and, in addition, indicated an interaction between these variables. The neocortex of irradiated animals was hypotrophic: layers II-III were much more affected than layer V, and this was more affected than layer VI. Quantitative analysis indicated that this effect also depended on dose and age at irradiation and that it was due to a loss of cortical neurons. Furthermore, a positive correlation was found between the number of neurons within layers II-III, and V and the midsagittal area of the corpus callosum. Ectopic neurons were found in the white matter and in layer I of animals irradiated at E16 and E17, indicating that fetal exposure to ionizing radiation interfered with the migration of cortical neuroblasts.

  12. Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation

    PubMed Central

    Humphreys, Glyn W.; Sotiropoulos, Stamatios N.; Kennard, Christopher; Cazzoli, Dario

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space

  13. Severe psychiatric disturbance and abnormalities of the corpus callosum: review and case series.

    PubMed Central

    David, A S; Wacharasindhu, A; Lishman, W A

    1993-01-01

    The association between developmental defects of the corpus callosum and major psychiatric disturbance is discussed with a review of published cases. Seven new cases are presented, of which four had clear psychotic symptoms, two receiving a diagnosis of schizophrenia. Of the remainder, one had a developmental disorder affecting social interaction and speech which could be classed as Asperger's syndrome, one had a personality disorder with depressive and conversion symptoms, and the last was an adolescent boy with severe behavioural problems. The difficulties in determining the precise relevance of the callosal anomalies to these clinical manifestations are discussed especially since the prevalence of such anomalies in the population is uncertain. Images PMID:8429328

  14. Msh2 deficiency leads to dysmyelination of the corpus callosum, impaired locomotion, and altered sensory function in mice

    PubMed Central

    Diouf, Barthelemy; Devaraju, Prakash; Janke, Laura J.; Fan, Yiping; Frase, Sharon; Eddins, Donnie; Peters, Jennifer L.; Kim, Jieun; Pei, Deqing; Cheng, Cheng; Zakharenko, Stanislav S.; Evans, William E.

    2016-01-01

    A feature in patients with constitutional DNA-mismatch repair deficiency is agenesis of the corpus callosum, the cause of which has not been established. Here we report a previously unrecognized consequence of deficiency in MSH2, a protein known primarily for its function in correcting nucleotide mismatches or insertions and deletions in duplex DNA caused by errors in DNA replication or recombination. We documented that Msh2 deficiency causes dysmyelination of the axonal projections in the corpus callosum. Evoked action potentials in the myelinated corpus callosum projections of Msh2-null mice were smaller than wild-type mice, whereas unmyelinated axons showed no difference. Msh2-null mice were also impaired in locomotive activity and had an abnormal response to heat. These findings reveal a novel pathogenic consequence of MSH2 deficiency, providing a new mechanistic hint to previously recognized neurological disorders in patients with inherited DNA-mismatch repair deficiency. PMID:27476972

  15. Msh2 deficiency leads to dysmyelination of the corpus callosum, impaired locomotion, and altered sensory function in mice.

    PubMed

    Diouf, Barthelemy; Devaraju, Prakash; Janke, Laura J; Fan, Yiping; Frase, Sharon; Eddins, Donnie; Peters, Jennifer L; Kim, Jieun; Pei, Deqing; Cheng, Cheng; Zakharenko, Stanislav S; Evans, William E

    2016-08-01

    A feature in patients with constitutional DNA-mismatch repair deficiency is agenesis of the corpus callosum, the cause of which has not been established. Here we report a previously unrecognized consequence of deficiency in MSH2, a protein known primarily for its function in correcting nucleotide mismatches or insertions and deletions in duplex DNA caused by errors in DNA replication or recombination. We documented that Msh2 deficiency causes dysmyelination of the axonal projections in the corpus callosum. Evoked action potentials in the myelinated corpus callosum projections of Msh2-null mice were smaller than wild-type mice, whereas unmyelinated axons showed no difference. Msh2-null mice were also impaired in locomotive activity and had an abnormal response to heat. These findings reveal a novel pathogenic consequence of MSH2 deficiency, providing a new mechanistic hint to previously recognized neurological disorders in patients with inherited DNA-mismatch repair deficiency.

  16. Corpus callosum size is highly heritable in humans, and may reflect distinct genetic influences on ventral and rostral regions.

    PubMed

    Woldehawariat, Girma; Martinez, Pedro E; Hauser, Peter; Hoover, David M; Drevets, Wayne W C; McMahon, Francis J

    2014-01-01

    Anatomical differences in the corpus callosum have been found in various psychiatric disorders, but data on the genetic contributions to these differences have been limited. The current study used morphometric MRI data to assess the heritability of corpus callosum size and the genetic correlations among anatomical sub-regions of the corpus callosum among individuals with and without mood disorders. The corpus callosum (CC) was manually segmented at the mid-sagittal plane in 42 women (healthy, n = 14; major depressive disorder, n = 15; bipolar disorder, n = 13) and their 86 child or adolescent offspring. Four anatomical sub-regions (CC-genu, CC2, CC3 and CC-splenium) and total CC were measured and analyzed. Heritability and genetic correlations were estimated using a variance components method, with adjustment for age, sex, diagnosis, and diagnosis x age, where appropriate. Significant heritability was found for several CC sub-regions (P<0.01), with estimated values ranging from 48% (splenium) to 67% (total CC). There were strong and significant genetic correlations among most sub regions. Correlations between the genu and mid-body, between the genu and total corpus callosum, and between anterior and mid body were all >90%, but no significant genetic correlations were detected between ventral and rostral regions in this sample. Genetic factors play an important role in corpus callosum size among individuals. Distinct genetic factors seem to be involved in caudal and rostral regions, consistent with the divergent functional specialization of these brain areas. PMID:24968245

  17. Shape analysis of corpus callosum in autism subtype using planar conformal mapping

    NASA Astrophysics Data System (ADS)

    He, Qing; Duan, Ye; Yin, Xiaotian; Gu, Xianfeng; Karsch, Kevin; Miles, Judith

    2009-02-01

    A number of studies have documented that autism has a neurobiological basis, but the anatomical extent of these neurobiological abnormalities is largely unknown. In this study, we aimed at analyzing highly localized shape abnormalities of the corpus callosum in a homogeneous group of autism children. Thirty patients with essential autism and twenty-four controls participated in this study. 2D contours of the corpus callosum were extracted from MR images by a semiautomatic segmentation method, and the 3D model was constructed by stacking the contours. The resulting 3D model had two openings at the ends, thus a new conformal parameterization for high genus surfaces was applied in our shape analysis work, which mapped each surface onto a planar domain. Surface matching among different individual meshes was achieved by re-triangulating each mesh according to a template surface. Statistical shape analysis was used to compare the 3D shapes point by point between patients with autism and their controls. The results revealed significant abnormalities in the anterior most and anterior body in essential autism group.

  18. Pre- and Postnatal Analysis of Chromosome 1q44 Deletion in Agenesis of Corpus Callosum

    PubMed Central

    Shetty, Mitesh; Srikanth, Ambika; Kadandale, Jayarama; Hegde, Sridevi

    2015-01-01

    Agenesis of corpus callosum (ACC) is one of the common brain abnormalities and also a common finding in children with mental disability. ACC is heterogeneous and can occur as an isolated condition or as part of a syndrome. ACC can be accurately identified by the absence of the cavum septum pallucidum and tear drop effect of the lateral ventricle after 18 weeks of pregnancy in an ultrasound scan. Genetic causes have been attributed to 30-45% of cases with ACC. Submicroscopic deletions of 1q43q44 have been reported in several cases of ACC. The AKT3 gene, mapped to 1q44, is required for the development of the callosum and brain size. It is considered to be a candidate gene for ACC. We studied a total of 22 cases with ACC, in pre- and postnatal samples using FISH probes. None of the samples showed a deletion in 1q44, implying that the AKT3 gene may not be associated with ACC. PMID:26648835

  19. Ontophyletics of the nervous system: development of the corpus callosum and evolution of axon tracts.

    PubMed Central

    Katz, M J; Lasek, R J; Silver, J

    1983-01-01

    The evolution of nervous systems has included significant changes in the axon tracts of the central nervous system. These evolutionary changes required changes in axonal growth in embryos. During development, many axons reach their targets by following guidance cues that are organized as pathways in the embryonic substrate, and the overall pattern of the major axon tracts in the adult can be traced back to the fundamental pattern of such substrate pathways. Embryological and comparative anatomical studies suggest that most axon tracts, such as the anterior commissure, have evolved by the modified use of preexisting substrate pathways. On the other hand, recent developmental studies suggest that a few entirely new substrate pathways have arisen during evolution; these apparently provided opportunities for the formation of completely new axon tracts. The corpus callosum, which is found only in placental mammals, may be such a truly new axon tract. We propose that the evolution of the corpus callosum is founded on the emergence of a new preaxonal substrate pathway, the "glial sling," which bridges the two halves of the embryonic forebrain only in placental mammals. Images PMID:6577462

  20. Early-life stress, corpus callosum development, hippocampal volumetrics, and anxious behavior in male nonhuman primates.

    PubMed

    Jackowski, Andrea; Perera, Tarique D; Abdallah, Chadi G; Garrido, Griselda; Tang, Cheuk Y; Martinez, Jose; Mathew, Sanjay J; Gorman, Jack M; Rosenblum, Leonard A; Smith, Eric L P; Dwork, Andrew J; Shungu, Dikoma C; Kaffman, Arie; Gelernter, Joel; Coplan, Jeremy D; Kaufman, Joan

    2011-04-30

    Male bonnet monkeys (Macaca radiata) were subjected to the variable foraging demand (VFD) early stress paradigm as infants, MRI scans were completed an average of 4 years later, and behavioral assessments of anxiety and ex-vivo corpus callosum (CC) measurements were made when animals were fully matured. VFD rearing was associated with smaller CC size, CC measurements were found to correlate with fearful behavior in adulthood, and ex-vivo CC assessments showed high consistency with earlier MRI measures. Region of interest (ROI) hippocampus and whole brain voxel-based morphometry assessments were also completed and VFD rearing was associated with reduced hippocampus and inferior and middle temporal gyri volumes. The animals were also characterized according to serotonin transporter genotype (5-HTTLPR), and the effect of genotype on imaging parameters was explored. The current findings highlight the importance of future research to better understand the effects of stress on brain development in multiple regions, including the corpus callosum, hippocampus, and other regions involved in emotion processing. Nonhuman primates provide a powerful model to unravel the mechanisms by which early stress and genetic makeup interact to produce long-term changes in brain development, stress reactivity, and risk for psychiatric disorders.

  1. A familial 7q36.3 duplication associated with agenesis of the corpus callosum.

    PubMed

    Wong, Keith; Moldrich, Randal; Hunter, Matthew; Edwards, Matthew; Finlay, David; O'Donnell, Sheridan; MacDougall, Tom; Bain, Nicole; Kamien, Benjamin

    2015-09-01

    Small chromosomal duplications involving 7q36.3 have rarely been reported. This clinical report describes four individuals from a three-generation family with agenesis of the corpus callosum (ACC) and a 0.73 Mb duplication of 7q36.3 detected by array CGH. The 7q36.3 duplication involves two genes: RNA Binding Motif Protein 33 (RBM33) and Sonic Hedgehog (SHH). Most affected family members had mild intellectual disability or borderline intellectual functioning, macrocephaly, a broad forehead, and widely spaced eyes. Two individuals had a Chiari type I malformation. This is the first family reported with ACC associated with a small duplication of these genes. While we cannot establish causation for the relationship between any single gene and the ACC in this family, there is a role for SHH in the formation of the corpus callosum through correct patterning and assembly of the commissural plate, and these data concur with vertebrate studies showing that a gain of SHH expands the facial primordium.

  2. Corpus callosum analysis using MDL-based sequential models of shape and appearance

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Davies, Rhodri H.; Ryberg, Charlotte

    2004-05-01

    This paper describes a method for automatically analysing and segmenting the corpus callosum from magnetic resonance images of the brain based on the widely used Active Appearance Models (AAMs) by Cootes et al. Extensions of the original method, which are designed to improve this specific case are proposed, but all remain applicable to other domain problems. The well-known multi-resolution AAM optimisation is extended to include sequential relaxations on texture resolution, model coverage and model parameter constraints. Fully unsupervised analysis is obtained by exploiting model parameter convergence limits and a maximum likelihood estimate of shape and pose. Further, the important problem of modelling object neighbourhood is addressed. Finally, we describe how correspondence across images is achieved by selecting the minimum description length (MDL) landmarks from a set of training boundaries using the recently proposed method of Davies et al. This MDL-approach ensures a unique parameterisation of corpus callosum contour variation, which is crucial for neurological studies that compare reference areas such as rostrum, splenium, et cetera. We present quantitative and qualitative results that show that the method produces accurate, robust and rapid segmentations in a cross sectional study of 17 subjects, establishing its feasibility as a fully automated clinical tool for analysis and segmentation.

  3. MKS1 mutations cause Joubert syndrome with agenesis of the corpus callosum.

    PubMed

    Bader, Ingrid; Decker, E; Mayr, J A; Lunzer, V; Koch, J; Boltshauser, E; Sperl, W; Pietsch, P; Ertl-Wagner, B; Bolz, H; Bergmann, C; Rittinger, O

    2016-08-01

    Joubert syndrome (JS) is a clinically and genetically heterogeneous ciliopathy characterized by episodic hyperpnea and apnea, hypotonia, ataxia, cognitive impairment and ocular motor apraxia. The "molar tooth sign" is pathognomonic of this condition. Mutations in the MKS1 gene are a major cause of Meckel-Gruber syndrome (MKS), the most common form of syndromic neural tube defects, frequently resulting in perinatal lethality. We present the phenotype and genotype of a child with severe JS and agenesis of the corpus callosum (ACC). In our patient, a next generation sequencing (NGS) approach revealed the following two variants of the MKS1 gene: first, a novel missense variant [ c.240G > T (p.Trp80Cys)], which affects a residue that is evolutionarily highly conserved in mammals and ciliates; second, a 29 bp deletion in intron 15 [c.1408-35_1408-7del29], a founder mutation, which in a homozygous state constitutes the major cause of MKS in Finland. We review the MKS1-variants in all of the eleven JS patients reported to date and compare these patients to our case. To our knowledge, this is the first patient with Joubert syndrome and agenesis of the corpus callosum where a potentially causal genotype is provided.

  4. Behavioral correlates of corpus callosum size: Anatomical/behavioral relationships vary across sex/handedness groups

    PubMed Central

    Welcome, Suzanne E.; Chiarello, Christine; Towler, Stephen; Halderman, Laura K.; Otto, Ronald; Leonard, Christiana M.

    2009-01-01

    There are substantial individual differences in the size and shape of the corpus callosum and such differences are thought to relate to behavioral lateralization. We report findings from a large scale investigation of relationships between brain anatomy and behavioral asymmetry on a battery of visual word recognition tasks. A sample of 200 individuals was divided into groups on the basis of sex and consistency of handedness. We investigated differences between sex/handedness groups in callosal area and relationships between callosal area and behavioral predictors. Sex/handedness groups did not show systematic differences in callosal area or behavioral asymmetry. However, the groups differed in the relationships between area of the corpus callosum and behavioral asymmetry. Among consistent-handed males, callosal area was negatively related to behavioral laterality. Among mixed-handed males and consistent-handed females, behavioral laterality was not predictive of callosal area. The most robust relationship was observed in mixed-handed females, in whom behavioral asymmetry was positively related to callosal area. Our study demonstrates the importance of considering brain/behavior relationships within sub-populations, as relationships between behavioral asymmetry and callosal anatomy varied across subject groups. PMID:19383501

  5. MKS1 mutations cause Joubert syndrome with agenesis of the corpus callosum.

    PubMed

    Bader, Ingrid; Decker, E; Mayr, J A; Lunzer, V; Koch, J; Boltshauser, E; Sperl, W; Pietsch, P; Ertl-Wagner, B; Bolz, H; Bergmann, C; Rittinger, O

    2016-08-01

    Joubert syndrome (JS) is a clinically and genetically heterogeneous ciliopathy characterized by episodic hyperpnea and apnea, hypotonia, ataxia, cognitive impairment and ocular motor apraxia. The "molar tooth sign" is pathognomonic of this condition. Mutations in the MKS1 gene are a major cause of Meckel-Gruber syndrome (MKS), the most common form of syndromic neural tube defects, frequently resulting in perinatal lethality. We present the phenotype and genotype of a child with severe JS and agenesis of the corpus callosum (ACC). In our patient, a next generation sequencing (NGS) approach revealed the following two variants of the MKS1 gene: first, a novel missense variant [ c.240G > T (p.Trp80Cys)], which affects a residue that is evolutionarily highly conserved in mammals and ciliates; second, a 29 bp deletion in intron 15 [c.1408-35_1408-7del29], a founder mutation, which in a homozygous state constitutes the major cause of MKS in Finland. We review the MKS1-variants in all of the eleven JS patients reported to date and compare these patients to our case. To our knowledge, this is the first patient with Joubert syndrome and agenesis of the corpus callosum where a potentially causal genotype is provided. PMID:27377014

  6. Impaired Levels of Gangliosides in the Corpus Callosum of Huntington Disease Animal Models

    PubMed Central

    Di Pardo, Alba; Amico, Enrico; Maglione, Vittorio

    2016-01-01

    Huntington Disease (HD) is a genetic neurodegenerative disorder characterized by broad types of cellular and molecular dysfunctions that may affect both neuronal and non-neuronal cell populations. Among all the molecular mechanisms underlying the complex pathogenesis of the disease, alteration of sphingolipids has been identified as one of the most important determinants in the last years. In the present study, besides the purpose of further confirming the evidence of perturbed metabolism of gangliosides GM1, GD1a, and GT1b the most abundant cerebral glycosphingolipids, in the striatal and cortical tissues of HD transgenic mice, we aimed to test the hypothesis that abnormal levels of these lipids may be found also in the corpus callosum white matter, a ganglioside-enriched brain region described being dysfunctional early in the disease. Semi-quantitative analysis of GM1, GD1a, and GT1b content indicated that ganglioside metabolism is a common feature in two different HD animal models (YAC128 and R6/2 mice) and importantly, demonstrated that levels of these gangliosides were significantly reduced in the corpus callosum white matter of both models starting from the early stages of the disease. Besides corroborating the evidence of aberrant ganglioside metabolism in HD, here, we found out for the first time, that ganglioside dysfunction is an early event in HD models and it may potentially represent a critical molecular change influencing the pathogenesis of the disease. PMID:27766070

  7. Heliospheric influence on the anisotropy of TeV cosmic rays

    SciTech Connect

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-07-20

    This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy. When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.

  8. Amiba Observation of CMB Anisotropies

    NASA Astrophysics Data System (ADS)

    Ng, Kin-Wang

    2003-03-01

    The Array for Microwave Background Anisotropies (AMiBA), a 13-element dual-channel 85-105 GHz interferometer array with full polarization capabilities, is being built to search for high redshift clusters of galaxies via the Sunyaev-Zel'dovich effect as well as to probe the polarization properties of the cosmic microwave background (CMB). We discuss several important issues in the observation of the CMB anisotropies such as observing strategy, l space resolution and mosaicing, optimal estimation of the power spectra, and ground pickup removal.

  9. Anisotropy of machine building materials

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.

  10. Corpus Callosum Size, Reaction Time Speed and Variability in Mild Cognitive Disorders and in a Normative Sample

    ERIC Educational Resources Information Center

    Anstey, Kaarin J.; Mack, Holly A.; Christensen, Helen; Li, Shu-Chen; Reglade-Meslin, Chantal; Maller, Jerome; Kumar, Rajeev; Dear, Keith; Easteal, Simon; Sachdev, Perminder

    2007-01-01

    Intra-individual variability in reaction time increases with age and with neurological disorders, but the neural correlates of this increased variability remain uncertain. We hypothesized that both faster mean reaction time (RT) and less intra-individual RT variability would be associated with larger corpus callosum (CC) size in older adults, and…

  11. The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice.

    PubMed

    Sohn, Jiho; Orosco, Lori; Guo, Fuzheng; Chung, Seung-Hyuk; Bannerman, Peter; Mills Ko, Emily; Zarbalis, Kostas; Deng, Wenbin; Pleasure, David

    2015-03-01

    Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.

  12. [STRUCTURE OF HUMAN CORPUS CALLOSUM IN AFTER-DEATH STATE COMPARED TO INTRA-VITAM MRI IMAGES].

    PubMed

    Boiagina, O

    2016-05-01

    Our preliminary results suggest that the corpus callosum is composed of a certain number of stringy formations visualized on macroscopic and microscopic level that we proposed to call commissural funiculi. They are treated as subcallous units of the first order. The purpose of this research is to find out the form of the above-mentioned corpus callosum formations as being displayed on its sagittal profile as well as the extent to which they are displayed. The material used was male and female cerebrum of mature age people, who died for reasons not related to the pathology of the central nervous system. Cerebrum extracted from the skull after being washed was exposed to a two week fixation in 10% formalin solution. The sagittal plane slicer was used for brain dissection. Photo fixation of the medial surface of hemispheres was implemented with a digital camera. It was found out that the sagittal cut of the corpus callosum can be represented as a formation having segmental structure principle. Also, according to our observations, the trunk of the corpus callosum has distinct morphological features of bilateral asymmetry.

  13. Chiari type 1 malformation, corpus callosum agenesis and patent craniopharyngeal canal in an 11-year-old boy.

    PubMed

    Tijssen, Maud Pm; Poretti, Andrea; Huisman, Thierry Agm

    2016-10-01

    We describe the neuroimaging findings of an 11-year-old boy who presented with mild occipital headache and precocious puberty. This child was found to have a combination of various midline anomalies including a Chiari type 1 malformation, corpus callosum agenesis and patent craniopharyngeal canal with adjacent intracranial dermoid cyst.

  14. [STRUCTURE OF HUMAN CORPUS CALLOSUM IN AFTER-DEATH STATE COMPARED TO INTRA-VITAM MRI IMAGES].

    PubMed

    Boiagina, O

    2016-05-01

    Our preliminary results suggest that the corpus callosum is composed of a certain number of stringy formations visualized on macroscopic and microscopic level that we proposed to call commissural funiculi. They are treated as subcallous units of the first order. The purpose of this research is to find out the form of the above-mentioned corpus callosum formations as being displayed on its sagittal profile as well as the extent to which they are displayed. The material used was male and female cerebrum of mature age people, who died for reasons not related to the pathology of the central nervous system. Cerebrum extracted from the skull after being washed was exposed to a two week fixation in 10% formalin solution. The sagittal plane slicer was used for brain dissection. Photo fixation of the medial surface of hemispheres was implemented with a digital camera. It was found out that the sagittal cut of the corpus callosum can be represented as a formation having segmental structure principle. Also, according to our observations, the trunk of the corpus callosum has distinct morphological features of bilateral asymmetry. PMID:27348174

  15. Endogenous testosterone concentration, mental rotation, and size of the corpus callosum in a sample of young Hungarian women.

    PubMed

    Karádi, Kázmér; Kállai, János; Kövér, Ferenc; Nemes, János; Makány, Tamás; Nagy, Ferenc

    2006-04-01

    In the present study brain laterality, hemispheric communication, and mental rotation performance were examined. A sample of 33 women were tested for a possible linear relationship of testosterone level and mental rotation with structural background of the brain. Subjects with a smaller splenial area of corpus callosum tended to have lower levels of testosterone (r =.37, p<.05). However, there were no significant differences in mean scores of mental rotation of object and hand between groups with high and low levels of testosterone. There was a significant difference in relative size of the 6th area (slice) of the corpus callosum between groups with good and poor scores on mental rotation of an object and also in relative size of the 4th and 5th slices of the corpus callosum between groups on mental rotation of the hand. The good and poor scorers' show different relations with the measures of the corpus. The mental rotation of hand was associated with the parietal areas of the corpus callosum, while the mental rotation of object was associated only with the occipital area. These observations suggest that higher testosterone levels may be associated with a larger splenial area, which represents an important connection between the parieto-occipitocortical areas involved in activation of mental images. Further srudy is encouraged.

  16. Neurotransmitter receptors and voltage-dependent Ca2+ channels encoded by mRNA from the adult corpus callosum.

    PubMed

    Matute, C; Miledi, R

    1993-04-15

    The presence of mRNAs encoding neurotransmitter receptors and voltage-gated channels in the adult human and bovine corpus callosum was investigated using Xenopus oocytes. Oocytes injected with mRNA extracted from the corpus callosum expressed functional receptors to glutamate, acetylcholine, and serotonin, and also voltage-operated Ca2+ channels, all with similar properties in the two species studied. Acetylcholine and serotonin elicited oscillatory Cl- currents due to activation of the inositol phosphate-Ca2+ receptor-channel coupling system. Glutamate and its analogs N-methyl-D-aspartate (NMDA), kainate, quisqualate, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) induced smooth currents. The non-NMDA responses showed a strong inward rectification at positive potentials and were potently blocked by 6,7-dinitroquinoxaline-2,3-dione, as observed for the AMPA/kainate glutamate receptors GLUR1 and GLUR3. Furthermore, in situ hybridization experiments showed that GLUR1 and GLUR3 mRNAs are present in corpus callosum cells that were labeled with antiserum to glial fibrillary acid protein and that, in primary cell cultures, had the morphology of type 2 astrocytes. These results indicate that glial cells in the adult corpus callosum possess mRNA encoding functional neurotransmitter receptors and Ca2+ channels. These molecules may provide a mechanism for glial-neuronal interactions. PMID:7682696

  17. The microwave background anisotropies: observations.

    PubMed

    Wilkinson, D

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation-fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 microK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1 degrees and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe--the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century.

  18. Agenesis and Dysgenesis of the Corpus Callosum: Clinical, Genetic and Neuroimaging Findings in a Series of 41 Patients

    PubMed Central

    Schell-Apacik, Chayim Can; Wagner, Kristina; Bihler, Moritz; Ertl-Wagner, Birgit; Heinrich, Uwe; Klopocki, Eva; Kalscheuer, Vera M.; Muenke, Maximilian; von Voss, Hubertus

    2009-01-01

    Agenesis of the corpus callosum (ACC) is among the most frequent human brain malformations with an incidence of 0.5–70 in 10,000. It is a heterogeneous condition, for which several different genetic causes are known, for example, ACC as part of monogenic syndromes or complex chromosomal rearrangements. We systematically evaluated the data of 172 patients with documented corpus callosum abnormalities in the records, and 23 patients with chromosomal rearrangements known to be associated with corpus callosum changes. All available neuroimaging data, including CT and MRI, were re-evaluated following a standardized protocol. Whenever feasible chromosome and subtelomere analyses as well as molecular genetic testing were performed in patients with disorders of the corpus callosum in order to identify a genetic diagnosis. Our results showed that 41 patients with complete absence (agenesis of the corpus callosum—ACC) or partial absence (dysgenesis of the corpus callosum—DCC) were identified. Out of these 28 had ACC, 13 had DCC. In 11 of the 28 patients with ACC, the following diagnoses could be established: Mowat–Wilson syndrome (n = 2), Walker–Warburg syndrome (n = 1), oro-facial-digital syndrome type 1 (n = 1), and chromosomal rearrangements (n = 7), including a patient with an apparently balanced reciprocal translocation, which led to the disruption and a predicted loss of function in the FOXG1B gene. The cause of the ACC in 17 patients remained unclear. In 2 of the 13 patients with DCC, unbalanced chromosomal rearrangements could be detected (n = 2), while the cause of DCC in 11 patients remained unclear. In our series of cases a variety of genetic causes of disorders of the corpus callosum were identified with cytogenetic anomalies representing the most common underlying etiology. PMID:18792984

  19. In Vivo Longitudinal Monitoring of Changes in the Corpus Callosum Integrity During Disease Progression in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kara, F; Höfling, C; Roßner, S; Schliebs, R; Van der Linden, A; Groot, H J M; Alia, A

    2015-01-01

    The corpus callosum is the largest commissural fiber connecting left and right hemisphere of the brain. Emerging evidence suggests that a variety of abnormalities detected in the microstructure of this white matter fiber can be an early event in Alzheimer's disease (AD) pathology. However, little is known about tissue characteristics of these abnormalities and how these abnormalities evolve during AD progression. In this study, we measured in vivo magnetic resonance transverse relaxation times (T2) to longitudinally monitor changes in tissue integrity and abnormalities related to myelination and demyelination processes in corpus callosum of AD mouse models. The most striking finding of our study was a significant elongation of T2 values in the corpus callosum at 10, 14, 16 and 18 months of age compared to age-matched wild-type mice. In contrast, the gray matter regions surrounding the corpus callosum, such as the cortex and hippocampus, showed a significant T2 decrease compared to wild-type mice. Histological analyses clearly revealed demyelination, gliosis and amyloid-plaque deposition in the corpus callosum. Our results suggest that demyelinating and inflammatory pathology may result in prolonged relaxation time during AD progression. To our knowledge, this is the first in vivo T2 study assessing the microstructural changes with age in the corpus callosum of the Tg2576 mouse model and it demonstrates the application of T2 measurement to noninvasively detect tissue integrity of the corpus callosum, which can be an early event in disease progression.

  20. Correlation between Corpus Callosum Sub-Segmental Area and Cognitive Processes in School-Age Children

    PubMed Central

    Moreno, Martha Beatriz; Concha, Luis; González-Santos, Leopoldo; Ortiz, Juan Jose; Barrios, Fernando Alejandro

    2014-01-01

    We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood. PMID:25170897

  1. The corpus callosum and empathy in adults with a history of preterm birth.

    PubMed

    Lawrence, E J; Allen, G M; Walshe, M; Allin, M; Murray, R; Rifkin, L; McGuire, P K; Nosarti, C

    2010-07-01

    Reduced posterior corpus callosum (CC) area has been consistently observed in children and adolescents born very preterm (VPT). CC structural differences are also observed in people diagnosed with empathy disorders. This study examined empathy in relation to CC size in VPT adults and controls. CC area was manually measured for 17 VPT adults and 9 controls. Participants completed the Interpersonal Reactivity Index (Davis, 1980) and the Empathy Quotient (Baron-Cohen & Wheelwright, 2004). VPT adults had reduced posterior CC area in contrast to controls, and a positive linear trend was observed between posterior CC size and gestational age. No between-group empathy differences were observed, although self-reported personal distress in response to social situations was higher in VPT adults, and negatively associated with anterior CC area. We conclude that VPT adults have a smaller posterior CC, which is associated with gestational age, and elevated social distress, which may be mediated by anterior CC size.

  2. A two-year longitudinal MRI study of the corpus callosum in autism.

    PubMed

    Frazier, Thomas W; Keshavan, Matcheri S; Minshew, Nancy J; Hardan, Antonio Y

    2012-11-01

    A growing body of literature has identified size reductions of the corpus callosum (CC) in autism. However, to our knowledge, no published studies have reported on the growth of CC volumes in youth with autism. Volumes of the total CC and its sub-divisions were obtained from 23 male children with autism and 23 age- and gender-matched controls at baseline and 2-year follow-up. Persistent reductions in total CC volume were observed in participants with autism relative to controls. Only the rostral body subdivision showed a normalization of size over time. Persistent reductions are consistent with the diagnostic stability and life-long impairment observed in many individuals with autism. Multi-modal imaging studies are needed to identify specific fiber tracks contributing to CC reductions.

  3. Learning and memory in individuals with agenesis of the corpus callosum.

    PubMed

    Paul, Lynn K; Erickson, Roger L; Hartman, Jo Ann; Brown, Warren S

    2016-06-01

    Damage to long white matter pathways in the cerebral cortex is known to affect memory capacity. However, the specific contribution of interhemispheric connectivity in memory functioning is only beginning to become understood. The present study examined verbal and visual memory processing in individuals with agenesis of the corpus callosum (AgCC) using the Wechsler Memory Scale-Third Edition (WMS-III; Wechsler, 1997b). Thirty participants with AgCC (FSIQ >78) were compared against 30 healthy age and IQ matched controls on auditory/verbal (Logical Memory, Verbal Paired Associates) and visual (Visual Reproduction, Faces) memory subtests. Performance was worse in AgCC than controls on immediate and delayed verbal recall for rote word pairs and on delayed recall of faces, as well as on percent recall for these tasks. Immediate recall for thematic information from stories was also worse in AgCC, but groups did not differ on memory for details from narratives or on recall for thematic information following a time delay. Groups also did not differ on memory for abstract figures or immediate recall of faces. On all subtests, individuals with AgCC had greater frequency of clinically significant impairments than predicted by the normal distribution. Results suggest less efficient overall verbal and visual learning and memory with relative weaknesses processing verbal pairs and delayed recall for faces. These findings suggest that the corpus callosum facilitates more efficient learning and recall for both verbal and visual information, that individuals with AgCC may benefit from receiving verbal information within semantic context, and that known deficits in facial processing in individuals with AgCC may contribute to their impairments in recall for faces.

  4. A framework for the automatic detection and characterization of brain malformations: Validation on the corpus callosum.

    PubMed

    Peruzzo, Denis; Arrigoni, Filippo; Triulzi, Fabio; Righini, Andrea; Parazzini, Cecilia; Castellani, Umberto

    2016-08-01

    In this paper, we extend the one-class Support Vector Machine (SVM) and the regularized discriminative direction analysis to the Multiple Kernel (MK) framework, providing an effective analysis pipeline for the detection and characterization of brain malformations, in particular those affecting the corpus callosum. The detection of the brain malformations is currently performed by visual inspection of MRI images, making the diagnostic process sensible to the operator experience and subjectiveness. The method we propose addresses these problems by automatically reproducing the neuroradiologist's approach. One-class SVMs are appropriate to cope with heterogeneous brain abnormalities that are considered outliers. The MK framework allows to efficiently combine the different geometric features that can be used to describe brain structures. Moreover, the regularized discriminative direction analysis is exploited to highlight the specific malformative patterns for each patient. We performed two different experiments. Firstly, we tested the proposed method to detect the malformations of the corpus callosum on a 104 subject dataset. Results showed that the proposed pipeline can classify the subjects with an accuracy larger than 90% and that the discriminative direction analysis can highlight a wide range of malformative patterns (e.g., local, diffuse, and complex abnormalities). Secondly, we compared the diagnosis of four neuroradiologists on a dataset of 128 subjects. The diagnosis was performed both in blind condition and using the classifier and the discriminative direction outputs. Results showed that the use of the proposed pipeline as an assisted diagnosis tool improves the inter-subject variability of the diagnosis. Finally, a graphical representation of the discriminative direction analysis was proposed to enhance the interpretability of the results and provide the neuroradiologist with a tool to fully and clearly characterize the patient malformations at single

  5. Learning and memory in individuals with agenesis of the corpus callosum.

    PubMed

    Paul, Lynn K; Erickson, Roger L; Hartman, Jo Ann; Brown, Warren S

    2016-06-01

    Damage to long white matter pathways in the cerebral cortex is known to affect memory capacity. However, the specific contribution of interhemispheric connectivity in memory functioning is only beginning to become understood. The present study examined verbal and visual memory processing in individuals with agenesis of the corpus callosum (AgCC) using the Wechsler Memory Scale-Third Edition (WMS-III; Wechsler, 1997b). Thirty participants with AgCC (FSIQ >78) were compared against 30 healthy age and IQ matched controls on auditory/verbal (Logical Memory, Verbal Paired Associates) and visual (Visual Reproduction, Faces) memory subtests. Performance was worse in AgCC than controls on immediate and delayed verbal recall for rote word pairs and on delayed recall of faces, as well as on percent recall for these tasks. Immediate recall for thematic information from stories was also worse in AgCC, but groups did not differ on memory for details from narratives or on recall for thematic information following a time delay. Groups also did not differ on memory for abstract figures or immediate recall of faces. On all subtests, individuals with AgCC had greater frequency of clinically significant impairments than predicted by the normal distribution. Results suggest less efficient overall verbal and visual learning and memory with relative weaknesses processing verbal pairs and delayed recall for faces. These findings suggest that the corpus callosum facilitates more efficient learning and recall for both verbal and visual information, that individuals with AgCC may benefit from receiving verbal information within semantic context, and that known deficits in facial processing in individuals with AgCC may contribute to their impairments in recall for faces. PMID:27091586

  6. Measurements of the Cosmic Microwave Background Anisotropies with Archeops

    NASA Astrophysics Data System (ADS)

    Benoit, A.

    Archeops is a balloon-borne instrument dedicated to measuring cosmic microwave background (CMB) temperature anisotropies at high angular resolution (about 8 arcminutes) over a large fraction (30%) of the sky in the millimetre domain (from 143 to 545 GhZ). Here, we describe the latest results from the instument during the 2 main flights that happened during the Arctic night from Kiruna (Sweden) to Russia in 2001 and 2002. Various sources of noise are discussed, including atmospheric noise, parasitic noise, photon noise, cosmic variance, ... The white noise sensitivity of the experiment is about 90 microKCMB per 20 arcminute size pixel. Best estimates of the angular power spectrum of the CMB anisotropies are presented. The consequences in terms of cosmological parameters are outlined. Other results include the first measurement of polarisation and accurate maps of the galactic plane diffuse millimetre emission.

  7. Magnetic anisotropy in single clusters

    NASA Astrophysics Data System (ADS)

    Jamet, Matthieu; Wernsdorfer, Wolfgang; Thirion, Christophe; Dupuis, Véronique; Mélinon, Patrice; Pérez, Alain; Mailly, Dominique

    2004-01-01

    The magnetic measurements on single cobalt and iron nanoclusters containing almost 1000 atoms are presented. Particles are directly buried within the superconducting film of a micro-SQUID (superconducting quantum interference device) which leads to the required sensitivity. The angular dependence of the switching field in three dimensions turns out to be in good agreement with a uniform rotation of cluster magnetization. The Stoner and Wohlfarth model yields therefore an estimation of magnetic anisotropy in a single cluster. In particular, uniaxial, biaxial, and cubic contributions can be separated. Results are interpreted on the basis of a simple atomic model in which clusters are assimilated to “giant spins.” We present an extension of the Néel model to clusters in order to estimate surface anisotropy. In the case of cobalt, this last contribution dominates and numerical simulations allow us to get the morphology of the investigated clusters.

  8. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10-7, where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  9. [Cosmic Microwave Background (CMB) Anisotropies

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  10. Fraction Reduction through Continued Fractions

    ERIC Educational Resources Information Center

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  11. Magnetic Anisotropy in the Radula of Chiton

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Gao; Qian, Xia; Liu, Wei; Liu, Chuan-Lin; Zhan, Wen-Shan

    2000-07-01

    Radular teeth of chitons were studied by using magnetic torque-meter and transmission electron microscopy (TEM). The magnetic torque curves give clear evidence of presence of strong uni-axial magnetic anisotropy. The easy axis is along the length direction of tongue-like radula. The TEM pattern shows that long chip-like magnetite nano-scaled particles packed in the radular teeth with both uni-axial shape anisotropy and magneto-crystalline anisotropy.

  12. Variance Anisotropy in Kinetic Plasmas

    NASA Astrophysics Data System (ADS)

    Parashar, Tulasi N.; Oughton, Sean; Matthaeus, William H.; Wan, Minping

    2016-06-01

    Solar wind fluctuations admit well-documented anisotropies of the variance matrix, or polarization, related to the mean magnetic field direction. Typically, one finds a ratio of perpendicular variance to parallel variance of the order of 9:1 for the magnetic field. Here we study the question of whether a kinetic plasma spontaneously generates and sustains parallel variances when initiated with only perpendicular variance. We find that parallel variance grows and saturates at about 5% of the perpendicular variance in a few nonlinear times irrespective of the Reynolds number. For sufficiently large systems (Reynolds numbers) the variance approaches values consistent with the solar wind observations.

  13. Study of anisotropy of cosmic ray arrival directions from maket ani data

    NASA Astrophysics Data System (ADS)

    Ter-Antonyan, S. V.; Chilingarian, A. A.; Gharagyozyan, G. V.; Ghazaryan, S. S.; Haroyan, L. S.; Hovsepyan, G. G.; Martirosyan, H. S.; Melkumyan, L. G.; Sokhoyan, S. H.

    Based on MAKET-ANI EAS data the distributions of equatorial coordinates of EAS core directions are obtained in the knee region. Anisotropy of primary cosmic rays is displayed only by declination equatorial coordinates (δa 200 ± 30 ) at primary energies more than 5-10 PeV. The fraction of anisotropic component turns out ˜ 10% in the knee region.

  14. Formation of Magnetic Anisotropy by Lithography

    PubMed Central

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2–0.3 erg/cm2 for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  15. Formation of Magnetic Anisotropy by Lithography.

    PubMed

    Kim, Si Nyeon; Nam, Yoon Jae; Kim, Yang Doo; Choi, Jun Woo; Lee, Heon; Lim, Sang Ho

    2016-01-01

    Artificial interface anisotropy is demonstrated in alternating Co/Pt and Co/Pd stripe patterns, providing a means of forming magnetic anisotropy using lithography. In-plane hysteresis loops measured along two principal directions are explained in depth by two competing shape and interface anisotropies, thus confirming the formation of interface anisotropy at the Co/Pt and Co/Pd interfaces of the stripe patterns. The measured interface anisotropy energies, which are in the range of 0.2-0.3 erg/cm(2) for both stripes, are smaller than those observed in conventional multilayers, indicating a decrease in smoothness of the interfaces when formed by lithography. The demonstration of interface anisotropy in the Co/Pt and Co/Pd stripe patterns is of significant practical importance, because this setup makes it possible to form anisotropy using lithography and to modulate its strength by controlling the pattern width. Furthermore, this makes it possible to form more complex interface anisotropy by fabricating two-dimensional patterns. These artificial anisotropies are expected to open up new device applications such as multilevel bits using in-plane magnetoresistive thin-film structures. PMID:27216420

  16. Anomalous Nernst Effect with Magnetocrystalline Anisotropy (110)

    NASA Astrophysics Data System (ADS)

    Chesman, Carlos; Costa Neto, Jose; Department of Physics-UFRN Team

    2014-03-01

    When a ferromagnetic material is submitted to a temperature gradient and the magnetic field generates voltage on the edges of the samples, this is called the Anomalous Nernst Effect (ANE). The Heusler alloys that currently exhibit this effect are the most promising for spintronics and spin caloritronics. In this study we perform a theoretical investigation of voltage curves associated to the ANE, when the material displays magnetocrystalline anisotropy for experimental results in two configurations, ANE versus applied magnetic field and planar angle variations of ANE. We analyzed three types of magnetocrystalline anisotropy: cubic anisotropy (100) with C4 symmetry, uniaxial anisotropy with C2 symmetry and cubic anisotropy (110). The aim was to prove that cubic anisotropy (110) is equivalent to anisotropy (100) combined with uniaxial anisotropy. Theoretical fitting of experimental ANE data demonstrates this total equivalence and that a new interpretation with the use of cubic anisotropy (110) may be due to the atomic arrangement of the so-called full-Heusler. Comparative analyses of Co2FeAl and Co2MnGe alloys will be presented. CNPq, CAPES, FAPERN.

  17. Functional Topography of Human Corpus Callosum: An fMRI Mapping Study

    PubMed Central

    Fabri, Mara; Polonara, Gabriele

    2013-01-01

    The concept of a topographical map of the corpus callosum (CC) has emerged from human lesion studies and from electrophysiological and anatomical tracing investigations in other mammals. Over the last few years a rising number of researchers have been reporting functional magnetic resonance imaging (fMRI) activation in white matter, particularly the CC. In this study the scope for describing CC topography with fMRI was explored by evoking activation through simple sensory stimulation and motor tasks. We reviewed our published and unpublished fMRI and diffusion tensor imaging data on the cortical representation of tactile, gustatory, auditory, and visual sensitivity and of motor activation, obtained in 36 normal volunteers and in 6 patients with partial callosotomy. Activation foci were consistently detected in discrete CC regions: anterior (taste stimuli), central (motor tasks), central and posterior (tactile stimuli), and splenium (auditory and visual stimuli). Reconstruction of callosal fibers connecting activated primary gustatory, motor, somatosensory, auditory, and visual cortices by diffusion tensor tracking showed bundles crossing, respectively, through the genu, anterior and posterior body, and splenium, at sites harboring fMRI foci. These data confirm that the CC commissure has a topographical organization and demonstrate that its functional topography can be explored with fMRI. PMID:23476810

  18. Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum.

    PubMed

    Tovar-Moll, Fernanda; Monteiro, Myriam; Andrade, Juliana; Bramati, Ivanei E; Vianna-Barbosa, Rodrigo; Marins, Theo; Rodrigues, Erika; Dantas, Natalia; Behrens, Timothy E J; de Oliveira-Souza, Ricardo; Moll, Jorge; Lent, Roberto

    2014-05-27

    Why do humans born without the corpus callosum, the major interhemispheric commissure, lack the disconnection syndrome classically described in callosotomized patients? This paradox was discovered by Nobel laureate Roger Sperry in 1968, and has remained unsolved since then. To tackle the hypothesis that alternative neural pathways could explain this puzzle, we investigated patients with callosal dysgenesis using structural and functional neuroimaging, as well as neuropsychological assessments. We identified two anomalous white-matter tracts by deterministic and probabilistic tractography, and provide supporting resting-state functional neuroimaging and neuropsychological evidence for their functional role in preserved interhemispheric transfer of complex tactile information, such as object recognition. These compensatory pathways connect the homotopic posterior parietal cortical areas (Brodmann areas 39 and surroundings) via the posterior and anterior commissures. We propose that anomalous brain circuitry of callosal dysgenesis is determined by long-distance plasticity, a set of hardware changes occurring in the developing brain after pathological interference. So far unknown, these pathological changes somehow divert growing axons away from the dorsal midline, creating alternative tracts through the ventral forebrain and the dorsal midbrain midline, with partial compensatory effects to the interhemispheric transfer of cortical function. PMID:24821757

  19. Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum

    PubMed Central

    Tovar-Moll, Fernanda; Monteiro, Myriam; Andrade, Juliana; Bramati, Ivanei E.; Vianna-Barbosa, Rodrigo; Marins, Theo; Rodrigues, Erika; Dantas, Natalia; Behrens, Timothy E. J.; de Oliveira-Souza, Ricardo; Moll, Jorge; Lent, Roberto

    2014-01-01

    Why do humans born without the corpus callosum, the major interhemispheric commissure, lack the disconnection syndrome classically described in callosotomized patients? This paradox was discovered by Nobel laureate Roger Sperry in 1968, and has remained unsolved since then. To tackle the hypothesis that alternative neural pathways could explain this puzzle, we investigated patients with callosal dysgenesis using structural and functional neuroimaging, as well as neuropsychological assessments. We identified two anomalous white-matter tracts by deterministic and probabilistic tractography, and provide supporting resting-state functional neuroimaging and neuropsychological evidence for their functional role in preserved interhemispheric transfer of complex tactile information, such as object recognition. These compensatory pathways connect the homotopic posterior parietal cortical areas (Brodmann areas 39 and surroundings) via the posterior and anterior commissures. We propose that anomalous brain circuitry of callosal dysgenesis is determined by long-distance plasticity, a set of hardware changes occurring in the developing brain after pathological interference. So far unknown, these pathological changes somehow divert growing axons away from the dorsal midline, creating alternative tracts through the ventral forebrain and the dorsal midbrain midline, with partial compensatory effects to the interhemispheric transfer of cortical function. PMID:24821757

  20. Topographic organization of V1 projections through the corpus callosum in humans.

    PubMed

    Saenz, M; Fine, I

    2010-10-01

    The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.

  1. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    PubMed

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. PMID:25092805

  2. Progesterone and Nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex

    PubMed Central

    el-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2014-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation and axonal degeneration. Current therapies are limited to immunomodulators and anti-inflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2+ oligodendrocyte progenitor cells and CA II+ mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin. PMID:25092805

  3. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry.

    PubMed

    Phillips, Kimberley A; Stimpson, Cheryl D; Smaers, Jeroen B; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R; Sherwood, Chet C

    2015-11-01

    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry.

  4. Orodental manifestations in cases with partial agenesis of corpus callosum-rare phenomena

    PubMed Central

    Bhambal, Annette M.; Bhambal, Ajay; Nair, Preeti; Bhambal, Sheela S.

    2015-01-01

    This article focuses on the associated signs and symptoms of patients with partial agenesis of the corpus callosum. The orodental manifestations of such cases have been given special weightage which will prove to be of great help to oral physician when encountered with such cases. Case details Two siblings, aged 14 and 16 years, reported with a chief complaint of severe crowding of teeth with mouth breathing habit. They were low birth-weight babies and had been born to non-consanguinous parents. The distinguishing features of these children were craniofacial abnormalities, delayed developmental milestones, mild mental retardation and abnormal gait. The nosological features and the clinical manifestations of this syndrome and the plausible autosomal recessive inheritance of this rare syndrome have been elicited. The diagnosis was based on characteristic phenotype, in particular striking craniofacial and skeletal abnormalities and neuroimaging. Conclusion It is a challenge for healthcare professionals to help these youths to maximize their potential as human beings and help them achieve a meaningful adulthood. On the other hand, diagnosing such cases can be a challenge to dentistry. A systematic protocol, if adhered, can lead to a more appropriate diagnosis. Managing such cases in a clinical setup involves a multispeciality and interdisciplinary approach. PMID:26258024

  5. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry.

    PubMed

    Phillips, Kimberley A; Stimpson, Cheryl D; Smaers, Jeroen B; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R; Sherwood, Chet C

    2015-11-01

    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047

  6. Partial agenesis of the corpus callosum in spina bifida meningomyelocele and potential compensatory mechanisms

    PubMed Central

    Hannay, H. Julia; Dennis, Maureen; Kramer, Larry; Blaser, Susan; Fletcher, Jack M.

    2009-01-01

    After a review of Arthur Benton’s conceptual and methodological contributions to the understanding of normal and pathological development, we discuss agenesis of the corpus callosum (CC), criteria for potential neuroanatomical compensatory mechanisms in CC agenesis, and the results of an examination of magnetic resonance imaging (MRI) data of the CC in 193 children with spina bifida meningomyelocele (SBM). There were 26 CC regional patterns. Although complete agenesis did not occur, partial agenesis was observed in 102 children and within 15 CC regional patterns. Only 4.1% had a normal CC. Quantitative assessment of the area of the CC in 26 NC children and 68 children with SBM revealed that all subgroups with CC anomalies had smaller areas than did a subgroup with a normal CC. Areas were especially small in rostral/splenial agenesis and splenial agenesis but larger with rostral agenesis. Subgroups with normal/hypoplastic regions or complete hypoplasia also had CC areas that were smaller than normal but larger than the areas for the splenial agenesis groups. The relative rarity of anterior commissure enlargement (3.1%) and longitudinal bundles of Probst (0.1%) suggest that these particular fiber tract anomalies are unlikely candidates for structural compensatory mechanisms. The hippocampal commissure, enlarged in 13%, may be a more promising candidate. Overall, however, the functionality of anomalous fiber tracts and commissures in SBM is yet to be determined. PMID:19052950

  7. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap

    PubMed Central

    Lavado, Alfonso; Ware, Michelle; Paré, Joshua; Cao, Xinwei

    2014-01-01

    The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development. PMID:25336744

  8. A Case of a Newborn with Agenesis of the Corpus Callosum Complicated with Ocular Albinism

    PubMed Central

    Miki, Michiko; Miyamoto, Makiko; Mitsutsuji, Tatsuma; Watanabe, Hiroko; Shimizu, Kazuhiro; Matsuo, Junko; Tonari, Masahiro; Kida, Teruyo; Sugasawa, Jun; Ikeda, Tsunehiko

    2016-01-01

    Purpose To report a case of ocular albinism found in a newborn infant in whom agenesis of the corpus callosum (ACC) was indicated in utero. Case Report This study involved a female newborn who was delivered after a gestational period of 41 weeks. The patient was referred to the Obstetrics Department at Takatsuki Hospital, Takatsuki City, Japan, after the indication of ACC by magnetic resonance imaging (MRI) at a nearby clinic during the fetal period. At birth, the baby's weight was 2,590 g, and ACC and ventricular enlargement were found by cranial sonography and cranial MRI. While initial ophthalmic findings noted partial loss of pigmentation of the iris and hypopigmentation of broad areas of the fundus in both eyes, nystagmus was not observed. The patient's hair pigment was slightly diluted, and the color of her skin was slightly off-white. At 2 years after birth, obvious mental retardation was observed. With regard to other systemic findings, no apparent heart, kidney, or immune system abnormalities were found. Conclusion Although the patient in question is presently growing without any major systemic problems, it will be necessary in the future to pay attention to any changes in systemic and ophthalmic findings. PMID:27462254

  9. Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum.

    PubMed

    Tovar-Moll, Fernanda; Monteiro, Myriam; Andrade, Juliana; Bramati, Ivanei E; Vianna-Barbosa, Rodrigo; Marins, Theo; Rodrigues, Erika; Dantas, Natalia; Behrens, Timothy E J; de Oliveira-Souza, Ricardo; Moll, Jorge; Lent, Roberto

    2014-05-27

    Why do humans born without the corpus callosum, the major interhemispheric commissure, lack the disconnection syndrome classically described in callosotomized patients? This paradox was discovered by Nobel laureate Roger Sperry in 1968, and has remained unsolved since then. To tackle the hypothesis that alternative neural pathways could explain this puzzle, we investigated patients with callosal dysgenesis using structural and functional neuroimaging, as well as neuropsychological assessments. We identified two anomalous white-matter tracts by deterministic and probabilistic tractography, and provide supporting resting-state functional neuroimaging and neuropsychological evidence for their functional role in preserved interhemispheric transfer of complex tactile information, such as object recognition. These compensatory pathways connect the homotopic posterior parietal cortical areas (Brodmann areas 39 and surroundings) via the posterior and anterior commissures. We propose that anomalous brain circuitry of callosal dysgenesis is determined by long-distance plasticity, a set of hardware changes occurring in the developing brain after pathological interference. So far unknown, these pathological changes somehow divert growing axons away from the dorsal midline, creating alternative tracts through the ventral forebrain and the dorsal midbrain midline, with partial compensatory effects to the interhemispheric transfer of cortical function.

  10. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap.

    PubMed

    Lavado, Alfonso; Ware, Michelle; Paré, Joshua; Cao, Xinwei

    2014-11-01

    The corpus callosum connects cerebral hemispheres and is the largest axon tract in the mammalian brain. Callosal malformations are among the most common congenital brain anomalies and are associated with a wide range of neuropsychological deficits. Crossing of the midline by callosal axons relies on a proper midline environment that harbors guidepost cells emitting guidance cues to instruct callosal axon navigation. Little is known about what controls the formation of the midline environment. We find that two components of the Hippo pathway, the tumor suppressor Nf2 (Merlin) and the transcriptional coactivator Yap (Yap1), regulate guidepost development and expression of the guidance cue Slit2 in mouse. During normal brain development, Nf2 suppresses Yap activity in neural progenitor cells to promote guidepost cell differentiation and prevent ectopic Slit2 expression. Loss of Nf2 causes malformation of midline guideposts and Slit2 upregulation, resulting in callosal agenesis. Slit2 heterozygosity and Yap deletion both restore callosal formation in Nf2 mutants. Furthermore, selectively elevating Yap activity in midline neural progenitors is sufficient to disrupt guidepost formation, upregulate Slit2 and prevent midline crossing. The Hippo pathway is known for its role in controlling organ growth and tumorigenesis. Our study identifies a novel role of this pathway in axon guidance. Moreover, by linking axon pathfinding and neural progenitor behaviors, our results provide an example of the intricate coordination between growth and wiring during brain development.

  11. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex.

    PubMed

    El-Etr, Martine; Rame, Marion; Boucher, Celine; Ghoumari, Abdel M; Kumar, Narender; Liere, Philippe; Pianos, Antoine; Schumacher, Michael; Sitruk-Ware, Regine

    2015-01-01

    Multiple Sclerosis affects mainly women and consists in intermittent or chronic damages to the myelin sheaths, focal inflammation, and axonal degeneration. Current therapies are limited to immunomodulators and antiinflammatory drugs, but there is no efficient treatment for stimulating the endogenous capacity of myelin repair. Progesterone and synthetic progestins have been shown in animal models of demyelination to attenuate myelin loss, reduce clinical symptoms severity, modulate inflammatory responses and partially reverse the age-dependent decline in remyelination. Moreover, progesterone has been demonstrated to promote myelin formation in organotypic cultures of cerebellar slices. In the present study, we show that progesterone and the synthetic 19-nor-progesterone derivative Nestorone® promote the repair of severe chronic demyelinating lesions induced by feeding cuprizone to female mice for up to 12 weeks. Progesterone and Nestorone increase the density of NG2(+) oligodendrocyte progenitor cells and CA II(+) mature oligodendrocytes and enhance the formation of myelin basic protein (MBP)- and proteolipid protein (PLP)-immunoreactive myelin. However, while demyelination in response to cuprizone was less marked in corpus callosum than in cerebral cortex, remyelination appeared earlier in the former. The remyelinating effect of progesterone was progesterone receptor (PR)-dependent, as it was absent in PR-knockout mice. Progesterone and Nestorone also decreased (but did not suppress) neuroinflammatory responses, specifically astrocyte and microglial cell activation. Therefore, some progestogens are promising therapeutic candidates for promoting the regeneration of myelin.

  12. Mapping corpus callosum morphology in twin pairs discordant for bipolar disorder.

    PubMed

    Bearden, Carrie E; van Erp, Theo G M; Dutton, Rebecca A; Boyle, Christina; Madsen, Sarah; Luders, Eileen; Kieseppa, Tuula; Tuulio-Henriksson, Annamari; Huttunen, Matti; Partonen, Timo; Kaprio, Jaakko; Lönnqvist, Jouko; Thompson, Paul M; Cannon, Tyrone D

    2011-10-01

    Callosal volume reduction has been observed in patients with bipolar disorder, but whether these deficits reflect genetic vulnerability to the illness remains unresolved. Here, we used computational methods to map corpus callosum abnormalities in a population-based sample of twin pairs discordant for bipolar disorder. Twenty-one probands with bipolar I disorder (mean age 44.4 ± 7.5 years; 48% female), 19 of their non-bipolar co-twins, and 34 demographically matched control twin individuals underwent magnetic resonance imaging. Three-dimensional callosal surface models were created to visualize its morphologic variability and to localize group differences. Neurocognitive correlates of callosal area differences were additionally investigated in a subsample of study participants. Bipolar (BPI) probands, but not their co-twins, showed significant callosal thinning and area reduction, most pronounced in the genu and splenium, relative to healthy twins. Altered callosal curvature was additionally observed in BPI probands. In bipolar probands and co-twins, genu and splenium midsagittal areas were significantly correlated with verbal processing speed and response inhibition. These findings suggest that aberrant connections between cortical regions--possibly reflecting decreased myelination of white matter tracts--may be involved in bipolar pathophysiology. However, findings of callosal thinning appear to be disease related, rather than reflecting genetic vulnerability to bipolar illness. PMID:21383237

  13. Case study: a patient with agenesis of the corpus callosum with minimal associated neuropsychological impairment.

    PubMed

    Brescian, Natalie E; Curiel, Rosie E; Gass, Carlton S

    2014-01-01

    This is a case study of an 88-year-old man who presented with agenesis of the corpus callosum and colpocephaly. Symptomatically, he reported a sudden onset of mild, intermittent left hand apraxia, but denied any previous manifestations consistent with this type of brain malformation. The patient underwent neuroimaging, evaluation by neurology, and comprehensive neuropsychological testing to determine the nature of any other associated impairments. Test results indicated that he was, with a few exceptions, neuropsychologically normal. He performed well on tests that are highly sensitive to acquired brain dysfunction. His most notable deficit was failed performance in the simultaneous and coordinated use of both hands in using tactile and proprioceptive feedback on the Tactual Performance Test. This case is discussed in terms of plasticity of the developing brain, including compensatory mechanisms, highlighting the variability in clinical outcome in the context of congenital brain malformation. This case study illustrates the strong influence of cerebral plasticity as well as a possible circumscribed manifestation of interhemispheric disconnection.

  14. Automated segmentation of the canine corpus callosum for the measurement of diffusion tensor imaging.

    PubMed

    Peterson, David E; Chen, Steven D; Calabrese, Evan; White, Leonard E; Provenzale, James M

    2016-02-01

    The goal of this study was to apply image registration-based automated segmentation methods to measure diffusion tensor imaging (DTI) metrics within the canine brain. Specifically, we hypothesized that this method could measure DTI metrics within the canine brain with greater reproducibility than with hand-drawn region of interest (ROI) methods. We performed high-resolution post-mortem DTI imaging on two canine brains on a 7 T MR scanner. We designated the two brains as brain 1 and brain 2. We measured DTI metrics within the corpus callosum of brain 1 using a hand-drawn ROI method and an automated segmentation method in which ROIs from brain 2 were transformed into the space of brain 1. We repeated both methods in order to measure their reliability. Mean differences between the two sets of hand-drawn ROIs ranged from 4% to 10%. Mean differences between the hand-drawn ROIs and the automated ROIs were less than 3%. The mean differences between the first and second automated ROIs were all less than 0.25%. Our findings indicate that the image registration-based automated segmentation method was clearly the more reproducible method. These results provide the groundwork for using image registration-based automated segmentation methods to measure DTI metrics within the canine brain. Such methods will facilitate the study of white matter pathology in canine models of neurologic disease. PMID:26577603

  15. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters.

  16. Statistical anisotropy from inflationary magnetogenesis

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-02-01

    Provided the quantum fluctuations are amplified in the presence of a classical gauge field configuration the resulting curvature perturbations exhibit a mild statistical anisotropy which should be sufficiently weak not to conflict with current observational data. The curvature power spectra induced by weakly anisotropic initial states are computed here for the first time when the electric and the magnetic gauge couplings evolve at different rates as it happens, for instance, in the relativistic theory of van der Waals interactions. After recovering the results valid for coincident gauge couplings, the constraints imposed by the isotropy and the homogeneity of the initial states are discussed. The obtained bounds turn out to be more stringent than naively expected and cannot be ignored when discussing the underlying magnetogenesis scenarios.

  17. Texture induced microwave background anisotropies

    SciTech Connect

    Borrill, Julian; Copeland, Edmund J.; Liddle, Andrew R.; Stebbins, Albert; Veeraraghavan, Shoba

    1994-03-01

    We use numerical simulations to calculate the cosmic microwave background anisotropy induced by the evolution of a global texture field, with special emphasis on individual textures. Both spherically symmetric and general configurations are analyzed, and in the latter case we consider field configurations which exhibit unwinding events and also ones which do not. We compare the results given by evolving the field numerically under both the expanded core (XCORE) and non-linear sigma model (NLSM) approximations with the analytic predictions of the NLSM exact solution for a spherically symmetric self-similar (SSSS) unwinding. We find that the random unwinding configuration spots' typical peak height is 60-75\\% and angular size typically only 10% of those of the SSSS unwinding, and that random configurations without an unwinding event nonetheless may generate indistinguishable hot and cold spots. A brief comparison is made with other work.

  18. Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Hanyga, A.; Seredyńska, M.

    2012-07-01

    It is shown below that complex diffusion anisotropy observed in diffusion-weighted MRI can be fully accounted for by allowing for non-locality of the spatial operator in the diffusion equation. The anisotropy is represented by a distribution over directions on a sphere. It allows recognition of fiber tracts crossing at arbitrary angles. A simple generalization of the Stejskal-Tanner equation for the determination of the ODF is presented. Furthermore, an explicit solution of the Bloch-Torrey equation for an anisotropic time-fractional diffusion equation is obtained in terms of a generalized Mittag-Leffler type function.

  19. Thermal expansion and elastic anisotropies of SiC as related to polytype structure

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1989-01-01

    The concept of the fraction of hexagonal stacking is used to describe the anisotropic thermal expansion coefficients of polytypes of SiC. The single crystal elastic anisotropy for the SiC polytype structures and the temperature dependencies of the anisotropies are examined. The anisotropic thermoelastic stress index for the 3C and 6H SiC polytypes are illustrated graphically. It is shown that this index is useful for predicting the most desirable crystal growth orientations for SiC whisker incorporation into composite matrices.

  20. Effect of registration on corpus callosum population differences found with DBM analysis

    NASA Astrophysics Data System (ADS)

    Han, Zhaoying; Thornton-Wells, Tricia A.; Gore, John C.; Dawant, Benoit M.

    2011-03-01

    Deformation Based Morphometry (DBM) is a relatively new method used for characterizing anatomical differences among populations. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to one standard coordinate system. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithm on population differences that may be uncovered through DBM. In this study, we compared DBM results obtained with five well established non-rigid registration algorithms on the corpus callosum (CC) in thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Basis Algorithm (ABA); (2) Image Registration Toolkit (IRTK); (3) FSL Nonlinear Image Registration Tool (FSL); (4) Automatic Registration Tools (ART); and (5) the normalization algorithm available in SPM8. For each algorithm, the 3D deformation fields from all subjects to the atlas were obtained and used to calculate the Jacobian determinant (JAC) at each voxel in the mid-sagittal slice of the CC. The mean JAC maps for each group were compared quantitatively across different nonrigid registration algorithms. An ANOVA test performed on the means of the JAC over the Genu and the Splenium ROIs shows the JAC differences between nonrigid registration algorithms are statistically significant over the Genu for both groups and over the Splenium for the NC group. These results suggest that it is important to consider the effect of registration when using DBM to compute morphological differences in populations.

  1. Arteriovenous malformations of the corpus callosum: Pooled analysis and systematic review of literature

    PubMed Central

    Pabaney, Aqueel H.; Ali, Rushna; Kole, Maximillian; Malik, Ghaus M.

    2016-01-01

    Background: Arteriovenous malformations (AVMs) of the corpus callosum (CC) are rare entities. We performed a systematic review of the available literature to better define the natural history, patient characteristics, and treatment options for these lesions. Methods: A MEDLINE, Google Scholar, and The Cochrane Library search were performed for studies published through June 2015. Data from all eligible studies were used to examine epidemiology, natural history, clinical features, treatment strategies, and outcomes of patients with CC-AVMs. A systematic review and pooled analysis of the literature were performed. Results: Our search yielded 37 reports and 230 patients. Mean age at presentation was 26.8 years (±13.12 years). AVMs were most commonly located in the splenium (43%), followed by the body (31%), and then the genu (23%) of the CC. A Spetzler-Martin grade of III was the most common (37%). One hundred eighty-seven (81.3%) patients presented with hemorrhage, 91 (40%) underwent microsurgical excision, and 87 (38%) underwent endovascular embolization. Radiosurgery was performed on 57 (25%) patients. Complete obliteration of the AVM was achieved in 102 (48.1%) patients and approximately twice as often when microsurgery was performed alone or in combination with other treatment modalities (94% vs. 49%; P < 0.001). Mean modified Rankin Scale (mRS) at presentation was 1.54 and mean mRS at last follow-up was 1.31. This difference was not statistically significant (P = 0.35). Conclusion: We present an analysis of the pooled data in the form of a systematic review focusing on management of CC-AVMs. This review aims to provide a valuable tool to aid in decision making when dealing with this particular subtype of AVM. PMID:27127713

  2. Corticosteroids impair remyelination in the corpus callosum of cuprizone-treated mice.

    PubMed

    Clarner, T; Parabucki, A; Beyer, C; Kipp, M

    2011-07-01

    Corticosteroids (CS) are effective in the treatment of many brain disorders, such as multiple sclerosis (MS) or traumatic brain injury. This has been scrutinised in different experimental animal models. However, neither the mechanisms, nor the site of CS action are fully understood. Short-term high-dose CS treatment improves MS symptoms and severity of clinical disability during an acute inflammatory exacerbation of disease. In the present study, we analysed the influence of CS on the expression of cellular and molecular markers of spontaneous endogenous remyelination in the toxic non-immune cuprizone animal model at early (9 days) and intermediate (21 days) remyelination, as well as steroidal effects in primary astrocytes and oligodendrocyte progenitor cultures. Dexamethasone (Dex) and methylprednisolone (MP) induced a higher expression of the differentiation markers myelin basic protein and proteolipid protein (PLP) in cultured oligodendrocyte progenitor cells (OPC). CS exposure of primary cultured astrocytes resulted in a greater expression of those genes involved in OPC proliferation [fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF)-αα] and a reduced expression of the pro-maturation factor insulin-like growth factor 1. Pro-maturating effects of CS were completely blocked by FGF2 and PDGF-αα co-application in OPC cultures. MP treatment in vivo resulted in a reduced recovery of PLP-staining intensity, whereas the re-population of the demyelinated corpus callosum with adenomatous polyposis coli-expressing oligodendrocytes was not affected. The numbers of brain intrinsic inflammatory cells, microglia and astrocytes during remyelination were similar in placebo and MP-treated animals. Our findings suggest that treatment with CS might have, in addition to the well-known benefical effects on inflammatory processes, a negative influence on remyelination.

  3. Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies

    PubMed Central

    2014-01-01

    Background Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6). Methods We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations. Results Several subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups. Conclusions Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups. PMID:25780557

  4. The influence of magnetic aftereffects on the magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mashukov, A.; Mashukova, A.

    2012-04-01

    structural defects and internal stresses. The value of the maximum loss (Wm) increases the more the smaller the grain size Fe3O4.The greatest influence of magnetic viscosity is exercised on the depositions having d < 40 microns. It is shown that there is a correlation between the dependence of the temporal variation of Wm and the dependence of the coefficients of the magnetic viscosity on the ferromagnetic grain size. The magnitude of the magnetic field (HW), corresponding to the maximum losses and characterizing the beginning of the transition of the spins from the connection with the crystal lattice to the connection with the external magnetic field, does not change. So, the magnetic field HW can be considered as an indicator of the composition of the ferromagnetic fraction. Depending on the composition of the ferromagnetic, value HW has a wide range of values. For the depositions, containing magnetite grains, the value of HW makes up 1.8 kOe, and for the grains of hematite it is 9 kOe. Thus, the contribution to the effective anisotropy of rocks containing large particles of the ferromagnetic fraction, can not be explained by the energy of crystallographic anisotropy. Diffusion magnetic anisotropy is a widely spread phenomenon in the rocks.

  5. A de novo 163 kb interstitial 1q44 microdeletion in a boy with thin corpus callosum, psychomotor delay and seizures.

    PubMed

    Selmer, Kaja K; Bryne, Einar; Rødningen, Olaug K; Fannemel, Madeleine

    2012-12-01

    The 1q44 deletion syndrome has shown to be a recognizable phenotype with developmental delay, short stature and corpus callosum abnormalities as relatively consistent features. However, the disorder is still clinically heterogeneous and a genotype-phenotype correlation has been challenging to establish. In particular, a delineation of a critical region for the corpus callosum development has turned out to be difficult, and many candidate genes have been proposed. We present here a patient boy with a clinical picture of the 1q44 deletion syndrome, including a thin corpus callosum, and a small de novo 1q44 deletion. The deletion spans a maximum of 163 kb, a region which only contains the two genes FAM36A and HNRNPU. This finding supports the previously suggested hypothesis that the HNRNPU is an essential gene to the development of corpus callosum. However, as patients with deletions outside this interval also have been reported to have corpus callosum abnormalities, other mechanisms are probably also involved. We also identified two conserved non-coding regions in the deleted region of the patient, and speculate that also other elements interfere with the complex interplay and spatiotemporal gene expression during embryonic development. PMID:22975012

  6. Primordial anisotropies in gauged hybrid inflation

    SciTech Connect

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan E-mail: emami@ipm.ir

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  7. The Stereoscopic Anisotropy Develops During Childhood

    PubMed Central

    Serrano-Pedraza, Ignacio; Herbert, William; Villa-Laso, Laura; Widdall, Michael; Vancleef, Kathleen; Read, Jenny C. A.

    2016-01-01

    Purpose Human vision has a puzzling stereoscopic anisotropy: horizontal depth corrugations are easier to detect than vertical depth corrugations. To date, little is known about the function or the underlying mechanism responsible for this anisotropy. Here, we aim to find out whether this anisotropy is independent of age. To answer this, we compare detection thresholds for horizontal and vertical depth corrugations as a function of age. Methods The depth corrugations were defined solely by the horizontal disparity of random dot patterns. The disparities depicted a horizontal or vertical sinusoidal depth corrugation of spatial frequency 0.1 cyc/deg. Detection thresholds were obtained using Bayesian adaptive staircases from a total of 159 subjects aged from 3 to 73 years. For each participant we computed the anisotropy index, defined as the log10-ratio of the detection threshold for vertical corrugations divided by that for horizontal. Results Anisotropy index was highly variable between individuals but was positive in 87% of the participants. There was a significant correlation between anisotropy index and log-age (r = 0.21, P = 0.008) mainly driven by a significant difference between children and adults. In 67 children aged 3 to 13 years, the mean anisotropy index was 0.34 ± 0.38 (mean ± SD, meaning that vertical thresholds were on average 2.2 times the horizontal ones), compared with 0.59 ± 0.55 in 84 adults aged 18 to 73 years (vertical 3.9 times horizontal). This was mainly driven by a decline in the sensitivity to vertical corrugations. Children had poorer stereoacuity than adults, but had similar sensitivity to adults for horizontal corrugations and were actually more sensitive than adults to vertical corrugations. Conclusions The fact that adults show stronger stereo anisotropy than children raises the possibility that visual experience plays a critical role in developing and strengthening the stereo anisotropy. PMID:26962692

  8. Mechanical anisotropy of the Yucca Mountain tuffs

    SciTech Connect

    Price, R.H.; Boyd, P.J.; Martin, R.J.; Haupt, R.W.; Noel, J.S.

    1991-12-31

    Three series of measurements were performed on oriented cores of several Yucca Mountain tuffs to determine the importance of mechanical anisotropy in the intact rock. Outcrop and drillhole samples were tested for acoustic velocities, linear compressibilities, and strengths in different orientations. The present data sets are preliminary, but suggest the tuffs are transversely anisotropic for these mechanical properties. The planar fabric that produces the anisotropy is believed to be predominantly the result of the preferred orientation of shards and pumice fragments. The potential of significant anisotropy has direct relevance to the formulation of constitutive formulation and the analyses of an underground opening within the Yucca Mountain.

  9. Anatomical variants of brain structure: confused spatial relationship of the fornix to the corpus callosum and anterior commissure.

    PubMed

    Hori, A

    1997-12-01

    How the developing nerve fibers are guided to and able to find their target is currently a matter of research. As examples of the false guidance of axons, anatomical variants of the spatial relationship of the columna fornicis to the corpus callosum and the anterior commissure are demonstrated. In a 60 year-old female patient, some of the fibers of the genu corporis callosi were found to be entrapped by a fornix fiber bundle. The brain of a 20 year-old man showed that the unilateral anterior commissure ran posterior to the columna fornicis. These changes were clinically insignificant.

  10. Rare association of thin corpus callosum with infantile tremor syndrome in a 5.5-month-old infant

    PubMed Central

    Sharma, Chandra Madhur; Sharma, Deepti; Kumar, Romal; Ranjan, Rahul

    2015-01-01

    Infantile tremor syndrome (ITS) is a clinical disorder characterized by coarse tremors, anemia and regression of motor and mental milestones, presenting in malnourished children aged between 5 months and 3 years. Few reports of neuroimaging abnormalities in children with ITS are present. The most common finding of neuroimaging in ITS is cerebral atrophy with ex-vacuo enlargement of ventricles and subarachnoid space, some recent reports also showed pontine myelinolysis and cerebral hyperintensities. We did not find any report of thin corpus callosum associated with ITS in the literature. PMID:26557175

  11. Diabetes insipidus with impaired osmotic regulation in septo-optic dysplasia and agenesis of the corpus callosum.

    PubMed Central

    Masera, N; Grant, D B; Stanhope, R; Preece, M A

    1994-01-01

    The clinical and endocrinological findings in 24 children with septo-optic dysplasia and/or agenesis of the corpus callosum are described with particular reference to posterior pituitary function. Nine had diabetes insipidus. The prevalence of diabetes insipidus was similar in children with complete and incomplete forms of septo-optic dysplasia. Maintenance of normal osmotic balance was very difficult in six of these children, even after the introduction of treatment with vasopressin, either as desmopressin, or lysine vasopressin spray in one of the early cases. PMID:8110009

  12. X-Ray Diffraction Study on the Strain Anisotropy and Dislocation Structure of Deformed Lath Martensite

    NASA Astrophysics Data System (ADS)

    Hossein Nedjad, S.; Hosseini Nasab, F.; Movaghar Garabagh, M. R.; Damadi, S. R.; Nili Ahmadabadi, M.

    2011-08-01

    18Ni (300) maraging steel possessing lath martensite structure was deformed by four passes of equal-channel angular pressing (ECAP) at ambient temperature. Line profile analysis (LPA) of X-ray diffraction (XRD) patterns identified strong strain anisotropy and remarkable increases in the relative fraction of screw dislocations after ECAP. The strain anisotropy was reasonably accounted for by the anisotropy of elastic constants. Domination of screw dislocations in the deformed structure was attributed to the preferred annihilation of edge dislocations in the early stages of deformation along with the difficulties for annihilation of screw dislocations by cross slipping. Cobalt addition was mainly assumed to make cross slipping difficult by reducing stacking-fault energy and favoring short-range ordering.

  13. Magnetic anisotropy due to the Casimir effect

    SciTech Connect

    Metalidis, G.; Bruno, P.

    2010-02-15

    We consider the Casimir interaction between a ferromagnetic and a nonmagnetic mirror and show how the Casimir effect gives rise to a magnetic anisotropy in the ferromagnetic layer. The anisotropy is out of plane if the nonmagnetic plate is optically isotropic. If the nonmagnetic plate shows a uniaxial optical anisotropy (with optical axis in the plate plane), we find an in-plane magnetic anisotropy. In both cases, the energetically most favorable magnetization orientation is given by the competition between polar, longitudinal, and transverse contributions to the magneto-optical Kerr effect and will therefore depend on the interplate distance. Numerical results will be presented for a magnetic plate made out of Fe and nonmagnetic plates of Au (optically isotropic), quartz, calcite, and barium titanate (all uniaxially birefringent).

  14. SOLARMAX/Electron Pitch Angle Anisotropy Distributions

    NASA Technical Reports Server (NTRS)

    McKenzie, David L.; Anderson, Phillip C.

    2002-01-01

    This final research report summarizes the scientific work performed by The Aerospace Corporation on SOLARMAX/Electron Pitch Angle Anisotropy Distributions. The period of performance was from June 1, 2000 to December 31, 2001.

  15. Cellulose and the Control of Growth Anisotropy

    SciTech Connect

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  16. Acoustic Anisotropy Measurement and Interpretation in Deviated Wells

    NASA Astrophysics Data System (ADS)

    Tang, X.; Patterson, D.

    2005-05-01

    A current trend in petroleum exploration and production is that more and more deviated/horizontal wells are drilled, especially in deep water reservoirs like Gulf of Mexico. The issue of anisotropy is particularly important for deviated wells penetrating the soft sedimentary rocks of the reservoirs. In sedimentary formations, shales can be highly anisotropic due to mineral alignment, and sands can also be anisotropic due to their sensitivity to formation stresses. Many acoustic anisotropy measurements using cross-dipole tools have been made in deviated wells. However, interpreting the acoustic anisotropy data can be quite complicated, especially in the presence of strong anisotropy. In a deviated well, the well trajectory is neither perpendicular to, nor parallel with, the formation bedding planes. Consequently, the measured anisotropy is not the true formation anisotropy, but an apparent anisotropy at a given well deviation. Besides, several anisotropy parameters (e.g., Thomsen parameters) are needed to characterize the formation anisotropy while the cross-dipole measures only one of them. Nevertheless, the variation of the anisotropy and its associated azimuth relative to the well trajectory contains the information about the anisotropy parameters. By analyzing the anisotropy data in conjunction with the well configuration, we can characterize the relationship among the anisotropy parameters. By combining the data with lithology, we can also distinguish stress-induced anisotropy from other sources of anisotropy. The result is an improved characterization of formation anisotropy and its geological environment.

  17. IMPRINT OF A 2 MILLION YEAR OLD SOURCE ON THE COSMIC-RAY ANISOTROPY

    SciTech Connect

    Savchenko, V.; Semikoz, D. V.; Kachelrieß, M.

    2015-08-20

    We study numerically the anisotropy of the cosmic-ray (CR) flux emitted by a single source calculating the trajectories of individual CRs. We show that the contribution of a single source to the observed anisotropy is determined solely by the fraction the source contributes to the total CR intensity, its age, and its distance and does not depend on the CR energy at late times. Therefore, the observation of a constant dipole anisotropy indicates that a single source dominates the CR flux in the corresponding energy range. A natural explanation for the plateau between 2–20 TeV observed in the CR anisotropy is thus the presence of a single, nearby source. For the source age of 2 Myr, as suggested by the explanation of the antiproton and positron data from PAMELA and AMS-02 through a local source, we determine the source distance as ∼200 pc. Combined with the contribution of the global CR sea calculated in the escape model, we can explain qualitatively the data for the dipole anisotropy. Our results suggest that the assumption of a smooth CR source distribution should be abandoned between ≃200 GeV and 1 PeV.

  18. ANISOTROPY DETERMINATIONS IN EXCHANGE SPRING MAGNETS.

    SciTech Connect

    LEWIS,L.H.; HARLAND,C.L.

    2002-08-18

    Ferromagnetic nanocomposites, or ''exchange spring'' magnets, possess a nanoscaled microstructure that allows intergrain magnetic exchange forces to couple the constituent grains and alter the system's effective magnetic anisotropies. While the effects of the anisotropy alterations are clearly seen in macroscopic magnetic measurement, it is extremely difficult to determine the detailed effects of the system's exchange coupling, such as the interphase exchange length, the inherent domain wall widths or the effective anisotropies of the system. Clarification of these materials parameters may be obtained from the ''micromagnetic'' phenomenological model, where the assumption of magnetic reversal initiating in the magnetically-soft regions of the exchange-spring maqet is explicitly included. This approach differs from that typically applied by other researchers and allows a quantitative estimate of the effective anisotropies of an exchange spring system. Hysteresis loops measured on well-characterized nanocomposite alloys based on the composition Nd{sub 2}Fe{sub 14}B + {alpha}-Fe at temperatures above the spin reorientation temperature were analyzed within the framework of the micromagnetic phenomenological model. Preliminary results indicate that the effective anisotropy constant in the material is intermediate to that of bulk {alpha}-Fe and bulk Nd{sub 2}Fe{sub 14}B and increases with decreasing temperature. These results strongly support the idea that magnetic reversal in nanocomposite systems initiates in the lower-anisotropy regions of the system, and that the soft-phase regions become exchange-hardened by virtue of their proximity to the magnetically-hard regions.

  19. A two-phase composite in simple shear: Effective mechanical anisotropy development and localization potential

    NASA Astrophysics Data System (ADS)

    Dabrowski, M.; Schmid, D. W.; Podladchikov, Y. Y.

    2012-08-01

    We present a combined shape and mechanical anisotropy evolution model for a two-phase inclusion-bearing rock subject to large deformation. A single elliptical inclusion embedded in a homogeneous but anisotropic matrix is used to represent a simplified shape evolution enforced on all inclusions. The mechanical anisotropy develops due to the alignment of elongated inclusions. The effective anisotropy is quantified using the differential effective medium (DEM) approach. The model can be run for any deformation path and an arbitrary viscosity ratio between the inclusion and host phase. We focus on the case of simple shear and weak inclusions. The shape evolution of the representative inclusion is largely insensitive to the anisotropy development and to parameter variations in the studied range. An initial hardening stage is observed up to a shear strain of γ = 1 irrespective of the inclusion fraction. The hardening is followed by a softening stage related to the developing anisotropy and its progressive rotation toward the shear direction. The traction needed to maintain a constant shear rate exhibits a fivefold drop at γ = 5 in the limiting case of an inviscid inclusion. Numerical simulations show that our analytical model provides a good approximation to the actual evolution of a two-phase inclusion-host composite. However, the inclusions develop complex sigmoidal shapes resulting in the formation of an S-C fabric. We attribute the observed drop in the effective normal viscosity to this structural development. We study the localization potential in a rock column bearing varying fraction of inclusions. In the inviscid inclusion case, a strain jump from γ = 3 to γ = 100 is observed for a change of the inclusion fraction from 20% to 33%.

  20. A T1 and DTI fused 3D corpus callosum analysis in pre- vs. post-season contact sports players

    NASA Astrophysics Data System (ADS)

    Lao, Yi; Law, Meng; Shi, Jie; Gajawelli, Niharika; Haas, Lauren; Wang, Yalin; Leporé, Natasha

    2015-01-01

    Sports related traumatic brain injury (TBI) is a worldwide public health issue, and damage to the corpus callosum (CC) has been considered as an important indicator of TBI. However, contact sports players suffer repeated hits to the head during the course of a season even in the absence of diagnosed concussion, and less is known about their effect on callosal anatomy. In addition, T1-weighted and diffusion tensor brain magnetic resonance images (DTI) have been analyzed separately, but a joint analysis of both types of data may increase statistical power and give a more complete understanding of anatomical correlates of subclinical concussions in these athletes. Here, for the first time, we fuse T1 surface-based morphometry and a new DTI analysis on 3D surface representations of the CCs into a single statistical analysis on these subjects. Our new combined method successfully increases detection power in detecting differences between pre- vs. post-season contact sports players. Alterations are found in the ventral genu, isthmus, and splenium of CC. Our findings may inform future health assessments in contact sports players. The new method here is also the first truly multimodal diffusion and T1-weighted analysis of the CC, and may be useful to detect anatomical changes in the corpus callosum in other multimodal datasets.

  1. Mild Encephalopathy with Reversible Lesions in the Splenium of Corpus Callosum and Bilateral Cerebral Deep White Matter in Identical Twins

    PubMed Central

    Tahara, Junko; Shinozuka, Jun; Awaguni, Hitoshi; Tanaka, Shin-ichiro; Makino, Shigeru; Maruyama, Rikken; Imashuku, Shinsaku

    2016-01-01

    Identical twin brothers developed mild encephalopathy at the age of 7.0 and 9.7 years (Patient 1) and 10.7 years (Patient 2). Patient 1 had influenza A at the time of his second episode, but triggering agents were not evident at the first episode. The triggering agents in Patient 2 were unclear. The neurological features of both patients included transient facial numbness, left arm paresis, dysarthria, and gait disturbance. Diffusion-weighted images from magnetic resonance imaging showed high signal levels at the splenium of corpus callosum and in the bilateral cerebral deep white matter. These results are characteristic of mild encephalitis/encephalopathy with a reversible isolated splenium of corpus callosum lesion. All three episodes were treated with a methylprednisolone pulse. Acyclovir was also administered to Patient 2 and to Patient 1 during his first episode. Patient 1 received an anti-influenza agent and intravenous immunoglobulin during his second episode. Both patients recovered completely without sequelae. Genetic factors, which may predispose identical twins to develop encephalopathy, are discussed. PMID:27777703

  2. Magnetic anisotropy in pyroxene single crystals

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea Regina; Hirt, Ann Marie; Pettke, Thomas; Bender Koch, Christian

    2014-05-01

    Anisotropy of magnetic susceptibility (AMS) is often used as a proxy for the mineral fabric in a rock. This requires understanding the intrinsic magnetic anisotropy of the minerals that define the rock fabric. With their prismatic habit, pyroxenes describe the texture in mafic and ultramafic rocks. Magnetic anisotropy in pyroxene crystals often arises from both paramagnetic and ferromagnetic components that can be separated from high-field magnetic data. The paramagnetic component is related to the silicate lattice, whereas the ferromagnetic part arises from the magnetic properties of ferromagnetic inclusions that were further characterized by isothermal remanent magnetization measurements. These inclusions often have needle-like habit and are located on the well-defined cleavage planes within the pyroxenes. We characterize low-field and high-field AMS in pyroxene single crystals of diverse orthopyroxene and clinopyroxene minerals. In addition to the magnetic measurements, we analyzed their chemical composition and Fe2+/Fe3+ distribution. The anisotropy arising from inclusions in some augite crystals displays consistent principal susceptibility directions, whereas no preferred orientation is found in other crystals. The principal susceptibilities of the paramagnetic component can be related to the crystal lattice, with the intermediate susceptibility parallel to the b-axis, and minimum and maximum in the a-c-plane for diopside, augite and spodumene. The degree of anisotropy increases with iron concentration. Aegirine shows a different behavior; not only is its maximum susceptibility parallel to the c-axis, but the anisotropy degree is also lower in relation to its iron concentration. This possibly relates to a predominance of Fe3+ in aegirine, whereas Fe2+ is dominant in the other minerals. In orthopyroxene, the maximum susceptibility is parallel to the c-axis and the minimum is parallel to b. The degree of anisotropy increases linearly with iron concentration. The

  3. Variance Anisotropy of Solar Wind Velocity and Magnetic Field Fluctuations

    NASA Astrophysics Data System (ADS)

    Oughton, S.; Matthaeus, W. H.; Wan, M.

    2015-12-01

    At MHD scales in the solar wind, velocity and magnetic fieldfluctuations are typically observed to have much more energy in thecomponents transverse to the mean magnetic field, relative to theparallel components [eg, 1,2]. This is often referred to asvariance anisotropy. Various explanations for it have been suggested,including that the fluctuations are predominantly shear Alfvén waves[1] and that turbulent dynamics leads to such states [eg, 3].Here we investigate the origin and strength of such varianceanisotropies, using spectral method simulations of thecompressible (polytropic) 3D MHD equations. We report on results from runs with several different classes ofinitial conditions. These classes include(i) fluctuations polarized only in the same sense as shear Alfvénwaves (aka toroidal polarization),(ii) randomly polarized fluctuations, and(iii) fluctuations restricted so that most of the energy is inmodes which have their wavevectors perpendicular, or nearly so, to thebackground magnetic field: quasi-2D modes. The plasma beta and Mach number dependence [4] of quantities like the variance anisotropy, Alfven ratio, and fraction of the energy in the toroidal fluctuations will be examined, along with the timescales for the development of any systematic features.Implications for solar wind fluctuations will be discussed. References:[1] Belcher & Davis 1971, J. Geophys. Res, 76, 3534.[2] Oughton et al 2015, Phil Trans Roy Soc A, 373, 20140152.[3] Matthaeus et al 1996, J. Geophys. Res, 101, 7619.[4] Smith et al 2006, J. Geophys. Res, 111, A09111.

  4. Ion temperature anisotropy across a magnetotail reconnection jet

    NASA Astrophysics Data System (ADS)

    Hietala, H.; Drake, J. F.; Phan, T. D.; Eastwood, J. P.; McFadden, J. P.

    2015-09-01

    A significant fraction of the energy released by magnetotail reconnection appears to go into ion heating, but this heating is generally anisotropic. We examine ARTEMIS dual-spacecraft observations of a long-duration magnetotail exhaust generated by antiparallel reconnection in conjunction with particle-in-cell simulations, showing spatial variations in the anisotropy across the outflow far (>100di) downstream of the X line. A consistent pattern is found in both the spacecraft data and the simulations: While the total temperature across the exhaust is rather constant, near the boundaries Ti,|| dominates. The plasma is well above the firehose threshold within patchy spatial regions at |BX|∈[0.1,0.5]B0, suggesting that the drive for the instability is strong and the instability is too weak to relax the anisotropy. At the midplane (|BX|≲0.1B0), Ti,⊥>Ti,|| and ions undergo Speiser-like motion despite the large distance from the X line.

  5. Weak Elastic Anisotropy in a Cracked Rock

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wong, T.

    2006-12-01

    Crack and textural fabrics have significant control over the development of mechanical anisotropy in a rock. Bedding in sedimentary rocks, cleavage in slates, preferred orientation of anisotropic minerals and anisotropic distribution of microcracks can all contribute to elastic anisotropy. Using Kachanov's (1992, 1993) formulation we analyzed the effects of an axisymmetric system of microcracks on seismic anisotropy. The elastic behavior of such a cracked rock is transversely isotropic, and its seismic properties can be characterized by the three Thomsen parameters. In this study we calculated the parameters ɛ, δ and γ under dry and saturated conditions. We derived analytic expressions for the model proposed by Sayers & Kachanov (1995), which assumes that the contribution from the fourth rank crack density tensor is negligible. This model predicts that the elliptic anisotropy condition ɛ=δ is obeyed in a dry rock. Guided by microstructural observations we adopted a two-parameter axisymmetric distribution to characterize the crack density, which predicts that δ and γ in a fluid saturated rock are related to ɛ in a nonlinear manner. All three Thomsen parameters are sensitively dependent on the crack density difference. While our model shows basic agreement with some of the laboratory data on seismic anisotropy in saturated shale, there are discrepancies which suggest that the petrofabric associated with preferred orientation of clay minerals and elastic anisotropy of the rock matrix may have considerable influence which should not be neglected in model. Preliminary comparison with borehole log data suggests rock physics tests which may be useful for interpreting the shear wave anisotropy observations.

  6. ANISOTROPY FACTORS FOR A 252Cf SOURCE

    SciTech Connect

    Veinot, K. G.; Bogard, James S

    2009-01-01

    A new 252Cf source has been procured for use at the Dosimetry Applications and Research (DOSAR) facility at the Oak Ridge National Laboratory (ORNL). This source was encapsulated by the Californium Facility at ORNL, however, the encapsulation differs from previous designs designated as SR-Cf-100. The new encapsulation, designated SR-Cf-3000, has a similar cylindrical radius to the previous generation, but is 1.6 cm longer. Since the encapsulation geometries differ the amount of internal scattering of neutrons will also differ leading to changes in anisotropy factors between the two designs. Additionally, the different encapsulations will affect the absorbed dose and dose equivalent delivered per neutron emitted by the source since both the quantity and energy distribution of the emitted neutrons will vary with irradiation angle. This work presents the fluence anisotropy factors for the SR-Cf-3000 series encapsulation as well as absorbed dose and dose equivalent values calculated for various angles of irradiation. The fluence anisotropy factors vary from a maximum of 1.037 to a minimum of 0.641 for irradiation angles perpendicular and parallel to the source axis, respectively. Anisotropy in absorbed dose varied from a maximum of 1.033 to a minimum of 0.676 while anisotropy of dose equivalent varied from 1.035 to 0.657.

  7. Anisotropy in solar wind plasma turbulence.

    PubMed

    Oughton, S; Matthaeus, W H; Wan, M; Osman, K T

    2015-05-13

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  8. Anisotropy-graded media: Magnetic characterization

    NASA Astrophysics Data System (ADS)

    Lu, Zhihong; Visscher, P. B.; Harrell, J. W.

    2008-04-01

    The concept of exchange-coupled media (each grain having a soft end whose exchange field helps to switch a hard end) has recently been generalized to allow a continuous gradation of anisotropy from soft to hard. We have recently shown that the "figure of merit" for such media ξ =2Eb/μ0MsHsw, proportional to the ratio of the energy barrier Eb to the switching field Hsw, cannot exceed 4 for any anisotropy profile K(r ). In the thin-wall limit (exchange constant A ≪KL2), it can be made to approach 4 by choosing a graded anisotropy K(z )∝z2. In developing such a medium, it is important to be able to experimentally probe the anisotropy distribution. In this paper, we study one method for doing this, the hard axis loop. In the absence of exchange, the second derivative of this loop gives the distribution directly; we show that even in the presence of realistic exchange, this remains approximately true and the anisotropy distribution can be extracted from the hard axis loop.

  9. Preferred orientation and elastic anisotropy in shales.

    SciTech Connect

    Lonardelli, I.; Wenk, H.-R.; Ren, Y.; Univ. of California at Berkeley

    2007-03-01

    Anisotropy in shales is becoming an important issue in exploration and reservoir geophysics. In this study, the crystallographic preferred orientation of clay platelets that contributes to elastic anisotropy was determined quantitatively by hard monochromatic X-ray synchrotron diffraction in two different shales from drillholes off the coast of Nigeria. To analyze complicated diffraction images with five different phases (illite/smectite, kaolinite, quartz, siderite, feldspar) and many overlapping peaks, we applied a methodology based on the crystallographic Rietveld method. The goal was to describe the intrinsic physical properties of the sample (phase composition, crystallographic preferred orientation, crystal structure, and microstructure) and compute macroscopic elastic properties by averaging single crystal properties over the orientation distribution for each phase. Our results show that elastic anisotropy resulting from crystallographic preferred orientation of the clay particles can be determined quantitatively. This provides a possible way to compare measured seismic anisotropy and texture-derived anisotropy and to estimate the contribution of the low-aspect ratio pores aligned with bedding.

  10. Anisotropy in solar wind plasma turbulence

    PubMed Central

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K. T.

    2015-01-01

    A review of spectral anisotropy and variance anisotropy for solar wind fluctuations is given, with the discussion covering inertial range and dissipation range scales. For the inertial range, theory, simulations and observations are more or less in accord, in that fluctuation energy is found to be primarily in modes with quasi-perpendicular wavevectors (relative to a suitably defined mean magnetic field), and also that most of the fluctuation energy is in the vector components transverse to the mean field. Energy transfer in the parallel direction and the energy levels in the parallel components are both relatively weak. In the dissipation range, observations indicate that variance anisotropy tends to decrease towards isotropic levels as the electron gyroradius is approached; spectral anisotropy results are mixed. Evidence for and against wave interpretations and turbulence interpretations of these features will be discussed. We also present new simulation results concerning evolution of variance anisotropy for different classes of initial conditions, each with typical background solar wind parameters. PMID:25848082

  11. The expected anisotropy in solid inflation

    SciTech Connect

    Bartolo, Nicola; Ricciardone, Angelo; Peloso, Marco; Unal, Caner E-mail: peloso@physics.umn.edu E-mail: unal@physics.umn.edu

    2014-11-01

    Solid inflation is an effective field theory of inflation in which isotropy and homogeneity are accomplished via a specific combination of anisotropic sources (three scalar fields that individually break isotropy). This results in specific observational signatures that are not found in standard models of inflation: a non-trivial angular dependence for the squeezed bispectrum, and a possibly long period of anisotropic inflation (to drive inflation, the ''solid'' must be very insensitive to any deformation, and thus background anisotropies are very slowly erased). In this paper we compute the expected level of statistical anisotropy in the power spectrum of the curvature perturbations of this model. To do so, we account for the classical background values of the three scalar fields that are generated on large (superhorizon) scales during inflation via a random walk sum, as the perturbation modes leave the horizon. Such an anisotropy is unavoidably generated, even starting from perfectly isotropic classical initial conditions. The expected level of anisotropy is related to the duration of inflation and to the amplitude of the squeezed bispectrum. If this amplitude is close to its current observational limit (so that one of the most interesting predictions of the model can be observed in the near future), we find that a level of statistical anisotropy F{sup 2} gives frozen and scale invariant vector perturbations on superhorizon scales.

  12. Abnormal Corpus Callosum Connectivity, Socio-Communicative Deficits, and Motor Deficits in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study

    ERIC Educational Resources Information Center

    Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako

    2014-01-01

    In addition to social and communicative deficits, many studies have reported motor deficits in autism spectrum disorder (ASD). This study investigated the macro and microstructural properties of the corpus callosum (CC) of 18 children with ASD and 12 typically developing controls using diffusion tensor imaging tractography. We aimed to explore…

  13. Abnormal increase of neuronal precursor cells and exacerbated neuroinflammation in the corpus callosum in murine model of systemic lupus erythematosus

    PubMed Central

    Leung, Joseph Wai-Hin; Lau, Benson Wui-Man; Chan, Vera Sau-Fong; Lau, Chak-Sing; So, Kwok-Fai

    2016-01-01

    Purpose: Systemic Lupus Erythematosus (SLE) is an autoimmune disease which is characterised by elevated levels of autoantibodies and cytokines in the body. Via alteration of the regulation of inflammation, damage to different organ systems, including the central nervous system (CNS), was found in SLE patients. Patients diagnosed with SLE were reported to suffer from different kinds of psychiatric signs and symptoms. As neurogenesis has been suggested to be a potential key player of psychiatric symptoms and emotional behavior disturbances, this study aims to investigate whether neurogenesis is altered in an animal model of SLE. Also, neuroinflammation was studied. Methods: Female NZB/W F1 mice were used as an animal model of SLE. Animals were divided into two groups: 1. pre-diseased mice (lupus-prone NZB/W F1 female mice, age 10–15 weeks, negative for proteinuria and with basal levels of serum anti-dsDNA autoantibodies) and 2. diseased mice (NZB/W F1 female mice, > 25 weeks of age, with elevated serum levels of anti-dsDNA autoantibodies and with persistent proteinuria of > 3 mg/ml for more than 2 weeks). Comparisons of the levels of neurogenesis and neuroinflammtion between two groups of mice were studied by the immunohistochemistry. Results: After the onset of SLE symptoms, a reduction of neurogenesis in the hippocampus was found, while there was a dramatic increase of doublecortin (DCX+) neuronal precursor cells in the corpus callosum (CC) and in the subventricular zone (SVZ). Meanwhile, exacerbated inflammation was present in the corpus callosum of the diseased mice, which was suggested by the increased number of GFAP+ cells and IBA-1+ cells. Conclusions: To the best of our knowledge, this is the first study showing an increase of neuronal precursor cells in the corpus callosum of the female NZB/W F1 mice. The present study suggests a coincidence but not a causal relationship between neurogenesis and neuroinflammation. The present results have

  14. Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem, and thalamus in different magnetic resonance imaging sequences.

    PubMed

    Moen, Kent G; Brezova, Veronika; Skandsen, Toril; Håberg, Asta K; Folvik, Mari; Vik, Anne

    2014-09-01

    The aim of this study was to explore the prognostic value of visible traumatic axonal injury (TAI) loads in different MRI sequences from the early phase after adjusting for established prognostic factors. Likewise, we sought to explore the prognostic role of early apparent diffusion coefficient (ADC) values in normal-appearing corpus callosum. In this prospective study, 128 patients (mean age, 33.9 years; range, 11-69) with moderate (n = 64) and severe traumatic brain injury (TBI) were examined with MRI at a median of 8 days (range, 0-28) postinjury. TAI lesions in fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and T2*-weighted gradient echo (T2*GRE) sequences were counted and FLAIR lesion volumes estimated. In patients and 47 healthy controls, mean ADC values were computed in 10 regions of interests in the normal-appearing corpus callosum. Outcome measure was the Glasgow Outcome Scale-Extended (GOS-E) at 12 months. In patients with severe TBI, number of DWI lesions and volume of FLAIR lesions in the corpus callosum, brain stem, and thalamus predicted outcome in analyses with adjustment for age, Glasgow Coma Scale score, and pupillary dilation (odds ratio, 1.3-6.9; p = <0.001-0.017). The addition of Rotterdam CT score and DWI lesions in the corpus callosum yielded the highest R2 (0.24), compared to all other MRI variables, including brain stem lesions. For patients with moderate TBI only the number of cortical contusions (p = 0.089) and Rotterdam CT score (p = 0.065) tended to predict outcome. Numbers of T2*GRE lesions did not affect outcome. Mean ADC values in the normal-appearing corpus callosum did not differ from controls. In conclusion, the loads of visible TAI lesions in the corpus callosum, brain stem, and thalamus in DWI and FLAIR were independent prognostic factors in patients with severe TBI. DWI lesions in the corpus callosum were the most important predictive MRI variable. Interestingly, number of cortical

  15. Fractional quantum Hall effect in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Papić, Z.

    2013-06-01

    We discuss the orbital effect of a tilted magnetic field on the quantum Hall effect in parabolic quantum wells. Many-body states realized at the fractional (1)/(3) and (1)/(2) filling of the second electronic subband are studied using finite-size exact diagonalization. In both cases, we obtain the phase diagram consisting of a fractional quantum Hall fluid phase that persists for moderate tilts, and eventually undergoes a direct transition to the stripe phase. It is shown that tilting of the field probes the geometrical degree of freedom of fractional quantum Hall fluids, and can be partly related to the effect of band-mass anisotropy.

  16. Anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1981-01-01

    Theoretical predictions of the angular anisotropy in the cosmic microwave background radiation on both small and large angular scales are presented, and the effect of massive neutrinos on both the background radiation anisotropy and on the galaxy correlation function over very large scales is reviewed. Current observations show that the quadrupole anisotropy provides the greatest constraint on theory, and the values for the gravitational potential fluctuations indicate that small amplitude but sufficiently large-scale density fluctuations, both at the present epoch and on the surface of last scattering, can produce significant large angular scale variations in the radiation temperature. Most importantly, it is proposed that the quadrupole moment is most simply and elegantly interpreted in terms of the density fluctuations on very large scales whose presence is inferred from the requirement that an initial fluctuation spectrum is required in order for structure to develop.

  17. Measuring anisotropies in the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela; Safdi, Benjamin R.; Tully, Christopher G.

    2014-10-01

    Neutrino capture on tritium has emerged as a promising method for detecting the cosmic neutrino background (C ν B ). We show that relic neutrinos are captured most readily when their spin vectors are antialigned with the polarization axis of the tritium nuclei and when they approach along the direction of polarization. As a result, C ν B observatories may measure anisotropies in the cosmic neutrino velocity and spin distributions by polarizing the tritium targets. A small dipole anisotropy in the C ν B is expected due to the peculiar velocity of the lab frame with respect to the cosmic frame and due to late-time gravitational effects. The PTOLEMY experiment, a tritium observatory currently under construction, should observe a nearly isotropic background. This would serve as a strong test of the cosmological origin of a potential signal. The polarized-target measurements may also constrain nonstandard neutrino interactions that would induce larger anisotropies and help discriminate between Majorana versus Dirac neutrinos.

  18. Large Friction Anisotropy of a Polydiacetylene Monolayer

    SciTech Connect

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-05-11

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties.

  19. Radial anisotropy ambient noise tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  20. Anisotropy in Gravity and Holography

    NASA Astrophysics Data System (ADS)

    Melby-Thompson, Charles Milton

    In this thesis, we examine the dynamical structure of Hořava-Lifshitz gravity, and investigate its relationship with holography for anisotropic systems. Hořava-Lifshitz gravity refers to a broad class of gravitational models that incorporate anisotropy at a fundamental level. The idea behind Hořava-Lifshitz gravity is to utilize ideas from the theory of dynamical critical phenomena into gravity to produce a theory of dynamical spacetime that is power-counting renormalizable, and is thus a candidate renormalizable quantum field theory of gravity. One of the most distinctive features of Hořava-Lifshitz gravity is that its group of symmetries consists not of the diffeomorphisms of spacetime, but instead of the group of diffeomorphisms that preserve a given foliation by spatial slices. As a result of having a smaller group of symmetries, HL gravity naturally has one more propagating degree of freedom than general relativity. The extra mode presents two possible difficulties with the theory, one relating to consistency, and the second to its viability as a phenomenological model. (1) It may destabilize the theory. (2) Phenomenologically, there are severe constraints on the existence of an extra propagating graviton polarization, as well as strong experimental constraints on the value of a parameter appearing in the dispersion relation of the extra mode. In the first part of this dissertation we show that the extra mode can be eliminated by introducing a new local symmetry which steps in and takes the place of general covariance in the anisotropic context. While the identification of the appropriate symmetry is quite subtle in the full non-linear theory, once the dust settles, the resulting theory has a spectrum which matches that of general relativity in the infrared. This goes a good way toward answering the question of how close Hořava-Lifshitz gravity can come to reproducing general relativity in the infrared regime. In the second part of the thesis we pursue

  1. Introducing anisotropic Minkowski functionals and quantitative anisotropy measures for local structure analysis in biomedical imaging

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; De, Titas; Lochmüller, Eva; Eckstein, Felix; Nagarajan, Mahesh B.

    2013-03-01

    The ability of Minkowski Functionals to characterize local structure in different biological tissue types has been demonstrated in a variety of medical image processing tasks. We introduce anisotropic Minkowski Functionals (AMFs) as a novel variant that captures the inherent anisotropy of the underlying gray-level structures. To quantify the anisotropy characterized by our approach, we further introduce a method to compute a quantitative measure motivated by a technique utilized in MR diffusion tensor imaging, namely fractional anisotropy. We showcase the applicability of our method in the research context of characterizing the local structure properties of trabecular bone micro-architecture in the proximal femur as visualized on multi-detector CT. To this end, AMFs were computed locally for each pixel of ROIs extracted from the head, neck and trochanter regions. Fractional anisotropy was then used to quantify the local anisotropy of the trabecular structures found in these ROIs and to compare its distribution in different anatomical regions. Our results suggest a significantly greater concentration of anisotropic trabecular structures in the head and neck regions when compared to the trochanter region (p < 10-4). We also evaluated the ability of such AMFs to predict bone strength in the femoral head of proximal femur specimens obtained from 50 donors. Our results suggest that such AMFs, when used in conjunction with multi-regression models, can outperform more conventional features such as BMD in predicting failure load. We conclude that such anisotropic Minkowski Functionals can capture valuable information regarding directional attributes of local structure, which may be useful in a wide scope of biomedical imaging applications.

  2. Hydraulic Conductivity Anisotropy of Heterogeneous Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Sun, Dongmin; Zhu, Jianting

    2010-05-01

    The effects of saturation degree (or capillary pressure) on hydraulic conductivity anisotropy in unsaturated soils have not been fully understood. This study developed an approach based on a conceptualization of combining the neural network based pedo-transfer function (PTF) results with the thin layer concept to explore the capillary pressure-dependent anisotropy in relation to soil texture and soil bulk density. The main objective is to examine how anisotropy characteristics are related to the relationships between hydraulic parameters and the basic soil attributes such as texture and bulk density. The hydraulic parameters are correlated with the texture and bulk density based on the pedo-transfer function (PTF) results. It is demonstrated that non-monotonic behavior of the unsaturated soil anisotropy in relation to the capillary pressure is only observed when the saturated hydraulic conductivity and the shape parameter are both related to the mean particle diameter. When only one hydraulic parameter is related to the grain diameter or when both are not related to the same attribute simultaneously, the unsaturated soil anisotropy increases monotonically with the increasing capillary pressure head. Therefore, it is suggested that this behavior is mainly due to the coupled dependence of the layer saturated hydraulic conductivities and the shape factors on the texture and bulk density. The correlation between the soil grain diameter and bulk density decreases the anisotropy effects of the unsaturated layered soils. The study illustrates that the inter-relationships of soil texture, bulk density, and hydraulic properties may cause vastly different characteristics of anisotropic unsaturated soils.

  3. Trisomy 8 syndrome owing to isodicentric 8p chromosomes: regional assignment of a presumptive gene involved in corpus callosum development.

    PubMed Central

    Digilio, M C; Giannotti, A; Floridia, G; Uccellatore, F; Mingarelli, R; Danesino, C; Dallapiccola, B; Zuffardi, O

    1994-01-01

    Two patients with trisomy 8 syndrome owing to an isodicentric 8p;8p chromosome are described. Case 1 had a 46,XX/46,XX,-8,+idic(8)(p23) karyotype while case 2, a male, had the same abnormal karyotype without evidence of mosaicism. In situ hybridisation, performed in case 1, showed that the isochromosome was asymmetrical. Agenesis of the corpus callosum (ACC), which is a feature of trisomy 8 syndrome, was found in both patients. Although ACC is associated with aneuploidies for different chromosomes, a review of published reports indicates that, when associated with chromosome 8, this defect is the result of duplication of a gene located within 8p21-pter. Molecular analysis in one of our patients led us to exclude the distal 23 Mb of 8p from this ACC region. Images PMID:8014974

  4. Exome sequencing identifies recessive CDK5RAP2 variants in patients with isolated agenesis of corpus callosum.

    PubMed

    Jouan, Loubna; Ouled Amar Bencheikh, Bouchra; Daoud, Hussein; Dionne-Laporte, Alexandre; Dobrzeniecka, Sylvia; Spiegelman, Dan; Rochefort, Daniel; Hince, Pascale; Szuto, Anna; Lassonde, Maryse; Barbelanne, Marine; Tsang, William Y; Dion, Patrick A; Théoret, Hugo; Rouleau, Guy A

    2016-04-01

    Agenesis of the corpus callosum (ACC) is a common brain malformation which can be observed either as an isolated condition or as part of numerous congenital syndromes. Therefore, cognitive and neurological involvements in patients with ACC are variable, from mild linguistic and behavioral impairments to more severe neurological deficits. To date, the underlying genetic causes of isolated ACC remains elusive and causative genes have yet to be identified. We performed exome sequencing on three acallosal siblings from the same non-consanguineous family and identified compound heterozygous variants, p.[Gly94Arg];[Asn1232Ser], in the protein encoded by the CDK5RAP2 gene, also known as MCPH3, a gene previously reported to cause autosomal recessive primary microcephaly. Our findings suggest a novel role for this gene in the pathogenesis of isolated ACC. PMID:26197979

  5. Expanding the Clinical Spectrum of SPG11 Gene Mutations in Recessive Hereditary Spastic Paraplegia with Thin Corpus Callosum

    PubMed Central

    Aleem, Alice Abdel; Abu-Shahba, Nourhan; Swistun, Dominika; Silhavy, Jennifer; Bielas, Stephanie L.; Sattar, Shifteh; Gleeson, Joseph G.; Zaki, Maha

    2011-01-01

    Hereditary spastic paraplegia (HSP) represents a large group of neurological disorders characterized by progressive spasticity of the lower limbs. One subtype of HSP shows an autosomal recessive form of inheritance with this corpus callosum (ARHSP-TCC), and displays genetic heterogeneity with four known loci. We identified a consanguineous Egyptian family with five affected individuals with ARHSP-TCC. We found linkage to the SPG11 locus and identified a novel homozygous p.Q498X stop codon mutation in exon 7 in the SPG11 gene encoding Spatacsin. Cognitive impairment and polyneuropathy, reported as frequent in SPG11, were not evident. This family supports the importance of SPG11 as a frequent cause for ARHSP-TCC, and expands the clinic SPG11 spectrum. PMID:20971220

  6. Auditory interhemispheric transfer in relation to patterns of partial agenesis and hypoplasia of the corpus callosum in spina bifida meningomyelocele

    PubMed Central

    Hannay, H. Julia; Walker, Amy; Dennis, Maureen; Kramer, Larry; Blaser, Susan; Fletcher, Jack M.

    2009-01-01

    Spina bifida meningomyelocele with hydrocephalus (SBM) is commonly associated with anomalies of the corpus callosum (CC). We describe MRI patterns of regional CC agenesis and relate CC anomalies to functional laterality based on a dichotic listening test in 90 children with SBM and 27 typically developing controls. Many children with SBM (n = 40) showed regional CC anomalies in the form of agenesis of the rostrum and0or splenium, and a smaller number (n = 20) showed hypoplasia (thinning) of all CC regions (rostrum, genu, body, and splenium). The expected right ear advantage (REA) was exhibited by normal controls and children with SBM having a normal or hypoplastic splenium. It was not shown by children with SBM who were left handed, missing a splenium, or had a higher level spinal cord lesion. Perhaps the right hemisphere of these children is more involved in processing some aspects of linguistic stimuli. PMID:18764972

  7. Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats.

    PubMed

    Gu, Y; Zhao, Y; Qian, K; Sun, M

    2015-04-16

    The protective effects of taurine against closed head injury (CHI) have been reported. This study was designed to investigate whether taurine reduced white matter damage and hippocampal neuronal death through suppressing calpain activation after CHI in rats. Taurine (50 mg/kg) was administered intravenously 30 min and 4 h again after CHI. It was found that taurine lessened the corpus callosum damage, attenuated the neuronal cell death in hippocampal CA1 and CA3 subfields and improved the neurological functions 7 days after CHI. Moreover, it suppressed the over-activation of calpain, enhanced the levels of calpastatin, and reduced the degradation of neurofilament heavy protein, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. These data confirm the protective effects of taurine against gray and white matter damage due to CHI, and suggest that down-regulating calpain activation could be one of the protective mechanisms of taurine against CHI.

  8. Temperature anisotropy and beam type whistler instabilities

    NASA Technical Reports Server (NTRS)

    Hashimoto, K.; Matsumoto, H.

    1976-01-01

    Whistler instabilities have been investigated for two different types; i.e., a temperature-anisotropy type instability and a beam-type instability. A comparison between the two types of whistler instabilities is made within the framework of linear theory. A transition from one type to the other is also discussed, which is an extension of the work on electrostatic beam and Landau instabilities performed by O'Neil and Malmberg (1968) for electromagnetic whistler instabilities. It is clarified that the essential source of the whistler instability is not beam kinetic energy but a temperature anisotropy, even for the beam-type whistler instability.

  9. Microwave background anisotropy induced by gravitational waves

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.

    1988-01-01

    A cosmological background of gravitational waves induces redshift perturbations in light transversing it. Calculations of this Sachs-Wolfe effect on the microwave background are presented in an Omega = 1 Friedmann universe as a function of angular scale and gravitational wave spectrum. Blurriness of the last-scattering surface can cause nonnegligible dilution of the anisotropy for wavelengths less than about 100 Mpc. The limit implied for the energy density of the gravitational waves is given. A difficulty in associating a linear scale with an angular anisotropy, due to the clumpiness of the universe, is also pointed out.

  10. Anisotropy of the Topopah Spring Member Tuff

    SciTech Connect

    Martin, R.J. III; Boyd, P.J.; Haupt, R.W.; Price, R.H.

    1992-07-01

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed.

  11. Anisotropy of dilepton emission from nuclear collisions

    SciTech Connect

    Bratkovskaya, E.L.; Teryaev, O.V.; Toneev, V.D. |

    1994-11-07

    Attention is paid to studying the angular characteristics of e{sup +}e{sup {minus}} pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed.

  12. Effects of anisotropy on dynamic tensile behavior

    SciTech Connect

    Schifert, S.K.; Davidson, R.F.; Maudlin, P.J.

    1991-01-01

    A stability analysis for an anisotropic stretching rod is presented. We consider the particular case of a rapidly stretching titanium jet using a continuum code to examine anisotropic plastic response in the finite-neck regime. It was found that the classical analysis (yield strength is inversely proportional to stability) is insufficient; anisotropic jets can be more or less stable than their maximum or minimum yield strengths, depending on initial perturbations and the orientation of the anisotropy. One particular anisotropy -- with the weak direction along the jet axis -- appears to be generally stabilizing. 10 refs., 6 figs.

  13. The anisotropy of aluminum and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Hosford, William F.

    2006-05-01

    The anisotropy of textured aluminum is approximated by a yield criterion with an exponent of eight. The use of this criterion in metal-forming analyses has improved the understanding of the formability of aluminum and other metals. The effect of anisotropy on the limiting drawing ratio in cupping is less than that expected from the quadratic Hill yield criterion and the effect of texture on forming limit diagrams is negligible. A method of predicting the effect of strain-path changes on forming limit curves of aluminum alloy sheets has proven to agree with experiments.

  14. When R  >  0.8R 0: fluorescence anisotropy, non-additive intensity, and cluster size

    NASA Astrophysics Data System (ADS)

    Zolmajd-Haghighi, Z.; Hanley, Q. S.

    2016-06-01

    Assembly and clustering feature in many biological processes and homo-FRET and fluorescence anisotropy can assist in estimating the aggregation state of a system. The distance dependence of resonance energy transfer is well described and tested. Similarly, assessment of cluster size using steady state anisotropy is well described for non-oriented systems when R  <  0.8R 0, however, these methods break down when R  >  0.8R 0. Fused trimeric DNA clusters labelled with fluorescein were engineered to provide inter-fluorophore distances from 0.7 to 1.6 R/R 0 and intensity and anisotropy were measured. These constructs cover a range where anisotropy effects depend on distance. Analytical expressions were derived for fully labelled and fractionally labelled clusters and the experimental results analysed. The experimental results showed that: (1) the system underwent distance dependent quenching; (2) when incompletely labelled both doubly and triply labelled forms could be assessed to obtain distance dependent intensity factors; (3) the anisotropy behaviour of a multiply labelled cluster of a particular size depends on the behaviour of the fluorophores and their distance in a cluster. This work establishes that when emission intensity data are available the analytically useful range for investigating clusters does not have to be restricted to R  <  0.8R 0 and is applicable to cases where the anisotropy of a cluster of N fluorophores is not well approximated by r 1/N.

  15. Matrix fractional systems

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.

  16. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-01

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  17. Individuals with agenesis of the corpus callosum show sensory processing differences as measured by the Sensory Profile

    PubMed Central

    Dunn, Winnie; Strominger, Zoe; Sherr, Elliott H.; Marco, Elysa

    2015-01-01

    Objective Given reports of high pain thresholds and reduced auditory response in individuals with Agenesis of the Corpus Callosum (AgCC), this study investigated whether affected participants report atypical experiences and behaviors on a well-established sensory processing measure. Methods Fourteen participants with AgCC (ages 11-59) completed the Adolescent/Adult Sensory Profile (Brown & Dunn, 2001). Sensory profile scales were classified as “Atypical” if they were more than one standard deviation from the mean. Results Fifty-seven percent of participants with AgCC reported reduced sensory registration as compared to an expected 16% of the normative sample. Similarly, 50% of the AgCC participants reported atypically increased auditory processing difficulties. Conclusions Using a well-established sensory processing questionnaire, participants with AgCC reported measurable differences in multiple aspects of sensory processing. The most notable difference was in the quadrant of low sensory registration, suggesting that individuals with AgCC may require sensory information to be presented more slowly or at a higher intensity for adequate processing. The sensory modality that was most affected was the auditory system, which is consistent with increased rates of language disorders and Autism Spectrum Disorders in this population. Understanding sensory processing in individuals with AgCC can both elucidate the role of inter-hemispheric transfer in the development of intact sensory processing as well as contribute to our knowledge of the role of the corpus callosum in a range of disorders in which sensory processes are impacted. PMID:25528608

  18. Sgk1 regulates desmoglein 1 expression levels in oligodendrocytes in the mouse corpus callosum after chronic stress exposure.

    PubMed

    Miyata, Shingo; Yoshikawa, Keiko; Taniguchi, Manabu; Ishikawa, Toshiko; Tanaka, Takashi; Shimizu, Shoko; Tohyama, Masaya

    2015-08-14

    Major depression, one of the most prevalent mental illnesses, is thought to be a multifactorial disease related to both genetic and environmental factors. However, the genes responsible for and the pathogenesis of major depression at the molecular level remain unclear. Recently, we reported that stressed mice with elevated plasma corticosterone levels show upregulation and activation of serum glucocorticoid-regulated kinase (Sgk1) in oligodendrocytes. Active Sgk1 causes phosphorylation of N-myc downstream-regulated gene 1 (Ndrg1), and phospho-Ndrg1 increases the expression of N-cadherin, α-catenin, and β-catenin in oligodendrocytes. This activation of the Sgk1 cascade results in morphological changes in the oligodendrocytes of nerve fiber bundles, such as those present in the corpus callosum. However, little is known about the molecular functions of the traditional and/or desmosomal cadherin superfamily in oligodendrocytes. Therefore, in this study, we aimed to elucidate the functions of the desmosomal cadherin superfamily in oligodendrocytes. Desmoglein (Dsg) 1, Dsg2, and desmocollin 1 (Dsc1) were found to be expressed in the corpus callosum of mouse brain, and the expression of a subtype of Dsg1, Dsg1c, was upregulated in oligodendrocytes after chronic stress exposure. Furthermore, Dsg1 proteins were localized around the plasma membrane regions of oligodendrocytes. A study in primary oligodendrocyte cultures also revealed that chronic upregulation of Sgk1 by dexamethasone administration is involved in upregulation of Dsg1c mRNA. These results may indicate that chronic stress induced Sgk1 activation in oligodendrocytes, which increases Dsg1 expression near the plasma membrane. Thus, Dsg1 upregulation may be implicated in the molecular mechanisms underlying the morphological changes in oligodendrocytes in response to chronic stress exposure. PMID:26043694

  19. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    PubMed Central

    Ghazikhanlou-sani, K.; Firoozabadi, S. M. P.; Agha-ghazvini, L.; Mahmoodzadeh, H.

    2016-01-01

    Introduction There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690.  With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). Conclusion DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues.  It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments.

  20. Evaluation of Soft Tissue Sarcoma Tumors Electrical Conductivity Anisotropy Using Diffusion Tensor Imaging for Numerical Modeling on Electroporation

    PubMed Central

    Ghazikhanlou-sani, K.; Firoozabadi, S. M. P.; Agha-ghazvini, L.; Mahmoodzadeh, H.

    2016-01-01

    Introduction There is many ways to assessing the electrical conductivity anisotropy of a tumor. Applying the values of tissue electrical conductivity anisotropy is crucial in numerical modeling of the electric and thermal field distribution in electroporation treatments. This study aims to calculate the tissues electrical conductivity anisotropy in patients with sarcoma tumors using diffusion tensor imaging technique. Materials and Method A total of 3 subjects were involved in this study. All of patients had clinically apparent sarcoma tumors at the extremities. The T1, T2 and DTI images were performed using a 3-Tesla multi-coil, multi-channel MRI system. The fractional anisotropy (FA) maps were performed using the FSL (FMRI software library) software regarding the DTI images. The 3D matrix of the FA maps of each area (tumor, normal soft tissue and bone/s) was reconstructed and the anisotropy matrix was calculated regarding to the FA values. Result The mean FA values in direction of main axis in sarcoma tumors were ranged between 0.475–0.690.  With assumption of isotropy of the electrical conductivity, the FA value of electrical conductivity at each X, Y and Z coordinate axes would be equal to 0.577. The gathered results showed that there is a mean error band of 20% in electrical conductivity, if the electrical conductivity anisotropy not concluded at the calculations. The comparison of FA values showed that there is a significant statistical difference between the mean FA value of tumor and normal soft tissues (P<0.05). Conclusion DTI is a feasible technique for the assessment of electrical conductivity anisotropy of tissues.  It is crucial to quantify the electrical conductivity anisotropy data of tissues for numerical modeling of electroporation treatments. PMID:27672627

  1. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  2. A general elastic-anisotropy measure

    NASA Astrophysics Data System (ADS)

    Ledbetter, Hassel; Migliori, Albert

    2006-09-01

    We propose an elastic-anisotropy measure. Zener's familiar anisotropy index A =2C44/(C11-C12) applies only to cubic symmetry [Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948), p. 16]. Its extension to hexagonal symmetry creates ambiguities. Extension to orthorhombic (or lower) symmetries becomes meaningless because C11-C12 loses physical meaning. We define elastic anisotropy as the squared ratio of the maximum/minimum shear-wave velocity. We compute the extrema velocities from the Christoffel equations [M. Musgrave, Crystal Acoustics (Holden-Day, San Francisco, 1970), p. 84]. The measure is unambiguous, applies to all crystal symmetries (cubic-triclinic), and reduces to Zener's definition in the cubic-symmetry limit. The measure permits comparisons between and among different crystal symmetries, say, in allotropic transformations or in a homologous series. It gives meaning to previously unanswerable questions such as the following: is zinc (hexagonal) more or less anisotropic than copper (cubic)? is alpha-uranium (orthorhombic) more or less anisotropic than delta-plutonium (cubic)? The most interesting finding is that close-packed-hexagonal elements show an anisotropy near 1.3, about half that of their close-packed-cubic counterparts. A central-force near-neighbor model supports this finding.

  3. Anisotropy of a cubic ferromagnet at criticality

    NASA Astrophysics Data System (ADS)

    Kudlis, A.; Sokolov, A. I.

    2016-10-01

    Critical fluctuations change the effective anisotropy of cubic ferromagnet near the Curie point. If the crystal undergoes phase transition into orthorhombic phase and the initial anisotropy is not too strong, reduced anisotropy of nonlinear susceptibility acquires at Tc the universal value δ4*=2/v* 3 (u*+v*) where u* and v* are coordinates of the cubic fixed point on the flow diagram of renormalization group equations. In the paper, the critical value of the reduced anisotropy is estimated within the pseudo-ɛ expansion approach. The six-loop pseudo-ɛ expansions for u*, v*, and δ4* are derived for the arbitrary spin dimensionality n . For cubic crystals (n =3 ) higher-order coefficients of the pseudo-ɛ expansions obtained turn out to be so small that use of simple Padé approximants yields reliable numerical results. Padé resummation of the pseudo-ɛ series for u*, v*, and δ4* leads to the estimate δ4*=0.079 ±0.006 , indicating that detection of the anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is certainly possible.

  4. Anisotropy of Wood in the Microwave Region

    ERIC Educational Resources Information Center

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  5. Variance Anisotropy of Solar Wind fluctuations

    NASA Astrophysics Data System (ADS)

    Oughton, S.; Matthaeus, W. H.; Wan, M.; Osman, K.

    2013-12-01

    Solar wind observations at MHD scales indicate that the energy associated with velocity and magnetic field fluctuations transverse to the mean magnetic field is typically much larger than that associated with parallel fluctuations [eg, 1]. This is often referred to as variance anisotropy. Various explanations for it have been suggested, including that the fluctuations are predominantly shear Alfven waves [1] and that turbulent dynamics leads to such states [eg, 2]. Here we investigate the origin and strength of such variance anisotropies, using spectral method simulations of the compressible (polytropic) 3D MHD equations. We report on results from runs with initial conditions that are either (i) broadband turbulence or (ii) fluctuations polarized in the same sense as shear Alfven waves. The dependence of the variance anisotropy on the plasma beta and Mach number is examined [3], along with the timescale for any variance anisotropy to develop. Implications for solar wind fluctuations will be discussed. References: [1] Belcher, J. W. and Davis Jr., L. (1971), J. Geophys. Res., 76, 3534. [2] Matthaeus, W. H., Ghosh, S., Oughton, S. and Roberts, D. A. (1996), J. Geophys. Res., 101, 7619. [3] Smith, C. W., B. J. Vasquez and K. Hamilton (2006), J. Geophys. Res., 111, A09111.

  6. Exponential Anisotropy of Solor Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Pomerantz, M. A.

    1985-08-01

    On 16 February 1984 a flare on the Sun's invisible disk produced a large, highly anisotropic solar particle event. A novel technique, in which interplanetary scattering parameters are determined purely from the form of the particle anisotropy, is here applied to energetic particle data from neutron monitors and the ICE spacecraft.

  7. Relative sensitivity of formability to anisotropy

    SciTech Connect

    Logan, R.W.; Maker, B.N.

    1997-01-01

    This work compares the relative importance of material anisotropy in sheet forming as compared to other material and process variables. The comparison is made quantitative by the use of normalized dependencies of depth to failure (forming limit is reached) on various measures of anisotropy, as well as strain and rate sensitivity, friction, and tooling. Comparisons are made for a variety of forming processes examined previously in the literature as well as two examples of complex stampings in this work. 7 The examples rover a range from nearly pure draw to nearly pure stretch situations, and show that for materials following a quadratic yield criterion, anisotropy is among the most sensitive parameters influencing formability. For materials following higher-exponent yield criteria, the dependency is milder but is still of the order of most other process parameters. However, depending on the particular forming operation, it is shown that in some cases anisotropy may be ignored, whereas in others its consideration is crucial to a good quality analysis.

  8. Knitted Patterns as a Model for Anisotropy

    ERIC Educational Resources Information Center

    Cepic, Mojca

    2012-01-01

    Anisotropy is a difficult concept, although it is often met in everyday life. This paper describes a simple model--knitted patterns--having anisotropic elastic properties. The elastic constant is measured for the force applied in different directions with respect to the knitting direction. It is also shown that the deformation of the knitted…

  9. New photorotor for the induction of anisotropy.

    PubMed

    Rosenhauer, Regina; Kempe, Christian; Sapich, Beate; Klein, Markus; Poetsch, Eike; Stumpe, Joachim

    2012-12-18

    A new class of photosensitive compounds generates optical anisotropy comparable to azobenzene systems upon irradiation with linearly polarized light, but, in contrast to these systems, the new photorotor system does not absorb in the visible range. High values of dichroism and birefringence are induced and in the case of LC polymers the light induced order can be amplified by self-organization. PMID:23070962

  10. Magnetic Anisotropy in UMn2Ge2

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; de Lozanne, Alex; Baumbach, Ryan; Kim, Jeehoon; Bauer, Eric; Thompson, Joe; Ronning, Filip

    2015-03-01

    UMn2Ge2, a permanent magnet, is a ternary intermetallic compound with a tetragonal crystal structure of type ThCr2Si2 and with space group I4/mmm. Local U and Mn moments in UMn2Ge2 order on their respective sublattices at temperatures near 100 and 380 K, respectively. Previous x-ray diffraction, Kerr rotation angle, and SQUID magnetometry data support the commonly accepted notion that U moments order at low temperature and align Mn moments along the c-axis, introducing anisotropy. Previous results obtained using a multi-mode atomic force microscope in magnetic force microscopy (MFM) mode indeed confirmed that UMn2Ge2 displays uniaxial anisotropy with an easy axis coinciding with the c-axis of the material. However, the branching domains in UMn2Ge2 consistent with uniaxial anisotropy were observed all the way up to room temperature by MFM. This indicates that the effect of uranium moments on the magnetic microstructure of UMn2Ge2 is not limited to low temperatures near the ordering temperature of the uranium sublattice. We further investigate closure domains in the surface of UMn2Ge2 and report on characteristics and signatures of anisotropy revealed by the orientation and periodic structures of closure domains. Supported by NSF Grant DMR-0810119.

  11. Initialized Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  12. The role of geological structure in crustal seismic anisotropy: identification and quantification of "structural anisotropy"

    NASA Astrophysics Data System (ADS)

    Okaya, D. A.; Johnson, S. E.; Vel, S.

    2010-12-01

    Seismic anisotropy is the cumulative interplay between propagating elastic waves and anisotropic earth material. Unraveling this effect in deformed crustal terranes is complex due to the roles of microscale fabric and macroscale structural geometry, the bending of seismic raypaths due to velocity gradients, and often the observation of anisotropy as second-order waveform/traveltime effects. While seismologists recognize that seismic anisotropy can originate from upper crustal fractures or by organized fine-scale layering of isotropic material, we focus on crustal anisotropy produced by the combined effects of microscale deformational fabrics and macroscale structural geometries formed during tectonic deformation and/or regional metamorphism. Material anisotropy involves at least four factors that contribute to seismic anisotropy: (1) microstructural characteristics including spatial arrangement, modal abundances, and crystallographic and shape orientations of constituent minerals, (2) inherent azimuthal variation of properties and approximation using symmetry classes, (3) bulk representation (effective media) of material properties at different scales, and (4) the types and internal geometries of macroscale structures. Based on the relative scales of fabric-filled geological structures and seismic wavelengths, a seismic wave may sample sub-portions of a structure or may pass through, responding to the bulk average of fine structure. While many seismologists focus on lattice preferred orientation (LPO), crystallographic preferred orientation (CPO), or shape preferred orientation (SPO) as the fine-scale cause of seismic anisotropy, we also recognize that a rock at the thin section to hand sample scale will define an amount of potential seismic anisotropy. However, the reorienting of sample-scale anisotropy by macroscale structures imparts its own effect. We define this response to larger-scale structure as "structural anisotropy". Furthermore, via the use of

  13. The microwave background anisotropies: Observations

    PubMed Central

    Wilkinson, David

    1998-01-01

    Most cosmologists now believe that we live in an evolving universe that has been expanding and cooling since its origin about 15 billion years ago. Strong evidence for this standard cosmological model comes from studies of the cosmic microwave background radiation (CMBR), the remnant heat from the initial fireball. The CMBR spectrum is blackbody, as predicted from the hot Big Bang model before the discovery of the remnant radiation in 1964. In 1992 the cosmic background explorer (COBE) satellite finally detected the anisotropy of the radiation—fingerprints left by tiny temperature fluctuations in the initial bang. Careful design of the COBE satellite, and a bit of luck, allowed the 30 μK fluctuations in the CMBR temperature (2.73 K) to be pulled out of instrument noise and spurious foreground emissions. Further advances in detector technology and experiment design are allowing current CMBR experiments to search for predicted features in the anisotropy power spectrum at angular scales of 1° and smaller. If they exist, these features were formed at an important epoch in the evolution of the universe—the decoupling of matter and radiation at a temperature of about 4,000 K and a time about 300,000 years after the bang. CMBR anisotropy measurements probe directly some detailed physics of the early universe. Also, parameters of the cosmological model can be measured because the anisotropy power spectrum depends on constituent densities and the horizon scale at a known cosmological epoch. As sophisticated experiments on the ground and on balloons pursue these measurements, two CMBR anisotropy satellite missions are being prepared for launch early in the next century. PMID:9419320

  14. Multi-scale characterization of topographic anisotropy

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.

    2016-05-01

    We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.

  15. Tempered fractional calculus

    NASA Astrophysics Data System (ADS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  16. Tempered fractional calculus

    SciTech Connect

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  17. Anisotropy in MHD turbulence due to a mean magnetic field

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D.

    1982-01-01

    The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers.

  18. TEMPERED FRACTIONAL CALCULUS

    PubMed Central

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2014-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690

  19. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Aüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schöder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cáardenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2011-06-01

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 × 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  20. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    DOE PAGES

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrativemore » values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.« less

  1. EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure.

    PubMed

    Robichaux, Michael A; Chenaux, George; Ho, Hsin-Yi Henry; Soskis, Michael J; Greenberg, Michael E; Henkemeyer, Mark; Cowan, Christopher W

    2016-04-01

    The two cortical hemispheres of the mammalian forebrain are interconnected by major white matter tracts, including the corpus callosum (CC) and the posterior branch of the anterior commissure (ACp), that bridge the telencephalic midline. We show here that the intracellular signaling domains of the EphB1 and EphB2 receptors are critical for formation of both the ACp and CC. We observe partial and complete agenesis of the corpus callosum, as well as highly penetrant ACp misprojection phenotypes in truncated EphB1/2 mice that lack intracellular signaling domains. Consistent with the roles for these receptors in formation of the CC and ACp, we detect expression of these receptors in multiple brain regions associated with the formation of these forebrain structures. Taken together, our findings suggest that a combination of forward and reverse EphB1/2 receptor-mediated signaling contribute to ACp and CC axon guidance.

  2. Fetal development of the corpus callosum: Insights from a 3T DTI and tractography study in a patient with segmental callosal agenesis.

    PubMed

    Scola, Elisa; Sirgiovanni, Ida; Avignone, Sabrina; Cinnante, Claudia Maria; Biffi, Riccardo; Fumagalli, Monica; Triulzi, Fabio

    2016-10-01

    Commissural embryology mechanisms are not yet completely understood. The study and comprehension of callosal dysgenesis can provide remarkable insights into embryonic or fetal commissural development. The diffusion tensor imaging (DTI) technique allows the in vivo analyses of the white-matter microstructure and is a valid tool to clarify the disturbances of brain connections in patients with dysgenesis of the corpus callosum (CC). The segmental callosal agenesis (SCAG) is a rare partial agenesis of the corpus callosum (ACC). In a newborn with SCAG the DTI and tractography analyses proved that the CC was made of two separate segments consisting respectively of the ventral part in the genu and body of the CC, connecting the frontal lobes, and the dorsal part in the CC splenium and the attached hippocampal commissure (HC), connecting the parietal lobes and the fornix. These findings support the embryological thesis of a separated origin of the ventral and the dorsal parts of the CC.

  3. Fetal development of the corpus callosum: Insights from a 3T DTI and tractography study in a patient with segmental callosal agenesis.

    PubMed

    Scola, Elisa; Sirgiovanni, Ida; Avignone, Sabrina; Cinnante, Claudia Maria; Biffi, Riccardo; Fumagalli, Monica; Triulzi, Fabio

    2016-10-01

    Commissural embryology mechanisms are not yet completely understood. The study and comprehension of callosal dysgenesis can provide remarkable insights into embryonic or fetal commissural development. The diffusion tensor imaging (DTI) technique allows the in vivo analyses of the white-matter microstructure and is a valid tool to clarify the disturbances of brain connections in patients with dysgenesis of the corpus callosum (CC). The segmental callosal agenesis (SCAG) is a rare partial agenesis of the corpus callosum (ACC). In a newborn with SCAG the DTI and tractography analyses proved that the CC was made of two separate segments consisting respectively of the ventral part in the genu and body of the CC, connecting the frontal lobes, and the dorsal part in the CC splenium and the attached hippocampal commissure (HC), connecting the parietal lobes and the fornix. These findings support the embryological thesis of a separated origin of the ventral and the dorsal parts of the CC. PMID:27549148

  4. Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.; Warren, Jessica M.; Zimmerman, Mark E.; Kohlstedt, David L.

    2016-07-01

    The development of crystallographic textures in olivine-rich rocks leads to a marked anisotropy in viscosity of the upper mantle, strongly influencing a variety of large-scale geodynamic processes. Most estimates of the magnitude of viscous anisotropy in the upper mantle are derived from micromechanical models that predict textural and mechanical evolution numerically. Unfortunately, relatively few data exist with which to benchmark these models, and therefore their applicability to geodynamic processes remains in question. Here we present the results from a series of laboratory deformation experiments that yield insight into the magnitude and evolution of the anisotropy of olivine aggregates during deformation along complex loading paths. Aggregates of Fo50 olivine were first deformed in extension in a gas-medium apparatus at a temperature of 1473 K, confining pressure of 300 MPa, and a variety of stresses and strain rates. Early in the extension experiments, samples exhibited viscosities similar to those previously determined for isotropic aggregates. Extensional deformation was accompanied by formation of crystallographic textures with [100] axes dominantly aligned with the extension axis. Samples were subsequently deformed in torsion under similar conditions to shear strains of up to 15.5. Early in the torsion experiments, samples supported stresses a factor of ∼2 larger than measured at the end of extension experiments, demonstrating a marked anisotropy in viscosity. Textures at the end of torsion experiments exhibited [100] axes dominantly aligned with the shear direction, comparable to previous experimental observations. Evolution of the textures resulting from extension to those resulting from torsion was analyzed through examination of radial sections of torsion samples. Our results confirm that texture produces viscous anisotropy in olivine aggregates, and we provide a simple, calibrated parameterization of viscous anisotropy for use in geodynamic

  5. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials.

    PubMed

    Ross, Michael B; Blaber, Martin G; Schatz, George C

    2014-06-17

    The a priori ability to design electromagnetic wave propagation is crucial for the development of novel metamaterials. Incorporating plasmonic building blocks is of particular interest due to their ability to confine visible light. Here we explore the use of anisotropy in nanoscale and mesoscale plasmonic array architectures to produce noble metal-based metamaterials with unusual optical properties. We find that the combination of nanoscale and mesoscale anisotropy leads to rich opportunities for metamaterials throughout the visible and near-infrared. The low volume fraction (<5%) plasmonic metamaterials explored herein exhibit birefringence, a skin depth approaching that of pure metals for selected wavelengths, and directionally confined waves similar to those found in optical fibres. These data provide design principles with which the electromagnetic behaviour of plasmonic metamaterials can be tailored using high aspect ratio nanostructures that are accessible via a variety of synthesis and assembly methods.

  6. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Ross, Michael B.; Blaber, Martin G.; Schatz, George C.

    2014-06-01

    The a priori ability to design electromagnetic wave propagation is crucial for the development of novel metamaterials. Incorporating plasmonic building blocks is of particular interest due to their ability to confine visible light. Here we explore the use of anisotropy in nanoscale and mesoscale plasmonic array architectures to produce noble metal-based metamaterials with unusual optical properties. We find that the combination of nanoscale and mesoscale anisotropy leads to rich opportunities for metamaterials throughout the visible and near-infrared. The low volume fraction (<5%) plasmonic metamaterials explored herein exhibit birefringence, a skin depth approaching that of pure metals for selected wavelengths, and directionally confined waves similar to those found in optical fibres. These data provide design principles with which the electromagnetic behaviour of plasmonic metamaterials can be tailored using high aspect ratio nanostructures that are accessible via a variety of synthesis and assembly methods.

  7. Temperature anisotropy of the Jovian sulfur nebula

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Siscoe, G. L.; Mekler, Y.

    1979-01-01

    The apparent paradox between the reported observation of a 3-eV gyration energy of Jupiter's ionized sulfur nebula and its observed thickness is discussed. An observation of the thickness of the cloud taken nearly edge-on is presented and shown to imply a large bounce-averaged anisotropy of the sulfur in temperature. These observations are used to construct a self-consistent model of the sulfur nebula in which the sulfur ions are injected by Io as ions and remain sufficiently collisionless in the magnetosphere to maintain the anisotropy for a time longer than a characteristic diffusion time. It is also shown that the proton-electron plasma is collisionally thermalized and provides an adequate means of tapping the rotational energy of the planet to provide the power radiated in the sulfur lines.

  8. Anisotropies in the cosmic microwave background: Theory

    SciTech Connect

    Dodelson, S.

    1998-02-01

    Anisotropies in the Cosmic Microwave Background (CMB) contain a wealth of information about the past history of the universe and the present values of cosmological parameters. I online some of the theoretical advances of the last few years. In particular, I emphasize that for a wide class of cosmological models, theorists can accurately calculate the spectrum to better than a percent. The spectrum of anisotropies today is directly related to the pattern of inhomogeneities present at the time of recombination. This recognition leads to a powerful argument that will enable us to distinguish inflationary models from other models of structure formation. If the inflationary models turn out to be correct, the free parameters in these models will be determined to unprecedented accuracy by the upcoming satellite missions.

  9. Microstructure anisotropy in polyolefin flexible foams

    NASA Astrophysics Data System (ADS)

    Antunes, M.; Arencón, D.; Realinho, V.; Velasco, J. I.

    2009-09-01

    The use of polyolefin flexible foams with typical thicknesses between 1 and 3 mm produced by a physical foaming extrusion process is nowadays quite widespread in the packaging sector. Their high flexibility and closed-cell structure allows them to show good energy absorption properties under low loading conditions. Although the compressive response of these materials is well known, the inner microstructure developed during processing induce a high anisotropy that is responsible for their direction-dependent tensile and fracture behaviours. In this work, two different polyolefin-based foams, with densities ranging from 20 to 45 kg/m3, were studied. The induced microstructure anisotropy was characterized by micro-Raman. With this technique, the relative orientations of both crystalline and amorphous phases in the foam's base polymer could be determined and thus related to their mechanical properties measured in the different directions.

  10. Friction Anisotropy with Respect to Topographic Orientation

    PubMed Central

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  11. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  12. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  13. Friction anisotropy with respect to topographic orientation.

    PubMed

    Yu, Chengjiao; Wang, Q Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties.

  14. Anisotropy in twinned terfenol-D crystals

    NASA Astrophysics Data System (ADS)

    Lord, D. G.; Harvey, D.

    1994-11-01

    The highly magnetostrictive cubic compound Terfenol-D (Tb0.3Dy0.7Fe2) solidifies via a (211) dendritic growth front when growth by a free-standing zone technique. The resulting material is usually composed of dendritic plates often containing crystallographic twins, the predominant plate and twin plane being the (1-11) orthogonal to the (-2-11) growth plane. Results of room temperature magnetic torque analysis from (011) disk specimens, having differing twin densities, are presented which yield both the magnetic anisotropy constants, K(sub 1) = -1.6 x 10(exp 5) J/cu m and K(sub 2) = -0.16 x 10(exp 5) J/cu m, and the relative parent/twin volume. Magnetic susceptibility data both parallel and transverse to the applied field are presented which, in conjunction with the anisotropy results, emphasize the importance of twin density on magnetoelastic response for typical application geometries.

  15. Microwave background anisotropies in quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  16. Statistical anisotropy in the inflationary universe

    SciTech Connect

    Shtanov, Yuri; Pyatkovska, Hanna

    2009-07-15

    During cosmological inflation, quasiclassical perturbations are permanently generated on super-Hubble spatial scales, their power spectrum being determined by the fundamental principles of quantum field theory. By the end of inflation, they serve as primeval seeds for structure formation in the universe. At early stages of inflation, such perturbations break homogeneity and isotropy of the inflationary background. In the present paper, we perturbatively take into account this quasiclassical background inhomogeneity of the inflationary universe while considering the evolution of small-scale (sub-Hubble) quantum modes. As a result, the power spectrum of primordial perturbations develops statistical anisotropy, which can subsequently manifest itself in the large-scale structure and cosmic microwave background. The statistically anisotropic contribution to the primordial power spectrum is predicted to have almost scale-invariant form dominated by a quadrupole. Theoretical expectation of the magnitude of this anisotropy depends on the assumptions about the physics in the trans-Planckian region of wave numbers.

  17. Magnetic Anisotropy in Functionalized Bipyridyl Cryptates.

    PubMed

    Kreidt, Elisabeth; Bischof, Caroline; Platas-Iglesias, Carlos; Seitz, Michael

    2016-06-01

    The magnetic properties of molecular lanthanoid complexes are very important for a variety of scientific and technological applications, with the unique magnetic anisotropy being one of the most important features. In this context, a very rigid tris(bipyridine) cryptand was synthesized with a primary amine functionality for future bioconjugation. The magnetic anisotropy was investigated for the corresponding paramagnetic ytterbium cryptate. With the use of a combination of density functional theory calculations and lanthanoid-induced NMR shift analysis, the magnetic susceptibility tensor was determined and compared to the unfunctionalized cryptate analogue. The size and orientation of the axial and rhombic tensor components show remarkably great resilience toward the decrease of local symmetry around the metal and anion exchange in the inner coordination sphere. In addition, the functionalized ytterbium cryptate also exhibits efficient near-IR luminescence. PMID:27214575

  18. A 54 Mb 11qter duplication and 0.9 Mb 1q44 deletion in a child with laryngomalacia and agenesis of corpus callosum

    PubMed Central

    2011-01-01

    Background Partial Trisomy 11q syndrome (or Duplication 11q) has defined clinical features and is documented as a rare syndrome by National Organization of Rare Disorders (NORD). Deletion 1q44 (or Monosomy 1q44) is a well-defined syndrome, but there is controversy about the genes lying in 1q44 region, responsible for agenesis of the corpus callosum. We report a female child with the rare Partial Trisomy 11q syndrome and Deletion 1q44 syndrome. The genomic imbalance in the proband was used for molecular characterization of the critical genes in 1q44 region for agenesis of corpus callosum. Some genes in 11q14q25 may be responsible for laryngomalacia. Results We report a female child with dysmorphic features, microcephaly, growth retardation, seizures, acyanotic heart disease, and hand and foot deformities. She had agenesis of corpus callosum, laryngomalacia, anterior ectopic anus, esophageal reflux and respiratory distress. Chromosome analysis revealed a derivative chromosome 1. Her karyotype was 46,XX,der(1)t(1;11)(q44;q14)pat. The mother had a normal karyotype and the karyotype of the father was 46,XY,t(1;11)(q44;q14). SNP array analysis showed that the proband had a 54 Mb duplication of 11q14q25 and a 0.9 Mb deletion of the submicroscopic subtelomeric 1q44 region. Fluorescence Insitu Hybridisation confirmed the duplication of 11qter and deletion of 1qter. Conclusion Laryngomalacia or obstruction of the upper airway is the outcome of increased dosage of some genes due to Partial Trisomy 11q Syndrome. In association with other phenotypic features, agenesis of corpus callosum appears to be a landmark phenotype for Deletion 1q44 syndrome, the critical genes lying proximal to SMYD3 in 1q44 region. PMID:21936942

  19. Morphometric analysis of brain images with reduced number of statistical tests: a study on the gender-related differentiation of the corpus callosum

    PubMed Central

    Kontos, Despina; Megalooikonomou, Vasileios; Gee, James C.

    2009-01-01

    Summary Objective We evaluate the feasibility of applying dynamic recursive partitioning (DRP), an image analysis technique, to perform morphometric analysis. We apply DRP to detect and characterize discriminative morphometric characteristics between anatomical brain structures from different groups of subjects. Our method reduces the number of statistical tests, commonly required by pixel-wise statistics, alleviating the effect of the multiple comparison problem. Methods and Materials The main idea of DRP is to partition the two-dimensional (2D) image adaptively into progressively smaller sub-regions until statistically significant discriminative regions are detected. The partitioning process is guided by statistical tests applied on groups of pixels. By performing statistical tests on groups of pixels rather than on individual pixels, the number of statistical tests is effectively reduced. This reduction of statistical tests restricts the effect of the multiple comparison problem (i.e. type-I error). We demonstrate an application of DRP for detecting gender-related morphometric differentiation of the corpus callosum. DRP was applied to template deformation fields computed from registered magnetic resonance images of the corpus callosum in order to detect regions of significant expansion or contraction between female and male subjects. Results DRP was able to detect regions comparable to those of pixel-wise analysis, while reducing the number of required statistical tests up to almost 50%. The detected regions were in agreement with findings previously reported in the literature. Statistically significant discriminative morphological variability was detected in the posterior corpus callosum region, the isthmus and the anterior corpus callosum. In addition, by operating on groups of pixels, DRP appears to be less prone to detecting spatially diffused and isolated outlier pixels as significant. Conclusion DRP can be a viable approach for detecting discriminative

  20. Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: applications in healthy volunteers and in brain tumors.

    PubMed

    Szczepankiewicz, Filip; Lasič, Samo; van Westen, Danielle; Sundgren, Pia C; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Topgaard, Daniel; Nilsson, Markus

    2015-01-01

    The anisotropy of water diffusion in brain tissue is affected by both disease and development. This change can be detected using diffusion MRI and is often quantified by the fractional anisotropy (FA) derived from diffusion tensor imaging (DTI). Although FA is sensitive to anisotropic cell structures, such as axons, it is also sensitive to their orientation dispersion. This is a major limitation to the use of FA as a biomarker for "tissue integrity", especially in regions of complex microarchitecture. In this work, we seek to circumvent this limitation by disentangling the effects of microscopic diffusion anisotropy from the orientation dispersion. The microscopic fractional anisotropy (μFA) and the order parameter (OP) were calculated from the contrast between signal prepared with directional and isotropic diffusion encoding, where the latter was achieved by magic angle spinning of the q-vector (qMAS). These parameters were quantified in healthy volunteers and in two patients; one patient with meningioma and one with glioblastoma. Finally, we used simulations to elucidate the relation between FA and μFA in various micro-architectures. Generally, μFA was high in the white matter and low in the gray matter. In the white matter, the largest differences between μFA and FA were found in crossing white matter and in interfaces between large white matter tracts, where μFA was high while FA was low. Both tumor types exhibited a low FA, in contrast to the μFA which was high in the meningioma and low in the glioblastoma, indicating that the meningioma contained disordered anisotropic structures, while the glioblastoma did not. This interpretation was confirmed by histological examination. We conclude that FA from DTI reflects both the amount of diffusion anisotropy and orientation dispersion. We suggest that the μFA and OP may complement FA by independently quantifying the microscopic anisotropy and the level of orientation coherence.

  1. Anisotropy of wood in the microwave region

    NASA Astrophysics Data System (ADS)

    Ziherl, Saša; Bajc, Jurij; Urankar, Bernarda; Čepič, Mojca

    2010-05-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of wood), which is evident from the observable anisotropic structure of wood, they may serve as a demonstration for explaining the anisotropic properties in crystals in the optical region.

  2. Time-resolved fluorescence anisotropy imaging.

    PubMed

    Suhling, Klaus; Levitt, James; Chung, Pei-Hua

    2014-01-01

    Fluorescence can be characterized by its intensity, position, wavelength, lifetime, and polarization. The more of these features are acquired in a single measurement, the more can be learned about the sample, i.e., the microenvironment of the fluorescence probe. Polarization-resolved fluorescence lifetime imaging-time-resolved fluorescence anisotropy imaging, TR-FAIM-allows mapping of viscosity or binding or of homo-FRET which can indicate dimerization or generally oligomerization.

  3. Substituted barium ferrites; sources of anisotropy

    NASA Astrophysics Data System (ADS)

    Morrish, A. H.; Zhou, X. Z.; Yang, Zheng; Zeng, Hua-Xian

    1994-12-01

    The substituted barium ferrites BaFe12-2 xCo x Sn x O19 (0 ≤ x ≤ 1.4) and BaFe1-2xCo x O19 (0 ≤ x ≤ 0.9) have been studied. The site occupancies, as determined from Mössbauer spectra, have been used to interpret the changes in the magnetization and in the crystalline anisotropy.

  4. Mid mantle seismic anisotropy around subduction zones

    NASA Astrophysics Data System (ADS)

    Faccenda, M.

    2014-02-01

    There is increasing evidence for mid mantle seismic anisotropy around subduction zones whose interpretation remains elusive. In this study I estimate the strain-induced mid mantle fabric and associated seismic anisotropy developing in 3D petrological-thermo-mechanical subduction models where the slab is either stagnating over the 660 km discontinuity or penetrating into the lower mantle. The modelling of synthetic lattice-preferred-orientation (LPO) development of wadsleyite and perovskite has been calibrated with results from deformational experiments and ab-initio atomic scale models, and the single crystal elastic tensor of the different mineral phases is scaled by local P-T conditions. The lower transition zone (ringwoodite + garnet) is assumed to be isotropic. Mid mantle fabric develops in proximity of the subducting slab where deformation and stresses are high, except at depths where upwelling or downwelling material undergoes phase transformations, yielding to LPO reset. The upper transition zone (wadsleyite + garnet) is characterized by weak transverse isotropy (2-3%) with symmetry axes oriented and fast S wave polarized dip-normal. A slightly stronger transverse isotropy develops in the lower mantle (perovskite + periclase), where the symmetry axes, the polarization of the fast S wave and the maximum Vp and dVs are parallel to the slab dip and subduction direction. For stagnating slab models this translates into negative and positive radial anisotropy in the upper transition zone and lower mantle back-arc, respectively, minimum delay times for vertically travelling shear waves and large shear wave splitting for waves propagating horizontally in the lower mantle. These results may help in reconciling the seismic anisotropy patterns observed in some subduction zones with subduction-induced deformation, such as those measured in the mid mantle between the Australian plate and the New Hebrides-Tonga-Kermadec trenches that I interpret as related to stagnating

  5. Influence of ferroelectric polarization on magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mardana, A.; Ducharme, S.; Adenwalla, S.

    2010-03-01

    Thin film heterostructures of transition metal ferromagnets (FM) and polymer ferroelectrics (FE) are investigated to look for changes in the magnetic anisotropy of the FM layer that occur on switching the FE polarization (with an ensuing change in the electric field direction).[1] Samples of [Glass/ Pd (50 nm)/Co wedge (0.9-2.6nm)/ferroelectric P(VDF-TrFE) (53 nm)/Al (30nm)] are deposited via sputtering or evaporation for the metallic layers and via Langmuir-Schaefer deposition for the polymer ferroelectric. [2] Magnetic and FE properties have been characterized using the Magneto-Optical Kerr Effect (MOKE) and the pyroelectric effect. Polar and longitudinal MOKE loops are measured across the Co wedge for both positive and negative FE polarization and the difference in the two MOKE loops is ascribed to the changes in the magnetic anisotropy of the FM layer. [3] These changes are most apparent in the region where the Co undergoes a transition from in-plane to out-of-plane anisotropy. This research is supported by the NSF MRSEC through Grant No. DMR- 0820521 1. Chun-Gang Duan et al, Appl. Phys. Lett. 92, 122905 (2008) 2. A. V. Bune, et al, Nature (London) 391, 874 (1998) 3. P. F. Carcia, J.Appl. Phys. 63, 5066 (1988)

  6. The Nature versus Nurture of Anisotropies

    NASA Astrophysics Data System (ADS)

    Hu, Wayne

    1994-04-01

    With the rapidly growing number of cosmic microwave background measurements on various scales, there is real hope that the number of acceptable models for structure formation will be limited to a very few in the near future. Yet any given model can always be saved by introducing and tuning extraneous free parameters. To better understand this question of ``nature versus nurture'' for temperature fluctuations, it is useful to know not only the general features of anisotropy predictions but also their causes. Extracting the physical content of our other works, we present here a {\\it simple} account of cosmic microwave background anisotropies on all scales. In particular, we show that analytic approximations can trace the structure of the so-called ``Doppler peaks,'' which arise due to the {\\it adiabatic} oscillations in the photon-baryon fluid. We also show how the finite thickness of the last scattering surface and the Silk damping mechanism can be described in a unified way by photon diffusion. In order to present a specific example, we focus on comparing the primordial baryon (PIB) model with the standard cold dark matter model (CDM). In particular, we explain why PIB generically predicts larger {\\it non}-oscillatory anisotropies from 1$^\\circ$ to 10$^\\circ$ scale which may already be in conflict with experiments.

  7. The Nature Versus Nurture of Anisotropies

    NASA Astrophysics Data System (ADS)

    Hu, Wayne

    With the rapidly growing number of cosmic microwave background measurements on various scales, there is real hope that the number of acceptable models for structure formation will be limited to a very few in the near future. Yet any given model can always be saved by introducing and tuning extraneous free parameters. To better understand this question of ``nature versus nurture'' for temperature fluctuations, it is useful to know not only the general features of anisotropy predictions but also their causes. Extracting the physical content of our other works, we present here a {\\it simple} account of cosmic microwave background anisotropies on all scales. In particular, we show that analytic approximations can trace the structure of the so-called ``Doppler peaks,'' which arise due to the {\\it adiabatic} oscillations in the photon-baryon fluid. We also show how the finite thickness of the last scattering surface and the Silk damping mechanism can be described in a unified way by photon diffusion. In order to present a specific example, we focus on comparing the primordial isocurvature baryon (PIB) model with the standard cold dark matter model (CDM). In particular, we explain why PIB generically predicts larger {\\it non}-oscillatory anisotropies from the 1$^\\circ$ to 10$^\\circ$ scale which may already be in conflict with experiments.

  8. Cosmic ray anisotropies near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.

    2014-12-01

    Context. The Voyager 1 spacecraft became the first man-made probe to cross the heliopause into the local interstellar medium and measure the galactic environment, including charged particle intensities, in situ. Aims: We qualitatively explain the observed anisotropies of galactic and anomalous cosmic rays in the interstellar medium. Methods: A pitch-angle-dependent numerical model was constructed and applied to the study of both heliospheric (anomalous cosmic rays and termination shock particles) and galactic cosmic rays near the heliopause region. Results: In accordance with the observations, the model is able to reproduce the observed anisotropic nature of both particle populations. In the interstellar medium, the heliospheric particle distribution shows a peak at pitch angles near 90°, while for galactic particles, their distribution shows a deficiency at these pitch-angle values. Conclusions: The observed anisotropies are related to the pitch-angle dependence of the perpendicular diffusion coefficient, and if this dependence is chosen appropriately, the anisotropies observed by Voyager 1 can be explained naturally.

  9. Dynamical anisotropy of the optical propagation paths

    NASA Astrophysics Data System (ADS)

    Arsenyan, Tatiana I.; Pisklin, Maksim V.; Suhareva, Natalia A.; Zotov, Aleksey M.

    2015-11-01

    Dynamics of laser beam intensity profile spatial modulations over a model tropospheric path with the controlled meteorological parameters was studied. Influence of the underlying surface temperature as well as the side wind load were considered. The increase of dynamic anisotropic disturbances saturation with the path length was observed. Spatio-temporal correlation characteristics of the directivity pattern in the signal beam registration plane were obtained. Proposed method of the experimental samples analysis on the base of chronogram with the following definition of the dynamic structure tensors array allows to estimate local and averaged projections of the flow velocities over the chosen spatio-temporal region and to restore their geometry in the zone of intersection with the signal beam. Additional characteristics suggested for the diagonalized local structure tensors such as local energy capacity and local structuredness are informative for the estimation of the inhomogeneities spatial dimensions, time of access through the section considered, the dynamics of energetic jets. The concepts of rotational and translational dynamic anisotropy are introduced to discriminate the types of the changes of the local ellipsoids axes orientation as well as their values. Rotational anisotropy shows itself in the changes of the local ellipsoids orientation, thus characterizing the illumination variation over the beam cross-section. Translational anisotropy describes the difference between the axes values for local ellipsoids.

  10. "Multicystic dysplastic kidney (Potter type II syndrome) and agenesis of corpus callosum (ACC) in two consecutive pregnancies: a possible teratogenic effect of electromagnetic exposure in utero".

    PubMed

    Tonni, Gabriele; Azzoni, Daniela; Ventura, Alessandro; Ambrosetti, Fabrizio; De Felice, Claudio

    2008-01-01

    Agenesis of the corpus callosum is found in about 5 per 1,000 births and it is due to maldevelopment or, secondary, to destructive lesions. Multicystic dysplastic kidneys is a consequence of either developmental failure of the mesonephric blastema to form nephrons or to early urinary obstruction due to urethral or ureteric atresia and can be found in about 1 per 1,000 live births. A case of fetal multicystic dysplastic kidney disease (Potter type II syndrome) and complete agenesis of the corpus callosum demonstrated by the presence of Probst bundles associated with colpocephaly occurring in the same mother in her two consecutive pregnancies is reported. Data regarding possible teratogenetic effect due to electromagnetic exposure in utero have also been investigated and raised suspicionus as a potential risk factor. In cases of suspected second trimester ultrasound diagnosis of agenesis of corpus callosum (ACC), the following clinical management should be recommended: fetal karyotype; a second level scan with differentiation between underlying conditions such as hydrocephalus and holoprosencephaly; antenatal MRI to enhance the diagnostic accuracy of possible associated neuronal migration (when possible); and direct demonstration of the presence of the Probst bundles to neurohistology.

  11. Anisotropy of ice Ih: Developement of fabric and effects of anisotropy on deformation

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Throstur

    The anisotropy arising from preferred crystal orientation of ice I h is examined. To understand plastic anisotropy of polycrystalline materials it is necessary to examine the behavior at the single crystal level. Ice crystals have extremely strong plastic anisotropy that strongly influences the bulk behavior. There are several ways to relate single crystal deformation to the bulk behavior. Two approaches are used here. The first one is to assume a homogeneous stress throughout the bulk, which allows us to derive analytical relations between stress and strain rate. The anisotropy affects the strain rate-stress relationship significantly. For example strongly anisotropic ice, with a vertically symmetric fabric, can deform transversely to the applied stress in pure shear, be nearly undeformable in vertical compression, and shear easily in simple shear. The second approach takes the interaction between neighboring crystals into account, and recrystallization processes are also considered. Comparison of fabric evolution using the model and fabric from the GRIP ice core indicates that nearest neighbor interaction is necessary to explain observations. Quantification of the interaction is complicated by recrystallization processes. A consistent method of characterizing measured fabric is needed to verify models of fabric development. Here the elastic anisotropy of ice plays a central role, and relations between fabric and elastic wave velocities are used to characterize fabric. As always, several other methods are possible, but comparison indicates that sonic measurements give an accurate estimate for deformation effects from vertically symmetric fabric especially in simple shear. The deformation of the borehole at Dye 3, Greenland, has been measured with borehole inclinometry. Sonic velocity measurements done in the borehole allow us to model the deformation using an anisotropic flow law. Anisotropy alone cannot explain all the deformation. The additional processes

  12. [Nevoid basal cell carcinoma syndrome with corpus callosum agenesis, PTCH1 mutation and absence of basal cell carcinoma].

    PubMed

    Mazzuoccolo, Luis D; Martínez, María Florencia; Muchnik, Carolina; Azurmendi, Pablo J; Stengel, Fernando

    2014-01-01

    Nevoid Basal Cell Carcinoma Syndrome (NBCCS) or Gorlin-Goltz syndrome is a rare autosomal dominant disorder, mainly due to PTCH1 gene mutations, that comprises a broad spectrum of clinical manifestations. The presence of multiple basal cell carcinomas (BCCs) is a cardinal sign in NBCCS, therefore cases in which BCCs are absent entails a delay in the diagnosis.We present a 14 years old boy with a clinical diagnosis of NBCCS by the presence of odontogenic cysts, hypertelorism, macrocephaly, and corpus callosum agenesia, but with absence of skin lesions. His 43 years old mother has NBCCS diagnosis and no history of BCCs. For a deeper study, PTCH1 mutation screening from peripheral blood samples were performed by both bidirectional sequencing and multiplex ligation dependent probe amplification (MLPA) techniques. The proband and his mother carry 25 pb duplication in exon 10 (c.1375dupl25bp) that causes a reading frameshift with a premature stop codon. Bioinformatics analysis predicted that this mutation results in a truncated protein shorter than normal. Our results suggest that complete clinical and genealogical studies accompanied by genetic analysis are essential in the early detection of the NBCCS cases such the one presented here. PMID:25188659

  13. Inter-hemispheric functional dysconnectivity mediates the association of corpus callosum degeneration with memory impairment in AD and amnestic MCI.

    PubMed

    Qiu, Yingwei; Liu, Siwei; Hilal, Saima; Loke, Yng Miin; Ikram, Mohammad Kamran; Xu, Xin; Yeow Tan, Boon; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan

    2016-01-01

    Evidences suggested that both corpus callosum (CC) degeneration and alternations of homotopic inter-hemispheric functional connectivity (FC) are present in Alzheimer's disease (AD). However, the associations between region-specific CC degeneration and homotopic inter-hemispheric FC and their relationships with memory deficits in AD remain uncharacterized. We hypothesized that selective CC degeneration is associated with memory impairment in AD and amnestic mild cognitive impairment (aMCI), which is mediated by homotopic inter-hemispheric functional dysconnectivity. Using structural magnetic resonance imaging (MRI) and task-free functional MRI, we assessed the CC volume and inter-hemispheric FC in 66 healthy controls, 41 aMCI and 41 AD. As expected, AD had CC degeneration and attenuated inter-hemispheric homotopic FC. Nevertheless, aMCI had relatively less severe CC degeneration (mainly in mid-anterior, central, and mid-posterior) and no reduction in inter-hemispheric homotopic FC. The degeneration of each CC sub-region was associated with specific inter-hemispheric homotopic functional disconnections in AD and aMCI. More importantly, impairment of inter-hemispheric homotopic FC partially mediated the association between CC (particularly the central and posterior parts) degeneration and memory deficit. Notably, these results remained after controlling for hippocampal volume. Our findings shed light on how CC degeneration and the related inter-hemispheric FC impact memory impairment in early stage of AD. PMID:27581062

  14. Single-shot T1 mapping of the corpus callosum: a rapid characterization of fiber bundle anatomy.

    PubMed

    Hofer, Sabine; Wang, Xiaoqing; Roeloffs, Volkert; Frahm, Jens

    2015-01-01

    Using diffusion-tensor magnetic resonance imaging and fiber tractography the topographic organization of the human corpus callosum (CC) has been described to comprise five segments with fibers projecting into prefrontal (I), premotor and supplementary motor (II), primary motor (III), and primary sensory areas (IV), as well as into parietal, temporal, and occipital cortical areas (V). In order to more rapidly characterize the underlying anatomy of these segments, this study used a novel single-shot T1 mapping method to quantitatively determine T1 relaxation times in the human CC. A region-of-interest analysis revealed a tendency for the lowest T1 relaxation times in the genu and the highest T1 relaxation times in the somatomotor region of the CC. This observation separates regions dominated by myelinated fibers with large diameters (somatomotor area) from densely packed smaller axonal bundles (genu) with less myelin. The results indicate that characteristic T1 relaxation times in callosal profiles provide an additional means to monitor differences in fiber anatomy, fiber density, and gray matter in respective neocortical areas. In conclusion, rapid T1 mapping allows for a characterization of the axonal architecture in an individual CC in less than 10 s. The approach emerges as a valuable means for studying neocortical brain anatomy with possible implications for the diagnosis of neurodegenerative processes.

  15. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach.

  16. Inter-hemispheric functional dysconnectivity mediates the association of corpus callosum degeneration with memory impairment in AD and amnestic MCI

    PubMed Central

    Qiu, Yingwei; Liu, Siwei; Hilal, Saima; Loke, Yng Miin; Ikram, Mohammad Kamran; Xu, Xin; Yeow Tan, Boon; Venketasubramanian, Narayanaswamy; Chen, Christopher Li-Hsian; Zhou, Juan

    2016-01-01

    Evidences suggested that both corpus callosum (CC) degeneration and alternations of homotopic inter-hemispheric functional connectivity (FC) are present in Alzheimer’s disease (AD). However, the associations between region-specific CC degeneration and homotopic inter-hemispheric FC and their relationships with memory deficits in AD remain uncharacterized. We hypothesized that selective CC degeneration is associated with memory impairment in AD and amnestic mild cognitive impairment (aMCI), which is mediated by homotopic inter-hemispheric functional dysconnectivity. Using structural magnetic resonance imaging (MRI) and task-free functional MRI, we assessed the CC volume and inter-hemispheric FC in 66 healthy controls, 41 aMCI and 41 AD. As expected, AD had CC degeneration and attenuated inter-hemispheric homotopic FC. Nevertheless, aMCI had relatively less severe CC degeneration (mainly in mid-anterior, central, and mid-posterior) and no reduction in inter-hemispheric homotopic FC. The degeneration of each CC sub-region was associated with specific inter-hemispheric homotopic functional disconnections in AD and aMCI. More importantly, impairment of inter-hemispheric homotopic FC partially mediated the association between CC (particularly the central and posterior parts) degeneration and memory deficit. Notably, these results remained after controlling for hippocampal volume. Our findings shed light on how CC degeneration and the related inter-hemispheric FC impact memory impairment in early stage of AD. PMID:27581062

  17. The integrity of corpus callosum and cluster B personality disorders: a quantitative MRI study in juvenile myoclonic epilepsy.

    PubMed

    Filho, Gerardo Maria de Araújo; Jackowski, Andrea Parolin; Lin, Katia; Silva, Ivaldo; S B Guaranha, Mirian; Guilhoto, Laura M F F; Júnior, Henrique Carrete; Yacubian, Elza Márcia T; Bressan, Rodrigo Affonseca

    2010-04-16

    Evidence suggests increased prevalence of cluster B personality disorders (PD) among patients with juvenile myoclonic epilepsy (JME), which has been associated with worse seizure control and more psychosocial dysfunctions. A preliminary voxel-based morphometry study demonstrated corpus callosum (CC) volume reduction in patients with JME and cluster B PD, particularly in the posterior midbody and isthmus. In this study we aimed to follow up these results with region of interest analysis. Sixteen JME patients with cluster B PD, 38 JME patients without any psychiatric disorder, and 30 demographically matched healthy controls submitted to a psychiatric evaluation and a magnetic resonance imaging scan. The total and regional callosal areas were obtained from the midsagittal slice using a semi-automated program. Psychiatric evaluation was performed through SCID-I and -II. Significant reductions in the posterior region of the CC were observed in the JME with PD group relative to the other groups. These data support previous findings of callosal reductions in cluster B PD, as well as a possible involvement of CC in patients with JME and such personality characteristics.

  18. Corpus Callosum Segment Circumference Is Associated With Response Control in Children With Attention-Deficit Hyperactivity Disorder (ADHD)

    PubMed Central

    McNally, Melanie A.; Crocetti, Deana; Mahone, E. Mark; Denckla, Martha B.; Suskauer, Stacy J.; Mostofsky, Stewart H.

    2010-01-01

    Response control is impaired in attention-deficit hyperactivity disorder (ADHD). Given the corpus callosum's role in response control, we compared callosal morphology in 64 children with ADHD and 64 typically developing children, aged 7 to 13 years, and investigated the relationships between callosal morphology and response control. Area and circumference of 5 callosal segments (genu, rostral body, midbody, isthmus, and splenium) were normalized for cerebral volume and examined for correlation with mean reaction time, intrasubject variability, and/or commission error rate from a go/no-go task. There were no between-group differences in segment areas or circumferences. Reaction time correlated with midbody circumference for boys with ADHD and isthmus circumference for girls with ADHD. For the entire cohort, rostral body circumference correlated with intra-subject variability. Impaired response control in ADHD is associated with anomalies in frontal interhemispheric connections. Future studies examining callosal shape will illuminate the anatomic basis of correlations between callosal segment circumference and response control. PMID:20139403

  19. Acute effects of neonatal dexamethasone treatment on proliferation and astrocyte immunoreactivity in hippocampus and corpus callosum: towards a rescue strategy.

    PubMed

    Claessens, Sanne E F; Belanoff, Joseph K; Kanatsou, Sofia; Lucassen, Paul J; Champagne, Danielle L; de Kloet, E Ronald

    2012-10-30

    Dexamethasone (DEX), a synthetic glucocorticoid, has been used to treat respiratory distress syndrome in prematurely born infants. Despite the important short-term benefit on lung function, there is growing concern about the long-term outcome of this treatment, since follow-up studies of prematurely born infants have shown lasting adverse neurodevelopmental effects. Since the mechanism underlying these neurodevelopmental impairments is largely unknown, the aim of the present study was (i) to investigate the acute effects of neonatal DEX treatment on the developing brain; and (ii) to block specifically the effects of DEX on the brain by central administration of the glucocorticoid receptor (GR) antagonist mifepristone. Long Evans rat pups were injected subcutaneously with tapering doses of DEX or saline (SAL) on postnatal days (pnd) 1, 2 and 3. Separate groups received intracerebroventricular injections with mifepristone prior to DEX treatment. On pnd 4 and 10, pups were sacrificed and brains collected for analysis of cell proliferation (Ki-67) and astrogliosis (GFAP). We report that neonatal DEX treatment reduced hippocampal cell proliferation on pnd 4, an effect that was normalized by pnd 10. Although on pnd 4, GFAP expression was not affected, DEX treatment caused a significant reduction in the number and density of astrocytes in hippocampus and corpus callosum on pnd 10, which was normalized by mifepristone pre-treatment. These acute alterations in the neonate brain might underlie later functional impairments reported in DEX-treated animals and humans and further illustrate the impact of early GR activation on brain development.

  20. Optical anisotropy in packed isotropic spherical particles: indication of nanometer scale anisotropy in packing structure.

    PubMed

    Yamaguchi, Kohei; Inasawa, Susumu; Yamaguchi, Yukio

    2013-02-28

    We investigated the origin of birefringence in colloidal films of spherical silica particles. Although each particle is optically isotropic in shape, colloidal films formed by drop drying demonstrated birefringence. While periodic particle structures were observed in silica colloidal films, no regular pattern was found in blended films of silica and latex particles. However, since both films showed birefringence, regular film structure patterns were not required to exhibit birefringence. Instead, we propose that nanometer-scale film structure anisotropy causes birefringence. Due to capillary flow from the center to the edge of a cast suspension, particles are more tightly packed in the radial direction. Directional packing results in nanometer-scale anisotropy. The difference in the interparticle distance between radial and circumferential axes was estimated to be 10 nm at most. Nanometer-scale anisotropy in colloidal films and the subsequent optical properties are discussed.

  1. CMB statistical anisotropy from noncommutative gravitational waves

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Mota, David F.; Ricciardone, Angelo; Arroja, Frederico

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by Ph(k) = Ph(0)(k) [ 1 + ∑LM fL(k) gLM YLM (hat k)], where Ph(0)(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f0(k) = f2(k) propto k-2 are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely l2 = l1 ± 2 in TT, TE, EE and BB, and l2 = l1 ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g00 = 30 and g2M = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  2. Detecting Mantle Anisotropy with Marine CSEM Sounding

    NASA Astrophysics Data System (ADS)

    Constable, S.; Key, K. W.; Behrens, J. P.; MacGregor, L.; Evans, R. L.

    2010-12-01

    We can detect transverse electrical anisotropy in the oceanic crust and upper mantle using circular transmitter tows around a pair of highly sensitive controlled-source electromagnetic (CSEM) receivers. Our long-wire electromagnetic (LEM) receivers, equipped with 100-200 m antennas, improve signal to noise by about an order of magnitude over standard EM receivers using 8-10 m antennas. LEMs work well in deep water where voltage noise from electrodes and amplifiers dominates, and electric field noise from magnetotelluric signals and water motion is low. When combined with SUESI, our marine EM transmitter, which emits 300 amps across a 250 m antenna, noise floors of 10-17~V/Am2 may be obtained at 2-4 Hz over 40-minute stacks. Towing a transmitter in a 30 km circle around an orthogonal pair of LEMs samples propagation though the crust and upper mantle in all horizontal directions. This purely azimuthal geometry generates linearly polarized data for an isotropic earth, but in the presence of anisotropy the minor axis of the polarization ellipse develops a characteristic clover-leaf pattern when plotted against source-receiver direction, and the major axis becomes elongated. We have conducted such experiments on 40 Ma lithosphere offshore California (the APPLE experiment), and 24 Ma lithosphere as it subducts into the Nicaraguan trench (part of the SERPENT expedition). Both regions produce remarkably similar results, with increased conductivity in the fossil ridge-parallel directions, which we interpret to be caused by serpentinized mantle-penetrating faults. This pattern of anisotropy is modified in the outer rise of the trench, as the lithosphere bends and shallower (crustal) fractures develop.

  3. Tensor anisotropy as a tracer of cosmic voids

    NASA Astrophysics Data System (ADS)

    Bustamante, Sebastian; Forero-Romero, Jaime E.

    2015-10-01

    We present a new method to find voids in cosmological simulations based on the tidal and the velocity shear tensors definitions of the cosmic web. We use the fractional anisotropy (FA) computed from the eigenvalues of each web scheme as a void tracer. We identify voids using a watershed transform based on the local minima of the FA field without making any assumption on the shape or structure of the voids. We test the method on the Bolshoi simulation and report on the abundance and radial averaged profiles for the density, velocity and FA. We find that voids in the velocity shear web are smaller than voids in the tidal web, with a particular overabundance of very small voids in the inner region of filaments/sheets. We classify voids as subcompensated/overcompensated depending on the absence/presence of an overdense matter ridge in their density profile, finding that close to 65 and 35 per cent of the total population are classified into each category, respectively. Finally, we find evidence for the existence of universal profiles from the radially averaged profiles for density, velocity and FA. This requires that the radial coordinate is normalized to the effective radius of each void. Put together, all these results show that the FA is a reliable tracer for voids, which can be used in complementarity to other existing methods and tracers.

  4. Results from the Wilkinson Microwave Anisotropy Probe (WMAP)

    NASA Astrophysics Data System (ADS)

    Komatsu, Eiichiro; Wilkinson Microwave Anisotropy Probe Science Team

    2013-01-01

    The Cosmic Microwave Background (CMB), the fossil light of the Big Bang, is the oldest light that one can ever hope to observe in our Universe. The CMB provides us with a direct image of the Universe when it was still an "infant" - 380,000 years old. The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the microwave sky in five frequency bands for nine years since 2001, creating a full-sky CMB map with the unprecedented precision. The WMAP data have enabled us to obtain a wealth of cosmological information, such as the composition, age, geometry, and history of the Universe. Yet, can we go further and learn about the primordial universe, when it was much younger than 380,000 years old, perhaps as young as a tiny fraction of a second? If so, this gives us a hope to test competing theories about the origin of the Universe at ultra high energies. In this talk, we will review the physics of CMB and the WMAP mission, present the basic results from nine years of observations, and discuss their cosmological implications.

  5. Thermal expansion and thermal expansion anisotropy of SiC polytypes

    NASA Technical Reports Server (NTRS)

    Li, Z.; Bradt, R. C.

    1987-01-01

    The principal axial coefficients of thermal expansion for the (3C), (4H), and (6H) polytypes of SiC are considered to identify the structural role of the stacking layer sequence as it affects the thermal expansion. A general equation based on the fractions of cubic and hexagonal layer stacking is developed that expresses the principal axial thermal expansion coefficients of all of the SiC polytypes. It is then applied to address the thermal expansion anisotropy of the noncubic SiC structures.

  6. Dividing Fractions: A Pedagogical Technique

    ERIC Educational Resources Information Center

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  7. Anisotropies in the gravitational-wave stochastic background

    SciTech Connect

    Ölmez, S.; Mandic, V.; Siemens, X. E-mail: mandic@physics.umn.edu

    2012-07-01

    We consider anisotropies in the stochastic background of gravitational-waves (SBGW) arising from random fluctuations in the number of gravitational-wave sources. We first develop the general formalism which can be applied to different cosmological or astrophysical scenarios. We then apply this formalism to calculate the anisotropies of SBGW associated with the fluctuations in the number of cosmic string loops, considering both cosmic string cusps and kinks. We calculate the anisotropies as a function of angle and frequency.

  8. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  9. The Microwave Anisotropy Probe (MAP) Mission

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  10. Seismic Anisotropy Beneath the Southern Puna Plateau

    NASA Astrophysics Data System (ADS)

    Calixto Mory, F. J.; Sandvol, E. A.; Kay, S. M.; Comte, D.; Alvarado, P. M.; Heit, B.; Yuan, X.

    2011-12-01

    The central Andean plateau offers an excellent natural laboratory to study mantle flow along an active continental margin as well as the link between plateau uplift and lithospheric delamination. The region between 25°S to 28°S, known as the southern Puna plateau, is characterized by a number of anomalous features possibly indicative of delamination. A total of 43 US and 30 German broadband three component seismic stations were deployed across the southern Puna plateau for approximately two years. The region of study has the advantage of deep and intermediate depth seismicity beneath the array that can be used to constrain the depth distribution of seismic anisotropy in the upper mantle. Teleseismic shear wave splitting results show a transition from east-west fast directions in the east of the array to east-west and north-south in the middle of the array, beneath Galan, and to predominantly north-south in the west part of the array. Azimuthal analysis of local events shows that the events coming from the North of the array split predominantely in the west-south north-east direction. The events coming from the south show splitting into the south-east north-west. Events coming from the West and East show predominant slab parallel splitting. Furthermore, a comparison of the teleseismic and local splitting lag times would suggest the presence of a significant amount of inter- or sub-slab anisotropy. Surface wave measurements indicate the presence of a high velocity block beneath Galan, a very large ignimbrite volcanic center, at depths between 190km (0.007 Hz) and 150 km (0.009 Hz). This can be interpreted as a delaminated block that has resulted in widespread crustal melting. At those same depths there are two high velocity zones, south east and north west of vicuña pampa. At 105 km (0.0125 Hz) we start to see the slab which seems to be deeping to the south. A low velocity zone further east could be responsible for the flatness of the slab at 26°S. At shallower

  11. Seismic anisotropy above a subducting plate

    SciTech Connect

    Shih, X.R.; Meyer, R.P. ); Schneider, J.F. )

    1991-08-01

    Shear-wave splitting observed in northeastern Colombia has provided evidence of seismic anisotropy in a shear zone immediately above a subducting plate. In an upper mantle composed mainly of olivine (57%) and orthopyroxene (17%), the splitting can be interpreted by wave propagation in an anisotropic medium of orthorhombic symmetry that results from alignment of these intrinsically anisotropic minerals. The mechanism of alignment is most likely the shearing associated with the subduction, aided by fluids migrating from the subducting plate when the plate exceeds 100 km in depth.

  12. Effect of pressure anisotropy on magnetorotational instability

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G. Churikov, A. P.; Erokhin, N. N.; Erokhin, N. S.; Tsypin, V. S

    2008-02-15

    It is shown that two new instabilities of hybrid type can occur in a rotating magnetized plasma with anisotropic pressure, i.e., the rotational firehose instability and the rotational mirror instability. In the case of {beta}{sub parallel} > {beta}{sub perpendicular}, where {beta}{sub parallel} and {beta}{sub -perpendicular} are the ratios of the parallel and perpendicular plasma pressure to the magnetic field pressure, the pressure anisotropy tends to suppress both new instabilities; in the case {beta}{sub perpendicular} > {beta}{sub parallel}, it leads to their strengthening. In the latter case, the perturbations considered can be unstable even if the Velikhov instability criterion is not satisfied.

  13. Fluorescence anisotropy measurements under shock compression

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Bassett, Will; Banishev, Alexandr; Dlott, Dana

    2015-06-01

    Fluorescence anisotropy measurements, where the parallel and perpendicular polarized emissions from probe molecules are acquired simultaneously, provide direct measurement of molecular rotational dynamics. In our experiments, the fluorescence from rhodamine 6G dye in various materials under GPa shocks produced by laser-driven flyer plates is collected, separated into two orthogonally-polarized beams using a Wollaston prism and detected with a streak camera. In liquids, the molecular rotations result from rotational diffusion and in solids from shear flow. The rotation rates can be used to determine the viscosity of the shocked medium.

  14. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    SciTech Connect

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  15. Magnetoelastic nature of the dodecagonal anisotropy in holmium metal.

    PubMed

    Benito, L; Ciria, M; Fraile, A; Fort, D; Abell, J S; Arnaudas, J I

    2007-06-29

    We have investigated the magnetoelastic nature of the dodecagonal anisotropy in the magnetic anisotropy energy (MAE) in the basal plane of the hcp crystalline structure in holmium single crystal. We have proved that the origin of the second harmonic of the hexagonal symmetry in MAE clearly lies on a sixth-order magnetoelastic coupling term. The appearance of a 12-fold anisotropy in MAE in a single crystal having hexagonal symmetry provides a new insight on how the magnetic anisotropy can be modified in a magnetic material with giant spin-lattice coupling.

  16. Reading Skill-Fractional Anisotropy Relationships in Visuospatial Tracts Diverge Depending on Socioeconomic Status

    ERIC Educational Resources Information Center

    Gullick, Margaret M.; Demir-Lira, Özlem Ece; Booth, James R.

    2016-01-01

    Low socioeconomic status (SES) has been repeatedly linked with decreased academic achievement, including lower reading outcomes. Some lower SES children do show skills and scores commensurate with those of their higher SES peers, but whether their abilities stem from the same systems as high SES children or are based on divergent strategies is…

  17. Electron Anisotropy as a Signature of Mode Specific Isomerization in Vinylidene

    NASA Astrophysics Data System (ADS)

    Gibson, Stephen T.; Laws, Benjamin A.; Mabbs, Richard; Neumark, Daniel; Lineberger, Carl; Field, Robert W.

    2016-06-01

    he nature of the isomerization process that turns vinylidene into acetylene has been awaiting advances in experimental methods, to better define fractionation widths beyond those available in the seminal 1989 photoelectron spectrum measurement. This has proven a challenge. The technique of velocity-map imaging (VMI) is one avenue of approach. Images of electrons photodetached from vinylidene negative-ions, at various wavelengths, 1064 nm shown, provide more detail, including unassigned structure, but only an incremental improvement in the instrument line width. Intriguingly, the VMIs demonstrate a mode dependent variation in the electron anisotropy. Most notable in the figure, the inner-ring transition clusters are discontinuously, more isotropic. Electron anisotropy may provide an alternative key to examine the character of vinylidene transitions, mediating the necessity for an extreme resolution measurement. Vibrational dependent anisotropy has previously been observed in diatomic photoelectron spectra, associated with the coupling of electronic and nuclear motions. Research supported by the Australian Research Council Discovery Project Grant DP160102585. K. M. Ervin, J. Ho, and W. C. Lineberger, J. Chem. Phys. 91, 5974 (1989). doi:10.1063/1.457415 M. van Duzor et al. J. Chem. Phys. 133, 174311 (2010). doi:10.1063/1.3493349

  18. Diffusion Anisotropy in Collagen Gels and Tumors: The Effect of Fiber Network Orientation

    PubMed Central

    Stylianopoulos, Triantafyllos; Diop-Frimpong, Benjamin; Munn, Lance L.; Jain, Rakesh K.

    2010-01-01

    The interstitial matrix is comprised of cross-linked collagen fibers, generally arranged in nonisotropic orientations. Spatial alignment of matrix components within the tissue can affect diffusion patterns of drugs. In this study, we developed a methodology for the calculation of diffusion coefficients of macromolecules and nanoparticles in collagenous tissues. The tissues are modeled as three-dimensional, stochastic, fiber networks with varying degrees of alignment. We employed a random walk approach to simulate diffusion and a Stokesian dynamics method to account for hydrodynamic hindrance. We performed our analysis for four different structures ranging from nearly isotropic to perfectly aligned. We showed that the overall diffusion coefficient is not affected by the orientation of the network. However, structural anisotropy results in diffusion anisotropy, which becomes more significant with increase in the degree of alignment, the size of the diffusing particle, and the fiber volume fraction. To test our model predictions we performed diffusion measurements in reconstituted collagen gels and tumor xenografts. We measured fiber alignment and diffusion with second harmonic generation and multiphoton fluorescent recovery after photobleaching techniques, respectively. The results showed for the first time in tumors that the structure and orientation of collagen fibers in the extracellular space leads to diffusion anisotropy. PMID:21081058

  19. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    PubMed

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. PMID:27087675

  20. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    PubMed

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity.

  1. Negative Associations between Corpus Callosum Midsagittal Area and IQ in a Representative Sample of Healthy Children and Adolescents

    PubMed Central

    Ganjavi, Hooman; Lewis, John D.; Bellec, Pierre; MacDonald, Penny A.; Waber, Deborah P.; Evans, Alan C.; Karama, Sherif

    2011-01-01

    Documented associations between corpus callosum size and cognitive ability have heretofore been inconsistent potentially owing to differences in sample characteristics, differing methodologies in measuring CC size, or the use of absolute versus relative measures. We investigated the relationship between CC size and intelligence quotient (IQ) in the NIH MRI Study of Normal Brain Development sample, a large cohort of healthy children and adolescents (aged six to 18, n = 198) recruited to be representative of the US population. CC midsagittal area was measured using an automated system that partitioned the CC into 25 subregions. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). After correcting for total brain volume and age, a significant negative correlation was found between total CC midsagittal area and IQ (r = −0.147; p = 0.040). Post hoc analyses revealed a significant negative correlation in children (age<12) (r = −0.279; p = 0.004) but not in adolescents (age≥12) (r = −0.005; p = 0.962). Partitioning the subjects by gender revealed a negative correlation in males (r = −0.231; p = 0.034) but not in females (r = 0.083; p = 0.389). Results suggest that the association between CC and intelligence is mostly driven by male children. In children, a significant gender difference was observed for FSIQ and PIQ, and in males, a significant age-group difference was observed for FSIQ and PIQ. These findings suggest that the correlation between CC midsagittal area and IQ may be related to age and gender. PMID:21625542

  2. Diffusion abnormalities of the corpus callosum in patients receiving bevacizumab for malignant brain tumors: suspected treatment toxicity.

    PubMed

    Futterer, Stephen F; Nemeth, Alexander J; Grimm, Sean A; Ragin, Ann B; Chandler, James P; Muro, Kenji; Marymont, Maryanne H; Raizer, Jeffrey J

    2014-05-01

    Bevacizumab has been reported to cause diffusion restriction in the tumor bed of patients with malignant gliomas. This study evaluated prolonged diffusion restriction, in the corpus callosum (CC), of patients with malignant brain tumors treated with bevacizumab. We retrospectively reviewed our database of patients treated with bevacizumab for malignant brain tumors looking for those with restricted diffusion in the CC. CC ADC ratio measurements were obtained prior to and following treatment. Correlation was made with biopsy (n = 3) and MR perfusion (n = 7) and PET (n = 4). The temporal evolution of these changes relative to therapy was examined with mixed effects regression analysis. Nine patients (eight malignant gliomas, one malignant meningioma) out of 146 patients were found to have developed areas of diffusion restriction in the CC. These areas tended to enlarge and coalesce over serial MRIs and persisted for up to 22 months. Hypoperfusion was demonstrated in MR perfusion in 7/7. PET was hypometabolic in all 4. Biopsy of the CC showed no tumor in 3/3. ADC ratio measurements indicated a significant overall effect of time (F(16,60) = 11.2; p < 0.0001), consistent with persistent diffusion restriction over the measured time periods. Bevacizumab causes prolonged diffusion restriction in the CC. The negative MR perfusion, FDG PET and histopathology suggest this is a toxicity of bevacizumab and not active tumor. Awareness of these changes can assist in patient care. PMID:24574050

  3. Heparan Sulfotransferases Hs6st1 and Hs2st Keep Erk in Check for Mouse Corpus Callosum Development

    PubMed Central

    Clegg, James M.; Conway, Christopher D.; Howe, Kathy M.; Price, David J.; Mason, John O.; Turnbull, Jeremy E.; Basson, M. Albert

    2014-01-01

    The corpus callosum (CC) connects the left and right cerebral hemispheres in mammals and its development requires intercellular communication at the telencephalic midline mediated by signaling proteins. Heparan sulfate (HS) is a sulfated polysaccharide that decorates cell surface and extracellular matrix proteins and regulates the biological activity of numerous signaling proteins via sugar–protein interactions. HS is subject to regulated enzymatic sulfation and desulfation and an attractive, although not proven, hypothesis is that the biological activity of HS is regulated by a sugar sulfate code. Mutant mouse embryos lacking the heparan sulfotransferases Hs2st or Hs6st1 have severe CC phenotypes and form Probst bundles of noncrossing axons flanking large tangles of midline glial processes. Here, we identify a precocious accumulation of Sox9-expressing glial cells in the indusium griseum region and a corresponding depletion at the glial wedge associated with the formation of Probst bundles along the rostrocaudal axis in both mutants. Molecularly, we found a surprising hyperactivation of Erk signaling in Hs2st−/− (2-fold) and Hs6st1−/− (6-fold) embryonic telencephalon that was most striking at the midline, where Erk signaling is lowest in wild-types, and a 2-fold increase in Fgf8 protein levels in Hs6st1−/− embryos that could underpin Erk hyperactivation and excessive glial movement to the indusium griseum. The tightly linked Hs6st1−/− CC glial and axonal phenotypes can be rescued by genetic or pharmacological suppression of Fgf8/Erk axis components. Overall, our data fit a model in which Hs2st and Hs6st1 normally generate conditions conducive to CC development by generating an HS-containing environment that keeps Erk signaling in check. PMID:24501377

  4. SPG11 mutations cause Kjellin syndrome, a hereditary spastic paraplegia with thin corpus callosum and central retinal degeneration.

    PubMed

    Orlén, Hanna; Melberg, Atle; Raininko, Raili; Kumlien, Eva; Entesarian, Miriam; Söderberg, Per; Påhlman, Magnus; Darin, Niklas; Kyllerman, Mårten; Holmberg, Eva; Engler, Henry; Eriksson, Urban; Dahl, Niklas

    2009-10-01

    Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum (TCC) is genetically heterogenous and approximately 35% of patients carry mutations in either of the SPG11 or SPG15 genes. Disease onset is during the first three decades of life with spastic paraplegia and mental impairment. Peripheral neuropathy and amyotrophy may occur. Kjellin syndrome is characterized by central retinal degeneration in addition to ARHSP-TCC and the disease is associated with mutations in the SPG15 gene. We identified five patients in four unrelated kindreds with spastic paraplegia and mental impairment. Magnetic resonance imaging revealed TCC, atrophy elsewhere in the brain and increased T2 signal intensity in the periventricular white matter. Probands from the four kindreds were screened for mutations in the SPG11 gene. All patients were found homozygous or compound heterozygous for truncating SPG11 mutations of which four are reported for the first time. Ophthalmological investigations revealed that the four index cases have central retinal degeneration consistent with Kjellin syndrome. PET examinations with N-[11C-methyl]-L-deuterodeprenyl (DED) and fluor-18 2-fluorodeoxyglucose (FDG) were performed in two patients with Kjellin syndrome. We observed a reduced glucose uptake in the thalami, anterior cingulum, and sensorimotor cortex indicating neuronal loss, and an increased DED binding in the thalami and pons which suggests astrogliosis. From our results we extend the SPG11 associated phenotype to comprise also Kjellin syndrome, previously found to be associated with mutations in the SPG15 gene. We anticipate that degeneration of the central retina is a common and previously unrecognized feature in SPG11 related disease.

  5. Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains.

    PubMed

    Saia-Cereda, Verônica M; Cassoli, Juliana S; Schmitt, Andrea; Falkai, Peter; Nascimento, Juliana M; Martins-de-Souza, Daniel

    2015-10-01

    Schizophrenia is an incurable and debilitating mental disorder that may affect up to 1% of the world population. Morphological, electrophysiological, and neurophysiological studies suggest that the corpus callosum (CC), which is the largest portion of white matter in the human brain and responsible for inter-hemispheric communication, is altered in schizophrenia patients. Here, we employed mass spectrometry-based proteomics to investigate the molecular underpinnings of schizophrenia. Brain tissue samples were collected postmortem from nine schizophrenia patients and seven controls at the University of Heidelberg, Germany. Because the CC has a signaling role, we collected cytoplasmic (soluble) proteins and submitted them to nano-liquid chromatography-mass spectrometry (nano LC-MS/MS). Proteomes were quantified by label-free spectral counting. We identified 5678 unique peptides that corresponded to 1636 proteins belonging to 1512 protein families. Of those proteins, 65 differed significantly in expression: 28 were upregulated and 37 downregulated. Our data increased significantly the knowledge derived from an earlier proteomic study of the CC. Among the differentially expressed proteins are those associated with cell growth and maintenance, such as neurofilaments and tubulins; cell communication and signaling, such as 14-3-3 proteins; and oligodendrocyte function, such as myelin basic protein and myelin-oligodendrocyte glycoprotein. Additionally, 30 of the differentially expressed proteins were found previously in other proteomic studies in postmortem brains; this overlap in findings validates the present study and indicates that these proteins may be markers consistently associated with schizophrenia. Our findings increase the understanding of schizophrenia pathophysiology and may serve as a foundation for further treatment strategies.

  6. The role of primary cilia in corpus callosum formation is mediated by production of the Gli3 repressor.

    PubMed

    Laclef, Christine; Anselme, Isabelle; Besse, Laurianne; Catala, Martin; Palmyre, Aurélien; Baas, Dominique; Paschaki, Marie; Pedraza, Maria; Métin, Christine; Durand, Bénédicte; Schneider-Maunoury, Sylvie

    2015-09-01

    Agenesis of the corpus callosum (AgCC) is a frequent brain disorder found in over 80 human congenital syndromes including ciliopathies. Here, we report a severe AgCC in Ftm/Rpgrip1l knockout mouse, which provides a valuable model for Meckel-Grüber syndrome. Rpgrip1l encodes a protein of the ciliary transition zone, which is essential for ciliogenesis in several cell types in mouse including neuroepithelial cells in the developing forebrain. We show that AgCC in Rpgrip1l(-/-) mouse is associated with a disturbed location of guidepost cells in the dorsomedial telencephalon. This mislocalization results from early patterning defects and abnormal cortico-septal boundary (CSB) formation in the medial telencephalon. We demonstrate that all these defects primarily result from altered GLI3 processing. Indeed, AgCC, together with patterning defects and mispositioning of guidepost cells, is rescued by overexpressing in Rpgrip1l(-/-) embryos, the short repressor form of the GLI3 transcription factor (GLI3R), provided by the Gli3(Δ699) allele. Furthermore, Gli3(Δ699) also rescues AgCC in Rfx3(-/-) embryos deficient for the ciliogenic RFX3 transcription factor that regulates the expression of several ciliary genes. These data demonstrate that GLI3 processing is a major outcome of primary cilia function in dorsal telencephalon morphogenesis. Rescuing CC formation in two independent ciliary mutants by GLI3(Δ699) highlights the crucial role of primary cilia in maintaining the proper level of GLI3R required for morphogenesis of the CC.

  7. The Background Emission Anisotropy Scanning Telescope (BEAST)

    NASA Astrophysics Data System (ADS)

    Seiffert, M.

    1996-12-01

    Since 1988 the UCSB Cosmology Group has performed a number of measurements of the degree scale structure in the Cosmic Background Radiation. These include 3 South Pole expeditions in 1989, 91 and 94. and 8 balloon flights using SIS, HEMTs and bolometer based detectors. We will present a summary of these measurements focusing onthe recent results. In addition, we will describe the recent flight of HACME, a balloon- borne experiment to map CMB anisotropies with 0.75 degree angular resolution over several hundred square degrees. This experiment is a prototype for our next generation CMB experiment, the Background Emission Anisotropy Scanning Telescope (BEAST). BEAST will feature a 2 m diameter carbon fiber composite primary mirror for high angular resolution and a sensitive array of ultra-low noise HEMT amplifiers at 30, 40, and 90 GHz. BEAST is designed for an Antarctic long duration balloon flight allowing an observing time of order two weeks. This experiment will provide an unprecedented combination of sensitivty and angular resolution across a significant region of sky.

  8. Anisotropy and Heterogeneity Interaction in Shear Zones

    NASA Astrophysics Data System (ADS)

    Dabrowski, M.; Schmid, D. W.

    2009-04-01

    Rocks are heterogeneous on many different scales and deformation may introduce a coexistence of heterogeneity and anisotropy in shear zones. A competent inclusion embedded in a laminated matrix is a typical example. Indisputably, the presence of a mechanical heterogeneity leads to a flow perturbation and consequently to a deflection of the lamination in its vicinity. Assuming a passive response of the matrix phase, the pattern formation around rigid objects has been modeled in two and three dimensions using analytical solutions. Yet, the laminas may be mechanically distinct, leading to an effectively anisotropic rheology of the matrix. The feedback of an evolving matrix structure on the inclusion motion cannot be precluded in this case. In our study elliptical inclusions of varying aspect ratios are embedded in a laminated linear viscous host and subject to a large simple shear deformation in finite element numerical simulations. Increasing the viscosity ratio of the weak and strong lamina significantly changes the pattern characteristics in the matrix. The structural evolution around an inclusion proves to have a major impact on the inclusion motion, leading to the stabilization of elongated inclusions at antithetic orientations. We provide a comparison of two different modeling approaches. In the first approach discrete layers are introduced in the matrix and the large strain evolution of individual minute layers is resolved. Next, the matrix is modeled as an anisotropic medium using an evolving director field that locally describes the anisotropy direction. The length scale of layering can be restored in this model using the micropolar medium formulation.

  9. Multiplexing Fluorescence Anisotropy Using Frequency Encoding.

    PubMed

    Schrell, Adrian M; Mukhitov, Nikita; Roper, Michael G

    2016-08-16

    In this report, a method to multiplex fluorescence anisotropy measurements is described using frequency encoding. As a demonstration of the method, simultaneous competitive immunoassays for insulin and glucagon were performed by measuring the ratio of bound and free Cy5-insulin and FITC-glucagon in the presence of their respective antibodies. A vertically polarized 635 nm laser was pulsed at 73 Hz and used to excite Cy5-insulin, while a vertically polarized 488 nm laser pulsed at 137 Hz excited FITC-glucagon. The total emission was split into parallel and perpendicular polarizations and collected onto separate photomultiplier tubes. The signals from each channel were demodulated using a fast Fourier transform, resolving the contributions from each fluorophore. Anisotropy calculations were carried out using the magnitude of the peaks in the frequency domain. The method produced the expected shape of the calibration curves with limits of detection of 0.6 and 5 nM for insulin and glucagon, respectively. This methodology could readily be expanded to other biological systems and further multiplexed to monitor increased numbers of analytes. PMID:27440478

  10. Cosmic microwave anisotropies from BPS semilocal strings

    SciTech Connect

    Urrestilla, Jon; Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Liddle, Andrew R E-mail: n.bevis@imperial.ac.uk E-mail: martin.kunz@physics.unige.ch

    2008-07-15

    We present the first ever calculation of cosmic microwave background (CMB) anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter {mu}, from fits to cosmological data, and find that in this regard Bogomol'nyi-Prasad-Sommerfield (BPS) semilocal strings resemble global textures more than topological strings. The observed microwave anisotropy at l=10 is reproduced if G{mu} = 5.3 Multiplication-Sign 10{sup -6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is G{mu}<2.0 Multiplication-Sign 10{sup -6} when CMB, Hubble key project and big bang nucleosynthesis data are used (cf G{mu}<0.9 Multiplication-Sign 10{sup -6} for cosmic strings). We additionally carry out a Bayesian model comparison of several models with and without defects, showing that models with defects are neither conclusively favoured nor disfavoured at present.

  11. Anisotropy studies on cuboidal shear device

    SciTech Connect

    Sivakugan, N. ); Chameau, J.L. ); Holtz, R.D. )

    1993-06-01

    Anisotropy of clays was studied from cuboidal shear tests on two different clays that were artificially sedimented in a slurry consolidometer. These were supplemented by consolidation tests on specimens cut at different orientations. For one-dimensionally consolidated specimens, a significant increase was observed in the angle of internal friction when the specimens were loaded horizontally. For isotropically consolidated specimens, the angle of internal friction was about the same for vertical and horizontal loading. From the limited data available, it appears that the difference increases with the inherent anisotropy of the clay fabric. It was also found that when the one-dimensionally consolidated clay specimen is loaded horizontally, the rotation of principal stresses takes place. This results in the development of very high pore pressures at failure. The substantial increase in the angle of internal friction and the development of very high pore pressures at failure for horizontal loading of one-dimensionally consolidated clays are very important considerations in the geotechnical problems in which the soil is loaded horizontally.

  12. Results from the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Komatsu, E.; Bennett, Charles L.; Komatsu, Eiichiro

    2015-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) mapped the distribution of temperature and polarization over the entire sky in five microwave frequency bands. These full-sky maps were used to obtain measurements of temperature and polarization anisotropy of the cosmic microwave background with the unprecedented accuracy and precision. The analysis of two-point correlation functions of temperature and polarization data gives determinations of the fundamental cosmological parameters such as the age and composition of the universe, as well as the key parameters describing the physics of inflation, which is further constrained by three-point correlation functions. WMAP observations alone reduced the flat ? cold dark matter (Lambda Cold Dark Matter) cosmological model (six) parameter volume by a factor of > 68, 000 compared with pre-WMAP measurements. The WMAP observations (sometimes in combination with other astrophysical probes) convincingly show the existence of non-baryonic dark matter, the cosmic neutrino background, flatness of spatial geometry of the universe, a deviation from a scale-invariant spectrum of initial scalar fluctuations, and that the current universe is undergoing an accelerated expansion. The WMAP observations provide the strongest ever support for inflation; namely, the structures we see in the universe originate from quantum fluctuations generated during inflation.

  13. A large anisotropy in the sky distribution of 3CRR quasars and other radio galaxies

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2015-06-01

    We report the presence of large anisotropies in the sky distributions of powerful extended quasars as well as some other sub-classes of radio galaxies in the 3CRR survey, the most reliable and most intensively studied complete sample of strong steep-spectrum radio sources. The anisotropies lie about a plane passing through the equinoxes and the north celestial pole. Out of a total of 48 quasars in the sample, 33 of them lie in one half of the observed sky and the remaining 15 in the other half. The probability that in a random distribution of 3CRR quasars in the sky, statistical fluctuations could give rise to an asymmetry in observed numbers up to this level is only ˜1 %. Also only about 1/4th of Fanaroff-Riley 1 (FR1) type of radio galaxies lie in the first half of the observed sky and the remainder in the second half. If we include all the observed asymmetries in the sky distributions of quasars and radio galaxies in the 3CRR sample, the probability of their occurrence by a chance combination reduces to ˜2×10-5. Two pertinent but disturbing questions that could be raised here are—firstly why should there be such large anisotropies present in the sky distribution of some of the strongest and most distant discrete sources, implying inhomogeneities in the universe at very large scales (covering a fraction of the universe)? Secondly why should such anisotropies lie about a great circle decided purely by the orientation of earth's rotation axis and/or the axis of its revolution around the sun? It seems yet more curious when we consider the other anisotropies, e.g., an alignment of the four normals to the quadrupole and octopole planes in the CMBR with the cosmological dipole and the equinoxes. Then there is the other recently reported large dipole anisotropy in the NVSS radio source distribution differing in magnitude from the CMBR dipole by a factor of four, and therefore not explained as due to the peculiar motion of the Solar system, yet aligned with the CMBR

  14. THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION

    SciTech Connect

    Cooray, Asantha; Gong Yan; Smidt, Joseph; Santos, Mario G.

    2012-09-01

    A fraction of the extragalactic near-infrared (near-IR) background light involves redshifted photons from the ultraviolet (UV) emission from galaxies present during reionization at redshifts above 6. The absolute intensity and the anisotropies of the near-IR background provide an observational probe of the first-light galaxies and their spatial distribution. We estimate the extragalactic background light intensity during reionization by accounting for the stellar and nebular emission from first-light galaxies. We require the UV photon density from these galaxies to generate a reionization history that is consistent with the optical depth to electron scattering from cosmic microwave background measurements. We also require the bright-end luminosity function (LF) of galaxies in our models to reproduce the measured Lyman-dropout LFs at redshifts of 6-8. The absolute intensity is about 0.1-0.4 nW m{sup -2} sr{sup -1} at the peak of its spectrum at {approx}1.1 {mu}m. We also discuss the anisotropy power spectrum of the near-IR background using a halo model to describe the galaxy distribution. We compare our predictions for the anisotropy power spectrum to existing measurements from deep near-IR imaging data from Spitzer/IRAC, Hubble/NICMOS, and AKARI. The predicted rms fluctuations at tens of arcminute angular scales are roughly an order of magnitude smaller than the existing measurements. While strong arguments have been made that the measured fluctuations do not have an origin involving faint low-redshift galaxies, we find that measurements in the literature are also incompatible with galaxies present during the era of reionization. The measured near-IR background anisotropies remain unexplained with an unknown origin.

  15. Texture and anisotropy analysis of a laminated lower crust: a neutron diffraction study of felsic granulites

    NASA Astrophysics Data System (ADS)

    Benitez Perez, J.; Gomez Barreiro, J.; Martinez-Catalan, J. R.; Castiñeiras Garcia, P.; Vogel, S. C.; Wenk, H.; Alvarez Valero, A.

    2013-12-01

    Quantitative fabric analyses of high-P and high-T tectonites were done with HIPPO, a Time-Of-Flight (TOF) neutron diffractometer at Los Alamos National Lab. Samples were collected in the Sobrado unit (NW Spain), a tectonic stack of highly deformed slices of metabasites, paragneisses and ultramafic rocks. Metamorphism ranges from granulites on top, to eclogites at the bottom of the unit. The ensemble represents and excellent example of laminated lower crust. The alternation of mechanically contrasted lithologies and/or the development of crystal preferred orientation might result into anisotropy. We explore the contribution of crystallographic preferred orientation or texture to the seismic anisotropy of the lower crust. Since strain partitioning occurred between mechanically strong and weak lithologies, a higher crystal preferred orientation is expected along the weak levels: the metasediments. TOF neutron diffraction experiments were conducted in HIPPO (LANSCE) with high-P and high-T mylonitic felsic paragneisses. Quantitative texture analysis of neutron data was accomplished by using the Rietveld method, with E-WIMW algorithm, implemented in the program package MAUD (Material Analysis Using Diffraction; Lutterotti, 1999). The orientation distribution function (ODF) for each mineral was calculated in MAUD and then processed in BEARTEX (Wenk et al. 1998). Selected pole figures were plotted for major components, quartz, plagioclase and biotite (first setting in monoclinic crystals). Texture patterns are compatible with non-coaxial progressive deformation and discussed accordingly in terms of dislocation activity. Besides, seismic waves velocities were computed from the texture data in BEARTEX. Calculated velocities and anisotropy were based on ODF, volume fraction of each mineral and their single-crystal elastic constant. Kinematic and mechanical implications are discussed in terms of the regional geology. The correlation of texture, mineral composition and seismic

  16. Effects of Shear Zone Development on Seismic Anisotropy in the Lower Grenvillian Crust

    NASA Astrophysics Data System (ADS)

    Song, W. J.; Gerbi, C. C.; Johnson, S. E.; Vel, S. S.

    2014-12-01

    Deep crustal structure, particularly the geometry of shear zones, affects the degree of crust-mantle coupling and the kinematics of crustal deformation. In principle, shear zones in the deep crust can be visible using seismic imaging due to the change in the orientations and modes of anisotropic minerals. However, matching the seismic signals to structures present remains a challenge. This work seeks to bridge some of that gap. We utilize the Parry Sound domain in the western Central Gneiss Belt of the Grenville orogen, Ontario, Canada, to develop quantitative relationships between geologic structures and seismic anisotropy. This region provides excellent examples of granulite and amphibolite facies shear zones up to several km wide. We investigated three rock types: (1) regionally deformed mafic and felsic granulite facies orthogneiss, (2) granulite facies shear zones, and (3) amphibolite facies shear zones. Both of the latter two derived from (1). Using the numerical architecture of asymptotic expansion homogenization (which considers grain-scale elastic interactions), we computed much higher precision seismic velocities than is possible with conventional Voigt-Reuss-Hill algorithms. In all sheared felsic rocks, the dominant quartz slip system was prism + rhomb indicating slowest Vp direction paralleled lineation because in quartz a-axis is near the slowest direction. In contrast, in all sheared mafic rocks, the fastest amphibole direction is strongly parallel to the lineation. As a consequence of combining the quartz and amphibole deformation, rocks comprising felsic and mafic layers have a weak seismic anisotropy. In monolithological shear zones, anisotropy can exceed 10%. Despite the promise this work illustrates, we must continue to consider the influence of inherited fabrics in the host rock. In a second line of investigation, we explored how shear zone volume fraction affects seismic anisotropy.

  17. An Appetite for Fractions

    ERIC Educational Resources Information Center

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  18. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  19. The Future of Fractions

    ERIC Educational Resources Information Center

    Usiskin, Zalman P.

    2007-01-01

    In the 1970s, the movement to the metric system (which has still not completely occurred in the United States) and the advent of hand-held calculators led some to speculate that decimal representation of numbers would render fractions obsolete. This provocative proposition stimulated Zalman Usiskin to write "The Future of Fractions" in 1979. He…

  20. CMB statistical anisotropy from noncommutative gravitational waves

    SciTech Connect

    Shiraishi, Maresuke; Ricciardone, Angelo; Mota, David F.; Arroja, Frederico E-mail: d.f.mota@astro.uio.no E-mail: arroja@pd.infn.it

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  1. STUDYING THE INTERSTELLAR MAGNETIC FIELD FROM ANISOTROPIES IN VELOCITY CHANNELS

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Pogosyan, D. E-mail: lazarian@astro.wisc.edu

    2015-11-20

    Turbulence in the interstellar medium is anisotropic due to the ubiquitous magnetic fields. This anisotropy depends on the strength of the magnetic field and leaves an imprint on observations of spectral line maps. We use a grid of ideal magnetohydrodynamic simulations of driven turbulence and produce synthetic position–position–velocity maps to study the turbulence anisotropy in velocity channels of various resolutions. We found that the average structure function of velocity channels is aligned with the projection of the magnetic field on the plane of the sky. We also found that the degree of such anisotropy increases with the magnitude of the magnetic field. For thick velocity channels (low velocity resolution), the anisotropy is dominated by density, and the degree of anisotropy in these maps allows one to distinguish sub-Alfvénic and super-Alfvénic turbulence regimes, but it also depends strongly on the sonic Mach number. For thin channels (high velocity resolution), we find that the anisotropy depends less on the sonic Mach number. An important limitation of this technique is that it only gives a lower limit on the magnetic field strength because the anisotropy is related only to the magnetic field component on the plane of the sky. It can, and should, be used in combination with other techniques to estimate the magnetic field, such as the Fermi-Chandrasekhar method, anisotropies in centroids, Faraday rotation measurements, or direct line-of-sight determinations of the field from Zeeman effect observations.

  2. Magnetic anisotropy in Terfenol-D thin films (abstract)

    NASA Astrophysics Data System (ADS)

    Su, Q.; Teter, J. P.; Wen, Y.; Cullen, J. R.; Wuttig, M.

    1997-04-01

    Thin-film Terfenol-D has attracted considerable attention for applications as microactuators and sensors. Depending on applications, the magnetic anisotropy plays a key role in physical property control. In this paper, the magnetic anisotropy of sputter-deposited Terfenol-D thin films on single-crystal Si substrates was studied by both dynamic torque and magnetization measurements. The evolution of magnetic anisotropy in the course of annealing treatment was followed by both types of experiments. It was found that there is a strong growth-induced anisotropy in the as-grown amorphous films, which is attributed to Fe-rare-earth bond orientation anisotropy. In samples treated at high temperatures, this growth-induced anistropy is overshadowed by the elastic anisotropy resulting from the substantial stresses in the films of giant magnetostrictive material. Domain patterns of different kinds of anisotropy were also monitored using a magnetic force microscope. The consequences of the growth-induced and elastomagnetic anisotropies to possible applications to microactuation are discussed.

  3. Extending velocity channel analysis for studying turbulence anisotropies

    NASA Astrophysics Data System (ADS)

    Kandel, D.; Lazarian, A.; Pogosyan, D.

    2016-09-01

    We extend the velocity channel analysis (VCA), introduced by Lazarian & Pogosyan, of the intensity fluctuations in the velocity slices of position-position-velocity (PPV) spectroscopic data from Doppler broadened lines to study statistical anisotropy of the underlying velocity and density that arises in a turbulent medium from the presence of magnetic field. In particular, we study analytically how the anisotropy of the intensity correlation in the channel maps changes with the thickness of velocity channels. In agreement with the earlier VCA studies, we find that the anisotropy in the thick channels reflects the anisotropy of the density field, while the relative contribution of density and velocity fluctuations to the thin velocity channels depends on the density spectral slope. We show that the anisotropies arising from Alfvén, slow and fast magnetohydrodynamical modes are different; in particular, the anisotropy in PPV created by fast modes is opposite to that created by Alfvén and slow modes, and this can be used to separate their contributions. We successfully compare our results with the recent numerical study of the PPV anisotropies measured with synthetic observations. We also extend our study to the medium with self-absorption as well as to the case of absorption lines. In addition, we demonstrate how the studies of anisotropy can be performed using interferometers.

  4. Geomechanics and elastic anisotropy of the Bakken Formation, Williston Basin

    NASA Astrophysics Data System (ADS)

    Ostadhassan, Mehdi

    Many of the earth's rocks exhibit anisotropic characteristics. Anisotropy is particularly common in many sedimentary rocks, such as shales. Anisotropy is defined as the spatial alignment of mineral grains, layers, fractures and stresses which causes elastic wave velocity and other elastic properties to vary with direction. There are two types of anisotropy: intrinsic and stress-induced. Intrinsic anisotropy is caused by beddings, microstructures or aligned fractures formed during deposition. Stress-induced anisotropy is caused by strain associated with external stresses. Intrinsic anisotropy originates in the absence of external stresses, while stress-induced anisotropy results from tectonic and overburden stresses. The style of earth material alignment causes two simplified, but convenient models of anisotropy: vertically transverse isotropy (VTI), like shale, and horizontally transverse isotropy (HTI), like vertically fractured medium. These models have been used to describe how physical properties of rock vary in a medium. Identifying the anisotropy in a formation is important in reservoir characterization seismic data processing and oil-field development. Deep shales are the most abundant yet least characterized sedimentary rocks in the Williston Basin of North Dakota. They are significant sources of hydrocarbon unconventional resources in this basin. This dissertation aims to fulfill an investigation of anisotropy in this rock type in several different facets through exploiting of field data. I seek to generate key information for better interplay of field in-situ stress and the existing natural fracture systems for the purpose of drilling, well completion, perforating, hydraulic fracturing and defining reservoir properties. In this study advanced sonic logging data has been processed and interpreted to calculate three independent shear moduli. These parameters then will be used to estimate Thomsen (1986) anisotropy parameters, elastic stiffness coefficients

  5. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    PubMed

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-01

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths. PMID:27320775

  6. Carrier-dependent magnetic anisotropy of Gd-adsorbed graphene

    NASA Astrophysics Data System (ADS)

    Lu, Yuan; Zhou, Tie-ge; Shao, Bin; Zuo, Xu; Feng, Min

    2016-05-01

    Using first-principles calculation based on density functional theory, we study the magnetic anisotropy of Gd-adsorbed graphene and its dependence on carrier accumulation. We show that carrier accumulation not only impacts the magnitude of magnetic anisotropy but also switches its sign. Hole accumulation enhances the perpendicular anisotropy up to ˜16 meV per Gd atom, while electron accumulation switches the anisotropy from perpendicular to in-plane direction. Moreover, we find that the first order perturbation of spin-orbit coupling interaction induces a pseudo-gap at Γ for the perpendicular magnetization, which leads to the the anomalous magnetic anisotropy for the neutral composite. Our findings pave the way for magneto-electric materials based on rare-earth-decorated graphene for voltage-controlled spintronics.

  7. Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene.

    PubMed

    Chen, Jige; Chen, Shunda; Gao, Yi

    2016-07-01

    Thermal anisotropy along the basal plane of materials possesses both theoretical importance and application value in thermal transport and thermoelectricity. Though common two-dimensional materials may exhibit in-plane thermal anisotropy when suspended, thermal anisotropy would often disappear when supported on a substrate. In this Letter, we find a strong anisotropy enhancement of thermal energy transport in supported black phosphorene. The chiral preference of energy transport in the zigzag rather than the armchair direction is greatly enhanced by coupling to the substrate, up to a factor of approximately 2-fold compared to the suspended one. The enhancement originates from its puckered lattice structure, where the nonplanar armchair energy transport relies on the out-of-plane corrugation and thus would be hindered by the flexural suppression due to the substrate, while the planar zigzag energy transport is not. As a result, thermal conductivity of supported black phosphorene shows a consistent anisotropy enhancement under different temperatures and substrate coupling strengths.

  8. Structural anisotropy in amorphous Fe-Tb thin films

    SciTech Connect

    Hufnagel, T.C.; Brennan, S.; Zschack, P.; Clemens, B.M.

    1996-05-01

    We have used conventional and anomalous dispersion x-ray scattering to study the near-neighbor atomic environments in sputter-deposited amorphous Fe-Tb thin films with a large perpendicular magnetic anisotropy. The as-deposited films show a clear structural anisotropy, with more Fe-Tb near neighbor pairs in the out-of-plane direction. Upon annealing, the magnetic anisotropy drops significantly, and we see a corresponding reduction in the structural anisotropy. The number of Fe-Tb near-neighbors increases in the in-plane direction, but does not change in the out-of-plane direction. Therefore, the distribution of Fe-Tb near neighbors becomes more uniform upon annealing. We conclude that the observed reduction in perpendicular magnetic anisotropy energy is a result of this change in structure. {copyright} {ital 1996 The American Physical Society.}

  9. Magnetisation reversal in anisotropy graded Co/Pd multilayers

    SciTech Connect

    Barton, C. W. Thomson, T.

    2015-08-14

    We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol would provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.

  10. Primordial statistical anisotropy generated at the end of inflation

    SciTech Connect

    Yokoyama, Shuichiro; Soda, Jiro E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2008-08-15

    We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum.

  11. Tunable optical anisotropy in three-dimensional photonic crystals

    SciTech Connect

    Che Ming; Li Zhiyuan; Liu Rongjuan

    2007-08-15

    Artificial optical birefringence can be realized in three-dimensional photonic crystals with a uniaxial structural symmetry: e.g., woodpile photonic crystals with a tetragonal lattice structure in the long-wavelength limit. The ordinary and extraordinary indices of refraction are determined from calculation of the reflection coefficient for a plane wave incident on the surface of a semi-infinite photonic crystal at different angles. We find that the anisotropy can be widely tuned by simply changing the width and thickness of the dielectric rod. A large relative negative anisotropy over 33% is found. A transition from positive anisotropy to negative anisotropy can be readily achieved. At certain parameters, a structurally anisotropic nanostructure can behave like an optically isotropic medium. Our study opens a window to use artificial nanostructures to create an arbitrary optical anisotropy that is not possible in natural crystals.

  12. Anisotropy of light propagation in human skin

    NASA Astrophysics Data System (ADS)

    Nickell, Stephan; Hermann, Marcus; Essenpreis, Matthias; Farrell, Thomas J.; Krämer, Uwe; Patterson, Michael S.

    2000-10-01

    Using spatially resolved, steady state diffuse reflectometry, a directional dependence was found in the propagation of visible and near infrared light through human skin in vivo. The skin's reduced scattering coefficient µ's varies by up to a factor of two between different directions of propagation at the same position. This anisotropy is believed to be caused by the preferential orientation of collagen fibres in the dermis, as described by Langer's skin tension lines. Monte Carlo simulations that examine the effect of partial collagen fibre orientation support this hypothesis. The observation has consequences for non-invasive diagnostic methods relying on skin optical properties, and it could be used non-invasively to determine the direction of lines of cleavage in order to minimize scars due to surgical incisions.

  13. Orientational anisotropy and interfacial transport in polycrystals

    NASA Astrophysics Data System (ADS)

    Moghadam, M. M.; Rickman, J. M.; Harmer, M. P.; Chan, H. M.

    2016-04-01

    Interfacial diffusion is governed to a large degree by geometric parameters that are determined by crystallographic orientation. In this study, we assess the impact of orientational anisotropy on mass transport at internal interfaces, focusing on the role of preferred crystallographic orientation (i.e., texture) on mass diffusion in a polycrystal. More specifically, we perform both numerical and analytical studies of steady-state diffusion for polycrystals having various grain-orientation distributions. By relating grain misorientation to grain-boundary energies and, via the Borisov relation, to the diffusivity, we link microstructure variability to kinetics. Our aim is to correlate shape features of the orientation distribution, such as the location and shapes of peaks, with the calculated effective diffusivity. Finally, we discuss the role of crystallographic constraints, such as those associated with grain junctions, in determining the effective diffusivity of a polycrystal.

  14. Nonaxisymmetric anisotropy of solar wind turbulence.

    PubMed

    Turner, A J; Gogoberidze, G; Chapman, S C; Hnat, B; Müller, W-C

    2011-08-26

    A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, nonaxisymmetry across the inertial and dissipation ranges is quantified using in situ observations from Cluster. The observed inertial range nonaxisymmetry is reproduced by a "fly through" sampling of a direct numerical simulation of MHD turbulence. Furthermore, fly through sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in nonaxisymmetry with power spectral exponent. The observed nonaxisymmetric anisotropy may thus simply arise as a sampling effect related to Taylor's hypothesis and is not related to the plasma dynamics itself.

  15. Absolute Plate Velocities from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Zheng, Lin; Gordon, Richard

    2015-04-01

    The orientation of seismic anisotropy inferred beneath plate interiors may provide a means to estimate the motions of the plate relative to the sub-asthenospheric mantle. Here we analyze two global sets of shear-wave splitting data, that of Kreemer [2009] and an updated and expanded data set, to estimate plate motions and to better understand the dispersion of the data, correlations in the errors, and their relation to plate speed. We also explore the effect of using geologically current plate velocities (i.e., the MORVEL set of angular velocities [DeMets et al. 2010]) compared with geodetically current plate velocities (i.e., the GSRM v1.2 angular velocities [Kreemer et al. 2014]). We demonstrate that the errors in plate motion azimuths inferred from shear-wave splitting beneath any one tectonic plate are correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. The SKS-MORVEL absolute plate angular velocities (based on the Kreemer [2009] data set) are determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25±0.11° Ma-1 (95% confidence limits) right-handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ=19.2° ) differs insignificantly from that for continental lithosphere (σ=21.6° ). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ=7.4° ) than for continental

  16. Stratification of Seismic Anisotropy Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Eaton, D. W.; Bastow, I. D.

    2012-12-01

    The Hudson Bay region has a complex tectonic history spanning ~4 Ga of Earth's evolution. During the ~1.8 Ga Trans-Hudson orogeny, the Archean Superior and Western Churchill cratons collided following the subduction of a Pacific-scale ocean. It is thought that a significant amount of juvenile material is preserved in the Trans-Hudson Orogen, in part due to the complex double-indentor geometry of the Superior-Churchill collision. In the region of interest, the orogen lies beneath a large but shallow Paleozoic intra-cratonic basin. Studies of the crust and upper mantle beneath this region have been enabled through the HuBLE (Hudson Bay Lithospheric Experiment) project, through the deployment of broadband seismographs around the Bay and across the islands to the north. A surface-wave tomography study has taken advantage of the data coverage, providing new information on phase velocity heterogeneity and anisotropy for wave periods of 25-200 seconds (equivalent to depths from the lower crust to ~300 km). On a large scale, our results show that the entire region is underlain by a seismically fast lithospheric lid corresponding to the continental keel. The lithospheric thickness ranges from ~180km in the northeast, beneath a zone of Paleozoic rifting, to ~280km beneath central Hudson Bay. Within the lithosphere, seismic velocities vary laterally, including high-velocity material wrapping around the Bay in the uppermost mantle. In the mid-lithosphere, two high-velocity cores are imaged, with a zone of lower velocity between them beneath the Bay. We interpret these high-velocity structures to represent the strongest central cores of the Superior and Churchill cratons, with more-juvenile material preserved between them. The near-vertical geometry of the lower-velocity zone suggests that it is only the effects of terminal collision of the cratonic cores, rather than any preceding subduction, that is preserved today. The lowermost lithosphere has a more uniform velocity, and

  17. Effect of pressure anisotropy on magnetorotational instability

    SciTech Connect

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Erokhin, N. S.; Tsypin, V. S.

    2008-02-15

    It is shown that two new instabilities of hybrid type can occur in a rotating magnetized plasma with anisotropic pressure, i.e., the rotational firehose instability and the rotational mirror instability. In the case of {beta}{sub Parallel-To} > {beta}{sub Up-Tack }, where {beta}{sub Parallel-To} and {beta}{sub Up-Tack} are the ratios of the parallel and perpendicular plasma pressure to the magnetic field pressure, the pressure anisotropy tends to suppress both new instabilities; in the case {beta}{sub Up-Tack} > {beta}{sub Parallel-To }, it leads to their strengthening. In the latter case, the perturbations considered can be unstable even if the Velikhov instability criterion is not satisfied.

  18. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  19. Effect of anisotropy in explosive fragmentation

    SciTech Connect

    Dienes, J.K.

    1981-01-01

    The behavior of rocks at large deformations is characterized, including the effects of crack growth when unstable, the effects of anisotropy, the distinction between open and closed cracks, the influence of crack intersections, the role of pore pressure, and a calculation of permeability. The theory is quite general, and is intended for use in a computer program rather than as a vehicle for obtaining analytic results. When a spherical explosive charge is embedded in oil shale it produces an aspirin-shaped cavity at late times as a result of the bedded structure of the rock. In this paper a calculation of the cavity produced by a spherical explosive is compared with a radiograph, showing remarkable agreement between the two. The shape of the cavity is explained by the behavior of cracks lying in the bedding planes.

  20. Fractional calculus in bioengineering.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  1. Fractional calculus in bioengineering.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  2. The Anisotropy of Magnetic Susceptibility of Igneous Rocks: Lessons From Obsidians and Pyroclastic Deposits

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2013-05-01

    The anisotropy of magnetic susceptibility (AMS) of igneous rocks differs from that of other lithologies in several aspects that are related to their characteristics of emplacement history. Nevertheless, within the group of igneous rocks there are also differences on emplacement mechanisms that can lead to specific and distinctive AMS signatures. In this work, a review of the most important emplacement regimes is made, paying special attention to the extreme conditions represented by obsidians and pyroclastic deposits. These two extreme emplacement regimes are controlled mainly by the viscosity of the fluid phase, but the differences in AMS signatures also includes other differences in the nature of the ferromagnetic grains that are present in the rocks during emplacement. For example, the results of this work indicate that the AMS can be associated to a population of ferromagnetic minerals of a submicroscopic size, despite of which it can be very well defined and yield large degrees of anisotropy. It is suggested that the AMS associated to such population of small grains might indeed be the origin of the AMS of other igneous rocks that have an optically observable fraction of mineral grains, although until present it had been overlooked in most instances. As it had been suggested before, use of tests designed to identify the contribution of a superparamagnetic fraction (SP) in the magnetic properties of a rock can help us to identify the presence of such a SP-related AMS in other cases.

  3. Phase diagrams of Wyoming Na-montmorillonite clay. Influence of particle anisotropy.

    PubMed

    Michot, Laurent J; Bihannic, Isabelle; Porsch, Katharina; Maddi, Solange; Baravian, Christophe; Mougel, Julien; Levitz, Pierre

    2004-12-01

    Natural Na-Wyoming montmorillonite was size fractionated by successive centrifugation. Polydisperse particles with average sizes of 400, 290, and 75 nm were then obtained. As the structural charge of the particles belonging to three fractions (determined by cationic exchange capacity measurements) is the same, such a procedure allows studying the effect of particle anisotropy on the colloidal phase behavior of swelling clay particles. Osmotic stress experiments were carried out at different ionic strengths. The osmotic pressure curves display a plateau whose beginning systematically coincides with the sol/gel transition determined by oscillatory stress measurements. The concentration corresponding to the sol/gel transition increases linearly with particle anisotropy, which shows that the sol/gel transition is not directly related to an isotropic/nematic transition of individual clay particles. Indeed, a reverse evolution should be observed for an I/N transition involving the individual clay particles. Still, when observed between crossed polarizer and analyzer, the gel samples exhibit permanent birefringent textures, whereas in the "sol" region, transient birefringence is observed when the samples are sheared. This suggests that interacting clay particles are amenable to generate, at rest and/or under shear, large anisotropic particle associations. PMID:15568830

  4. Effects of slight anisotropy on surface waves

    NASA Astrophysics Data System (ADS)

    Larson, Erik; Tromp, Jeroen; Ekström, Göran

    1998-03-01

    We present a complete ray theory for the calculation of surface-wave observables from anisotropic phase-velocity maps. Starting with the surface-wave dispersion relation in an anisotropic earth model, we derive practical dynamical ray-tracing equations. These equations allow calculation of the observables phase, arrival-angle and amplitude in a ray theoretical framework. Using perturbation theory, we also obtain approximate expressions for these observables. We assess the accuracy of the first-order approximations by using both theories to make predictions on a sample anisotropic phase-velocity map. A comparison of the two methods illustrates the size and type of errors which are introduced by perturbation theory. Perturbation theory phase and arrival-angle predictions agree well with the exact calculation, but amplitude predictions are poor. Many previous studies have modelled surface-wave propagation using only isotropic structure, not allowing for anisotropy. We present hypothetical examples to simulate isotropic modelling of surface waves which pass through anisotropic material. Synthetic data sets of phase and arrival angle are produced by ray tracing with exact ray theory on anisotropic phase-velocity maps. The isotropic models obtained by inverting synthetic anisotropic phase data sets produce deceptively high variance reductions because the effects of anisotropy are mapped into short-wavelength isotropic structure. Inversion of synthetic arrival-angle data sets for isotropic models results in poor variance reductions and poor recovery of the isotropic part of the anisotropic input map. Therefore, successful anisotropic phase-velocity inversions of real data require the inclusion of both phase and arrival-angle measurements.

  5. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  6. Self-referential and social cognition in a case of autism and agenesis of the corpus callosum

    PubMed Central

    2012-01-01

    Background While models of autism spectrum conditions (ASC) are emerging at the genetic level of analysis, clear models at higher levels of analysis, such as neuroanatomy, are lacking. Here we examine agenesis of the corpus callosum (AgCC) as a model at the level of neuroanatomy that may be relevant for understanding self-referential and social-cognitive difficulties in ASC. Methods We examined performance on a wide array of tests in self-referential and social-cognitive domains in a patient with both AgCC and a diagnosis of ASC. Tests included a depth-of-processing memory paradigm with self-referential and social-cognitive manipulations, self-report measures of self-consciousness, alexithymia, and empathy, as well as performance measures of first-person pronoun usage and mentalizing ability. The performance of the AgCC patient was compared to a group of individuals with ASC but without AgCC and with neurotypical controls. These comparison groups come from a prior study where group differences were apparent across many measures. We used bootstrapping to assess whether the AgCC patient exhibited scores that were within or outside the 95% bias-corrected and accelerated bootstrap confidence intervals observed in both comparison groups. Results Within the depth-of-processing memory paradigm, the AgCC patient showed decreased memory sensitivity that was more extreme than both comparison groups across all conditions. The patient’s most pronounced difficulty on this task emerged in the social-cognitive domain related to information-processing about other people. The patient was similar to the ASC group in benefiting less from self-referential processing compared to the control group. Across a variety of other self-referential (i.e. alexithymia, private self-consciousness) and social-cognitive measures (i.e. self-reported imaginative and perspective-taking subscales of empathy, mentalizing), the AgCC patient also showed more extreme scores than those observed for both of

  7. Stable Chlorine Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sharp, Z.

    2006-12-01

    Chlorine isotope partitioning between different phases is not well understood. Pore fluids can have δ37Cl values as low as -8‰, with neoform sediments having strongly positive values. Most strikingly, volcanic gases have δ37Cl values that cover a range in excess of 14‰ (Barnes et al., this meeting). The large range is difficult to explain in terms of equilibrium fractionation, which, although calculated to be very large for Cl in different oxidation states, should be less than 2‰ between chloride species (Schauble et al., 2003, GCA). To address the discrepancy between Nature and theory, we have measured Cl isotope fractionation for selected equilibrium and disequilibrium experiments in order to identify mechanisms that might lead to large fractionations. 1) NaCl (s,l) NaCl (v): NaCl was sealed in an evacuated silica tube and heated at one end, causing vaporization and reprecipitation of NaCl (v) at the cool end of the tube. The fractionation is 0.2‰ at 700°C (halite-vapor) and 0.7‰ at 800°C (liquid-vapor), respectively. The larger fractionation at higher temperature may be related to equilibrium fractionation between liquid and gas vs. `stripping' of the solid in the lower T experiments. 2) Sodalite NaCl(l): Nepheline and excess NaCl were sealed in a Pt crucible at 825°C for 48 hrs producing sodalite. The measured newly-formed sodalite-NaCl fractionation is -0.2‰. 3) Volatilization of HCl: Dry inert gas was bubbled through HCl solutions and the vapor was collected in a downstream water trap. There was no fractionation for 12.4M HCl (HCl fuming) vapor at 25°C. For a 1 M boiling HCl solution, the HCl-vapor fractionation was ~9‰. The difference is probably related to the degree of dissociation in the acid, with HCl dissolved in water for the highly acidic solutions, and dissociated H3O+ and Cl- for lower concentrations. The HCl volatilization experiments are in contrast to earlier vapor-liquid experiments in NaCl-H2O system, where fractionation was

  8. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  9. PROBING THE PULSAR ORIGIN OF THE ANOMALOUS POSITRON FRACTION WITH AMS-02 AND ATMOSPHERIC CHERENKOV TELESCOPES

    SciTech Connect

    Linden, Tim; Profumo, Stefano

    2013-07-20

    Recent observations by PAMELA, Fermi-LAT, and AMS-02 have conclusively indicated a rise in the cosmic-ray positron fraction above 10 GeV, a feature which is impossible to mimic under the paradigm of secondary positron production with self-consistent Galactic cosmic-ray propagation models. A leading explanation for the positron fraction rise is an additional source of electron-positron pairs, for example one or more mature, energetic, and relatively nearby pulsars. We point out that any one of two well-known nearby pulsars, Geminga and Monogem, can satisfactorily provide enough positrons to reproduce AMS-02 observations. A smoking-gun signature of this scenario is an anisotropy in the arrival direction of the cosmic-ray electrons and positrons, which may be detectable by existing, or future, telescopes. The predicted anisotropy level is, at present, consistent with limits from Fermi-LAT and AMS-02. We argue that the large collecting area of atmospheric Cherenkov telescopes (ACTs) makes them optimal tools for detecting such an anisotropy. Specifically, we show that much of the proton and {gamma}-ray background which affects measurements of the cosmic-ray electron-positron spectrum with ACTs may be controlled in the search for anisotropies. We conclude that observations using archival ACT data could already constrain or substantiate the pulsar origin of the positron anomaly, while upcoming instruments (such as the Cherenkov Telescope Array) will provide strong constraints on the source of the rising positron fraction.

  10. Chromatographic methods of fractionation.

    PubMed

    Friesen, A D

    1987-01-01

    Chromatography's functional versatility, separation efficiency, gentle non-denaturing separating process and ease of automation and scale-up make it attractive for industrial scale protein purification. The Winnipeg Rh Institute's new Plasma Fractionation facility is an example of the use of chromatography for the large scale purification of plasma protein fractions. The fractionation facility has a capacity to process 800 litres of plasma per batch into blood clotting factor VIII and IX, albumin and intravenous immune serum globulin (i.v. ISG). Albumin and i.v. ISG are purified using ion exchange columns of DEAE-Sepharose (230 litre size), DEAE-Biogel (150 litre size) and CM-Sepharose (150 litre size). The chromatographic process is automated using a Modicon 584 Programmable Logic Controller to regulate valves, pumps and sensors which control plasma flow during fractionation. The stainless steel tanks and piping are automatically cleaned-in-place. The high degree of automation and cleaning provides efficient operation and sanitary processing. Chromatographic methods (DEAE-Sepharose and metal chelation) are also being used at the pilot scale to purify the human blood products superoxide dismutase and hemoglobin from outdated red blood cells. Characterization of the protein fractions produced by chromatography has shown them to be of equal or higher quality than fractions produced by other techniques.

  11. The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum.

    PubMed

    Howard, Heidi C; Mount, David B; Rochefort, Daniel; Byun, Nellie; Dupré, Nicolas; Lu, Jianming; Fan, Xuemo; Song, Luyan; Rivière, Jean-Baptiste; Prévost, Claude; Horst, Jürgen; Simonati, Alessandro; Lemcke, Beate; Welch, Rick; England, Roger; Zhan, Frank Q; Mercado, Adriana; Siesser, William B; George, Alfred L; McDonald, Michael P; Bouchard, Jean-Pierre; Mathieu, Jean; Delpire, Eric; Rouleau, Guy A

    2002-11-01

    Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q. The gene SLC12A6 (solute carrier family 12, member 6), which encodes the K+-Cl- transporter KCC3 and maps within the ACCPN candidate region, was screened for mutations in individuals with ACCPN. Four distinct protein-truncating mutations were found: two in the French Canadian population and two in non-French Canadian families. The functional consequence of the predominant French Canadian mutation (2436delG, Thr813fsX813) was examined by heterologous expression of wildtype and mutant KCC3 in Xenopus laevis oocytes; the truncated mutant is appropriately glycosylated and expressed at the cellular membrane, where it is non-functional. Mice generated with a targeted deletion of Slc12a6 have a locomotor deficit, peripheral neuropathy and a sensorimotor gating deficit, similar to the human disease. Our findings identify mutations in SLC12A6 as the genetic lesion underlying ACCPN and suggest a critical role for SLC12A6 in the development and maintenance of the nervous system.

  12. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect

    Zhang, Z. Fred

    2014-01-01

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  13. Anisotropy Graded Media: Extending the Superparamagnetic Limit (abstract)

    NASA Astrophysics Data System (ADS)

    Horton, K. Renee; Kang, S.; Harrell, J. W.

    2009-04-01

    The maximum storage density in magnetic media is limited by the superparamagnetic size of the grains that make up the bits. The superparamagnetic size can be reduced by increasing the anisotropy of the grains; however, in conventional media, in which the anisotropy of the grains is uniform, this leads to a proportionate increase in the switching field. The switching field, however, is limited by the maximum magnetization of the core material in the write head. Recent calculations have shown that the switching field can be significantly reduced relative to the thermal stability of the grains if the anisotropy is made to vary appropriately from the bottom to the top of the grain. In this project we propose to test this concept by fabricating and characterizing anisotropy graded films. We will use the hcp CoPtX system, with X = Cr or Ru, where the anisotropy gradient is obtained by grading the composition. Both sheet films and granular films will be fabricated. The anisotropy gradients will be determined by analyzing magnetization curves. Dynamic coercivity measurements will be used to determine the short-time coercivity and the zero-field energy barrier in the granular films. These results will be compared with similar measurements on films with uniform anisotropy films in order to test the predictions for graded media.

  14. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  15. Fractional Noether Theorem Based on Extended Exponentially Fractional Integral

    NASA Astrophysics Data System (ADS)

    Long, Zi-Xuan; Zhang, Yi

    2013-10-01

    Based on the new type of fractional integral definition, namely extended exponentially fractional integral introduced by EI-Nabulsi, we study the fractional Noether symmetries and conserved quantities for both holonomic system and nonholonomic system. First, the fractional variational problem under the sense of extended exponentially fractional integral is established, the fractional d'Alembert-Lagrange principle is deduced, then the fractional Euler-Lagrange equations of holonomic system and the fractional Routh equations of nonholonomic system are given; secondly, the invariance of fractional Hamilton action under infinitesimal transformations of group is also discussed, the corresponding definitions and criteria of fractional Noether symmetric transformations and quasi-symmetric transformations are established; finally, the fractional Noether theorems for both holonomic system and nonholonomic system are explored. What's more, the relationship between the fractional Noether symmetry and conserved quantity are revealed.

  16. Seismic anisotropy indicators in Western Tibet: Shear wave splitting and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Levin, Vadim; Roecker, Steven; Graham, Peter; Hosseini, Afsaneh

    2008-12-01

    Using recently collected data from western Tibet we find significant variation in the strength, vertical distribution and attributes of seismic wave speed anisotropy, constrained through a joint application of teleseismic shear wave splitting techniques and a study of P-S mode-converted waves (receiver functions). We find that the crust of Tibet is characterized by anisotropy on the order of 5%-15% concentrated in layers 10-20 km in thickness, and with relatively steep (30°-45° from the vertical) slow symmetry axes of anisotropy. These layers contribute no more than 0.3 s to the birefringence in teleseismic shear waves, significantly smaller than splitting in many of the observations, and much smaller than birefringence predicted by models developed through group inversions of shear-wave recordings. Consequently, we interpret models constrained with shear-wave observations in terms of structures in the upper mantle. Near the Altyn-Tagh fault our data favor a two-layer model, with the upper layer fast polarization approximately aligned with the strike of the fault. Near the Karakorum fault our data are well fit with a single layer of relatively modest (~ 0.5 s delay) anisotropy. Fast polarization in this layer is ~ 60°NE, similar to that of the lower layer in the model for the Altyn Tagh fault site. Assuming that layers of similar anisotropic properties at these two sites reflect a common cause, our finding favors a scenario where Indian lithosphere under-thrusts a significant fraction of the plateau. Data from a site at the southern edge of the Tarim basin appear to be inconsistent with a common model of seismic anisotropy distribution. We suspect that thick sediments underlying the site significantly distort observed waveforms. Our ability to resolve features of anisotropic structure in the crust and the upper mantle of western Tibet is limited by the small amount of data collected in a 6 month observing period. We stress the importance of future teleseismic

  17. Thinning and flow of Tibetan crust constrained by seismic anisotropy.

    PubMed

    Shapiro, Nikolai M; Ritzwoller, Michael H; Molnar, Peter; Levin, Vadim

    2004-07-01

    Intermediate-period Rayleigh and Love waves propagating across Tibet indicate marked radial anisotropy within the middle-to-lower crust, consistent with a thinning of the middle crust by about 30%. The anisotropy is largest in the western part of the plateau, where moment tensors of earthquakes indicate active crustal thinning. The preferred orientation of mica crystals resulting from the crustal thinning can account for the observed anisotropy. The middle-to-lower crust of Tibet appears to have thinned more than the upper crust, consistent with deformation of a mechanically weak layer that flows as if confined to a channel.

  18. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    SciTech Connect

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  19. Long Term Variation of Cosmic Ray Anisotropy and Soalr Activity

    NASA Astrophysics Data System (ADS)

    Richharia, M. K.; Shrivastava, S. K.; Jain, Alka; Jain, Manju

    The cosmic Ray CR intensity data recorded with Goose Bay Neutron Monitoring station have been investigate on 60 quietest days QD in a year for studying the variation in tri-diurnal and quart diurnal anisotropy during solar cycle 21 and 22 It has been observed that in spite of abrupt change in the amplitude and phase of tri-diurnal and quart diurnal anisotropy in CR intensity the amplitude is quite significant throughout period of investigation The tri-diurnal anisotropy clearly shows 11 year type of variation at Mid latitude neutron monitoring station

  20. Cosmic ray anisotropies late in a solar flare event

    NASA Technical Reports Server (NTRS)

    Allum, F. R.; Mccracken, K. G.; Rao, U. R.; Palmeira, R. A. R.; Fairfield, D. H.; Gleeson, L. J.

    1974-01-01

    The detailed relationship between the anisotropy characteristics observed during late times in the decay of a solar flare event and the interplanetary magnetic field parameters is investigated. The anisotropy always is from 45 deg east of the earth-sun line. This direction is approximately perpendicular to the nominal Archimedean spiral, independent of the particle energy. The amplitude of the anisotropy increases as the magnetic field azimuthal direction shows greater departure from the radial direction. These results are discussed in terms of current ideas about solar particle propagation in the interplanetary space.

  1. Growth of Co Nanomagnet Arrays with Enhanced Magnetic Anisotropy

    PubMed Central

    Fernández, Laura; Ilyn, Maxim; Magaña, Ana; Vitali, Lucia; Ortega, José Enrique

    2016-01-01

    A trigon structure formed by submonolayer gadolinium deposition onto Au(111) is revealed as a robust growth template for Co nanodot arrays. Scanning Tunneling Microscopy and X‐Ray Magnetic Circular Dichroism measurements evidence that the Co nanoislands behave as independent magnetic entities with an out‐of‐plane easy axis of anisotropy and enhanced magnetic anisotropy values, as compared to other self‐organized Co nanodot superlattices. The large strain induced by the lattice mismatch at the interface between Co and trigons is discussed as the main reason for the increased magnetic anisotropy of the nanoislands.

  2. Growth of Co Nanomagnet Arrays with Enhanced Magnetic Anisotropy

    PubMed Central

    Fernández, Laura; Ilyn, Maxim; Magaña, Ana; Vitali, Lucia; Ortega, José Enrique

    2016-01-01

    A trigon structure formed by submonolayer gadolinium deposition onto Au(111) is revealed as a robust growth template for Co nanodot arrays. Scanning Tunneling Microscopy and X‐Ray Magnetic Circular Dichroism measurements evidence that the Co nanoislands behave as independent magnetic entities with an out‐of‐plane easy axis of anisotropy and enhanced magnetic anisotropy values, as compared to other self‐organized Co nanodot superlattices. The large strain induced by the lattice mismatch at the interface between Co and trigons is discussed as the main reason for the increased magnetic anisotropy of the nanoislands. PMID:27711268

  3. Statistical anisotropies in gravitational waves in solid inflation

    SciTech Connect

    Akhshik, Mohammad; Emami, Razieh; Firouzjahi, Hassan; Wang, Yi E-mail: emami@ipm.ir E-mail: yw366@cam.ac.uk

    2014-09-01

    Solid inflation can support a long period of anisotropic inflation. We calculate the statistical anisotropies in the scalar and tensor power spectra and their cross-correlation in anisotropic solid inflation. The tensor-scalar cross-correlation can either be positive or negative, which impacts the statistical anisotropies of the TT and TB spectra in CMB map more significantly compared with the tensor self-correlation. The tensor power spectrum contains potentially comparable contributions from quadrupole and octopole angular patterns, which is different from the power spectra of scalar, the cross-correlation or the scalar bispectrum, where the quadrupole type statistical anisotropy dominates over octopole.

  4. Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Gegout, P.; Biancale, R.; Soudarin, L.

    2011-10-01

    The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range

  5. Solution to the Cosmic Ray Anisotropy Problem

    NASA Astrophysics Data System (ADS)

    Mertsch, Philipp; Funk, Stefan

    2015-01-01

    In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ˜90 ° , the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources.

  6. Surface-Charge Anisotropy of Scheelite Crystals.

    PubMed

    Gao, Zhiyong; Hu, Yuehua; Sun, Wei; Drelich, Jaroslaw W

    2016-06-28

    Atomic force microscopy was employed to measure the colloidal interactions between silicon nitride cantilever tips and scheelite crystal surfaces in 1 mM KCl solutions of varying pH. By fitting the Derjguin-Landau-Verwey-Overbeek (DLVO) theoretical model to the recorded force-distance curves, the surface-charge density and surface-potential values were calculated for three crystallographic surfaces including {112}, {101}, and {001}. The calculated surface-potential values were negative in both acidic and basic solutions and varied among crystallographic surfaces. The determined surface-potential values were within zeta-potential values reported in the literature for powdered scheelite minerals. The surface {101} was the most negatively charged surface, followed by {112} and {001}. The surface potential for {001} was only slightly affected by pH, whereas the surface potential for both {112} and {101} increased with increasing pH. Anisotropy in surface-charge density was analyzed in relation to the surface density of active oxygen atoms, that is, the density of oxygen atoms with one or two broken bond(s) within tungstate ions located in the topmost surface layer. On a surface with a higher surface density of active oxygen atoms, a larger number of OH(-) are expected to adsorb through hydrogen bonding, leading to a more negatively charged surface. PMID:27269369

  7. Anisotropy of the magnetic susceptibility of gallium

    USGS Publications Warehouse

    Pankey, T.

    1960-01-01

    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  8. Studies of anisotropy of iron based superconductors

    SciTech Connect

    Murphy, Jason A.

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ(T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ(T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ(T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s ± scenario for the whole doping range.

  9. Internal anisotropy of the turbulent scintillations

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail

    2014-06-01

    We introduce a new concept of the Internal Anisotropy (IA) for the homogeneous and isotropic random fields. IA reflects the hidden structures that can exist in the samples of the random field, and are not revealed by the simplest, single and two-point statistical moments. There is presently no established theory of the IA, and no quantitative metrics of IA are available. It is understood, however, that IA cannot be present in any stationary isotropic Gaussian random field, or any single-point transformations of it. We illustrate the IA concept on a simple toy model of two-dimensional random field, and show that IA can affect the third and higher-order multipoint statistical moments. We generate samples of the random irradiance distributions for the plane wave passed through a phase screen with the quasi- Kolmogorov statistics. Visual evaluation suggests the presence of the IA in the irradiance samples. The statistical analysis reveals that the three-point third moment of irradiance exhibit the features consistent with the IA, especially in the focusing conditions. Conditional probabilities of the irradiance gradient components also proved to be sensitive to the IA. We discuss the role of the IA for optimal placement of the multiple receivers of the FSO system using the spatial diversity for fade mitigation.

  10. The role of anisotropy in cell morphology

    NASA Astrophysics Data System (ADS)

    Schakenraad, Koen; Pomp, Wim; Merks, Roeland; Schmidt, Thomas; Giomi, Luca

    The shape of adhering cells is determined by the interplay between contractile forces, arising from the cytoskeleton, and the resistance of the underlying substrate. In particular, experiments with fibroblasts on an elastic micro-pillar array show that fibroblasts posess a high degree of orientational order of the actin stress fibers. This anisotropy causes the shape of the cell edge to deviate from the shape of cells with an isotropic cytoskeleton. We present a model that describes the contractility of the cytoskeleton as a combination of directed forces, in the direction of stress fibers, and isotropic forces. We found that cell morphology is described by an anisotropic generalization of the Young-Laplace law, which describes the cell edges as parts of an ellipse. Experiments on the shape of and adhesion forces on fibroblasts show good agreement with our model. Our work highlights the strong coupling between the organization of the internal cytoskeleton and the shapes and forces on the outside of the cell.

  11. Anisotropy of sapphire single crystal sputtering

    SciTech Connect

    Minnebaev, K. F.; Tolpin, K. A.; Yurasova, V. E.

    2015-08-15

    We have studied the spatial distribution of particles sputtered from the base (0001) plane of a sapphire single crystal with trigonal crystalline lattice (α-Al{sub 2}O{sub 3}) that can be considered a superposition of two hexagonal close packed (hcp) structures–the ideal sublattice of oxygen and a somewhat deformed sublattice of aluminum. It is established that the particles sputtered from the base plane of sapphire are predominantly deposited along the sides of an irregular hexagon with spots at its vertices. The patterns of spots have been also studied for sputtering of particles from the (0001) face of a zinc single crystal with the hcp lattice. The spots of sputtered Zn atoms are arranged at the vertices of concentric equilateral hexagons. In both cases, the observed anisotropy of sputtering is related to focused collisions (direct and assisted focusing) and the channeling process. The chemical composition of spots has been determined in various regions of sputtered sapphire deposition. The results are discussed in comparison to analogous earlier data for secondary ion emission from an α-Al{sub 2}O{sub 3} single crystal.

  12. Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films with Perpendicular Magnetic Anisotropy

    NASA Technical Reports Server (NTRS)

    Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.

    2009-01-01

    L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.

  13. Meron crystals and skyrmion fractionalization in chiral magnets

    NASA Astrophysics Data System (ADS)

    Saxena, Avadh; Lin, Shi-Zeng; Batista, Cristian D.

    2015-03-01

    The recent discovery of skyrmions in chiral magnets, e.g. MnSi, has triggered enormous interest due to their huge potential for spintronics. Unlike magnetic domain walls, skyrmions can be manipulated with very small electric currents, thus rendering them as prime candidates for novel information storage devices with much lower power consumption. Here we study the equilibrium phase diagram of ultrathin chiral magnets with an easy-plane anisotropy A. The triangular skyrmion lattice phase that is obtained for A = 0 evolves through different structural phase transitions upon increasing A, which are related to the compact packings of disks with two different radii. Meanwhile, the topological charge of a skyrmion decreases continuously and we call this process skyrmion fractionalization. For a strong easy-plane anisotropy, a meron-antimeron crystal is stabilized. Akin to the case of skyrmions, the resulting merons can be manipulated with external current, and they behave like particles. Meron charge can be measured in transport experiments or by direct imaging of meron motion. Our work demonstrates that symmetric magnetic anisotropy can be used as a knob for tuning the topological character of the emergent mesoscale particles as well as the nature of the crystal that they form.

  14. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  15. Release Fraction Evaluation

    SciTech Connect

    Bamberger, Judith A.; Glissmeyer, John A.

    2004-01-01

    This document presents results of experiments conducted to measure release fractions during certain tank retrieval processes. The tests were performed in a 1/4 scale model of a waste storage tank. The retrieval processes simulated were: (1) Discharging liquid or slurry from the mouth of a vertically oriented two-in. Schedule 40 pipe. The discharging material was in free-fall from the mouth of the pipe near the top of the tank into a liquid or slurry pool at the bottom of the tank. (2) The jet from a 9/16-in.-diameter nozzle transferring liquid or slurry waste from one side of the tank to the other. The discharging liquid was aimed at the opposite side of the tank from the nozzle and either impacted the tank wall or fell into a liquid or slurry pool in the bottom of the tank. (3) A high pressure fan jet of liquid striking a steel plate or simulated waste from a stand-off distance of a few inches. For each process, a water-soluble fluorescent dye was added to the liquid fraction as a tracer. Kaolin clay was used to represent the solids. The tank was covered and there was no forced ventilation in the tank during the tests. Six air samples were collected during each test. The air samples were collected at fixed positions in the tank. The air sample filters were dried and weighed to determine the solids collection. The fluorescent dye was then leached from each filter and quantified with a fluorometer to determine the collection of liquid. Samples of the slurry and liquid simulants were also collected to determine the quantities of simulant used in each test. To calculate the release fraction, the quantity collected on each air sample was adjusted for the fraction of the tank volume sampled and divided by the quantity of material exposed in the simulation. The method was not as sensitive for the solids content as it was for the liquid content, but in those instances where a solids release fraction was determined, it was in relatively good agreement with that of the

  16. Effects of electron temperature anisotropy on proton mirror instability evolution

    NASA Astrophysics Data System (ADS)

    Ahmadi, Narges; Germaschewski, Kai; Raeder, Joachim

    2016-06-01

    Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. Here we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron-free energy so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.

  17. Chiral Anomaly and Giant Magnetochiral Anisotropy in Noncentrosymmetric Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-09-01

    We theoretically propose that giant magnetochiral anisotropy is achieved in Weyl semimetals in noncentrosymmetric crystals as a consequence of the chiral anomaly. The magnetochiral anisotropy is the nonlinearity of the resistivity ρ that depends on the current I and the magnetic field B as ρ =ρ0(1 +γ I .B ) , and can be applied to rectifier devices controlled by B . We derive the formula for the coefficient γ in noncentrosymmetric Weyl semimetals. The obtained formula for γ shows that the magnetochiral anisotropy is strongly enhanced when the chemical potential is tuned to Weyl points, and that noncentrosymmetric Weyl semimetals such as TaAs can exhibit much larger magnetochiral anisotropy than that observed in other materials so far.

  18. Surface stress anisotropy of treated glass and liquid crystal alignment

    NASA Astrophysics Data System (ADS)

    Mada, Hitoshi

    1981-07-01

    We measured the surface energy and its anisotropy both for a liquid crystal (7CB) and for some treated glasses which make the liquid crystal align. The treated glasses were prepared in the following five ways: (1) rubbing the glass surface with a cloth, (2) coating with PVA and rubbing, (3) coating with an inorganic surfactant of SiO and rubbing, (4) coating with carbon and rubbing, and (5) 60 ° oblique evaporation of SiO. The surface energy was obtained by measuring the contact angle of the liquids whose surface tensions are known. The interfacial energy and its anisotropy were calculated from the experimental results. The magnitude of the anisotropy of the interfacial energy is in good qualitative agreement with the orientational order parameter of the liquid crystal near the surface. Therefore, the alignment of the liquid crystal on the treated substrate is dependent on the anisotropy of the interfacial energy.

  19. Large-scale anisotropy of the cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1981-01-01

    Inhomogeneities in the large-scale distribution of matter inevitably lead to the generation of large-scale anisotropy in the cosmic background radiation. The dipole, quadrupole, and higher order fluctuations expected in an Einstein-de Sitter cosmological model have been computed. The dipole and quadrupole anisotropies are comparable to the measured values, and impose important constraints on the allowable spectrum of large-scale matter density fluctuations. A significant dipole anisotropy is generated by the matter distribution on scales greater than approximately 100 Mpc. The large-scale anisotropy is insensitive to the ionization history of the universe since decoupling, and cannot easily be reconciled with a galaxy formation theory that is based on primordial adiabatic density fluctuations.

  20. The SHG anisotropy pattern of a reconstructed gold(110) electrode

    NASA Astrophysics Data System (ADS)

    Bilger, Christoph; Pettinger, Bruno

    1998-09-01

    Second harmonic generation (SHG) anisotropy has been employed to study the rotational symmetries of single crystalline surfaces for many years. However, their symmetry contributions can only be evaluated for simple anisotropy patterns with sufficient accuracy. Such an analysis is generally not possible for reconstructed or microfaceted surfaces. We have, therefore, developed a novel approach, the interference SHG anisotropy (ISHGA). It permits an easy and reliable decomposition of the SH field into its isotropic and anisotropic components. The analysis of the ISHGA data provides new insights leading to a generalized model of anisotropic contributions, necessary to describe complex SHG anisotropy patterns like that of the Au(110) surface which reconstructs by building coexisting domains of 1×2 and 1×3 microfacets.

  1. Time-resolved fluorescence anisotropies in mixed surfactant solutions

    SciTech Connect

    McCarroll, M.E.; Joly, A.G.; Wang, Z.; Friedrich, D.M.; Wandruszka, R. von

    1999-10-01

    Time-resolved fluorescence anisotropy decays of solutions of Triton X-114 (TX-114) with various amounts of sodium dodecyl sulfate (SDS) were measured using the emission both from the surfactant itself and from added perylene. In the former case, the monomer and aggregate species of the surfactant were spectroscopically isolated and were shown to have significantly different rotational correlation times. The rotational diffusion of perylene in micellar TX-114 with small amounts of added SDS appeared to have a component with a very short correlation time. The anisotropy decay curves showed the existence of limiting anisotropies (r{sub {infinity}}), indicating hindered probe rotation in the micellar environment. At higher SDS concentrations, the fast-decaying component slowed down and the limiting anisotropy decreased substantially, suggesting some migration of the probe to the interior of the micelle.

  2. Probing intrinsic anisotropies of fluorescence: Mueller matrix approach.

    PubMed

    Saha, Sudipta; Soni, Jalpa; Chandel, Shubham; Kumar, Uday; Ghosh, Nirmalya

    2015-08-01

    We demonstrate that information on “intrinsic” anisotropies of fluorescence originating from preferential orientation/organization of fluorophore molecules can be probed using a Mueller matrix of fluorescence. For this purpose, we have developed a simplified model to decouple and separately quantify the depolarization property and the intrinsic anisotropy properties of fluorescence from the experimentally measured fluorescence Mueller matrix. Unlike the traditionally defined fluorescence anisotropy parameter, the Mueller matrix-derived fluorescence polarization metrics, namely, fluorescence diattenuation and polarizance parameters, exclusively deal with the intrinsic anisotropies of fluorescence. The utility of these newly derived fluorescence polarimetry parameters is demonstrated on model systems exhibiting multiple polarimetry effects, and an interesting example is illustrated on biomedically important fluorophores, collagen. PMID:26301796

  3. Friction Anisotropy: A unique and intrinsic property of decagonal quasicrystals

    SciTech Connect

    Mulleregan, Alice; Park, Jeong Young; Salmeron, Miquel; Ogetree, D.F.; Jenks, C.J.; Thiel, P.A.; Brenner, J.; Dubois, J.M.

    2008-06-25

    We show that friction anisotropy is an intrinsic property of the atomic structure of Al-Ni-Co decagonal quasicrystals and not only of clean and well-ordered surfaces that can be prepared in vacuum [J.Y. Park et al., Science (2005)]. Friction anisotropy is manifested both in nanometer size contacts obtained with sharp atomic force microscope (AFM) tips as well as in macroscopic contacts produced in pin-on-disc tribometers. We show that the friction anisotropy, which is not observed when an amorphous oxide film covers the surface, is recovered when the film is removed due to wear. Equally important is the loss of the friction anisotropy when the quasicrystalline order is destroyed due to cumulative wear. These results reveal the intimate connection between the mechanical properties of these materials and their peculiar atomic structure.

  4. Current sheets and pressure anisotropy in the reconnection exhaust

    SciTech Connect

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-15

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.

  5. Mechanical anisotropy at the nanoscale in amorphous solids

    SciTech Connect

    Luo, Yun; Li, Qi-Kai; Li, M.

    2015-01-28

    Amorphous solids are randomly disordered without any long-range periodic atomic arrangement and thus appear isotropic. Here, we show in metallic glasses that this view does not hold at small scales: Strong mechanical anisotropy emerges when the sample size decreases below about 15 nm as shown by the marked deviation in stress-strain relations as well as elastic modulus along different loading directions. The size induced mechanical anisotropy is naturally related to structural anisotropy that is absent before loading. The anisotropic stress and modulus versus the size yield different scaling exponents in different stages of deformation, hinting at different deformation mechanisms. The size effect discovered here points to the existence of intrinsic heterogeneity defined by the anisotropy, which may play an important role in structure-property relations in amorphous solids.

  6. 3D fluorescence anisotropy imaging using selective plane illumination microscopy

    PubMed Central

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-01-01

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  7. Issues on generating primordial anisotropies at the end of inflation

    SciTech Connect

    Emami, Razieh; Firouzjahi, Hassan E-mail: firouz@mail.ipm.ir

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  8. Magnetic Anisotropies in Samarium-Cobalt Thin Films

    NASA Astrophysics Data System (ADS)

    Chen, Kailai

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermallized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th_2Zn_{17} type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 times 10^6 erg/cm^3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could be reoriented through post deposition annealing. In contrast, in-plane easy axes of films synthesized through thermallized sputtering deposition could not be reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-plane anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted from partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film

  9. The large-scale anisotropy with the PAMELA calorimeter

    NASA Astrophysics Data System (ADS)

    Karelin, A.; Adriani, O.; Barbarino, G.; Bazilevskaya, G.; Bellotti, R.; Boezio, M.; Bogomolov, E.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; De Simone, N.; Di Felice, V.; Formato, V.; Galper, A.; Koldashov, S.; Koldobskiy, S.; Krut'kov, S.; Kvashnin, A.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A.; Menn, W.; Mergé, M.; Mikhailov, V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S.; Sarkar, R.; Simon, M.; Scotti, V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S.; Yurkin, Y.; Zampa, G.; Zampa, N.

    2015-10-01

    The large-scale anisotropy (or the so-called star-diurnal wave) has been studied using the calorimeter of the space-born experiment PAMELA. The cosmic ray anisotropy has been obtained for the Southern and Northern hemispheres simultaneously in the equatorial coordinate system for the time period 2006-2014. The dipole amplitude and phase have been measured for energies 1-20 TeV n-1.

  10. Spatially frustrated S = 1 Heisenberg antiferromagnet with single ion anisotropy

    NASA Astrophysics Data System (ADS)

    Pires, A. S. T.

    2016-10-01

    Using the SU(3) Schwinger boson formalism, I study the S = 1 square lattice Heisenberg antiferromagnet, at zero temperature, with spatially anisotropic nearest-neighbor couplings frustrated by a next-nearest neighbor interaction and single ion anisotropy. The phase diagram at zero temperature is presented. My calculations show two magnetically ordered phases separated by a quantum-disordered region for all values of the anisotropy.

  11. Anisotropies in the HI gas distribution toward 3C 196

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; Kerp, J.

    2016-10-01

    Context. The local Galactic Hi gas was found to contain cold neutral medium (CNM) filaments that are aligned with polarized dust emission. These filaments appear to be dominated by the magnetic field and in this case turbulence is expected to show distinct anisotropies. Aims: We use the Galactic Effelsberg-Bonn Hi Survey (EBHIS) to derive 2D turbulence spectra for the Hi distribution in direction to 3C 196 and two more comparison fields. Methods: Prior to Fourier transform we apply a rotational symmetric 50% Tukey window to apodize the data. We derive average as well as position angle dependent power spectra. Anisotropies in the power distribution are defined as the ratio of the spectral power in orthogonal directions. Results: We find strong anisotropies. For a narrow range in position angle, in direction perpendicular to the filaments and the magnetic field, the spectral power is on average more than an order of magnitude larger than parallel. In the most extreme case the anisotropy reaches locally a factor of 130. Anisotropies increase on average with spatial frequency as predicted by Goldreich & Sridhar (1995, ApJ, 438, 763), at the same time the Kolmogorov spectral index remains almost unchanged. The strongest anisotropies are observable for a narrow range in velocity and decay with a power law index close to -8/3, almost identical to the average isotropic spectral index of -2.9 <γ< -2.6. Conclusions: Hi filaments, associated with linear polarization structures in LOFAR observations in direction to 3C 196, show turbulence spectra with marked anisotropies. Decaying anisotropies appear to indicate that we witness an ongoing shock passing the Hi and affecting the observed Faraday depth.

  12. Ferromagnetic resonance of nanocrystal chains with competitive and cooperative anisotropy

    NASA Astrophysics Data System (ADS)

    Koulialias, D.

    2015-12-01

    The formation of cellular magnetic dipoles by chain assemblies of nearly equidimensional, stable single domain magnetite nanocrystals aligned along their [111] easy axes is a common property encountered in many magnetotactic bacteria (MTB). The development of such dipoles permits the navigation of MTB along the geomagnetic field towards favourable habitats, a process also referred to as magnetotaxis. An important characteristic is the anisotropy within the chains, which mainly consists of the magnetocrystalline and the shape anisotropy. The two anisotropy contributions can be cooperative or competitive depending on the orientation with respect to the chain axis. The change in the relative orientation between the two anisotropy contributions caused by the Verwey transition TV, can be used to unambigously detect MTB and their fossil remains. Ferromagnetic resonance spectroscopy (FMR) is a well-established method to probe magnetic anisotropy in absolute units. Here, we use X- and Q-band FMR spectroscopy and numerical simulation to analyze the MTB species of Desulfovibrio magneticus RS-1 with elongated magnetosomes aligned along the [100] hard axis. In this special case, the magnetotaxis above TV is strongly affected by the shape anisotropy of the nanocrystals and it is competitive to the magnetocrystalline anisotropy. Below TV, the change of the easy axis [111] to [100] generates a cooperative system, which can be considered as the optimal case for magnetotaxis, i.e., shape and magnetocrystalline anisotropies are nearly parallel to the MTB chain axis. In summary, the nanocrystal assembly in RS-1 provides another step towards a better understanding of the physics behind magnetotaxis.

  13. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    SciTech Connect

    Dobrun, L. A. Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  14. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    NASA Astrophysics Data System (ADS)

    Dobrun, L. A.; Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-01

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di(heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  15. Modeling plasma pressure anisotropy's effect on Saturn's global magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Tilley, M.; Harnett, E. M.; Winglee, R.

    2014-12-01

    A 3D multi-fluid, multi-scale plasma model with a complete treatment of plasma pressure anisotropy is employed to study global magnetospheric dynamics at Saturn. Cassini has observed anisotropies in the Saturnian magnetosphere, and analyses have showed correlations between anisotropy and plasma convection, ring current structure and intensity, confinement of plasma to the equatorial plane, as well as mass transport to the outer magnetosphere. The energization and transport of plasma within Saturn's magnetosphere is impactful upon the induced magnetic environments and atmospheres of potentially habitable satellites such as Enceladus and Titan. Recent efforts to couple pressure anisotropy with 3D multi-fluid plasma modeling have shown a significant move towards matching observations for simulations of Earth's magnetosphere. Our approach is used to study the effects of plasma pressure anisotropy on global processes of the Saturnian magnetosphere such as identifying the effect of pressure anisotropy on the centrifugal interchange instability. Previous simulation results have not completely replicated all aspects of the structure and formation of the interchange 'fingers' measured by Cassini at Saturn. The related effects of anisotropy, in addition to those mentioned above, include contribution to formation of MHD waves (e.g. reduction of Alfvén wave speed) and formation of firehose and mirror instabilities. An accurate understanding of processes such as the interchange instability is required if a complete picture of mass and energy transport at Saturn is to be realized. The results presented here will detail how the inclusion of a full treatment of pressure anisotropy for idealized solar wind conditions modifies the interchange structure and shape of the tail current sheet. Simulation results are compared to observations made by Cassini.

  16. Reading performance correlates with white-matter properties in preterm and term children

    PubMed Central

    Andrews, James S; Ben-Shachar, Michal; Yeatman, Jason D; Flom, Lynda L; Luna, Beatriz; Feldman, Heidi M

    2010-01-01

    Aim We used diffusion tensor imaging to investigate the association between white-matter integrity and reading ability in a cohort of 28 children. Nineteen preterm children (14 males, five females; mean age 11y 11mo [SD 1y 10mo], mean gestational age 30.5wks (SD 3.2), mean birthweight was 1455g [SD 625]); and nine term children (five males, four females; mean age 12y 8mo [SD 2y 5mo], mean gestational age 39.6 weeks (SD 1.2), and mean birthweight 3877g [SD 473]). Method We tested whether fractional anisotropy in a left hemisphere temporoparietal region and in the corpus callosum correlates with birthweight and scores on the following three subtests of the Woodcock-Johnson III Tests of Achievement: word identification, word attack, and passage comprehension. Results Preterm children had lower reading scores than a comparison group for all reading subtests (p<0.05). We found significant correlations between birthweight and fractional anisotropy in the whole corpus callosum (p=0.001), and between fractional anisotropy and reading skill in the genu (p=0.001) and body (p=0.001) of the corpus callosum. The correlation between reading skill and fractional anisotropy in a left temporoparietal region previously associated with reading disability was not significant (p=0.095). Interpretation We conclude that perinatal white-matter injury of the central corpus callosum may have long-term developmental implications for reading performance. PMID:19747208

  17. Energetic Electrons in Dipolarization Events: Spatial Properties and Anisotropy

    NASA Technical Reports Server (NTRS)

    Birn, J.; Runov, A.; Hesse, M.

    2014-01-01

    Using the electromagnetic fields of an MHD simulation of magnetotail reconnection, flow bursts, and dipolarization, we further investigate the acceleration of electrons to suprathermal energies. Particular emphasis is on spatial properties and anisotropies as functions of energy and time. The simulation results are compared with Time History of Events and Macroscale Interactions during Substorms observations. The test particle approach successfully reproduces several observed injection features and puts them into a context of spatial maps of the injection region(s): a dominance of perpendicular anisotropies farther down the tail and closer to the equatorial plane, an increasing importance of parallel anisotropy closer to Earth and at higher latitudes, a drop in energy fluxes at energies below approximately 10 keV, coinciding with the plasma density drop, together with increases at higher energy, a triple peak structure of flux increases near 0 deg, 90 deg, and 180 deg, and a tendency of flux increases to extend to higher energy closer to Earth and at lower latitudes. We identified the plasma sheet boundary layers and adjacent lobes as a main source region for both increased and decreased energetic electron fluxes, related to the different effects of adiabatic acceleration at high and low energies. The simulated anisotropies tend to exceed the observed ones, particularly for perpendicular fluxes at high energies. The most plausible reason is that the MHD simulation lacks the effects of anisotropy-driven microinstabilities and waves, which would reduce anisotropies.

  18. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-04-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  19. In-Plane Optical Anisotropy of Layered Gallium Telluride.

    PubMed

    Huang, Shengxi; Tatsumi, Yuki; Ling, Xi; Guo, Huaihong; Wang, Ziqiang; Watson, Garrett; Puretzky, Alexander A; Geohegan, David B; Kong, Jing; Li, Ju; Yang, Teng; Saito, Riichiro; Dresselhaus, Mildred S

    2016-09-27

    Layered gallium telluride (GaTe) has attracted much attention recently, due to its extremely high photoresponsivity, short response time, and promising thermoelectric performance. Different from most commonly studied two-dimensional (2D) materials, GaTe has in-plane anisotropy and a low symmetry with the C2h(3) space group. Investigating the in-plane optical anisotropy, including the electron-photon and electron-phonon interactions of GaTe is essential in realizing its applications in optoelectronics and thermoelectrics. In this work, the anisotropic light-matter interactions in the low-symmetry material GaTe are studied using anisotropic optical extinction and Raman spectroscopies as probes. Our polarized optical extinction spectroscopy reveals the weak anisotropy in optical extinction spectra for visible light of multilayer GaTe. Polarized Raman spectroscopy proves to be sensitive to the crystalline orientation of GaTe, and shows the intricate dependences of Raman anisotropy on flake thickness, photon and phonon energies. Such intricate dependences can be explained by theoretical analyses employing first-principles calculations and group theory. These studies are a crucial step toward the applications of GaTe especially in optoelectronics and thermoelectrics, and provide a general methodology for the study of the anisotropy of light-matter interactions in 2D layered materials with in-plane anisotropy. PMID:27529802

  20. Anisotropy of eddy variability in the global ocean

    NASA Astrophysics Data System (ADS)

    Stewart, K. D.; Spence, P.; Waterman, S.; Sommer, J. Le; Molines, J.-M.; Lilly, J. M.; England, M. H.

    2015-11-01

    The anisotropy of eddy variability in the global ocean is examined in geostrophic surface velocities derived from satellite observations and in the horizontal velocities of a 1/12° global ocean model. Eddy anisotropy is of oceanographic interest as it is through anisotropic velocity fluctuations that the eddy and mean-flow fields interact dynamically. This study is timely because improved observational estimates of eddy anisotropy will soon be available with Surface Water and Ocean Topography (SWOT) altimetry data. We find there to be good agreement between the characteristics and distributions of eddy anisotropy from the present satellite observations and model ocean surface. In the model, eddy anisotropy is found to have significant vertical structure and is largest close to the ocean bottom, where the anisotropy aligns with the underlying isobaths. The highly anisotropic bottom signal is almost entirely contained in the barotropic variability. Upper-ocean variability is predominantly baroclinic and the alignment is less sensitive to the underlying bathymetry. These findings offer guidance for introducing a parameterization of eddy feedbacks, based on the eddy kinetic energy and underlying bathymetry, to operate on the barotropic flow and better account for the effects of barotropic Reynolds stresses unresolved in coarse-resolution ocean models.