Science.gov

Sample records for caloric restriction shortens

  1. The fine line between lifespan extension and shortening in response to caloric restriction

    PubMed Central

    Szafranski, Kirk; Mekhail, Karim

    2014-01-01

    Caloric restriction (CR) is generally linked to lifespan extension in various organisms and may limit age-associated diseases. Processes through which caloric restriction promotes lifespan include obesity-countering weight loss, increased DNA repair, control of ribosomal and telomeric DNA repeats, mitochondrial regulation, activation of antioxidants, and protective autophagy. Several of these protective cellular processes are linked to the suppression of TOR (target of rapamycin) or the activation of sirtuins. In stark contrast, CR fails to extend or even shortens lifespan in certain settings. CR-dependent lifespan shortening is linked to weight loss in the non-obese, mitochondrial hyperactivity, genomic inflexibility, and several other processes. Deciphering the balance between positive and negative effects of CR is critical to understanding its ultimate impact on aging. This knowledge is especially needed in order to fulfil the promise of using CR or its mimetic drugs to counteract age-associated diseases and unhealthy aging. PMID:24637399

  2. Caloric Restriction

    PubMed Central

    Bales, Connie W.; Kraus, William E.

    2013-01-01

    PURPOSE While the impact of caloric restriction on human health is not fully understood, there is strong evidence to support further studies of its influence on cardiovascular health. The purpose of this review is to update the state of the science by examining the relevant literature regarding calorie restriction effects on aging and cardiovascular health and to discuss the possible role(s) of calorie restriction in preserving cardiovascular function in humans. METHODS For purpose of this review, we have defined calorie restriction as a reduction in energy intake well below the amount of calories that would be consumed ad libitum (≥ 10% in humans, ≥20% in animals). We examined the relevant literature on calorie restriction effects on longevity and cardiovascular health, with an emphasis on the state of the science regarding calorie restriction in humans. We have emphasized the importance of the preliminary and expected findings from the Comprehensive Assessment of the Long-term Effect of Reducing Intake of Energy (CALERIE) trial. RESULTS Evidence from animal studies and a limited number of human trials indicates that calorie restriction has the potential to both delay cardiac aging and help prevent atherosclerotic cardiovascular disease via beneficial effects on blood pressure, lipids, inflammatory processes, and potentially other mechanisms. CONCLUSIONS Based upon its known benefits to cardiometabolic health, including modest calorie restriction in a combined lifestyle program is likely to improve heart health and prevent subsequent cardiovascular events in overweight and obese individuals. Additional study is needed to further illuminate its long-term applicability for older adults and for those with significant comorbidities such as heart failure. PMID:23748374

  3. Maternal caloric restriction prior to pregnancy increases the body weight of the second-generation male offspring and shortens their longevity in rats.

    PubMed

    Araminaite, Violeta; Zalgeviciene, Violeta; Simkunaite-Rizgeliene, Renata; Stukas, Rimantas; Kaminskas, Arvydas; Tutkuviene, Janina

    2014-01-01

    Maternal undernutrition can affect offspring's physical status and various health parameters that might be transmittable across several generations. Many studies have focused on undernutrition throughout pregnancy, whereas maternal undernutrition prior to pregnancy is not sufficiently studied. The objective of our study was to explore the effects of food restriction prior to and during pregnancy on body weight and longevity of the second generation offspring. Adult female Wistar rats ("F0" generation) were 50% food restricted for one month prior to pregnancy (pre-pregnancy) or during pre-pregnancy and pregnancy. The third group was fed normally (control). The first generation offspring were normally fed until the 6(th) month of age to produce the second generation offspring; namely, the first-generation female rats were mated with male breeders from outside the experiment. The second generation offspring thus obtained were observed until natural death (up to 36 months). Compared to the controls, the second-generation male offspring whose "grandmothers (F0 females)" undernourished only during pre-pregnancy were significantly heavier from the 8(th) month of age, whereas no significant weight difference was found in the male offspring whose "grandmothers" were food-restricted during pre-pregnancy and pregnancy. Shorter lifespan was observed in the second-generation male offspring of "grandmothers" that were food-restricted either during pre-pregnancy or during pre-pregnancy and pregnancy. By contrast, no differences in body weight and lifespan were observed in all second-generation female offspring. In conclusion, maternal caloric restriction prior to pregnancy increases the body weight and shortens the longevity of the second-generation male offspring, indicating the sex-dependent transgenerational effect of maternal caloric restriction.

  4. Caloric restriction, caloric restriction mimetics, and healthy aging in Okinawa: controversies and clinical implications.

    PubMed

    Willcox, Bradley J; Willcox, Donald C

    2014-01-01

    To examine the role of two nutritional factors implicated in the healthy aging of the Okinawans: caloric restriction; and traditional foods with potential caloric restriction-mimetic properties. Caloric restriction is a research priority for the US National Institute on Aging. However, little is known regarding health effects in humans. Some caloric restriction-related outcomes, such as cause-specific mortality and lifespan, are not practical for human clinical trials. Therefore, epidemiological data on older Okinawans, who experienced a caloric restriction-like diet for close to half their lives, are of special interest. The nutritional data support mild caloric restriction (10-15%) and high consumption of foods that may mimic the biological effects of caloric restriction, including sweet potatoes, marine-based carotenoid-rich foods, and turmeric. Phenotypic evidence is consistent with caloric restriction (including short stature, low body weight, and lean BMI), less age-related chronic disease (including cardiovascular diseases, cancer, and dementia), and longer lifespan (mean and maximum). Both caloric restriction and traditional Okinawan functional foods with caloric restriction-mimetic properties likely had roles in the extended healthspan and lifespan of the Okinawans. More research is needed on health consequences of caloric restriction and foods with caloric restriction-mimetic properties to identify possible nutritional interventions for healthy aging.

  5. Caloric restriction, SIRT1 and longevity

    PubMed Central

    Cantó, Carles; Auwerx, Johan

    2013-01-01

    More than 70 years after its initial report, caloric restriction stands strong as the most consistent non-pharmacological intervention increasing lifespan and protecting against metabolic disease. Among the different mechanisms by which caloric restriction may act, Sir2/SIRT1 (Silent information regulator 2/Silent information regulator T1) has gained major attention due to its ability to integrate the sensing of the metabolic status with adaptative transcriptional outputs. This review focuses on gathered evidence suggesting that Sir2/SIRT1 is a key mediator of the beneficial effects of caloric restriction and addresses the main questions that still need to be answered to consolidate this hypothesis. PMID:19713122

  6. Fasting or caloric restriction for Healthy Aging

    PubMed Central

    Anton, Stephen; Leeuwenburgh, Christiaan

    2014-01-01

    Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed. PMID:23639403

  7. Caloric restriction mimetics: towards a molecular definition.

    PubMed

    Madeo, Frank; Pietrocola, Federico; Eisenberg, Tobias; Kroemer, Guido

    2014-10-01

    Caloric restriction, be it constant or intermittent, is reputed to have health-promoting and lifespan-extending effects. Caloric restriction mimetics (CRMs) are compounds that mimic the biochemical and functional effects of caloric restriction. In this Opinion article, we propose a unifying definition of CRMs as compounds that stimulate autophagy by favouring the deacetylation of cellular proteins. This deacetylation process can be achieved by three classes of compounds that deplete acetyl coenzyme A (AcCoA; the sole donor of acetyl groups), that inhibit acetyl transferases (a group of enzymes that acetylate lysine residues in an array of proteins) or that stimulate the activity of deacetylases and hence reverse the action of acetyl transferases. A unifying definition of CRMs will be important for the continued development of this class of therapeutic agents.

  8. Caloric restriction, metabolic rate, and entropy.

    PubMed

    Demetrius, Lloyd

    2004-09-01

    Caloric restriction increases life span in many types of animals. This article proposes a mechanism for this effect based on the hypothesis that metabolic stability, the capacity of an organism to maintain steady state values of redox couples, is a prime determinant of longevity. We integrate the stability-longevity hypothesis with a molecular model of metabolic activity (quantum metabolism), and an entropic theory of evolutionary change (directionality theory), to propose a proximate mechanism and an evolutionary rationale for aging. The mechanistic features of the new theory of aging are invoked to predict that caloric restriction extends life span by increasing metabolic stability. The evolutionary model is exploited to predict that the large increases in life span under caloric restriction observed in rats, a species with early sexual maturity, narrow reproductive span and large litter size, and hence low entropy, will not hold for primates. We affirm that in the case of humans, a species with late sexual maturity, broad reproductive span and small litter size, and hence high entropy, the response of life span to caloric restriction will be negligible.

  9. Nutrigenetics and nutrigenomics of caloric restriction.

    PubMed

    Abete, Itziar; Navas-Carretero, Santiago; Marti, Amelia; Martinez, J Alfredo

    2012-01-01

    Obesity is a complex disease resulting from a chronic and long-term positive energy balance in which both genetic and environmental factors are involved. Weight-reduction methods are mainly focused on dietary changes and increased physical activity. However, responses to nutritional intervention programs show a wide range of interindividual variation, which is importantly influenced by genetic determinants. In this sense, subjects carrying several obesity-related single-nucleotide polymorphisms (SNPs) show differences in the response to calorie-restriction programs. Furthermore, there is evidence indicating that dietary components not only fuel the body but also participate in the modulation of gene expression. Thus, the expression pattern and nutritional regulation of several obesity-related genes have been studied, as well as those that are differentially expressed by caloric restriction. The responses to caloric restriction linked to the presence of SNPs in obesity-related genes are reviewed in this chapter. Also, the influence of energy restriction on gene expression pattern in different tissues is addressed. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Patterns of intraspecific variability in the response to caloric restriction.

    PubMed

    Gribble, Kristin E; Kaido, Oksana; Jarvis, George; Mark Welch, David B

    2014-03-01

    Caloric restriction (CR) is cited as the most robust means of increasing lifespan across a range of taxa, yet there is a high degree of variability in the response to CR, both within and between species. To examine the intraspecific evolutionary conservation of lifespan extension by CR, we tested the effects of chronic caloric restriction (CCR) at multiple food levels and of intermittent fasting (IF) in twelve isolates from the Brachionus plicatilis species complex of monogonont rotifers. While CCR generally increased or did not change lifespan and total fecundity, IF caused increased, unchanged, or decreased lifespan, depending upon the isolate, and decreased total fecundity in all but one isolate. Lifespan under ad libitum (AL) feeding varied among isolates and predicted the lifespan response to CR: longer-lived isolates under AL were less likely to have a significant increase in lifespan under CCR and were more likely to have a significantly shortened lifespan under IF. Lifespan under AL conditions and the response to CR were not correlated with hydroperiodicity of native habitat or with time in culture. Lack of trade-off between lifespan and fecundity under CCR, and differences in lifespan and fecundity under CCR and IF, even when average food intake was similar, suggest that longevity changes are not always directly determined by energy intake and that CCR and IF regimens extend lifespan through diverse genetic mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Patterns of intraspecific variability in the response to caloric restriction

    PubMed Central

    Gribble, Kristin E.; Kaido, Oksana; Jarvis, George; Mark Welch, David B.

    2014-01-01

    Caloric restriction (CR) is cited as the most robust means of increasing lifespan across a range of taxa, yet there is a high degree of variability in the response to CR, both within and between species. To examine the intraspecific evolutionary conservation of lifespan extension by CR, we tested the effects of chronic caloric restriction (CCR) at multiple food levels and of intermittent fasting (IF) in twelve isolates from the Brachionus plicatilis species complex of monogonont rotifers. While CCR generally increased or did not change lifespan and total fecundity, IF caused increased, unchanged, or decreased lifespan, depending upon the isolate, and decreased total fecundity in all but one isolate. Lifespan under ad libitum (AL) feeding varied among isolates and predicted the lifespan response to CR: longer-lived isolates under AL were less likely to have a significant increase in lifespan under CCR and were more likely to have a significantly shortened lifespan under IF. Lifespan under AL conditions and the response to CR were not correlated with hydroperiodicity of native habitat or with time in culture. Lack of trade-off between lifespan and fecundity under CCR, and differences in lifespan and fecundity under CCR and IF, even when average food intake was similar, suggest that longevity changes are not always directly determined by energy intake and that CCR and IF regimens extend lifespan through diverse genetic mechanisms. PMID:24384399

  12. Refeeding after caloric restriction reverses altered liver glucose release.

    PubMed

    Garcia, Rosângela F; Mariano, Isabela R; Stolarz, Isabela C; Pedrosa, Maria Montserrat D

    2017-08-30

    Caloric restriction increases liver glucose release (LGR), but it is not known if this is a permanent condition. To investigate if refeeding after caloric restriction reverses the high LGR. Rats were organised in six-pups litters (GC); 12-pups litters with either 50% caloric restriction from 21 to 80 days of age (GR) or fed at will from 50 to 80 days of age (GRL). Liver perfusion was made at the age of 80 days. LGR was higher in the GR both during basal and adrenaline-stimulated conditions. Refeeding after caloric restriction decreased it to values close to those of GC rats. The altered LGR of GR rats was reversed by refeeding (group GRL). The influence of hypothalamic neuropetides on these hepatic changes is suggested. Enhanced LGR under caloric restriction is not programmed by early feeding; instead, it is determined by the current nutritional conditions.

  13. Caloric restriction and Metabolism in Lean and Obese rats.

    EPA Pesticide Factsheets

    Data related to obese and lean strains of rat commonly used in the laboratory that are calorically restricted and its effects on physiologic parameters (Body Composition and metabolism).This dataset is associated with the following publication:Aydin, C., K. Jarema , P. Phillips , and C. Gordon. Caloric Restriction in Lean and Obese Strains of Laboratory Rat: Effects on Body Composition, Metabolism, Growth, and Overall Health. Experimental Physiology Journal. Wiley-Blackwell, Hoboken, NJ, USA, 100(1): 1280-97, (2015).

  14. [Caloric restriction: about its positive metabolic effects and cellular impact].

    PubMed

    Ortiz-Bautista, Raúl Julián; Aguilar-Salinas, Carlos Alberto; Monroy-Guzmán, Adriana

    2013-01-01

    Caloric restriction, as a 30 to 60% decrease of ad libitum balanced caloric intake, without malnutrition, is the non-genetic strategy that has consistently extended the average and maximum lifespan of most living beings, and it has been tested from unicellular organisms like yeast Saccharomyces cerevisiae to Rhesus primates. In addition, various genetic and pharmacological caloric restriction models have shown to protect against cancer, cardiovascular and neurodegenerative diseases. Primate studies suggest that this intervention delays the onset of age-related diseases; in humans, it has physiological, biochemical and metabolic effects decreasing diabetes and cardiovascular disease risk factor. Although currently the mechanism by which caloric restriction has its positive effects at the cellular level is unknown, it has been reported to decrease oxidative stress and increase in mitochondrial biogenesis.

  15. Development of adherence metrics for caloric restriction interventions

    USDA-ARS?s Scientific Manuscript database

    Objective measures are needed to quantify dietary adherence during caloric restriction (CR) while participants are freeliving. One method to monitor adherence is to compare observed weight loss to the expected weight loss during a prescribed level of CR. Normograms (graphs) of expected weight loss c...

  16. Development of adherence metrics for caloric restriction interventions

    USDA-ARS?s Scientific Manuscript database

    Objective measures are needed to quantify dietary adherence during caloric restriction (CR) while participants are freeliving. One method to monitor adherence is to compare observed weight loss to the expected weight loss during a prescribed level of CR. Normograms (graphs)of expected weight loss ca...

  17. Metabolic Aspects of Caloric Restriction (500 Calories): Body Composition Changes.

    DTIC Science & Technology

    1979-08-01

    liquid diets; Body weight losses; Body fat losses; Dry protein changes; Skinfold thicknesses ; Deuterium dilution; 4 OK counting; Body volumes and...indicates the water sparing and fat utilizing effects of limited carbohydrate and protein with mineral supplementation. The skinfold thicknesses of...The skinfold thicknesses of both groups were also decreased during * caloric restriction. Lesser changes were noted when minerals were in- cluded in

  18. Caloric restriction as a mechanism mediating resistance to environmental disease.

    PubMed Central

    Frame, L T; Hart, R W; Leakey, J E

    1998-01-01

    It has been observed that susceptibility to many degenerative diseases increases concurrently with industrialization and rising living standards. Although epidemiologic studies suggest that specific environmental and dietary factors may be important, caloric intake alone (as reflected in body size) may account for much of the differential risk observed among diverse human populations. It has been suggested from animal studies that caloric intake may be the primary effector for many hormonal, metabolic, physiologic, and behavioral responses that coordinate reproductive strategy to apparent availability of food. When caloric intake is excessive, particularly at critical developmental stages, physiologic priorities are set for body growth and fecundity rather than for endurance and longevity. The converse occurs during periods of famine, thus increasing the probability that sufficient individuals survive to restore the population when conditions improve. Calorically restricted rodents have significantly longer reproductive and total life spans than their ad libitum-fed controls and exhibit a spectrum of biochemical and physiologic alterations that characterize their adaptation to reduced intake. These include reduced stature, hypercorticism in the absence of elevated adrenocorticotropic hormone levels, increased metabolic efficiency, decreased mitogenic response coupled with increased rates of apoptosis, reduced inflammatory response, induction of stress proteins and DNA repair enzymes, altered drug-metabolizing enzyme expression, and modified cell-mediated immune function. The overall profile of these changes is one of improved defense against environmental stress. This has been suggested as the mechanistic basis for the protective effects of low body weight on radiation and chemically induced cancers in experimental animals. It may also explain the significantly higher thresholds of acute toxicity observed when calorically restricted rodents are exposed to certain

  19. Status of selected nutrients in obese dogs undergoing caloric restriction

    PubMed Central

    2013-01-01

    Background The purpose of this study was to test the hypothesis that dog plasma concentrations of selected nutrients decrease after undergoing caloric restriction for weight loss. Thirty-one overweight dogs that had successfully lost at least 15% of initial body weight were included in the study. Nutrients that had been previously identified to be at potential risk of deficiency during caloric restriction were measured in plasma (choline, amino acids) and urine (selenium) at the initiation and completion of a standardized weight loss regimen in dogs. Results Dogs remained healthy throughout the study, and no signs attributable to nutrient deficiency were noted. Percentage weight loss was 28.3% (16.0-40.1%) starting body weight, over a period of 250 days (91–674 days). Median energy intake during the weight loss period was 62 (44 to 74) Kcal/kg0.75 target weight per day. Choline (P = 0.046) and threonine (P = 0.02) decreased after weight loss. Glycine (P = 0.041), and urinary selenium:creatinine ratio (P = 0.006) both increased after weight loss. There were no other significant differences in plasma nutrient concentrations. Conclusions Since concentrations of most measured nutrients did not change significantly, the data are not consistent with widespread nutrient deficiency in dogs undergoing caloric restriction using a diet formulated for weight loss. However, the significance of the decrease in plasma choline concentration requires further assessment. PMID:24156605

  20. Aging, Neurogenesis, and Caloric Restriction in Different Model Organisms

    PubMed Central

    Arslan-Ergul, Ayca; Ozdemir, A Tugrul; Adams, Michelle M

    2013-01-01

    Brain aging is a multifactorial process that is occurring across multiple cognitive domains. A significant complaint that occurs in the elderly is a decrement in learning and memory ability. Both rodents and zebrafish exhibit a similar problem with memory during aging. The neurobiological changes that underlie this cognitive decline are complex and undoubtedly influenced by many factors. Alterations in the birth of new neurons and neuron turnover may contribute to age-related cognitive problems. Caloric restriction is the only non-genetic intervention that reliably increases life span and healthspan across multiple organisms although the molecular mechanisms are not well-understood. Recently the zebrafish has become a popular model organism for understanding the neurobiological consequences but to date very little work has been performed. Similarly, few studies have examined the effects of dietary restriction in zebrafish. Here we review the literature related to memory decline, neurogenesis, and caloric restriction across model organisms and suggest that zebrafish has the potential to be an important animal model for understanding the complex interactions between age, neurobiological changes in the brain, and dietary regimens or their mimetics as interventions. PMID:23936746

  1. Caloric restriction and physical activity in zebrafish (Danio rerio).

    PubMed

    Novak, Colleen M; Jiang, Xiaoling; Wang, Chuanfeng; Teske, Jennifer A; Kotz, Catherine M; Levine, James A

    Understanding the mechanism of energy flux may be critical for explaining how obesity has emerged as a public health epidemic. It is known that changes in caloric intake predictably alter physical activity levels (PA) in mammals. Here, our goal was to test the hypothesis that fasting induces a biphasic pattern of change in PA by measuring PA before and after long-term food deprivation in zebrafish. Compared to control-fed fish, food-deprived fish showed a significant increase in PA levels during the first 2 days of food deprivation. Subsequently, however, fasted fish showed a significant chronic decrease in PA compared to fish fed at weight-maintenance levels. These data are comparable to those seen with mammals, which also show a biphasic response of PA to caloric restriction. In a separate group of fish, long-term food deprivation, associated with decreases in PA, induced a significant increase in brain preproorexin mRNA levels compared to fed controls. No change in orexin mRNA was seen after 2 days of food deprivation. The finding that orexin mRNA expression is altered only after long-term starvation suggests that orexin may be coupled with the changes in PA seen at this time. Thus, the association between negative energy balance and reductions in PA occurs across genera in biology and is associated with predictable neurological changes in brain gene expression.

  2. Myocardial remodelling in left ventricular atrophy induced by caloric restriction.

    PubMed

    Gruber, Carina; Nink, Nadine; Nikam, Sandeep; Magdowski, Gerd; Kripp, Gerhard; Voswinckel, Robert; Mühlfeld, Christian

    2012-02-01

    Changes in body weight due to changes in food intake are reflected by corresponding changes in the cardiac phenotype. Despite a growing body of literature on cardiac hypertrophy associated with obesity, little is known on the atrophic remodelling of the heart associated with calorie restriction. We hypothesized that, besides the cardiomyocyte compartment, capillaries and nerve fibres are involved in the atrophic process. C57Bl6 mice were kept on normal diet (control group) or at a calorie-restricted diet for 3 or 7 days (n = 5 each). At the end of the protocol, mice were killed and the hearts were processed for light and electron microscopic stereological analysis of cardiomyocytes, capillaries and nerve fibres. Body, heart and left ventricular weight were significantly reduced in the calorie-restricted animals at 7 days. Most morphological parameters were not significantly different at 3 days compared with the control group, but at 7 days most of them were significantly reduced. Specifically, the total length of capillaries, the volume of cardiomyocytes as well as their subcellular compartments and the interstitium were proportionally reduced during caloric restriction. No differences were observed in the total length or the mean diameter of axons between the cardiomyocytes. Our data indicate that diet-induced left ventricular atrophy leads to a proportional atrophic process of cardiomyocytes and capillaries. The innervation is not involved in the atrophic process. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society.

  3. Caloric restriction improves health and survival of rhesus monkeys.

    PubMed

    Mattison, Julie A; Colman, Ricki J; Beasley, T Mark; Allison, David B; Kemnitz, Joseph W; Roth, George S; Ingram, Donald K; Weindruch, Richard; de Cabo, Rafael; Anderson, Rozalyn M

    2017-01-17

    Caloric restriction (CR) without malnutrition extends lifespan and delays the onset of age-related disorders in most species but its impact in nonhuman primates has been controversial. In the late 1980s two parallel studies were initiated to determine the effect of CR in rhesus monkeys. The University of Wisconsin study reported a significant positive impact of CR on survival, but the National Institute on Aging study detected no significant survival effect. Here we present a direct comparison of longitudinal data from both studies including survival, bodyweight, food intake, fasting glucose levels and age-related morbidity. We describe differences in study design that could contribute to differences in outcomes, and we report species specificity in the impact of CR in terms of optimal onset and diet. Taken together these data confirm that health benefits of CR are conserved in monkeys and suggest that CR mechanisms are likely translatable to human health.

  4. Caloric Restriction Promotes Structural and Metabolic Changes in the Skin.

    PubMed

    Forni, Maria Fernanda; Peloggia, Julia; Braga, Tárcio T; Chinchilla, Jesús Eduardo Ortega; Shinohara, Jorge; Navas, Carlos Arturo; Camara, Niels Olsen Saraiva; Kowaltowski, Alicia J

    2017-09-12

    Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF) switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Caloric restriction improves health and survival of rhesus monkeys

    PubMed Central

    Mattison, Julie A.; Colman, Ricki J.; Beasley, T. Mark; Allison, David B.; Kemnitz, Joseph W.; Roth, George S.; Ingram, Donald K.; Weindruch, Richard; de Cabo, Rafael; Anderson, Rozalyn M.

    2017-01-01

    Caloric restriction (CR) without malnutrition extends lifespan and delays the onset of age-related disorders in most species but its impact in nonhuman primates has been controversial. In the late 1980s two parallel studies were initiated to determine the effect of CR in rhesus monkeys. The University of Wisconsin study reported a significant positive impact of CR on survival, but the National Institute on Aging study detected no significant survival effect. Here we present a direct comparison of longitudinal data from both studies including survival, bodyweight, food intake, fasting glucose levels and age-related morbidity. We describe differences in study design that could contribute to differences in outcomes, and we report species specificity in the impact of CR in terms of optimal onset and diet. Taken together these data confirm that health benefits of CR are conserved in monkeys and suggest that CR mechanisms are likely translatable to human health. PMID:28094793

  6. Development of liver fibrosis during aging: effects of caloric restriction.

    PubMed

    Horrillo, D; Gallardo, N; Lauzurica, N; Barrus, M T; San Frutos, M G; Andres, A; Ros, M; Fernandez-Agullo, T

    2013-01-01

    Liver is the central metabolic organ of the body and diet is considered one of the main environmental factors that can impact on aging liver. In the elderly stage liver function is relatively well conserved although there are a variety of not well defined morphological changes related to liver fibrosis which is commonly associated with an inflammatory state. The aim of this paper is to study these alterations during the physiological process of aging in Wistar rats and also test if caloric restriction (CR) could ameliorate them. As fibrosis is associated to hepatic stellate cell (HSC) function we also analyzed these cells during aging. Livers from five groups of male Wistar rats (3-, 8-, 24-months old ad libitum and 8- and 24-months caloric restricted rats) were used in this study. Histological analysis, expression of genes implicated in liver fibrosis and the status of inflammatory step-pathways as p38 mitogen-activated protein kinase (p38-MAPK), c-Jun N-terminal kinase (JNK) and the nuclear factor kappa B (NFkB) isoforms, p50 and p65, in cytosolic and nuclear fractions were performed. During elderly, associated with morphological change of HSC, there is a progressive increase in collagen deposition due to an inhibition in collagen degradation. Higher expression of cytokines and the activation of inflammatory pathways are associated with aging. CR ameliorates these circumstances being more effective when it started in middle age. In conclusion elderly stage is associated to a mild fibrotic and inflammatory state in the liver which could be ameliorated after CR.

  7. Caloric Restriction in Lean and Obese Strains of Laboratory ...

    EPA Pesticide Factsheets

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improved longevity with caloric restriction (CR) in rodents. Little is known regarding effects of CR in genetically lean versus obese strains. Long-Evans (LE) and Brown Norway (BN) rats make an ideal comparison for a CR study because the percentage body fat of young adult LE rats is double that of BN rats. Male LE and BN rats were either fed ad libitum (AL) or were caloricallyrestricted to 80 or 90% of their AL weight. The percentages of fat, lean and fluid mass were measured non-invasively at 2- to 4-week intervals. Metabolic rate and respiratory quotient were measured after 3, 6, 9 and 12 months of CR. Overall health was scored monthly. The percentage of fat of the LE strain decreased with CR, whereas the percentage of fat of the BN strain remained above the AL group for several months. The percentage of lean mass increased above the AL for both strains subjected to CR. The percentage offluid was unaffected by CR. The average metabolic rate over 22 h of the BN rats subjected to CR was reduced, whereas that of LE rats was increased slightly above the AL group. The respiratory quotient of BN rats wasdecreased with CR. Overall health of the CR LE group was significantly improved compared with t

  8. Fasting and Caloric Restriction in Cancer Prevention and Treatment.

    PubMed

    Brandhorst, Sebastian; Longo, Valter D

    Cancer is the second leading cause of death in the USA and among the leading major diseases in the world. It is anticipated to continue to increase because of the growth of the aging population and prevalence of risk factors such as obesity, smoking, and/or poor dietary habits. Cancer treatment has remained relatively similar during the past 30 years with chemotherapy and/or radiotherapy in combination with surgery remaining the standard therapies although novel therapies are slowly replacing or complementing the standard ones. According to the American Cancer Society, the dietary recommendation for cancer patients receiving chemotherapy is to increase calorie and protein intake. In addition, there are no clear guidelines on the type of nutrition that could have a major impact on cancer incidence. Yet, various forms of reduced caloric intake such as calorie restriction (CR) or fasting demonstrate a wide range of beneficial effects able to help prevent malignancies and increase the efficacy of cancer therapies. Whereas chronic CR provides both beneficial and detrimental effects as well as major compliance challenges, periodic fasting (PF), fasting-mimicking diets (FMDs), and dietary restriction (DR) without a reduction in calories are emerging as interventions with the potential to be widely used to prevent and treat cancer. Here, we review preclinical and preliminary clinical studies on dietary restriction and fasting and their role in inducing cellular protection and chemotherapy resistance.

  9. Exercise and caloric restriction modify rat mammary carcinogenesis

    SciTech Connect

    Bennink, M.R.; Palmer, H.J.; Messina, M.J.

    1986-03-05

    This study was designed to determine the effect of energy expenditure and dietary restriction on tumorigenesis. Energy balance was altered in a 2 x 2 factorial experiment by: 1) exercising rats by running on a treadmill or 2) a 16% reduction in caloric intake. Treatments were begun 24 days after initiation and continued for 160 days. Mammary cancer was initiated with 10 mg of 7,12-dimethylbenzanthracene given intragastrically. All 4 groups received the same quantity of fat, protein vitamins, minerals and sucrose in the diet. Energy restriction (ER) was achieved by removing 15% of the corn starch from the diet fed to the ER groups. Energy content of the carcass (as a % of the ad lib., sedentary group) was: pair-fed, EX = 71; ER, sedentary = 75; ER, EX = 61. ER decreased total body protein by 6%. EX did not change body protein. EX reduced the rate constant (rate constant is the change in tumor incidence or size with time) of the cummulative mean tumor incidence by 16% and ER reduced the rate constant by 28%. EX decreased the rate constant of the cummulative mean tumor size by 23%; however, ER increased the rate constant by 46%. In this experiment, EX was equally or more effective than ER in reducing tumorigenesis.

  10. Caloric restriction enhances fear extinction learning in mice.

    PubMed

    Riddle, Megan C; McKenna, Morgan C; Yoon, Yone J; Pattwell, Siobhan S; Santos, Patricia Mae G; Casey, B J; Glatt, Charles E

    2013-05-01

    Fear extinction learning, the ability to reassess a learned cue of danger as safe when it no longer predicts aversive events, is often dysregulated in anxiety disorders. Selective serotonin reuptake inhibitors (SSRI's) enhance neural plasticity and their ability to enhance fear extinction learning may explain their anxiolytic properties. Caloric restriction (CR) has SSRI-like effects on neural plasticity and anxiety-related behavior. We implemented CR in mice to determine its effects on conditioned-fear responses. Wild type and serotonin transporter (SERT) knockout mice underwent CR for 7 days leading to significant weight loss. Mice were then tested for cued fear learning and anxiety-related behavior. CR markedly enhanced fear extinction learning and its retention in adolescent female mice, and adults of both sexes. These effects of CR were absent in SERT knockout mice. Moreover, CR phenocopied behavioral and molecular effects of chronic fluoxetine, but there was no additive effect of CR in fluoxetine-treated mice. These results demonstrate that CR enhances fear extinction learning through a SERT-dependent mechanism. These results may have implications for eating disorders such as anorexia nervosa (AN), in which there is a high prevalence of anxiety before the onset of dietary restriction and support proposals that in AN, CR is a motivated effort to control dysregulated fear responses and elevated anxiety.

  11. Caloric restriction augments radiation efficacy in breast cancer

    PubMed Central

    Saleh, Anthony D.; Simone, Brittany A.; Palazzo, Juan; Savage, Jason E.; Sano, Yuri; Dan, Tu; Jin, Lianjin; Champ, Colin E.; Zhao, Shuping; Lim, Meng; Sotgia, Frederica; Camphausen, Kevin; Pestell, Richard G.; Mitchell, James B.; Lisanti, Michael P.; Simone, Nicole L.

    2013-01-01

    Dietary modification such as caloric restriction (CR) has been shown to decrease tumor initiation and progression. We sought to determine if nutrient restriction could be used as a novel therapeutic intervention to enhance cytotoxic therapies such as radiation (IR) and alter the molecular profile of triple-negative breast cancer (TNBC), which displays a poor prognosis. In two murine models of TNBC, significant tumor regression is noted with IR or diet modification, and a greater regression is observed combining diet modification with IR. Two methods of diet modification were compared, and it was found that a daily 30% reduction in total calories provided more significant tumor regression than alternate day feeding. At the molecular level, tumors treated with CR and IR showed less proliferation and more apoptosis. cDNA array analysis demonstrated the IGF-1R pathway plays a key role in achieving this physiologic response, and multiple members of the IGF-1R pathway including IGF-1R, IRS, PIK3ca and mTOR were found to be downregulated. The innovative use of CR as a novel therapeutic option has the potential to change the biology of tumors and enhance the opportunity for clinical benefit in the treatment of patients with TNBC. PMID:23708519

  12. Caloric restriction and longevity: effects of reduced body temperature.

    PubMed

    Carrillo, Andres E; Flouris, Andreas D

    2011-01-01

    Caloric restriction (CR) causes a reduction in body temperature (T(b)) which is suggested to contribute to changes that increase lifespan. Moreover, low T(b) has been shown to improve health and longevity independent of CR. In this review we examine the connections between CR, T(b) and mechanisms that influence longevity and ageing. Recent findings regarding the overlapping mechanisms of CR and T(b) that benefit longevity are discussed, including changes in body composition, hormone regulation, and gene expression, as well as reductions in low-level inflammation and reactive oxygen species-induced molecular damage. This information is summarized in a model describing how CR and low T(b), both synergistically and independently, increase lifespan. Moreover, the nascent notion that the rate of ageing may be pre-programmed in response to environmental influences at critical periods of early development is also considered. Based on current evidence, it is concluded that low T(b) plays an integral role in mediating the effects of CR on health and longevity, and that low T(b) may exert independent biological changes that increase lifespan. Our understanding of the overlap between CR- and T(b)-mediated longevity remains incomplete and should be explored in future research. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Caloric restriction: Impact upon pituitary function and reproduction

    PubMed Central

    Martin, Bronwen; Golden, Erin; Carlson, Olga D.; Egan, Josephine M.; Mattson, Mark P.; Maudsley, Stuart

    2008-01-01

    Reduced energy intake, or caloric restriction (CR), is known to extend life span and to retard age-related health decline in a number of different species, including worms, flies, fish, mice and rats. CR has been shown to reduce oxidative stress, improve insulin sensitivity, and alter neuroendocrine responses and central nervous system (CNS) function in animals. CR has particularly profound and complex actions upon reproductive health. At the reductionist level the most crucial physiological function of any organism is its capacity to reproduce. For a successful species to thrive, the balance between available energy (food) and the energy expenditure required for reproduction must be tightly linked. An ability to coordinate energy balance and fecundity involves complex interactions of hormones from both the periphery and the CNS and primarily centers upon the master endocrine gland, the anterior pituitary. In this review article we review the effects of CR on pituitary gonadotrope function and on the male and female reproductive axes. A better understanding of how dietary energy intake affects reproductive axis function and endocrine pulsatility could provide novel strategies for the prevention and management of reproductive dysfunction and its associated comorbidities. PMID:18329344

  14. Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.

    PubMed

    Fontán-Lozano, Angela; López-Lluch, Guillermo; Delgado-García, José María; Navas, Placido; Carrión, Angel Manuel

    2008-10-01

    Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.

  15. Ageing and Caloric Restriction in a Marine Planktonic Copepod

    NASA Astrophysics Data System (ADS)

    Saiz, Enric; Calbet, Albert; Griffell, Kaiene; Bersano, José Guilherme F.; Isari, Stamatina; Solé, Montserrat; Peters, Janna; Alcaraz, Miquel

    2015-10-01

    Planktonic copepods are a key group in the marine pelagic ecosystem, linking primary production with upper trophic levels. Their abundance and population dynamics are constrained by the life history tradeoffs associated with resource availability, reproduction and predation pressure. The tradeoffs associated with the ageing process and its underlying biological mechanisms are, however, poorly known. Our study shows that ageing in copepods involves a deterioration of their vital rates and a rise in mortality associated with an increase in oxidative damage (lipid peroxidation); the activity of the cell-repair enzymatic machinery also increases with age. This increase in oxidative damage is associated with an increase in the relative content of the fatty acid 22:6(n-3), an essential component of cell membranes that increases their susceptibility to peroxidation. Moreover, we show that caloric (food) restriction in marine copepods reduces their age-specific mortality rates, and extends the lifespan of females and their reproductive period. Given the overall low production of the oceans, this can be a strategy, at least in certain copepod species, to enhance their chances to reproduce in a nutritionally dilute, temporally and spatially patchy environment.

  16. Caloric restriction ameliorates cardiomyopathy in animal model of diabetes.

    PubMed

    Cohen, Keren; Waldman, Maayan; Abraham, Nader G; Laniado-Schwartzman, Michal; Gurfield, Danny; Aravot, Dan; Arad, Michael; Hochhauser, Edith

    2017-01-01

    The db/db mouse is an animal model of diabetes in which leptin receptor activity is deficient resulting accelerated cardiomyopathy when exposed to angiotensin (AT). Toll-like receptors 4 and 2 (TLR4, TLR2) are pattern recognition receptors, that recognize pathogen-associated molecular patterns and exacerbate and release inflammatory cytokines. Fetuin A (Fet A) is a fatty acid carrier which affects inflammation and insulin resistance in obese humans and animals through TLRs. The aim of this study was to investigate the effect of caloric restriction (CR) on free fatty acids (FFA) level and the inflammatory response in diabetic cardiomyopathy. Left ventricular hypertrophy, increased fibrosis and leukocytes infiltration were observed in db/db AT treated hearts. Serum glucose, FFA, and cholesterol levels were elevated in db/db AT treated mice. Cardiac expression of PPARα increased while AKT phosphorylation was decreased. Cumulatively, CR elevated cardiac PPARα improved the utilization of fatty acids, and reduced myocardial inflammation as seen by reduced levels of Fet A. Thus CR negated cardiomyopathy associated with AT in an animal model of diabetes suggesting that CR is an effective therapeutic approach in the treatment of diabetes and associated cardiomyopathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Redox-regulating sirtuins in aging, caloric restriction, and exercise.

    PubMed

    Radak, Zsolt; Koltai, Erika; Taylor, Albert W; Higuchi, Mitsuru; Kumagai, Shuzo; Ohno, Hideki; Goto, Sataro; Boldogh, Istvan

    2013-05-01

    The consequence of decreased nicotinamide adenine dinucleotide (NAD(+)) levels as a result of oxidative challenge is altered activity of sirtuins, which, in turn, brings about a wide range of modifications in mammalian cellular metabolism. Sirtuins, especially SIRT1, deacetylate important transcription factors such as p53, forkhead homeobox type O proteins, nuclear factor κB, or peroxisome proliferator-activated receptor γ coactivator 1α (which controls the transcription of pro- and antioxidant enzymes, by which the cellular redox state is affected). The role of SIRT1 in DNA repair is enigmatic, because it activates Ku70 to cope with double-strand breaks, but deacetylation of apurinic/apyrimidinic endonuclease 1 and probably of 8-oxoguanine-DNA glycosylase 1 decreases the activity of these DNA repair enzymes. The protein-stabilizing effects of the NAD+-dependent lysine deacetylases are readily related to housekeeping and redox regulation. The role of sirtuins in caloric restriction (CR)-related longevity in yeast is currently under debate. However, in mammals, it seems certain that sirtuins are involved in many cellular processes that mediate longevity and disease prevention via the effects of CR through the vascular, neuronal, and muscular systems. Regular physical exercise-mediated health promotion also involves sirtuin-regulated pathways including the antioxidant-, macromolecular damage repair-, energy-, mitochondrial function-, and neuronal plasticity-associated pathways. This review critically evaluates these findings and points out the age-associated role of sirtuins.

  18. Ageing and Caloric Restriction in a Marine Planktonic Copepod

    PubMed Central

    Saiz, Enric; Calbet, Albert; Griffell, Kaiene; Bersano, José Guilherme F.; Isari, Stamatina; Solé, Montserrat; Peters, Janna; Alcaraz, Miquel

    2015-01-01

    Planktonic copepods are a key group in the marine pelagic ecosystem, linking primary production with upper trophic levels. Their abundance and population dynamics are constrained by the life history tradeoffs associated with resource availability, reproduction and predation pressure. The tradeoffs associated with the ageing process and its underlying biological mechanisms are, however, poorly known. Our study shows that ageing in copepods involves a deterioration of their vital rates and a rise in mortality associated with an increase in oxidative damage (lipid peroxidation); the activity of the cell-repair enzymatic machinery also increases with age. This increase in oxidative damage is associated with an increase in the relative content of the fatty acid 22:6(n-3), an essential component of cell membranes that increases their susceptibility to peroxidation. Moreover, we show that caloric (food) restriction in marine copepods reduces their age-specific mortality rates, and extends the lifespan of females and their reproductive period. Given the overall low production of the oceans, this can be a strategy, at least in certain copepod species, to enhance their chances to reproduce in a nutritionally dilute, temporally and spatially patchy environment. PMID:26455575

  19. Caloric Restriction and Rapamycin Differentially Alter Energy Metabolism in Yeast.

    PubMed

    Choi, Kyung-Mi; Hong, Seok-Jin; van Deursen, Jan M; Kim, Sooah; Kim, Kyoung Heon; Lee, Cheol-Koo

    2017-03-08

    Rapamycin (RM), a drug that inhibits the mechanistic target of rapamycin (mTOR) pathway and responds to nutrient availability, seemingly mimics the effects of caloric restriction (CR) on healthy life span. However, the extent of the mechanistic overlap between RM and CR remains incompletely understood. Here, we compared the impact of CR and RM on cellular metabolic status. Both regimens maintained intracellular ATP through the chronological aging process and showed enhanced mitochondrial capacity. Comparative transcriptome analysis showed that CR had a stronger impact on global gene expression than RM. We observed a like impact on the metabolome and identified distinct metabolites affected by CR and RM. CR severely reduced the level of energy storage molecules including glycogen and lipid droplets, whereas RM did not. RM boosted the production of enzymes responsible for the breakdown of glycogen and lipid droplets. Collectively, these results provide insights into the distinct energy metabolism mechanisms induced by CR and RM, suggesting that these two anti-aging regimens might extend life span through distinctive pathways.

  20. Medicinal Chemistry of the Epigenetic Diet and Caloric Restriction

    PubMed Central

    Martin, S.L.; Hardy, T.M.; Tollefsbol, T.O.

    2013-01-01

    The pronounced effects of the epigenetic diet (ED) and caloric restriction (CR) have on epigenetic gene regulation have been documented in many pre-clinical and clinical studies. Understanding epigenetics is of high importance because of the concept that external factors such as nutrition and diet may possess the ability to alter gene expression without modifying the DNA sequence. The ED introduces bioactive medicinal chemistry compounds such as sulforaphane (SFN), curcumin (CCM), epigallocatechin gallate (EGCG) and resveratrol (RSV) that are thought to aid in extending the human lifespan. CR, although similar to ED in the target of longevity, mildly reduces the total daily calorie intake while concurrently providing all beneficial nutrients. Both CR and ED may act as epigenetic modifiers to slow the aging process through histone modification, DNA methylation, and by modulating microRNA expression. CR and ED have been proposed as two important mechanisms that modulate and potentially slow the progression of age-related diseases such as cardiovascular disease (CVD), cancer, obesity, Alzheimer’s and osteoporosis to name a few. While many investigators have examined CR and ED as separate entities, this review will primarily focus on both as they relate to age-related diseases, their epigenetic effects and their medicinal chemistry. PMID:23895687

  1. Evolution of Human Longevity Uncoupled from Caloric Restriction Mechanisms

    PubMed Central

    Zhao, Guodong; Guo, Song; Somel, Mehmet; Khaitovich, Philipp

    2014-01-01

    Caloric restriction (CR) and chemical agents, such as resveratrol and rapamycin that partially mimic the CR effect, can delay morbidity and mortality across a broad range of species. In humans, however, the effects of CR or other life-extending agents have not yet been investigated systematically. Human maximal lifespan is already substantially greater compared to that of closely related primate species. It is therefore possible that humans have acquired genetic mutations that mimic the CR effect. Here, we tested this notion by comparing transcriptome differences between humans and other primates, with the transcriptome changes observed in mice subjected to CR. We show that the human transcriptome state, relative to other primate transcriptomes, does not match that of the CR mice or mice treated with resveratrol, but resembles the transcriptome state of ad libitum fed mice. At the same time, the transcriptome changes induced by CR in mice are enriched among genes showing age-related changes in primates, concentrated in specific expression patterns, and can be linked with specific functional pathways, including insulin signalling, cancer, and the immune response. These findings indicate that the evolution of human longevity was likely independent of CR-induced lifespan extension mechanisms. Consequently, application of CR or CR-mimicking agents may yet offer a promising direction for the extension of healthy human lifespan. PMID:24400080

  2. Time-caloric restriction inhibits the neoplastic transformation of cirrhotic liver in rats treated with diethylnitrosamine.

    PubMed

    Molina-Aguilar, Christian; Guerrero-Carrillo, María de Jesús; Espinosa-Aguirre, Jesús Javier; Olguin-Reyes, Sitlali; Castro-Belio, Thania; Vázquez-Martínez, Olivia; Rivera-Zavala, Julieta Berenice; Díaz-Muñoz, Mauricio

    2017-08-01

    Hepatocellular cancer is the most common type of primary liver cancer. Cirrhosis is the main risk factor that generates this malady. It has been proven that caloric restriction protocols and restricted feeding schedules are protective in experimental carcinogenic models. We tested the influence of a time-caloric restriction protocol (2 h of food access during the daytime for 18 weeks) in an experimental model of cirrhosis-hepatocarcinoma produced by weekly administration of diethylnitrosamine. Our results indicate that time-caloric restriction reduced hepatomegaly and prevented the increase in blood leukocytes promoted by diethylnitrosamine. Strikingly, time-caloric restriction preserved functional and histological characteristics of the liver in fibrotic areas compared to the cirrhotic areas of the Ad Libitum-fed group. Tumoural masses in the restricted group were well differentiated; consider a neoplastic or early stage of HCC. However, time-caloric restriction enhanced collagen deposits. With regard to the cancerous process, food restriction prevented systemic inflammation and an increase in carcinoembryonic antigen, and it favoured the occurrence of diffuse multinodular tumours. Histologically, it prevented hepatocyte inflammation response, the regenerative process, and neoplastic transformation. Time-caloric restriction stimulated circadian synchronization in fibrotic and cancerous liver sections, and it increased BMAL1 clock protein levels. We conclude that time-caloric restriction prevents fibrosis from progressing into cirrhosis, thus avoiding chronic inflammation and regenerative processes. It also prevents, probably through circadian entrainment and caloric restriction, the neoplastic transformation of tumoural lesions induced by diethylnitrosamine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Repletion of TNFα or leptin in calorically restricted mice suppresses post-restriction hyperphagia

    PubMed Central

    Hambly, Catherine; Duncan, Jacqueline S.; Archer, Zoë A.; Moar, Kim M.; Mercer, Julian G.; Speakman, John R.

    2012-01-01

    SUMMARY The causes of post-restriction hyperphagia (PRH) represent a target for drug-based therapies to prevent obesity. However, the factors causing PRH are poorly understood. We show that, in mice, the extent of PRH was independent of the time under restriction, but depended on its severity, suggesting that PRH was driven by signals from altered body composition. Signals related to fat mass were important drivers. Circulating levels of leptin and TNFα were significantly depleted following caloric restriction (CR). We experimentally repleted their levels to match those of controls, and found that in both treatment groups the level of PRH was significantly blunted. These data establish a role for TNFα and leptin in the non-pathological regulation of energy homeostasis. Signals from adipose tissue, including but not limited to leptin and TNFα, regulate PRH and might be targets for therapies that support people engaged in CR to reduce obesity. PMID:21954068

  4. A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction

    PubMed Central

    Thearle, Marie S.; Ibrahim, Mostafa; Hohenadel, Maximilian G.; Bogardus, Clifton; Krakoff, Jonathan; Votruba, Susanne B.

    2015-01-01

    Successful weight loss is variable for reasons not fully elucidated. Whether effective weight loss results from smaller reductions in energy expenditure during caloric restriction is not known. We analyzed whether obese individuals with a “thrifty” phenotype, that is, greater reductions in 24-h energy expenditure during fasting and smaller increases with overfeeding, lose less weight during caloric restriction than those with a “spendthrift” phenotype. During a weight-maintaining period, 24-h energy expenditure responses to fasting and 200% overfeeding were measured in a whole-room indirect calorimeter. Volunteers then underwent 6 weeks of 50% caloric restriction. We calculated the daily energy deficit (kilocalories per day) during caloric restriction, incorporating energy intake and waste, energy expenditure, and daily activity. We found that a smaller reduction in 24-h energy expenditure during fasting and a larger response to overfeeding predicted more weight loss over 6 weeks, even after accounting for age, sex, race, and baseline weight, as well as a greater rate of energy deficit accumulation. The success of dietary weight loss efforts is influenced by the energy expenditure response to caloric restriction. Greater decreases in energy expenditure during caloric restriction predict less weight loss, indicating the presence of thrifty and spendthrift phenotypes in obese humans. PMID:25964395

  5. A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction.

    PubMed

    Reinhardt, Martin; Thearle, Marie S; Ibrahim, Mostafa; Hohenadel, Maximilian G; Bogardus, Clifton; Krakoff, Jonathan; Votruba, Susanne B

    2015-08-01

    Successful weight loss is variable for reasons not fully elucidated. Whether effective weight loss results from smaller reductions in energy expenditure during caloric restriction is not known. We analyzed whether obese individuals with a "thrifty" phenotype, that is, greater reductions in 24-h energy expenditure during fasting and smaller increases with overfeeding, lose less weight during caloric restriction than those with a "spendthrift" phenotype. During a weight-maintaining period, 24-h energy expenditure responses to fasting and 200% overfeeding were measured in a whole-room indirect calorimeter. Volunteers then underwent 6 weeks of 50% caloric restriction. We calculated the daily energy deficit (kilocalories per day) during caloric restriction, incorporating energy intake and waste, energy expenditure, and daily activity. We found that a smaller reduction in 24-h energy expenditure during fasting and a larger response to overfeeding predicted more weight loss over 6 weeks, even after accounting for age, sex, race, and baseline weight, as well as a greater rate of energy deficit accumulation. The success of dietary weight loss efforts is influenced by the energy expenditure response to caloric restriction. Greater decreases in energy expenditure during caloric restriction predict less weight loss, indicating the presence of thrifty and spendthrift phenotypes in obese humans.

  6. Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging.

    PubMed

    Shinmura, Ken; Tamaki, Kayoko; Sano, Motoaki; Murata, Mitsushige; Yamakawa, Hiroyuki; Ishida, Hideyuki; Fukuda, Keiichi

    2011-01-01

    Approximately half of older patients with congestive heart failure have normal left ventricular (LV) systolic but abnormal LV diastolic function. In mammalian hearts, aging is associated with LV diastolic dysfunction. Caloric restriction (CR) is expected to retard cellular senescence and to attenuate the physiological decline in organ function. Therefore, the aim of the present study was to investigate the impact of long-term CR on cardiac senescence, in particular the effect of CR on LV diastolic dysfunction associated with aging. Male 8-month-old Fischer344 rats were divided into ad libitum fed and CR (40% energy reduction) groups. LV function was evaluated by echocardiography and cardiac senescence was compared between the two groups at the age of 30-month-old. (1) Echocardiography showed similar LV systolic function, but better LV diastolic function in the CR group. (2) Histological analysis revealed that CR attenuated the accumulation of senescence-associated β-galactosidase and lipofuscin and reduced myocyte apoptosis. (3) In measurements of [Ca(2+)](i) transients, the time to 50% relaxation was significantly smaller in the CR group, whereas F/F(0) was similar. (4) CR attenuated the decrease in sarcoplasmic reticulum calcium ATPase 2 protein with aging. (5) CR suppressed the mammalian target of rapamycin (mTOR) pathway and increased the ratio of conjugated to cytosolic light chain 3, suggesting that autophagy is enhanced in the CR hearts. In conclusion, CR improves diastolic function in the senescent myocardium by amelioration of the age-associated deterioration in intracellular Ca(2+) handling. Enhanced autophagy via the suppression of mTOR during CR may retard cardiac senescence. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Early postnatal caloric restriction protects adult male intrauterine growth-restricted offspring from obesity.

    PubMed

    Garg, Meena; Thamotharan, Manikkavasagar; Dai, Yun; Thamotharan, Shanthie; Shin, Bo-Chul; Stout, David; Devaskar, Sherin U

    2012-06-01

    Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation-induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P < 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo(2)) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype.

  8. The effect of caloric restriction and glycemic load on measures of oxidative stress and antioxidants in humans: results from the calerie trial of human caloric restriction

    USDA-ARS?s Scientific Manuscript database

    Reducing oxidative stress and increasing antioxidant defense is suggested as one mechanism by which caloric restriction (CR) increases longevity in animals. A total of 46 moderately overweight volunteers (BMI: 25-30 kg/m2), ages 20-42 yr were randomized to either high glycemic (HG) or low glycemic ...

  9. Effects of Caloric Restriction on Inflammatory Periodontal Disease

    PubMed Central

    Reynolds, Mark A.; Dawson, Dolphus R.; Novak, Karen F.; Ebersole, Jeffrey L.; Gunsolley, John C.; Branch-Mays, Grishondra L.; Holt, Stanley C.; Mattison, Julie A.; Ingram, Donald K.; Novak, M. John

    2008-01-01

    Objective Dietary caloric restriction (CR) has been found to reduce systemic markers of inflammation and may attenuate the effects of chronic inflammatory conditions. The purpose of this study was to examine the effects of long-term CR on naturally occurring chronic inflammatory periodontal disease in a nonhuman primate model. Methods The effects of long-term CR on extent and severity of naturally occurring chronic periodontal disease, local inflammatory and immune responses, and periodontal microbiology, were evaluated in a cohort of 81 (35 female and 46 male; 13–40 years of age) rhesus monkeys (M. mulatta) with no previous exposure to routine oral hygiene. The CR monkeys had been subjected to 30% CR for 13–17 years relative to control-fed (CON) animals starting at 3–5 years of age. Clinical and laboratory parameters were submitted to analysis of covariance, including Tukey's test for post hoc comparisons, linear regression analysis, and nonparametric correlation analysis. Results Same sex CR and CON monkeys exhibited comparable mean scores for plaque index, calculus index, and bleeding on probing. Among CON animals, males showed significantly greater periodontal breakdown, as reflected by higher mean clinical attachment level (CAL) and periodontal probing depth (PD) scores, than females (p ≤ 0.05). CR males had significantly less periodontal pocketing compared to CON males (p ≤ 0.05). CR males demonstrated a significantly lower IgG antibody response and lower levels of IL-8 and β-glucuronidase in gingival crevicular fluid compared to control males. A similar but nonsignificant reduction was found for IL-1β in CR male monkeys. In contrast, CR females exhibited mean PD and CAL scores comparable to CON females. CR females had a lower IgG antibody response but comparable levels of inflammatory markers in GCF compared to CON females. The CR diet had no demonstrable effects on the periodontal microbiota in male or female monkeys. Conclusion Males exhibited

  10. Caloric restriction in primates and relevance to humans.

    PubMed

    Roth, G S; Ingram, D K; Lane, M A

    2001-04-01

    Dietary caloric restriction (CR) is the only intervention conclusively and reproducibly shown to slow aging and maintain health and vitality in mammals. Although this paradigm has been known for over 60 years, its precise biological mechanisms and applicability to humans remain unknown. We began addressing the latter question in 1987 with the first controlled study of CR in primates (rhesus and squirrel monkeys, which are evolutionarily much closer to humans than the rodents most frequently employed in CR studies). To date, our results strongly suggest that the same beneficial "antiaging" and/or "antidisease" effects observed in CR rodents also occur in primates. These include lower plasma insulin levels and greater sensitivity; lower body temperatures; reduced cholesterol, triglycerides, blood pressure, and arterial stiffness; elevated HDL; and slower age-related decline in circulating levels of DHEAS. Collectively, these biomarkers suggest that CR primates will be less likely to incur diabetes, cardiovascular problems, and other age-related diseases and may in fact be aging more slowly than fully fed counterparts. Despite these very encouraging results, it is unlikely that most humans would be willing to maintain a 30% reduced diet for the bulk of their adult life span, even if it meant more healthy years. For this reason, we have begun to explore CR mimetics, agents that might elicit the same beneficial effects as CR, without the necessity of dieting. Our initial studies have focused on 2-deoxyglucose (2DG), a sugar analogue with a limited metabolism that actually reduces glucose/energy flux without decreasing food intake in rats. In a six-month pilot study, 2DG lowered plasma insulin and body temperature in a manner analagous to that of CR. Thus, metabolic effects that mediate the CR mechanism can be attained pharmacologically. Doses were titrated to eliminate toxicity; a long-term longevity study is now under way. In addition, data from other laboratories

  11. Adaptations of intestinal nutrient transport to chronic caloric restriction in mice.

    PubMed

    Casirola, D M; Rifkin, B; Tsai, W; Ferraris, R P

    1996-07-01

    Lifelong caloric restriction increases median and maximum life span and retards the aging process in many organ systems of rodents. Because the small intestine absorbs a reduced amount of nutrients each day, does lifelong caloric restriction induce adaptations in intestinal nutrient transport? We initially compared intestinal transport of sugars and amino acids between 24-mo-old mice allowed free access to food [ad libitum (AL)] and those provided a calorically restricted [40% less than ad libitum (CR)] diet since 3 mo of age. We found that CR mice had significantly greater transport rates for D-glucose, D-fructose, and several amino acids and had significantly lower villus heights. Total intestinal absorptive capacities for D-glucose, D-fructose, and L-proline were each 40-50% greater in CR mice; absorptive capacity normalized to metabolic mass (body weight 0.75) was approximately 80% greater in CR mice. Comparison of uptakes in aged AL and CR mice with previously published results in young AL mice suggests that caloric restriction delays age-related decreases in nutrient transport. In contrast to published studies in hibernation and starvation, chronic caloric restriction enhances not only uptake per milligram but also uptake per centimeter. We then switched 24-mo-old AL mice to a calorie-restricted diet for 1 mo and found that short-term caloric restriction has no effect on intestinal nutrient transport, intestinal mass, and total absorptive capacity. Thus chronic but not short-term caloric restriction increases intestinal nutrient transport rates in aged mice, and the main mechanism underlying these increases is enhanced transport rates per unit intestinal tissue weight.

  12. The effects of a discretionary food allowance during a caloric restriction regimen with provided food

    USDA-ARS?s Scientific Manuscript database

    The effects of self-selected discretionary foods in a structured energy restricted diet on adherence to a caloric restriction (CR) regimen, dietary satisfaction, and weight loss were studied in 32 healthy, overweight (BMI 25-30 kg/m2) adults, aged 20-42y participating in the CALERIE trial. Subjects ...

  13. Caloric restriction stimulates autophagy in rat cortical neurons through neuropeptide Y and ghrelin receptors activation

    PubMed Central

    Carmo-Silva, Sara; Botelho, Mariana; de Almeida, Luís Pereira; Cavadas, Cláudia

    2016-01-01

    Caloric restriction is an anti-aging intervention known to extend lifespan in several experimental models, at least in part, by stimulating autophagy. Caloric restriction increases neuropeptide Y (NPY) in the hypothalamus and plasma ghrelin, a peripheral gut hormone that acts in hypothalamus to modulate energy homeostasis. NPY and ghrelin have been shown to be neuroprotective in different brain areas and to induce several physiological modifications similar to those induced by caloric restriction. However, the effect of NPY and ghrelin in autophagy in cortical neurons is currently not known. Using a cell culture of rat cortical neurons we investigate the involvement of NPY and ghrelin in caloric restriction-induced autophagy. We observed that a caloric restriction mimetic cell culture medium stimulates autophagy in rat cortical neurons and NPY or ghrelin receptor antagonists blocked this effect. On the other hand, exogenous NPY or ghrelin stimulate autophagy in rat cortical neurons. Moreover, NPY mediates the stimulatory effect of ghrelin on autophagy in rat cortical neurons. Since autophagy impairment occurs in aging and age-related neurodegenerative diseases, NPY and ghrelin synergistic effect on autophagy stimulation may suggest a new strategy to delay aging process. PMID:27441412

  14. Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I in Premenopausal Women

    DTIC Science & Technology

    2005-08-01

    1-0361 TITLE: Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and...COVERED (From - To) 17 SEP 2001 - 16 SEP 2005 4. TITLE AND SUBTITLE Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on 5a...14. ABSTRACT This proposal entitled “Effects of moderate aerobic exercise combined with caloric restriction on circulating estrogens and IGF- 1 in

  15. Effects of Experimental Sleep Restriction on Weight Gain, Caloric Intake, and Meal Timing in Healthy Adults

    PubMed Central

    Spaeth, Andrea M.; Dinges, David F.; Goel, Namni

    2013-01-01

    Study Objectives: Examine sleep restriction's effects on weight gain, daily caloric intake, and meal timing. Design: Repeated-measures experiments assessing body weight at admittance and discharge in all subjects (N = 225) and caloric intake and meal timing across days following 2 baseline nights, 5 sleep restriction nights and 2 recovery nights or across days following control condition nights in a subset of subjects (n = 37). Setting: Controlled laboratory environment. Participants: Two hundred twenty-five healthy adults aged 22-50 y (n = 198 sleep-restricted subjects; n = 31 with caloric intake data; n = 27 control subjects; n = 6 with caloric intake data). Interventions: Approximately 8-to-1 randomization to an experimental condition (including five consecutive nights of 4 h time in bed [TIB]/night, 04:00-08:00) or to a control condition (all nights 10 h TIB/night, 22:00-08:00). Measurements and Results: Sleep-restricted subjects gained more weight (0.97 ± 1.4 kg) than control subjects (0.11 ± 1.9 kg; d = 0.51, P = 0.007). Among sleep-restricted subjects, African Americans gained more weight than Caucasians (d = 0.37, P = 0.003) and males gained more weight than females (d = 0.38, P = 0.004). Sleep-restricted subjects consumed extra calories (130.0 ± 43.0% of daily caloric requirement) during days with a delayed bedtime (04:00) compared with control subjects who did not consume extra calories (100.6 ± 11.4%; d = 0.94, P = 0.003) during corresponding days. In sleep-restricted subjects, increased daily caloric intake was due to more meals and the consumption of 552.9 ± 265.8 additional calories between 22:00-03:59. The percentage of calories derived from fat was greater during late-night hours (22:00-03:59, 33.0 ± 0.08%) compared to daytime (08:00-14:59, 28.2 ± 0.05%) and evening hours (15:00-21:59, 29.4 ± 0.06%; Ps < 0.05). Conclusions: In the largest, most diverse healthy sample studied to date under controlled laboratory conditions, sleep restriction

  16. Effects of experimental sleep restriction on caloric intake and activity energy expenditure.

    PubMed

    Calvin, Andrew D; Carter, Rickey E; Adachi, Taro; Macedo, Paula G; Albuquerque, Felipe N; van der Walt, Christelle; Bukartyk, Jan; Davison, Diane E; Levine, James A; Somers, Virend K

    2013-07-01

    Epidemiologic studies link short sleep duration to obesity and weight gain. Insufficient sleep appears to alter circulating levels of the hormones leptin and ghrelin, which may promote appetite, although the effects of sleep restriction on caloric intake and energy expenditure are unclear. We sought to determine the effect of 8 days/8 nights of sleep restriction on caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. We conducted a randomized study of usual sleep vs a sleep restriction of two-thirds of normal sleep time for 8 days/8 nights in a hospital-based clinical research unit. The main outcomes were caloric intake, activity energy expenditure, and circulating levels of leptin and ghrelin. Caloric intake in the sleep-restricted group increased by +559 kcal/d (SD, 706 kcal/d, P=.006) and decreased in the control group by -118 kcal/d (SD, 386 kcal/d, P=.51) for a net change of +677 kcal/d (95% CI, 148-1,206 kcal/d; P=.014). Sleep restriction was not associated with changes in activity energy expenditure (P=.62). No change was seen in levels of leptin (P=.27) or ghrelin (P=.21). Sleep restriction was associated with an increase in caloric consumption with no change in activity energy expenditure or leptin and ghrelin concentrations. Increased caloric intake without any accompanying increase in energy expenditure may contribute to obesity in people who are exposed to long-term sleep restriction. ClinicalTrials.gov; No.: NCT01334788; URL: www.clinicaltrials.gov.

  17. Caloric restriction and exercise “mimetics”: ready for prime time?

    PubMed Central

    Handschin, Christoph

    2016-01-01

    Exercise and diet are powerful interventions to prevent and ameliorate various pathologies. The development of pharmacological agents that confer exercise- or caloric restriction-like phenotypic effects is thus an appealing therapeutic strategy in diseases or even when used as life-style and longevity drugs. Such so-called exercise or caloric restriction “mimetics” have so far mostly been described in pre-clinical, experimental settings with limited translation into humans. Interestingly, many of these compounds activate related signaling pathways, most often postulated to act on the common downstream effector peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle. In this review, resveratrol and other exercise- and caloric restriction “mimetics” are discussed with a special focus on feasibility, chances and limitations of using such compounds in patients as well as in healthy individuals. PMID:26658171

  18. Sex-related differences in energy balance in response to caloric restriction.

    PubMed

    Valle, A; Català-Niell, A; Colom, B; García-Palmer, F J; Oliver, J; Roca, P

    2005-07-01

    Sex-related differences in energy balance were studied in young Wistar rats fed standard chow pellets either ad libitum or in restricted amounts (60% of ad libitum intake) for 100 days. Caloric intake, indirect calorimetry, organ and adipose tissue weights, energy efficiency, liver mitochondrial respiration rate, and brown adipose tissue (BAT) uncoupling protein-1 (UCP1) content were measured. Ad libitum-fed females showed greater oxygen consumption (Vo(2)) and carbon dioxide production (Vco(2)) and lower energy efficiency than males. Caloric restriction induced a chronic drop of Vo(2) and Vco(2) in females but not in males over the period studied. Restricted females showed a better conservation of metabolic active organ mass and a greater decrease in adipose depots than restricted males. Moreover, changes of BAT size and UCP1 content suggest that BAT may be the main cause responsible for sex differences in the response of energy balance to caloric restriction. In conclusion, our results indicate that females under caloric restriction conditions deactivate facultative thermogenesis to a greater degree than males. This ability may have obvious advantages for female survival and therefore the survival of the species when food is limiting.

  19. Sex and race differences in caloric intake during sleep restriction in healthy adults1234

    PubMed Central

    Spaeth, Andrea M; Dinges, David F; Goel, Namni

    2014-01-01

    Background: Evidence indicates that men and African Americans may be more susceptible to weight gain resulting from sleep loss than women and whites, respectively. Increased daily caloric intake is a major behavioral mechanism that underlies the relation between sleep loss and weight gain. Objective: We sought to assess sex and race differences in caloric intake, macronutrient intake, and meal timing during sleep restriction. Design: Forty-four healthy adults aged 21–50 y (mean ± SD: 32.7 ± 8.7 y; n = 21 women, n = 16 whites) completed an in-laboratory protocol that included 2 consecutive baseline nights [10 or 12 h time in bed (TIB)/night; 2200–0800 or 2200–1000] followed by 5 consecutive sleep-restriction nights (4 h TIB/night; 0400–0800). Caloric intake and meal-timing data were collected during the 2 d after baseline sleep and the first 3 d after sleep restriction. Results: During sleep restriction, subjects increased daily caloric intake (P < 0.001) and fat intake (P = 0.024), including obtaining more calories from condiments, desserts, and salty snacks (Ps < 0.05) and consumed 532.6 ± 295.6 cal during late-night hours (2200–0359). Relative to women, men consumed more daily calories during baseline and sleep restriction, exhibited a greater increase in caloric intake during sleep restriction (d = 0.62), and consumed a higher percentage of daily calories during late-night hours (d = 0.78, Ps < 0.05). African Americans and whites did not significantly differ in daily caloric intake, increased caloric intake during sleep restriction, or meal timing. However, African Americans consumed more carbohydrates, less protein, and more caffeine-free soda and juice than whites did during the study (Ps < 0.05). Conclusions: Men may be more susceptible to weight gain during sleep loss than women due to a larger increase in daily caloric intake, particularly during late-night hours. These findings are relevant to the promotion of public health awareness by

  20. SirT1 Regulates Energy Metabolism and Response to Caloric Restriction in Mice

    PubMed Central

    Boily, Gino; Seifert, Erin L.; Bevilacqua, Lisa; He, Xiao Hong; Sabourin, Guillaume; Estey, Carmen; Moffat, Cynthia; Crawford, Sean; Saliba, Sarah; Jardine, Karen; Xuan, Jian; Evans, Meredith; Harper, Mary-Ellen; McBurney, Michael W.

    2008-01-01

    The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction. PMID:18335035

  1. Effect of Modest Caloric Restriction on Oxidative Stress in Women, a Randomized Trial

    PubMed Central

    Buchowski, Maciej S.; Hongu, Nobuko; Acra, Sari; Wang, Li; Warolin, Joshua; Roberts, L. Jackson

    2012-01-01

    Objectives It is not established to what extent caloric intake must be reduced to lower oxidative stress in humans. The aim of this study was to determine the effect of short-term, moderate caloric restriction on markers of oxidative stress and inflammation in overweight and obese premenopausal women. Materials/Methods Randomized trial comparison of 25% caloric restriction (CR) or control diet in 40 overweight or obese women (body mass index 32±5.8 kg/m2) observed for 28 days and followed for the next 90 days. Weight, anthropometry, validated markers of oxidative stress (F2-isoprostane) and inflammation (C-reactive protein), adipokines, hormones, lipids, interleukins, and blood pressure were assessed at baseline, during the intervention, and at follow-up. Results Baseline median F2-isoprostane concentration (57.0, IQR = 40.5–79.5) in the CR group was 1.75-fold above average range for normal weight women (32.5 pg/ml). After starting of the caloric restriction diet, F2-isoprostane levels fell rapidly in the CR group, reaching statistical difference from the control group by day 5 (median 33.5, IQR = 26.0–48.0, P<0.001) and remained suppressed while continuing on the caloric restriction diet. Three months after resuming a habitual diet, concentrations of F2-isoprostane returned to baseline elevated levels in ∼80% of the women. Conclusions Oxidative stress can be rapidly reduced and sustained through a modest reduction in caloric intake suggesting potential health benefits in overweight and obese women. Trial Registration Clinicaltrials.gov NCT00808275 PMID:23071718

  2. Benefits of caloric restriction in the myenteric neuronal plasticity in aging rats.

    PubMed

    Pereira, Joice N B; Mari, Renata B; Stabille, Sandra R; de Faria, Haroldo G; Mota, Thais F M; Ferreira, Walter M

    2014-09-01

    Aging is a biologic process characterized by progressive damage of structures and functions of organic systems. In gastrointestinal tract, it can involve enteric nervous system, which plays an important role in digestion and absorption of nutrients, causing hastening of intestinal transit thus reducing its absorptive function. Caloric restriction has been used in several studies with the intention of delaying deleterious effects of aging. This study aimed to evaluate the effects of caloric restriction on myenteric neurons of ileum by aging in rats. 30 Wistar rats were grouped as follows: GI (animals aged 6 months fed with normal diet), GII (animals aged 18 months fed with normal diet) and GIII (animals aged 18 months subject to 31% of caloric restriction). The rats of the GI group were euthanized at 6 months of age and after experimental period of 12 months animals of the group GII and GIII were euthanized, the ileum of all groups were collected, measured and processed by NADPH-dp and Acetylcholinesterase. Quantitative analysis of neurons revealed that aging promotes the increasing of myenteric neurons NADPH-dp and reduces Acetylcholinesterase neuronal population. However, in the cellular profile area, were not observed significant differences between the groups. The caloric restriction has been efficient and can be used preventively because it minimizes quantitative changes associated with aging on ileum myenteric plexuses.

  3. Thermoregulatory, Cardiovascular, and Metabolic Responses to Mild Caloric Restriction in the Brown Norway Rat

    EPA Science Inventory

    Caloric restriction (CR) has been demonstrated to prolong the life span of a variety of species. CR-induced reduction in core temperature (Tc) is considered a key mechanism responsible for prolonging life span in rodents; however, little is known on the regulation of CR-induced h...

  4. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction

    USDA-ARS?s Scientific Manuscript database

    The sirtuin family of nicotinamide adenine dinucleotide-dependent (NAD) deacetylases plays an important role in aging and metabolic regulation. In yeast, the Sir2 gene and its homolog Hst2 independently mediate the action of caloric restriction on lifespan extension. The mammalian Sir2 ortholog, SIR...

  5. Long–term effects of caloric restriction on total and resting energy expenditure in healthy adults

    USDA-ARS?s Scientific Manuscript database

    The effects of long-term caloric restriction (CR) on resting metabolic rate (RMR) and total energy expenditure (TEE) in humans is uncertain. Objective To examine the effects of a 30% CR regimen on TEE and RMR. Methods One year randomized controlled trial of 30% CR in 29 healthy overweight adults (me...

  6. Thermoregulatory, Cardiovascular, and Metabolic Responses to Mild Caloric Restriction in the Brown Norway Rat

    EPA Science Inventory

    Caloric restriction (CR) has been demonstrated to prolong the life span of a variety of species. CR-induced reduction in core temperature (Tc) is considered a key mechanism responsible for prolonging life span in rodents; however, little is known on the regulation of CR-induced h...

  7. Dietary restriction, caloric value and the accumulation of hepatic fat

    PubMed Central

    2012-01-01

    Background Studies using laboratory animals under what are considered to be "standard" conditions normally offer unrestricted amounts of food to the animals, which can lead to metabolic disorders. Moreover, standard diets have different compositions. Aim Therefore, the aim of the present study was to assess the effects of two non-isocaloric diets (commercial Purina® and AIN-93M), which are considered standard diets, on the accumulation of fat in the liver of rats when offered ad libitum or in a restricted amount. Methods Thus, 40 Wistar rats (90 days old) were separated into 4 groups according to the amount of food offered (ad libitum or dietary restriction) and the type of diet (commercial diet, 3,028.0 kcal/g or AIN-93M, 3,802.7 kcal/g): animals fed the commercial Purina® diet ad libitum (AP), animals fed restricted amounts of the commercial Purina® diet (RP), animals fed the AIN-93M diet ad libitum (AD), and animals fed restricted amounts of the AIN-93M diet (RD). Dietary restriction consisted of pair-feeding the RP and RD groups with 60% of the total food consumed by the corresponding ad libitum groups. Results Because of its higher carbohydrate and calorie content, AIN-93M was found to accelerate weight gain, reduce glucose tolerance and peripheral insulin sensitivity, and increase the amount of fat in the liver when compared to the commercial diet. Conversely, a 40% dietary restriction assisted in weight loss without causing malnutrition, contributing to an improved glucose tolerance and higher levels of HDL cholesterol. Conclusion Therefore, differences in the amount of carbohydrates and calories provided by the diet can lead to important metabolic disorders, such as impaired tolerance and accumulation of hepatic fat, and dietary restriction improves serum and tissue lipid profiles in laboratory animals. PMID:22221448

  8. Change in the Rate of Biological Aging in Response to Caloric Restriction: CALERIE Biobank Analysis.

    PubMed

    Belsky, Daniel W; Huffman, Kim M; Pieper, Carl F; Shalev, Idan; Kraus, William E

    2017-05-22

    Biological aging measures have been proposed as proxies for extension of healthy lifespan in trials of geroprotective therapies that aim to slow aging. Several methods to measure biological aging show promise; but it is not known if these methods are sensitive to changes caused by geroprotective therapy. We conducted analysis of two proposed methods to quantify biological aging using data from a recently concluded trial of an established geroprotector, caloric restriction. We obtained data from the National Institute on Aging CALERIE randomized trial through its public-access biobank (https://calerie.duke.edu/). The CALERIE trial randomized N=220 non-obese adults to 25% caloric restriction (n=145; 11.7% caloric restriction was achieved, on average) or to maintain current diet (n=75) for two years. We analyzed biomarker data collected at baseline, 12-, and 24-month follow-up assessments. We applied published biomarker algorithms to these data to calculate two biological age measures, Klemera-Doubal Method Biological Age and homeostatic dysregulation. Intent-to-treat analysis using mixed-effects growth models of within-person change over time tested if caloric restriction slowed increase in measures of biological aging across follow-up. Analyses of both measures indicated caloric restriction slowed biological aging. Weight loss did not account for the observed effects. Results suggest future directions for testing of geroprotective therapies in humans. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Molecular Links between Caloric Restriction and Sir2/SIRT1 Activation

    PubMed Central

    2014-01-01

    Ageing is the most significant risk factor for a range of prevalent diseases, including cancer, cardiovascular disease, and diabetes. Accordingly, interventions are needed for delaying or preventing disorders associated with the ageing process, i.e., promotion of healthy ageing. Calorie restriction is the only nongenetic and the most robust approach to slow the process of ageing in evolutionarily divergent species, ranging from yeasts, worms, and flies to mammals. Although it has been known for more than 80 years that calorie restriction increases lifespan, a mechanistic understanding of this phenomenon remains elusive. Yeast silent information regulator 2 (Sir2), the founding member of the sirtuin family of protein deacetylases, and its mammalian homologue Sir2-like protein 1 (SIRT1), have been suggested to promote survival and longevity of organisms. SIRT1 exerts protective effects against a number of age-associated disorders. Caloric restriction increases both Sir2 and SIRT1 activity. This review focuses on the mechanistic insights between caloric restriction and Sir2/SIRT1 activation. A number of molecular links, including nicotinamide adenine dinucleotide, nicotinamide, biotin, and related metabolites, are suggested to be the most important conduits mediating caloric restriction-induced Sir2/SIRT1 activation and lifespan extension. PMID:25349818

  10. Acute caloric restriction improves glomerular filtration rate in patients with morbid obesity and type 2 diabetes.

    PubMed

    Giordani, I; Malandrucco, I; Donno, S; Picconi, F; Di Giacinto, P; Di Flaviani, A; Chioma, L; Frontoni, S

    2014-04-01

    The role of caloric restriction in the improvement of renal function following bariatric surgery is still unclear; with some evidence showing that calorie restriction can reduce proteinuria. However, data on the impact of caloric restriction on renal function are still lacking. Renal function, as measured by glomerular filtration rate (GFR), was evaluated in 14 patients with type 2 diabetes mellitus, morbid obesity and stage 2 chronic kidney disease before and after a 7-day very low-calory diet (VLCD). After the VLCD, both GFR and overall glucose disposal (M value) significantly increased from 72.6 ± 3.8 mL/min/1.73 m(-2) BSA to 86.9 ± 6.1 mL/min/1.73 m(-2) BSA (P=0.026) and from 979 ± 107 μmol/min(1)/m(2) BSA to 1205 ± 94 μmol/min(1)/m(2) BSA (P=0.008), respectively. A significant correlation was observed between the increase in GFR and the rise in M value (r=0.625, P=0.017). Our observation of improved renal function following acute caloric restriction before weight loss became relevant suggesting that calory restriction per se is able to affect renal function. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction.

    PubMed

    Ocampo, Alejandro; Liu, Jingjing; Schroeder, Elizabeth A; Shadel, Gerald S; Barrientos, Antoni

    2012-07-03

    We have explored the role of mitochondrial function in aging by genetically and pharmacologically modifying yeast cellular respiration production during the exponential and/or stationary growth phases and determining how this affects chronological life span (CLS). Our results demonstrate that respiration is essential during both growth phases for standard CLS, but that yeast have a large respiratory capacity, and only deficiencies below a threshold (~40% of wild-type) significantly curtail CLS. Extension of CLS by caloric restriction also required respiration above a similar threshold during exponential growth and completely alleviated the need for respiration in the stationary phase. Finally, we show that supplementation of media with 1% trehalose, a storage carbohydrate, restores wild-type CLS to respiratory-null cells. We conclude that mitochondrial respiratory thresholds regulate yeast CLS and its extension by caloric restriction by increasing stress resistance, an important component of which is the optimal accumulation and mobilization of nutrient stores.

  12. Mitochondrial Respiratory Thresholds Regulate Yeast Chronological Lifespan and its Extension by Caloric Restriction

    PubMed Central

    Ocampo, Alejandro; Liu, Jingjing; Schroeder, Elizabeth A.; Shadel, Gerald S.; Barrientos, Antoni

    2012-01-01

    SUMMARY We have explored the role of mitochondrial function in aging by genetically and pharmacologically modifying yeast cellular respiration production during the exponential and/or stationary growth phases, and determining how this affects chronological lifespan (CLS). Our results demonstrate that respiration is essential during both growth phases for standard CLS, but that yeast have a large respiratory capacity and only deficiencies below a threshold (~40% of wild-type) significantly curtail CLS. Extension of CLS by caloric restriction also required respiration above a similar threshold during exponential growth, and completely alleviated the need for respiration in stationary phase. Finally, we show that media supplementation with 1% trehalose, a storage carbohydrate, restores wild-type CLS to respiratory null cells. We conclude that mitochondrial respiratory thresholds regulate yeast CLS and its extension by caloric restriction by increasing stress resistance, an important component of which is the optimal accumulation and mobilization of nutrient stores. PMID:22768839

  13. Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms.

    PubMed

    Masoro, Edward J

    2009-10-01

    In 1935, Clive McCay and colleagues reported that decreasing the food intake of rats extends their life. This finding has been confirmed many times using rat and mouse models. The responsible dietary factor in rats is the reduced intake of energy; thus, this phenomenon is frequently referred to as caloric restriction. Although many hypotheses have been proposed during the past 74 years regarding the underlying mechanism, it is still not known. It is proposed that this lack of progress relates to the fact that most of these hypotheses have been based on a single underlying mechanism and that this is too narrow a focus. Rather, a broad framework is needed. Hormesis has been suggested as providing such a framework. Although it is likely that hormesis is involved in the actions of caloric restriction, it also is probably too narrowly focused. Based on currently available data, a provisional broad framework is presented depicting the complex of mechanisms that likely underlie the life-extending and other anti-aging actions of caloric restriction.

  14. Weight cycling and cancer: weighing the evidence of intermittent caloric restriction and cancer risk.

    PubMed

    Thompson, Henry J; McTiernan, Anne

    2011-11-01

    Overweight and obese individuals frequently restrict caloric intake to lose weight. The resultant weight loss, however, typically is followed by an equal or greater weight gain, a phenomenon called weight cycling. Most attention to weight cycling has focused on identifying its detrimental effects, but preclinical experiments indicating that intermittent caloric restriction or fasting can reduce cancer risk have raised interest in potential benefits of weight cycling. Although hypothesized adverse effects of weight cycling on energy metabolism remain largely unsubstantiated, there is also a lack of epidemiologic evidence that intentional weight loss followed by regain of weight affects chronic-disease risk. In the limited studies of weight cycling and cancer, no independent effect on postmenopausal breast cancer but a modest enhancement of risk for renal cell carcinoma, endometrial cancer, and non-Hodgkin's lymphoma have been reported. An effect of either intermittent caloric restriction or fasting in protecting against cancer is not supported by the majority of rodent carcinogenesis experiments. Collectively, the data argue against weight cycling and indicate that the objective of energy balance-based approaches to reduce cancer risk should be to strive to prevent adult weight gain and maintain body weight within the normal range defined by body mass index.

  15. Benefits of caloric restriction for cardiometabolic health, including type 2 diabetes mellitus risk.

    PubMed

    Soare, Andreea; Weiss, Edward P; Pozzilli, Paolo

    2014-03-01

    In the United States, life expectancy has markedly increased during the past century, and population ageing is expected to double within the next 25 years. The process of ageing in a population is associated with the development of chronic diseases, such as type 2 diabetes mellitus, that can be prevented, and even reversed, with the implementation of healthy lifestyle interventions. The evidence to date, consolidated by the numerous epidemiological studies and clinical trials conducted, suggests that caloric restriction is an effective nutritional intervention for preventing most of these age-related conditions. At a metabolic level, caloric restriction with adequate nutrition has been shown to improve insulin sensitivity, reduce fasting glucose and insulin concentration and prevent obesity, type 2 diabetes, hypertension and chronic inflammation. The purpose of this article is to review current knowledge of the metabolic and clinical implications of caloric restriction with adequate nutrition for the prevention of type 2 diabetes and cardiovascular disease. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    PubMed

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  17. Caloric restriction experience reprograms stress and orexegenic pathways and promotes binge-eating

    PubMed Central

    Pankevich, Diana E.; Teegarden, Sarah L.; Hedin, Andrew D.; Jensen, Catherine L.; Bale, Tracy L.

    2010-01-01

    Long-term weight management by dieting has a high failure rate. Pharmacological targets have focused on appetite reduction, while less is understood as to the potential contributions of the stress state during dieting in long-term behavioral modification. In a mouse model of moderate caloric restriction in which a 10–15% weight loss similar to human dieting is produced, we examined physiological and behavioral stress measures. Following three weeks of restriction, mice showed significant increases in immobile time in a tail suspension test and stress-induced corticosterone levels. Increased stress was associated with brain region specific alterations of corticotropin-releasing factor (CRF) expression and promoter methylation, changes that were not normalized with re-feeding. Similar outcomes were produced by high fat diet withdrawal, an additional component of human dieting. In examination of long-term behavioral consequences, previously restricted mice showed a significant increase in binge-eating of a palatable high fat food during stress exposure. Orexegenic hormones, melanin concentrating hormone (MCH) and orexin, were significantly elevated in response to the high fat diet only in previously restricted mice. Further, administration of the MCH receptor-1 antagonist GSK-856464 significantly reduced total caloric intake in these mice during high fat access. These results reveal reprogramming of key central pathways involved in regulating stress responsivity and orexegenic drives by moderate caloric restriction experience. In humans, such changes would be expected to reduce treatment success by promoting behaviors resulting in weight re-gain, and suggest that management of stress during dieting may be beneficial in long-term maintenance. PMID:21123586

  18. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy.

    PubMed

    Morselli, E; Maiuri, M C; Markaki, M; Megalou, E; Pasparaki, A; Palikaras, K; Criollo, A; Galluzzi, L; Malik, S A; Vitale, I; Michaud, M; Madeo, F; Tavernarakis, N; Kroemer, G

    2010-01-01

    Caloric restriction and autophagy-inducing pharmacological agents can prolong lifespan in model organisms including mice, flies, and nematodes. In this study, we show that transgenic expression of Sirtuin-1 induces autophagy in human cells in vitro and in Caenorhabditis elegans in vivo. The knockdown or knockout of Sirtuin-1 prevented the induction of autophagy by resveratrol and by nutrient deprivation in human cells as well as by dietary restriction in C. elegans. Conversely, Sirtuin-1 was not required for the induction of autophagy by rapamycin or p53 inhibition, neither in human cells nor in C. elegans. The knockdown or pharmacological inhibition of Sirtuin-1 enhanced the vulnerability of human cells to metabolic stress, unless they were stimulated to undergo autophagy by treatment with rapamycin or p53 inhibition. Along similar lines, resveratrol and dietary restriction only prolonged the lifespan of autophagy-proficient nematodes, whereas these beneficial effects on longevity were abolished by the knockdown of the essential autophagic modulator Beclin-1. We conclude that autophagy is universally required for the lifespan-prolonging effects of caloric restriction and pharmacological Sirtuin-1 activators.

  19. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy

    PubMed Central

    Morselli, E; Maiuri, M C; Markaki, M; Megalou, E; Pasparaki, A; Palikaras, K; Criollo, A; Galluzzi, L; Malik, S A; Vitale, I; Michaud, M; Madeo, F; Tavernarakis, N; Kroemer, G

    2010-01-01

    Caloric restriction and autophagy-inducing pharmacological agents can prolong lifespan in model organisms including mice, flies, and nematodes. In this study, we show that transgenic expression of Sirtuin-1 induces autophagy in human cells in vitro and in Caenorhabditis elegans in vivo. The knockdown or knockout of Sirtuin-1 prevented the induction of autophagy by resveratrol and by nutrient deprivation in human cells as well as by dietary restriction in C. elegans. Conversely, Sirtuin-1 was not required for the induction of autophagy by rapamycin or p53 inhibition, neither in human cells nor in C. elegans. The knockdown or pharmacological inhibition of Sirtuin-1 enhanced the vulnerability of human cells to metabolic stress, unless they were stimulated to undergo autophagy by treatment with rapamycin or p53 inhibition. Along similar lines, resveratrol and dietary restriction only prolonged the lifespan of autophagy-proficient nematodes, whereas these beneficial effects on longevity were abolished by the knockdown of the essential autophagic modulator Beclin-1. We conclude that autophagy is universally required for the lifespan-prolonging effects of caloric restriction and pharmacological Sirtuin-1 activators. PMID:21364612

  20. Effect of chronic caloric restriction on physiological variables related to energy metabolism in the male Fischer 344 rat.

    PubMed

    Duffy, P H; Feuers, R J; Leakey, J A; Nakamura, K; Turturro, A; Hart, R W

    1989-05-01

    In the present study, a number of physiological and behavioral measures that are related to metabolism were continuously monitored in 19-month-old male Fischer 344 rats that were fed ad libitum or fed a caloric restricted diet. Caloric restricted rats ate fewer meals but consumed more food during each meal and spent more time eating per meal than did rats fed ad libitum. Therefore, the timing and duration of meals as well as the total number of calories consumed may be associated with life extension. Average body temperature per day was significantly lower in restricted rats but body temperature range per day and motor activity were higher in restricted rats. Dramatic changes in respiratory quotient, indicating rapid changes in metabolic pathway and lower temperature, occurred in caloric restricted rats when carbohydrate reserves were depleted. Lower body temperature and metabolism during this time interval may result in less DNA damage, thereby increasing the survival potential of restricted rats. Nighttime feeding was found to synchronize physiological performance between ad libitum and caloric restricted rats better than daytime feeding, thereby allowing investigators to distinguish the effects of caloric restriction from those related solely to the time-of-day of feeding.

  1. Effects of caloric restriction on nitrogen and carbon stable isotope ratios in adult rat bone.

    PubMed

    Robertson, Kimberly L; Rowland, Neil E; Krigbaum, John

    2014-10-15

    Stable isotope analysis is a valuable technique for dietary estimation in ecological and archaeological research, yet many variables can potentially affect tissue stable isotope signatures. Controlled feeding studies across a range of species have consistently demonstrated impacts of caloric restriction on tissue stable isotope ratios, but most have focused on juvenile, fasting, and/or starving individuals, and most have utilized soft tissues despite the importance of bone for paleodietary analyses. The goal of this study was to determine whether temporally defined, moderate food restriction could affect stable carbon and/or nitrogen isotope ratios in adult mammalian bone - a tissue that arguably reflects long-term dietary signals. Adult rats fed a standard laboratory diet were restricted to 45% of ad libitum intakes for 3 or 6 months. Relevant anatomical and physiological parameters were measured to confirm that the restriction protocol resulted in significant nutritional stress and to provide independent data to facilitate interpretation of stable isotope ratios. Femoral bone δ(13)Ccollagen, δ(15)Ncollagen, and δ(13)Capatite values were determined by isotope ratio mass spectrometry. Calorie-restricted animals exhibited a small, yet significant enrichment in (15)Ncollagen compared with control animals, reflecting protein-calorie stress. While the δ(13)Ccollagen values did not differ, the δ(13)Capatite values revealed less enrichment in (13)C than in controls, reflecting catabolism of body fat. Independent anatomical and physiological data from these same individuals support these interpretations. Results indicate that moderate caloric restriction does not appreciably undermine broad interpretations of dietary signals in adult mammalian bone. Significant variability among individuals or groups, however, is best explained by marked differences in energy intake over variable timescales. An inverse relationship between the δ(13)Capatite and δ(15)Ncollagen

  2. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer.

    PubMed

    Zhou, Weihua; Mukherjee, Purna; Kiebish, Michael A; Markis, William T; Mantis, John G; Seyfried, Thomas N

    2007-02-21

    Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG). Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. KetoCal administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal diet reduced plasma glucose levels while elevating plasma ketone body (beta-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, beta-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the tumors than in the contralateral normal

  3. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer

    PubMed Central

    Zhou, Weihua; Mukherjee, Purna; Kiebish, Michael A; Markis, William T; Mantis, John G; Seyfried, Thomas N

    2007-01-01

    Background Malignant brain cancer persists as a major disease of morbidity and mortality in adults and is the second leading cause of cancer death in children. Many current therapies for malignant brain tumors fail to provide long-term management because they ineffectively target tumor cells while negatively impacting the health and vitality of normal brain cells. In contrast to brain tumor cells, which lack metabolic flexibility and are largely dependent on glucose for growth and survival, normal brain cells can metabolize both glucose and ketone bodies for energy. This study evaluated the efficacy of KetoCal®, a new nutritionally balanced high fat/low carbohydrate ketogenic diet for children with epilepsy, on the growth and vascularity of a malignant mouse astrocytoma (CT-2A) and a human malignant glioma (U87-MG). Methods Adult mice were implanted orthotopically with the malignant brain tumors and KetoCal® was administered to the mice in either unrestricted amounts or in restricted amounts to reduce total caloric intake according to the manufacturers recommendation for children with refractory epilepsy. The effects KetoCal® on tumor growth, vascularity, and mouse survival were compared with that of an unrestricted high carbohydrate standard diet. Results KetoCal® administered in restricted amounts significantly decreased the intracerebral growth of the CT-2A and U87-MG tumors by about 65% and 35%, respectively, and significantly enhanced health and survival relative to that of the control groups receiving the standard low fat/high carbohydrate diet. The restricted KetoCal® diet reduced plasma glucose levels while elevating plasma ketone body (β-hydroxybutyrate) levels. Tumor microvessel density was less in the calorically restricted KetoCal® groups than in the calorically unrestricted control groups. Moreover, gene expression for the mitochondrial enzymes, β-hydroxybutyrate dehydrogenase and succinyl-CoA: 3-ketoacid CoA transferase, was lower in the

  4. Effect of high fat, fiber and caloric restriction on rat mammary tumorigenesis

    SciTech Connect

    Magrane, D.; Van Sant, J.; Butler, B.

    1986-03-05

    Female rats given 7,12-Dimethylbenz(a)anthracene (DMBA) were placed on diets of control fat (CF-4.5%) or high fat (HF-20%) with either control fiber (6%) or high fiber (FB-12%). A 60% reduction in the CF diet was used to study the effects of caloric restriction on tumorigenesis. Results showed that HF diets had a shorter latency period than CF rats. The respective average number of tumors per rat and tumor volume were 7.3 +/- 1.3 and 23694 mm/sup 2/ for rats on a HF diet and 5.1+/-1.1 and 9144 mm/sup 3/ for CF rats. Addition of high fiber to the diets reduced the tumor incidence from 95% to 70% in the CF group but did not reduce the incidence in HF group. Although tumor number was reduced to 3.7+/-1.5 in CF+FB rats, the tumor volumes were not reduced (8950 mm/sup 3/). Rats fed HF+FB did not have fewer tumors (7.0+/-1.1), but did show a 53% reduction in tumor load. The estrogen dependent enzyme glucose-6-phosphate dehydrogenase was not affected by dietary levels of fat, which suggests that the promotional effects of fat may not be through estrogen stimulation. None of the caloric restricted rats had tumors 12 weeks post-DMBA. These restricted rats all had significantly elevated levels of serum corticosterone.

  5. Caloric Restriction Effect on Proinflammatory Cytokines, Growth Hormone, and Steroid Hormone Concentrations during Exercise in Judokas

    PubMed Central

    Abedelmalek, Salma; Chtourou, Hamdi; Souissi, Nizar; Tabka, Zouhair

    2015-01-01

    The aim of this study was to evaluate the effect of caloric restriction on the immune and hormonal responses during exercise in judo athletes. In a randomised order, 11 male judokas (age: 20.45 ± 0.51; height: 1.71 ± 0.3 m; and body weight: 75.9 ± 3.1 kg) participate in this study during a period of weight maintenance (baseline) and after 7 days of caloric restriction (CR). All subjects performed the Special Judo Fitness Test (SJFT) during the two conditions. Values for nutrient intakes were obtained from a 7 d food record kept during a period of weight maintenance and after a 7-day food restriction (−5~6 MJ/day). Our results showed that CR resulted in significant decreases in body weight (P < 0.05) and performance (P < 0.05). However, heart rate and SJFT index (P < 0.05) increase significantly during CR in comparison to baseline. Moreover, exercise leads to a significant increase in testosterone, cortisol, growth hormone (GH), leukocytes, neutrophils, TNF-α, and IL-6, in both CR and baseline conditions. Compared to baseline, TNF-α and IL-6 were significantly higher during CR condition (P < 0.05). Additionally, CR leads to an increase in cortisol and GH (P < 0.05) and a decrease in testosterone concentrations (P < 0.05). PMID:26075039

  6. Increasing longevity through caloric restriction or rapamycin feeding in mammals: common mechanisms for common outcomes?

    PubMed

    Cox, Lynne S; Mattison, Julie A

    2009-09-01

    Significant extension of lifespan in important mammalian species is bound to attract the attention not only of the aging research community, but also the media and the wider public. Two recent papers published by Harrison et al. (2009) in Nature and by Colman et al. (2009) in Science report increased longevity of mice fed with rapamycin and of rhesus monkeys undergoing caloric restriction, respectively. These papers have generated considerable debate in the aging community. Here we assess what is new about these findings, how they fit with our knowledge of lifespan extension from other studies and what prospects this new work holds out for improvements in human longevity and human health span.

  7. Age-Related Synapse Loss In Hippocampal CA3 Is Not Reversed By Caloric Restriction

    PubMed Central

    Adams, Michelle M.; Donohue, Howard S.; Linville, M. Constance; Iversen, Elizabeth A.; Newton, Isabel G.; Brunso-Bechtold, Judy K.

    2010-01-01

    Caloric restriction (CR) is a reduction of total caloric intake without a decrease in micronutrients or a disproportionate reduction of any one dietary component. While CR attenuates age-related cognitive deficits in tasks of hippocampal-dependent memory, the cellular mechanisms by which CR improves this cognitive decline are poorly understood. Previously, we have reported age-related decreases in key synaptic proteins in the CA3 region of the hippocampus that are stabilized by lifelong CR. In the present study, we examined possible age-related changes in the functional microcircuitry of the synapses in the stratum lacunosum-moleculare (SL-M) of the CA3 region of the hippocampus, and whether lifelong CR might prevent these age-related alterations. We used serial electron microscopy to reconstruct and classify SL-M synapses and their postsynaptic spines. We analyzed synapse number and size as well as spine surface area and volume in young (10 mos.) and old (29 mos) ad libitum fed rats and in old rats that were calorically restricted from 4 months of age. We limited our analysis to SL-M because previous work demonstrated age-related decreases in synaptophysin confined to this specific layer and region of the hippocampus. The results revealed an age-related decrease in macular axo-spinous synapses that was not reversed by CR that occurred in the absence of changes in the size of synapses or spines. Thus, the benefits of CR for CA3 function and synaptic plasticity may involve other biological effects including the stabilization of synaptic proteins levels in the face of age-related synapse loss. PMID:20854882

  8. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice

    PubMed Central

    Sun, Liou Y; Spong, Adam; Swindell, William R; Fang, Yimin; Hill, Cristal; Huber, Joshua A; Boehm, Jacob D; Westbrook, Reyhan; Salvatori, Roberto; Bartke, Andrzej

    2013-01-01

    We examine the impact of targeted disruption of growth hormone-releasing hormone (GHRH) in mice on longevity and the putative mechanisms of delayed aging. GHRH knockout mice are remarkably long-lived, exhibiting major shifts in the expression of genes related to xenobiotic detoxification, stress resistance, and insulin signaling. These mutant mice also have increased adiponectin levels and alterations in glucose homeostasis consistent with the removal of the counter-insulin effects of growth hormone. While these effects overlap with those of caloric restriction, we show that the effects of caloric restriction (CR) and the GHRH mutation are additive, with lifespan of GHRH-KO mutants further increased by CR. We conclude that GHRH-KO mice feature perturbations in a network of signaling pathways related to stress resistance, metabolic control and inflammation, and therefore provide a new model that can be used to explore links between GHRH repression, downregulation of the somatotropic axis, and extended longevity. DOI: http://dx.doi.org/10.7554/eLife.01098.001 PMID:24175087

  9. Of mice and men: the benefits of caloric restriction, exercise, and mimetics.

    PubMed

    Mercken, Evi M; Carboneau, Bethany A; Krzysik-Walker, Susan M; de Cabo, Rafael

    2012-07-01

    During aging there is an increasing imbalance of energy intake and expenditure resulting in obesity, frailty, and metabolic disorders. For decades, research has shown that caloric restriction (CR) and exercise can postpone detrimental aspects of aging. These two interventions invoke a similar physiological signature involving pathways associated with stress responses and mitochondrial homeostasis. Nonetheless, CR is able to delay aging processes that result in an increase of both mean and maximum lifespan, whereas exercise primarily increases healthspan. Due to the strict dietary regime necessary to achieve the beneficial effects of CR, most studies to date have focused on rodents and non-human primates. As a consequence, there is vast interest in the development of compounds such as resveratrol, metformin and rapamycin that would activate the same metabolic- and stress-response pathways induced by these interventions without actually restricting caloric intake. Therefore the scope of this review is to (i) describe the benefits of CR and exercise in healthy individuals, (ii) discuss the role of these interventions in the diseased state, and (iii) examine some of the promising pharmacological alternatives such as CR- and exercise-mimetics. Published by Elsevier B.V.

  10. Caloric Restriction Mimetics Slow Aging of Neuromuscular Synapses and Muscle Fibers.

    PubMed

    Stockinger, Jessica; Maxwell, Nicholas; Shapiro, Dillon; deCabo, Rafael; Valdez, Gregorio

    2017-03-07

    Resveratrol and metformin have been shown to mimic some aspects of caloric restriction and exercise. However, it remains unknown if these molecules also slow age-related synaptic degeneration, as previously shown for caloric restriction and exercise. In this study, we examined the structural integrity of neuromuscular junctions (NMJs) in 2-year-old mice treated with resveratrol and metformin starting at 1 year of age. We found that resveratrol significantly slows aging of NMJs in the extensor digitorum longus muscle of 2-year-old mice. Resveratrol also preserved the morphology of muscle fibers in old mice. Although metformin slowed the rate of muscle fiber aging, it did not significantly affect aging of NMJs. Based on these findings, we sought to determine if resveratrol directly affects NMJs. For this, we examined postsynaptic sites, the NMJ region located on the muscle peripheral membrane, on cultured myotubes derived from C2C12 cells. We discovered that resveratrol increases the number of postsynaptic sites on myotubes exhibiting a youthful architecture, suggesting that resveratrol directly affects the NMJ. Altogether, we provide compelling evidence indicating that resveratrol slows aging of NMJs and muscle fibers. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Caloric restriction promotes cell survival in a mouse model of normal tension glaucoma

    PubMed Central

    Guo, Xiaoli; Kimura, Atsuko; Azuchi, Yuriko; Akiyama, Goichi; Noro, Takahiko; Harada, Chikako; Namekata, Kazuhiko; Harada, Takayuki

    2016-01-01

    Glaucoma is characterized by progressive degeneration of retinal ganglion cells (RGCs) and their axons. We previously reported that loss of glutamate transporters (EAAC1 or GLAST) in mice leads to RGC degeneration that is similar to normal tension glaucoma and these animal models are useful in examining potential therapeutic strategies. Caloric restriction has been reported to increase longevity and has potential benefits in injury and disease. Here we investigated the effects of every-other-day fasting (EODF), a form of caloric restriction, on glaucomatous pathology in EAAC1−/− mice. EODF suppressed RGC death and retinal degeneration without altering intraocular pressure. Moreover, visual impairment was ameliorated with EODF, indicating the functional significance of the neuroprotective effect of EODF. Several mechanisms associated with this neuroprotection were explored. We found that EODF upregulated blood β-hydroxybutyrate levels and increased histone acetylation in the retina. Furthermore, it elevated retinal mRNA expression levels of neurotrophic factors and catalase, whereas it decreased oxidative stress levels in the retina. Our findings suggest that EODF, a safe, non-invasive, and low-cost treatment, may be available for glaucoma therapy. PMID:27669894

  12. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice.

    PubMed

    Stranahan, Alexis M; Lee, Kim; Martin, Bronwen; Maudsley, Stuart; Golden, Erin; Cutler, Roy G; Mattson, Mark P

    2009-10-01

    Diabetes may adversely affect cognitive function, but the underlying mechanisms are unknown. To investigate whether manipulations that enhance neurotrophin levels will also restore neuronal structure and function in diabetes, we examined the effects of wheel running and dietary energy restriction on hippocampal neuron morphology and brain-derived neurotrophic factor (BDNF) levels in db/db mice, a model of insulin resistant diabetes. Running wheel activity, caloric restriction, or the combination of the two treatments increased levels of BDNF in the hippocampus of db/db mice. Enhancement of hippocampal BDNF was accompanied by increases in dendritic spine density on the secondary and tertiary dendrites of dentate granule neurons. These studies suggest that diabetes exerts detrimental effects on hippocampal structure, and that this state can be attenuated by increasing energy expenditure and decreasing energy intake.

  13. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice.

    PubMed

    Weindruch, R; Kayo, T; Lee, C K; Prolla, T A

    2001-03-01

    An active research area in biological gerontology concerns the mechanisms by which caloric restriction (CR) retards the aging process in laboratory rodents. We used high density oligonucleotide arrays representing 6347 genes to determine the gene expression profile of the aging process in gastrocnemius muscle of male C57BL/6 mice. Aging resulted in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes. Most alterations were completely or partially prevented by CR. Transcriptional patterns of muscle from calorie-restricted animals suggest that CR retards the aging process by causing a metabolic shift toward increased protein turnover and decreased macromolecular damage. The use of high density oligonucleotide microarrays provides a new tool to measure biological age on a tissue-specific basis and to evaluate at the molecular level the efficacy of nutritional interventions designed to retard the aging process.

  14. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys

    PubMed Central

    Colman, Ricki J.; Beasley, T. Mark; Kemnitz, Joseph W.; Johnson, Sterling C.; Weindruch, Richard; Anderson, Rozalyn M.

    2014-01-01

    Caloric restriction (CR) without malnutrition increases longevity and delays the onset of age-associated disorders in short-lived species, from unicellular organisms to laboratory mice and rats. The value of CR as a tool to understand human ageing relies on translatability of CR’s effects in primates. Here we show that CR significantly improves age-related and all-cause survival in monkeys on a long-term ~30% restricted diet since young adulthood. These data contrast with observations in the 2012 NIA intramural study report, where a difference in survival was not detected between control-fed and CR monkeys. A comparison of body weight of control animals from both studies with each other, and against data collected in a multi-centred relational database of primate ageing, suggests that the NIA control monkeys were effectively undergoing CR. Our data indicate that the benefits of CR on ageing are conserved in primates. PMID:24691430

  15. Sex-Dependent Cognitive Performance in Baboon Offspring Following Maternal Caloric Restriction in Pregnancy and Lactation

    PubMed Central

    Rodriguez, Jesse S.; Bartlett, Thad Q.; Keenan, Kathryn E.; Nathanielsz, Peter W.; Nijland, Mark J.

    2012-01-01

    In humans a suboptimal diet during development has negative outcomes in offspring. We investigated the behavioral outcomes in baboons born to mothers undergoing moderate maternal nutrient restriction (MNR). Maternal nutrient restriction mothers (n = 7) were fed 70% of food eaten by controls (CTR, n = 12) fed ad libitum throughout gestation and lactation. At 3.3 ± 0.2 (mean ± standard error of the mean [SEM]) years of age offspring (controls: female [FC, n = 8], male [MC, n = 4]; nutrient restricted: female [FR, n = 3] and male [MR, n = 4]) were administered progressive ratio, simple discrimination, intra-/extra-dimension set shift and delayed matching to sample tasks to assess motivation, learning, attention, and working memory, respectively. A treatment effect was observed in MNR offspring who demonstrated less motivation and impaired working memory. Nutrient-restricted female offspring showed improved learning, while MR offspring showed impaired learning and attentional set shifting and increased impulsivity. In summary, 30% restriction in maternal caloric intake has long lasting neurobehavioral outcomes in adolescent male baboon offspring. PMID:22344725

  16. Sex-dependent cognitive performance in baboon offspring following maternal caloric restriction in pregnancy and lactation.

    PubMed

    Rodriguez, Jesse S; Bartlett, Thad Q; Keenan, Kathryn E; Nathanielsz, Peter W; Nijland, Mark J

    2012-05-01

    In humans a suboptimal diet during development has negative outcomes in offspring. We investigated the behavioral outcomes in baboons born to mothers undergoing moderate maternal nutrient restriction (MNR). Maternal nutrient restriction mothers (n = 7) were fed 70% of food eaten by controls (CTR, n = 12) fed ad libitum throughout gestation and lactation. At 3.3 ± 0.2 (mean ± standard error of the mean [SEM]) years of age offspring (controls: female [FC, n = 8], male [MC, n = 4]; nutrient restricted: female [FR, n = 3] and male [MR, n = 4]) were administered progressive ratio, simple discrimination, intra-/extra-dimension set shift and delayed matching to sample tasks to assess motivation, learning, attention, and working memory, respectively. A treatment effect was observed in MNR offspring who demonstrated less motivation and impaired working memory. Nutrient-restricted female offspring showed improved learning, while MR offspring showed impaired learning and attentional set shifting and increased impulsivity. In summary, 30% restriction in maternal caloric intake has long lasting neurobehavioral outcomes in adolescent male baboon offspring.

  17. Effects of caloric restriction and overnight fasting on cycling endurance performance.

    PubMed

    Ferguson, Lisa M; Rossi, Kelly A; Ward, Emily; Jadwin, Emily; Miller, Todd A; Miller, Wayne C

    2009-03-01

    In addition to aerobic endurance and anaerobic capacity, high power-to-weight ratio (PWR) is important for cycling performance. Cyclists often try to lose weight before race season to improve body composition and optimize PWR. Research has demonstrated body fat-reducing benefits of exercise after fasting overnight. We hypothesized that fasted-state exercise in calorie-restricted trained cyclists would not result in performance decrements and that their PWR would improve significantly. We also hypothesized that substrate use during fasted-state submaximal endurance cycling would shift to greater reliance on fat. Ten trained, competitive cyclists completed a protocol consisting of baseline testing, 3 weeks of caloric restriction (CR), and post-CR testing. The testing sessions measured pre- and post-CR values for resting metabolic rate (RMR), body composition, VO2, PWR and power-to-lean weight ratio (PLWR), and power output, as well as 2-hour submaximal cycling performance, rating of perceived exertion (RPE), and respiratory exchange ratio (RER). There were no significant differences between baseline and post-CR for submaximal trial RER, power output, VO2, RMR, VO2max, or workload at VO2max. However, RPE was significantly lower, and PWR was significantly higher post-CR, whereas RER did not change. The cyclists' PWR and body composition improved significantly, and their overall weight, fat weight, and body fat percentage decreased. Lean mass was maintained. The cyclists' RPE decreased significantly during 2 hours of submaximal cycling post-CR, and there was no decrement in submaximal or maximal cycling performance after 3 weeks of CR combined with overnight fasting. Caloric restriction (up to 40% for 3 weeks) and exercising after fasting overnight can improve a cyclist's PWR without compromising endurance cycling performance.

  18. Effects of age and caloric restriction on the cardiac and coronary response to endothelin-1 in rats.

    PubMed

    Granado, Miriam; Rubio, Carmen; Amor, Sara; Monge, Luis; Fernández, Nuria; Carreño-Tarragona, Gonzalo; Carrascosa, José M; García-Villalón, Ángel Luis

    2014-12-01

    Aging is associated with alterations in the cardiovascular system such as increased vasoconstriction and decreased vasodilatation. Some of these changes are partially reversed by caloric restriction. Endothelin-1 is a potent vasoconstrictor which levels increased with age. The aim of this study is to analyze the role of endothelin-1 in the cardiac and coronary changes induced by age and whether these changes may be attenuated by a three-month caloric restriction. Hearts from young (3 months old), aged (24 months old) and aged rats after 3 months of caloric restriction were perfused according to the Langendorff technique. Coronary vasoconstriction to endothelin-1 was reduced in old rats, and endothelin-1 increased myocardial contractility (dP/dt) and heart rate in old but not in young rats. These changes observed in old rats were partly reversed by caloric restriction. Also, in the myocardial tissue of old rats the gene expression of endothelin-1, inducible nitric oxide synthase (iNOS) and tumor necrosis factor alpha (TNF-a) was increased, and the gene expression of endothelin ETB receptors and endothelial nitric oxide syntase (eNOS) was reduced, compared with young rats. Aging induced changes in the expression of ETB receptors and eNOS were reversed by caloric restriction. These results suggest that aging produces alterations in myocardial and coronary responses to endothelin-1, that may be related to changes in expression of nitric oxide synthases and/or endothelin receptor subtypes, with some of these changes being prevented by caloric restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery.

    PubMed

    Isbell, James M; Tamboli, Robyn A; Hansen, Erik N; Saliba, Jabbar; Dunn, Julia P; Phillips, Sharon E; Marks-Shulman, Pamela A; Abumrad, Naji N

    2010-07-01

    Many of the metabolic benefits of Roux-en-Y gastric bypass (RYGB) occur before weight loss. In this study we investigated the influence of caloric restriction on the improvements in the metabolic responses that occur within the 1st week after RYGB. RESEARCH METHODS AND DESIGN: A mixed meal was administered to nine subjects before and after RYGB (average 4 +/- 0.5 days) and to nine matched, obese subjects before and after 4 days of the post-RYGB diet. Weight loss in both groups was minimal; the RYGB subjects lost 1.4 +/- 5.3 kg (P = 0.46) vs. 2.2 +/- 1.0 kg (P = 0.004) in the calorically restricted group. Insulin resistance (homeostasis model assessment of insulin resistance) improved with both RYGB (5.0 +/- 3.1 to 3.3 +/- 2.1; P = 0.03) and caloric restriction (4.8 +/- 4.1 to 3.6 +/- 4.1; P = 0.004). The insulin response to a mixed meal was blunted in both the RYGB and caloric restriction groups (113 +/- 67 to 65 +/- 33 and 85 +/- 59 to 65 +/- 56 nmol x l(-1) x min(-1), respectively; P < 0.05) without a change in the glucose response. Glucagon-like peptide 1 levels increased (9.2 +/- 8.6 to 12.2 +/- 5.5 pg x l(-1) x min(-1); P = 0.04) and peaked higher (45.2 +/- 37.3 to 84.8 +/- 33.0 pg/ml; P = 0.01) in response to a mixed meal after RYGB, but incretin responses were not altered after caloric restriction. These data suggest that an improvement in insulin resistance in the 1st week after RYGB is primarily due to caloric restriction, and the enhanced incretin response after RYGB does not improve postprandial glucose homeostasis during this time.

  20. Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening in mice.

    PubMed

    Wang, Da-Ting; He, Jiang; Wu, Ming; Li, Si-Ming; Gao, Qian; Zeng, Qing-Ping

    2015-01-01

    Calorie restriction is known to extend lifespan among organisms by a debating mechanism underlying nitric oxide-driven mitochondrial biogenesis. We report here that nitric oxide generators including artemisinin, sodium nitroprusside, and L-arginine mimics calorie restriction and resembles hydrogen peroxide to initiate the nitric oxide signaling cascades and elicit the global antioxidative responses in mice. The large quantities of antioxidant enzymes are correlated with the low levels of reactive oxygen species, which allow the down-regulation of tumor suppressors and accessory DNA repair partners, eventually leading to the compromise of telomere shortening. Accompanying with the up-regulation of signal transducers and respiratory chain signatures, mitochondrial biogenesis occurs with the elevation of adenosine triphosphate levels upon exposure of mouse skeletal muscles to the mimetics of calorie restriction. In conclusion, calorie restriction-triggered nitric oxide provides antioxidative protection and alleviates telomere attrition via mitochondrial biogenesis, thereby maintaining chromosomal stability and integrity, which are the hallmarks of longevity.

  1. Caloric restriction reduces the systemic progression of mouse AApoAII amyloidosis

    PubMed Central

    Ding, Xin; Yang, Mu; Xu, Zhe; Miyahara, Hiroki; Mori, Masayuki; Higuchi, Keiichi

    2017-01-01

    In mouse senile amyloidosis, apolipoprotein (Apo) A-II is deposited extracellularly in many organs in the form of amyloid fibrils (AApoAII). Reduction of caloric intake, known as caloric restriction (CR), slows the progress of senescence and age-related disorders in mice. In this study, we intravenously injected 1 μg of isolated AApoAII fibrils into R1.P1-Apoa2c mice to induce experimental amyloidosis and investigated the effects of CR for the next 16 weeks. In the CR group, AApoAII amyloid deposits in the liver, tongue, small intestine and skin were significantly reduced compared to those of the ad libitum feeding group. CR treatment led to obvious reduction in body weight, improvement in glucose metabolism and reduction in the plasma concentration of ApoA-II. Our molecular biological analyses of the liver suggested that CR treatment might improve the symptoms of inflammation, the unfolded protein response induced by amyloid deposits and oxidative stress. Furthermore, we suggest that CR treatment might improve mitochondrial functions via the sirtuin 1-peroxisome proliferator-activated receptor γ coactivator 1α (SIRT1-PGC-1α) pathway. We suggest that CR is a promising approach for treating the onset and/or progression of amyloidosis, especially for systemic amyloidosis such as senile AApoAII amyloidosis. Our analysis of CR treatment for amyloidosis should provide useful information for determining the cause of amyloidosis and developing effective preventive treatments. PMID:28225824

  2. Effects of chronic caloric restriction on mitochondrial respiration in the ischemic reperfused rat heart.

    PubMed

    Broderick, Tom L; Belke, Terry; Driedzic, William R

    2002-04-01

    Dietary restriction increases life span and delays the development of age-related diseases in rodents. We have recently demonstrated that chronic dietary restriction is beneficial on recovery of heart function following ischemia. We studied whether the metabolic basis of this benefit is associated with alterations in mitochondrial respiration. Male Wistar rats were assigned to an ad libitum-fed (AL) group and a food restricted (FR) group, in which food intake was reduced to 55% of the amount consumed by the AL group. Following an 8-month period of restricted caloric intake, isolated working hearts perfused with glucose and high levels of fatty acids were subjected to global ischemia followed by reperfusion. At the end of reperfusion, total heart mitochondria respiration was assessed in the presence of pyruvate, tricarboxylic acid intermediates, and palmitoylcarnitine. Recovery of heart function following ischemia was greater in FR hearts compared to AL hearts. Paralleling these changes in heart function was an increase in state 3 respiration with pyruvate. The respiratory control ratios in the presence of pyruvate and tricarboxylic acid intermediates were higher in FR hearts compared to AL hearts, indicating well-coupled mitochondria. Overall energy production, expressed as the ADP:O ratio and the oxidative phosphorylation rate, was also improved in FR hearts. Our results indicate that the beneficial effect of FR on recovery of heart function following ischemia is associated with changes in mitochondrial respiration.

  3. Effects of Caloric Restriction on Cardiovascular Aging in Non-human Primates and Humans

    PubMed Central

    Cruzen, Christina; Colman, Ricki J.

    2009-01-01

    Synopsis Approximately one in three Americans has some form of cardiovascular disease (CVD), accounting for one of every 2.8 deaths in the United States in 2004. Two of the major risk factors for CVD are advancing age and obesity. An intervention able to positively impact both aging and obesity, such as caloric restriction (CR), may prove extremely useful in the fight against CVD. CR is the only environmental or lifestyle intervention that has repeatedly been shown to increase maximum life span and to retard aging in laboratory rodents. In this article, we review evidence that CR in nonhuman primates and humans has a positive effect on risk factors for CVD. PMID:19944270

  4. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults

    PubMed Central

    Johnson, Matthew L.; Distelmaier, Klaus; Lanza, Ian R.; Irving, Brian A.; Robinson, Matthew M.; Konopka, Adam R.; Shulman, Gerald I.

    2016-01-01

    Caloric restriction (CR) improves insulin sensitivity and reduces the incidence of diabetes in obese individuals. The underlying mechanisms whereby CR improves insulin sensitivity are not clear. We evaluated the effect of 16 weeks of CR on whole-body insulin sensitivity by pancreatic clamp before and after CR in 11 obese participants (BMI = 35 kg/m2) compared with 9 matched control subjects (BMI = 34 kg/m2). Compared with the control subjects, CR increased the glucose infusion rate needed to maintain euglycemia during hyperinsulinemia, indicating enhancement of peripheral insulin sensitivity. This improvement in insulin sensitivity was not accompanied by changes in skeletal muscle mitochondrial oxidative capacity or oxidant emissions, nor were there changes in skeletal muscle ceramide, diacylglycerol, or amino acid metabolite levels. However, CR lowered insulin-stimulated thioredoxin-interacting protein (TXNIP) levels and enhanced nonoxidative glucose disposal. These results support a role for TXNIP in mediating the improvement in peripheral insulin sensitivity after CR. PMID:26324180

  5. Facts and controversies in our understanding of how caloric restriction impacts the mitochondrion.

    PubMed

    Gouspillou, Gilles; Hepple, Russell T

    2013-10-01

    Caloric restriction (CR) has pronounced benefits in promoting healthy aging. Amongst the most frequently implicated physiological mechanisms implicated in this benefit is altered mitochondrial function. Whereas a reduction in mitochondrial reactive oxygen species (ROS) production is a widely consistent effect of CR, an increase in mitochondrial biogenesis, which is accepted by many as fact, is contradicted on several levels, most critically by a lack of increase in mitochondrial protein synthesis rate in vivo. Furthermore, an increase in PGC-1α protein and markers of mitochondrial content with CR is a highly variable observation between studies. On the other hand, deacetylation of several mitochondrial proteins by the sirtuin, Sirt3, is an increasingly reported observation and at least so far, this observation is consistent between studies. Notwithstanding this point, the controversies evident in the published literature underscore the significant questions that remain in our understanding of how CR impacts the mitochondrion and suggest we have yet to fully understand the complexities herein.

  6. Caloric Restriction as a Strategy to Improve Vascular Dysfunction in Metabolic Disorders

    PubMed Central

    García-Prieto, Concha F.; Fernández-Alfonso, María S.

    2016-01-01

    Caloric restriction (CR) has proved to be the most effective and reproducible dietary intervention to increase healthy lifespan and aging. A reduction in cardiovascular disease (CVD) risk in obese subjects can be already achieved by a moderate and sustainable weight loss. Since pharmacological approaches for body weight reduction have, at present, a poor long-term efficacy, CR is of great interest in the prevention and/or reduction of CVD associated with obesity. Other dietary strategies changing specific macronutrients, such as altering carbohydrates, protein content or diet glycemic index have been also shown to decrease the progression of CVD in obese patients. In this review, we will focus on the positive effects and possible mechanisms of action of these strategies on vascular dysfunction. PMID:27314388

  7. Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast.

    PubMed

    Choi, Kyung-Mi; Kwon, Young-Yon; Lee, Cheol-Koo

    2013-12-01

    Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling. © 2013.

  8. Caloric Restriction Study Design Limitations in Rodent and Nonhuman Primate Studies.

    PubMed

    Vaughan, Kelli L; Kaiser, Tamzin; Peaden, Robert; Anson, R Michael; de Cabo, Rafael; Mattison, Julie A

    2017-06-13

    For a century, we have known that caloric restriction influences aging in many species. However, only recently it was firmly established that the effect is not entirely dependent on the calories provided. Instead, rodent and nonhuman primate models have shown that the rate of aging depends on other variables, including the macronutrient composition of the diet, the amount of time spent in the restricted state, age of onset, the gender and genetic background, and the particular feeding protocol for the control group. The field is further complicated when attempts are made to compare studies across different laboratories, which seemingly contradict each other. Here, we argue that some of the contradictory findings are most likely due to methodological differences. This review focuses on the four methodological differences identified in a recent comparative report from the National Institute on Aging and University of Wisconsin nonhuman primate studies, namely feeding regimen, diet composition, age of onset, and genetics. These factors, that may be influencing the effects of a calorie restriction intervention, are highlighted in the rodent model to draw parallels and elucidate findings reported in a higher species, nonhuman primates. Published by Oxford University Press on behalf of The Gerontological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae

    SciTech Connect

    Choi, Joon-Seok; Choi, Kyung-Mi; Lee, Cheol-Koo

    2011-06-03

    Highlights: {yields} Calorie restriction (CR) increases electron transport chain (ETC) at both RNA and protein level. {yields} CR enhances mitochondrial membrane potential, and, regardless of ages, reduces reactive oxygen species. {yields} CR increases both efficiency and capacity of the ETC. {yields} CR induces intensive modulation at mitochondrial ETC where might be a major site leading to extension of lifespan. -- Abstract: Caloric restriction (CR) is known to extend lifespan in a variety of species; however, the mechanism remains unclear. In this study, we found that CR potentiated the mitochondrial electron transport chain (ETC) at both the transcriptional and translational levels. Indeed, mitochondrial membrane potential (MMP) was increased by CR, and, regardless of ages, overall reactive oxygen species (ROS) generation was decreased by CR. With these changes, overall growth rate of cells was maintained under various CR conditions, just like cells under a non-restricted condition. All of these data support increased efficiency and capacity of the ETC by CR, and this change might lead to extension of lifespan.

  10. Caloric Restriction in Humans: Impact on Physiological, Psychological, and Behavioral Outcomes

    PubMed Central

    Ravussin, Eric

    2011-01-01

    Abstract The current societal environment is marked by overabundant accessibility of food coupled with a strong trend of reduced physical activity, both leading to the development of a constellation of disorders, including central obesity, insulin resistance, dyslipidemia, and hypertension (metabolic syndrome). Prolonged calorie restriction (CR) has been shown to extend both the median and maximal lifespan in a variety of lower species such as yeast, worms, fish, rats, and mice. Mechanisms of this CR-mediated lifespan extension are not fully elucidated, but possibly involve significant alterations in energy metabolism, oxidative damage, insulin sensitivity, inflammation, and functional changes in both the neuroendocrine and sympathetic nervous systems. Here we review some of the major physiological, psychological, and behavioral changes after 6 months of CR in overweight otherwise healthy volunteers. Special emphasis is given to the first completed clinical studies that have investigated the effects of controlled, high-quality energy-restricted diets on both biomarkers of longevity and on the development of chronic diseases related to age in humans. With the incremental expansion of research endeavors in the area of energy or caloric restriction, data on the effects of CR in animal models and human subjects are becoming more accessible. Antioxid. Redox Signal. 14, 275–287. PMID:20518700

  11. Synergistic interaction between caloric restriction and amphetamine in food-unrelated approach behavior of rats

    PubMed Central

    Keller, Kristine L.; Vollrath-Smith, Fiori R.; Jafari, Mehrnoosh; Ikemoto, Satoshi

    2013-01-01

    Rationale Approach behavior is regulated by the brain integrating information about environment and body state. Psychoactive drugs interact with this process. Objectives We examined the extent to which caloric (i.e., food) restriction, amphetamine and lithium interact in potentiating locomotor activity and responding reinforced by visual stimulus (VS), a reward unrelated to energy homeostasis. Methods Rats either had ad-libitum access to food or received daily rations that maintained 85-90% of their original body weights. Leverpressing turned on a cue light for 1 sec and turned off house light for 5 sec. Amphetamine and lithium were administered through intraperitoneal injections and diet, respectively. Results Food-restriction or amphetamine (1 mg/kg) alone had little effect on VS-reinforced responding; however, the combination of the two conditions markedly potentiated VS-reinforced responding (4-fold). Food restriction lasting 7 days or longer was needed to augment amphetamine’s effect on VS-reinforced responding. Amphetamine (0.3 – 3 mg/kg) potentiated locomotor activity similarly between food-restricted and ad-libitum groups. Repeated injections of amphetamine sensitized locomotor activity, but not VS-reinforced responding. In addition, while chronic lithium treatments (0.2% lithium carbonate chow) reduced VS-reinforced responding, chronic lithium further augmented amphetamine-potentiated VS-reinforced responding. Conclusions Food-restriction interacts with psychoactive drugs to potentiate goal-directed responding unrelated to food-seeking in a much more powerful manner than previously thought. The novel finding that lithium can augment a psychostimulant effect of amphetamine suggests caution when combining lithium and psychostimulant drugs in clinical settings. PMID:24101157

  12. Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model.

    PubMed

    Rector, R Scott; Uptergrove, Grace M; Morris, E Matthew; Borengasser, Sarah J; Laughlin, M Harold; Booth, Frank W; Thyfault, John P; Ibdah, Jamal A

    2011-05-01

    The maintenance of normal body weight either through dietary modification or being habitually more physically active is associated with reduced incidence of nonalcoholic fatty liver disease (NAFLD). However, the means by which weight gain is prevented and potential mechanisms activated remain largely unstudied. Here, we sought to determine the effects of obesity prevention by daily exercise vs. caloric restriction on NAFLD in the hyperphagic, Otsuka Long-Evans Tokushima Fatty (OLETF) rat. At 4 wk of age, male OLETF rats (n = 7-8/group) were randomized to groups of ad libitum fed, sedentary (OLETF-SED), voluntary wheel running exercise (OLETF-EX), or caloric restriction (OLETF-CR; 70% of SED) until 40 wk of age. Nonhyperphagic, control strain Long-Evans Tokushima Otsuka (LETO) rats were kept in sedentary cage conditions for the duration of the study (LETO-SED). Both daily exercise and caloric restriction prevented obesity and the development of type 2 diabetes observed in the OLETF-SED rats, with glucose tolerance during a glucose tolerance test improved to a greater extent in the OLETF-EX animals (30-50% lower glucose and insulin areas under the curve, P < 0.05). Both daily exercise and caloric restriction also prevented excess hepatic triglyceride and diacylglycerol accumulation (P < 0.001), hepatocyte ballooning and nuclear displacement, and the increased perivenular fibrosis and collagen deposition that occurred in the obese OLETF-SED animals. However, despite similar hepatic phenotypes, OLETF-EX rats also exhibited increased hepatic mitochondrial fatty acid oxidation, enhanced oxidative enzyme function and protein content, and further suppression of hepatic de novo lipogenesis proteins compared with OLETF-CR. Prevention of obesity by either daily exercise or caloric restriction attenuates NAFLD development in OLETF rats. However, daily exercise may offer additional health benefits on glucose homeostasis and hepatic mitochondrial function compared with

  13. Caloric Restriction in Lean and Obese Strains of Laboratory Rat: Effects on Body Composition, Metabolism, Growth, and Overall Health

    EPA Science Inventory

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improv...

  14. A two year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity

    USDA-ARS?s Scientific Manuscript database

    Background: Caloric restriction (CR), energy intake reduced below ad libitum (AL) intake, increases life span in many species. The implications for humans can be clarified by randomized controlled trials of CR. Methods: To determine CRs feasibility, safety, and effects on predictors of longevity, di...

  15. Caloric Restriction in Lean and Obese Strains of Laboratory Rat: Effects on Body Composition, Metabolism, Growth, and Overall Health

    EPA Science Inventory

    NEW FINDINGS: What is the central question of this study? How do lean and obese rats respond physiologically to caloric restriction? What is the main finding and its importance? Obese rats show marked benefits compared with lean animals. Reduced body fat is associated with improv...

  16. Cognitive Performances Are Selectively Enhanced during Chronic Caloric Restriction or Resveratrol Supplementation in a Primate

    PubMed Central

    Marchal, Julia; Picq, Jean-Luc; Aujard, Fabienne

    2011-01-01

    Effects of an 18-month treatment with a moderate, chronic caloric restriction (CR) or an oral supplementation with resveratrol (RSV), a potential CR mimetic, on cognitive and motor performances were studied in non-human primates, grey mouse lemurs (Microcebus murinus). Thirty-three adult male mouse lemurs were assigned to three different groups: a control (CTL) group fed ad libitum, a CR group fed 70% of the CTL caloric intake, and an RSV group (RSV supplementation of 200 mg.kg−1.day−1) fed ad libitum. Three different cognitive tests, two motor tests, one emotional test and an analysis of cortisol level were performed in each group. Compared to CTL animals, CR or RSV animals did not show any change in motor performances evaluated by rotarod and jump tests, but an increase in spontaneous locomotor activity was observed in both groups. Working memory was improved by both treatments in the spontaneous alternation task. Despite a trend for CR group, only RSV supplementation increased spatial memory performances in the circular platform task. Finally, none of these treatments induced additional stress to the animals as reflected by similar results in the open field test and cortisol analyses compared to CTL animals. The present data provided the earliest evidence for a beneficial effect of CR or RSV supplementation on specific cognitive functions in a primate. Taken together, these results suggest that RSV could be a good candidate to mimic long-term CR effects and support the growing evidences that nutritional interventions can have beneficial effects on brain functions even in adults. PMID:21304942

  17. Higher Caloric Refeeding Is Safe in Hospitalised Adolescent Patients with Restrictive Eating Disorders

    PubMed Central

    Parker, Elizabeth K.; Faruquie, Sahrish S.; Anderson, Gail; Gomes, Linette; Kennedy, Andrew; Wearne, Christine M.; Kohn, Michael R.; Clarke, Simon D.

    2016-01-01

    Introduction. This study examines weight gain and assesses complications associated with refeeding hospitalised adolescents with restrictive eating disorders (EDs) prescribed initial calories above current recommendations. Methods. Patients admitted to an adolescent ED structured “rapid refeeding” program for >48 hours and receiving ≥2400 kcal/day were included in a 3-year retrospective chart review. Results. The mean (SD) age of the 162 adolescents was 16.7 years (0.9), admission % median BMI was 80.1% (10.2), and discharge % median BMI was 93.1% (7.0). The mean (SD) starting caloric intake was 2611.7 kcal/day (261.5) equating to 58.4 kcal/kg (10.2). Most patients (92.6%) were treated with nasogastric tube feeding. The mean (SD) length of stay was 3.6 weeks (1.9), and average weekly weight gain was 2.1 kg (0.8). No patients developed cardiac signs of RFS or delirium; complications included 4% peripheral oedema, 1% hypophosphatemia (<0.75 mmol/L), 7% hypomagnesaemia (<0.70 mmol/L), and 2% hypokalaemia (<3.2 mmol/L). Caloric prescription on admission was associated with developing oedema (95% CI 1.001 to 1.047; p = 0.039). No statistical significance was found between electrolytes and calories provided during refeeding. Conclusion. A rapid refeeding protocol with the inclusion of phosphate supplementation can safely achieve rapid weight restoration without increased complications associated with refeeding syndrome. PMID:27293884

  18. Caloric Restriction and the Aging Process: A Critique 5/15pm/2014

    PubMed Central

    Sohal, Rajindar S.; Forster, Michael J.

    2014-01-01

    The main objective of this review is to provide an appraisal of the current status of the relationship between energy intake and the life span of animals. The concept, that a reduction in food intake, or caloric restriction (CR), retards the aging process, delays the age-associated decline in physiological fitness and extends the life span of organisms of diverse phylogenetic groups, is one of the leading paradigms in gerontology. However, emerging evidence disputes some of the primary tenets of this conception. One disparity is that the CR-related increase in longevity is not universal and may not even be shared among different strains of the same species. A further misgiving is that the control animals, fed ad-libitum (AL), become overweight, prone to early onset of diseases and death, and thus may not be the ideal control animals for studies concerned with comparisons of longevity. Re-examination of body weight and longevity data from a study involving over 60,000 mice and rats, conducted by a National Institute on Aging-sponsored project, suggests that CR-related increase in life span of specific genotypes is directly related to the gain in body weight under the AL feeding regimen. Additionally, CR in mammals and “dietary restriction” in organisms, such as Drosophila, are dissimilar phenomena, albeit they are often presented to be the very same. The latter involves a reduction in yeast rather than caloric intake, which is inconsistent with the notion of a common, conserved mechanism of CR action in different species. Although specific mechanisms by which CR affects longevity are not well understood, existing evidence supports the view that CR increases the life span of those particular genotypes that develop energy imbalance due to AL feeding. In such groups, CR lowers body temperature, rate of metabolism and oxidant production, and retards the age-related pro-oxidizing shift in the redox state. PMID:24941891

  19. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    SciTech Connect

    Choi, Joon-Seok; Lee, Cheol-Koo

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  20. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise.

    PubMed

    Valdez, Gregorio; Tapia, Juan C; Kang, Hyuno; Clemenson, Gregory D; Gage, F H; Lichtman, Jeff W; Sanes, Joshua R

    2010-08-17

    The cellular basis of age-related behavioral decline remains obscure but alterations in synapses are likely candidates. Accordingly, the beneficial effects on neural function of caloric restriction and exercise, which are among the most effective anti-aging treatments known, might also be mediated by synapses. As a starting point in testing these ideas, we studied the skeletal neuromuscular junction (NMJ), a large, accessible peripheral synapse. Comparison of NMJs in young adult and aged mice revealed a variety of age-related structural alterations, including axonal swellings, sprouting, synaptic detachment, partial or complete withdrawal of axons from some postsynaptic sites, and fragmentation of the postsynaptic specialization. Alterations were significant by 18 mo of age and severe by 24 mo. A life-long calorie-restricted diet significantly decreased the incidence of pre- and postsynaptic abnormalities in 24-mo-old mice and attenuated age-related loss of motor neurons and turnover of muscle fibers. One month of exercise (wheel running) in 22-mo-old mice also reduced age-related synaptic changes but had no effect on motor neuron number or muscle fiber turnover. Time-lapse imaging in vivo revealed that exercise partially reversed synaptic alterations that had already occurred. These results demonstrate a critical effect of aging on synaptic structure and provide evidence that interventions capable of extending health span and lifespan can partially reverse these age-related synaptic changes.

  1. Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals.

    PubMed

    Lefevre, Michael; Redman, Leanne M; Heilbronn, Leonie K; Smith, Julie V; Martin, Corby K; Rood, Jennifer C; Greenway, Frank L; Williamson, Donald A; Smith, Steven R; Ravussin, Eric

    2009-03-01

    Calorie restriction (CR) delays the development of age-associated disease and increases lifespan in rodents, but the effects in humans remain uncertain. Determine the effect of 6 months of CR with or without exercise on cardiovascular disease (CVD) risk factors and estimated 10-year CVD risk in healthy non-obese men and women. Thirty-six individuals were randomized to one of three groups for 6 months: Control, 100% of energy requirements; CR, 25% calorie restriction; CR+EX, 12.5% CR+12.5% increase in energy expenditure via aerobic exercise. CVD risk factors were assessed at baseline, 3 and 6 months. After 6 months, CR and CR+EX lost approximately 10% of body weight. CR significantly reduced triacylglycerol (-31+/-15mg/dL) and factor VIIc (-10.7+/-2.3%). Similarly CR+EX reduced triacylglycerol (-22+/-8mg/dL) and additionally reduced LDL-C (-16.0+/-5.1mg/dL) and DBP (-4.0+/-2.1mmHg). In contrast, both triacylglycerol (24+/-14mg/dL) and factor VIIc (7.9+/-2.3%) were increased in the Control group. HDL-cholesterol was increased in all groups while hsCRP was lower in the Controls versus CR+EX. Estimated 10-year CVD risk significantly declined from baseline by 29% in CR (P<0.001) and 38% in the CR+EX (P<0.001) while remaining unchanged in the Control group. Based on combined favorable changes in lipid and blood pressure, caloric restriction with or without exercise that induces weight loss favorably reduces risk for CVD even in already healthy non-obese individuals.

  2. Effect of caloric restriction on myenteric neuroplasticity in the rat duodenum during aging.

    PubMed

    da Silva Porto, Gisele; Bertaglia Pereira, Joice Naiara; Tibúrcio, Vanessa Graciele; Stabille, Sandra Regina; Garcia de Faria, Haroldo; de Melo Germano, Ricardo; de Britto Mari, Renata

    2012-05-21

    The objective of this study was to evaluate the effects of caloric restriction (CR) on myenteric neurons in the duodenum of Wistar rats during aging. Thirty rats were divided into three groups: the C group (six-month-old animals that were fed a normal diet from weaning until six months of age), the SR group (18-month-old animals that were fed a normal diet from weaning until 18 months of age) and the CR group (18-month-old animals that were fed a 30% CR diet after six months of age). After 12 months, the animals were euthanized. Whole-mount preparations of the duodenums were either stained with Giemsa or underwent NADPH-diaphorase histochemistry to determine the general myenteric neuron population and the nitrergic neuron subpopulation (NADPH-d+), respectively. The NADPH-d-negative (NADPH-d-) neuron population was estimated based on the difference between the Giemsa-stained and NADPH-d+ neurons. The neurons were counted, and the cell body areas were measured. Aging was associated with neuronal loss in the SR group, which was minimized by caloric restriction in the CR group. The density (mm(2)) of the Giemsa-stained neurons was higher in the SR group (79.09 ± 6.25) than in the CR (92.37 ± 11.6) and C (111.68 ± 15.26) groups. The density of the NADPH-d+ neurons was higher in the SR group (44.90 ± 5.88) than in the C (35.75 ± 1.6) and RC (39.14 ± 7.02) groups. The density of NADPH-d- neurons was higher in the CR (49.73 ± 12.08) and C (75.64 ± 17.05) groups than in the SR group (33.82 ± 4.5). In the C group, 32% and 68% of the Giemsa-stained myenteric neurons were NADPH-d+ or NADPH-d-, respectively. With aging (SR group), the percentage of nitrergic neurons (56.77%) increased, whereas the percentage of NADPH-d- neurons (43.22%) decreased. In the CR group, the change in the percentage of nitrergic (42.37%) and NADPH-d- (57.62%) neurons was lower. As NADPH-d- neurons will be mostly cholinergic neurons, CR appears to reduce the loss of cholinergic neurons during

  3. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity.

    PubMed

    Straniero, S; Rosqvist, F; Edholm, D; Ahlström, H; Kullberg, J; Sundbom, M; Risérus, U; Rudling, M

    2017-05-01

    Bile acid (BA) synthesis is regulated by BA signalling in the liver and by fibroblast growth factor 19 (FGF19), synthesized and released from the intestine. In morbid obesity, faecal excretion and hepatic synthesis of BAs and cholesterol are strongly induced and caloric restriction reduces their faecal excretion considerably. We hypothesized that the high intestinal food mass in morbidly obese subjects promotes faecal excretion of BAs and cholesterol, thereby creating a shortage of both BAs and cholesterol in the liver. Ten morbidly obese women (BMI 42 ± 2.6 kg m(-2) ) were monitored on days 0, 3, 7, 14 and 28 after beginning a low-calorie diet (800-1100 kcal day(-1) ). Serum was collected and liver size and fat content determined. Synthesis of BAs and cholesterol was evaluated from serum markers, and the serum levels of lipoproteins, BAs, proprotein convertase subtilisin/kexin type 9 (PCSK9), insulin, glucose and FGF19 were monitored. Fifty-four nonobese women (BMI <25 kg m(-2) ) served as controls. At baseline, synthesis of both BAs and cholesterol and serum levels of BAs and PCSK9 were elevated in the obese group compared to controls. Already after 3 days on a low-calorie diet, BA and cholesterol synthesis and serum BA and PCSK9 levels normalized, whereas LDL cholesterol increased. FGF19 and triglyceride levels were unchanged, and liver volume was reduced by 10%. The results suggest that hepatic BAs and cholesterol are deficient in morbid obesity. Caloric restriction rapidly counteracts these deficiencies, normalizing BA and cholesterol synthesis and circulating PCSK9 levels, indicating that overproduction of cholesterol in enlarged peripheral tissues cannot explain this phenotype. We propose that excessive food intake promotes faecal loss of BAs and cholesterol contributing to their hepatic deficiencies. © 2017 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of

  4. The effect of caloric restriction interventions on growth hormone secretion in nonobese men and women.

    PubMed

    Redman, Leanne M; Veldhuis, Johannes D; Rood, Jennifer; Smith, Steven R; Williamson, Donald; Ravussin, Eric

    2010-02-01

    Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age-associated decline in growth hormone (GH), insulin-like growth factor (IGF)-1 and GH secretion. To evaluate the effect of CR on GH secretory dynamics; forty-three young (36.8 +/- 1.0 years), overweight (BMI 27.8 +/- 0.7) men (n = 20) and women (n = 23) were randomized into four groups; control = 100% of energy requirements; CR = 25% caloric restriction; CR + EX = 12.5% CR + 12.5% increase in energy expenditure by structured exercise; LCD = low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after 6 months, body composition (DXA), abdominal visceral fat (CT) 11 h GH secretion (blood sampling every 10 min for 11 h; 21:00-08:00 hours) and deconvolution analysis were measured. After 6 months, weight (control: -1 +/- 1%, CR: -10 +/- 1%, CR + EX: -10 +/- 1%, LCD: -14 +/- 1%), fat mass (control: -2 +/- 3%, CR: -24 +/- 3%, CR + EX: -25 +/- 3%, LCD: -31 +/- 2%) and visceral fat (control: -2 +/- 4%, CR: -28 +/- 4%, CR + EX: -27 +/- 3%, LCD: -36 +/- 2%) were significantly (P < 0.001) reduced in the three intervention groups compared to control. Mean 11 h GH concentrations were not changed in CR or control but increased in CR + EX (P < 0.0001) and LCD (P < 0.0001) because of increased secretory burst mass (CR + EX: 34 +/- 13%, LCD: 27 +/- 22%, P < 0.05) and amplitude (CR + EX: 34 +/- 14%, LCD: 30 +/- 20%, P < 0.05) but not to changes in secretory burst frequency or GH half-life. Fasting ghrelin was significantly increased from baseline in all three intervention groups; however, total IGF-1 concentrations were increased only in CR + EX (10 +/- 7%, P < 0.05) and LCD (19 +/- 4%, P < 0.001). A 25% CR diet for 6 months does not change GH, GH secretion or IGF-1 in nonobese men and women.

  5. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling

    PubMed Central

    Koopman, Jacob J.E.; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S.; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species. PMID:26959761

  6. Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring

    PubMed Central

    Gribble, Kristin E; Jarvis, George; Bock, Martha; Mark Welch, David B

    2014-01-01

    While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non-Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL-fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL-fed female offspring but not male offspring and increasing the fecundity of AL-fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span. PMID:24661622

  7. Caloric restriction and intermittent fasting: two potential diets for successful brain aging.

    PubMed

    Martin, Bronwen; Mattson, Mark P; Maudsley, Stuart

    2006-08-01

    The vulnerability of the nervous system to advancing age is all too often manifest in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review article we describe evidence suggesting that two dietary interventions, caloric restriction (CR) and intermittent fasting (IF), can prolong the health-span of the nervous system by impinging upon fundamental metabolic and cellular signaling pathways that regulate life-span. CR and IF affect energy and oxygen radical metabolism, and cellular stress response systems, in ways that protect neurons against genetic and environmental factors to which they would otherwise succumb during aging. There are multiple interactive pathways and molecular mechanisms by which CR and IF benefit neurons including those involving insulin-like signaling, FoxO transcription factors, sirtuins and peroxisome proliferator-activated receptors. These pathways stimulate the production of protein chaperones, neurotrophic factors and antioxidant enzymes, all of which help cells cope with stress and resist disease. A better understanding of the impact of CR and IF on the aging nervous system will likely lead to novel approaches for preventing and treating neurodegenerative disorders.

  8. Krebs cycle enzymes from livers of old mice are differentially regulated by caloric restriction.

    PubMed

    Hagopian, Kevork; Ramsey, Jon J; Weindruch, Richard

    2004-08-01

    Krebs cycle enzyme activities and levels of five metabolites were determined from livers of old mice (30 months) maintained either on control or on long-term caloric restriction (CR) diets (28 months). In CR mice, the cycle was divided into two major blocks, the first containing citrate synthase, aconitase and NAD-dependent isocitrate dehydrogenase which showed decreased activities, while the second block, containing the remaining enzymes, displayed increased activity (except for fumarase, which was unchanged). CR also resulted in decreased levels of citrate, glutamate and alpha-ketoglutarate, increased levels of malate, and unchanged levels of aspartate. The alpha-ketoglutarate/glutamate and malate/alpha-ketoglutarate ratios were higher in CR, in parallel with previously reported increases with CR in pyruvate carboxylase activity and glucagon levels, respectively. The results indicate that long-term CR induces a differential regulation of Krebs cycle in old mice and this regulation may be the result of changes in gene expression levels, as well as a complex interplay between enzymes, hormones and other effectors. Truncation of Krebs cycle by CR may be an important adaptation to utilize available substrates for the gluconeogenesis necessary to sustain glycolytic tissues, such as brain.

  9. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor.

    PubMed

    Coppens, Jessica; Bentea, Eduard; Bayliss, Jacqueline A; Demuyser, Thomas; Walrave, Laura; Albertini, Giulia; Van Liefferinge, Joeri; Deneyer, Lauren; Aourz, Najat; Van Eeckhaut, Ann; Portelli, Jeanelle; Andrews, Zane B; Massie, Ann; De Bundel, Dimitri; Smolders, Ilse

    2017-03-04

    Parkinson's disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect.

  10. Pathways for ischemic cytoprotection: Role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning

    PubMed Central

    Morris, Kahlilia C; Lin, Hung Wen; Thompson, John W; Perez-Pinzon, Miguel A

    2011-01-01

    Caloric restriction (CR), resveratrol, and ischemic preconditioning (IPC) have been shown to promote protection against ischemic injury in the heart and brain, as well as in other tissues. The activity of sirtuins, which are enzymes that modulate diverse biologic processes, seems to be vital in the ability of these therapeutic modalities to prevent against cellular dysfunction and death. The protective mechanisms of the yeast Sir2 and the mammalian homolog sirtuin 1 have been extensively studied, but the involvement of other sirtuins in ischemic protection is not yet clear. We examine the roles of mammalian sirtuins in modulating protective pathways against oxidative stress, energy depletion, excitotoxicity, inflammation, DNA damage, and apoptosis. Although many of these sirtuins have not been directly implicated in ischemic protection, they may have unique roles in enhancing function and preventing against stress-mediated cellular damage and death. This review will include in-depth analyses of the roles of CR, resveratrol, and IPC in activating sirtuins and in mediating protection against ischemic damage in the heart and brain. PMID:21224864

  11. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates

    PubMed Central

    Rezzi, Serge; Martin, François-Pierre J.; Shanmuganayagam, Dhanansayan; Colman, Ricki J.; Nicholson, Jeremy K.; Weindruch, Richard

    2010-01-01

    The long-term health benefits of caloric restriction (CR) are well known but the associated molecular mechanisms are poorly understood despite increasing knowledge of transcriptional and related metabolic changes. We report new metabolic insights into long-term CR in nonhuman primates revealed by the holistic inspection of plasma 1H-NMR spectroscopic metabolic and lipoprotein profiles. The results revealed attenuation of aging-dependant alterations of lipoprotein and energy metabolism by CR, noted by relative increase in HDL and reduction in VLDL levels. Metabonomic analysis also revealed animals exhibiting distinct metabolic trajectories from aging that correlated with higher insulin sensitivity. The plasma profiles of insulin-sensitive animals were marked by higher levels of gluconate and acetate suggesting a CR-modulated increase in metabolic flux through the pentose phosphate pathway. The metabonomic findings, particularly those that parallel improved insulin sensitivity, are consistent with diminished adiposity in CR monkeys despite aging. The metabolic profile and the associated pathways are compatible with our previous findings that CR-induced gene transcriptional changes in tissue suggest the critical regulation of peroxisome proliferator-activated receptors as a key mechanism. The metabolic phenotyping provided in this study can be used to define a reference molecular profile of CR-associated health benefits and longevity in symbiotic superorganisms and man. PMID:19264119

  12. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions

    PubMed Central

    Parikh, Ishita; Guo, Janet; Chuang, Kai-Hsiang; Zhong, Yu; Rempe, Ralf G.; Hoffman, Jared D.; Armstrong, Rachel; Bauer, Björn; Hartz, Anika M.S.; Lin, Ai-Ling

    2016-01-01

    Neurovascular integrity plays an important role in protecting cognitive and mental health in aging. Lifestyle interventions that sustain neurovascular integrity may thus be critical on preserving brain functions in aging and reducing the risk for age-related neurodegenerative disorders. Here we show that caloric restriction (CR) had an early effect on neurovascular enhancements, and played a critical role in preserving vascular, cognitive and mental health in aging. In particular, we found that CR significantly enhanced cerebral blood flow (CBF) and blood-brain barrier function in young mice at 5-6 months of age. The neurovascular enhancements were associated with reduced mammalian target of rapamycin expression, elevated endothelial nitric oxide synthase signaling, and increased ketone bodies utilization. With age, CR decelerated the rate of decline in CBF. The preserved CBF in hippocampus and frontal cortex were highly correlated with preserved memory and learning, and reduced anxiety, of the aging mice treated with CR (18-20 months of age). Our results suggest that dietary intervention started in the early stage (e.g., young adults) may benefit cognitive and mental reserve in aging. Understanding nutritional effects on neurovascular functions may have profound implications in human brain aging and age-related neurodegenerative disorders. PMID:27829242

  13. Adipose-immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span

    PubMed Central

    Dixit, Vishwa Deep

    2008-01-01

    Increasing evidence suggests a tight coupling of metabolic and immune systems. This cross-talk mediated by neuroendocrine peptides as well as numerous cytokines and chemokines is believed to be responsible for integrating energy balance to immune function. These neuroendocrine-immune interactions are heightened during the state of chronic positive energy balance, as seen during obesity, and negative energy balance caused by caloric restriction (CR). Emerging evidence suggests that obesity may be associated with an immunodeficient state and chronic inflammation, which contribute to an increased risk of premature death. The direct interactions between expanded leukocyte populations within the adipose tissue during obesity and an increased number of adipocytes within an aging lymphoid microenvironment may constitute an important adaptive or pathological response as a result of change in energy balance. In stark contrast to obesity, CR causes negative energy balance and robustly prolongs a healthy lifespan in all of the species studied to date. Therefore, the endogenous neuroendocrine-metabolic sensors elevated or suppressed as a result of changes in energy balance may offer an important mechanism in understanding the antiaging and potential immune-enhancing nature of CR. Ghrelin, one such sensor of negative energy balance, is reduced during obesity and increased by CR. Ghrelin also regulates immune function by reducing proinflammatory cytokines and promotes thymopoiesis during aging and thus, may be a new CR mimetic target. The identification of immune effects and molecular pathways used by such orexigenic metabolic factors could offer potentially novel approaches to enhance immunity and increase healthy lifespan. PMID:18579754

  14. Caloric Restriction, CR Mimetics, and Healthy Aging in Okinawa: Controversies and Clinical Implications

    PubMed Central

    Willcox, Bradley J.; Willcox, Donald Craig

    2014-01-01

    Purpose of Review To examine the role of two nutritional factors implicated in the healthy aging of the Okinawans: caloric restriction (CR); and traditional foods with potential CR-mimetic properties. Recent Findings CR is a research priority for the U.S. National Institute on Aging. However, little is known regarding health effects in humans. Some CR-related outcomes, such as cause-specific mortality and lifespan, are not practical for human clinical trials. Therefore, epidemiological data on older Okinawans, who experienced a CR-like diet for close to half their lives, are of special interest. The nutritional data support mild CR (10–15%) and high consumption of foods that may mimic the biological effects of CR, including sweet potatoes, marine-based carotenoid-rich foods, and turmeric. Phenotypic evidence is consistent with CR (including short stature, low body weight, lean BMI), less age-related chronic disease (including cardiovascular diseases, cancer, and dementia) and longer lifespan (mean and maximum). Summary Both CR and traditional Okinawan functional foods with CR-mimetic properties likely had roles in the extended healthspan and lifespan of the Okinawans. More research is needed on health consequences of CR and foods with CR-mimetic properties to identify possible nutritional interventions for healthy aging. PMID:24316687

  15. Impact of 6-month caloric restriction on autonomic nervous system activity in healthy, overweight, individuals.

    PubMed

    de Jonge, Lilian; Moreira, Emilia A M; Martin, Corby K; Ravussin, Eric

    2010-02-01

    Caloric restriction (CR) increases maximum lifespan but the mechanisms are unclear. Dominance of the sympathetic nervous system (SNS) over the parasympathetic nervous system (PNS) has been shown to be a strong risk factor for cardiovascular disease. Obesity and aging are associated with increased SNS activity, and weight loss and/or exercise seem to have positive effects on this balance. We therefore evaluated the effect of different approaches of CR on autonomic function in 28 overweight individuals participating in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE) trial. Participants were randomized to either control, CR: 25% decrease in energy intake, CREX: 12.5% CR + 12.5% increase in energy expenditure, or LCD: low-calorie diet until 15% weight reduction followed by weight maintenance. Autonomic function was assessed by spectral analysis of heart-rate variability (HRV) while fasting and after a meal. Measurements were performed at baseline and 6 months. HR and SNS index decreased and PNS index increased in all intervention groups but reached significance only in CREX. HR and SNS index increased and PNS index decreased in response to the meal in all intervention groups. The results therefore suggest that weight loss improved SNS/PNS balance especially when CR is combined with exercise.

  16. Gene Expression in the Hippocampus: Regionally Specific Effects of Aging and Caloric Restriction

    PubMed Central

    Zeier, Zane; Madorsky, Irina; Xu, Ying; Ogle, William O.; Notterpek, Lucia; Foster, Thomas C.

    2010-01-01

    We measured changes in gene expression, induced by aging and caloric restriction (CR), in three hippocampal subregions. When analysis included all regions, aging was associated with expression of genes linked to mitochondrial dysfunction, inflammation, and stress responses, and in some cases, expression was reversed by CR. An age-related increase in ubiquintination was observed, including increased expression of ubiquitin conjugating enzyme genes and cytosolic ubiquitin immunoreactivity. CR decreased cytosolic ubiquitin and upregulated deubiquitinating genes. Region specific analyses indicated that CA1 was more susceptible to aging stress, exhibiting a greater number of altered genes relative to CA3 and the dentate gyrus (DG), and an enrichment of genes related to the immune response and apoptosis. CA3 and the DG were more responsive to CR, exhibiting marked changes in the total number of genes across diet conditions, reversal of age-related changes in p53 signaling, glucocorticoid receptor signaling, and enrichment of genes related to cell survival and neurotrophic signaling. Finally, CR differentially influenced genes for synaptic plasticity in CA1 and CA3. It is concluded that regional disparity in response to aging and CR relates to differences in vulnerability to stressors, the availability of neurotrophic, and cell survival mechanisms, and differences in cell function. PMID:21055414

  17. SIRT1 and Caloric Restriction: An Insight Into Possible Trade-Offs Between Robustness and Frailty

    PubMed Central

    Imai, Shin-ichiro

    2009-01-01

    Purpose of review This review aims to summarize the importance of the mammalian NAD-dependent deacetylase SIRT1 as a critical mediator that coordinates metabolic responses to caloric restriction (CR) and the recent progress in the development of SIRT1-targeted CR mimetics. It also discusses possible trade-offs between robustness and frailty in CR and the applicability of CR or SIRT1-targeted CR mimetics to humans. Recent findings Loss- and gain-of-function mouse studies have provided genetic evidence that SIRT1 is a key mediator that orchestrates the physiological response to CR. SIRT1-activating compounds function as potential CR mimetics, at least in part, through the activation of SIRT1 in vivo. Summary Increasing SIRT1 dosage/activity is effective to provide significant protection from high-fat diet-induced metabolic complications, suggesting that SIRT1 activation likely promotes robustness in the regulation of metabolism. However, CR itself and CR mimicry through systemic SIRT1 activation might also generate frailty in response to unexpected environmental stimuli, such as bacterial and viral infections. It will be of great importance to understand the principles of systemic robustness and its spatial and temporal dynamics for the regulation of aging and longevity in mammals in order to achieve an optimal balance between robustness and frailty in our complex physiological system. PMID:19474721

  18. Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring.

    PubMed

    Gribble, Kristin E; Jarvis, George; Bock, Martha; Mark Welch, David B

    2014-08-01

    While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non-Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL-fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL-fed female offspring but not male offspring and increasing the fecundity of AL-fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Caloric restriction and intermittent fasting: Two potential diets for successful brain aging

    PubMed Central

    Martin, Bronwen; Mattson, Mark P.; Maudsley, Stuart

    2008-01-01

    The vulnerability of the nervous system to advancing age is all too often manifest in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review article we describe evidence suggesting that two dietary interventions, caloric restriction (CR) and intermittent fasting (IF), can prolong the health-span of the nervous system by impinging upon fundamental metabolic and cellular signaling pathways that regulate life-span. CR and IF affect energy and oxygen radical metabolism, and cellular stress response systems, in ways that protect neurons against genetic and environmental factors to which they would otherwise succumb during aging. There are multiple interactive pathways and molecular mechanisms by which CR and IF benefit neurons including those involving insulin-like signaling, FoxO transcription factors, sirtuins and peroxisome proliferator-activated receptors. These pathways stimulate the production of protein chaperones, neurotrophic factors and antioxidant enzymes, all of which help cells cope with stress and resist disease. A better understanding of the impact of CR and IF on the aging nervous system will likely lead to novel approaches for preventing and treating neurodegenerative disorders. PMID:16899414

  20. Severe caloric restriction in young women during World War II and subsequent breast cancer risk.

    PubMed

    Vin-Raviv, N; Barchana, M; Linn, S; Keinan-Boker, L

    2012-10-01

    The objective of the study was to examine the impact of WWII-related caloric restriction (CR) on subsequent breast cancer (BC) risk based on individual exposure experiences and whether this effect was modified by age at exposure. We compared 65 breast cancer patients diagnosed between 2005-2010 to 200 controls without breast cancer who were all members of various organizations for Jewish WWII survivors in Israel. All participants were Jewish women born in Europe prior to 1945 who lived at least 6 months under Nazi rule during WWII and immigrated to Israel after the war. We estimated CR using a combined index for hunger and used logistic regression models to estimate the association between CR and BC, adjusting for potential confounders. Women who were severely exposed to hunger had an increased risk of BC (OR=5.0, 95% CI= 2.3-10.8) compared to women who were mildly exposed. The association between CR and BC risk was stronger for women who were exposed at a younger age (0-7 years) compared to the risk of BC in women exposed at ≥ 14 years (OR= 2.8, 95% CI=1.3-6.3). Severe exposure to CR is associated with a higher risk for BC decades later, and may be generalized to other cases of severe starvation during childhood that may have long-term effects on cancer in adulthood. © 2012 Blackwell Publishing Ltd.

  1. [Developing indices for caloric restriction related to World War II--a pilot study].

    PubMed

    Vin-Raviv, Neomi; Dekel, Rachel; Barchana, Micha; Linn, Shi; Keinan-Boker, Lital

    2011-04-01

    The vast numbers of studies regarding caloric restriction (CR) and breast cancer risk are based on war-related extreme situations. Studying the impact of CR in Jews during World War II (WW II) is challenging due to its variance and duration. To develop novel research tools in order to assess CR exposure in Jews that occurred more than 60 years ago during WW II. A pilot study based on Israeli women born in Europe in 1926-45, who lived there during WWII. Primary incident breast cancer patients and population-based controls were interviewed using a detailed questionnaire referring to demographic, obstetric factors and WW II experiences. Exposure to WWII-related CR was assessed by several proxy variables based on this information. The individual hunger score was higher in the exposed cases [mean score 141.06 vs. 130.07 in the controls). The same trend was observed for self perceived hunger score (mean score 2.75 in cases vs. 2.40 in controls) and hunger symptoms score (4.89 vs. 3.56, respectively). The novel research tools are appropriate for comparative assessment of CR exposure in case control studies.

  2. Caloric Restriction Extends Yeast Chronological Life Span by Optimizing the Snf1 (AMPK) Signaling Pathway.

    PubMed

    Wierman, Margaret B; Maqani, Nazif; Strickler, Erika; Li, Mingguang; Smith, Jeffrey S

    2017-07-01

    AMP-activated protein kinase (AMPK) and the homologous yeast SNF1 complex are key regulators of energy metabolism that counteract nutrient deficiency and ATP depletion by phosphorylating multiple enzymes and transcription factors that maintain energetic homeostasis. AMPK/SNF1 also promotes longevity in several model organisms, including yeast. Here we investigate the role of yeast SNF1 in mediating the extension of chronological life span (CLS) by caloric restriction (CR). We find that SNF1 activity is required throughout the transition of log phase to stationary phase (diauxic shift) for effective CLS extension. CR expands the period of maximal SNF1 activation beyond the diauxic shift, as indicated by Sak1-dependent T210 phosphorylation of the Snf1 catalytic α-subunit. A concomitant increase in ADP is consistent with SNF1 activation by ADP in vivo Downstream of SNF1, the Cat8 and Adr1 transcription factors are required for full CR-induced CLS extension, implicating an alternative carbon source utilization for acetyl coenzyme A (acetyl-CoA) production and gluconeogenesis. Indeed, CR increased acetyl-CoA levels during the diauxic shift, along with expression of both acetyl-CoA synthetase genes ACS1 and ACS2 We conclude that CR maximizes Snf1 activity throughout and beyond the diauxic shift, thus optimizing the coordination of nucleocytosolic acetyl-CoA production with massive reorganization of the transcriptome and respiratory metabolism. Copyright © 2017 American Society for Microbiology.

  3. Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling.

    PubMed

    Koopman, Jacob J E; van Heemst, Diana; van Bodegom, David; Bonkowski, Michael S; Sun, Liou Y; Bartke, Andrzej

    2016-03-01

    Caloric restriction and genetic disruption of growth hormone signaling have been shown to counteract aging in mice. The effects of these interventions on aging are examined through age-dependent survival or through the increase in age-dependent mortality rates on a logarithmic scale fitted to the Gompertz model. However, these methods have limitations that impede a fully comprehensive disclosure of these effects. Here we examine the effects of these interventions on murine aging through the increase in age-dependent mortality rates on a linear scale without fitting them to a model like the Gompertz model. Whereas these interventions negligibly and non-consistently affected the aging rates when examined through the age-dependent mortality rates on a logarithmic scale, they caused the aging rates to increase at higher ages and to higher levels when examined through the age-dependent mortality rates on a linear scale. These results add to the debate whether these interventions postpone or slow aging and to the understanding of the mechanisms by which they affect aging. Since different methods yield different results, it is worthwhile to compare their results in future research to obtain further insights into the effects of dietary, genetic, and other interventions on the aging of mice and other species.

  4. Changes in behavior and gene expression induced by caloric restriction in C57BL/6 mice.

    PubMed

    Yamamoto, Yuta; Tanahashi, Toshihito; Kawai, Tomoko; Chikahisa, Sachiko; Katsuura, Sakurako; Nishida, Kensei; Teshima-Kondo, Shigetada; Sei, Hiroyoshi; Rokutan, Kazuhito

    2009-11-06

    Caloric restriction (CR) is an effective method for prevention of age-associated diseases as well as overweight and obesity; however, there is controversy regarding the effects of dieting regimens on behavior. In this study, we investigated two different dieting regimens: repeated fasting and refeeding (RFR) and daily feeding of half the amount of food consumed by RFR mice (CR). CR and RFR mice had an approximate 20% reduction in food intake compared with control mice. Open field, light-dark transition, elevated plus maze, and forced swimming tests indicated that CR, but not RFR, reduced anxiety- and depressive-like behaviors, with a reduction peak on day 8. Using a mouse whole genome microarray, we analyzed gene expression in the prefrontal cortex, amygdala, and hypothalamus. In addition to the CR-responsive genes commonly modified by RFR and CR, each regimen differentially changed the expression of distinct genes in each region. The most profound change was observed in the amygdalas of CR mice: 884 genes were specifically upregulated. Ingenuity pathway analysis revealed that these 884 genes significantly modified nine canonical pathways in the amygdala. alpha-Adrenergic and dopamine receptor signalings were the two top-scoring pathways. Quantitative RT-PCR confirmed the upregulation of six genes in these pathways. Western blotting confirmed that CR specifically increased dopamine- and cAMP-regulated phosphoprotein (Darpp-32), a key regulator of dopamine receptor signaling, in the amygdala. Our results suggest that CR may change behavior through altered gene expression.

  5. Effects of aging and caloric restriction on dentate gyrus synapses and glutamate receptor subunits

    PubMed Central

    Newton, Isabel G.; Forbes, M. Elizabeth; Linville, M. Constance; Pang, Hui; Tucker, Elizabeth M.; Riddle, David R.; Brunso-Bechtold, Judy K.

    2009-01-01

    Caloric restriction (CR) attenuates aging-related degenerative processes throughout the body. It is less clear, however, whether CR has a similar effect in the brain, particularly in the hippocampus, an area important for learning and memory processes that often are compromised in aging. In order to evaluate the effect of CR on synapses across lifespan, we quantified synapses stereologically in the middle molecular layer of the dentate gyrus (DG) of young, middle aged, and old Fischer 344 X Brown Norway rats fed ad libitum (AL) or a CR diet from 4 months of age. The results indicate that synapses are maintained across lifespan in both AL and CR rats. In light of this stability, we addressed whether aging and CR influence neurotransmitter receptor levels by measuring subunits of NMDA (NR1, NR2A, and NR2B) and AMPA (GluR1, GluR2) receptors in the DG of a second cohort of AL and CR rats across lifespan. The results reveal that the NR1 and GluR1 subunits decline with age in AL, but not CR rats. The absence of an aging-related decline in these subunits in CR rats, however, does not arise from increased levels in old CR rats. Instead, it is due to subunit decreases in young CR rats to levels that are sustained in CR rats throughout lifespan, but that are reached in AL rats only in old age. PMID:17433502

  6. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice.

    PubMed

    Jové, Mariona; Naudí, Alba; Ramírez-Núñez, Omar; Portero-Otín, Manuel; Selman, Colin; Withers, Dominic J; Pamplona, Reinald

    2014-10-01

    Lipid composition, particularly membrane unsaturation, has been proposed as being a lifespan determinant, but it is currently unknown whether caloric restriction (CR), an accepted life-extending intervention, affects cellular lipid profiles. In this study, we employ a liquid chromatography quadrupole time-of-flight-based methodology to demonstrate that CR in the liver of male C57BL/6 mice: (i) induces marked changes in the cellular lipidome, (ii) specifically reduces levels of a phospholipid peroxidation product, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphatidylcholine, (iii) alters cellular phosphoethanolamine and triglyceride distributional profiles, (iv) affects mitochondrial electron transport chain complexes, increasing complex II and decreasing complex III and (v) is associated with specific changes in liver metabolic pathways. These data demonstrate that CR induces a specific lipidome and metabolome reprogramming event in mouse liver which is associated with lower protein oxidative damage, as assessed by mass spectrometry-based measurements. Such changes may be critical to the increased lifespan and healthspan observed in C57BL/6 mice following CR.

  7. Caloric Restriction Protects against Lactacystin-Induced Degeneration of Dopamine Neurons Independent of the Ghrelin Receptor

    PubMed Central

    Coppens, Jessica; Bentea, Eduard; Bayliss, Jacqueline A.; Demuyser, Thomas; Walrave, Laura; Albertini, Giulia; Van Liefferinge, Joeri; Deneyer, Lauren; Aourz, Najat; Van Eeckhaut, Ann; Portelli, Jeanelle; Andrews, Zane B.; Massie, Ann; De Bundel, Dimitri; Smolders, Ilse

    2017-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder, characterized by a loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Caloric restriction (CR) has been shown to exert ghrelin-dependent neuroprotective effects in the 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-based animal model for PD. We here investigated whether CR is neuroprotective in the lactacystin (LAC) mouse model for PD, in which proteasome disruption leads to the destruction of the DA neurons of the SNc, and whether this effect is mediated via the ghrelin receptor. Adult male ghrelin receptor wildtype (WT) and knockout (KO) mice were maintained on an ad libitum (AL) diet or on a 30% CR regimen. After 3 weeks, LAC was injected unilaterally into the SNc, and the degree of DA neuron degeneration was evaluated 1 week later. In AL mice, LAC injection significanty reduced the number of DA neurons and striatal DA concentrations. CR protected against DA neuron degeneration following LAC injection. However, no differences were observed between ghrelin receptor WT and KO mice. These results indicate that CR can protect the nigral DA neurons from toxicity related to proteasome disruption; however, the ghrelin receptor is not involved in this effect. PMID:28273852

  8. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain

    PubMed Central

    Lin, Ai-Ling; Zhang, Wei; Gao, Xiaoli; Watts, Lora

    2015-01-01

    Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging. PMID:25896951

  9. Intestinal PPARγ signalling is required for sympathetic nervous system activation in response to caloric restriction

    PubMed Central

    Duszka, Kalina; Picard, Alexandre; Ellero-Simatos, Sandrine; Chen, Jiapeng; Defernez, Marianne; Paramalingam, Eeswari; Pigram, Anna; Vanoaica, Liviu; Canlet, Cécile; Parini, Paolo; Narbad, Arjan; Guillou, Hervé; Thorens, Bernard; Wahli, Walter

    2016-01-01

    Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes. PMID:27853235

  10. Effects of caloric restriction and a moderate or intense physiotherapy program for treatment of lameness in overweight dogs with osteoarthritis.

    PubMed

    Mlacnik, Evamaria; Bockstahler, Barbara A; Müller, Marion; Tetrick, Mark A; Nap, Richard C; Zentek, Jürgen

    2006-12-01

    To evaluate the effects of a weight reduction program combined with a basic or more complex physical therapy program including transcutaneous electric nerve stimulation on lameness in overweight dogs with osteoarthritis. Nonblinded prospective randomized clinical trial. Animals-29 adult overweight or obese dogs with a body condition score of 4/5 or 5/5 and clinical and radiographic signs of osteoarthritis. A weight-loss program was initiated for all dogs. One group received caloric restriction and a home-based physical therapy program. The other group received the identical dietetic protocol and an intensive physical therapy program including transcutaneous electrical nerve stimulation. Lameness was assessed clinically and by kinetic gait analysis on a treadmill with 4 force plates to measure symmetry of ground reaction forces (GRFs) of the affected and contralateral limbs in bimonthly intervals for 6 months. Significant weight loss was achieved in both groups; however, greater weight reduction was attained by dogs treated with caloric restriction and intensive physiotherapy. Mobility and symmetry indices of GRFs were improved after 6 months; the best outcome was detected in the group receiving energy restriction combined with intensive physical therapy. Caloric restriction combined with intensive physical therapy improved mobility and facilitated weight loss in overweight dogs. The combination of dietetic and physical therapy may help to improve the health status more efficiently than dietetic treatment alone.

  11. Caloric restriction blocks neuropathology and motor deficits in Machado–Joseph disease mouse models through SIRT1 pathway

    PubMed Central

    Cunha-Santos, Janete; Duarte-Neves, Joana; Carmona, Vitor; Guarente, Leonard; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-01-01

    Machado–Joseph disease (MJD) is a neurodegenerative disorder characterized by an abnormal expansion of the CAG triplet in the ATXN3 gene, translating into a polyglutamine tract within the ataxin-3 protein. The available treatments only ameliorate symptomatology and do not block disease progression. In this study we find that caloric restriction dramatically rescues the motor incoordination, imbalance and the associated neuropathology in transgenic MJD mice. We further show that caloric restriction rescues SIRT1 levels in transgenic MJD mice, whereas silencing SIRT1 is sufficient to prevent the beneficial effects on MJD pathology. In addition, the re-establishment of SIRT1 levels in MJD mouse model, through the gene delivery approach, significantly ameliorates neuropathology, reducing neuroinflammation and activating autophagy. Furthermore, the pharmacological activation of SIRT1 with resveratrol significantly reduces motor incoordination of MJD mice. The pharmacological SIRT1 activation could provide important benefits to treat MJD patients. PMID:27165717

  12. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan

    PubMed Central

    Gillespie, Zoe E.; Pickering, Joshua; Eskiw, Christopher H.

    2016-01-01

    Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth. PMID:27588026

  13. Effects of age and caloric restriction in the vascular response of renal arteries to endothelin-1 in rats.

    PubMed

    Amor, Sara; García-Villalón, Angel Luis; Rubio, Carmen; Carrascosa, Jose Ma; Monge, Luis; Fernández, Nuria; Martín-Carro, Beatriz; Granado, Miriam

    2017-02-01

    Cardiovascular alterations are the most prevalent cause of impaired physiological function in aged individuals with kidney being one the most affected organs. Aging-induced alterations in renal circulation are associated with a decrease in endothelium-derived relaxing factors such as nitric oxide (NO) and with an increase in contracting factors such as endothelin-1(ET-1). As caloric restriction (CR) exerts beneficial effects preventing some of the aging-induced alterations in cardiovascular system, the aim of this study was to analyze the effects of age and caloric restriction in the vascular response of renal arteries to ET-1 in aged rats. Vascular function was studied in renal arteries from 3-month-old Wistar rats fed ad libitum (3m) and in renal arteries from 8-and 24-month-old Wistar rats fed ad libitum (8m and 24m), or subjected to 20% caloric restriction during their three last months of life (8m-CR and 24m-CR). The contractile response to ET-1 was increased in renal arteries from 8m and 24m compared to 3m rats. ET-1-induced contraction was mediated by ET-A receptors in all experimental groups and also by ET-B receptors in 24m rats. Caloric restriction attenuated the increased contraction to ET-1 in renal arteries from 8m but not from 24m rats possibly through NO release proceeding from ET-B endothelial receptors. In 24m rats, CR did not attenuate the aging-increased response of renal arteries to ET-1, but it prevented the aging-induced increase in iNOS mRNA levels and the aging-induced decrease in eNOS mRNA levels in arterial tissue. In conclusion, aging is associated with an increased response to ET-1 in renal arteries that is prevented by CR in 8m but not in 24m rats.

  14. Short-term effects of sleeve gastrectomy and caloric restriction on blood pressure in diet-induced obese rats.

    PubMed

    Rodríguez, Amaia; Becerril, Sara; Valentí, Víctor; Moncada, Rafael; Méndez-Giménez, Leire; Ramírez, Beatriz; Lancha, Andoni; Martín, Marina; Burrell, María A; Catalán, Victoria; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2012-09-01

    Sleeve gastrectomy constitutes an effective surgical procedure for the treatment of morbid obesity. The aim of the present study was to establish the effects of sleeve gastrectomy and caloric restriction on weight loss and cardiovascular parameters in diet-induced obese (DIO) rats. Male Wistar DIO rats were subjected to surgical interventions (n = 30) (sham operation, sleeve gastrectomy, or pair-fed to the amount of food eaten by sleeve-gastrectomized animals and compared to lean control rats) or dietary interventions (n = 40) (fed ad libitum a normal diet (ND) or a high-fat diet or an ND with a caloric restriction of 25 %). Systolic blood pressure (SBP), diastolic blood pressure, and mean blood pressure values and heart rate (HR) were recorded in conscious, resting animals by noninvasive tail-cuff plethysmography before and 3 weeks after surgical or dietary interventions. Both sleeve gastrectomy and caloric restriction induced a reduction in body weight, whole-body adiposity, and serum leptin together with an increased excess weight loss in DIO rats. Sleeve gastrectomy was further associated with an improvement in insulin resistance and the lipid profile, as well as with a reduction in serum ghrelin levels. A decrease in HR and heart weight was observed in caloric-restricted groups. Sleeve-gastrectomized rats not only exhibited a reduction in HR (∆HR = -45 ± 19 bpm) but also in SBP values (∆SBP = -22 ± 10 mmHg) compared to the DIO rats (∆SBP = 14 ± 8 mmHg). Our findings provide evidence that the beneficial effects of sleeve gastrectomy on blood pressure values are beyond weight loss in rats with diet-induced obesity.

  15. DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction

    PubMed Central

    Weinberger, Martin; Sampaio-Marques, Belém; Ludovico, Paula; Burhans, William C.

    2013-01-01

    In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans. PMID:23518504

  16. Caloric restriction and calcium's effect on bone metabolism and body composition in overweight and obese premenopausal women.

    PubMed

    Radak, Tim L

    2004-12-01

    Obesity results in numerous preventable deaths and comorbidities. Unfortunately, a reduction of body weight has been correlated with a reduction in bone mass, the reasons for which have not been fully elucidated. The importance of maximizing peak bone mass during premenopausal years is well known. Most studies demonstrate a positive relationship between calcium intake and bone mass. However, during caloric restriction, which is commonly used for weight loss, calcium intake has shown mixed results. Calcium from dairy sources has received additional attention, beyond its importance to bone, for its role in regulating body weight and composition. Dairy foods are perceived as high fat, and therefore, are generally minimized or avoided during caloric restriction. The current calcium intake for premenopausal women is significantly below recommendations, and even if met during caloric restriction, may not be adequate. This review underscores the need for maintaining at least adequate intake levels of calcium, if not more, during weight loss regimens to minimize potential long-term detrimental effects on bone metabolism.

  17. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer.

    PubMed

    Simone, Brittany A; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y; Wright, Christopher; Savage, Jason E; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P; Simone, Nicole L

    2016-09-01

    Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer.

  18. Effects of caloric restriction on body composition and total body nitrogen as measured by neutron activation.

    PubMed

    Vaswani, A N; Vartsky, D; Ellis, K J; Yasumura, S; Cohn, S H

    1983-02-01

    The purpose of this study was to compare the effects of two isocaloric diets (800 Kcals) on the changes in body composition during weight reduction. While the protein content of both diets was 70 g, the carbohydrate content of diet A was 10 g and that of diet B was 70 g. The various parameters of body composition were determined as follows: Total body potassium (TBK) by 40K counting, total body water (TBW) by the tritiated water technique, total body nitrogen (TBN) by prompt gamma neutron activation analysis (PGNAA) and total body fat was estimated by measuring the skinfold thickness. Routine serum chemistries were performed every 2 wk and serum insulin and triiodothyronine by radioimmunoassay were done at 4-wk intervals. Seventeen obese women who were at least 30% above ideal body weight volunteered for the outpatient study, (group A--10 subjects, group B--7 subjects). At the end of the 12 wk study, the percent changes in the above parameters of body composition were not significantly different for the two groups. The biochemical changes were consistent with the degree of caloric restriction. We conclude that: (1) the technique of prompt gamma neutron activation analysis can be used effectively to determine long term changes in total body nitrogen during weight reduction, (2) loss of lean tissue (water, potassium and nitrogen) as well as fat tissue occurred during weight reduction. The loss of TBN in absolute quantities was less for diet A compared to diet B; however, there was no significant difference between the two diets when the data was expressed as a percent change from the baseline values, and (3) TBK determination probably provides the best estimate of total body fat.

  19. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors.

    PubMed

    Corton, J Christopher; Apte, Udayan; Anderson, Steven P; Limaye, Pallavi; Yoon, Lawrence; Latendresse, John; Dunn, Corrie; Everitt, Jeffrey I; Voss, Kenneth A; Swanson, Cynthia; Kimbrough, Carie; Wong, Jean S; Gill, Sarjeet S; Chandraratna, Roshantha A S; Kwak, Mi-Kyoung; Kensler, Thomas W; Stulnig, Thomas M; Steffensen, Knut R; Gustafsson, Jan-Ake; Mehendale, Harihara M

    2004-10-29

    The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.

  20. Late-onset caloric restriction alters skeletal muscle metabolism by modulating pyruvate metabolism.

    PubMed

    Chen, Chiao-Nan Joyce; Lin, Shang-Ying; Liao, Yi-Hung; Li, Zhen-Jie; Wong, Alice May-Kuen

    2015-06-01

    Caloric restriction (CR) attenuates age-related muscle loss. However, the underlying mechanism responsible for this attenuation is not fully understood. This study evaluated the role of energy metabolism in the CR-induced attenuation of muscle loss. The aims of this study were twofold: 1) to evaluate the effect of CR on energy metabolism and determine its relationship with muscle mass, and 2) to determine whether the effects of CR are age dependent. Young and middle-aged rats were randomized into either 40% CR or ad libitum (AL) diet groups for 14 wk. Major energy-producing pathways in muscles, i.e., glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), were examined. We found that the effects of CR were age dependent. CR improved muscle metabolism and normalized muscle mass in middle-aged animals but not young animals. CR decreased glycolysis and increased the cellular dependency for OXPHOS vs. glycolysis in muscles of middle-aged rats, which was associated with the improvement of normalized muscle mass. The metabolic reprogramming induced by CR was related to modulation of pyruvate metabolism and increased mitochondrial biogenesis. Compared with animals fed AL, middle-aged animals with CR had lower lactate dehydrogenase A content and greater mitochondrial pyruvate carrier content. Markers of mitochondrial biogenesis, including AMPK activation levels and SIRT1 and COX-IV content, also showed increased levels. In conclusion, 14 wk of CR improved muscle metabolism and preserved muscle mass in middle-aged animals but not in young developing animals. CR-attenuated age-related muscle loss is associated with reprogramming of the metabolic pathway from glycolysis to OXPHOS.

  1. Mild caloric restriction up-regulates the expression of prohibitin: A proteome study

    SciTech Connect

    Takahashi, Shoko; Masuda, Junko; Shimagami, Hiroshi; Ohta, Yutaka; Kanda, Tomomasa; Saito, Kenji; Kato, Hisanori

    2011-02-18

    Research highlights: {yields} Proteomic analysis was performed to elucidate physiological alterations induced by mild CR. {yields} The results suggest good reproducibility and possibility to grasp the important response of CR. {yields} The increase in prohibitin abundance was observed in CR groups by proteomic analysis. {yields} We hypothesize that prohibitin might be involved in the longevity induced by CR. -- Abstract: Caloric restriction (CR) is well known to expand lifespan in a variety of species and to retard many age-related diseases. The effects of relatively mild CR on the proteome profile in relation to lifespan have not yet been reported, despite the more extensive studies of the stricter CR conditions. Thus, the present study was conducted to elucidate the protein profiles in rat livers after mild CR for a relatively short time. Young growing rats were fed CR diets (10% and 30% CR) for 1 month. We performed the differential proteomic analysis of the rat livers using two-dimensional electrophoresis combined with MALDI-TOF mass spectrometry. The most remarkable protein among the differentially expressed proteins was found to be prohibitin, the abundance of which was increased by 30% CR. Prohibitin is a ubiquitously expressed protein shown to suppress cell proliferation and to be related to longevity. The increase in prohibitin was observed both in 10% and 30% CR by Western blot analysis. Furthermore, induction of AMP-activated kinase (AMPK) protein, related to the actions of prohibitin in promoting longevity, was observed. The increased prohibitin level in response to subtle CR suggests that this increase may be one of the early events leading to the expansion of lifespan in response to CR.

  2. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer

    PubMed Central

    Simone, Brittany A.; Dan, Tu; Palagani, Ajay; Jin, Lianjin; Han, Sunny Y.; Wright, Christopher; Savage, Jason E.; Gitman, Robert; Lim, Meng Kieng; Palazzo, Juan; Mehta, Minesh P.; Simone, Nicole L.

    2016-01-01

    ABSTRACT Purpose: Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. Methods: An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. Results: CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. Conclusions: CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer. PMID:27027731

  3. Caloric restriction and L-carnitine administration improves insulin sensitivity in patients with impaired glucose metabolism.

    PubMed

    Molfino, Alessio; Cascino, Antonia; Conte, Caterina; Ramaccini, Cesarina; Rossi Fanelli, Filippo; Laviano, Alessandro

    2010-01-01

    Reduced circulating and tissue carnitine levels, possibly leading to impaired mitochondrial function, have been postulated to be involved in the pathogenesis of insulin resistance. However, whether L-carnitine administration may improve insulin sensitivity in patients with impaired fasting glucose (IFG) or type 2 diabetes mellitus (DM-2) is still controversial. The aim of the study was to explore the role of L-carnitine supplementation in influencing insulin sensitivity. A randomized controlled study involving adult outpatients was designed. Adult patients referred to the outpatient clinic and within 10 days of the diagnosis of IFG or DM-2 were consecutively enrolled. Exclusion criteria were concomitant antidiabetic therapy and modifications of lifestyle during the previous 4 weeks. Patients were randomly assigned to receive a hypocaloric diet for 10 days (group C; n = 8) or the same dietetic regimen in addition to oral L-carnitine (2 g twice daily) supplementation (group LC; n = 8). Oral glucose tolerance test (OGTT), fasting plasma insulin levels, and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed at the beginning and end of the study. Data were statistically analyzed using the Student t test for paired and unpaired data. OGTT at 2 hours improved in both groups. Only in the L-carnitine-supplemented group did plasma insulin levels and HOMA-IR significantly decrease when compared to baseline values. Considering the role of caloric restriction in increasing the intestinal uptake of carnitine, the results suggest that oral L-carnitine administration, when associated with a hypocaloric feeding regimen, improves insulin resistance and may represent an adjunctive treatment for IFG and DM-2.

  4. Caloric Restriction and Formalin-Induced Inflammation: An Experimental Study in Rat Model

    PubMed Central

    Nozad, Aisan; Safari, Mir Bahram; Saboory, Ehsan; Derafshpoor, Leila; Mohseni Moghaddam, Parvaneh; Ghaffari, Farzaneh; Naseri, Mohsen

    2015-01-01

    Background: Acute and chronic inflammations are difficult to control. Using chemical anti-inflammatory medications along with their complications considerably limit their use. According to Traditional Iranian Medicine (TIM), there is an important relation between inflammation and Imtila (food and blood accumulation in the body); food reduction or its more modern equivalent Caloric Restriction (CR) may act against both Imtila and inflammation. Objectives: This experimental study aimed to investigate the effect of 30% reduction in daily calorie intake on inflammation in rats. Materials and Methods: A total of 18 male rats (Rattus rattus) weighing 220 to 270 g were obtained. Then, the inflammation was induced by injecting formalin in their paws. Next, the rats were randomized by generating random numbers into two equal groups (9 + 9) putting on either normal diet (controls) or a similar diet with 30% reduction of calorie (cases). Paw volume changes were recorded twice per day by one observer in both groups using a standard plethysmometer for 8 consecutive days. Serum C-reactive protein (CRP), Erythrocyte Sedimentation Rate (ESR), complete blood count (erythrocyte, platelet, and white blood cell) and hemoglobin were compared between the groups. Results: Decline of both body weight and paw volume was significantly more prominent in the case than in the control rats within the study period (P < 0.001 and < 0.001, respectively). Paw volume decrease was more prominent after day 3. On day 8, serum CRP-positive (1 or 2 +) rats were more frequent in ad libitum fed group comparing with those received CR (33.3% vs. 11.1%). This difference, however, was insignificant (P = 0.58). At the same time, mean ESR was significantly higher in the control rats comparing with that in the case group (29.00 ± 2.89 h vs. 14.00 ± 1.55 h; P = 0.001). Other serum parameters were not significantly different between the two groups at endpoint. Conclusions: Rats fed with a 30% calorie-restricted

  5. Long-term intermittent feeding, but not caloric restriction, leads to redox imbalance, insulin receptor nitration, and glucose intolerance.

    PubMed

    Cerqueira, Fernanda M; da Cunha, Fernanda M; Caldeira da Silva, Camille C; Chausse, Bruno; Romano, Renato L; Garcia, Camila C M; Colepicolo, Pio; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2011-10-01

    Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance.

  6. Age-related alterations in the sarcolemmal environment are attenuated by lifelong caloric restriction and voluntary exercise.

    PubMed

    Hord, Jeffrey M; Botchlett, Rachel; Lawler, John M

    2016-10-01

    Age-related loss of skeletal muscle mass and function, referred to as sarcopenia, is mitigated by lifelong calorie restriction as well as exercise. In aged skeletal muscle fibers there is compromised integrity of the cell membrane that may contribute to sarcopenia. The purpose of this study was to determine if lifelong mild (8%) caloric restriction (CR) and lifelong CR+voluntary wheel running (WR) could ameliorate disruption of membrane scaffolding and signaling proteins during the aging process, thus maintaining a favorable, healthy membrane environment in plantaris muscle fibers. Fischer-344 rats were divided into four groups: 24-month old adults fed ad libitum (OAL); 24-month old on 8% caloric restriction (OCR); 24month old 8% caloric restriction+wheel running (OCRWR); and 6-month old sedentary adults fed ad libitum (YAL) were used to determine age-related changes. Aging resulted in discontinuous membrane expression of dystrophin glycoprotein complex (DGC) proteins: dystrophin and α-syntrophin. Older muscle also displayed decreased content of neuronal nitric oxide synthase (nNOS), a key DGC signaling protein. In contrast, OCR and OCRWR provided significant protection against age-related DGC disruption. In conjunction with the age-related decline in membrane DGC patency, key membrane repair proteins (MG53, dysferlin, annexin A6, and annexin A2) were significantly increased in the OAL plantaris. However, lifelong CR and CRWR interventions were effective at maintaining membrane repair proteins near YAL levels of. OAL fibers also displayed reduced protein content of NADPH oxidase isoform 2 (Nox2) subunits (p67phox and p47phox), consistent with a perturbed sarcolemmal environment. Loss of Nox2 subunits was prevented by lifelong CR and CRWR. Our results are therefore consistent with the hypothesis that lifelong CR and WR are effective countermeasures against age-related alterations in the myofiber membrane environment. Copyright © 2016 Elsevier Inc. All rights

  7. Comparison of Intermittent Fasting Versus Caloric Restriction in Obese Subjects: A Two Year Follow-Up.

    PubMed

    Aksungar, F B; Sarıkaya, M; Coskun, A; Serteser, M; Unsal, I

    2017-01-01

    Caloric restriction (CR) is proven to be effective in increasing life span and it is well known that, nutritional habits, sleeping pattern and meal frequency have profound effects on human health. In Ramadan some Muslims fast during the day-light hours for a month, providing us a unique model of intermittent fasting (IF) in humans. In the present study, we have investigated the effects of IF versus CR on the same non-diabetic obese subjects who were followed for two years according to the growth hormone (GH)/Insulin like growth factor (IGF)-1 axis and insulin resistance. Single-arm Interventional Human Study. 23 female subjects (Body Mass Index (BMI) 29-39, aged between 28-42years). Follow-up is designed as 12 months of CR, after which there was a month of IF and 11 months of CR again, to be totally 24 months. Subjects' daily diets were aligned as low calorie diet during CR and during the IF period, the same subjects fasted for 15 hours in a day for a month and there was no daily calorie restriction. Nutritional pattern was changed as 1 meal in the evening and a late supper before sleeping and no eating and drinking during the day light hours in the IF model. Subjects made brisk walking twice a day during the whole follow-up including both CR and IF periods. BMI, Blood glucose, insulin, TSH, GH, HbA1c, IGF-1, Homa-IR and urinary acetoacetate levels were monitored once in three months and twice in the fasting month. While subjects lost 1250 ± 372g monthly during the CR, in the IF period, weight loss was decreased to 473 ± 146 g. BMI of all subjects decreased gradually and as the BMI decreased, glucose, HbA1c, insulin, Homa-IR and TSH levels were decreased. GH levels were at baseline at the beginning, increased in the first six months and stayed steady during the CR and IF period than began decreasing after the IF period, while IGF-I increased gradually during the CR period and beginning with the 7th day of IF period, it decreased and kept on decreasing till the

  8. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues.

    PubMed

    Garcia, Ana Maria; Busuttil, Rita A; Calder, R Brent; Dollé, Martijn E T; Diaz, Vivian; McMahan, C Alex; Bartke, Andrzej; Nelson, James; Reddick, Robert; Vijg, Jan

    2008-09-01

    Genetic instability has been implicated as a causal factor in cancer and aging. Caloric restriction (CR) and suppression of the somatotroph axis significantly increase life span in the mouse and reduce multiple symptoms of aging, including cancer. To test if in vivo spontaneous mutation frequency is reduced by such mechanisms, we crossed long-lived Ames dwarf mice with a C57BL/6J line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from tissues and organs into Escherichia coli to measure mutant frequencies. Four cohorts were studied: (1) ad lib wild-type; (2) CR wild-type; (3) ad lib dwarf; and (4) CR dwarf. While both CR wild-type and ad lib dwarf mice lived significantly longer than the ad lib wild-type mice, under CR conditions dwarf mice did not live any longer than ad lib wild-type mice. While this may be due to an as yet unknown adverse effect of the C57BL/6J background, it did not prevent an effect on spontaneous mutation frequencies at the lacZ locus, which were assessed in liver, kidney and small intestine of 7- and 15-month-old mice of all four cohorts. A lower mutant frequency in the ad lib dwarf background was observed in liver and kidney at 7 and 15 months of age and in small intestine at 15 months of age as compared to the ad lib wild-type. CR also significantly reduced spontaneous mutant frequency in kidney and small intestine, but not in liver. In a separate cohort of lacZ-C57BL/6J mice CR was also found to significantly reduce spontaneous mutant frequency in liver and small intestine, across three age levels. These results indicate that two major pro-longevity interventions in the mouse are associated with a reduced mutation frequency. This could be responsible, at least in part, for the enhanced longevity associated with Ames dwarfism and CR.

  9. Effect of Ames dwarfism and caloric restriction on spontaneous mutation frequency in different mouse tissues

    PubMed Central

    Garcia, Ana Maria; Busuttil, Rita; Calder, Brent; Dollé, Martijn E. T.; Diaz, Vivian; McMahan, C. Alex; Bartke, Andrzej; Nelson, James; Reddick, Robert; Vijg, Jan

    2008-01-01

    Genetic instability has been implicated as a causal factor in cancer and aging. Caloric restriction (CR) and suppression of the somatotroph axis significantly increase life span in the mouse and reduces multiple symptoms of aging, including cancer. To test if in vivo spontaneous mutation frequency is reduced by such mechanisms, we crossed long-lived Ames dwarf mice with a C57BL/6J line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from tissues and organs into E. coli to measure mutant frequencies. Four cohorts were studied: (1) ad lib wild-type; (2) CR wild-type; (3) ad lib dwarf; and (4) CR dwarf. While both CR wild-type and ad lib dwarf mice lived significantly longer than the ad lib wild-type mice, under CR conditions dwarf mice did not live any longer than ad lib wild-type mice. While this may be due to an as yet unknown adverse effect of the C57Bl/6 background, it did not prevent an effect on spontaneous mutation frequencies at the lacZ locus, which were assessed in liver, kidney and small intestine of 7- and 15-month old mice of all four cohorts. A lower mutant frequency in the ad lib dwarf background was observed in liver and kidney at 7 and 15 months of age and in small intestine at 15 months of age as compared to the ad lib wild-type. CR also significantly reduced spontaneous mutant frequency in kidney and small intestine, but not in liver. In a separate cohort of lacZ-C57BL/6J mice CR was also found to significantly reduce spontaneous mutant frequency in liver and small intestine, across three age levels. These results indicate that two major pro-longevity interventions in the mouse are associated with a reduced mutation frequency. This could be responsible, at least in part, for the enhanced longevity associated with Ames dwarfism and CR. PMID:18565572

  10. Acute effects of different diet compositions on skeletal muscle insulin signalling in obese individuals during caloric restriction

    PubMed Central

    Wang, Cecilia C.L.; Adochio, Rebecca L.; Leitner, J. Wayne; Abeyta, Ian M.; Draznin, Boris; Cornier, Marc-Andre

    2012-01-01

    Objective The cellular effects of restricting fat versus carbohydrate during a low-calorie diet are unclear. The aim of this study was to examine acute effects of energy and macronutrient restriction on skeletal muscle insulin signalling in obesity. Materials/Methods Eighteen obese individuals without diabetes underwent euglycemic-hyperinsulinemic clamp and skeletal muscle biopsy after: (a) 5 days of eucaloric diet (30% fat, 50% carbohydrate), and (b) 5 days of a 30% calorie-restricted diet, either low fat/high carbohydrate (LF/HC: 20% fat, 60% carbohydrate) or high-fat/low carbohydrate (HF/LC: 50% fat, 30% carbohydrate). Results Weight, body composition, and insulin sensitivity were similar between groups after eucaloric diet. Weight loss was similar between groups after hypocaloric diet, 1.3 ± 1.3 kg (p<0.0001 compared with eucaloric). Whole-body insulin sensitivity was unchanged after calorie restriction and similar between groups. However, ex vivo skeletal muscle insulin signalling differed depending on macronutrient composition of calorie-restricted diet. Skeletal muscle of the LF/HC group had increased insulin-stimulated tyrosine phosphorylation of IRS-1, decreased insulin-stimulated Ser 307 phosphorylation of IRS-1, and increased IRS-1-associated phosphatidylinositol (PI)3-kinase activity. Conversely, insulin stimulation of tyrosine phosphorylated IRS-1 was absent and serine 307 phosphorylation of IRS-1 was increased on HF/LC, with blunting of IRS-1-associated PI3-kinase activity. Conclusion Acute caloric restriction with a LF/HC diet alters skeletal muscle insulin signalling in a way that improves insulin sensitivity, while acute caloric restriction with a HF/LC diet induces changes compatible with insulin resistance. In both cases, ex vivo changes in skeletal muscle insulin signalling appear prior to changes in whole body insulin sensitivity. PMID:23174405

  11. Feed restriction and a diet's caloric value: The influence on the aerobic and anaerobic capacity of rats

    PubMed Central

    2012-01-01

    Background The influence of feed restriction and different diet's caloric value on the aerobic and anaerobic capacity is unclear in the literature. Thus, the objectives of this study were to determine the possible influences of two diets with different caloric values and the influence of feed restriction on the aerobic (anaerobic threshold: AT) and anaerobic (time to exhaustion: Tlim) variables measured by a lactate minimum test (LM) in rats. Methods We used 40 adult Wistar rats. The animals were divided into four groups: ad libitum commercial Purina® diet (3028.0 Kcal/kg) (ALP), restricted commercial Purina® diet (RAP), ad libitum semi-purified AIN-93 diet (3802.7 Kcal/kg) (ALD) and restricted semi-purified AIN-93 diet (RAD). The animals performed LM at the end of the experiment, 48 h before euthanasia. Comparisons between groups were performed by analysis of variance (p < 0,05). Results At the end of the experiment, the weights of the rats in the groups with the restricted diets were significantly lower than those in the groups with ad libitum diet intakes. In addition, the ALD group had higher amounts of adipose tissue. With respect to energetic substrates, the groups subjected to diet restriction had significantly higher levels of liver and muscle glycogen. There were no differences between the groups with respect to AT; however, the ALD group had lower lactatemia at the AT intensity and higher Tlim than the other groups. Conclusions We conclude that dietary restriction induces changes in energetic substrates and that ad libitum intake of a semi-purified AIN-93 diet results in an increase in adipose tissue, likely reducing the density of the animals in water and favouring their performance during the swimming exercises. PMID:22448911

  12. Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring.

    PubMed

    García, Ana Paula; Palou, Mariona; Sánchez, Juana; Priego, Teresa; Palou, Andreu; Picó, Catalina

    2011-02-18

    Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT) sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively) were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy) (CR) dams. Body weight (BW), the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry) of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+) and NPY(+), suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+) and NPY(+). Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.

  13. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction.

    PubMed

    Naudí, Alba; Jové, Mariona; Cacabelos, Daniel; Ayala, Victoria; Cabre, Rosanna; Caro, Pilar; Gomez, José; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-02-01

    Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.

  14. Effects of immobilisation and caloric restriction on antioxidant parameters and T-cell apoptosis in healthy young men

    NASA Astrophysics Data System (ADS)

    Ellinger, S.; Arendt, B. M.; Boese, A.; Juschus, M.; Schaefer, S.; Stoffel-Wagner, B.; Goerlich, R.

    Background: Astronauts are exposed to oxidative stress due to radiation and microgravity, which might impair immune functions. Effects of hypocaloric nutrition as often observed in astronauts on oxidative stress and immune functions are not clear. We investigated, if microgravity, simulated by 6 Head-down tilt (HDT) and caloric restriction (-25%, fat reduced) with adequate supply of micronutrients affect DNA-damage in peripheral leukocytes, antioxidant parameters in plasma, and T-cell apoptosis. Material & Methods: 10 healthy male non-smokers were subjected to 4 different interventions (normocaloric diet or caloric restriction (CR) in upright position (UP) or HDT) for 14 days each (cross-over). DNA-damage in peripheral leukocytes (Comet Assay), trolox equivalent antioxidant capacity (TEAC) and uric acid in plasma were measured before, after 5, 10, and 13 days of intervention, and after 2 days recovery. T-cell apoptosis (Annexin V binding test) was assessed before and after intervention. Results: Preliminary results show that only endogenous, but not ex vivo H2O2-induced DNA strand breaks were reduced by CR compared to normocaloric diet. In upright position, endogenous DNA strand breaks decreased continuously during CR, reaching significance after recovery. During HDT, caloric restriction seems to counteract a temporary increase in DNA strand breaks observed in subjects receiving normocaloric diet. TEAC was reduced during HDT compared to UP in subjects under caloric restriction. An increase in plasma uric acid related to intervention occurred only after 5 days HDT in CR vs. normocaloric diet. T-cell apoptosis was not affected by any kind of intervention. Conclusion: Neither HDT nor CR with sufficient supply of micronutrients seem to induce oxidative stress or T-cell apoptosis in healthy young men. In contrast, CR might prevent endogenous DNA-damage in peripheral leukocytes. As DNA-damage is a risk factor for carcinogenesis, protective effects of energy reduction are

  15. Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I in Premenopausal Women

    DTIC Science & Technology

    2003-10-01

    kcals; P< 0.05 pre vs post in both groups). The combination of moderate exercise and diet produced significant weight loss in both groups (Low BMI...Kines 481W Scientific basis of 3 50 Exercise for Older Adults Kines 496C Independent Study 3 1 Spring 1998 Kines 456 Fitness Appraisal 4 96 Kines...N AD_ Award Number: DAMD17-01-1-0360 TITLE: Effects of Moderate Aerobic Exercise Combined with Caloric Restriction on Circulating Estrogens and IGF-I

  16. Caloric restriction improves diabetes-induced cognitive deficits by attenuating neurogranin-associated calcium signaling in high-fat diet-fed mice.

    PubMed

    Kim, Hwajin; Kang, Heeyoung; Heo, Rok Won; Jeon, Byeong Tak; Yi, Chin-Ok; Shin, Hyun Joo; Kim, Jeonghyun; Jeong, Seon-Yong; Kwak, Woori; Kim, Won-Ho; Kang, Sang Soo; Roh, Gu Seob

    2016-06-01

    Diabetes-induced cognitive decline has been recognized in human patients of type 2 diabetes mellitus and mouse model of obesity, but the underlying mechanisms or therapeutic targets are not clearly identified. We investigated the effect of caloric restriction on diabetes-induced memory deficits and searched a molecular mechanism of caloric restriction-mediated neuroprotection. C57BL/6 mice were fed a high-fat diet for 40 weeks and RNA-seq analysis was performed in the hippocampus of high-fat diet-fed mice. To investigate caloric restriction effect on differential expression of genes, mice were fed high-fat diet for 20 weeks and continued on high-fat diet or subjected to caloric restriction (2 g/day) for 12 weeks. High-fat diet-fed mice exhibited insulin resistance, glial activation, blood-brain barrier leakage, and memory deficits, in that we identified neurogranin, a down-regulated gene in high-fat diet-fed mice using RNA-seq analysis; neurogranin regulates Ca(2+)/calmodulin-dependent synaptic function. Caloric restriction increased insulin sensitivity, reduced high-fat diet-induced blood-brain barrier leakage and glial activation, and improved memory deficit. Furthermore, caloric restriction reversed high-fat diet-induced expression of neurogranin and the activation of Ca(2+)/calmodulin-dependent protein kinase II and calpain as well as the downstream effectors. Our results suggest that neurogranin is an important factor of high-fat diet-induced memory deficits on which caloric restriction has a therapeutic effect by regulating neurogranin-associated calcium signaling. © The Author(s) 2015.

  17. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: A randomized trial.

    PubMed

    Mansur, Antonio P; Roggerio, Alessandra; Goes, Marisa F S; Avakian, Solange D; Leal, Dalila P; Maranhão, Raul C; Strunz, Célia M C

    2017-01-15

    Sirtuin 1 (Sirt1) plays an important role in vascular biology, and influences aspects of age-dependent atherosclerosis. In animals, the sirtuin system is strongly influenced by resveratrol and caloric restriction, but its expression in humans is controversial. This study investigated the effects of resveratrol and caloric restriction on Sirt1 serum concentrations and vascular biomarkers in a healthy human population. Forty-eight healthy participants (24 women) aged 55-65years were randomized to either 30days of resveratrol administration (500mg/day) or caloric restriction (1000cal/day). Blood was collected at baseline and day 30. Laboratory data analyzed were triglycerides, total cholesterol, HDL, VLDL, LDL, apolipoprotein A1, apolipoprotein B, lipoprotein (a), non-esterified fatty acids (NEFA), glucose, insulin, oxidative stress, C-reactive protein, and Sirt1. Expression of the Sirt1 gene was analyzed using real-time PCR. Caloric restriction diminished the abdominal circumference and improved the lipid profile, but not resveratrol intervention. Resveratrol and caloric restriction increased serum concentrations of Sirt1, from 1.06±0.71 to 5.75±2.98ng/mL; p<0.0001, and from 1.65±1.81 to 5.80±2.23ng/mL; p<0.0001, respectively. Sirt1 increased in women and men in both interventions. On the other hand expression of Sirt1 mRNA was not different after caloric restriction and resveratrol treatment. Caloric restriction and resveratrol significantly increased plasma concentrations of Sirt1. The long-term impact of these interventions on atherosclerosis should be assessed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling

    PubMed Central

    Dong, Dan; Cai, Guang-yan; Ning, Yi-chun; Wang, Jing-chao; Lv, Yang; Hong, Quan; Cui, Shao-yuan; Fu, Bo; Guo, Ya-nan; Chen, Xiang-mei

    2017-01-01

    Renal fibrosis contributes to declining renal function in the elderly. What is unclear however, is whether epithelial-mesenchymal transition (EMT) contributes to this age-related renal fibrosis. Here, we analyzed indicators of EMT during kidney aging and investigated the protective effects and mechanisms of short-term regimens of caloric restriction (CR) or caloric restriction mimetics (CRMs), including resveratrol and metformin. High glucose was used to induce premature senescence and EMT in human primary proximal tubular cells (PTCs) in vitro. To test the role of AMPK-mTOR signaling, siRNA was used to deplete AMPK. Cellular senescence and AMPK-mTOR signaling markers associated with EMT were detected. CR or CRMs treatment alleviated age-related EMT in aging kidneys, which was accompanied by activation of AMPK-mTOR signaling. High glucose induced premature senescence and EMT in PTCs in vitro, which was accompanied by down-regulation of AMPK/mTOR signaling. CRMs alleviated high glucose-induced senescence and EMT via stimulation of AMPK/mTOR signaling. Activation of AMPK/mTOR signaling protected PTCs from high glucose-induced EMT and cellular senescence. Short-term regimens of CR and CRMs alleviated age-related EMT via AMPK-mTOR signaling, suggesting a potential approach to reducing renal fibrosis during aging. PMID:28147330

  19. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling.

    PubMed

    Dong, Dan; Cai, Guang-Yan; Ning, Yi-Chun; Wang, Jing-Chao; Lv, Yang; Hong, Quan; Cui, Shao-Yuan; Fu, Bo; Guo, Ya-Nan; Chen, Xiang-Mei

    2017-03-07

    Renal fibrosis contributes to declining renal function in the elderly. What is unclear however, is whether epithelial-mesenchymal transition (EMT) contributes to this age-related renal fibrosis. Here, we analyzed indicators of EMT during kidney aging and investigated the protective effects and mechanisms of short-term regimens of caloric restriction (CR) or caloric restriction mimetics (CRMs), including resveratrol and metformin. High glucose was used to induce premature senescence and EMT in human primary proximal tubular cells (PTCs) in vitro. To test the role of AMPK-mTOR signaling, siRNA was used to deplete AMPK. Cellular senescence and AMPK-mTOR signaling markers associated with EMT were detected. CR or CRMs treatment alleviated age-related EMT in aging kidneys, which was accompanied by activation of AMPK-mTOR signaling. High glucose induced premature senescence and EMT in PTCs in vitro, which was accompanied by down-regulation of AMPK/mTOR signaling. CRMs alleviated high glucose-induced senescence and EMT via stimulation of AMPK/mTOR signaling. Activation of AMPK/mTOR signaling protected PTCs from high glucose-induced EMT and cellular senescence. Short-term regimens of CR and CRMs alleviated age-related EMT via AMPK-mTOR signaling, suggesting a potential approach to reducing renal fibrosis during aging.

  20. Caloric restriction and IGF-I administration promote rabbit fecundity: Possible interrelationships and mechanisms of action.

    PubMed

    Sirotkin, Alexander V; Florkovičová, Iveta Koničková; Švarcová, Olga Østrup; Rafay, Jan; Laurincik, Jozef; Harrath, Abdel Halim

    2017-03-01

    The aim of these in vivo and in vitro studies was to examine the influence of caloric restriction (CR), and the administration of insulin-like growth factor (IGF-I), on rabbit fecundity and to understand the interrelationships between CR and IGF-I, as well as the endocrine and intracellular mechanisms of their effects. Female rabbits were subjected to 50% CR, injections of IGF-I (20 μg/animal/day) and a combination of the two for 10 d before and 2 d after ovulation induced by 25 IU PMSG and 0.25 IU hCG. On the day of ovulation blood samples were collected and analyzed IGF-I, leptin, progesterone (P4) and estradiol (E2) concentrations by RIA. Some animals from each group were killed in their periovulatory period and weighed, as were their ovaries. Granulosa cells isolated from ovaries of does subjected or not to CR were cultured for 2 d with and without IGF-I (100 ng/mL). Accumulation of markers of cell proliferation (PCNA and cyclin B1), apoptosis (bax), MAP/ERK1,2 kinase (MAPK), protein kinase A (PKA) and IGF-I were evaluated by immunocytochemistry. In addition, E2 release by cells isolated from ovaries of animals subjected or not to CR and cultured with and without IGF-I (1, 10, 100, 1000 or 10000 ng/mL) was assessed by RIA. The remaining animals were kept until parturition, when the number of pups was recorded. CR did not affect animal and ovarian weight, but significantly increased the number of pups per litter and plasma levels of IGF-I and decreased plasma leptin and P4, but not E2 concentration. Injections of IGF-I did not influence body and ovarian weights, but increased the number of pups per litter and plasma IGF-I and leptin concentration and reduced plasma E2 but not P4 level. IGF-I administration did not modify the main effects of CR, although it prevented the CR-induced decrease in plasma P4 level. CR reduced accumulation of PCNA, bax, promoted accumulation of cyclin B1 but not of MAPK, PKA or IGF-I within ovarian granulosa cells. Addition of

  1. Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology fed with Western diet.

    PubMed

    Gratuze, Maud; Julien, Jacinthe; Morin, Françoise; Marette, André; Planel, Emmanuel

    2017-10-03

    Tau is a microtubule-associated protein that becomes pathological when it undergoes hyperphosphorylation and aggregation as seen in Alzheimer's disease (AD). AD is mostly sporadic, with environmental, biological and/or genetic risks factors, interacting together to promote the disease. In the past decade, reports have suggested that obesity in midlife could be one of these risk factors. On the other hand, caloric restriction and physical exercise have been reported to reduce the incidence and outcome of obesity as well as AD. We evaluated the impact of voluntary physical exercise and caloric restriction on tau pathology during 2months in hTau mice under high caloric diet in order to evaluate if these strategies could prevent AD-like pathology in obese conditions. We found no effects of obesity induced by Western diet on both Tau phosphorylation and aggregation compared to controls. However, exercise reduced tau phosphorylation while caloric restriction exacerbated its aggregation in the brains of obese hTau mice. We then examined the mechanisms underlying changes in tau phosphorylation and aggregation by exploring major tau kinases and phosphatases and key proteins involved in autophagy. However, there were no significant effects of voluntary exercise and caloric restriction on these proteins in hTau mice that could explain our results. In this study, we report differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in our obese mice, namely beneficial effect of exercise on tau phosphorylation and deleterious effect of caloric restriction on tau aggregation. Our results suggest that lifestyle strategies used to reduce metabolic disorders and AD must be selected and studied carefully to avoid exacerbation of pathologies. Copyright © 2017. Published by Elsevier Inc.

  2. Long-term Effects of Two Levels of Caloric Restriction on Body Composition, and Diet Satisfaction in CALERIE, a One Year Randomized Controlled Trial

    USDA-ARS?s Scientific Manuscript database

    There is little information on whether the extent of dietary energy restriction in a weight loss program influences long-term weight change. We examined the effects of two levels of caloric restriction (CR) over 12 months on body weight and fat loss, total energy expenditure (TEE), resting metabolic...

  3. Metformin and caloric restriction induce an AMPK-dependent restoration of mitochondrial dysfunction in fibroblasts from Fibromyalgia patients.

    PubMed

    Alcocer-Gómez, Elísabet; Garrido-Maraver, Juan; Bullón, Pedro; Marín-Aguilar, Fabiola; Cotán, David; Carrión, Angel M; Alvarez-Suarez, José Miguel; Giampieri, Francesca; Sánchez-Alcazar, José Antonio; Battino, Maurizio; Cordero, Mario D

    2015-07-01

    Impaired AMPK is associated with a wide spectrum of clinical and pathological conditions, ranging from obesity, altered responses to exercise or metabolic syndrome, to inflammation, disturbed mitochondrial biogenesis and defective response to energy stress. Fibromyalgia (FM) is a world-wide diffused musculoskeletal chronic pain condition that affects up to 5% of the general population and comprises all the above mentioned pathophysiological states. Here, we tested the involvement of AMPK activation in fibroblasts derived from FM patients. AMPK was not phosphorylated in fibroblasts from FM patients and was associated with decreased mitochondrial biogenesis, reduced oxygen consumption, decreased antioxidant enzymes expression levels and mitochondrial dysfunction. However, mtDNA sequencing analysis did not show any important alterations which could justify the mitochondrial defects. AMPK activation in FM fibroblast was impaired in response to moderate oxidative stress. In contrast, AMPK activation by metformin or incubation with serum from caloric restricted mice improved the response to moderate oxidative stress and mitochondrial metabolism in FM fibroblasts. These results suggest that AMPK plays an essential role in FM pathophysiology and could represent the basis for a valuable new therapeutic target/strategy. Furthermore, both metformin and caloric restriction could be an interesting therapeutic approach in FM.

  4. Auditory Function in Rhesus Monkeys: Effects of Aging and Caloric Restriction in the Wisconsin Monkeys Five Years Later

    PubMed Central

    Fowler, Cynthia G.; Chiasson, Kirstin Beach; Leslie, Tami Hanson; Thomas, Denise; Beasley, T. Mark; Kemnitz, Joseph W.; Weindruch, Richard

    2010-01-01

    Caloric restriction (CR) slows aging in many species and protects some animals from age-related hearing loss (ARHL), but the effect on humans is not yet known. Because rhesus monkeys are long-lived primates that are phylogenically closer to humans than other research animals are, they provide a better model for studying the effects of CR in aging and ARHL. Subjects were from the pool of 55 rhesus monkeys aged 15–28 years who had been in the Wisconsin study on CR and aging for 8–13.5 years. Distortion product otoacoustic emissions (DPOAE) with f2 frequencies from 2211–8837 Hz and auditory brainstem response (ABR) thresholds from clicks and 8, 16, and 32 kHz tone bursts were obtained. DPOAE levels declined linearly at approximately 1 dB/year, but that rate doubled for the highest frequencies in the oldest monkeys. There were no interactions for diet condition or sex. ABR thresholds to clicks and tone bursts showed increases with aging. Borderline significance was shown for diet in the thresholds at 8 kHz stimuli, with monkeys on caloric restriction having lower thresholds. Because the rhesus monkeys have a maximum longevity of 40 years, the full benefits of CR may not yet be realized. PMID:20079820

  5. Effect of exercise and caloric restriction on DMBA induced mammary tumorigenesis and plasma lipids in rats fed high fat diets

    SciTech Connect

    Magrane, D. )

    1991-03-15

    Female Sprague-Dawley rats were given a single 10 mg dose of 7, 12-Dimethylbenz(a)anthracene (DMBA) and grouped as follows: (1) low fat-sedentary (LF-SED), (2) low fat-exercised (LF-EX), (3) high fat-sedentary (HF-SED), (4) high fat-exercised (HF-EX), (5) high fat-caloric restricted (HF-RES). Diets were isocaloric and contained 3.9% (LF) and 19.4% (HF) of corn oil. Group 5 was fed a 25% caloric restricted diet but with 24.6% fat content to equalize fat intake to HF-SED. After 12 weeks of diet or treadmill exercise, tumor data and plasma lipid profiles were determined. Results show that rats on HF-EX had more total tumors, % of tumors and tumors per tumor bearing rat than rats on HF-SED. The effect of exercise was also evident in LF-EX rats, when compared to LF-SED. Average tumor size and tumor volumes were not affected. The HF-RES group showed reduced tumor profiles compared to HF-SED. HDL, LDL, triglycerides and total cholesterol were unaffected by HF or LF diets or exercise. These data suggest that tumorigenesis is increased by moderate and constant exercise.

  6. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota.

    PubMed

    Fraumene, Cristina; Manghina, Valeria; Cadoni, Erika; Marongiu, Fabio; Abbondio, Marcello; Serra, Monica; Palomba, Antonio; Tanca, Alessandro; Laconi, Ezio; Uzzau, Sergio

    2017-09-11

    Previous studies indicated that caloric restricted diet enables to lower significantly the risk of cardiovascular and metabolic diseases. In experimental animal models, life-long lasting caloric restriction (CR) was demonstrated to induce changes of the intestinal microbiota composition, regardless of fat content and/or exercise. To explore the potential impact of short and long-term CR treatment on the gut microbiota, we conducted an analysis of fecal microbiota composition in young and adult Fisher 344 rats treated with a low fat feed under ad libitum (AL) or CR conditions (70%). We report here significant changes of the rat fecal microbiota that arise rapidly in young growing animals after short-term administration of a CR diet. In particular, Lactobacillus increased significantly after 8 weeks of CR treatment and its relative abundance was significantly higher in CR vs AL fed animals after 36 weeks of dietary intervention. Taken together, our data suggest that Lactobacillus intestinal colonization is hampered in AL fed young rats compared to CR fed ones, while health-promoting CR diet intervention enables the expansion of this genus rapidly and persistently up to adulthood.

  7. Caloric restriction maintains OX40 agonist-mediated tumor immunity and CD4 T cell priming during aging.

    PubMed

    Farazi, Michelle; Nguyen, Justine; Goldufsky, Josef; Linnane, Stephanie; Lukaesko, Lisa; Weinberg, Andrew D; Ruby, Carl E

    2014-06-01

    Immune responses wane during aging, posing challenges to the potential effectiveness of cancer immunotherapies. We previously demonstrated that in the context of a promising immunotherapeutic, OX40 agonist (αOX40), older animals exhibited impaired anti-tumor immune responses and diminished CD4 T cell effector differentiation. In this study, we hypothesized that tumor immune responses could be maintained during aging through caloric restriction (CR) or dietary supplementation with resveratrol (RES), a CR mimetic. Mice were placed on either a calorically restricted diet or a RES-formulated diet starting between 4 and 6 months of age and continued until mice reached 12 months of age. Tumor immune responses were assessed after challenging with either sarcoma or breast tumor cells followed by αOX40 treatment. Our results show that CR, but not RES, maintained OX40-mediated anti-tumor immunity. In addition, CR fully sustained antigen-specific CD4 T cell priming in aged hosts (12 months old), whereas tumor-specific CD8 T cell priming was not fully maintained compared to young reference animals (2 months old). Thus, CR appears to maintain immunological fitness of the CD4 T cell priming environment during aging, which is critical for optimal OX40-mediated responses.

  8. Chronic Caloric Restriction and Exercise Improve Metabolic Conditions of Dietary-Induced Obese Mice in Autophagy Correlated Manner without Involving AMPK

    PubMed Central

    Cui, Mingxia; Yu, Han; Wang, Jinli; Gao, Junjie; Li, Ji

    2013-01-01

    Aim. To investigate the role of AMPK activation and autophagy in mediating the beneficial effects of exercise and caloric restriction in obesity. Methods. Dietary-induced obesity mice were made and divided into 5 groups; one additional group of normal mice serves as control. Mice in each group received different combinations of interventions including low fat diet, caloric restriction, and exercise. Then their metabolic conditions were assessed by measuring serum glucose and insulin, serum lipids, and liver function. AMPK phosphorylation and autophagy activity were detected by western blotting. Results. Obese mice models were successfully induced by high fat diet. Caloric restriction consistently improved the metabolic conditions of the obese mice, and the effects are more prominent than the mice that received only exercise. Also, caloric restriction, exercise, and low fat diet showed a synergistic effect in the improvement of metabolic conditions. Western blotting results showed that this improvement was not related with the activation of AMPK in liver, skeletal muscle, or heart but correlates well with the autophagy activity. Conclusion. Caloric restriction has more prominent beneficial effects than exercise in dietary-induced obese mice. These effects are correlated with the autophagy activity and may be independent of AMPK activation. PMID:23762877

  9. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings

    PubMed Central

    2011-01-01

    Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion. PMID:21981968

  10. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings.

    PubMed

    Trepanowski, John F; Canale, Robert E; Marshall, Kate E; Kabir, Mohammad M; Bloomer, Richard J

    2011-10-07

    Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion.

  11. Effect of aging and anti-aging caloric restriction on the endocrine regulation of rat liver autophagy.

    PubMed

    Donati, Alessio; Recchia, Gianluca; Cavallini, Gabriella; Bergamini, Ettore

    2008-06-01

    Autophagy is a process that sequesters and degrades altered organelles and macromolecular cytoplasmic constituents for cellular restructuring and repair, and as a source of nutrients for metabolic use in early starvation it may be involved in anti-aging mechanisms of caloric restriction. The effects of 40% daily dietary restriction (DR) and intermittent feeding (EOD) on the age-related changes in the endocrine regulation of autophagic proteolysis were studied by monitoring the rate of valine release from isolated rat liver cells. Results show that in ad libitum-fed rats sensitivity of autophagy to glucagon and insulin declines by one order of magnitude in older rats. Both DR and EOD maintain the sensitivity to glucagon at juvenile levels, whereas only EOD can fully maintain response to insulin. It is concluded that changes in the sensitivity to glucagon may have a role in the aging process.

  12. Roles of Caloric Restriction, Ketogenic Diet and Intermittent Fasting during Initiation, Progression and Metastasis of Cancer in Animal Models: A Systematic Review and Meta-Analysis

    PubMed Central

    Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    Background The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Methods Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction. Results Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI) of 0.20 (0.12, 0.34) relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer. Conclusions Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated. PMID:25502434

  13. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis.

    PubMed

    Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian

    2014-01-01

    The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction. Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI) of 0.20 (0.12, 0.34) relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer. Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.

  14. Curcumin Mimics the Neurocognitive and Anti-Inflammatory Effects of Caloric Restriction in a Mouse Model of Midlife Obesity

    PubMed Central

    Franks, Susan; Sumien, Nathalie; Thangthaeng, Nopporn; Filipetto, Frank

    2015-01-01

    Dietary curcumin was studied for its potential to decrease adiposity and reverse obesity- associated cognitive impairment in a mouse model of midlife sedentary obesity. We hypothesized that curcumin intake, by decreasing adiposity, would improve cognitive function in a manner comparable to caloric restriction (CR), a weight loss regimen. 15-month-old male C57BL/6 mice were assigned in groups to receive the following dietary regimens for 12 weeks: (i) a base diet (Ain93M) fed ad libitum (AL), (ii) the base diet restricted to 70% of ad libitum (CR) or (iii) the base diet containing curcumin fed AL (1000 mg/kg diet, CURAL). Blood markers of inflammation, interleukin 6 (IL-6) and C-reactive protein (CRP), as well as an indicator of redox stress (GSH: GSSG ratio), were determined at different time points during the treatments, and visceral and subcutaneous adipose tissue were measured upon completion of the experiment. After 8 weeks of dietary treatment, the mice were tested for spatial cognition (Morris water maze) and cognitive flexibility (discriminated active avoidance). The CR group showed significant weight loss and reduced adiposity, whereas CURAL mice had stable weight throughout the experiment, consumed more food than the AL group, with no reduction of adiposity. However, both CR and CURAL groups took fewer trials than AL to reach criterion during the reversal sessions of the active avoidance task, suggesting an improvement in cognitive flexibility. The AL mice had higher levels of CRP compared to CURAL and CR, and GSH as well as the GSH: GSSG ratio were increased during curcumin intake, suggesting a reducing shift in the redox state. The results suggest that, independent of their effects on adiposity; dietary curcumin and caloric restriction have positive effects on frontal cortical functions that could be linked to anti-inflammatory or antioxidant actions. PMID:26473740

  15. Curcumin Mimics the Neurocognitive and Anti-Inflammatory Effects of Caloric Restriction in a Mouse Model of Midlife Obesity.

    PubMed

    Sarker, Marjana Rahman; Franks, Susan; Sumien, Nathalie; Thangthaeng, Nopporn; Filipetto, Frank; Forster, Michael

    2015-01-01

    Dietary curcumin was studied for its potential to decrease adiposity and reverse obesity- associated cognitive impairment in a mouse model of midlife sedentary obesity. We hypothesized that curcumin intake, by decreasing adiposity, would improve cognitive function in a manner comparable to caloric restriction (CR), a weight loss regimen. 15-month-old male C57BL/6 mice were assigned in groups to receive the following dietary regimens for 12 weeks: (i) a base diet (Ain93M) fed ad libitum (AL), (ii) the base diet restricted to 70% of ad libitum (CR) or (iii) the base diet containing curcumin fed AL (1000 mg/kg diet, CURAL). Blood markers of inflammation, interleukin 6 (IL-6) and C-reactive protein (CRP), as well as an indicator of redox stress (GSH: GSSG ratio), were determined at different time points during the treatments, and visceral and subcutaneous adipose tissue were measured upon completion of the experiment. After 8 weeks of dietary treatment, the mice were tested for spatial cognition (Morris water maze) and cognitive flexibility (discriminated active avoidance). The CR group showed significant weight loss and reduced adiposity, whereas CURAL mice had stable weight throughout the experiment, consumed more food than the AL group, with no reduction of adiposity. However, both CR and CURAL groups took fewer trials than AL to reach criterion during the reversal sessions of the active avoidance task, suggesting an improvement in cognitive flexibility. The AL mice had higher levels of CRP compared to CURAL and CR, and GSH as well as the GSH: GSSG ratio were increased during curcumin intake, suggesting a reducing shift in the redox state. The results suggest that, independent of their effects on adiposity; dietary curcumin and caloric restriction have positive effects on frontal cortical functions that could be linked to anti-inflammatory or antioxidant actions.

  16. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice.

    PubMed

    Baumeier, Christian; Kaiser, Daniel; Heeren, Jörg; Scheja, Ludger; John, Clara; Weise, Christoph; Eravci, Murat; Lagerpusch, Merit; Schulze, Gunnar; Joost, Hans-Georg; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-01

    Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice. AL mice showed a diabetes prevalence of 43%, whereas mice under CR and IF were completely protected against hyperglycemia. Proteomic analysis of hepatic lipid droplets revealed significantly higher levels of PSMD9 (co-activator Bridge-1), MIF (macrophage migration inhibitor factor), TCEB2 (transcription elongation factor B (SIII), polypeptide 2), ACY1 (aminoacylase 1) and FABP5 (fatty acid binding protein 5), and a marked reduction of GSTA3 (glutathione S-transferase alpha 3) in samples of CR and IF mice. In addition, accumulation of diacylglycerols (DAGs) was significantly reduced in livers of IF mice (P=0.045) while CR mice showed a similar tendency (P=0.062). In particular, 9 DAG species were significantly reduced in response to IF, of which DAG-40:4 and DAG-40:7 also showed significant effects after CR. This was associated with a decreased PKCε activation and might explain the improved insulin sensitivity. In conclusion, our data indicate that protection against diabetes upon caloric restriction and intermittent fasting associates with a modulation of lipid droplet protein composition and reduction of intracellular DAG species. Copyright © 2015. Published by Elsevier B.V.

  17. Resveratrol and caloric restriction prevent hepatic steatosis by regulating SIRT1-autophagy pathway and alleviating endoplasmic reticulum stress in high-fat diet-fed rats.

    PubMed

    Ding, Shibin; Jiang, Jinjin; Zhang, Guofu; Bu, Yongjun; Zhang, Guanghui; Zhao, Xiangmei

    2017-01-01

    Studies have demonstrated that resveratrol (a natural polyphenol) and caloric restriction activate Sirtuin-1 (SIRT1) and induce autophagy. Furthermore, autophagy is induced by the SIRT1-FoxO signaling pathway and was recently shown to be a critical protective mechanism against non-alcoholic fatty liver disease (NAFLD) development. We aimed to compare the effects of resveratrol and caloric restriction on hepatic lipid metabolism and elucidate the mechanism by which resveratrol supplementation and caloric restriction alleviate hepatosteatosis by examining the molecular interplay between SIRT1 and autophagy. Eight-week-old male Wistar rats (40) were divided into four groups: the STD group, which was fed a standard chow diet; the HFD group, which was fed a high-fat diet; HFD-RES group, which was fed a high-fat diet plus resveratrol (200 mg/kg.bw); and the HFD-CR group, which was fed a high-fat diet in portions containing 70% of the mean intake of the HFD group rats. The groups were maintained for 18 weeks. Metabolic parameters, Oil Red O and hematoxylin-eosin staining of the liver, and the mRNA and protein expression of SIRT1, autophagy markers and endoplasmic reticulum(ER) stress-associated genes in the liver were assessed after the 18-week treatment. We found that resveratrol (200 mg/kg bw) and caloric restriction (30%) partially prevented hepatic steatosis and hepatocyte ballooning, increased the expression of SIRT1 and autophagy markers while decreasing ER stress markers in the liver and alleviated lipid metabolism disorder. Moreover, caloric restriction provided superior protection against HFD-induced hepatic fatty accumulation compared with resveratrol and the effects were associated with decreased total energy intake and body weight. We conclude that the SIRT1-autophagy pathway and decreased ER stress are universally required for the protective effects of moderate caloric restriction (30%) and resveratrol (a pharmacological SIRT1 activator) supplementation

  18. Long-term caloric restriction reduces metabolic rate and heart rate under cool and thermoneutral conditions in FBNF1 rats.

    PubMed

    Knight, W David; Witte, M M; Parsons, A D; Gierach, M; Overton, J Michael

    2011-05-01

    The long-term metabolic and cardiovascular responses to caloric restriction (CR) are poorly understood. We examined the responses to one year of CR in FBNF1 rats housed in cool (COOL; T(a)=15 °C) or thermoneutral (TMN; T(a)=30 °C) conditions. Rats were acclimated to COOL or TMN for 2 months, instrumented for cardiovascular telemetry and studied in calorimeters. Baseline caloric intake, oxygen consumption (VO(2)), mean arterial blood pressure (MAP), and heart rate (HR) were determined prior to assignment to ad lib (AL) or CR groups (30-40% CR) within each T(a) (n = 8). Groups of rats were studied after 10 weeks CR, one year CR, and after 4 days of re-feeding. Both 10 weeks and one year of CR reduced HR and VO(2) irrespective of T(a). Evaluation of the relationship between metabolic organ mass (liver, heart, brain, and kidney mass) and energy expenditure revealed a clear shift induced by CR to reduce expenditure per unit metabolic mass in both COOL and TMN groups. Re-feeding resulted in prompt elevations of HR and VO(2) to levels observed in control rats. These findings are consistent with the hypothesis that long term CR produces sustained reductions in metabolic rate and heart rate in rats.

  19. Caloric Restriction in Older Adults-Differential Effects of Weight Loss and Reduced Weight on Brain Structure and Function.

    PubMed

    Prehn, Kristin; Jumpertz von Schwartzenberg, Reiner; Mai, Knut; Zeitz, Ulrike; Witte, A Veronica; Hampel, Dierk; Szela, Anna-Maria; Fabian, Sonja; Grittner, Ulrike; Spranger, Joachim; Flöel, Agnes

    2017-03-01

    Dietary modifications such as caloric restriction (CR) have been suggested as a means to improve memory and prevent age-related decline. However, it is unclear whether those effects remain stable over time or are related specifically to negative energy balance during the weight loss phase of CR. Using a randomized interventional design, we investigated changes in recognition memory and neural correlates in postmenopausal obese women (n = 19): 1) after intense weight loss in the course of a 12-week low-caloric diet (reduced body weight and negative energy balance) and 2) after having sustained the reduced weight over 4 more weeks (reduced body weight, but energy balance equilibrium). Participants were contrasted to a control group (n = 18) instructed not to change dietary habits. In the CR group, we found improved recognition memory, paralleled by increased gray matter volume in inferior frontal gyrus and hippocampus, and augmented hippocampal resting-state functional connectivity to parietal areas. Moreover, effects were specific for transient negative energy balance and could not be detected after subsequent weight maintenance. Our data demonstrate for the first time in humans that beneficial effects of CR on brain structure and function are due to weight loss rather than an overall reduced weight. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Metabonomic investigation on the protective effects of rosiglitazone and caloric restriction for renal senescence in a rat model.

    PubMed

    Zhang, Yingwei; Yan, Shikai; Gao, Xiang; Dai, Weixing; Liu, Senyan; Jin, Huizi; Zhang, Weidong; Mei, Changlin

    2012-10-01

    A liquid chromatography coupled with mass spectrometry based metabonomics approach was applied to investigate the protective effects of rosiglitazone (RGTZ) and caloric restriction (CR) for renal senescence in a rat model. Kidney tissues and serum samples were collected from four groups of rats, including 12- month and 24-month ad libitum fed rats, RGTZ and CR treated 24-month rats. Multivariate data analysis was performed on the mass data of metabonomic profiles to detect the differences among the groups. By metabolite profiling and partial least squares discriminate analysis, 23 renal senescence-related endogenous metabolites were discovered, including phospholipids, carnitine, acetylcarnitine, and creatinine, most of which were related to the oxidative stress and lipid metabolism. Renal senescence is characterized by oxidative stress and changes in lipid metabolism, and RGTZ administration and CR treatment may have similar protective effects for renal senescence via restraining oxidative stress and lipid metabolism.

  1. Inaccessible food cues affect stress and weight gain in calorically-restricted and ad lib fed rats.

    PubMed

    Coelho, Jennifer S; Polivy, Janet; Fleming, Alison; Hargreaves, Duane; Herman, C Peter; Lao, Grace

    2010-02-01

    Research suggests that caloric restriction (CR) is beneficial; however, the effects of CR in the context of food cues are unclear. A 2 (food cue vs. no cue)x2 (CR vs. ad lib) between-subjects design was employed to test these effects in 40 rats. It was predicted that cue exposure and CR would induce stress, and that these factors might interact synergistically. The results demonstrated that cue-exposed CR rats weighed less than did non-exposed CR rats. A blunted stress response was evident in CR rats relative to ad lib rats. Finally, cue-exposed rats had higher corticosterone levels and body weight during ad lib feeding than did non-cued rats. These results suggest that both CR and chronic food-cue exposure can be stressful, and the implications of this research are discussed in the context of humans' 'obesigenic' environment.

  2. Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer's disease pathology in a mouse model.

    PubMed

    Dhurandhar, Emily J; Allison, David B; van Groen, Thomas; Kadish, Inga

    2013-01-01

    It has been shown that caloric restriction (CR) delays aging and possibly delays the development of Alzheimer's disease (AD). We conjecture that the mechanism may involve interoceptive cues, rather than reduced energy intake per se. We determined that hunger alone, induced by a ghrelin agonist, reduces AD pathology and improves cognition in the APP-SwDI mouse model of AD. Long-term treatment with a ghrelin agonist was sufficient to improve the performance in the water maze. The treatment also reduced levels of amyloid beta (Aβ) and inflammation (microglial activation) at 6 months of age compared to the control group, similar to the effect of CR. Thus, a hunger-inducing drug attenuates AD pathology, in the absence of CR, and the neuroendocrine aspects of hunger also prevent age-related cognitive decline.

  3. Targeting tumor-initiating cells: Eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction

    PubMed Central

    Lamb, Rebecca; Harrison, Hannah; Smith, Duncan L.; Townsend, Paul A.; Jackson, Thomas; Ozsvari, Bela; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Howell, Anthony; Lisanti, Michael P.; Sotgia, Federica

    2015-01-01

    We have used an unbiased proteomic profiling strategy to identify new potential therapeutic targets in tumor-initiating cells (TICs), a.k.a., cancer stem cells (CSCs). Towards this end, the proteomes of mammospheres from two breast cancer cell lines were directly compared to attached monolayer cells. This allowed us to identify proteins that were highly over-expressed in CSCs and/or progenitor cells. We focused on ribosomal proteins and protein folding chaperones, since they were markedly over-expressed in mammospheres. Overall, we identified >80 molecules specifically associated with protein synthesis that were commonly upregulated in mammospheres. Most of these proteins were also transcriptionally upregulated in human breast cancer cells in vivo, providing evidence for their potential clinical relevance. As such, increased mRNA translation could provide a novel mechanism for enhancing the proliferative clonal expansion of TICs. The proteomic findings were functionally validated using known inhibitors of protein synthesis, via three independent approaches. For example, puromycin (which mimics the structure of tRNAs and competitively inhibits protein synthesis) preferentially targeted CSCs in both mammospheres and monolayer cultures, and was ~10-fold more potent for eradicating TICs, than “bulk” cancer cells. In addition, rapamycin, which inhibits mTOR and hence protein synthesis, was very effective at reducing mammosphere formation, at nanomolar concentrations. Finally, mammosphere formation was also markedly inhibited by methionine restriction, which mimics the positive effects of caloric restriction in cultured cells. Remarkably, mammosphere formation was >18-fold more sensitive to methionine restriction and replacement, as directly compared to monolayer cell proliferation. Methionine is absolutely required for protein synthesis, since every protein sequence starts with a methionine residue. Thus, the proliferation and survival of CSCs is very sensitive to

  4. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency

    USDA-ARS?s Scientific Manuscript database

    Residual feed intake (RFI) is a measure of feed efficiency, where low RFI denotes high feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and relevant to human health benefits such as longevity and cancer prevention. We generated transcript profiles of ...

  5. A Multi-stage Carcinogenesis Model to Investigate Caloric Restriction as a Potential Tool for Post-irradiation Mitigation of Cancer Risk

    PubMed Central

    Tani, Shusuke; Blyth, Benjamin John; Shang, Yi; Morioka, Takamitsu; Kakinuma, Shizuko; Shimada, Yoshiya

    2016-01-01

    The risk of radiation-induced cancer adds to anxiety in low-dose exposed populations. Safe and effective lifestyle changes which can help mitigate excess cancer risk might provide exposed individuals the opportunity to pro-actively reduce their cancer risk, and improve mental health and well-being. Here, we applied a mathematical multi-stage carcinogenesis model to the mouse lifespan data using adult-onset caloric restriction following irradiation in early life. We re-evaluated autopsy records with a veterinary pathologist to determine which tumors were the probable causes of death in order to calculate age-specific mortality. The model revealed that in both irradiated and unirradiated mice, caloric restriction reduced the age-specific mortality of all solid tumors and hepatocellular carcinomas across most of the lifespan, with the mortality rate dependent more on age owing to an increase in the number of predicted rate-limiting steps. Conversely, irradiation did not significantly alter the number of steps, but did increase the overall transition rate between the steps. We show that the extent of the protective effect of caloric restriction is independent of the induction of cancer from radiation exposure, and discuss future avenues of research to explore the utility of caloric restriction as an example of a potential post-irradiation mitigation strategy. PMID:27390741

  6. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial

    USDA-ARS?s Scientific Manuscript database

    The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and se...

  7. Caloric Restriction reduces inflammation and improves T cell-mediated immune response in obese mice but concomitant consumption of curcumin/piperine adds no further benefit

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with low-grade inflammation and impaired immune response. Caloric restriction (CR) has been shown to inhibit inflammatory response and enhance cell-mediated immune function. Curcumin, the bioactive phenolic component of turmeric spice, is proposed to have anti-obesity and anti-...

  8. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice.

    PubMed

    Guo, Janet; Bakshi, Vikas; Lin, Ai-Ling

    2015-01-01

    Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals' memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions - normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity.

  9. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice

    PubMed Central

    Guo, Janet; Bakshi, Vikas; Lin, Ai-Ling

    2015-01-01

    Preservation of brain integrity with age is highly associated with lifespan determination. Caloric restriction (CR) has been shown to increase longevity and healthspan in various species; however, its effects on preserving living brain functions in aging remain largely unexplored. In the study, we used multimodal, non-invasive neuroimaging (PET/MRI/MRS) to determine in vivo brain glucose metabolism, energy metabolites, and white matter structural integrity in young and old mice fed with either control or 40% CR diet. In addition, we determined the animals’ memory and learning ability with behavioral assessments. Blood glucose, blood ketone bodies, and body weight were also measured. We found distinct patterns between normal aging and CR aging on brain functions – normal aging showed reductions in brain glucose metabolism, white matter integrity, and long-term memory, resembling human brain aging. CR aging, in contrast, displayed an early shift from glucose to ketone bodies metabolism, which was associated with preservations of brain energy production, white matter integrity, and long-term memory in aging mice. Among all the mice, we found a positive correlation between blood glucose level and body weight, but an inverse association between blood glucose level and lifespan. Our findings suggest that CR could slow down brain aging, in part due to the early shift of energy metabolism caused by lower caloric intake, and we were able to identify the age-dependent effects of CR non-invasively using neuroimaging. These results provide a rationale for CR-induced sustenance of brain health with extended longevity. PMID:26617514

  10. The effect of caloric restriction interventions on growth hormone secretion in non-obese men and women

    PubMed Central

    Redman, Leanne M.; Veldhuis, Johannes D.; Rood, Jennifer; Smith, Steven R.; Williamson, Donald; Ravussin, Eric

    2009-01-01

    Summary Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age-associated decline in GH, IGF-1 and GH secretion. Aim To evaluate the effect of caloric restriction on GH secretory dynamics. Methods Forty-three young (36.8±1.0y), overweight (BMI 27.8±0.7) men (n=20) and women (n=23) were randomized into four groups; Control=100% of energy requirements; CR=25% calorie restriction; CR+EX=12.5% CR+12.5% increase in energy expenditure by structured exercise; LCD=low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after six months, body composition (DXA), abdominal visceral fat (CT) 11-h GH secretion (blood sampling every 10 min for 11 hours; 2100h-0800h) and deconvolution analysis were measured. Results After six months, weight (Control:−1±1%, CR:−10±1%, CR+EX:−10±1%, LCD:−14±1%), fat mass (Control:−2±3%, CR:−24±3%, CR+EX:−25±3%, LCD:−31±2%), and visceral fat (Control: −2±4%, CR:−28±4%, CR+EX:−27±3%, LCD:−36±2%) were significantly (p<.001) reduced in the three intervention groups compared to control. Mean 11-h GH concentrations were not changed in CR or control but increased in CR+EX (p<.0001) and LCD (p<.0001) because of increased secretory burst mass (CR+EX: 34±13%, LCD: 27±22%, p<0.05) and amplitude (CR+EX: 34±14%, LCD: 30±20%, p<0.05) but not to changes in secretory burst frequency or GH half-life. Fasting ghrelin was significantly increased from baseline in all three intervention groups however total IGF-1 concentrations were increased only in CR+EX (10±7%, p<0.05) and LCD (19±4%, p<0.001). Conclusion A 25% CR diet for 6 months does not change GH, GH secretion or IGF-1 in non-obese men and women. PMID:19878147

  11. Impact of caloric restriction on myocardial ischaemia/reperfusion injury and new therapeutic options to mimic its effects

    PubMed Central

    Rohrbach, Susanne; Aslam, Muhammad; Niemann, Bernd; Schulz, Rainer

    2014-01-01

    Caloric restriction (CR) is the most reliable intervention to extend lifespan and prevent age-related disorders in various species from yeast to rodents. Short- and long-term CR confers cardio protection against ischaemia/reperfusion injury in young and even in aged rodents. A few human trials suggest that CR has the potential to mediate improvement of cardiac or vascular function and induce retardation of cardiac senescence also in humans. The underlying mechanisms are diverse and have not yet been clearly defined. Among the known mediators for the benefits of CR are NO, the AMP-activated PK, sirtuins and adiponectin. Mitochondria, which play a central role in such complex processes within the cell as apoptosis, ATP-production or oxidative stress, are centrally involved in many aspects of CR-induced protection against ischaemic injury. Here, we discuss the relevant literature regarding the protection against myocardial ischaemia/reperfusion injury conferred by CR. Furthermore, we will discuss drug targets to mimic CR and the possible role of calorie restriction in preserving cardiovascular function in humans. PMID:24611611

  12. Different effects on bone strength and cell differentiation in pre pubertal caloric restriction versus hypothalamic suppression.

    PubMed

    Joshi, R N; Safadi, F F; Barbe, M F; Del Carpio-Cano, Fe; Popoff, S N; Yingling, V R

    2011-10-01

    Hypothalamic amenorrhea and energy restriction during puberty affect peak bone mass accrual. One hypothesis suggests energy restriction alters hypothalamic function resulting in suppressed estradiol levels leading to bone loss. However, both positive and negative results have been reported regarding energy restriction and bone strength. Therefore, the purpose of this study was to investigate energy restriction and hypothalamic suppression during pubertal onset on bone mechanical strength and the osteogenic capacity of bone marrow-derived cells in two models: female rats treated with gonadotropin releasing hormone antagonists (GnRH-a) or 30% energy restriction. At 23 days of age, female Sprague Dawley rats were assigned to three groups: control group (C, n=10), GnRH-a group (n=10), and Energy Restriction (ER, n=12) group. GnRH-a animals received daily injections for 27 days. The animals in the ER group received 70% of the control animals' intake. After sacrifice (50 days of age), body weight, uterine and muscle weights were measured. Bone marrow-derived stromal cells were cultured and assayed for proliferation and differentiation into osteoblasts. Outcome measures included bone strength, bone histomorphometry and architecture, serum IGF-1 and osteocalcin. GnRH-a suppressed uterine weight, decreased osteoblast proliferation, bone strength, trabecular bone volume and architecture compared to control. Elevated serum IGF-1 and osteocalcin levels and body weight were found. The ER model had an increase in osteoblast proliferation compared to the GnRH-a group, similar bone strength relative to body weight and increased trabecular bone volume in the lumbar spine compared to control. The ER animals were smaller but had developed bone strength sufficient for their size. In contrast, suppressed estradiol via hypothalamic suppression resulted in bone strength deficits and trabecular bone volume loss. In summary, our results support the hypothesis that during periods of

  13. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus.

    PubMed

    Henry, R R; Scheaffer, L; Olefsky, J M

    1985-11-01

    To assess the effects of very low caloric (VLC) diets on glucose homeostasis in noninsulin-dependent diabetes mellitus, 30 obese subjects with NIDDM were studied for 40 days while eating a 330 Cal/day diet, with a subgroup of 12 subjects further evaluated during 40 days of refeeding. All subjects successfully lost weight, with an average weight loss of 4.6 +/- 0.2 kg (+/- SEM) after 10 days, 7.1 +/- 0.3 kg after 20 days, and 10.5 +/- 0.4 kg after 40 days of VLC diet therapy. Thus, weight loss was steady and progressive throughout the diet period. In contrast, the majority (87%) of the reduction in mean fasting plasma glucose (FPG) levels (297 +/- 13 to 158 +/- 10 mg/dl; P less than 0.001) occurred after 10 days of VLC diet therapy, with a further reduction in glucose levels to 138 +/- 9 mg/dl on day 40. The FPG response measured after 10 days of VLC diet was unrelated to the degree of obesity, rate or extent of weight loss, or prevailing insulin levels, but did correlate significantly with the initial FPG level (r = 0.37; P less than 0.05) and duration of diabetes (r = 0.42; P less than 0.05). After discontinuation of the VLC diet and refeeding of an isocaloric (weight maintenance) diet in 12 subjects, a variable increase in the FPG occurred, with an average increase of 80% after 40 days of refeeding. However, the mean FPG level after 40 days of refeeding was still markedly lower than that before VLC diet therapy (254 +/- 20 vs. 167 +/- 14 mg/dl; P less than 0.02) despite withdrawal of antidiabetic medication in all subjects. The basal hepatic glucose output (HGO) fell rapidly from 149 +/- 13 to 81 +/- 5 mg/M2 X min (P less than 0.001) after 10 days of VLC diet and rose from 67 +/- 4 to 88 +/- 7 mg/M2 X min (P less than 0.001) after 10 days of refeeding. Basal HGO demonstrated a highly significant positive correlation with FPG levels (r = 0.89; P less than 0.001) before and during both VLC diet therapy and refeeding. A significant correlation was also found between

  14. Combined effect of gender and caloric restriction on liver proteomic expression profile.

    PubMed

    Valle, Adamo; Silvestri, Elena; Moreno, Maria; Chambery, Angela; Oliver, Jordi; Roca, Pilar; Goglia, Fernando

    2008-07-01

    We analyzed the combined effect of gender and CR on protein expression profile in liver. We identified 27 differentially expressed proteins involved in several cellular functions such as substrate metabolism, antioxidant systems, stress response, iron homeostasis and cardiovascular protection. This study reveals new cellular pathways liable to be similarly regulated in females and calorie restricted rats and which could be related with the greater longevity in these animals.

  15. Cardiac Sirt1 mediates the cardioprotective effect of caloric restriction by suppressing local complement system activation after ischemia-reperfusion.

    PubMed

    Yamamoto, Tsunehisa; Tamaki, Kayoko; Shirakawa, Kohsuke; Ito, Kentaro; Yan, Xiaoxiang; Katsumata, Yoshinori; Anzai, Atsushi; Matsuhashi, Tomohiro; Endo, Jin; Inaba, Takaaki; Tsubota, Kazuo; Sano, Motoaki; Fukuda, Keiichi; Shinmura, Ken

    2016-04-15

    Caloric restriction (CR) confers cardioprotection against ischemia-reperfusion (I/R) injury. We previously found the essential roles of endothelial nitric oxide synthase in the development of CR-induced cardioprotection and Sirt1 activation during CR (Shinmura K, Tamaki K, Ito K, Yan X, Yamamoto T, Katsumata Y, Matsuhashi T, Sano M, Fukuda K, Suematsu M, Ishii I. Indispensable role of endothelial nitric oxide synthase in caloric restriction-induced cardioprotection against ischemia-reperfusion injury.Am J Physiol Heart Circ Physiol 308: H894-H903, 2015). However, the exact mechanism by which Sirt1 in cardiomyocytes mediates the cardioprotective effect of CR remains undetermined. We subjected cardiomyocyte-specific Sirt1 knockout (CM-Sirt1(-/-)) mice and the corresponding control mice to either 3-mo ad libitum feeding or CR (-40%). Isolated perfused hearts were subjected to 25-min global ischemia, followed by 60-min reperfusion. The recovery of left ventricle function after I/R was improved, and total lactate dehydrogenase release into the perfusate during reperfusion was attenuated in the control mice treated with CR, but a similar cardioprotective effect of CR was not observed in the CM-Sirt1(-/-)mice. The expression levels of cardiac complement component 3 (C3) at baseline and the accumulation of C3 and its fragments in the ischemia-reperfused myocardium were attenuated by CR in the control mice, but not in the CM-Sirt1(-/-)mice. Resveratrol treatment also attenuated the expression levels of C3 protein in cultured neonatal rat ventricular cardiomyocytes. Moreover, the degree of myocardial I/R injury in conventional C3 knockout (C3(-/-)) mice treated with CR was similar to that in the ad libitum-fed C3(-/-)mice, although the expression levels of Sirt1 were enhanced by CR. These results demonstrate that cardiac Sirt1 plays an essential role in CR-induced cardioprotection against I/R injury by suppressing cardiac C3 expression. This is the first report suggesting

  16. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world's longest-lived people and its potential impact on morbidity and life span.

    PubMed

    Willcox, Bradley J; Willcox, D Craig; Todoriki, Hidemi; Fujiyoshi, Akira; Yano, Katsuhiko; He, Qimei; Curb, J David; Suzuki, Makoto

    2007-10-01

    Long-term caloric restriction (CR) is a robust means of reducing age-related diseases and extending life span in multiple species, but the effects in humans are unknown. The low caloric intake, long life expectancy, and the high prevalence of centenarians in Okinawa have been used as an argument to support the CR hypothesis in humans. However, no long-term, epidemiologic analysis has been conducted on traditional dietary patterns, energy balance, and potential CR phenotypes for the specific cohort of Okinawans who are purported to have had a calorically restricted diet. Nor has this cohort's subsequent mortality experience been rigorously studied. Therefore, we investigated six decades of archived population data on the elderly cohort of Okinawans (aged 65-plus) for evidence of CR. Analyses included traditional diet composition, energy intake, energy expenditure, anthropometry, plasma DHEA, mortality from age-related diseases, and current survival patterns. Findings include low caloric intake and negative energy balance at younger ages, little weight gain with age, life-long low BMI, relatively high plasma DHEA levels at older ages, low risk for mortality from age-related diseases, and survival patterns consistent with extended mean and maximum life span. This study lends epidemiologic support for phenotypic benefits of CR in humans and is consistent with the well-known literature on animals with regard to CR phenotypes and healthy aging.

  17. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia.

    PubMed

    Cawthorn, William P; Scheller, Erica L; Parlee, Sebastian D; Pham, H An; Learman, Brian S; Redshaw, Catherine M H; Sulston, Richard J; Burr, Aaron A; Das, Arun K; Simon, Becky R; Mori, Hiroyuki; Bree, Adam J; Schell, Benjamin; Krishnan, Venkatesh; MacDougald, Ormond A

    2016-02-01

    Bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in healthy adults and increases further in clinical conditions of altered skeletal or metabolic function. Perhaps most strikingly, and in stark contrast to white adipose tissue, MAT has been found to increase during caloric restriction (CR) in humans and many other species. Hypoleptinemia may drive MAT expansion during CR but this has not been demonstrated conclusively. Indeed, MAT formation and function are poorly understood; hence, the physiological and pathological roles of MAT remain elusive. We recently revealed that MAT contributes to hyperadiponectinemia and systemic adaptations to CR. To further these observations, we have now performed CR studies in rabbits to determine whether CR affects adiponectin production by MAT. Moderate or extensive CR decreased bone mass, white adipose tissue mass, and circulating leptin but, surprisingly, did not cause hyperadiponectinemia or MAT expansion. Although this unexpected finding limited our subsequent MAT characterization, it demonstrates that during CR, bone loss can occur independently of MAT expansion; increased MAT may be required for hyperadiponectinemia; and hypoleptinemia is not sufficient for MAT expansion. We further investigated this relationship in mice. In females, CR increased MAT without decreasing circulating leptin, suggesting that hypoleptinemia is also not necessary for MAT expansion. Finally, circulating glucocorticoids increased during CR in mice but not rabbits, suggesting that glucocorticoids might drive MAT expansion during CR. These observations provide insights into the causes and consequences of CR-associated MAT expansion, knowledge with potential relevance to health and disease.

  18. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism

    PubMed Central

    Kim, Kyung Eun; Jung, Youngae; Min, Soonki; Nam, Miso; Heo, Rok Won; Jeon, Byeong Tak; Song, Dae Hyun; Yi, Chin-ok; Jeong, Eun Ae; Kim, Hwajin; Kim, Jeonghyun; Jeong, Seon-Yong; Kwak, Woori; Ryu, Do Hyun; Horvath, Tamas L.; Roh, Gu Seob; Hwang, Geum-Sook

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of liver disease and its prevalence is a serious and growing clinical problem. Caloric restriction (CR) is commonly recommended for improvement of obesity-related diseases such as NAFLD. However, the effects of CR on hepatic metabolism remain unknown. We investigated the effects of CR on metabolic dysfunction in the liver of obese diabetic db/db mice. We found that CR of db/db mice reverted insulin resistance, hepatic steatosis, body weight and adiposity to those of db/m mice. 1H-NMR- and UPLC-QTOF-MS-based metabolite profiling data showed significant metabolic alterations related to lipogenesis, ketogenesis, and inflammation in db/db mice. Moreover, western blot analysis showed that lipogenesis pathway enzymes in the liver of db/db mice were reduced by CR. In addition, CR reversed ketogenesis pathway enzymes and the enhanced autophagy, mitochondrial biogenesis, collagen deposition and endoplasmic reticulum stress in db/db mice. In particular, hepatic inflammation-related proteins including lipocalin-2 in db/db mice were attenuated by CR. Hepatic metabolomic studies yielded multiple pathological mechanisms of NAFLD. Also, these findings showed that CR has a therapeutic effect by attenuating the deleterious effects of obesity and diabetes-induced multiple complications. PMID:27439777

  19. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet.

    PubMed

    Hatori, Megumi; Vollmers, Christopher; Zarrinpar, Amir; DiTacchio, Luciano; Bushong, Eric A; Gill, Shubhroz; Leblanc, Mathias; Chaix, Amandine; Joens, Matthew; Fitzpatrick, James A J; Ellisman, Mark H; Panda, Satchidananda

    2012-06-06

    While diet-induced obesity has been exclusively attributed to increased caloric intake from fat, animals fed a high-fat diet (HFD) ad libitum (ad lib) eat frequently throughout day and night, disrupting the normal feeding cycle. To test whether obesity and metabolic diseases result from HFD or disruption of metabolic cycles, we subjected mice to either ad lib or time-restricted feeding (tRF) of a HFD for 8 hr per day. Mice under tRF consume equivalent calories from HFD as those with ad lib access yet are protected against obesity, hyperinsulinemia, hepatic steatosis, and inflammation and have improved motor coordination. The tRF regimen improved CREB, mTOR, and AMPK pathway function and oscillations of the circadian clock and their target genes' expression. These changes in catabolic and anabolic pathways altered liver metabolome and improved nutrient utilization and energy expenditure. We demonstrate in mice that tRF regimen is a nonpharmacological strategy against obesity and associated diseases.

  20. Association between life-span extension by caloric restriction and thiol redox state in two different strains of mice.

    PubMed

    Rebrin, Igor; Forster, Michael J; Sohal, Rajindar S

    2011-07-01

    The hypothesis that the life-extending effect of caloric restriction (CR) is associated with an attenuation of the age-related pro-oxidant shift in the thiol redox state was tested employing a novel experimental design. Amounts of GSH, GSSG, and protein mixed disulfides (Pr-SSG) in the skeletal muscle and liver were compared between two strains of mice that have similar life spans when fed ad libitum (AL), but different life spans under the standard CR regimen. The life span of one strain, C57BL/6, is extended under CR, whereas it remains unaffected in the other strain, DBA/2. Mice were fed AL or 40% less food starting at 4 months and compared at 6 and 24 months of age. The amounts of GSSG and Pr-SSG increased and the GSH:GSSG ratios decreased with age in both strains of AL-fed mice. CR prevented these age-related changes in the C57BL/6, whose life span is extended by CR, but not in the DBA/2 mice, in which it remains unaffected. CR enhanced the activity of glutamate-cysteine ligase in the C57BL/6, but not in the DBA/2 mice. The results suggest that longevity extension by CR may be associated with the attenuation of age-related pro-oxidizing shifts in the thiol redox state. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Circulating factors induced by caloric restriction in the nonhuman primate Macaca mulatta activate angiogenic processes in endothelial cells.

    PubMed

    Csiszar, Anna; Sosnowska, Danuta; Tucsek, Zsuzsanna; Gautam, Tripti; Toth, Peter; Losonczy, Gyorgy; Colman, Ricki J; Weindruch, Richard; Anderson, Rozalyn M; Sonntag, William E; Ungvari, Zoltan

    2013-03-01

    Moderate caloric restriction (CR) without malnutrition increases healthspan in virtually every species studied, including nonhuman primates. In mice, CR exerts significant microvascular protective effects resulting in increased microvascular density in the heart and the brain, which likely contribute to enhanced tolerance to ischemia and improved cardiac performance and cognitive function. Yet, the underlying mechanisms by which CR confer microvascular protection remain elusive. To test the hypothesis that circulating factors triggered by CR regulate endothelial angiogenic capacity, we treated cultured human endothelial cells with sera derived from Macaca mulatta on long-term (over 10 years) CR. Cells treated with sera derived from ad-libitum-fed control monkeys served as controls. We found that factors present in CR sera upregulate vascular endothelial growth factor (VEGF) signaling and stimulate angiogenic processes, including endothelial cell proliferation and formation of capillary-like structures. Treatment with CR sera also tended to increase cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology) and adhesion to collagen. Collectively, we find that circulating factors induced by CR promote endothelial angiogenic processes, suggesting that increased angiogenesis may be a potential mechanism by which CR improves cardiac function and prevents vascular cognitive impairment.

  2. A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration

    PubMed Central

    Gräff, Johannes; Kahn, Martin; Samiei, Alireza; Gao, Jun; Ota, Kristie T.; Rei, Damien; Tsai, Li-Huei

    2013-01-01

    Caloric restriction (CR) is a dietary regimen known to promote lifespan by slowing down the occurrence of age-dependent diseases. The greatest risk factor for neurodegeneration in the brain is age, from which follows that CR might also attenuate the progressive loss of neurons that is often associated with impaired cognitive capacities. In this study, we used a transgenic mouse model that allows for a temporally and spatially controlled onset of neurodegeneration to test the potentially beneficial effects of CR. We found that in this model, CR significantly delayed the onset of neurodegeneration, synaptic loss and dysfunction, and thereby preserved cognitive capacities. Mechanistically, CR induced the expression of the known lifespan-regulating protein SIRT1, prompting us to test whether a pharmacological activation of SIRT1 might recapitulate CR. We found that oral administration of a SIRT1-activating compound essentially replicated the beneficial effects of CR. Thus, SIRT1-activating compounds might provide a pharmacological alternative to the regimen of CR against neurodegeneration and its associated ailments. PMID:23699506

  3. mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits.

    PubMed

    Yang, Fengying; Chu, Xiaolei; Yin, Miaomiao; Liu, Xiaolei; Yuan, Hairui; Niu, Yanmei; Fu, Li

    2014-05-01

    Defect of autophagy is common to many neurodegenerative disorders because it serves as a major degradation pathway for the clearance of various aggregate-prone proteins. Mammalian target of rapamycin (mTOR) signaling, which is recognized as the most important negative regulator of autophagy, is also involved in neurodegenerative diseases. However, the role of mTOR and its dependent autophagy in normal brain during aging remains unknown. Furthermore, caloric restriction (CR) is frequently used as a tool to study mechanisms behind aging and age-associated diseases because CR can prevent age-related diseases and prolong lifespan in several model organisms. Inhibiting mTOR and promoting autophagy activity play roles in aging delayed by CR. However, whether CR can ameliorate age-related cognition deficits by inhibiting mTOR and activate autophagy in hippocampus needs to be further investigated. Here we showed a decline of autophagic degradation in mice hippocampus in correlation with age-dependent cognitive dysfunction, whereas the activity of mTOR and its upstream brain-derived neurotrophic factor (BDNF)/phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling was decreased with aging. In addition, facilitating the mTOR pathway successfully declines and sustains autophagic degradation with aging in hippocampus by CR treatment and is involved in CR by ameliorating age-related cognitive deficits. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Caloric restriction increases internal iliac artery and penil nitric oxide synthase expression in rat: comparison of aged and adult rats.

    PubMed

    Ozbek, Emin; Simsek, Abdulmuttalip; Ozbek, Mustafa; Somay, Adnan

    2013-09-26

    Because of the positive corelation between healthy cardiovascular system and sexual life we aimed to evaluate the effect of caloric restriction (CR) on endothelial and neuronal nitric oxide synthase (eNOS, nNOS) expression in cavernousal tissues and eNOS expression in the internal iliac artery in young and aged rats. Young (3 mo, n = 7) and aged (24 mo, n = 7) male Sprague-Dawley rats were subjected to 40% CR and were allowed free access to water for 3 months. Control rats (n = 14) fed ad libitum had free access to food and water at all times. On day 90, rats were sacrificed and internal iliac arteries and penis were removed and parafinized, eNOS and nNOS expression evaluated with immunohistochemistry. Results were evaluated semiquantitatively. eNOS and nNOS expression in cavernousal tis- sue in CR rats were more strong than in control group in both young and old rats. eNOS expression was also higher in the internal iliac arteries of CR rats than in control in young and old rats. As a result of our study we can say that there is a positive link between CR and neurotransmitter of erection in cavernousal tissues and internal iliac arteries. CR has beneficial effect to prevent sexual dysfunction in young and old animals and possible humans.

  5. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity.

    PubMed

    Catenacci, Victoria A; Pan, Zhaoxing; Ostendorf, Danielle; Brannon, Sarah; Gozansky, Wendolyn S; Mattson, Mark P; Martin, Bronwen; MacLean, Paul S; Melanson, Edward L; Troy Donahoo, William

    2016-09-01

    To evaluate the safety and tolerability of alternate-day fasting (ADF) and to compare changes in weight, body composition, lipids, and insulin sensitivity index (Si) with those produced by a standard weight loss diet, moderate daily caloric restriction (CR). Adults with obesity (BMI ≥30 kg/m(2) , age 18-55) were randomized to either zero-calorie ADF (n = 14) or CR (-400 kcal/day, n = 12) for 8 weeks. Outcomes were measured at the end of the 8-week intervention and after 24 weeks of unsupervised follow-up. No adverse effects were attributed to ADF, and 93% completed the 8-week ADF protocol. At 8 weeks, ADF achieved a 376 kcal/day greater energy deficit; however, there were no significant between-group differences in change in weight (mean ± SE; ADF -8.2 ± 0.9 kg, CR -7.1 ± 1.0 kg), body composition, lipids, or Si. After 24 weeks of unsupervised follow-up, there were no significant differences in weight regain; however, changes from baseline in % fat mass and lean mass were more favorable in ADF. ADF is a safe and tolerable approach to weight loss. ADF produced similar changes in weight, body composition, lipids, and Si at 8 weeks and did not appear to increase risk for weight regain 24 weeks after completing the intervention. © 2016 The Obesity Society.

  6. Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation

    PubMed Central

    Estrela, Gabriel R.; Wasinski, Frederick; Batista, Rogério O.; Hiyane, Meire I.; Felizardo, Raphael J. F.; Cunha, Flavia; de Almeida, Danilo C.; Malheiros, Denise M. A. C.; Câmara, Niels O. S.; Barros, Carlos C.; Bader, Michael; Araujo, Ronaldo C.

    2017-01-01

    The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1β and TNF-α levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-α was activated in mice after CR. An antagonist of PPAR-α blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-α activation. PMID:28303105

  7. Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca(2+)-induced mitochondrial permeability transition.

    PubMed

    Menezes-Filho, Sergio L; Amigo, Ignacio; Prado, Fernanda M; Ferreira, Natalie C; Koike, Marcia K; Pinto, Isabella F D; Miyamoto, Sayuri; Montero, Edna F S; Medeiros, Marisa H G; Kowaltowski, Alicia J

    2017-09-01

    Caloric restriction (CR) promotes lifespan extension and protects against many pathological conditions, including ischemia/reperfusion injury to the brain, heart and kidney. In the liver, ischemia/reperfusion damage is related to excessive mitochondrial Ca(2+) accumulation, leading to the mitochondrial permeability transition. Indeed, liver mitochondria isolated from animals maintained on CR for 4 months were protected against permeability transition and capable of taking up Ca(2+) at faster rates and in larger quantities. These changes were not related to modifications in mitochondrial respiratory activity, but rather to a higher proportion of ATP relative to ADP in CR liver mitochondria. Accordingly, both depletion of mitochondrial adenine nucleotides and loading mitochondria with exogenous ATP abolished the differences between CR and ad libitum (AL) fed groups. The prevention against permeability transition promoted by CR strongly protected against in vivo liver damage induced by ischemia/reperfusion. Overall, our results show that CR strongly protects the liver against ischemia/reperfusion and uncover a mechanism for this protection, through a yet undescribed diet-induced change in liver mitochondrial Ca(2+) handling related to elevated intramitochondrial ATP. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice

    PubMed Central

    Ferguson, Melissa; Sohal, Barbara H.; Forster, Michael J.; Sohal, Rajindar S.

    2007-01-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice. PMID:17822741

  9. Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation.

    PubMed

    Estrela, Gabriel R; Wasinski, Frederick; Batista, Rogério O; Hiyane, Meire I; Felizardo, Raphael J F; Cunha, Flavia; de Almeida, Danilo C; Malheiros, Denise M A C; Câmara, Niels O S; Barros, Carlos C; Bader, Michael; Araujo, Ronaldo C

    2017-01-01

    The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1β and TNF-α levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-α was activated in mice after CR. An antagonist of PPAR-α blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-α activation.

  10. Caloric restriction induces heat shock response and inhibits B16F10 cell tumorigenesis both in vitro and in vivo

    PubMed Central

    Novelle, Marta G.; Davis, Ashley; Price, Nathan L.; Ali, Ahmed; Fürer-Galvan, Stefanie; Zhang, Yongqing; Becker, Kevin; Bernier, Michel; de Cabo, Rafael

    2015-01-01

    Caloric restriction (CR) without malnutrition is one of the most consistent strategies for increasing mean and maximal lifespan and delaying the onset of age-associated diseases. Stress resistance is a common trait of many long-lived mutants and life-extending interventions, including CR. Indeed, better protection against heat shock and other genotoxic insults have helped explain the pro-survival properties of CR. In this study, both in vitro and in vivo responses to heat shock were investigated using two different models of CR. Murine B16F10 melanoma cells treated with serum from CR-fed rats showed lower proliferation, increased tolerance to heat shock and enhanced HSP-70 expression, compared to serum from ad libitum-fed animals. Similar effects were observed in B16F10 cells implanted subcutaneously in male C57BL/6 mice subjected to CR. Microarray analysis identified a number of genes and pathways whose expression profile were similar in both models. These results suggest that the use of an in vitro model could be a good alternative to study the mechanisms by which CR exerts its anti-tumorigenic effects. PMID:25948793

  11. Gastric bypass surgery, but not caloric restriction, decreases dipeptidyl peptidase-4 activity in obese patients with type 2 diabetes

    PubMed Central

    Alam, M. L.; Van der Schueren, B. J.; Ahren, B.; Wang, G. C.; Swerdlow, N. J.; Arias, S.; Bose, M.; Gorroochurn, P.; Teixeira, J.; McGinty, J.; Laferrère, B.

    2013-01-01

    The mechanism by which incretins and their effect on insulin secretion increase markedly following gastric bypass (GBP) surgery is not fully elucidated. We hypothesized that a decrease in the activity of dipeptidyl peptidase-4 (DPP-4), the enzyme which inactivates incretins, may explain the rise in incretin levels post-GBP. Fasting plasma DPP-4 activity was measured after 10-kg equivalent weight loss by GBP (n = 16) or by caloric restriction (CR, n = 14) in obese patients with type 2 diabetes. DPP-4 activity decreased after GBP by 11.6% (p = 0.01), but not after CR. The increased peak glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) response to oral glucose after GBP did not correlate with DPP-4 activity. The decrease in fasting plasma DPP-4 activity after GBP occurred by a mechanism independent of weight loss and did not relate to change in incretin concentrations. Whether the change in DPP-4 activity contributes to improved diabetes control after GBP remains therefore to be determined. PMID:21210936

  12. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice.

    PubMed

    Ferguson, Melissa; Sohal, Barbara H; Forster, Michael J; Sohal, Rajindar S

    2007-10-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice.

  13. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease.

    PubMed

    Maswood, Navin; Young, Jennifer; Tilmont, Edward; Zhang, Zhiming; Gash, Don M; Gerhardt, Greg A; Grondin, Richard; Roth, George S; Mattison, Julie; Lane, Mark A; Carson, Richard E; Cohen, Robert M; Mouton, Peter R; Quigley, Christopher; Mattson, Mark P; Ingram, Donald K

    2004-12-28

    We report that a low-calorie diet can lessen the severity of neurochemical deficits and motor dysfunction in a primate model of Parkinson's disease. Adult male rhesus monkeys were maintained for 6 months on a reduced-calorie diet [30% caloric restriction (CR)] or an ad libitum control diet after which they were subjected to treatment with a neurotoxin to produce a hemiparkinson condition. After neurotoxin treatment, CR monkeys exhibited significantly higher levels of locomotor activity compared with control monkeys as well as higher levels of dopamine (DA) and DA metabolites in the striatal region. Increased survival of DA neurons in the substantia nigra and improved manual dexterity were noted but did not reach statistical significance. Levels of glial cell line-derived neurotrophic factor, which is known to promote the survival of DA neurons, were increased significantly in the caudate nucleus of CR monkeys, suggesting a role for glial cell line-derived neurotrophic factor in the anti-Parkinson's disease effect of the low-calorie diet.

  14. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia

    PubMed Central

    Scheller, Erica L.; Parlee, Sebastian D.; Pham, H. An; Learman, Brian S.; Redshaw, Catherine M. H.; Sulston, Richard J.; Burr, Aaron A.; Das, Arun K.; Simon, Becky R.; Mori, Hiroyuki; Bree, Adam J.; Schell, Benjamin; Krishnan, Venkatesh

    2016-01-01

    Bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in healthy adults and increases further in clinical conditions of altered skeletal or metabolic function. Perhaps most strikingly, and in stark contrast to white adipose tissue, MAT has been found to increase during caloric restriction (CR) in humans and many other species. Hypoleptinemia may drive MAT expansion during CR but this has not been demonstrated conclusively. Indeed, MAT formation and function are poorly understood; hence, the physiological and pathological roles of MAT remain elusive. We recently revealed that MAT contributes to hyperadiponectinemia and systemic adaptations to CR. To further these observations, we have now performed CR studies in rabbits to determine whether CR affects adiponectin production by MAT. Moderate or extensive CR decreased bone mass, white adipose tissue mass, and circulating leptin but, surprisingly, did not cause hyperadiponectinemia or MAT expansion. Although this unexpected finding limited our subsequent MAT characterization, it demonstrates that during CR, bone loss can occur independently of MAT expansion; increased MAT may be required for hyperadiponectinemia; and hypoleptinemia is not sufficient for MAT expansion. We further investigated this relationship in mice. In females, CR increased MAT without decreasing circulating leptin, suggesting that hypoleptinemia is also not necessary for MAT expansion. Finally, circulating glucocorticoids increased during CR in mice but not rabbits, suggesting that glucocorticoids might drive MAT expansion during CR. These observations provide insights into the causes and consequences of CR-associated MAT expansion, knowledge with potential relevance to health and disease. PMID:26696121

  15. Reducing Liver Fat by Low Carbohydrate Caloric Restriction Targets Hepatic Glucose Production in Non-Diabetic Obese Adults with Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Yu, Haoyong; Jia, Weiping; Guo, ZengKui

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) impairs liver functions, the organ responsible for the regulation of endogenous glucose production and thus plays a key role in glycemic homeostasis. Therefore, interventions designed to normalize liver fat content are needed to improve glucose metabolism in patients affected by NAFLD such as obesity. Objective: this investigation is designed to determine the effects of caloric restriction on hepatic and peripheral glucose metabolism in obese humans with NAFLD. Methods: eight non-diabetic obese adults were restricted for daily energy intake (800 kcal) and low carbohydrate (<10%) for 8 weeks. Body compositions, liver fat and hepatic glucose production (HGP) and peripheral glucose disposal before and after the intervention were determined. Results: the caloric restriction reduced liver fat content by 2/3 (p = 0.004). Abdominal subcutaneous and visceral fat, body weight, BMI, waist circumference and fasting plasma triglyceride and free fatty acid concentrations all significantly decreased (p < 0.05). The suppression of post-load HGP was improved by 22% (p = 0.002) whereas glucose disposal was not affected (p = 0.3). Fasting glucose remained unchanged and the changes in the 2-hour plasma glucose and insulin concentration were modest and statistically insignificant (p > 0.05). Liver fat is the only independent variable highly correlated to HGP after the removal of confounders. Conclusion: NAFLD impairs HGP but not peripheral glucose disposal; low carbohydrate caloric restriction effectively lowers liver fat which appears to directly correct the HGP impairment. PMID:25411646

  16. Endocrine responses to acute and chronic high-altitude exposure (4,300 meters): modulating effects of caloric restriction.

    PubMed

    Barnholt, Kimberly E; Hoffman, Andrew R; Rock, Paul B; Muza, Stephen R; Fulco, Charles S; Braun, Barry; Holloway, Leah; Mazzeo, Robert S; Cymerman, Allen; Friedlander, Anne L

    2006-06-01

    High-altitude anorexia leads to a hormonal response pattern modulated by both hypoxia and caloric restriction (CR). The purpose of this study was to compare altitude-induced neuroendocrine changes with or without energy imbalance and to explore how energy sufficiency alters the endocrine acclimatization process. Twenty-six normal-weight, young men were studied for 3 wk. One group [hypocaloric group (HYPO), n = 9] stayed at sea level and consumed 40% fewer calories than required to maintain body weight. Two other groups were deployed to 4,300 meters (Pikes Peak, CO), where one group (ADQ, n = 7) was adequately fed to maintain body weight and the other [deficient group (DEF), n = 10] had calories restricted as above. HYPO experienced a typical CR-induced reduction in many hormones such as insulin, testosterone, and leptin. At altitude, fasting glucose, insulin, and epinephrine exhibited a muted rise in DEF compared with ADQ. Free thyroxine, thyroid-stimulating hormone, and norepinephrine showed similar patterns between the two altitude groups. Morning cortisol initially rose higher in DEF than ADQ at 4,300 meters, but the difference disappeared by day 5. Testosterone increased in both altitude groups acutely but declined over time in DEF only. Adiponectin and leptin did not change significantly from sea level baseline values in either altitude group regardless of energy intake. These data suggest that hypoxia tends to increase blood hormone concentrations, but anorexia suppresses elements of the endocrine response. Such suppression results in the preservation of energy stores but may sacrifice the facilitation of oxygen delivery and the use of oxygen-efficient fuels.

  17. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study.

    PubMed

    Mattison, Julie A; Roth, George S; Beasley, T Mark; Tilmont, Edward M; Handy, April M; Herbert, Richard L; Longo, Dan L; Allison, David B; Young, Jennifer E; Bryant, Mark; Barnard, Dennis; Ward, Walter F; Qi, Wenbo; Ingram, Donald K; de Cabo, Rafael

    2012-09-13

    Calorie restriction (CR), a reduction of 10–40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7–14 years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.

  18. Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats.

    PubMed

    Tanajak, Pongpan; Pintana, Hiranya; Siri-Angkul, Natthaphat; Khamseekaew, Juthamas; Apaijai, Nattayaporn; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2017-02-01

    Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats.

  19. Effects of the dietary approaches to stop hypertension diet alone and in combination with exercise and caloric restriction on insulin sensitivity and lipids.

    PubMed

    Blumenthal, James A; Babyak, Michael A; Sherwood, Andrew; Craighead, Linda; Lin, Pao-Hwa; Johnson, Julie; Watkins, Lana L; Wang, Jenny T; Kuhn, Cynthia; Feinglos, Mark; Hinderliter, Alan

    2010-05-01

    This study examined the effects of the Dietary Approaches to Stop Hypertension (DASH) diet on insulin sensitivity and lipids. In a randomized control trial, 144 overweight (body mass index: 25 to 40) men (n=47) and women (n=97) with high blood pressure (130 to 159/85 to 99 mm Hg) were randomly assigned to one of the following groups: (1) DASH diet alone; (2) DASH diet with aerobic exercise and caloric restriction; or (3) usual diet controls (UC). Body composition, fitness, insulin sensitivity, and fasting lipids were measured before and after 4 months of treatment. Insulin sensitivity was estimated on the basis of glucose and insulin levels in the fasting state and after an oral glucose load. Participants in the DASH diet with aerobic exercise and caloric restriction condition lost weight (-8.7 kg [95% CI: -2.0 to -9.7 kg]) and exhibited a significant increase in aerobic capacity, whereas the DASH diet alone and UC participants maintained their weight (-0.3 kg [95% CI: -1.2 to 0.5 kg] and +0.9 kg [95% CI: 0.0 to 1.7 kg], respectively) and had no improvement in exercise capacity. DASH diet with aerobic exercise and caloric restriction demonstrated lower glucose levels after the oral glucose load, improved insulin sensitivity, and lower total cholesterol and triglycerides compared with both DASH diet alone and UC, as well as lower fasting glucose and low-density lipoprotein cholesterol compared with UC. DASH diet alone participants generally did not differ from UC in these measures. Combining the DASH diet with exercise and weight loss resulted in significant improvements in insulin sensitivity and lipids. Despite clinically significant reductions in blood pressure, the DASH diet alone, without caloric restriction or exercise, resulted in minimal improvements in insulin sensitivity or lipids.

  20. Combining metformin therapy with caloric restriction for the management of type 2 diabetes and nonalcoholic fatty liver disease in obese rats

    PubMed Central

    Linden, Melissa A.; Lopez, Kristi T.; Fletcher, Justin A.; Morris, E. Matthew; Meers, Grace M.; Siddique, Sameer; Laughlin, M. Harold; Sowers, James R.; Thyfault, John P.; Ibdah, Jamal A.; Rector, R. Scott

    2016-01-01

    Weight loss is recommended for patients with nonalcoholic fatty liver disease (NAFLD), while metformin may lower liver enzymes in type 2 diabetics. Yet, the efficacy of the combination of weight loss and metformin in the treatment of NAFLD is unclear. We assessed the effects of metformin, caloric restriction, and their combination on NAFLD in diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Male OLETF rats (age 20 weeks; n = 6–8 per group) were fed ad libitum (AL), given metformin (300 mg·kg−1·day−1; Met), calorically restricted (70% of AL; CR), or calorically restricted and given metformin (CR+Met) for 12 weeks. Met lowered adiposity compared with AL but not to the same magnitude as CR or CR+Met (p < 0.05). Although only CR improved fasting insulin and glucose, the combination of CR+Met was needed to improve post-challenge glucose tolerance. All treatments lowered hepatic triglycerides, but further improvements were observed in the CR groups (p < 0.05, Met vs. CR or CR+Met) and a further reduction in serum alanine aminotransferases was observed in CR+Met rats. CR lowered markers of hepatic de novo lipogenesis (fatty acid synthase, acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase-1 (SCD-1)) and increased hepatic mitochondrial activity (palmitate oxidation and β-hydroxyacyl CoA dehydrogenase (β-HAD) activity). Changes were enhanced in the CR+Met group for ACC, SCD-1, β-HAD, and the mitophagy marker BNIP3. Met decreased total hepatic mTOR content and inhibited mTOR complex 1, which may have contributed to Met-induced reductions in de novo lipogenesis. These findings in the OLETF rat suggest that the combination of caloric restriction and metformin may provide a more optimal approach than either treatment alone in the management of type 2 diabetes and NAFLD. PMID:26394261

  1. Combining metformin therapy with caloric restriction for the management of type 2 diabetes and nonalcoholic fatty liver disease in obese rats.

    PubMed

    Linden, Melissa A; Lopez, Kristi T; Fletcher, Justin A; Morris, E Matthew; Meers, Grace M; Siddique, Sameer; Laughlin, M Harold; Sowers, James R; Thyfault, John P; Ibdah, Jamal A; Rector, R Scott

    2015-10-01

    Weight loss is recommended for patients with nonalcoholic fatty liver disease (NAFLD), while metformin may lower liver enzymes in type 2 diabetics. Yet, the efficacy of the combination of weight loss and metformin in the treatment of NAFLD is unclear. We assessed the effects of metformin, caloric restriction, and their combination on NAFLD in diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Male OLETF rats (age 20 weeks; n = 6-8 per group) were fed ad libitum (AL), given metformin (300 mg·kg(-1)·day(-1); Met), calorically restricted (70% of AL; CR), or calorically restricted and given metformin (CR+Met) for 12 weeks. Met lowered adiposity compared with AL but not to the same magnitude as CR or CR+Met (p < 0.05). Although only CR improved fasting insulin and glucose, the combination of CR+Met was needed to improve post-challenge glucose tolerance. All treatments lowered hepatic triglycerides, but further improvements were observed in the CR groups (p < 0.05, Met vs. CR or CR+Met) and a further reduction in serum alanine aminotransferases was observed in CR+Met rats. CR lowered markers of hepatic de novo lipogenesis (fatty acid synthase, acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase-1 (SCD-1)) and increased hepatic mitochondrial activity (palmitate oxidation and β-hydroxyacyl CoA dehydrogenase (β-HAD) activity). Changes were enhanced in the CR+Met group for ACC, SCD-1, β-HAD, and the mitophagy marker BNIP3. Met decreased total hepatic mTOR content and inhibited mTOR complex 1, which may have contributed to Met-induced reductions in de novo lipogenesis. These findings in the OLETF rat suggest that the combination of caloric restriction and metformin may provide a more optimal approach than either treatment alone in the management of type 2 diabetes and NAFLD.

  2. Long-Term Hyperphagia and Caloric Restriction Caused by Low- or High-Density Husbandry Have Differential Effects on Zebrafish Postembryonic Development, Somatic Growth, Fat Accumulation and Reproduction

    PubMed Central

    Leibold, Sandra; Hammerschmidt, Matthias

    2015-01-01

    In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis

  3. Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction.

    PubMed

    Leibold, Sandra; Hammerschmidt, Matthias

    2015-01-01

    In recent years, the zebrafish (Danio rerio) has emerged as an alternative vertebrate model for energy homeostasis and metabolic diseases, including obesity and anorexia. It has been shown that diet-induced obesity (DIO) in zebrafish shares multiple pathophysiological features with obesity in mammals. However, a systematic and comprehensive analysis of the different pathways of energy expenditure in obese and starved fish had been missing thus far. Here, we carry out long-term ad libitum feeding (hyperphagia) and caloric restriction studies induced by low- or high-density husbandry, respectively, to investigate the impact of caloric intake on the timing of scale formation, a crucial step of postembryonic development and metamorphosis, and on somatic growth, body weight, fat storage and female reproduction. We show that all of them are positively affected by increased caloric intake, that middle-aged fish develop severe DIO, and that the body mass index (BMI) displays a strict linear correlation with whole-body triglyceride levels in adult zebrafish. Interestingly, juvenile fish are largely resistant to DIO, while BMI and triglyceride values drop in aged fish, pointing to aging-associated anorexic effects. Histological analyses further indicate that increased fat storage in white adipose tissue involves both hyperplasia and hypertrophy of adipocytes. Furthermore, in ovaries, caloric intake primarily affects the rate of oocyte growth, rather than total oocyte numbers. Finally, comparing the different pathways of energy expenditure with each other, we demonstrate that they are differentially affected by caloric restriction / high-density husbandry. In juvenile fish, scale formation is prioritized over somatic growth, while in sexually mature adults, female reproduction is prioritized over somatic growth, and somatic growth over fat storage. Our data will serve as a template for future functional studies to dissect the neuroendocrine regulators of energy homeostasis

  4. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

    PubMed Central

    De Andrade, Paula B. M.; Neff, Laurence A.; Strosova, Miriam K.; Arsenijevic, Denis; Patthey-Vuadens, Ophélie; Scapozza, Leonardo; Montani, Jean-Pierre; Ruegg, Urs T.; Dulloo, Abdul G.; Dorchies, Olivier M.

    2015-01-01

    Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat. PMID:26441673

  5. Lifelong exercise and mild (8%) caloric restriction attenuate age-induced alterations in plantaris muscle morphology, oxidative stress and IGF-1 in the Fischer-344 rat.

    PubMed

    Kim, Jong-Hee; Kwak, Hyo-Bum; Leeuwenburgh, Christiaan; Lawler, John M

    2008-04-01

    Muscle atrophy is a highly prevalent condition among older adults, and results from reduced muscle mass and fiber cross-sectional area. Resistive exercise training and moderate (30-40%) caloric restriction may reduce the rate of sarcopenia in animal models. We tested the hypothesis that lifelong, voluntary exercise combined with mild (8%) caloric restriction would attenuate the reduction of muscle fiber cross-sectional area in the rat plantaris. Fischer-344 rats were divided into: young adults (6 mo) fed ad libitum (YAL); 24 mo old fed ad libitum (OAL); 24 mo old on 8% caloric restriction (OCR); lifelong wheel running with 8% CR (OExCR). Plantaris fiber cross-sectional area was significantly lower in OAL than YAL (-27%), but protected in OCR and OExCR, while mass/body mass ratio was preserved in OExCR only. Furthermore, 8% CR and lifelong wheel running attenuated the age-induced increases in extramyocyte space and connective tissue. Citrate synthase activity decreased with age, but was not significantly protected in OCR and OExCR. Total hydroperoxides were higher in OAL than YAL, but were not elevated in OExCR, with out a change in MnSOD. IGF-1 levels were lower in OAL (-57%) than YAL, but partially protected in the OExCR group (+51%).

  6. comment="please make the changes marked up in the attached pdf"Sex-Dependent Effects of Caloric Restriction on the Ageing of an Ambush Feeding Copepod.

    PubMed

    Saiz, Enric; Calbet, Albert; Griffell, Kaiene

    2017-10-04

    Planktonic copepods are a very successful group in marine pelagic environments, with a key role in biogeochemical cycles. Among them, the genus Oithona is one of the more abundant and ubiquitous. We report here on the effects of caloric (food) restriction on the ageing patterns of the copepod Oithona davisae. The response of O. davisae to caloric restriction was sex dependent: under food limitation, females have lower age-specific mortality rates and longer lifespans and reproductive periods; male mortality rates and life expectancy were not affected. Males are more active swimmers than females, and given their higher energetic demands presumably generate reactive oxygen species at higher rates. That was confirmed by starvation experiments, which showed that O. davisae males burn through body reserves much faster, resulting in shorter life expectancy. Compared with common, coastal calanoid copepods, the effects of caloric restriction on O. davisae appeared less prominent. We think this difference in the magnitude of the responses is a consequence of the distinct life-history traits associated with the genus Oithona (ambush feeder, egg-carrier), with much lower overall levels of metabolism and reproductive effort.

  7. Regulation of 11β-hydroxysteroid dehydrogenase type 1 following caloric restriction and re-feeding is species dependent.

    PubMed

    Loerz, Christine; Staab-Weijnitz, Claudia; Huebbe, Patricia; Giller, Katrin; Metges, Cornelia; Rimbach, Gerald; Maser, Edmund

    2017-02-27

    Evidence in the current literature suggests that expression and activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a key regulatory enzyme in glucocorticoid metabolism, is elevated in the liver and reduced in visceral adipose tissue and skeletal muscle following caloric restriction (CR). In order to investigate the influence of CR on 11β-HSD1 in more detail, we assessed expression and activity of 11β-HSD1 in several tissues in two independent CR and re-feeding animal models. Levels and activity of 11β-HSD1 after CR and re-feeding were measured [mouse liver and pig liver, pig visceral adipose tissue and pig skeletal muscle] using semi-quantitative RT-PCR, Western Blot analysis, and HPLC. After CR, no significant difference on mRNA levels was detected in mouse liver. But 11β-HSD1 mRNA expression was upregulated after subsequent re-feeding. In contrast, 11β-HSD1 protein expression after CR was significantly up-regulated, while no difference was detected after re-feeding. Interestingly, upregulation of protein after CR (1.4-fold) was lower than the increase in enzymatic activity (2.6-fold). Furthermore, while no difference was observed in protein levels after two weeks re-feeding, 11β-HSD1 activity increased 2.5-fold. In pig tissues neither 11β-HSD1 mRNA levels, protein expression or enzyme activity were influenced after CR and re-feeding. Overall, the results demonstrate species-dependent differences in regulation of 11β-HSD1 following CR and suggest the presence of an additional regulation step for 11β-HSD1 activity in mouse liver.

  8. Effects of Intermittent Fasting, Caloric Restriction, and Ramadan Intermittent Fasting on Cognitive Performance at Rest and During Exercise in Adults.

    PubMed

    Cherif, Anissa; Roelands, Bart; Meeusen, Romain; Chamari, Karim

    2016-01-01

    The aim of this review was to highlight the potent effects of intermittent fasting on the cognitive performance of athletes at rest and during exercise. Exercise interacts with dietary factors and has a positive effect on brain functioning. Furthermore, physical activity and exercise can favorably influence brain plasticity. Mounting evidence indicates that exercise, in combination with diet, affects the management of energy metabolism and synaptic plasticity by affecting molecular mechanisms through brain-derived neurotrophic factor, an essential neurotrophin that acts at the interface of metabolism and plasticity. The literature has also shown that certain aspects of physical performance and mental health, such as coping and decision-making strategies, can be negatively affected by daylight fasting. However, there are several types of intermittent fasting. These include caloric restriction, which is distinct from fasting and allows subjects to drink water ad libitum while consuming a very low-calorie food intake. Another type is Ramadan intermittent fasting, which is a religious practice of Islam, where healthy adult Muslims do not eat or drink during daylight hours for 1 month. Other religious practices in Islam (Sunna) also encourage Muslims to practice intermittent fasting outside the month of Ramadan. Several cross-sectional and longitudinal studies have shown that intermittent fasting has crucial effects on physical and intellectual performance by affecting various aspects of bodily physiology and biochemistry that could be important for athletic success. Moreover, recent findings revealed that immunological variables are also involved in cognitive functioning and that intermittent fasting might impact the relationship between cytokine expression in the brain and cognitive deficits, including memory deficits.

  9. Lifelong wheel running exercise and mild caloric restriction attenuate nuclear EndoG in the aging plantaris muscle.

    PubMed

    Kim, Jong-Hee; Lee, Yang; Kwak, Hyo-Bum; Lawler, John M

    2015-09-01

    Apoptosis plays an important role in atrophy and sarcopenia in skeletal muscle. Recent evidence suggests that insufficient heat shock proteins (HSPs) may contribute to apoptosis and muscle wasting. In addition, long-term caloric restriction (CR) and lifelong wheel running exercise (WR) with CR provide significant protection against caspase-dependent apoptosis and sarcopenia. Caspase-independent mediators (endonuclease G: EndoG; apoptosis-inducing factor: AIF) of apoptosis are also linked to muscles wasting with disuse and aging. However, the efficacy of CR and WR with CR to attenuate caspase-independent apoptosis and preserve HSPs in aging skeletal muscle are unknown. Therefore, we tested the hypothesis that CR and WR with CR would ameliorate age-induced elevation of EndoG and AIF while protecting HSP27 and HSP70 levels in the plantaris. Male Fischer-344 rats were divided into 4 groups at 11weeks: ad libitum feeding until 6months (YAL); fed ad libitum until 24months old (OAL); 8%CR to 24months (OCR); WR+8%CR to 24months (OExCR). Nuclear EndoG levels were significantly higher in OAL (+153%) than in YAL, while CR (-38%) and WR with CR (-46%) significantly attenuated age-induced increment in nuclear EndoG. HSP27 (-63%) protein content and phosphorylation at Ser82 (-49%) were significantly lower in OAL than in YAL, while HSP27 protein content was significantly higher in OCR (+136%) and OExCR (+155%) and p-HSP27 (+254%) was significantly higher in OExCR compared with OAL, respectively. In contrast, AIF and HSP70 were unaltered by CR or WR with CR in aging muscle. These data indicate that CR and WR with CR attenuate age-associated upregulation of EndoG translocation in the nucleus, potentially involved with HSP27 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Caloric restriction increases adiponectin expression by adipose tissue and prevents the inhibitory effect of insulin on circulating adiponectin in rats.

    PubMed

    Ding, Qi; Ash, Catherine; Mracek, Tomas; Merry, Brian; Bing, Chen

    2012-08-01

    Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Lifelong Wheel Running Exercise and Mild Caloric Restriction Attenuate Nuclear EndoG in the Aging Plantaris Muscle

    PubMed Central

    Kim, Jong-Hee; Lee, Yang; Kwak, Hyo-Bum; Lawler, John M.

    2016-01-01

    Apoptosis plays an important role in atrophy and sarcopenia in skeletal muscle. Recent evidence suggests that insufficient heat shock proteins (HSPs) may contribute to apoptosis and muscle wasting. In addition, long-term caloric restriction (CR) and lifelong wheel running exercise (WR) with CR provide significant protection against caspase-dependent apoptosis and sarcopenia. Caspase-independent mediators (endonuclease G: EndoG; apoptosis-inducing factor: AIF) of apoptosis are also linked to muscles wasting with disuse and aging. However, the efficacy of CR and WR with CR to attenuate caspase-independent apoptosis and preserve HSPs in aging skeletal muscle are unknown. Therefore, we tested the hypothesis that CR and WR with CR would ameliorate age-induced elevation of EndoG and AIF while protecting HSP27 and HSP70 levels in the plantaris. Male Fischer-344 rats were divided into 4 groups at 11 weeks: ad libitum feeding until 6 mo. (YAL); fed ad libitum until 24 mo. old (OAL); 8%CR to 24 mo. (OCR); WR + 8%CR to 24 mo. (OExCR). Nuclear EndoG levels were significantly higher in OAL (+153%) than in YAL, while CR (−38%) and WR with CR (−46%) significantly attenuated age-induced increment in nuclear EndoG. HSP27 (−63%) protein content and phosphorylation at Ser82 (−49%) were significantly lower in OAL than in YAL, while HSP27 protein content was significantly higher in OCR (+136%) and OExCR (+155%) and p-HSP27 (+254%) was significantly higher in OExCR compared with OAL, respectively. In contrast, AIF and HSP70 were unaltered by CR or WR with CR in aging muscle. These data indicate that CR and WR with CR attenuate age-associated upregulation of EndoG translocation in the nucleus, potentially involved with HSP27 signaling. PMID:26055450

  12. Cardiovascular flexibility in middle-aged overweight South Asians vs. white Caucasians: response to short-term caloric restriction.

    PubMed

    Van Schinkel, L D; Bakker, L E H; Jonker, J T; De Roos, A; Pijl, H; Meinders, A E; Jazet, I M; Lamb, H J; Smit, J W A

    2015-04-01

    South Asians have a higher risk of developing cardiovascular disease than white Caucasians. The underlying cause is unknown, but might be related to higher cardiac susceptibility to metabolic disorders. Short-term caloric restriction (CR) can be used as a metabolic stress test to study cardiac flexibility. We assessed whether metabolic and functional cardiovascular flexibility to CR differs between South Asians and white Caucasians. Cardiovascular function and myocardial triglycerides were assessed using a 1.5T-MRI/S-scanner in 12 middle-aged overweight male South Asians and 12 matched white Caucasians before and after an 8-day very low calorie diet (VLCD). At baseline South Asians were more insulin resistant than Caucasians. Cardiac dimensions were smaller, despite correction for body surface area, and pulse wave velocity (PWV) in the distal aorta was higher in South Asians. Systolic and diastolic function, myocardial triglycerides and pericardial fat did not differ significantly between groups. After the VLCD body weight reduced on average by 4.0 ± 0.2 kg. Myocardial triglycerides increased in both ethnicities by 69 ± 18%, and diastolic function decreased although this was not significant in South Asians. However, pericardial fat and PWV in the proximal and total aorta were reduced in Caucasians only. Myocardial triglyceride stores in middle-aged overweight and insulin resistant South Asians are as flexible and amenable to therapeutic intervention by CR as age-, sex- and BMI-matched but less insulin resistant white Caucasians. However, paracardial fat volume and PWV showed a differential effect in response to an 8-day VLCD in favor of Caucasians. NTR 2473 (URL: http://www.trialregister.nl/trialreg/admin/rctsearch.asp?Term=2473). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Regulation of hindbrain Pyy expression by acute food deprivation, prolonged caloric restriction, and weight loss surgery in mice

    PubMed Central

    Gelegen, C.; Chandarana, K.; Choudhury, A. I.; Al-Qassab, H.; Evans, I. M.; Irvine, E. E.; Hyde, C. B.; Claret, M.; Andreelli, F.; Sloan, S. E.; Leiter, A. B.; Withers, D. J.

    2012-01-01

    PYY is a gut-derived putative satiety signal released in response to nutrient ingestion and is implicated in the regulation of energy homeostasis. Pyy-expressing neurons have been identified in the hindbrain of river lamprey, rodents, and primates. Despite this high evolutionary conservation, little is known about central PYY neurons. Using in situ hybridization, PYY-Cre;ROSA-EYFP mice, and immunohistochemistry, we identified PYY cell bodies in the gigantocellular reticular nucleus region of the hindbrain. PYY projections were present in the dorsal vagal complex and hypoglossal nucleus. In the hindbrain, Pyy mRNA was present at E9.5, and expression peaked at P2 and then decreased significantly by 70% at adulthood. We found that, in contrast to the circulation, PYY-(1–36) is the predominant isoform in mouse brainstem extracts in the ad libitum-fed state. However, following a 24-h fast, the relative amounts of PYY-(1–36) and PYY-(3–36) isoforms were similar. Interestingly, central Pyy expression showed nutritional regulation and decreased significantly by acute starvation, prolonged caloric restriction, and bariatric surgery (enterogastroanastomosis). Central Pyy expression correlated with body weight loss and circulating leptin and PYY concentrations. Central regulation of energy metabolism is not limited to the hypothalamus but also includes the midbrain and the brainstem. Our findings suggest a role for hindbrain PYY in the regulation of energy homeostasis and provide a starting point for further research on gigantocellular reticular nucleus PYY neurons, which will increase our understanding of the brain stem pathways in the integrated control of appetite and energy metabolism. PMID:22761162

  14. Seven-Day Caloric and Saturated Fat Restriction Increases Myocardial Dietary Fatty Acid Partitioning in Impaired Glucose-Tolerant Subjects.

    PubMed

    Noll, Christophe; Kunach, Margaret; Frisch, Frédérique; Bouffard, Lucie; Dubreuil, Stéphanie; Jean-Denis, Farrah; Phoenix, Serge; Cunnane, Stephen C; Guérin, Brigitte; Turcotte, Eric E; Carpentier, André C

    2015-11-01

    Subjects with impaired glucose tolerance (IGT) have increased myocardial partitioning of dietary fatty acids (DFAs) with left ventricular dysfunction, both of which are improved by modest weight loss over 1 year induced by lifestyle changes. Here, we determined the effects of a 7-day hypocaloric diet (-500 kcal/day) low in saturated fat (<7% of energy) (LOWCAL study) versus isocaloric with the usual amount saturated fat (∼10% of energy) diet (ISOCAL) on DFA metabolism in subjects with IGT. Organ-specific DFA partitioning and cardiac and hepatic DFA fractional uptake rates were measured in 15 IGT subjects (7 males/8 females) using the oral 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid positron emission tomography method after 7 days of an ISOCAL diet versus a LOWCAL diet using a randomized crossover design. The LOWCAL diet led to reductions in weight and postprandial insulin area under the curve. Myocardial DFA partitioning over 6 h was increased after the LOWCAL diet (2.3 ± 0.1 vs. 1.9 ± 0.2 mean standard uptake value, P < 0.04). However, the early (90-120 min) myocardial DFA fractional uptake was unchanged after the LOWCAL diet (0.055 ± 0.025 vs. 0.046 ± 0.009 min(-1), P = 0.7). Liver DFA partitioning was unchanged, but liver fractional uptake of DFA tended to be increased. Very short-term caloric and saturated fat dietary restrictions do not lead to the same changes in organ-specific DFA metabolism as those associated with weight loss in subjects with IGT.

  15. Effects of Caloric Restriction with or without Resistance Training in Dynapenic-Overweight and Obese Menopausal Women: A MONET Study.

    PubMed

    Normandin, E; Sénéchal, M; Prud'homme, D; Rabasa-Lhoret, R; Brochu, M

    2015-01-01

    The dynapenic (DYN)-obese phenotype is associated with an impaired metabolic profile. However, there is a lack of evidences regarding the effect of lifestyle interventions on the metabolic profile of individual with dynapenic phenotype. The objective was to investigate the impact of caloric restriction (CR) with or without resistance training (RT) on body composition, metabolic profile and muscle strength in DYN and non-dynapenic (NDYN) overweight and obese menopausal women. 109 obese menopausal women (age 57.9 ± 9.0 yrs; BMI 32.1 ± 4.6 kg/m2) were randomized to a 6-month CR intervention with or without a RT program. Participants were categorized as DYN or NDYN based on the lowest tertile of relative muscle strength in our cohort (< 4.86 kg/BMI). Body composition was measured by DXA, body fat distribution by CT scan, glucose homeostasis at fasting state and during an euglycemic-hyperinsulinemic clamp, fasting lipids, resting blood pressure, fasting inflammation markers and maximal muscle strength. No difference was observed between groups at baseline for body composition and the metabolic profile. Overall, a treatment effect was observed for all variables of body composition and some variables of the metabolic profile (fasting insulin, glucose disposal, triglyceride levels, triglycerides/HDL-Chol ratio and resting diastolic blood pressure) (P between 0.05 and 0.001). No Group X Treatment interaction was observed for variables of body composition and the metabolic profile. However, an interaction was observed for muscle strength; which significantly improved more in the CR+RT NDYN group (all P ≤ 0.05). In the present study, dynapenia was not associated with a worse metabolic profile at baseline in overweight and obese menopausal women. DYN and NDYN menopausal women showed similar cardiometabolic benefit from CR or CR+RT interventions. However, our results showed that the addition of RT to CR was more effective in improving maximal strength in DYN and NDYN obese

  16. Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway

    PubMed Central

    Phillips-Farfán, Bryan V.; Rubio Osornio, María del Carmen; Custodio Ramírez, Verónica; Paz Tres, Carlos; Carvajal Aguilera, Karla G.

    2015-01-01

    Caloric restriction (CR) has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR) signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling. The former was studied by analyzing the phosphorylation of adenosine monophosphate-activated protein kinase, protein kinase B and the ribosomal protein S6. The mTOR cascade is regulated by energy and by insulin levels, both of which may be changed by CR; thus we investigated if CR altered the levels of energy substrates in the blood or the level of insulin in plasma. Finally, we studied if CR modified the expression of genes that encode proteins participating in the mTOR pathway. CR increased the after-discharge threshold and tended to reduce the after-discharge duration, indicating an anti-convulsive action. CR diminished the phosphorylation of protein kinase B and ribosomal protein S6, suggesting an inhibition of the mTOR cascade. However, CR did not change glucose, β-hydroxybutyrate or insulin levels; thus the effects of CR were independent from them. Interestingly, CR also did not modify the expression of any investigated gene. The results suggest that the anti-epileptic effect of CR may be partly due to inhibition of the mTOR pathway. PMID:25814935

  17. Effect of intermittent fasting with or without caloric restriction on prostate cancer growth and survival in SCID mice.

    PubMed

    Buschemeyer, W Cooper; Klink, Joseph C; Mavropoulos, John C; Poulton, Susan H; Demark-Wahnefried, Wendy; Hursting, Stephen D; Cohen, Pinchas; Hwang, David; Johnson, Tracy L; Freedland, Stephen J

    2010-07-01

    Caloric restriction (CR) delays cancer growth in animals, though translation to humans is difficult. We hypothesized intermittent fasting (i.e., intermittent extreme CR), may be better tolerated and prolong survival of prostate cancer (CaP) bearing mice. We conducted a pilot study by injecting 105 male individually-housed SCID mice with LAPC-4 cells. When tumors reached 200 mm(3), 15 mice/group were randomized to one of seven diets and sacrificed when tumors reached 1,500 mm(3): Group 1: ad libitum 7 days/week; Group 2: fasted 1 day/week and ad libitum 6 days/week; Group 3: fasted 1 day/week and fed 6 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 4: 14% CR 7 days/week; Group 5: fasted 2 days/week and ad libitum 5 days/week; Group 6: fasted 2 day/week and fed 5 days/week via paired feeding to maintain isocaloric conditions to Group 1; Group 7: 28% CR 7 days/week. Sera from mice at sacrifice were analyzed for IGF-axis hormones. There were no significant differences in survival among any groups. However, relative to Group 1, there were non-significant trends for improved survival for Groups 3 (HR 0.65, P = 0.26), 5 (0.60, P = 0.18), 6 (HR 0.59, P = 0.16), and 7 (P = 0.59, P = 0.17). Relative to Group 1, body weights and IGF-1 levels were significantly lower in Groups 6 and 7. This exploratory study found non-significant trends toward improved survival with some intermittent fasting regimens, in the absence of weight loss. Larger appropriately powered studies to detect modest, but clinically important differences are necessary to confirm these findings.

  18. The effects of exercise training and caloric restriction on the cardiac oxytocin natriuretic peptide system in the diabetic mouse

    PubMed Central

    Broderick, Tom L; Jankowski, Marek; Gutkowska, Jolanta

    2017-01-01

    Background Regular exercise training (ET) and caloric restriction (CR) are the frontline strategies in the treatment of type 2 diabetes mellitus with the aim at reducing cardiometabolic risk. ET and CR improve body weight and glycemic control, and experimental studies indicate that these paradigms afford cardioprotection. In this study, the effects of combined ET and CR on the cardioprotective oxytocin (OT)–natriuretic peptide (NP) system were determined in the db/db mouse, a model of type 2 diabetes associated with insulin resistance, hyperglycemia, and obesity. Methods Five-week-old male db/db mice were assigned to the following groups: sedentary, ET, and ET + CR. Nonobese heterozygote littermates served as controls. ET was performed on a treadmill at moderate intensity, and CR was induced by reducing food intake by 30% of that consumed by sedentary db/db mice for a period of 8 weeks. Results After 8 weeks, only ET + CR, but not ET, slightly improved body weight compared to sedentary db/db mice. Regardless of the treatment, db/db mice remained hyperglycemic. Hearts from db/db mice demonstrated reduced expression of genes linked to the cardiac OT–NP system. In fact, compared to control mice, mRNA expression of GATA binding protein 4 (GATA4), OT receptor, OT, brain NP, NP receptor type C, and endothelial nitric oxide synthase (eNOS) was decreased in hearts from sedentary db/db mice. Both ET alone and ET + CR increased the mRNA expression of GATA4 compared to sedentary db/db mice. Only ET combined with CR produced increased eNOS mRNA and protein expression. Conclusion Our data indicate that enhancement of eNOS by combined ET and CR may improve coronary endothelial vasodilator dysfunction in type 2 diabetes but did not prevent the downregulation of cardiac expression in the OT–NP system, possibly resulting from the sustained hyperglycemia and obesity in diabetic mice. PMID:28138261

  19. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age

    PubMed Central

    Selesniemi, Kaisa; Lee, Ho-Joon; Tilly, Jonathan L

    2008-01-01

    Age-related ovarian failure in women heralds the transition into postmenopausal life, which is characterized by a loss of fertility and increased risk for cardiovascular disease, osteoporosis and cognitive dysfunction. Unfortunately, there are no options available for delaying loss of ovarian function with age in humans. Rodent studies have shown that caloric restriction (CR) can extend female fertile lifespan; however, much of this work initiated CR at weaning, which causes stunted adolescent growth and a delayed onset of sexual maturation. Herein we tested in mice if CR initiated in adulthood could delay reproductive aging. After 4 months of CR, the ovarian follicle reserve was doubled compared to ad libitum (AL)-fed age-matched controls, which in mating trials exhibited a loss of fertility by 15.5 months of age. In CR females returned to AL feeding at 15.5 months of age, approximately one-half remained fertile for 6 additional months and one-third continued to deliver offspring through 23 months of age. Notably, fecundity of CR-then-AL-fed females and postnatal offspring survival rates were dramatically improved compared with aging AL-fed controls. For example, between 10 and 23 months of age, only 22% of the 54 offspring delivered by AL-fed females survived. In contrast, over 73% of the 94 pups delivered by 15.5- to 23-month-old CR-then-AL-fed mice survived without any overt complications. These data indicate that in mice adult-onset CR maintains function of the female reproductive axis into advanced age and dramatically improves postnatal survival of offspring delivered by aged females. PMID:18549458

  20. Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age.

    PubMed

    Selesniemi, Kaisa; Lee, Ho-Joon; Tilly, Jonathan L

    2008-10-01

    Age-related ovarian failure in women heralds the transition into postmenopausal life, which is characterized by a loss of fertility and increased risk for cardiovascular disease, osteoporosis and cognitive dysfunction. Unfortunately, there are no options available for delaying loss of ovarian function with age in humans. Rodent studies have shown that caloric restriction (CR) can extend female fertile lifespan; however, much of this work initiated CR at weaning, which causes stunted adolescent growth and a delayed onset of sexual maturation. Herein we tested in mice if CR initiated in adulthood could delay reproductive aging. After 4 months of CR, the ovarian follicle reserve was doubled compared to ad libitum (AL)-fed age-matched controls, which in mating trials exhibited a loss of fertility by 15.5 months of age. In CR females returned to AL feeding at 15.5 months of age, approximately one-half remained fertile for 6 additional months and one-third continued to deliver offspring through 23 months of age. Notably, fecundity of CR-then-AL-fed females and postnatal offspring survival rates were dramatically improved compared with aging AL-fed controls. For example, between 10 and 23 months of age, only 22% of the 54 offspring delivered by AL-fed females survived. In contrast, over 73% of the 94 pups delivered by 15.5- to 23-month-old CR-then-AL-fed mice survived without any overt complications. These data indicate that in mice adult-onset CR maintains function of the female reproductive axis into advanced age and dramatically improves postnatal survival of offspring delivered by aged females.

  1. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals.

    PubMed

    Coker, Robert H; Miller, Sharon; Schutzler, Scott; Deutz, Nicolaas; Wolfe, Robert R

    2012-12-11

    Excess adipose tissue and sarcopenia presents a multifaceted clinical challenge that promotes morbidity and mortality in the obese, elderly population. Unfortunately, the mortality risks of muscle loss may outweigh the potential benefits of weight loss in the elderly. We have previously demonstrated the effectiveness of whey protein and essential amino acids towards the preservation of lean tissue, even under the conditions of strict bedrest in the elderly. In the context of caloric restriction-based weight loss, we hypothesized that a similar formulation given as a meal replacement (EAAMR) would foster the retention of lean tissue through an increase in the skeletal muscle fractional synthesis rate (FSR). We also proposed that EAAMR would promote the preferential loss of adipose tissue through the increased energy cost of skeletal muscle FSR. We recruited and randomized 12 elderly individuals to an 8 week, caloric restriction diet utilizing equivalent caloric meal replacements (800 kcal/day): 1) EAAMR or a 2) competitive meal replacement (CMR) in conjunction with 400 kcal of solid food that totaled 1200 kcal/day designed to induce 7% weight loss. Combined with weekly measurements of total body weight and body composition, we also measured the acute change in the skeletal muscle FSR to EAAMR and CMR. By design, both groups lost ~7% of total body weight. While EAAMR did not promote a significant preservation of lean tissue, the reduction in adipose tissue was greater in EAAMR compared to CMR. Interestingly, these results corresponded to an increase in the acute skeletal muscle protein FSR. The provision of EAAMR during caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and the modest loss of lean tissue in the elderly population.

  2. Behavioural changes are a major contributing factor in the reduction of sarcopenia in caloric-restricted ageing mice

    PubMed Central

    van Norren, Klaske; Rusli, Fenni; van Dijk, Miriam; Lute, Carolien; Nagel, Jolanda; Dijk, Francina J; Dwarkasing, Jvalini; Boekschoten, Mark V; Luiking, Yvette; Witkamp, Renger F; Müller, Michael; Steegenga, Wilma T

    2015-01-01

    Background In rodent models, caloric restriction (CR) with maintenance of adequate micronutrient supply has been reported to increase lifespan and to reduce age-induced muscle loss (sarcopenia) during ageing. In the present study, we further investigated effects of CR on the onset and severity of sarcopenia in ageing male C57BL/6 J mice. The aim of this study was to investigate whether CR induces changes in behaviour of the animals that could contribute to the pronounced health-promoting effects of CR in rodents. In addition, we aimed to investigate in more detail the effects of CR on the onset and severity of sarcopenia. Methods The mice received either an ad libitum diet (control) or a diet matching 70 E% of the control diet (C). Daily activity, body composition (dual energy X-ray absorptiometry), grip strength, insulin sensitivity, and general agility and balance were determined at different ages. Mice were killed at 4, 12, 24, and 28 months. Skeletal muscles of the hind limb were dissected, and the muscle extensor digitorum longus muscle was used for force-frequency measurements. The musculus tibialis was used for real-time quantitative PCR analysis. Results From the age of 12 months, CR animals were nearly half the weight of the control animals, which was mainly related to a lower fat mass. In the control group, the hind limb muscles showed a decline in mass at 24 or 28 months of age, which was not present in the CR group. Moreover, insulin sensitivity (oral glucose tolerance test) was higher in this group and the in vivo and ex vivo grip strength did not differ between the two groups. In the hours before food was provided, CR animals were far more active than control animals, while total daily activity was not increased. Moreover, agility test indicated that CR animals were better climbers and showed more climbing behaviours. Conclusions Our study confirms earlier findings that in CR animals less sarcopenia is present. The mice on the CR diet, however, showed

  3. Toxicokinetics of chloral hydrate in ad libitum-fed, dietary-controlled, and calorically restricted male B6C3F1 mice following short-term exposure.

    PubMed

    Seng, John E; Agrawal, Nalini; Horsley, Elizabeth T M; Leakey, Tatiana I; Scherer, Erin M; Xia, Shijun; Allaben, William T; Leakey, Julian E A

    2003-12-01

    Chloral hydrate is widely used as a sedative in pediatric medicine and is a by-product of water chlorination and a metabolic intermediate in the biotransformation of trichloroethylene. Chloral hydrate and its major metabolite, trichloroacetic acid, induce liver tumors in B6C3F1 mice, a strain that can exhibit high rates of background liver tumor incidence, which is associated with increased body weight. This report describes the influence of diet and body weight on the acute toxicity, hepatic enzyme response, and toxickinetics of chloral hydrate as part of a larger study investigating the carcinogenicity of chloral hydrate in ad libitum-fed and dietary controlled mice. Dietary control involves moderate food restriction to maintain the test animals at an idealized body weight. Mice were dosed with chloral hydrate at 0, 50, 100, 250, 500, and 1000 mg/kg daily, 5 days/week, by aqueous gavage for 2 weekly dosing cycles. Three diet groups were used: ad libitum, dietary control, and 40% caloric restriction. Both dietary control and caloric restriction slightly reduced acute toxicity of high doses of chloral hydrate and potentiated the induction of hepatic enzymes associated with peroxisome proliferation. Chloral hydrate toxicokinetics were investigated using blood samples obtained by sequential tail clipping and a microscale gas chromatography technique. It was rapidly cleared from serum within 3 h of dosing. Trichloroacetate was the major metabolite in serum in all three diet groups. Although the area under the curve values for serum trichloroacetate were slightly greater in the dietary controlled and calorically restricted groups than in the ad libitum-fed groups, this increase did not appear to completely account for the potentiation of hepatic enzyme induction by dietary restriction.

  4. Effect of age and caloric restriction on bleomycin-chelatable and nonheme iron in different tissues of C57BL/6 mice.

    PubMed

    Sohal, R S; Wennberg-Kirch, E; Jaiswal, K; Kwong, L K; Forster, M J

    1999-08-01

    The objective of this study was to test the hypothesis that the widely observed age-associated increase in the amounts of macromolecular oxidative damage is due to an elevation in the availability of redox-active iron, that is believed to catalyze the scission of H2O2 to generate the highly reactive hydroxyl radical. Concentrations of bleomycin-chelatable iron and nonheme iron were measured in various tissues and different regions of the brain of mice fed on ad libitum (AL) or a calorically restricted (to 60% of AL) diet at different ages. The concentrations of these two pools of iron varied markedly as a function of tissue, age, and caloric intake. There was no consistent ratio between the amounts of nonheme and the bleomycin-chelatable iron pools across these conditions. Nonheme iron concentration increased with age in the liver, kidney, heart, striatum, hippocampus, midbrain and cerebellum of AL animals, whereas bleomycin-chelatable iron increased significantly with age only in the liver. Amounts of both nonheme and bleomycin-chelatable iron remained unaltered during aging in the cerebral cortex and hindbrain of AL mice. Caloric restriction had no effect on iron concentration in the brain or heart, but caused a marked increase in the concentration of both bleomycin-chelatable and nonheme iron in the liver and the kidney. The results do not support the hypothesis that accumulation of oxidative damage with age, or its attenuation by CR, are associated with corresponding variations in redox-active iron.

  5. Moderate caloric restriction in lactating rats programs their offspring for a better response to HF diet feeding in a sex-dependent manner.

    PubMed

    Palou, Mariona; Torrens, Juana María; Priego, Teresa; Sánchez, Juana; Palou, Andreu; Picó, Catalina

    2011-06-01

    We aimed to assess the lasting effects of moderate caloric restriction in lactating rats on the expression of key genes involved in energy balance of their adult offspring (CR) and their adaptations under high-fat (HF) diet. Dams were fed with either ad libitum normal-fat (NF) diet or a 30% caloric restricted diet throughout lactation. After weaning, the offspring were fed with NF diet until the age of 15 weeks and then with an NF or a HF diet until the age of 28 weeks, when they were sacrificed. Body weight and food intake were followed. Blood parameters and the expression of selected genes in hypothalamus and white adipose tissue (WAT) were analysed. CR ate fewer calories and showed lower body weight gain under HF diet than their controls. CR males were also resistant to the increase of insulin and leptin occurring in their controls under HF diet, and HF diet exposed CR females showed lower circulating fasting triglyceride levels than controls. In the hypothalamus, CR males had higher ObRb mRNA levels than controls, and CR females displayed greater InsR mRNA levels than controls and decreased neuropeptide Y mRNA levels when exposed to HF diet. CR males maintained WAT capacity of fat uptake and storage and of fatty-acid oxidation under HF diet, whereas these capacities were impaired in controls; female CR showed higher WAT ObRb mRNA levels than controls. These results suggest that 30% caloric restriction in lactating dams ameliorates diet-induced obesity in their offspring by enhancing their sensitivity to insulin and leptin signaling, but in a gender-dependent manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Glucocorticoid antagonism limits adiposity rebound and glucose intolerance in young male rats following the cessation of daily exercise and caloric restriction

    PubMed Central

    Teich, Trevor; Dunford, Emily C.; Porras, Deanna P.; Pivovarov, Jacklyn A.; Beaudry, Jacqueline L.; Hunt, Hazel; Belanoff, Joseph K.

    2016-01-01

    Severe caloric restriction (CR), in a setting of regular physical exercise, may be a stress that sets the stage for adiposity rebound and insulin resistance when the food restriction and exercise stop. In this study, we examined the effect of mifepristone, a glucocorticoid (GC) receptor antagonist, on limiting adipose tissue mass gain and preserving whole body insulin sensitivity following the cessation of daily running and CR. We calorically restricted male Sprague-Dawley rats and provided access to voluntary running wheels for 3 wk followed by locking of the wheels and reintroduction to ad libitum feeding with or without mifepristone (80 mg·kg−1·day−1) for 1 wk. Cessation of daily running and CR increased HOMA-IR and visceral adipose mass as well as glucose and insulin area under the curve during an oral glucose tolerance test vs. pre-wheel lock exercised rats and sedentary rats (all P < 0.05). Insulin sensitivity and glucose tolerance were preserved and adipose tissue mass gain was attenuated by daily mifepristone treatment during the post-wheel lock period. These findings suggest that following regular exercise and CR there are GC-induced mechanisms that promote adipose tissue mass gain and impaired metabolic control in healthy organisms and that this phenomenon can be inhibited by the GC receptor antagonist mifepristone. PMID:27143556

  7. Glucocorticoid antagonism limits adiposity rebound and glucose intolerance in young male rats following the cessation of daily exercise and caloric restriction.

    PubMed

    Teich, Trevor; Dunford, Emily C; Porras, Deanna P; Pivovarov, Jacklyn A; Beaudry, Jacqueline L; Hunt, Hazel; Belanoff, Joseph K; Riddell, Michael C

    2016-07-01

    Severe caloric restriction (CR), in a setting of regular physical exercise, may be a stress that sets the stage for adiposity rebound and insulin resistance when the food restriction and exercise stop. In this study, we examined the effect of mifepristone, a glucocorticoid (GC) receptor antagonist, on limiting adipose tissue mass gain and preserving whole body insulin sensitivity following the cessation of daily running and CR. We calorically restricted male Sprague-Dawley rats and provided access to voluntary running wheels for 3 wk followed by locking of the wheels and reintroduction to ad libitum feeding with or without mifepristone (80 mg·kg(-1)·day(-1)) for 1 wk. Cessation of daily running and CR increased HOMA-IR and visceral adipose mass as well as glucose and insulin area under the curve during an oral glucose tolerance test vs. pre-wheel lock exercised rats and sedentary rats (all P < 0.05). Insulin sensitivity and glucose tolerance were preserved and adipose tissue mass gain was attenuated by daily mifepristone treatment during the post-wheel lock period. These findings suggest that following regular exercise and CR there are GC-induced mechanisms that promote adipose tissue mass gain and impaired metabolic control in healthy organisms and that this phenomenon can be inhibited by the GC receptor antagonist mifepristone. Copyright © 2016 the American Physiological Society.

  8. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses.

    PubMed

    Bartley, Jenna M; Zhou, Xin; Kuchel, George A; Weinstock, George M; Haynes, Laura

    2017-01-01

    Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection to explore the impact of flu infection, aging, and caloric restriction on the gut microbiome. Young, middle-aged, and aged caloric restricted (CR) and ad lib fed (AL) mice were examined after a sublethal flu infection. All mice lost 10-20% body weight and, as expected for these early time points, losses were similar at different ages and between diet groups. Cytokine and chemokine levels were also similar with the notable exception of IL-1α, which rose more than fivefold in aged AL mouse serum, while it remained unchanged in aged CR serum. Fecal microbiome phyla abundance profiles were similar in young, middle-aged, and aged AL mice at baseline and at 4 days post flu infection, while increases in Proteobacteria were evident at 7 days post flu infection in all three age groups. CR mice, compared to AL mice in each age group, had increased abundance of Proteobacteria and Verrucomicrobia at all time points. Interestingly, principal coordinate analysis determined that diet exerts a greater effect on the microbiome than age or flu infection. Percentage body weight loss correlated with the relative abundance of Proteobacteria regardless of age, suggesting flu pathogenicity is related to Proteobacteria abundance. Further, several microbial Operational Taxonomic Units from the Bacteroidetes phyla correlated with serum chemokine/cytokines regardless of both diet and age suggesting an interplay between flu-induced systemic inflammation and gut microbiota. These exploratory studies

  9. Tackling the aging process with bio-molecules: a possible role for caloric restriction, food-derived nutrients, vitamins, amino acids, peptides, and minerals.

    PubMed

    Dabhade, Prachi; Kotwal, Swati

    2013-01-01

    Aging is a multifactorial process leading to general deterioration in many tissues and organs, accompanied by an increased incidence and severity of a wide variety of chronic, incurable, and often fatal diseases. A possibility of slowing down the aging process and improving the quality of life in old age by nutritional intervention has renewed the interest of the scientific world in anti-aging therapies. These include potential dietary interventions, adherence to nutrition, hormonal and cell-based therapies, genetic manipulations, and anti-aging supplements or nutrients. This review addresses strategies to slow the aging process by caloric restriction and the use of nutritional supplements.

  10. The effects of cocoa supplementation, caloric restriction, and regular exercise, on oxidative stress markers of brain and memory in the rat model.

    PubMed

    Radák, Zsolt; Silye, Gabriella; Bartha, Csaba; Jakus, Judit; Stefanovits-Bányai, Eva; Atalay, Mustafa; Marton, Orsolya; Koltai, Erika

    2013-11-01

    The effects of treadmill running (8 weeks, 5 times/week, 1h/day at 27 m/min), caloric restriction, and cocoa supplementation on brain function and oxidative stress markers were tested. The Morris maze test was used to appraise rat memory. Regular exercise significantly improved spatial learning performance. The level of oxidative stress was measured by the concentration of carbonylated proteins. The free radical concentration increased in brain of the training groups but not the controls. The content of reactive carbonyl derivates did not change with exercise, suggesting that the increased production of reactive oxygen species (ROS) were well tolerated in this experimental model. Caloric restriction (CR) decreased the accumulation of free radicals in the frontal lobe. The protein content of brain-derived neutrophic factors (BDNFs) was evaluated and changes did not occur either with exercise or cocoa supplementation treatments. These data did not show significant effects of the administration of cocoa (2% w/w) on the concentration of ROS, BDNF or on spatial memory. Conversely, exercise and CR can play a role in ROS generation and brain function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Oral leptin treatment in suckling rats ameliorates detrimental effects in hypothalamic structure and function caused by maternal caloric restriction during gestation.

    PubMed

    Konieczna, Jadwiga; García, Ana Paula; Sánchez, Juana; Palou, Mariona; Palou, Andreu; Picó, Catalina

    2013-01-01

    A poor prenatal environment brings about perturbations in leptin surge and hypothalamic circuitry that program impaired ability to regulate energy homeostasis in adulthood. Here, using a rat model of moderate maternal caloric restriction during gestation, we aimed to investigate whether leptin supplementation with physiological doses throughout lactation is able to ameliorate the adverse developmental malprogramming effects exerted in offspring hypothalamus structure and function. Three groups of male and female rats were studied: the offspring of ad libitum fed dams (controls), the offspring of 20% calorie restricted dams during the first part of pregnancy (CR), and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Animals were sacrificed on postnatal day 25. Morphometric and immunohistochemical studies on arcuate (ARC) and paraventicular (PVN) nucleus were performed and hypothalamic expression levels of selected genes were determined. In CR males, leptin treatment restored, at least in part, the number of immunoreactive neuropeptide Y (NPY(+)) cells in ARC, the total number of cells in PVN, hypothalamic NPY, cocaine- and amphetamine-regulated transcript (CART) and suppressor of cytokine signalling-3 (SOCS-3) mRNA levels, and plasma leptin levels, which were decreased in CR animals. CR-Leptin males showed higher hypothalamic long-form leptin receptor (ObRb) mRNA levels, compared to control and CR animals. In CR females, leptin treatment reverted the increased number of cells in ARC and cell density in ARC and PVN, and reduced hypothalamic SOCS-3 mRNA expression to levels similar to controls. Leptin treatment also reverted the increased relative area of NPY(+) fibers in the PVN occurring in CR animals. In conclusion, leptin supplementation throughout lactation is able to revert, at least partly, most of the developmental effects on hypothalamic structure and function caused by moderate maternal caloric restriction during

  12. Oral Leptin Treatment in Suckling Rats Ameliorates Detrimental Effects in Hypothalamic Structure and Function Caused by Maternal Caloric Restriction during Gestation

    PubMed Central

    Konieczna, Jadwiga; García, Ana Paula; Sánchez, Juana; Palou, Mariona; Palou, Andreu; Picó, Catalina

    2013-01-01

    A poor prenatal environment brings about perturbations in leptin surge and hypothalamic circuitry that program impaired ability to regulate energy homeostasis in adulthood. Here, using a rat model of moderate maternal caloric restriction during gestation, we aimed to investigate whether leptin supplementation with physiological doses throughout lactation is able to ameliorate the adverse developmental malprogramming effects exerted in offspring hypothalamus structure and function. Three groups of male and female rats were studied: the offspring of ad libitum fed dams (controls), the offspring of 20% calorie restricted dams during the first part of pregnancy (CR), and CR rats supplemented with physiological doses of leptin throughout lactation (CR-Leptin). Animals were sacrificed on postnatal day 25. Morphometric and immunohistochemical studies on arcuate (ARC) and paraventicular (PVN) nucleus were performed and hypothalamic expression levels of selected genes were determined. In CR males, leptin treatment restored, at least in part, the number of immunoreactive neuropeptide Y (NPY+) cells in ARC, the total number of cells in PVN, hypothalamic NPY, cocaine- and amphetamine-regulated transcript (CART) and suppressor of cytokine signalling-3 (SOCS-3) mRNA levels, and plasma leptin levels, which were decreased in CR animals. CR-Leptin males showed higher hypothalamic long-form leptin receptor (ObRb) mRNA levels, compared to control and CR animals. In CR females, leptin treatment reverted the increased number of cells in ARC and cell density in ARC and PVN, and reduced hypothalamic SOCS-3 mRNA expression to levels similar to controls. Leptin treatment also reverted the increased relative area of NPY+ fibers in the PVN occurring in CR animals. In conclusion, leptin supplementation throughout lactation is able to revert, at least partly, most of the developmental effects on hypothalamic structure and function caused by moderate maternal caloric restriction during

  13. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: a randomized controlled trial.

    PubMed

    Imayama, Ikuyo; Ulrich, Cornelia M; Alfano, Catherine M; Wang, Chiachi; Xiao, Liren; Wener, Mark H; Campbell, Kristin L; Duggan, Catherine; Foster-Schubert, Karen E; Kong, Angela; Mason, Caitlin E; Wang, Ching-Yun; Blackburn, George L; Bain, Carolyn E; Thompson, Henry J; McTiernan, Anne

    2012-05-01

    Obese and sedentary persons have increased risk for cancer; inflammation is a hypothesized mechanism. We examined the effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in 439 women. Overweight and obese postmenopausal women were randomized to 1-year: caloric restriction diet (goal of 10% weight loss, N = 118), aerobic exercise (225 min/wk of moderate-to-vigorous activity, N = 117), combined diet + exercise (N = 117), or control (N = 87). Baseline and 1-year high-sensitivity C-reactive protein (hs-CRP), serum amyloid A (SAA), interleukin-6 (IL-6), leukocyte, and neutrophil levels were measured by investigators blind to group. Inflammatory biomarker changes were compared using generalized estimating equations. Models were adjusted for baseline body mass index (BMI), race/ethnicity, and age. Four hundred and thirty-eight (N = 1 in diet + exercise group was excluded) were analyzed. Relative to controls, hs-CRP decreased by geometric mean (95% confidence interval, P value): 0.92 mg/L (0.53-1.31, P < 0.001) in the diet and 0.87 mg/L (0.51-1.23, P < 0.0001) in the diet + exercise groups. IL-6 decreased by 0.34 pg/mL (0.13-0.55, P = 0.001) in the diet and 0.32 pg/mL (0.15-0.49, P < 0.001) in the diet + exercise groups. Neutrophil counts decreased by 0.31 × 10(9)/L (0.09-0.54, P = 0.006) in the diet and 0.30 × 10(9)/L (0.09-0.50, P = 0.005) in the diet + exercise groups. Diet and diet + exercise participants with 5% or more weight loss reduced inflammatory biomarkers (hs-CRP, SAA, and IL-6) compared with controls. The diet and diet + exercise groups reduced hs-CRP in all subgroups of baseline BMI, waist circumference, CRP level, and fasting glucose. Our findings indicate that a caloric restriction weight loss diet with or without exercise reduces biomarkers of inflammation in postmenopausal women, with potential clinical significance for cancer risk reduction.

  14. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure.

    PubMed

    Smith, Patrick J; Blumenthal, James A; Babyak, Michael A; Craighead, Linda; Welsh-Bohmer, Kathleen A; Browndyke, Jeffrey N; Strauman, Timothy A; Sherwood, Andrew

    2010-06-01

    High blood pressure increases the risks of stroke, dementia, and neurocognitive dysfunction. Although aerobic exercise and dietary modifications have been shown to reduce blood pressure, no randomized trials have examined the effects of aerobic exercise combined with dietary modification on neurocognitive functioning in individuals with high blood pressure (ie, prehypertension and stage 1 hypertension). As part of a larger investigation, 124 participants with elevated blood pressure (systolic blood pressure 130 to 159 mm Hg or diastolic blood pressure 85 to 99 mm Hg) who were sedentary and overweight or obese (body mass index: 25 to 40 kg/m(2)) were randomized to the Dietary Approaches to Stop Hypertension (DASH) diet alone, DASH combined with a behavioral weight management program including exercise and caloric restriction, or a usual diet control group. Participants completed a battery of neurocognitive tests of executive function-memory-learning and psychomotor speed at baseline and again after the 4-month intervention. Participants on the DASH diet combined with a behavioral weight management program exhibited greater improvements in executive function-memory-learning (Cohen's D=0.562; P=0.008) and psychomotor speed (Cohen's D=0.480; P=0.023), and DASH diet alone participants exhibited better psychomotor speed (Cohen's D=0.440; P=0.036) compared with the usual diet control. Neurocognitive improvements appeared to be mediated by increased aerobic fitness and weight loss. Also, participants with greater intima-medial thickness and higher systolic blood pressure showed greater improvements in executive function-memory-learning in the group on the DASH diet combined with a behavioral weight management program. In conclusion, combining aerobic exercise with the DASH diet and caloric restriction improves neurocognitive function among sedentary and overweight/obese individuals with prehypertension and hypertension.

  15. Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial.

    PubMed

    Sukumar, Deeptha; Ambia-Sobhan, Hasina; Zurfluh, Robert; Schlussel, Yvette; Stahl, Theodore J; Gordon, Chris L; Shapses, Sue A

    2011-06-01

    Weight reduction induces bone loss by several factors, and the effect of higher protein (HP) intake during caloric restriction on bone mineral density (BMD) is not known. Previous study designs examining the longer-term effects of HP diets have not controlled for total calcium intake between groups and have not examined the relationship between bone and endocrine changes. In this randomized, controlled study, we examined how BMD (areal and volumetric), turnover markers, and hormones [insulin-like growth factor 1 (IGF-1), IGF-binding protein 3 (IGFBP-3), 25-hydroxyvitamin D, parathyroid hormone (PTH), and estradiol] respond to caloric restriction during a 1-year trial using two levels of protein intake. Forty-seven postmenopausal women (58.0 ± 4.4 years; body mass index of 32.1 ± 4.6 kg/m(2) ) completed the 1-year weight-loss trial and were on a higher (HP, 24%, n = 26) or normal protein (NP, 18%, n = 21) and fat intake (28%) with controlled calcium intake of 1.2 g/d. After 1 year, subjects lost 7.0% ± 4.5% of body weight, and protein intake was 86 and 60 g/d in the HP and NP groups, respectively. HP compared with NP diet attenuated loss of BMD at the ultradistal radius, lumbar spine, and total hip and trabecular volumetric BMD and bone mineral content of the tibia. This is consistent with the higher final values of IGF-1 and IGFBP-3 and lower bone-resorption marker (deoxypyridinoline) in the HP group than in the NP group (p < .05). These data show that a higher dietary protein during weight reduction increases serum IGF-1 and attenuates total and trabecular bone loss at certain sites in postmenopausal women.

  16. In vivo assessment of the mitochondrial response to caloric restriction in obese women by the 2-keto[1-C]isocaproate breath test.

    PubMed

    Parra, Dolores; González, Alvaro; Martínez, J Alfredo; Labayen, Idoia; Díez, Nieves

    2003-04-01

    The 2-keto[1-(13)C]isocaproate breath test has been proposed as a tool to detect mitochondrial dysfunction in alcoholic liver disease. The aim of this study was to evaluate if the 2-keto[1-(13)C]isocaproate breath test could detect in vivo dynamic changes on mitochondrial activity due to caloric restriction in obese women. Fifteen obese women (body mass index [BMI] > 30 kg/m(2)) participated in the study at baseline. Ten of these women agreed to participate on a diet program to induce body weight loss. Fifteen lean women (BMI < 25 kg/m(2)) were included as a control group. The breath test was performed by the oral administration of the tracer measuring (13)CO(2) enrichment in breath before and after ingestion using isotope ratio mass spectrometry. Body composition, resting energy expenditure, and plasma levels of insulin and leptin were measured. There were no relationships observed between the 2-keto[1-(13)C]isocaproate breath test and the plasma insulin (before diet: P =.863; after diet: P =.879), or leptin (before diet: P =.500; after diet: P =.637). In obese women before treatment, kilograms of fat free mass (P =.108), resting energy expenditure adjusted for body composition (P =.312), and the 2-keto[1-(13)C]isocaproate breath test (P =.205) were similar in comparison to lean women. However, 2-keto[1-(13)C]isocaproate oxidation tended to increase after dieting and was significantly higher than in controls (P =.015). These data suggest that the 2-keto[1-(13)C]isocaproate breath test reflected the adaptive modifications in mitochondrial oxidation in response to caloric restriction in obese women. Copyright 2003 Elsevier, Inc. All rights reserved.

  17. Immune potentiation after fractionated exposure to very low doses of ionizing radiation and/or caloric restriction in autoimmune-prone and normal C57Bl/6 mice

    SciTech Connect

    James, S.J.; Enger, S.M.; Peterson, W.J.; Makinodan, T. )

    1990-06-01

    Very low doses of ionizing radiation can enhance immune responsiveness and extend life span in normal mice. Total lymphoid irradiation at relatively high doses of radiation can retard autoimmune disease in genetically susceptible mice, but may impair immune function. In order to determine whether fractionated low dose exposure would enhance immune response and retard lymphadenopathy in autoimmune-prone mice, groups of C57B1/6 lpr/lpr mice were sham irradiated, exposed 5 days/week for 4 weeks to 0.04 Gy/day, or to 0.1 Gy/day. After the radiation protocol, the mice were evaluated for splenic T cell proliferative capacity, T cell subset distribution, and total spleen cell numbers. The independent and additive effect of caloric restriction was additionally assessed since this intervention has been shown to increase immune responsiveness and retard disease progression in autoimmune-prone mice. The congenic C57B1/6 +/+ immunologically normal strain was evaluated in parallel as congenic control. The results indicated that mitogen-stimulated proliferation was up-regulated in both strains of mice after exposure to 0.04 Gy/day. The proliferative capacity was additively enhanced when radiation at this dose level was combined with caloric restriction. Exposure to 0.1 Gy/day resulted in further augmentation of proliferative response in the lpr/lpr mice, but was depressive in the +/+ mice. Although the proportions of the various T cell subpopulations were altered in both strains after exposure to LDR, the specific subset alterations were different within each strain. Additional experiments were subsequently performed to assess whether the thymus is required for LDR-induced immune potentiation. Thymectomy completely abrogated the LDR effect in the +/+ mice, suggesting that thymic processing and/or trafficking is adaptively altered with LDR in this strain.

  18. Areal and Volumetric Bone Mineral Density and Geometry at Two Levels of Protein Intake During Caloric Restriction: A Randomized, Controlled Trial

    PubMed Central

    Sukumar, Deeptha; Ambia-Sobhan, Hasina; Zurfluh, Robert; Schlussel, Yvette; Stahl, Theodore J; Gordon, Chris L; Shapses, Sue A

    2011-01-01

    Weight reduction induces bone loss by several factors, and the effect of higher protein (HP) intake during caloric restriction on bone mineral density (BMD) is not known. Previous study designs examining the longer-term effects of HP diets have not controlled for total calcium intake between groups and have not examined the relationship between bone and endocrine changes. In this randomized, controlled study, we examined how BMD (areal and volumetric), turnover markers, and hormones [insulin-like growth factor 1 (IGF-1), IGF-binding protein 3 (IGFBP-3), 25-hydroxyvitamin D, parathyroid hormone (PTH), and estradiol] respond to caloric restriction during a 1-year trial using two levels of protein intake. Forty-seven postmenopausal women (58.0 ± 4.4 years; body mass index of 32.1 ± 4.6 kg/ m2) completed the 1-year weight-loss trial and were on a higher (HP, 24%, n =26) or normal protein (NP, 18%, n =21) and fat intake (28%) with controlled calcium intake of 1.2 g/d. After 1 year, subjects lost 7.0% ± 4.5% of body weight, and protein intake was 86 and 60 g/d in the HP and NP groups, respectively. HP compared with NP diet attenuated loss of BMD at the ultradistal radius, lumbar spine, and total hip and trabecular volumetric BMD and bone mineral content of the tibia. This is consistent with the higher final values of IGF-1 and IGFBP-3 and lower bone-resorption marker (deoxypyridinoline) in the HP group than in the NP group ( p <.05). These data show that a higher dietary protein during weight reduction increases serum IGF-1 and attenuates total and trabecular bone loss at certain sites in postmenopausal women. PMID:21611972

  19. The effect of alternate-day caloric restriction on the metabolic consequences of 8 days of bed rest in healthy lean men: a randomized trial.

    PubMed

    Harder-Lauridsen, Nina Majlund; Nielsen, Signe Tellerup; Mann, Sebastian Porsdam; Lyngbæk, Mark Preben; Benatti, Fabiana Braga; Langkilde, Annika Reynberg; Law, Ian; Wedell-Neergaard, Anne-Sophie; Thomsen, Carsten; Møller, Kirsten; Karstoft, Kristian; Pedersen, Bente Klarlund; Krogh-Madsen, Rikke

    2017-02-01

    Physical activity and alternate-day fasting/caloric restriction may both ameliorate aspects of the metabolic syndrome, such as insulin resistance, visceral fat mass accumulation, and cognitive impairment by overlapping mechanisms. The purpose of this study was to test the hypothesis that alternate-day caloric restriction (ADCR) with overall energy balance would reduce insulin resistance and accumulation of visceral fat, in addition to improving cognitive functions, after 8 consecutive days in bed. Healthy, lean men (n = 20) were randomized to 1) 8 days of bed rest with three daily isoenergetic meals (control group, n = 10); and 2) 8 days of bed rest with 25% of total energy requirements every other day and 175% of total energy requirements every other day (ADCR group). Oral glucose tolerance testing, dual-energy X-ray absorptiometry (DXA) scans, magnetic resonance imaging of the abdomen and brain, V̇o2max, and tests for cognitive function were performed before and after bed rest. In addition, daily fasting blood samples and 24-h glucose profiles by continuous glucose monitoring system were assessed during the 8 days of bed rest period. Bed rest induced insulin resistance, visceral fat accumulation, and worsening of mood. No positive effects emerged from ADCR on these negative health outcomes. Compared with the control group, ADCR was associated with improved and steadier glycemic control on fasting days and higher glycemic fluctuation and indexes of insulin resistance on overeating days. In contrast to our hypothesis, the metabolic impairment induced by 8 days of bed rest was not counteracted by ADCR with overall energy balance.

  20. Longevity, aging, and caloric restriction: Clive Maine McCay and the construction of a multidisciplinary research program.

    PubMed

    Park, Hyung Wook

    2010-01-01

    Since the 1930s scientists from fields such as biochemistry, pathology, immunology, genetics, neuroscience, and nutrition have studied the relation of dietary caloric intake to longevity and aging. This paper discusses how Clive Maine McCay, a professor of animal husbandry at Cornell University, began his investigation of the topic and promoted it as a productive research program in the multidisciplinary science of gerontology. Initially, McCay observed the effect of reduced-calorie diets on life span and senescence while pursuing his nutrition research in the context of animal husbandry and agriculture. But when he received funding from the Rockefeller Foundation and started to participate in the establishment of gerontology during the 1930s, the scope of his research was considerably expanded beyond his original disciplinary domain. It became a multidisciplinary research program that attracted scholars from a variety of scientific and medical disciplines. This paper argues that through this expansion McCay's research created a means of maintaining cooperation among the diverse and heterogeneous academic fields constituting gerontology.

  1. Mild and Short-Term Caloric Restriction Prevents Obesity-Induced Cardiomyopathy in Young Zucker Rats without Changing in Metabolites and Fatty Acids Cardiac Profile.

    PubMed

    Ruiz-Hurtado, Gema; García-Prieto, Concha F; Pulido-Olmo, Helena; Velasco-Martín, Juan P; Villa-Valverde, Palmira; Fernández-Valle, María E; Boscá, Lisardo; Fernández-Velasco, María; Regadera, Javier; Somoza, Beatriz; Fernández-Alfonso, María S

    2017-01-01

    Caloric restriction (CR) ameliorates cardiac dysfunction associated with obesity. However, most of the studies have been performed under severe CR (30-65% caloric intake decrease) for several months or even years in aged animals. Here, we investigated whether mild (20% food intake reduction) and short-term (2-weeks) CR prevented the obese cardiomyopathy phenotype and improved the metabolic profile of young (14 weeks of age) genetically obese Zucker fa/fa rats. Heart weight (HW) and HW/tibia length ratio was significantly lower in fa/fa rats after 2 weeks of CR than in counterparts fed ad libitum. Invasive pressure measurements showed that systolic blood pressure, maximal rate of positive left ventricle (LV) pressure, LV systolic pressure and LV end-diastolic pressure were all significantly higher in obese fa/fa rats than in lean counterparts, which were prevented by CR. Magnetic resonance imaging revealed that the increase in LV end-systolic volume, stroke volume and LV wall thickness observed in fa/fa rats was significantly lower in animals on CR diet. Histological analysis also revealed that CR blocked the significant increase in cardiomyocyte diameter in obese fa/fa rats. High resolution magic angle spinning magnetic resonance spectroscopy analysis of the LV revealed a global decrease in metabolites such as taurine, creatine and phosphocreatine, glutamate, glutamine and glutathione, in obese fa/fa rats, whereas lactate concentration was increased. By contrast, fatty acid concentrations in LV tissue were significantly elevated in obese fa/fa rats. CR failed to restore the LV metabolomic profile of obese fa/fa rats. In conclusion, mild and short-term CR prevented an obesity-induced cardiomyopathy phenotype in young obese fa/fa rats independently of the cardiac metabolic profile.

  2. Mild and Short-Term Caloric Restriction Prevents Obesity-Induced Cardiomyopathy in Young Zucker Rats without Changing in Metabolites and Fatty Acids Cardiac Profile

    PubMed Central

    Ruiz-Hurtado, Gema; García-Prieto, Concha F.; Pulido-Olmo, Helena; Velasco-Martín, Juan P.; Villa-Valverde, Palmira; Fernández-Valle, María E.; Boscá, Lisardo; Fernández-Velasco, María; Regadera, Javier; Somoza, Beatriz; Fernández-Alfonso, María S.

    2017-01-01

    Caloric restriction (CR) ameliorates cardiac dysfunction associated with obesity. However, most of the studies have been performed under severe CR (30–65% caloric intake decrease) for several months or even years in aged animals. Here, we investigated whether mild (20% food intake reduction) and short-term (2-weeks) CR prevented the obese cardiomyopathy phenotype and improved the metabolic profile of young (14 weeks of age) genetically obese Zucker fa/fa rats. Heart weight (HW) and HW/tibia length ratio was significantly lower in fa/fa rats after 2 weeks of CR than in counterparts fed ad libitum. Invasive pressure measurements showed that systolic blood pressure, maximal rate of positive left ventricle (LV) pressure, LV systolic pressure and LV end-diastolic pressure were all significantly higher in obese fa/fa rats than in lean counterparts, which were prevented by CR. Magnetic resonance imaging revealed that the increase in LV end-systolic volume, stroke volume and LV wall thickness observed in fa/fa rats was significantly lower in animals on CR diet. Histological analysis also revealed that CR blocked the significant increase in cardiomyocyte diameter in obese fa/fa rats. High resolution magic angle spinning magnetic resonance spectroscopy analysis of the LV revealed a global decrease in metabolites such as taurine, creatine and phosphocreatine, glutamate, glutamine and glutathione, in obese fa/fa rats, whereas lactate concentration was increased. By contrast, fatty acid concentrations in LV tissue were significantly elevated in obese fa/fa rats. CR failed to restore the LV metabolomic profile of obese fa/fa rats. In conclusion, mild and short-term CR prevented an obesity-induced cardiomyopathy phenotype in young obese fa/fa rats independently of the cardiac metabolic profile. PMID:28203206

  3. Comparison of the effects of resveratrol and caloric restriction on learning and memory in juvenile C57BL/6J mice

    PubMed Central

    Xu, Bao-Lei; Wang, Rong; Ma, Li-Na; Dong, Wen; Zhao, Zhi-Wei; Zhang, Jing-Shuang; Wang, Yu-Lan; Zhang, Xu

    2015-01-01

    Objective(s): Both caloric restriction (CR) and resveratrol (RSV) have been shown to improve learning and memory, but their potential effects in juvenile animals were unknown. Here, we evaluated the effects of RSV and CR on learning and memory function in juvenile mice and investigated potential molecular mechanisms. Methods: Six-week-old C57BL/6J mice were assigned to one of three different dietary groups: normal control (stock diet) (n=12), CR diet (30% caloric reduction diet) (n=12), and RSV diet (stock diet supplemented with 18.6 mg/kg RSV) (n=12), for 6 months. Body weight and blood glucose were measured every 4 weeks. Serum cholesterol and serum triglyceride levels were examined using biochemical methods. Serum insulin and insulin-like growth factor 1 (IGF-1) levels were evaluated using enzyme linked immunosorbant assay (ELISA), and protein expression of silent mating type information regulation 2 homology 1 (SIRT1), p53, p16, peroxisome proliferator-activated receptor γ (PPARγ), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phosphorylated-cAMP response element-binding protein (p-CREB), and IGF-1 were examined with immunohistochemistry. Results: Although long-term CR diet did not alter physiological conditions in juvenile mice relative to control, RSV supplementation slightly elevated blood glucose, serum triglyceride, and serum insulin levels. Both CR and RSV improved learning and memory function, although the effect of CR was significantly greater. Both CR and RSV downregulated p53 and upregulated IGF-1 in hippocampal CA1 region of mice. Conclusion: We demonstrate that CR and RSV may improve learning and memory by downregulating p53 and upregulating IGF-1 in hippocampal CA1 region of juvenile mice. PMID:26949500

  4. Caloric restriction and the adipokine leptin alter the SDF-1 signaling axis in bone marrow and in bone marrow derived mesenchymal stem cells.

    PubMed

    Periyasamy-Thandavan, Sudharsan; Herberg, Samuel; Arounleut, Phonepasong; Upadhyay, Sunil; Dukes, Amy; Davis, Colleen; Johnson, Maribeth; McGee-Lawrence, Meghan; Hamrick, Mark W; Isales, Carlos M; Hill, William D

    2015-07-15

    Growing evidence suggests that the chemokine stromal cell-derived factor-1 (SDF-1) is essential in regulating bone marrow (BM) derived mesenchymal stromal/stem cell (BMSC) survival, and differentiation to either a pro-osteogenic or pro-adipogenic fate. This study investigates the effects of caloric restriction (CR) and leptin on the SDF-1/CXCR4 axis in bone and BM tissues in the context of age-associated bone loss. For in vivo studies, we collected bone, BM cells and BM interstitial fluid from 12 and 20 month-old C57Bl6 mice fed ad-libitum (AL), and 20-month-old mice on long-term CR with, or without, intraperitoneal injection of leptin for 10 days (10 mg/kg). To mimic conditions of CR in vitro, 18 month murine BMSCs were treated with (1) control (Ctrl): normal proliferation medium, (2) nutrient restriction (NR): low glucose, low serum medium, or (3) NR + leptin: NR medium + 100 ng/ml leptin for 6-48 h. In BMSCs both protein and mRNA expression of SDF-1 and CXCR4 were increased by CR and CR + leptin. In contrast, the alternate SDF-1 receptor CXCR7 was decreased, suggesting a nutrient signaling mediated change in SDF-1 axis signaling in BMSCs. However, in bone SDF-1, CXCR4 and 7 gene expression increase with age and this is reversed with CR, while addition of leptin returns this to the "aged" level. Histologically bone formation was lower in the calorically restricted mice and BM adipogenesis increased, both effects were reversed with the 10 day leptin treatment. This suggests that in bone CR and leptin alter the nutrient signaling pathways in different ways to affect the local action of the osteogenic cytokine SDF-1. Studies focusing on the molecular interaction between nutrient signaling by CR, leptin and SDF-1 axis may help to address age-related musculoskeletal changes.

  5. Effect of caloric restriction and AMPK activation on hepatic nuclear receptor, biotransformation enzyme, and transporter expression in lean and obese mice.

    PubMed

    Kulkarni, Supriya R; Xu, Jialin; Donepudi, Ajay C; Wei, Wei; Slitt, Angela L

    2013-09-01

    Fatty liver alters liver transporter expression. Caloric restriction (CR), the recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in liver and hepatocytes. mRNA and protein expression was determined in adult lean (lean) and leptin-deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was determined. CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR increased Abcc4 protein in lean, but not OB mice. CR restriction reversed the expression of some, but not all transporters in livers of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for some transporters.

  6. ABCG1 regulates mouse adipose tissue macrophage cholesterol levels and ratio of M1 to M2 cells in obesity and caloric restriction.

    PubMed

    Wei, Hao; Tarling, Elizabeth J; McMillen, Timothy S; Tang, Chongren; LeBoeuf, Renée C

    2015-12-01

    In addition to triacylglycerols, adipocytes contain a large reserve of unesterified cholesterol. During adipocyte lipolysis and cell death seen during severe obesity and weight loss, free fatty acids and cholesterol become available for uptake and processing by adipose tissue macrophages (ATMs). We hypothesize that ATMs become cholesterol enriched and participate in cholesterol clearance from adipose tissue. We previously showed that ABCG1 is robustly upregulated in ATMs taken from obese mice and further enhanced by caloric restriction. Here, we found that ATMs taken from obese and calorie-restricted mice derived from transplantation of WT or Abcg1-deficient bone marrow are cholesterol enriched. ABCG1 levels regulate the ratio of classically activated (M1) to alternatively activated (M2) ATMs and their cellular cholesterol content. Using WT and Abcg1(-/-) cultured macrophages, we found that Abcg1 is most highly expressed by M2 macrophages and that ABCG1 deficiency is sufficient to retard macrophage chemotaxis. However, changes in myeloid expression of Abcg1 did not protect mice from obesity or impaired glucose homeostasis. Overall, ABCG1 modulates ATM cholesterol content in obesity and weight loss regimes leading to an alteration in M1 to M2 ratio that we suggest is due to the extent of macrophage egress from adipose tissue.

  7. The data do not seem to support a benefit to BCAA supplementation during periods of caloric restriction.

    PubMed

    Dieter, Brad P; Schoenfeld, Brad Jon; Aragon, Alan A

    2016-01-01

    J Int Soc Sports Nutr 13:1-015-0112-9, 2016 describe the efficacy of branched chain amino acid (BCAA) supplementation and resistance training for maintaining lean body mass during a calorie-restricted diet, and claim that this occurs with concurrent losses in fat mass. However, the reported results appear to be at odds with the data presented on changes in fat mass. This letter discusses the issues with the paper.

  8. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients.

    PubMed

    Wing, R R; Blair, E H; Bononi, P; Marcus, M D; Watanabe, R; Bergman, R N

    1994-01-01

    To examine the effects of caloric restriction, independent of differences in weight loss, on improvements in glycemic control, fasting insulin, and insulin sensitivity. We randomized 93 obese type II diabetic patients to two different degrees of calorie restriction (1,674 or 4,185 kJ/day; 400 or 1,000 kcal/day) and compared the changes in fasting glucose, fasting insulin, and insulin sensitivity that resulted from a comparable reduction in body weight (11% of initial body weight). Insulin sensitivity was assessed using the minimal model analysis of frequently sampled intravenous glucose tolerance tests. Despite equal weight losses, subjects in the 1,674 kJ/day (400 kcal) condition had lower fasting glucose levels (7.61 vs. 10.13 mM, P = 0.03) and greater insulin sensitivity (1.79 vs. 1.13, P = 0.04) after weight loss than did subjects in the 4,185 kJ/day (1,000 calorie) condition. Subjects were restudied 15 weeks later when both groups were consuming a 4,185 kJ/day (1,000 kcal/day) diet. Subjects who increased from 1,674 to 4,185 kJ (400 to 1,000 calories) had worse fasting glycemic control in spite of continued weight loss, whereas subjects who remained on 4,185 kJ (1,000 calories) throughout had further improvements in both blood glucose and insulin sensitivity with increased weight loss. Both degree of calorie restriction and magnitude of weight loss have independent effects on improvements in glycemic control and insulin sensitivity.

  9. Less-than-expected weight loss in normal-weight women undergoing caloric restriction and exercise is accompanied by preservation of fat-free mass and metabolic adaptations.

    PubMed

    Koehler, K; De Souza, M J; Williams, N I

    2017-03-01

    Normal-weight women frequently restrict their caloric intake and exercise, but little is known about the effects on body weight, body composition and metabolic adaptations in this population. We conducted a secondary analysis of data from a randomized controlled trial in sedentary normal-weight women. Women were assigned to a severe energy deficit (SEV: -1062±80 kcal per day; n=9), a moderate energy deficit (MOD: -633±71 kcal per day; n=7) or energy balance (BAL; n=9) while exercising five times per week for 3 months. Outcome variables included changes in body weight, body composition, resting metabolic rate (RMR) and metabolic hormones associated with energy conservation. Weight loss occurred in SEV (-3.7±0.9 kg, P<0.001) and MOD (-2.7±0.8 kg; P=0.003), but weight loss was significantly less than predicted (SEV: -11.1±1.0 kg; MOD: -6.5±1.1 kg; both P<0.001 vs actual). Fat mass declined in SEV (P<0.001) and MOD (P=0.006), whereas fat-free mass remained unchanged in all groups (P>0.33). RMR decreased by -6±2% in MOD (P=0.020). In SEV, RMR did not change on a group level (P=0.66), but participants whose RMR declined lost more weight (P=0.020) and had a higher baseline RMR (P=0.026) than those whose RMR did not decrease. Characteristic changes in leptin (P=0.003), tri-iodothyronine (P=0.013), insulin-like growth factor-1 (P=0.016) and ghrelin (P=0.049) occurred only in SEV. The energy deficit and adaptive changes in RMR explained 54% of the observed weight loss. In normal-weight women, caloric restriction and exercise resulted in less-than-predicted weight loss. In contrast to previous literature, weight loss consisted almost exclusively of fat mass, whereas fat-free mass was preserved.

  10. Prevention of Neuromusculoskeletal Frailty in Slow-Aging Ames Dwarf Mice: Longitudinal Investigation of Interaction of Longevity Genes and Caloric Restriction

    PubMed Central

    Arum, Oge; Rasche, Zachary Andrew; Rickman, Dustin John; Bartke, Andrzej

    2013-01-01

    Ames dwarf (Prop1df/df) mice are remarkably long-lived and exhibit many characteristics of delayed aging and extended healthspan. Caloric restriction (CR) has similar effects on healthspan and lifespan, and causes an extension of longevity in Ames dwarf mice. Our study objective was to determine whether Ames dwarfism or CR influence neuromusculoskeletal function in middle-aged (82 ± 12 weeks old) or old (128 ± 14 w.o.) mice. At the examined ages, strength was improved by dwarfism, CR, and dwarfism plus CR in male mice; balance/ motor coordination was improved by CR in old animals and in middle-aged females; and agility/ motor coordination was improved by a combination of dwarfism and CR in both genders of middle-aged mice and in old females. Therefore, extension of longevity by congenital hypopituitarism is associated with improved maintenance of the examined measures of strength, agility, and motor coordination, key elements of frailty during human aging, into advanced age. This study serves as a particularly important example of knowledge related to addressing aging-associated diseases and disorders that results from studies in long-lived mammals. PMID:24155868

  11. Life-Span Extension by Caloric Restriction Is Determined by Type and Level of Food Reduction and by Reproductive Mode in Brachionus manjavacas (Rotifera)

    PubMed Central

    2013-01-01

    We measured life span and fecundity of three reproductive modes in a clone of the monogonont rotifer Brachionus manjavacas subjected to chronic caloric restriction (CCR) over a range of food concentrations or to intermittent fasting (IF). IF increased life span 50%–70% for all three modes, whereas CCR increased life span of asexual females derived from sexually or asexually produced eggs, but not that of sexual females. The main effect of CR on both asexual modes was to delay death at young ages, rather than to prevent death at middle ages or to greatly extend maximum life span; in contrast CR in sexual females greatly increased the life span of a few long-lived individuals. Lifetime fecundity did not decrease with CCR, suggesting a lack of resource allocation trade-off between somatic maintenance and reproduction. Multiple outcomes for a clonal lineage indicate that different responses are established through epigenetic programming, whereas differences in life-span allocations suggest that multiple genetic mechanisms mediate life-span extension. PMID:22904096

  12. Differential Development of Inflammation and Insulin Resistance in Different Adipose Tissue Depots Along Aging in Wistar Rats: Effects of Caloric Restriction.

    PubMed

    Sierra Rojas, Johanna X; García-San Frutos, Miriam; Horrillo, Daniel; Lauzurica, Nuria; Oliveros, Eva; Carrascosa, Jose María; Fernández-Agulló, Teresa; Ros, Manuel

    2016-03-01

    The prevalence of insulin resistance and type 2 diabetes increases with aging and these disorders are associated with inflammation. Insulin resistance and inflammation do not develop at the same time in all tissues. Adipose tissue is one of the tissues where inflammation and insulin resistance are established earlier during aging. Nevertheless, the existence of different fat depots states the possibility of differential roles for these depots in the development of age-associated inflammation and insulin resistance. To explore this, we analyzed insulin signaling and inflammation in epididymal, perirenal, subcutaneous, and brown adipose tissues during aging in Wistar rats. Although all tissues showed signs of inflammation and insulin resistance with aging, epididymal fat was the first to develop signs of inflammation and insulin resistance along aging among white fat tissues. Subcutaneous adipose tissue presented the lowest degree of inflammation and insulin resistance that developed latter with age. Brown adipose tissue also presented latter insulin resistance and inflammation but with lower signs of macrophage infiltration. Caloric restriction ameliorated insulin resistance and inflammation in all tissues, being more effective in subcutaneous and brown adipose tissues. These data demonstrate differential susceptibility of the different adipose depots to the development of age-associated insulin resistance and inflammation.

  13. Life span extension and H(2)O(2) resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae.

    PubMed

    Molin, Mikael; Yang, Junsheng; Hanzén, Sarah; Toledano, Michel B; Labarre, Jean; Nyström, Thomas

    2011-09-02

    Caloric restriction (CR) extends the life span of organisms ranging from yeast to primates. Here, we show that the thiol-dependent peroxiredoxin Tsa1 and its partner sulfiredoxin, Srx1, are required for CR to extend the replicative life span of yeast cells. Tsa1 becomes hyperoxidized/inactive during aging, and CR mitigates such oxidation by elevating the levels of Srx1, which is required to reduce/reactivate hyperoxidized Tsa1. CR, by lowering cAMP-PKA activity, enhances Gcn2-dependent SRX1 translation, resulting in increased resistance to H(2)O(2) and life span extension. Moreover, an extra copy of the SRX1 gene is sufficient to extend the life span of cells grown in high glucose concentrations by 20% in a Tsa1-dependent and Sir2-independent manner. The data demonstrate that Tsa1 is required to ensure yeast longevity and that CR extends yeast life span, in part, by counteracting age-induced hyperoxidation of this peroxiredoxin.

  14. Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy.

    PubMed

    Guedes, Ana; Ludovico, Paula; Sampaio-Marques, Belém

    2017-01-01

    Alpha-synuclein (syn) is the main component of proteinaceous inclusions known as Lewy bodies (LBs), which are implicated in the pathogenesis of the neurodegenerative diseases known as synucleinopathies, like Parkinson's disease (PD). Aging is a major risk factor for PD and thus, interventions that delay aging will have promising effects in PD and other synucleinopathies. Caloric restriction (CR) is the only non-genetic intervention shown to promote lifespan extension in several model organisms. CR has been shown to alleviate syn toxicity and herein we confirmed the same effect on the yeast model for synucleinopathies during chronological lifespan. The data gathered showed that TOR1 deletion also results in similar longevity extension and abrogation of syn toxicity. Intriguingly, these interventions were associated with decreased autophagy, which was maintained at homeostatic levels. Autophagy maintenance at homeostatic levels promoted by CR or TOR1 abrogation in syn-expressing cells was achieved by decreasing Sir2 levels and activity. Furthermore, the opposite function of Tor1 and Sir2 in autophagy is probably associated with the maintenance of autophagy activity at homeostatic levels, a central event linked to abrogation of syn toxicity promoted by CR.

  15. Mild caloric restriction reduces blood pressure and activates endothelial AMPK-PI3K-Akt-eNOS pathway in obese Zucker rats.

    PubMed

    García-Prieto, C F; Pulido-Olmo, H; Ruiz-Hurtado, G; Gil-Ortega, M; Aranguez, I; Rubio, M A; Ruiz-Gayo, M; Somoza, B; Fernández-Alfonso, M S

    2015-01-01

    Genetic obesity models exhibit endothelial dysfunction associated to adenosine monophosphate-activated protein kinase (AMPK) dysregulation. This study aims to assess if mild short-term caloric restriction (CR) restores endothelial AMPK activity leading to an improvement in endothelial function. Twelve-week old Zucker lean and obese (fa/fa) male rats had access to standard chow either ad libitum (AL, n=8) or 80% of AL (CR, n=8) for two weeks. Systolic blood pressure was significantly higher in fa/fa AL rats versus lean AL animals, but was normalized by CR. Endothelium-dependent relaxation to acetylcholine (ACh, 10(-9) to 10(-4) M) was reduced in fa/fa AL compared to control lean AL rats (p<0.001), and restored by CR. The AMPK activator AICAR (10(-5) to 8·10(-3) M) elicited a lower relaxation in fa/fa AL rings that was normalized by CR (p<0.001). Inhibition of PI3K (wortmannin, 10(-7) M), Akt (triciribine, 10(-5) M), or eNOS (L-NAME, 10(-4) M) markedly reduced AICAR-induced relaxation in lean AL, but not in fa/fa AL rats. These inhibitions were restored by CR in Zucker fa/fa rings. These data show that mild short-term CR improves endothelial function and lowers blood pressure in obesity due to the activation of the AMPK-PI3K-Akt-eNOS pathway.

  16. Life-span extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera).

    PubMed

    Gribble, Kristin E; Welch, David B Mark

    2013-04-01

    We measured life span and fecundity of three reproductive modes in a clone of the monogonont rotifer Brachionus manjavacas subjected to chronic caloric restriction (CCR) over a range of food concentrations or to intermittent fasting (IF). IF increased life span 50%-70% for all three modes, whereas CCR increased life span of asexual females derived from sexually or asexually produced eggs, but not that of sexual females. The main effect of CR on both asexual modes was to delay death at young ages, rather than to prevent death at middle ages or to greatly extend maximum life span; in contrast CR in sexual females greatly increased the life span of a few long-lived individuals. Lifetime fecundity did not decrease with CCR, suggesting a lack of resource allocation trade-off between somatic maintenance and reproduction. Multiple outcomes for a clonal lineage indicate that different responses are established through epigenetic programming, whereas differences in life-span allocations suggest that multiple genetic mechanisms mediate life-span extension.

  17. Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice

    PubMed Central

    Russo, Matias; Fabersani, Emanuel; Abeijón-Mukdsi, María C.; Ross, Romina; Fontana, Cecilia; Benítez-Páez, Alfonso; Gauffin-Cano, Paola; Medina, Roxana B.

    2016-01-01

    The purpose of this study was to determine whether the administration of the feruloyl esterase (FE)-producing strain Lactobacillus fermentum CRL1446 enhances metabolic and oxidative parameters in caloric-restricted (CR) mice. Balb/c male mice were divided into ad libitum fed Group (ALF Group), CR diet Group (CR Group) and CR diet plus L. fermentum Group (CR-Lf Group). CR diet was administered during 45 days and CRL1446 strain was given in the dose of 108 cells/mL/day/mouse. FE activity was determined in intestinal mucosa and content at Day 1, 20 and 45. Triglyceride, total cholesterol, glucose, thiobarbituric acid reactive substances (TBARS) levels and glutathione reductase activity were determined in plasma. Gut microbiota was evaluated by high-throughput sequencing of 16S rRNA gene amplicons. At Day 45, total intestinal FE activity in CR-Lf Group was higher (p = 0.020) than in CR and ALF groups and an improvement in both metabolic (reductions in triglyceride (p = 0.0025), total cholesterol (p = 0.005) and glucose (p < 0.0001) levels) and oxidative (decrease of TBARS levels and increase of plasmatic glutathione reductase activity (p = 0.006)) parameters was observed, compared to ALF Group. CR diet increased abundance of Bacteroidetes and CRL1446 administration increased abundance of Bifidobacterium and Lactobacillus genus. L. fermentun CRL1446 exerted a bifidogenic effect under CR conditions. PMID:27399766

  18. Long-term caloric restriction in ApoE-deficient mice results in neuroprotection via Fgf21-induced AMPK/mTOR pathway

    PubMed Central

    Blümel, Tobias; Stahn, Laura; Vollmar, Brigitte; Kuhla, Angela

    2016-01-01

    Caloric restriction (CR) decelerates the aging process, extends lifespan and exerts neuroprotective effects in diverse species by so far unknown mechanisms. Based on known neuroprotective effects of fibroblastic growth factor 21 (Fgf21) we speculate that CR upregulates Fgf21, which phosphorylates neuronal AMP-activated protein kinase (AMPK), leading to a decrease of mammalian target of rapamycin (mTOR) signaling activity and an inhibition of tau-hyperphosphorylation. This in turn reduces the formation of neurofibrillary tangles, a neuropathological hallmark of Alzheimer's disease. ApoE-deficient mice (ApoE−/−), serving as a model of neurodegeneration, showed upon CR vs. ad libitum feeding increased Fgf21 levels in both, plasma and brain as well as higher phosphorylation of fibroblastic growth factor receptor 1c (Fgfr1c), extracellular signal-regulated kinases 1/2 (ERK1/2) and AMPK in brain, lower activity of mTOR and decreased Tau-phosphorylation. Finally, CR in ApoE−/− mice caused neuroprotection as indicated by a higher synaptic plasticity shown by immunohistochemical analysis with increased numbers of PSD95-positive neurons and a better cognitive performance as analyzed with Morris water maze test. These data provide substantial evidence that neuroprotection upon CR seems to be Fgf21-dependent. Further experiments are necessary to evaluate Fgf21 as a therapeutic tool to treat tauopathy for improvement of cognitive performance. PMID:27902456

  19. Epigenetic modifications in mouse cerebellar Purkinje cells: effects of aging, caloric restriction, and overexpression of superoxide dismutase 1 on 5-methylcytosine and 5-hydroxymethylcytosine.

    PubMed

    Lardenoije, Roy; van den Hove, Daniël L A; Vaessen, Thomas S J; Iatrou, Artemis; Meuwissen, Koen P V; van Hagen, Britt T J; Kenis, Gunter; Steinbusch, Harry W M; Schmitz, Christoph; Rutten, Bart P F

    2015-11-01

    The aim of the present study was to assess alterations in DNA methylation and hydroxymethylation during aging in cerebellar Purkinje cells and to determine the effects of putatively preventative measures to such age-related changes. Using immunohistochemical techniques, 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) immunoreactivity in cerebellar Purkinje cells of 12-month- and 24-month-old mice was interrogated. Additionally, the modulatory effects of caloric restriction (CR) and normal human Cu/Zn super oxide dismutase 1 overexpression on these changes were assessed. We show that aging is associated with an increase of 5-mC and 5-hmC immunoreactivity in mouse cerebellar Purkinje cells. These age-related increases were mitigated by CR but not super oxide dismutase 1 overexpression. Additionally, the ratio between 5-mC and 5-hmC decreased with age and CR treatment, suggesting that CR has a stronger effect on DNA methylation than DNA hydroxymethylation. These findings enforce the notion that aging is closely connected to marked epigenetic changes, affecting multiple brain regions, and that CR is an effective means to prevent or counteract deleterious age-related epigenetic alterations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction

    PubMed Central

    Gong, Huan; Sun, Liang; Chen, Beidong; Han, Yiwen; Pang, Jing; Wu, Wei; Qi, Ruomei; Zhang, Tie-mei

    2016-01-01

    Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) is a routine method for gene expression analysis, and reliable results depend on proper normalization by stable reference genes. Caloric restriction (CR) is a robust lifestyle intervention to slow aging and delay onset of age-associated diseases via inducing global changes in gene expression. Reliable normalization of RT-qPCR data becomes crucial in CR studies. In this study, the expression stability of 12 candidate reference genes were evaluated in inguinal white adipose tissue (iWAT), skeletal muscle (Sk.M) and liver of CR mice by using three algorithms, geNorm, NormFinder, and Bestkeeper. Our results showed β2m, Ppia and Hmbs as the most stable genes in iWAT, Sk.M and liver, respectively. Moreover, two reference genes were sufficient to normalize RT-qPCR data in each tissue and the suitable pair of reference genes was β2m-Hprt in iWAT, Ppia-Gusb in Sk.M and Hmbs-β2m in liver. By contrast, the least stable gene in iWAT or Sk.M was Gapdh, and in liver was Pgk1. Furthermore, the expression of Leptin and Ppar-γ were profiled in these tissues to validate the selected reference genes. Our data provided a basis for gene expression analysis in future CR studies. PMID:27922100

  1. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction.

    PubMed

    Rascón, Brenda; Hubbard, Basil P; Sinclair, David A; Amdam, Gro V

    2012-07-01

    Our interest in healthy aging and in evolutionarily conserved mechanisms of lifespan extension prompted us to investigate whether features of age-related decline in the honey bee could be attenuated with resveratrol. Resveratrol is regarded as a caloric restriction mimetic known to extend lifespan in some but not all model species. The current, prevailing view is that resveratrol works largely by activating signaling pathways. It has also been suggested that resveratrol may act as an antioxidant and confer protection against nervous system impairment and oxidative stress. To test whether honey bee lifespan, learning performance, and food perception could be altered by resveratrol, we supplemented the diets of honey bees and measured lifespan, olfactory learning, and gustatory responsiveness to sucrose. Furthermore, to test the effects of resveratrol under metabolic challenge, we used hyperoxic environments to generate oxidative stress. Under normal oxygen conditions, two resveratrol treatments-30 and 130 μM-lengthened average lifespan in wild-type honey bees by 38% and 33%, respectively. Both resveratrol treatments also lengthened maximum and median lifespan. In contrast, hyperoxic stress abolished the resveratrol life-extension response. Furthermore, resveratrol did not affect learning performance, but did alter gustation. Honey bees that were not fed resveratrol exhibited greater responsiveness to sugar, while those supplemented with resveratrol were less responsive to sugar. We also discovered that individuals fed a high dose of resveratrol-compared to controls-ingested fewer quantities of food under ad libitum feeding conditions.

  2. Metabolic Benefit of Chronic Caloric Restriction and Activation of Hypothalamic AGRP/NPY Neurons in Male Mice Is Independent of Ghrelin.

    PubMed

    Rogers, Nicole H; Walsh, Heidi; Alvarez-Garcia, Oscar; Park, Seongjoon; Gaylinn, Bruce; Thorner, Michael O; Smith, Roy G

    2016-04-01

    Aging is associated with attenuated ghrelin signaling. During aging, chronic caloric restriction (CR) produces health benefits accompanied by enhanced ghrelin production. Ghrelin receptor (GH secretagogue receptor 1a) agonists administered to aging rodents and humans restore the young adult phenotype; therefore, we tested the hypothesis that the metabolic benefits of CR are mediated by endogenous ghrelin. Three month-old male mice lacking ghrelin (Ghrelin-/-) or ghrelin receptor (Ghsr-/-), and their wild-type (WT) littermates were randomly assigned to 2 groups: ad libitum (AL) fed and CR, where 40% food restriction was introduced gradually to allow Ghrelin-/- and Ghsr-/- mice to metabolically adapt and avoid severe hypoglycemia. Twelve months later, plasma ghrelin, metabolic parameters, ambulatory activity, hypothalamic and liver gene expression, as well as body composition were measured. CR increased plasma ghrelin and des-acyl ghrelin concentrations in WT and Ghsr-/- mice. CR of WT, Ghsr-/-, and Ghrelin-/- mice markedly improved metabolic flexibility, enhanced ambulatory activity, and reduced adiposity. Inactivation of Ghrelin or Ghsr had no effect on AL food intake or food anticipatory behavior. In contrast to the widely held belief that endogenous ghrelin regulates food intake, CR increased expression of hypothalamic Agrp and Npy, with reduced expression of Pomc across genotypes. In the AL context, ablation of ghrelin signaling markedly inhibited liver steatosis, which correlated with reduced Pparγ expression and enhanced Irs2 expression. Although CR and administration of GH secretagogue receptor 1a agonists both benefit the aging phenotype, we conclude the benefits of chronic CR are a consequence of enhanced metabolic flexibility independent of endogenous ghrelin or des-acyl ghrelin signaling.

  3. Vitamin E and caloric restriction promote hepatic homeostasis through expression of connexin 26, N-cad, E-cad and cholesterol metabolism genes.

    PubMed

    Santolim, Leonardo Vinícius; Amaral, Maria Esméria Corezola do; Fachi, José Luís; Mendes, Maíra Felonato; Oliveira, Camila Andréa de

    2017-01-01

    Connexins (Cx) and cadherins are responsible for cell homeostasis. The Cx activity is directly related to cholesterol. The present work investigates whether vitamin E, with or without caloric restriction (CR), alters the mRNA expression of Cx26, Cx32, Cx43, N-cadherins (N-cads), E-cadherins (E-cads) and alpha-smooth muscle actin (α-SMA), and evaluates their relation to cholesterol metabolism in rat liver. Animals were divided into different groups: control with ad libitum diet (C), control+vitamin E (CV), aloric restriction with intake to 60% of group C (CR), and the intake of group CR+vitamin E (RV). There were increases of manganese superoxide dismutase (Mn-SOD) and glutathione S-transferase mu 1, indicating antioxidant effects of CR and vitamin E. An increase of nitric oxide in the CR group was in agreement with the Mn-SOD data. Supplementation with vitamin E, with or without CR, upregulated the expression of Cx26 mRNA and increased low-density lipoprotein cholesterol (LDL-c) in the CV group. Reductions of Cx32 and Cx43 were associated with lower LDL-c. Increases in Hmgcr and low-density lipoprotein receptor (LDLr) in the CV and RV groups could be explained by the effect of vitamin E. A reduction of LDLr in the CR group was due to the reduced dietary intake. Increases in cadherins in the CV, CR and RV groups were indicative of tissue maintenance, which was also supported by increases of α-SMA in groups CV and RV. Finally, vitamin E, with or without CR, increased Cx26, probably modulated by expression of the Hmgcr and LDLr genes. This suggests important relationship of Cxs and cholesterol metabolism genes.

  4. Lifespan-extending caloric restriction or mTOR inhibition impair adaptive immunity of old mice by distinct mechanisms

    PubMed Central

    Goldberg, Emily L; Romero-Aleshire, Melissa J; Renkema, Kristin R; Ventevogel, Melissa S; Chew, Wade M; Uhrlaub, Jennifer L; Smithey, Megan J; Limesand, Kirsten H; Sempowski, Gregory D; Brooks, Heddwen L; Nikolich-Žugich, Janko

    2015-01-01

    Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan. PMID:25424641

  5. Caloric restriction, aerobic exercise training and soluble lectin-like oxidized LDL receptor-1 levels in overweight and obese post-menopausal women.

    PubMed

    Brinkley, T E; Wang, X; Kume, N; Mitsuoka, H; Nicklas, B J

    2011-06-01

    Elevated circulating levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) have been observed in obese persons and are reduced by weight loss. However, it is not known whether combining caloric restriction (CR) with exercise training is better in reducing sLOX-1 levels than CR alone. We examined whether the addition of aerobic exercise to a weight loss intervention differentially affects sLOX-1 levels in 61 abdominally obese post-menopausal women randomly assigned to a CR only (n = 22), CR+moderate-intensity exercise (n = 22) or CR+vigorous-intensity exercise (n = 17) intervention for 20 weeks. The caloric deficit was ~2800 kcal per week for all groups. The intervention groups were similar at baseline with respect to body weight, body composition, lipids and blood pressure. However, plasma sLOX-1 levels were higher in the CR-only group (99.90 ± 8.23 pg ml(-1)) compared with both the CR+moderate-intensity exercise (69.39 ± 8.23 pg ml(-1), P = 0.01) and the CR+vigorous-intensity exercise (72.83 ± 9.36 pg ml(-1), P = 0.03) groups. All three interventions significantly reduced body weight (~14%), body fat and waist and hip circumferences to a similar degree. These changes were accompanied by a 23% reduction in sLOX-1 levels overall (-19.00 ± 30.08 pg ml(-1), P < 0.0001), which did not differ among intervention groups (P = 0.13). Changes in body weight, body fat and maximal oxygen consumption (VO(2) max) were not correlated with changes in sLOX-1 levels. In multiple regression analyses in all women combined, baseline sLOX-1 levels (β = -0.70 ± 0.06, P < 0.0001), age (β = 0.92 ± 0.43, P = 0.03) and baseline body mass index (BMI) (β = 1.88 ± 0.66, P = 0.006) were independent predictors of the change in sLOX-1 with weight loss. Weight loss interventions of equal energy deficit have similar effects on sLOX-1 levels in overweight and obese post-menopausal women, with the addition of aerobic exercise having no added benefit when

  6. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies

    PubMed Central

    Mantis, John G; Centeno, Nicole A; Todorova, Mariana T; McGowan, Richard; Seyfried, Thomas N

    2004-01-01

    Background The high fat, low carbohydrate ketogenic diet (KD) was developed as an alternative to fasting for seizure management. While the mechanisms by which fasting and the KD inhibit seizures remain speculative, alterations in brain energy metabolism are likely involved. We previously showed that caloric restriction (CR) inhibits seizure susceptibility by reducing blood glucose in the epileptic EL mouse, a natural model for human multifactorial idiopathic epilepsy. In this study, we compared the antiepileptic and anticonvulsant efficacy of the KD with that of CR in adult EL mice with active epilepsy. EL mice that experienced at least 15 recurrent complex partial seizures were fed either a standard diet unrestricted (SD-UR) or restricted (SD-R), and either a KD unrestricted (KD-UR) or restricted (KD-R). All mice were fasted for 14 hrs prior to diet initiation. A new experimental design was used where each mouse in the diet-restricted groups served as its own control to achieve a 20–23% body weight reduction. Seizure susceptibility, body weights, and the levels of plasma glucose and β-hydroxybutyrate were measured once/week over a nine-week treatment period. Results Body weights and blood glucose levels remained high over the testing period in the SD-UR and the KD-UR groups, but were significantly (p < 0.001) reduced in the SD-R and KD-R groups. Plasma β-hydroxybutyrate levels were significantly (p < 0.001) increased in the SD-R and KD-R groups compared to their respective UR groups. Seizure susceptibility remained high in both UR-fed groups throughout the study, but was significantly reduced after three weeks in both R-fed groups. Conclusions The results indicate that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control is more associated with the amount than with the origin of dietary calories. Also, CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A transition from glucose to ketone

  7. Gastric bypass surgery restores meal stimulation of the anorexigenic gut hormones glucagon-like peptide-1 and peptide YY independently of caloric restriction.

    PubMed

    Evans, Sarah; Pamuklar, Zehra; Rosko, Jonathan; Mahaney, Patrick; Jiang, Ning; Park, Chan; Torquati, Alfonso

    2012-04-01

    The effects of gastric bypass surgery on the secretion of the anorexigenic gut-derived hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), independent of caloric restriction and due to different dietary macronutrients, is not well characterized. This study examines the effects of a mixed-nutrient or high-fat liquid meal on the postprandial stimulation of GLP-1 and PYY following gastric bypass or equivalent hypocaloric diet. Total PYY and active GLP-1 were measured fasting and at multiple points after standardized mixed-nutrient and high-fat liquid meals in two matched groups of obese subjects. The meal stimulation tests were performed before and 14.6 ± 3.3 days after gastric bypass (GBP, n = 10) and before and after a 7-day hypocaloric liquid diet matching the post-GBP diet (control, n = 10). Mixed-nutrient and high-fat postprandial GLP-1 levels increased following GBP (mixed-nutrient peak: 85.0 ± 28.6-323 ± 51 pg/ml, P < 0.01; high-fat peak: 81.8 ± 9.6-278 ± 49 pg/ml, P < 0.01), but not after diet (mixed-nutrient peak: 104.4 ± 9.4-114.9 ± 15.8 pg/ml, P = NS; high-fat peak: 118.1 ± 16.4-104.4 ± 10.8 pg/ml, P = NS). The postprandial PYY response also increased after GBP but not diet, though the increase in peak PYY did not reach statistical significance (GBP mixed-nutrient peak: 134.8 ± 26.0-220.7 ± 52.9 pg/ml, P = 0.09; GBP high-fat peak: 142.1 ± 34.6-197.9 ± 12.7 pg/ml, P = 0.07; diet mixed-nutrient peak: 99.8 ± 8.0-101.1 ± 13.3 pg/ml, P = NS; diet high-fat peak: 105.0 ± 8.8-103.1 ± 11.8 pg/ml, P = NS). The postprandial GLP-1 response was not affected by the macronutrient content of the meal. However, following GBP the mixed-nutrient PYY total area under the curve (AUC(0-120)) was significantly greater than the high-fat PYY AUC(0-120) (22,081 ± 5,662 pg/ml min vs. 18,711 ± 1,811 pg/ml min, P = 0.04). Following GBP there is an increase in the postprandial stimulation of PYY and GLP-1 that is independent of caloric restriction. The

  8. GASTRIC BYPASS SURGERY RESTORES MEAL STIMULATION OF THE ANOREXIGENIC GUT HORMONES GLUCAGON-LIKE PEPTIDE-1 AND PEPTIDE YY INDEPENDENTLY OF CALORIC RESTRICTION

    PubMed Central

    Evans, Sarah; Pamuklar, Zehra; Rosko, Jonathan; Mahaney, Patrick; Jiang, Ning; Park, Chan; Torquati, Alfonso

    2011-01-01

    Background The effects of gastric bypass surgery on the secretion of the anorexogenic gut-derived hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), independent of caloric restriction and due to different dietary macronutrients, is not well-characterized. This study examines the effects of a mixed-nutrient or high-fat liquid meal on the postprandial stimulation of GLP-1 and PYY following gastric bypass or equivalent hypocaloric diet. Methods Total PYY and active GLP-1 were measured fasting and at multiple points after standardized mixed-nutrient and high-fat liquid meals in two matched groups of obese subjects. The meal stimulation tests were performed before and 14.6±3.3 days after gastric bypass (GBP, n=10) and before and after a 7-day hypocaloric liquid diet matching the post-GBP diet (Control, n=10). Results Mixed-nutrient and high-fat postprandial GLP-1 levels increased following GBP (mixed-nutrient peak: 85.0±28.6 pg/ml to 323±51 pg/ml, p<0.01; high-fat peak: 81.8±9.6 pg/ml to 278±49 pg/ml, p<0.01), but not after diet (mixed-nutrient peak: 104.4±9.4 pg/ml to 114.9±15.8 pg/ml, p=NS; high-fat peak: 118.1±16.4 pg/ml to 104.4±10.8 pg/ml, p=NS). The postprandial PYY response also increased after GBP but not diet, though the increase in peak PYY did not reach statistical significance (GBP mixed-nutrient peak: 134.8±26.0 pg/ml to 220.7±52.9 pg/ml, p=0.09; GBP high-fat peak: 142.1±34.6 pg/ml to 197.9±12.7 pg/ml, p=0.07; diet mixed-nutrient peak: 99.8±8.0 pg/ml to 101.1±13.3 pg/ml, p=NS; diet high-fat peak: 105.0±8.8 pg/ml to 103.1±11.8 pg/ml, p=NS). The postprandial GLP-1 response was not affected by the macronutrient content of the meal. However, following GBP the mixed-nutrient PYY AUC0–120 was significantly greater than the high-fat PYY AUC0–120 (22081±5662 pg/ml•min versus 18711±1811 pg/ml•min, p=0.04). Conclusions Following GBP there is an increase in the postprandial stimulation of PYY and GLP-1 that is independent from

  9. Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet.

    PubMed

    Shen, Chwan-Li; Han, Jia; Wang, Shu; Chung, Eunhee; Chyu, Ming-Chien; Cao, Jay J

    2015-12-01

    This study investigated the effects of green tea polyphenols (GTP) supplementation on body composition, bone properties, and serum markers in obese rats fed a high-fat diet (HFD) or a caloric restricted diet (CRD). Forty-eight female rats were fed an HFD ad libitum for 4 months, and then either continued on the HFD or the CRD with or without 0.5% GTP in water. Body composition, bone efficacy, and serum markers were measured. We hypothesized that GTP supplementation would improve body composition, mitigate bone loss, and restore bone microstructure in obese animals fed either HFD or CRD. CRD lowered percent fat mass; bone mass and trabecular number of tibia, femur and lumbar vertebrae; femoral strength; trabecular and cortical thickness of tibia; insulin-like growth factor-I and leptin. CRD also increased percent fat-free mass; trabecular separation of tibia and femur; eroded surface of tibia; bone formation rate and erosion rate at tibia shaft; and adiponectin. GTP supplementation increased femoral mass and strength (P = .026), trabecular thickness (P = .012) and number (P = .019), and cortical thickness of tibia (P < .001), and decreased trabecular separation (P = .021), formation rate (P < .001), and eroded surface (P < .001) at proximal tibia, and insulin-like growth factor-I and leptin. There were significant interactions (diet type × GTP) on osteoblast surface/bone surface, mineral apposition rate at periosteal and endocortical bones, periosteal bone formation rate, and trabecular thickness at femur and lumbar vertebrate (P < .05). This study demonstrates that GTP supplementation for 4 months benefited body composition and improved bone microstructure and strength in obese rats fed with HFD or HFD followed by CRD diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Protein-Pacing Caloric-Restriction Enhances Body Composition Similarly in Obese Men and Women during Weight Loss and Sustains Efficacy during Long-Term Weight Maintenance

    PubMed Central

    Arciero, Paul J.; Edmonds, Rohan; He, Feng; Ward, Emery; Gumpricht, Eric; Mohr, Alex; Ormsbee, Michael J.; Astrup, Arne

    2016-01-01

    Short-Term protein-pacing (P; ~6 meals/day, >30% protein/day) and caloric restriction (CR, ~25% energy deficit) improves total (TBF), abdominal (ABF) and visceral (VAT) fat loss, energy expenditure, and biomarkers compared to heart healthy (HH) recommendations (3 meals/day, 15% protein/day) in obese adults. Less is known whether obese men and women respond similarly to P-CR during weight loss (WL) and whether a modified P-CR (mP-CR) is more efficacious than a HH diet during long-term (52 week) weight maintenance (WM). The purposes of this study were to evaluate the efficacy of: (1) P-CR on TBF, ABF, resting metabolic rate (RMR), and biomarkers between obese men and women during WL (weeks 0–12); and (2) mP-CR compared to a HH diet during WM (weeks 13–64). During WL, men (n = 21) and women (n = 19) were assessed for TBF, ABF, VAT, RMR, and biomarkers at weeks 0 (pre) and 12 (post). Men and women had similar reductions (p < 0.01) in weight (10%), TBF (19%), ABF (25%), VAT (33%), glucose (7%–12%), insulin (40%), leptin (>50%) and increase in % lean body mass (9%). RMR (kcals/kg bodyweight) was unchanged and respiratory quotient decreased 9%. Twenty-four subjects (mP-CR, n = 10; HH, n = 14) completed WM. mP-CR regained significantly less body weight (6%), TBF (12%), and ABF (17%) compared to HH (p < 0.05). Our results demonstrate P-CR enhances weight loss, body composition and biomarkers, and maintains these changes for 52-weeks compared to a traditional HH diet. PMID:27483317

  11. Metabolically distinct weight loss by 10,12 CLA and caloric restriction highlight the importance of subcutaneous white adipose tissue for glucose homeostasis in mice

    PubMed Central

    Wang, Shari; Goodspeed, Leela; Wietecha, Tomasz; Houston, Barbara; Omer, Mohamed; Ogimoto, Kayoko; Subramanian, Savitha; Gowda, G. A. Nagana; O’Brien, Kevin D.; Kaiyala, Karl J.; Morton, Gregory J.; Chait, Alan

    2017-01-01

    Background Widely used as a weight loss supplement, trans-10,cis-12 conjugated linoleic acid (10,12 CLA) promotes fat loss in obese mice and humans, but has also been associated with insulin resistance. Objective We therefore sought to directly compare weight loss by 10,12 CLA versus caloric restriction (CR, 15–25%), an acceptable healthy method of weight loss, to determine how 10,12 CLA-mediated weight loss fails to improve glucose metabolism. Methods Obese mice with characteristics of human metabolic syndrome were either supplemented with 10,12 CLA or subjected to CR to promote weight loss. Metabolic endpoints such as energy expenditure, glucose and insulin tolerance testing, and trunk fat distribution were measured. Results By design, 10,12 CLA and CR caused equivalent weight loss, with greater fat loss by 10,12 CLA accompanied by increased energy expenditure, reduced respiratory quotient, increased fat oxidation, accumulation of alternatively activated macrophages, and browning of subcutaneous white adipose tissue (WAT). Moreover, 10,12 CLA-supplemented mice better defended their body temperature against a cold challenge. However, 10,12 CLA concurrently induced the detrimental loss of subcutaneous WAT without reducing visceral WAT, promoted reduced plasma and WAT adipokine levels, worsened hepatic steatosis, and failed to improve glucose metabolism. Obese mice undergoing CR were protected from subcutaneous-specific fat loss, had improved hepatic steatosis, and subsequently showed the expected improvements in WAT adipokines, glucose metabolism and WAT inflammation. Conclusions These results suggest that 10,12 CLA mediates the preferential loss of subcutaneous fat that likely contributes to hepatic steatosis and maintained insulin resistance, despite significant weight loss and WAT browning in mice. Collectively, we have shown that weight loss due to 10,12 CLA supplementation or CR results in dramatically different metabolic phenotypes, with the latter

  12. Metabolically distinct weight loss by 10,12 CLA and caloric restriction highlight the importance of subcutaneous white adipose tissue for glucose homeostasis in mice.

    PubMed

    den Hartigh, Laura J; Wang, Shari; Goodspeed, Leela; Wietecha, Tomasz; Houston, Barbara; Omer, Mohamed; Ogimoto, Kayoko; Subramanian, Savitha; Gowda, G A Nagana; O'Brien, Kevin D; Kaiyala, Karl J; Morton, Gregory J; Chait, Alan

    2017-01-01

    Widely used as a weight loss supplement, trans-10,cis-12 conjugated linoleic acid (10,12 CLA) promotes fat loss in obese mice and humans, but has also been associated with insulin resistance. We therefore sought to directly compare weight loss by 10,12 CLA versus caloric restriction (CR, 15-25%), an acceptable healthy method of weight loss, to determine how 10,12 CLA-mediated weight loss fails to improve glucose metabolism. Obese mice with characteristics of human metabolic syndrome were either supplemented with 10,12 CLA or subjected to CR to promote weight loss. Metabolic endpoints such as energy expenditure, glucose and insulin tolerance testing, and trunk fat distribution were measured. By design, 10,12 CLA and CR caused equivalent weight loss, with greater fat loss by 10,12 CLA accompanied by increased energy expenditure, reduced respiratory quotient, increased fat oxidation, accumulation of alternatively activated macrophages, and browning of subcutaneous white adipose tissue (WAT). Moreover, 10,12 CLA-supplemented mice better defended their body temperature against a cold challenge. However, 10,12 CLA concurrently induced the detrimental loss of subcutaneous WAT without reducing visceral WAT, promoted reduced plasma and WAT adipokine levels, worsened hepatic steatosis, and failed to improve glucose metabolism. Obese mice undergoing CR were protected from subcutaneous-specific fat loss, had improved hepatic steatosis, and subsequently showed the expected improvements in WAT adipokines, glucose metabolism and WAT inflammation. These results suggest that 10,12 CLA mediates the preferential loss of subcutaneous fat that likely contributes to hepatic steatosis and maintained insulin resistance, despite significant weight loss and WAT browning in mice. Collectively, we have shown that weight loss due to 10,12 CLA supplementation or CR results in dramatically different metabolic phenotypes, with the latter promoting a healthier form of weight loss.

  13. Systems pharmacology of adiposity reveals inhibition of EP300 as a common therapeutic mechanism of caloric restriction and resveratrol for obesity

    PubMed Central

    Nishimura, Yuhei; Sasagawa, Shota; Ariyoshi, Michiko; Ichikawa, Sayuri; Shimada, Yasuhito; Kawaguchi, Koki; Kawase, Reiko; Yamamoto, Reiko; Uehara, Takuma; Yanai, Takaaki; Takata, Ryoji; Tanaka, Toshio

    2015-01-01

    Both caloric restriction (CR) and resveratrol (RSV) have beneficial effects on obesity. However, the biochemical pathways that mediate these beneficial effects might be complex and interconnected and have not been fully elucidated. To reveal the common therapeutic mechanism of CR and RSV, we performed a comparative transcriptome analysis of adipose tissues from diet-induced obese (DIO) zebrafish and obese humans. We identified nine genes in DIO zebrafish and seven genes in obese humans whose expressions were regulated by CR and RSV. Although the gene lists did not overlap except for one gene, the gene ontologies enriched in the gene lists were highly overlapped, and included genes involved in adipocyte differentiation, lipid storage and lipid metabolism. Bioinformatic analysis of cis-regulatory sequences of these genes revealed that their transcriptional regulators also overlapped, including EP300, HDAC2, CEBPB, CEBPD, FOXA1, and FOXA2. We also identified 15 and 46 genes that were dysregulated in the adipose tissue of DIO zebrafish and obese humans, respectively. Bioinformatics analysis identified EP300, HDAC2, and CEBPB as common transcriptional regulators for these genes. EP300 is a histone and lysyl acetyltransferase that modulates the function of histone and various proteins including CEBPB, CEBPD, FOXA1, and FOXA2. We demonstrated that adiposity in larval zebrafish was significantly reduced by C646, an inhibitor of EP300 that antagonizes acetyl-CoA. The reduction of adiposity by C646 was not significantly different from that induced by RSV or co-treatment of C646 and RSV. These results indicate that the inhibition of EP300 might be a common therapeutic mechanism between CR and RSV in adipose tissues of obese individuals. PMID:26441656

  14. Protein-Pacing Caloric-Restriction Enhances Body Composition Similarly in Obese Men and Women during Weight Loss and Sustains Efficacy during Long-Term Weight Maintenance.

    PubMed

    Arciero, Paul J; Edmonds, Rohan; He, Feng; Ward, Emery; Gumpricht, Eric; Mohr, Alex; Ormsbee, Michael J; Astrup, Arne

    2016-07-30

    Short-Term protein-pacing (P; ~6 meals/day, >30% protein/day) and caloric restriction (CR, ~25% energy deficit) improves total (TBF), abdominal (ABF) and visceral (VAT) fat loss, energy expenditure, and biomarkers compared to heart healthy (HH) recommendations (3 meals/day, 15% protein/day) in obese adults. Less is known whether obese men and women respond similarly to P-CR during weight loss (WL) and whether a modified P-CR (mP-CR) is more efficacious than a HH diet during long-term (52 week) weight maintenance (WM). The purposes of this study were to evaluate the efficacy of: (1) P-CR on TBF, ABF, resting metabolic rate (RMR), and biomarkers between obese men and women during WL (weeks 0-12); and (2) mP-CR compared to a HH diet during WM (weeks 13-64). During WL, men (n = 21) and women (n = 19) were assessed for TBF, ABF, VAT, RMR, and biomarkers at weeks 0 (pre) and 12 (post). Men and women had similar reductions (p < 0.01) in weight (10%), TBF (19%), ABF (25%), VAT (33%), glucose (7%-12%), insulin (40%), leptin (>50%) and increase in % lean body mass (9%). RMR (kcals/kg bodyweight) was unchanged and respiratory quotient decreased 9%. Twenty-four subjects (mP-CR, n = 10; HH, n = 14) completed WM. mP-CR regained significantly less body weight (6%), TBF (12%), and ABF (17%) compared to HH (p < 0.05). Our results demonstrate P-CR enhances weight loss, body composition and biomarkers, and maintains these changes for 52-weeks compared to a traditional HH diet.

  15. Anti-Inflamm-Aging Effects of Long-Term Caloric Restriction via Overexpression of SIGIRR to Inhibit NF-κB Signaling Pathway.

    PubMed

    Xu, Xiao-meng; Ning, Yi-Chun; Wang, Wen-juan; Liu, Jie-qiong; Bai, Xue-yuan; Sun, Xue-feng; Cai, Guang-yan; Chen, Xiang-mei

    2015-01-01

    Chronic inflammation is thought to be a determinant of the aging rate and longevity. Caloric restriction (CR) attenuates age-related increases in the systemic levels of several pro-inflammatory mediators, but the anti-inflammatory mechanisms of CR in the aging process remain unclear. Fisher 344 rats in a CR group were fed an amount of food corresponding to 60% of that fed to an ad libitum-fed (AL) group for 8 months. Biochemical analyses and renal pathological grading were used to analyze physiological status. Important signaling molecules in the Toll-like receptor/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR/NF-κB) pathway were also analyzed by western blotting, immunofluorescence and immunohistochemistry. 1) Compared with AL feeding, CR decreased aging-mediated increases in both biochemical marker levels and renal pathological grading. 2) Single immunoglobulin IL-1 (IL-1)-related receptor (SIGIRR) expression decreased with increasing age, but CR led to overexpression. 3) The expression of TLR4 was significantly higher in the CR group than in the AL group. 4) SIGIRR overexpression decreased the expression of the adaptor molecules myeloid differentiation factor 88 (MyD88), IL-1 receptor-associated kinase 4 (IRAK4) and tumor necrosis factor receptor-associated factor 6 (TRAF6). 5) The levels of the inflammatory markers phospho-IκBα and phospho-NF-κB p65 decreased in the CR group. The inflammatory response might be alleviated by SIGIRR via blockade of the TLR4/NF-κB signaling pathway. Therefore, CR can decrease inflammation via SIGIRR overexpression, and SIGIRR might be a new target to delay aging. © 2015 S. Karger AG, Basel.

  16. Effects of resistance training with and without caloric restriction on physical function and mobility in overweight and obese older adults: a randomized controlled trial1234

    PubMed Central

    Nicklas, Barbara J; Chmelo, Elizabeth; Delbono, Osvaldo; Carr, J Jeffrey; Lyles, Mary F; Marsh, Anthony P

    2015-01-01

    Background: Resistance training (RT) improves muscle strength and overall physical function in older adults. RT may be particularly important in the obese elderly who have compromised muscle function. Whether caloric restriction (CR) acts synergistically with RT to enhance function is unknown. Objective: As the primary goal of the Improving Muscle for Functional Independence Trial (I’M FIT), we determined the effects of adding CR for weight loss on muscle and physical function responses to RT in older overweight and obese adults. Design: I’M FIT was a 5-mo trial in 126 older (65–79 y) overweight and obese men and women who were randomly assigned to a progressive, 3-d/wk, moderate-intensity RT intervention with a weight-loss intervention (RT+CR) or without a weight-loss intervention (RT). The primary outcome was maximal knee extensor strength; secondary outcomes were muscle power and quality, overall physical function, and total body and thigh compositions. Results: Body mass decreased in the RT+CR group but not in the RT group. Fat mass, percentage of fat, and all thigh fat volumes decreased in both groups, but only the RT+CR group lost lean mass. Adjusted postintervention body- and thigh-composition measures were all lower with RT+CR except intermuscular adipose tissue (IMAT). Knee strength, power, and quality and the 4-m gait speed increased similarly in both groups. Adjusted postintervention means for a 400-m walk time and self-reported disability were better with RT+CR with no group differences in other functional measures, including knee strength. Participants with a lower percentage of fat and IMAT at baseline exhibited a greater improvement in the 400-m walk and knee strength and power. Conclusions: RT improved body composition (including reducing IMAT) and muscle strength and physical function in obese elderly, but those with higher initial adiposity experienced less improvement. The addition of CR during RT improves mobility and does not compromise

  17. Effects of a 6-month caloric restriction induced-weight loss program in obese postmenopausal women with and without the metabolic syndrome: a MONET study.

    PubMed

    Ghachem, Ahmed; Prud'homme, Denis; Rabasa-Lhoret, Rémi; Brochu, Martin

    2017-08-01

    To compare the effects of a caloric restriction (CR) on body composition, lipid profile, and glucose homeostasis in obese postmenopausal women with and without metabolic syndrome (MetS). Secondary analyses were performed on 73 inactive obese postmenopausal women (age 57.7 ± 4.8 years; body mass index 32.4 ± 4.6 kg/m) who participated in the 6-month CR arm of a study of the Montreal-Ottawa New Emerging Team. The harmonized MetS definition was used to categorize participants with MetS (n = 20, 27.39%) and without MetS (n = 53, 72.61%). Variables of interest were: body composition (dual-energy X-ray absorptiometry), body fat distribution (computed tomography scan), glucose homeostasis at fasting state and during a euglycemic/hyperinsulinemic clamp, fasting lipids, and resting blood pressure. By design, the MetS group had a worse cardiometabolic profile, whereas both groups were comparable for age. Fifty-five participants out of 73 displayed no change in MetS status after the intervention. Twelve participants out of 20 (or 60.0%) in the MetS group had no more MetS after weight loss (P = NS), whereas 6 participants out of 53 (or 11.3%) in the other group developed the MetS after the intervention (P = NS). Overall, indices of body composition and body fat distribution improved significantly and similarly in both groups (P between 0.03 and 0.0001). Furthermore, with the exception of triglyceride levels and triglycerides/high-density lipoprotein cholesterol ratio, which decrease significantly more in the MetS group (P ≤ 0.05), no difference was observed between groups for the other variables of the cardiometabolic profile. Despite no overall significant effects on MetS, heteregeneous results were obtained in response to weight loss in the present study, with some improving the MetS, whereas other displaying deteriorations. Further studies are needed to identify factors and phenotypes associated with positive and negative cardiometabolic

  18. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss

    PubMed Central

    Weiss, Edward P.; Racette, Susan B.; Villareal, Dennis T.; Fontana, Luigi; Steger-May, Karen; Schechtman, Kenneth B.; Klein, Samuel; Ehsani, Ali A.; Holloszy, John O.

    2015-01-01

    Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (V̇O2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and V̇O2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5–29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill V̇O2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: −10.7 ± 1.4%, EX: −9.5 ± 1.5%) and lean mass (CR: −3.5 ± 0.7%, EX: −2.2 ± 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (−6.9 ± 0.8%) and composite knee flexion strength (−7.2 ± 3%) occurred in the CR group only. Absolute V̇O2 max decreased significantly in the CR group (−6.8 ± 2.3%), whereas the EX group had significant increases in both absolute (+15.5 ± 2.4%) and relative (+28.3 ± 3.0%) V̇O2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity. PMID:17095635

  19. Effect of Two-Year Caloric Restriction on Bone Metabolism and Bone Mineral Density in Non-Obese Younger Adults: A Randomized Clinical Trial.

    PubMed

    Villareal, Dennis T; Fontana, Luigi; Das, Sai Krupa; Redman, Leanne; Smith, Steven R; Saltzman, Edward; Bales, Connie; Rochon, James; Pieper, Carl; Huang, Megan; Lewis, Michael; Schwartz, Ann V

    2016-01-01

    Although caloric restriction (CR) could delay biologic aging in humans, it is unclear if this would occur at the cost of significant bone loss. We evaluated the effect of prolonged CR on bone metabolism and bone mineral density (BMD) in healthy younger adults. Two-hundred eighteen non-obese (body mass index [BMI] 25.1 ± 1.7 kg/m(2) ), younger (age 37.9 ± 7.2 years) adults were randomly assigned to 25% CR (CR group, n = 143) or ad libitum (AL group, n = 75) for 2 years. Main outcomes were BMD and markers of bone turnover. Other outcomes included body composition, bone-active hormones, nutrient intake, and physical activity. Body weight (-7.5 ± 0.4 versus 0.1 ± 0.5 kg), fat mass (-5.3 ± 0.3 versus 0.4 ± 0.4 kg), and fat-free mass (-2.2 ± 0.2 versus -0.2 ± 0.2 kg) decreased in the CR group compared with AL (all between group p < 0.001). Compared with AL, the CR group had greater changes in BMD at 24 months: lumbar spine (-0.013 ± 0.003 versus 0.007 ± 0.004 g/cm(2) ; p < 0.001), total hip (-0.017 ± 0.002 versus 0.001 ± 0.003 g/cm(2) ; p < 0.001), and femoral neck (-0.015 ± 0.003 versus -0.005 ± 0.004 g/cm(2) ; p = 0.03). Changes in bone markers were greater at 12 months for C-telopeptide (0.098 ± 0.012 versus 0.025 ± 0.015 μg/L; p < 0.001), tartrate-resistant acid phosphatase (0.4 ± 0.1 versus 0.2 ± 0.1 U/L; p = 0.004), and bone-specific alkaline phosphatase (BSAP) (-1.4 ± 0.4 versus -0.3 ± 0.5 U/L; p = 0.047) but not procollagen type 1 N-propeptide; at 24 months, only BSAP differed between groups (-1.5 ± 0.4 versus 0.9 ± 0.6 U/L; p = 0.001). The CR group had larger increases in 25-hydroxyvitamin D, cortisol, and adiponectin and decreases in leptin and insulin compared with AL. However, parathyroid hormone and IGF-1 levels did not differ between groups. The CR group also had lower levels of physical activity

  20. Maternal Caloric Restriction Implemented during the Preconceptional and Pregnancy Period Alters Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Overweight and Increased Adiposity at Adulthood in Male Rat Offspring.

    PubMed

    Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosarío Noemí; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Ouro, Daniel; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando

    2016-01-01

    Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring.

  1. Maternal Caloric Restriction Implemented during the Preconceptional and Pregnancy Period Alters Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Overweight and Increased Adiposity at Adulthood in Male Rat Offspring

    PubMed Central

    Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosarío Noemí; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Ouro, Daniel; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando

    2016-01-01

    Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring. PMID:27847471

  2. Effect of feeding a weight loss food beyond a caloric restriction period on body composition and resistance to weight gain in dogs.

    PubMed

    Floerchinger, Amanda M; Jackson, Matthew I; Jewell, Dennis E; MacLeay, Jennifer M; Paetau-Robinson, Inke; Hahn, Kevin A

    2015-08-15

    To determine the effect of feeding a food with coconut oil and supplemental L-carnitine, lipoic acid, lysine, leucine, and fiber on weight loss and maintenance in dogs. Prospective clinical study. 50 overweight dogs. The study consisted of 2 trials. During trial 1, 30 dogs were allocated to 3 groups (10 dogs/group) to be fed a dry maintenance dog food to maintain body weight (group 1) or a dry test food at the same amount on a mass (group 2) or energy (group 3) basis as group 1. During trial 2, each of 20 dogs was fed the test food and caloric intake was adjusted to maintain a weight loss rate of 1% to 2%/wk (weight loss phase). Next, each dog was fed the test food in an amount calculated to maintain the body weight achieved at the end of the weight loss phase (weight maintenance phase). Dogs were weighed and underwent dual-energy x-ray absorptiometry monthly. Metabolomic data were determined before (baseline) and after each phase. During trial 1, dogs in groups 2 and 3 lost significantly more weight than did those in group 1. During trial 2, dogs lost a significant amount of body weight and fat mass but retained lean body mass (LBM) during the weight loss phase and continued to lose body fat but gained LBM during the weight maintenance phase. Evaluation of metabolomic data suggested that fat metabolism and LBM retention were improved from baseline for dogs fed the test food. Results suggested that feeding overweight dogs the test food caused weight loss and improvements in body condition during the weight-maintenance phase, possibly because the food composition improved energy metabolism.

  3. Effect of feeding a weight loss food beyond a caloric restriction period on body composition and resistance to weight gain in cats.

    PubMed

    Floerchinger, Amanda M; Jackson, Matthew I; Jewell, Dennis E; MacLeay, Jennifer M; Hahn, Kevin A; Paetau-Robinson, Inke

    2015-08-15

    To determine the effect of feeding a food with coconut oil and supplemental L-carnitine, lysine, leucine, and fiber on weight loss and maintenance in cats. Prospective clinical study. 50 overweight cats. The study consisted of 2 trials. During trial 1, 30 cats were allocated to 3 groups (10 cats/group) to be fed a dry maintenance cat food to maintain body weight (group 1) or a dry test food at the same amount on a mass (group 2) or energy (group 3) basis as group 1. During trial 2, each of 20 cats was fed the test food and caloric intake was adjusted to maintain a weight loss rate of 1%/wk (weight loss phase). Next, each cat was fed the test food in an amount calculated to maintain the body weight achieved at the end of the weight loss phase (weight maintenance phase). Cats were weighed and underwent dual-energy x-ray absorptiometry monthly. Metabolomic data were determined before (baseline) and after each phase. During trial 1, cats in groups 2 and 3 lost significantly more weight than did those in group 1. During trial 2, cats lost a significant amount of body weight and fat mass but retained lean body mass during the weight loss phase and continued to lose body weight and fat mass but gained lean body mass during the weight maintenance phase. Evaluation of metabolomic data suggested that fat metabolism was improved from baseline for cats fed the test food. Results suggested that feeding overweight cats the test food caused weight loss and improvements in body condition during the weight maintenance phase, possibly because the food composition improved energy metabolism.

  4. The Effects of Caloric Density of the Food on Running Endurance and General Condition of Rats and Hamsters Restricted in Food Intake or Fed Ad Libitum

    DTIC Science & Technology

    1975-08-01

    triglyceride levels were 76Z and plasma total cholesterol levels 22X (significant) higher in non-exercised than in regularly exercised animals...right after running to exhaustion. In the hamsters kept at tropical climatic conditions, plasma total cholesterol at both food intake levels was...than on day 8 of the restricted intake. In the hamsters, average plasma triglyceride levels were 76% and plasma total cholesterol levels Z2

  5. A weekly alternating diet between caloric restriction and medium fat protects the liver from fatty liver development in middle-aged C57BL/6J mice

    PubMed Central

    Rusli, Fenni; Boekschoten, Mark V; Zubia, Arantza Aguirre; Lute, Carolien; Müller, Michael; Steegenga, Wilma T

    2015-01-01

    Scope We investigated whether a novel dietary intervention consisting of an every-other-week calorie-restricted diet could prevent nonalcoholic fatty liver disease (NAFLD) development induced by a medium-fat (MF) diet. Methods and results Nine-week-old male C57BL/6J mice received either a (i) control (C), (ii) 30E% calorie restricted (CR), (iii) MF (25E% fat), or (iv) intermittent (INT) diet, a diet alternating weekly between 40E% CR and an ad libitum MF diet until sacrifice at the age of 12 months. The metabolic, morphological, and molecular features of NAFLD were examined. The INT diet resulted in healthy metabolic and morphological features as displayed by the continuous CR diet: glucose tolerant, low hepatic triglyceride content, low plasma alanine aminotransferase. In contrast, the C- and MF-exposed mice with high body weight developed signs of NAFLD. However, the gene expression profiles of INT-exposed mice differed to those of CR-exposed mice and showed to be more similar with those of C- and MF-exposed mice with a comparable body weight. Conclusions Our study reveals that the INT diet maintains metabolic health and reverses the adverse effects of the MF diet, thus effectively prevents the development of NAFLD in 12-month-old male C57BL/6J mice. PMID:25504628

  6. Combination of Recreational Soccer and Caloric Restricted Diet Reduces Markers of Protein Catabolism and Cardiovascular Risk in Patients with Type 2 Diabetes.

    PubMed

    Vieira de Sousa, M; Fukui, R; Krustrup, P; Dagogo-Jack, S; Rossi da Silva, M E

    2017-01-01

    Moderate calorie-restricted diets and exercise training prevent loss of lean mass and cardiovascular risk. Because adherence to routine exercise recommendation is generally poor, we utilized recreational soccer training as a novel therapeutic exercise intervention in type 2 diabetes (T2D) patients. We compared the effects of acute and chronic soccer training plus calorie-restricted diet on protein catabolism and cardiovascular risk markers in T2D. Fifty-one T2D patients (61.1±6.4 years, 29 females: 22 males) were randomly allocated to the soccer+diet-group (SDG) or to the diet-group (DG). The 40-min soccer sessions were held 3 times per week for 12 weeks. Nineteen participants attended 100% of scheduled soccer sessions, and none suffered any injuries. The SDG group showed higher levels of growth hormone (GH), free fatty acids and ammonia compared with DG. After 12 weeks, insulin-like growth factor binding protein (IGFPB)-3 and glucose levels were lower in SDG, whereas insulin-like growth factor (IGF)-1/ IGFBP-3 ratio increased in both groups. After the last training session, an increase in IGF-1/IGFBP-3 and attenuation in ammonia levels were suggestive of lower muscle protein catabolism. Recreational soccer training was popular and safe, and was associated with decreased plasma glucose and IGFBP-3 levels, decreased ammoniagenesis, and increased lipolytic activity and IGF-1/IGFBP-3 ratio, all indicative of attenuated catabolism.

  7. Structure and function changes in the endocrine pancreas of aging rats with reference to the modulating effects of exercise and caloric restriction.

    PubMed Central

    Reaven, E P; Reaven, G M

    1981-01-01

    The current study was conducted to determine if physical activity and/or weight control could influence the age-related decrease in beta cell insulin response noted in earlier studies. As such, virgin, male Sprague-Dawley rats were maintained in our facility for 1 yr on three differential experimental programs; in the first group, control rats lived under standard laboratory conditions; the second group of rats ran several miles a day in exercise wheels, and the third group was given a calorie-restricted diet designed to keep the rats weight-matched with the exercising rats. The results showed that the 12-mo-old sedentary control rats weighed an average of 800g. From the time these rats were 4 mo old, they were significantly hyperinsulinemic, with mean (+/- SEM) serum insulin levels of 55 +/- 6 microU/ml. Morphological studies on the pancreas of these rats at the end of the year revealed enlarged, multilobulated, fibrotic islets. After collagenase digestion, the most normal-appearing islets from the 12-mo-old controls were used for insulin secretion studies, these islets showed significantly reduced glucose-induced insulin release (0.83 microU insulin/min per volume islet) compared with islets from young rats (1.80 microU insulin/min per volume islet). In contrast, 12-mo-old exercised or calorie-restricted rats weighed approximately 500 g and did not show the changes in serum insulin levels or pancreas pathology exhibited by the sedentary control animals. However, islets from the calorie-restricted group functioned in vitro no better than islets from he sedentary control group. Islets from the exercised rats were somewhat improved in this regard. In summary, we believe exercise and weight control diminishes the animals' need for insulin-resulting in youthful-appearing islets after a year's time. However, these regimes do not appear able to correct the beta cell decline in function previously described. Images PMID:7019247

  8. Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake.

    PubMed

    Márquez-Quiñones, Adriana; Mutch, David M; Debard, Cyrille; Wang, Ping; Combes, Marion; Roussel, Balbine; Holst, Claus; Martinez, J Alfredo; Handjieva-Darlenska, Teodora; Kalouskova, Pavla; Jebb, Susan; Babalis, Dimitris; Pfeiffer, Andreas F H; Larsen, Thomas M; Astrup, Arne; Saris, Wim H M; Mariman, Edwin; Clément, Karine; Vidal, Hubert; Langin, Dominique; Viguerie, Nathalie

    2010-10-01

    The mechanisms underlying body weight evolution after diet-induced weight loss are poorly understood. We aimed to identify and characterize differences in the subcutaneous adipose tissue (SAT) transcriptome of subjects with different weight changes after energy restriction-induced weight loss during 6 mo on 4 different diets. After an 8-wk low-calorie diet (800 kcal/d), we randomly assigned weight-reduced obese subjects from 8 European countries to receive 4 diets that differed in protein and glycemic index content. In addition to anthropometric and plasma markers, SAT biopsies were taken at the beginning [clinical investigation day (CID) 2] and end (CID3) of the weight follow-up period. Microarray analysis was used to define SAT gene expression profiles at CID2 and CID3 in 22 women with continued weight loss (successful group) and in 22 women with weight regain (unsuccessful group) across the 4 dietary arms. Differences in SAT gene expression patterns between successful and unsuccessful groups were mainly due to weight variations rather than to differences in dietary macronutrient content. An analysis of covariance with total energy intake as a covariate identified 1338 differentially expressed genes. Cellular growth and proliferation, cell death, cellular function, and maintenance were the main biological processes represented in SAT from subjects who regained weight. Mitochondrial oxidative phosphorylation was the major pattern associated with continued weight loss. The ability to control body weight loss independent of energy intake or diet composition is reflected in the SAT transcriptome. Although cell proliferation may be detrimental, a greater mitochondrial energy gene expression is suggested as being beneficial for weight control. This trial was registered at clinicaltrials.gov as NCT00390637.

  9. Influence of regular physical activity and caloric restriction on β-adrenergic and natriuretic peptide receptor expression in retroperitoneal adipose tissue of OLETF rats.

    PubMed

    Jenkins, Nathan T; Padilla, Jaume; Rector, R Scott; Laughlin, M Harold

    2013-11-01

    The mechanisms underlying exercise-induced increases in adipose tissue blood flow and lipolysis involve both β-adrenergic receptor (βAR)- and natriuretic peptide receptor (NPR)-dependent processes. We hypothesized that daily wheel running (RUN) would increase the expression of NPR1, NPR2, βAR2 and βAR3 in retroperitoneal (RP) and epididymal (EPI) adipose tissues of obese Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Four-week-old OLETF rats were assigned to sedentary (SED, n = 6), calorie-restricted (CR, n = 8; fed 70% of SED) or RUN groups (n = 8). Rats were killed at 40 weeks of age. By design, body weight and adiposity were similar between RUN and CR animals, but each was lower than SED (P < 0.01). Compared with SED, RP depots of RUN rats exhibited 1.7- to 3.2-fold greater NPR1, NPR2, βAR2 and βAR3 mRNA levels (all P < 0.05). There were no differences between CR and SED in the expression of these genes in RP adipose tissues, and there were no differences in gene expression among groups in EPI adipose tissues. At the protein level, βAR2 and βAR3 were elevated in RUN and CR groups relative to the SED group in RP adipose tissues. In order to gain insight into the mechanisms underlying the activity-induced increases in NPR and βAR mRNAs, RP adipose tissue explants from Wistar rats were treated with atrial natriuretic peptide (ANP), adrenaline and/or S-nitroso-N-acetyl-dl-penicillamine (SNAP; a nitric oxide donor) in organ culture experiments. SNAP synergistically enhanced adrenaline- and ANP-stimulated increases in NPR2 and βAR2 mRNA levels. Our data suggest that physical activity-induced increases in nitric oxide interact with adrenaline and ANP to trigger the induction of NPR and βAR mRNAs in the RP adipose tissue depot of the OLETF rat.

  10. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure and Preserved Ejection Fraction A Randomized, Controlled Trial

    PubMed Central

    Kitzman, Dalane W.; Brubaker, Peter; Morgan, Timothy; Haykowsky, Mark; Hundley, Gregory; Kraus, William E.; Eggebeen, Joel; Nicklas, Barbara J.

    2016-01-01

    Importance More than 80% of patients with heart failure with preserved ejection fraction (HFPEF), the most common form of HF among older persons, are overweight/obese. Exercise intolerance is the primary symptom of chronic HFPEF and a major determinant of reduced quality-of-life (QOL). Objective To determine whether caloric restriction (Diet), or aerobic exercise training (Exercise), improves exercise capacity and QOL in obese older HFPEF patients. Design Randomized, attention-controlled, 2x2 factorial trial conducted from February 2009 November 2014. Setting Urban academic medical center. Participants 100 older (67±5 years) obese (BMI=39.3±5.6kg/m2) women (n=81) and men (n=19) with chronic, stable HFPEF enrolled from 577 patients initially screened (366 excluded by inclusion / exclusion criteria, 31 for other reasons, 80 declined participation). Twenty-six participants were randomized to Exercise alone, 24 to Diet alone, 25 to Diet+Exercise, and 25 to Control; 92 completed the trial. Interventions 20 weeks of Diet and/or Exercise; Attention Control consisted of telephone calls every 2 weeks. Main Outcomes and Measures Exercise capacity measured as peak oxygen consumption (VO2, ml/kg/min; primary outcome) and QOL measured by the Minnesota Living with HF Questionnaire (MLHF) total score (co-primary outcome; score range: 0–105, higher scores indicate worse HF-related QOL). Results By main effects analysis, peak VO2 was increased significantly by both interventions: Exercise main effect 1.2 ml/kg/min (95%CI: 0.7,1.7; p<0.001); Diet main effect 1.3 ml/kg/min (95%CI: 0.8,1.8; p<0.001). The combination of Exercise+Diet was additive (complementary) for peak VO2 (joint effect 2.5 ml/kg/min). The change in MLHF total score was non-significant with Exercise (main effect −1 unit; 95%CI: −8,5; p=0.70) and with Diet (main effect −6 units; 95%CI: −12,1; p=0.078). The change in peak VO2 was positively correlated with the change in percent lean body mass (r=0.32; p=0

  11. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects

    PubMed Central

    Kim, Minjoo; Lee, Sang-Hyun; Lee, Jong Ho

    2016-01-01

    The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n=47) or a weight-maintenance diet (control, n=47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898). PMID:28053823

  12. Global Metabolic Profiling of Plasma Shows that Three-Year Mild-Caloric Restriction Lessens an Age-Related Increase in Sphingomyelin and Reduces L-leucine and L-phenylalanine in Overweight and Obese Subjects.

    PubMed

    Kim, Minjoo; Lee, Sang-Hyun; Lee, Jong Ho

    2016-12-01

    The effect of weight loss from long-term, mild-calorie diets (MCD) on plasma metabolites is unknown. This study was to examine whether MCD-induced weight reduction caused changes in the extended plasma metabolites. Overweight and obese subjects aged 40-59 years consumed a MCD (approximately 100 kcal/day deficit, n=47) or a weight-maintenance diet (control, n=47) in a randomized, controlled design with a three-year clinical intervention period and plasma samples were analyzed by using UPLC-LTQ-Orbitrap mass spectrometry. The three-year MCD intervention resulted in weight loss (-8.87%) and significant decreases in HOMA-IR and TG. The three-year follow-up of the MCD group showed reductions in the following 13 metabolites: L-leucine; L-phenylalanine; 9 lysoPCs; PC (18:0/20:4); and SM (d18:0/16:1). The three-year MCD group follow-up identified increases in palmitic amide, oleamide, and PC (18:2/18:2). Considering the age-related alterations in the identified metabolites, the MCD group showed a greater decrease in L-leucine, L-phenylalanine, and SM (d18:0/16:1) compared with those of the control group. Overall, the change (Δ) in BMI positively correlated with the ΔTG, ΔHOMA-IR, ΔL-leucine, and ΔSM (d18:0/16:1). The ΔHOMA-IR positively correlated with ΔTG, ΔL-leucine, ΔL-phenylalanine, and ΔSM (d18:0/16:1). The weight loss resulting from three-year mild-caloric restriction lessens the age-related increase in SM and reduces L-leucine and L-phenylalanine in overweight and obese subjects. These changes were coupled with improved insulin resistance (ClinicalTrials.gov: NCT02081898).

  13. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats

    PubMed Central

    Gautam, Tripti; Sosnowska, Danuta; Tarantini, Stefano; Banki, Eszter; Tucsek, Zsuzsanna; Toth, Peter; Losonczy, Gyorgy; Koller, Akos; Reglodi, Dora; Giles, Cory B.; Wren, Jonathan D.; Sonntag, William E.; Ungvari, Zoltan

    2014-01-01

    In rodents, moderate caloric restriction (CR) without malnutrition exerts significant cerebrovascular protective effects, improving cortical microvascular density and endothelium-dependent vasodilation, but the underlying cellular mechanisms remain elusive. To elucidate the persisting effects of CR on cerebromicrovascular endothelial cells (CMVECs), primary CMVECs were isolated from young (3 mo old) and aged (24 mo old) ad libitum-fed and aged CR F344xBN rats. We found an age-related increase in cellular and mitochondrial oxidative stress, which is prevented by CR. Expression and transcriptional activity of Nrf2 are both significantly reduced in aged CMVECs, whereas CR prevents age-related Nrf2 dysfunction. Expression of miR-144 was upregulated in aged CMVECs, and overexpression of miR-144 significantly decreased expression of Nrf2 in cells derived from both young animals and aged CR rats. Overexpression of a miR-144 antagomir in aged CMVECs significantly decreases expression of miR-144 and upregulates Nrf2. We found that CR prevents age-related impairment of angiogenic processes, including cell proliferation, adhesion to collagen, and formation of capillary-like structures and inhibits apoptosis in CMVECs. CR also exerts significant anti-inflammatory effects, preventing age-related increases in the transcriptional activity of NF-κB and age-associated pro-inflammatory shift in the endothelial secretome. Characterization of CR-induced changes in miRNA expression suggests that they likely affect several critical functions in endothelial cell homeostasis. The predicted regulatory effects of CR-related differentially expressed miRNAs in aged CMVECs are consistent with the anti-aging endothelial effects of CR observed in vivo. Collectively, we find that CR confers persisting anti-oxidative, pro-angiogenic, and anti-inflammatory cellular effects, preserving a youthful phenotype in rat cerebromicrovascular endothelial cells, suggesting that through these effects CR may

  14. Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration.

    PubMed

    Chujo, Yoshikazu; Fujii, Namiki; Okita, Naoyuki; Konishi, Tomokazu; Narita, Takumi; Yamada, Atsushi; Haruyama, Yushi; Tashiro, Kosuke; Chiba, Takuya; Shimokawa, Isao; Higami, Yoshikazu

    2013-08-01

    The role of the growth hormone (GH)-insulin-like growth factor (IGF)-1 axis in the lifelong caloric restriction (CR)-associated remodeling of white adipose tissue (WAT), adipocyte size, and gene expression profiles was explored in this study. We analyzed the WAT morphology of 6-7-month-old wild-type Wistar rats fed ad libitum (WdAL) or subjected to CR (WdCR), and of heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (TgAL) or subjected to CR (TgCR). Although less effective in TgAL, the adipocyte size was significantly reduced in WdCR compared with WdAL. This CR effect was blunted in Tg rats. We also used high-density oligonucleotide microarrays to examine the gene expression profile of WAT of WdAL, WdCR, and TgAL rats. The gene expression profile of WdCR, but not TgAL, differed greatly from that of WdAL. The gene clusters with the largest changes induced by CR but not by Tg were genes involved in lipid biosynthesis and inflammation, particularly sterol regulatory element binding proteins (SREBPs)-regulated and macrophage-related genes, respectively. Real-time reverse-transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its downstream targets was upregulated, whereas the macrophage-related genes were downregulated in WdCR, but not in TgAL. In addition, CR affected the gene expression profile of Tg rats similarly to wild-type rats. Our findings suggest that CR-associated remodeling of WAT, which involves SREBP-1-mediated transcriptional activation and suppression of macrophage infiltration, is regulated in a GH-IGF-1-independent manner.

  15. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats.

    PubMed

    Csiszar, Anna; Gautam, Tripti; Sosnowska, Danuta; Tarantini, Stefano; Banki, Eszter; Tucsek, Zsuzsanna; Toth, Peter; Losonczy, Gyorgy; Koller, Akos; Reglodi, Dora; Giles, Cory B; Wren, Jonathan D; Sonntag, William E; Ungvari, Zoltan

    2014-08-01

    In rodents, moderate caloric restriction (CR) without malnutrition exerts significant cerebrovascular protective effects, improving cortical microvascular density and endothelium-dependent vasodilation, but the underlying cellular mechanisms remain elusive. To elucidate the persisting effects of CR on cerebromicrovascular endothelial cells (CMVECs), primary CMVECs were isolated from young (3 mo old) and aged (24 mo old) ad libitum-fed and aged CR F344xBN rats. We found an age-related increase in cellular and mitochondrial oxidative stress, which is prevented by CR. Expression and transcriptional activity of Nrf2 are both significantly reduced in aged CMVECs, whereas CR prevents age-related Nrf2 dysfunction. Expression of miR-144 was upregulated in aged CMVECs, and overexpression of miR-144 significantly decreased expression of Nrf2 in cells derived from both young animals and aged CR rats. Overexpression of a miR-144 antagomir in aged CMVECs significantly decreases expression of miR-144 and upregulates Nrf2. We found that CR prevents age-related impairment of angiogenic processes, including cell proliferation, adhesion to collagen, and formation of capillary-like structures and inhibits apoptosis in CMVECs. CR also exerts significant anti-inflammatory effects, preventing age-related increases in the transcriptional activity of NF-κB and age-associated pro-inflammatory shift in the endothelial secretome. Characterization of CR-induced changes in miRNA expression suggests that they likely affect several critical functions in endothelial cell homeostasis. The predicted regulatory effects of CR-related differentially expressed miRNAs in aged CMVECs are consistent with the anti-aging endothelial effects of CR observed in vivo. Collectively, we find that CR confers persisting anti-oxidative, pro-angiogenic, and anti-inflammatory cellular effects, preserving a youthful phenotype in rat cerebromicrovascular endothelial cells, suggesting that through these effects CR may

  16. Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial

    PubMed Central

    Hibi, Masanobu; Kubota, Chie; Mizuno, Tomohito; Aritake, Sayaka; Mitsui, Yuki; Katashima, Mitsuhiro; Uchida, Sunao

    2017-01-01

    The effects of sleep restriction on energy metabolism and appetite remain controversial. We examined the effects of shortened sleep duration on energy metabolism, core body temperature (CBT), and appetite profiles. Nine healthy men were evaluated in a randomised crossover study under two conditions: a 3.5-h sleep duration and a 7-h sleep duration for three consecutive nights followed by one 7-h recovery sleep night. The subjects’ energy expenditure (EE), substrate utilisation, and CBT were continually measured for 48 h using a whole-room calorimeter. The subjects completed an appetite questionnaire every hour while in the calorimeter. Sleep restriction did not affect total EE or substrate utilisation. The 48-h mean CBT decreased significantly during the 3.5-h sleep condition compared with the 7-h sleep condition (7-h sleep, 36.75 ± 0.11 °C; 3.5-h sleep, 36.68 ± 0.14 °C; p = 0.016). After three consecutive nights of sleep restriction, fasting peptide YY levels and fullness were significantly decreased (p = 0.011), whereas hunger and prospective food consumption were significantly increased, compared to those under the 7-h sleep condition. Shortened sleep increased appetite by decreasing gastric hormone levels, but did not affect EE, suggesting that greater caloric intake during a shortened sleep cycle increases the risk of weight gain. PMID:28071649

  17. Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial.

    PubMed

    Hibi, Masanobu; Kubota, Chie; Mizuno, Tomohito; Aritake, Sayaka; Mitsui, Yuki; Katashima, Mitsuhiro; Uchida, Sunao

    2017-01-10

    The effects of sleep restriction on energy metabolism and appetite remain controversial. We examined the effects of shortened sleep duration on energy metabolism, core body temperature (CBT), and appetite profiles. Nine healthy men were evaluated in a randomised crossover study under two conditions: a 3.5-h sleep duration and a 7-h sleep duration for three consecutive nights followed by one 7-h recovery sleep night. The subjects' energy expenditure (EE), substrate utilisation, and CBT were continually measured for 48 h using a whole-room calorimeter. The subjects completed an appetite questionnaire every hour while in the calorimeter. Sleep restriction did not affect total EE or substrate utilisation. The 48-h mean CBT decreased significantly during the 3.5-h sleep condition compared with the 7-h sleep condition (7-h sleep, 36.75 ± 0.11 °C; 3.5-h sleep, 36.68 ± 0.14 °C; p = 0.016). After three consecutive nights of sleep restriction, fasting peptide YY levels and fullness were significantly decreased (p = 0.011), whereas hunger and prospective food consumption were significantly increased, compared to those under the 7-h sleep condition. Shortened sleep increased appetite by decreasing gastric hormone levels, but did not affect EE, suggesting that greater caloric intake during a shortened sleep cycle increases the risk of weight gain.

  18. Short-term caloric restriction, resveratrol, or combined treatment regimens initiated in late-life alter mitochondrial protein expression profiles in a fiber-type specific manner in aged animals.

    PubMed

    Joseph, Anna-Maria; Malamo, Angelina G; Silvestre, Jason; Wawrzyniak, Nick; Carey-Love, Sean; Nguyen, Linda M-D; Dutta, Debapriya; Xu, Jinze; Leeuwenburgh, Christiaan; Adhihetty, Peter J

    2013-09-01

    Aging is associated with a loss in muscle known as sarcopenia that is partially attributed to apoptosis. In aging rodents, caloric restriction (CR) increases health and longevity by improving mitochondrial function and the polyphenol resveratrol (RSV) has been reported to have similar benefits. In the present study, we investigated the potential efficacy of using short-term (6 weeks) CR (20%), RSV (50 mg/kg/day), or combined CR+ RSV (20% CR and 50 mg/kg/day RSV), initiated at late-life (27 months) to protect muscle against sarcopenia by altering mitochondrial function, biogenesis, content, and apoptotic signaling in both glycolytic white and oxidative red gastrocnemius muscle (WG and RG, respectively) of male Fischer 344 × Brown Norway rats. CR but not RSV attenuated the age-associated loss of muscle mass in both mixed gastrocnemius and soleus muscle, while combined treatment (CR + RSV) paradigms showed a protective effect in the soleus and plantaris muscle (P < 0.05). Sirt1 protein content was increased by 2.6-fold (P < 0.05) in WG but not RG muscle with RSV treatment, while CR or CR + RSV had no effect. PGC-1α levels were higher (2-fold) in the WG from CR-treated animals (P < 0.05) when compared to ad-libitum (AL) animals but no differences were observed in the RG with any treatment. Levels of the anti-apoptotic protein Bcl-2 were significantly higher (1.6-fold) in the WG muscle of RSV and CR + RSV groups compared to AL (P < 0.05) but tended to occur coincident with elevations in the pro-apoptotic protein Bax so that the apoptotic susceptibility as indicated by the Bax to Bcl-2 ratio was unchanged. There were no alterations in DNA fragmentation with any treatment in muscle from older animals. Additionally, mitochondrial respiration measured in permeabilized muscle fibers was unchanged in any treatment group and this paralleled the lack of change in cytochrome c oxidase (COX) activity. These data suggest that short-term moderate CR, RSV, or CR + RSV tended to

  19. Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: "Mitohormesis" for health and vitality.

    PubMed

    Tapia, Patrick C

    2006-01-01

    The precise mechanistic sequence producing the beneficial effects on health and lifespan seen with interventions as diverse as caloric restriction, intermittent fasting, exercise, and consumption of dietary phytonutrients is still under active characterization, with large swaths of the research community kept in relative isolation from one another. Among the explanatory models capable of assisting in the identification of precipitating elements responsible for beneficial influences on physiology seen in these states, the hormesis perspective on biological systems under stress has yielded considerable insight into likely evolutionarily consistent organizing principles functioning in all four conditions. Recent experimental findings provide the tantalizing initial lodestones for an entirely new research front examining molecular substrates of stress resistance. In this novel body of research, a surprising new twist has emerged: Reactive oxygen species, derived from the mitochondrial electron transport system, may be necessary triggering elements for a sequence of events that result in benefits ranging from the transiently cytoprotective to organismal-level longevity. With the recent appreciation that reactive oxygen species and reactive nitrogen species function as signaling elements in a interconnected matrix of signal transduction, the entire basis of many widely accepted theories of aging that predominated in the past may need to be reconsidered to facilitate the formulation of an new perspective more correctly informed by the most contemporaneous experimental findings. This perspective, the mitohormesis theory, can be used in many disparate domains of inquiry to potentially explain previous findings, as well as point to new targets of research. The utility of this perspective for research on aging is significant, but beyond that this perspective emphasizes the pressing need to rigorously characterize the specific contribution of the stoichiometry of reactive

  20. [Caloric stimulation in infants].

    PubMed

    Zagólski, Olaf

    2005-01-01

    Caloric stimulation is one of few clinically proven tests assessing the function of each vestibule separately in neonates. Its results represent the continuity of vestibulo-ocular reflex, beginning in the lateral vestibular canal. Vestibular disorders are diagnosed in 20 to even 70% neonates with sensorineural hearing loss with the prevalence of individuals with profound and acquired deafness. 58 high risk of hearing defect infants were included in the study. Their age ranged from 3 to 6 months. A group of 27 healthy controls with negative history concerning sensorineural hearing loss risk factors was also examined. Caloric stimulation was performed according to Veits. External ear canal was irrigated with 20 ml of water at the temperature of 20 degrees C and eye movements were watched indirectly. In about 34% infants the nystagmic reaction to cold water was weaker than in normal controls. The reaction was most frequently impaired in infants with perinatal pathology, multiple congenital defects and aminoglycoside administration. Caloric stimulation in infants should be performed with cold water and the syringe used in the test should be fitted with a soft hose enabling irrigation of the interior part of the external ear canal.

  1. Leg lengthening and shortening

    MedlinePlus

    ... bone to hold it in place during healing. BONE GROWTH RESTRICTION Bone growth takes place at the growth plates (physes) at ... for children whose bones are no longer growing. Bone growth restriction is recommended for children whose bones are ...

  2. Air as the caloric stimulus.

    PubMed

    O'Neill, G O

    1978-05-01

    The use of air as the caloric medium was investigated and compared to that of water. The ability of air and water to generate surface temperatures close to the fluid outlet temperature was studied by irrigation onto a thermocouple. Results of caloric tests performed with air and water are compared by calculating the average nystagmus response for the hot and cold stimuli for two groups of sixty patients. Also, the number of canal paresis, directional preponderance, mixed, bi-lateral canal paresis and normal responses are compared for each group. Finally, the effect of performing a bi-thermal air caloric on a patient having a unilateral drum perforation is discussed.

  3. Lengthenings and Shortenings in Germanic

    ERIC Educational Resources Information Center

    Kaden, Christiane

    2016-01-01

    Many languages have processes which lengthen or shorten a vowel or consonant. In this dissertation, I concentrate on Open Syllable Lengthening, Closed Syllable Shortening, Monosyllabic Lengthening and Trochaic Lengthening, and present a formal model which captures these lengthenings and shortening as the insertion, deletion or reassignment of a…

  4. Lengthenings and Shortenings in Germanic

    ERIC Educational Resources Information Center

    Kaden, Christiane

    2016-01-01

    Many languages have processes which lengthen or shorten a vowel or consonant. In this dissertation, I concentrate on Open Syllable Lengthening, Closed Syllable Shortening, Monosyllabic Lengthening and Trochaic Lengthening, and present a formal model which captures these lengthenings and shortening as the insertion, deletion or reassignment of a…

  5. Differential Acute Impacts of Sleeve Gastrectomy, Roux-en-Y Gastric Bypass Surgery and Matched Caloric Restriction Diet on Insulin Secretion, Insulin Effectiveness and Non-Esterified Fatty Acid Levels Among Patients with Type 2 Diabetes.

    PubMed

    Thomas, Felicity; Smith, Greg C; Lu, Jun; Babor, Richard; Booth, Michael; Beban, Grant; Chase, J Geoffrey; Murphy, Rinki

    2016-08-01

    Bariatric surgery is an increasingly common option for control of type 2 diabetes (T2D) and obesity. Mechanisms underlying rapid improvement of T2D after different types of bariatric surgery are not clear. Caloric deprivation and altered levels of non-esterified fatty acid (NEFA) have been proposed. This study examines how sleeve gastrectomy (SG), Roux-en-Y gastric bypass (GBP) or matched hypocaloric diet (DT) achieves improvements in T2D by characterising components of the glucose metabolism and NEFA levels before and 3 days after each intervention. Plasma samples at five time points during oral glucose tolerance test (OGTT) from subjects with T2D undergoing GBP (N = 11) or SG (N = 12) were analysed for C-peptide, insulin and glucose before surgery and 3-day post-intervention or after DT (N = 5). Fasting palmitic, linoleic, oleic and stearic acid were measured. C-peptide measurements were used to model insulin secretion rate (ISR) using deconvolution. Subjects who underwent GBP surgery experienced the greatest improvement in glycaemia (median reduction in blood glucose (BG) from basal by 29 % [IQR -57, -18]) and the greatest reduction in all NEFA measured. SG achieved improvement in glycaemia with lower ISR and reduction in all but palmitoleic acid. DT subjects achieved improvement in glycaemia with an increase in ISR, 105 % [IQR, 20, 220] and stearic acid. GBP, SG and DT each improve glucose metabolism through different effects on pancreatic beta cell function, insulin sensitivity and free fatty acids.

  6. The caloric calculator: average caloric impact of childhood obesity interventions.

    PubMed

    Wang, Y Claire; Hsiao, Amber; Orleans, C Tracy; Gortmaker, Steven L

    2013-08-01

    The childhood obesity epidemic reflects the daily accumulation of an "energy gap"-excess calories consumed over calories expended. Population-level interventions to reverse the epidemic can be assessed by the degree to which they increase energy expenditure and/or reduce caloric intake. However, no common metric exists for such comparative assessment. To develop a common metric, the Average Caloric Impact (ACI), for estimating and comparing population-level effect sizes of a range of childhood obesity interventions. An iterative, collaborative process was used to review literature from 1996 to 2012 and select illustrative interventions showing effects on youth diet and/or activity levels, energy balance, and weight. The ACIs of physical activity interventions were estimated based on program reach, frequency, duration, and intensity and mean body weight of the targeted age and gender group from the 2009-2010 National Health and Nutrition Examination Survey. ACIs of dietary interventions were based on reach and changes in foods and/or beverages consumed. Fifteen interventions informed by 29 studies were included, ranging from individual behavioral to population-level policies. A web tool, the Caloric Calculator, was developed to allow researchers and policymakers to estimate the ACIs of interventions on target populations with reference to energy gap reductions required to reach the nation's Healthy People childhood obesity goals. The Caloric Calculator and ACIs provide researchers and policymakers with a common metric for estimating the potential effect sizes of various interventions for reducing childhood obesity, providing a platform for evidence-based dialogues on new program or policy approaches as data emerge. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  7. The CALOR93 code system

    SciTech Connect

    Gabriel, T.A.

    1993-12-31

    The purpose of this paper is to describe a program package, CALOR93, that has been developed to design and analyze different detector systems, in particular, calorimeters which are used in high energy physics experiments to determine the energy of particles. One`s ability to design a calorimeter to perform a certain task can have a strong influence upon the validity of experimental results. The validity of the results obtained with CALOR93 has been verified many times by comparison with experimental data. The codes (HETC93, SPECT93, LIGHT, EGS4, MORSE, and MICAP) are quite generalized and detailed enough so that any experimental calorimeter setup can be studied. Due to this generalization, some software development is necessary because of the wide diversity of calorimeter designs.

  8. Mechano-caloric cooling device

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Luna, Jack; Abbassi, P.; Carandang, R. M.

    1989-01-01

    The mechano-caloric effect is potentially useful in the He II temperature range. Aside from demonstration work, little quantification effort appears to have been known since other refrigeration possibilities have been available for some time. Successful He II use-related system examples are as follows: in space, the utilization of the latent heat of vaporization has been quite successful in vapor-liquid phase separation (VLPS) in conjunction with thermomechanical force application in plugs. In magnet cooling systems, the possibility of using the mechano-caloric cooling effect in conjunction with thermo-mechanical circulation pump schemes, has been assessed (but not quantified yet to the extent desirable). A third example is quoted in conjunction with superfluid wind tunnel studies and liquid helium tow tank for surface vessels respectively. In all of these (partially future) R and D areas, the question of refrigerator effectiveness using the mechano-caloric effect appears to be relevant, possibly in conjunction with questions of reliability and simplicity. The present work is concerned with quantification of phenomena including simplified thermodynamic cycle calculations.

  9. Comparison of standardized versus individualized caloric prescriptions in the nutritional rehabilitation of inpatients with anorexia nervosa

    PubMed Central

    Haynos, Ann F.; Snipes, Cassandra; Guarda, Angela; Mayer, Laurel E.; Attia, Evelyn

    2015-01-01

    Objective Sparse research informs how caloric prescriptions should be advanced during nutritional rehabilitation of inpatients with anorexia nervosa (AN). This study compared the impact of a standardized caloric increase approach, in which increases occurred on a predetermined schedule, to an individualized approach, in which increases occurred only following insufficient weight gain, on rate, pattern, and cumulative amount of weight gain and other weight restoration outcomes. Method This study followed a natural experiment design comparing AN inpatients consecutively admitted before (n = 35) and after (n = 35) an institutional change from individualized to standardized caloric prescriptions. Authors examined the impact of prescription plan on weekly weight gain in the first treatment month using multilevel modeling. Within a subsample remaining inpatient through weight restoration (n = 40), multiple regressions examined the impact of caloric prescription plan on time to weight restoration, length of hospitalization, maximum caloric prescription, discharge BMI, and incidence of activity restriction and edema. Results There were significant interactions between prescription plan and quadratic time on average weekly weight gain (p = .03) and linear time on cumulative weekly weight gain (p < .001). Under the standardized plan, patients gained in an accelerated curvilinear pattern (p = .04) and, therefore, gained cumulatively greater amounts of weight over time (p < .001). Additionally, 30% fewer patients required activity restriction under the standardized plan. Discussion Standardized caloric prescriptions may confer advantage by facilitating accelerated early weight gain and lower incidence of bed rest without increasing the incidence of refeeding syndrome. PMID:26769581

  10. [Caloric substrates in postoperative parenteral nutrition].

    PubMed

    De Salvo, L; Romairone, E; Ansaldo, G L; Mattioli, G

    1991-05-31

    The paper describes the carbohydrate, lipidic and nitrogen metabolism of the postoperative period which is subdivided into an early and a late phase. Since the metabolism of caloric substrates in the early postoperative period is a stress metabolism with glucose intolerance and wide protein catabolism, the authors emphasise that an insufficient caloric intake is worse than the fasting state and suggest that alternative caloric sources, such as branched chain amino acids, fatty acids and, even, ketonic bodies, should be used.

  11. Carnot to Clausius: caloric to entropy

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald

    2009-07-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly incorrect, Clausius showed that by reinterpreting Carnot's caloric as entropy he was able to formulate the second law.

  12. Carnot to Clausius: Caloric to Entropy

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2009-01-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly…

  13. Impairment of Caloric Function after Cochlear Implantation

    ERIC Educational Resources Information Center

    Kuang, Heide; Haversat, Heather H.; Michaelides, Elias M.

    2015-01-01

    Purpose: This article seeks to review current literature on caloric function following cochlear implantation while analyzing any correlations of caloric function changes with vestibular symptoms. Method: This article is a systematic review of evidence-based literature. English language articles published between 1980 and 2014 that presented some…

  14. Carnot to Clausius: Caloric to Entropy

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2009-01-01

    This paper discusses how the Carnot engine led to the formulation of the second law of thermodynamics and entropy. The operation of the engine is analysed both in terms of heat as the caloric fluid and heat as a form of energy. A keystone of Carnot's thinking was the absolute conservation of caloric. Although the Carnot analysis was partly…

  15. Impairment of Caloric Function after Cochlear Implantation

    ERIC Educational Resources Information Center

    Kuang, Heide; Haversat, Heather H.; Michaelides, Elias M.

    2015-01-01

    Purpose: This article seeks to review current literature on caloric function following cochlear implantation while analyzing any correlations of caloric function changes with vestibular symptoms. Method: This article is a systematic review of evidence-based literature. English language articles published between 1980 and 2014 that presented some…

  16. Macronutrients and caloric intake in health and longevity

    PubMed Central

    Solon-Biet, Samantha M.; Mitchell, Sarah J.; de Cabo, Rafael; Raubenheimer, David; Le Couteur, David G.; Simpson, Stephen J.

    2015-01-01

    Both lifespan and healthspan are influenced by nutrition, with nutritional interventions proving to be robust across a wide range of species. However, the relationship between nutrition, health and aging is still not fully understood. Caloric restriction is the most studied dietary intervention known to extend life in many organisms, but recently the balance of macronutrients has been shown to play a critical role. In this review, we discuss the current understanding regarding the impact of calories and macronutrient balance in mammalian health and longevity and highlight the key nutrient-sensing pathways that mediate the effects of nutrition on health and ageing. PMID:26021555

  17. Drunkorexia: Calorie Restriction Prior to Alcohol Consumption among College Freshman

    ERIC Educational Resources Information Center

    Burke, Sloane C.; Cremeens, Jennifer; Vail-Smith, Karen; Woolsey, Conrad

    2010-01-01

    Using a sample of 692 freshmen at a southeastern university, this study examined caloric restriction among students prior to planned alcohol consumption. Participants were surveyed for self-reported alcohol consumption, binge drinking, and caloric intake habits prior to drinking episodes. Results indicated that 99 of 695 (14%) of first year…

  18. Drunkorexia: Calorie Restriction Prior to Alcohol Consumption among College Freshman

    ERIC Educational Resources Information Center

    Burke, Sloane C.; Cremeens, Jennifer; Vail-Smith, Karen; Woolsey, Conrad

    2010-01-01

    Using a sample of 692 freshmen at a southeastern university, this study examined caloric restriction among students prior to planned alcohol consumption. Participants were surveyed for self-reported alcohol consumption, binge drinking, and caloric intake habits prior to drinking episodes. Results indicated that 99 of 695 (14%) of first year…

  19. Caloric curve of star clusters.

    PubMed

    Casetti, Lapo; Nardini, Cesare

    2012-06-01

    Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.

  20. Caloric curve of star clusters

    NASA Astrophysics Data System (ADS)

    Casetti, Lapo; Nardini, Cesare

    2012-06-01

    Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.

  1. Caloric beverage consumption patterns in Mexican children

    PubMed Central

    2010-01-01

    Background Mexico has seen a very steep increase in child obesity level. Little is known about caloric beverage intake in this country as well as all other countries outside a few high income countries. This study examines overall patterns and trends in all caloric beverages from two nationally representative surveys from Mexico. Methods The two nationally representative dietary intake surveys (1999 and 2006) from Mexico are used to study caloric beverage intake in 17, 215 children. The volume (ml) and caloric energy (kcal) contributed by all beverages consumed by the sample subjects were measured. Results are weighted to be nationally representative. Results The trends from the dietary intake surveys showed very large increases in caloric beverages among pre-school and school children. The contribution of whole milk and sugar-sweetened juices was an important finding. Mexican pre-school children consumed 27.8% of their energy from caloric beverages in 2006 and school children consumed 20.7% of their energy from caloric beverages during the same time. The three major categories of beverage intake are whole milk, fruit juice with various sugar and water combinations and carbonated and noncarbonated sugared-beverages. Conclusion The Mexican government, greatly concerned about obesity, has identified the large increase in caloric beverages from whole milk, juices and soft drinks as a key target and is initiating major changes to address this problem. They have already used the data to shift 20 million persons in their welfare and feeding programs from whole to 1.5% fat milk and in a year will shift to nonfat milk. They are using these data to revise school beverage policies and national regulations and taxation policies related to an array of less healthful caloric beverages. PMID:20964842

  2. Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction.

    PubMed

    Nakamura, Yuko; Walker, Brian R; Ikuta, Toshikazu

    2016-01-01

    Elevated plasma cortisol has been reported following caloric restriction, and may contribute to adverse effects including stress-induced overeating, but results from published studies are inconsistent. To clarify the effects of caloric restriction on plasma cortisol, and to assess cortisol as an indicator of stress during caloric restriction, we conducted a systematic review and meta-analysis of published studies in which cortisol was measured following caloric restriction without other manipulations in humans. We further compared effects of fasting, very low calorie diet (VLCD), and other less intense low calorie diet (LCD), as well as the duration of caloric restriction by meta-regression. Overall, caloric restriction significantly increased serum cortisol level in 13 studies (357 total participants). Fasting showed a very strong effect in increasing serum cortisol, while VLCD and LCD did not show significant increases. The meta-regression analysis showed a negative association between the serum cortisol level and the duration of caloric restriction, indicating serum cortisol is increased in the initial period of caloric restriction but decreased to the baseline level after several weeks. These results suggest that severe caloric restriction causes activation of the hypothalamic-pituitary-adrenal axis, which may be transient, but results in elevated cortisol which could mediate effects of starvation on brain and metabolic function as well as ameliorate weight loss.

  3. Asymmetry Dependence of the Nuclear Caloric Curve

    NASA Astrophysics Data System (ADS)

    McIntosh, A. B.; Bonasera, A.; Cammarata, P.; Hagel, K.; Heilborn, L.; Kohley, Z.; Mabiala, J.; May, L. W.; Marini, P.; Raphelt, A.; Souliotis, G. A.; Wuenschel, S.; Zarrella, A.; Yennello, S. J.

    2013-03-01

    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A = 50. Two independent thermometers, the momentum quadrupole fluctuation thermometer and the Albergo yield ratio thermometer, are used to extract the caloric curve. For both methods, the caloric curve extracted shows that the temperature varies linearly with quasi-projectile asymmetry For the momentum quadrupole fluctuation thermometer, an increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei.

  4. A randomized control trial for reduction of caloric and non-caloric sweetened beverages in young adults: effects in weight, body composition and blood pressure.

    PubMed

    Vázquez-Durán, Marisela; Orea-Tejeda, Arturo; Castillo-Martínez, Lilia; Cano-García, Ángeles; Téllez-Olvera, Laura; Keirns-Davis, Candace

    2016-11-29

    Recently has been documented that the consumption of sweetened non-caloric beverages has increased as an option to weight control, however randomized control trials have demonstrated a modest weight loss. To evaluate the effect of reducing consumption of beverage with caloric and non-caloric sweeteners on weight, body composition and blood pressure in young Mexican adults. In an experimental study 148 nursing students were randomly assigned to one of 3 groups: 1) no sweetened beverages were permitted, only plain water, tea or coffee without sugar; 2) consumption of beverages with non-caloric sweeteners was allowed; and 3) no restriction of sweetened beverages was imposed. All groups were given individualized isocaloric diets monitored by a 24-hour record of consumption and food frequency questionnaire and blood pressure, weight, waist circumference and body composition by tetrapolar bioelectric impedance were taken at the beginning of the study and three and six months later. Differences between groups were found in body mass index at 3 months that decrease in group 1 and 2 and increase in group 3 (-1.75 vs.-0.61 vs.0.54% of change, p < 0.001). At six months there were also statistical differences in waist circumference (-4.07 vs.-1.23 vs. 0.62% of change, p < 0.001) and sugar consumption (-62.0 vs.-54.61 vs.11.08% of change, p < 0.001) in groups 1, 2 and 3 respectively. The reduction in consumption of both caloric and non-caloric sweetened beverages contributes to signifi cant body mass index loss and waist circumference.

  5. Update on Human Calorie Restriction Research123

    PubMed Central

    Roberts, Susan B.; Speakman, John

    2013-01-01

    The United States population is aging rapidly, and understanding the potential impact and feasibility of lifestyle interventions on the aging process is of central importance for addressing future population health and health care costs. This symposium addressed the question of whether caloric restriction may be a feasible strategy to improve human health by reductions in rates of primary and secondary aging in humans, viewed from the perspective of existing data in animal models, and by using emerging data from the human Comprehensive Assessment of Long-Term Reduction in Energy Intake trial, which is a randomized trial of human caloric restriction in free-living men and women. PMID:24038258

  6. Shortening anomalies in supersymmetric theories

    DOE PAGES

    Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi; ...

    2017-01-17

    We present new anomalies in two-dimensional N = (2, 2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N = (2, 2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N = (2; 2). These anomalies explain why the conformal manifolds of the K3 and T4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why there are nomore » N = (2, 2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.« less

  7. Shortening anomalies in supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Komargodski, Zohar; Ooguri, Hirosi; Seiberg, Nathan; Wang, Yifan

    2017-01-01

    We present new anomalies in two-dimensional N=(2,2) superconformal theories. They obstruct the shortening conditions of chiral and twisted chiral multiplets at coincident points. This implies that marginal couplings cannot be promoted to background superfields in short representations. Therefore, standard results that follow from N=(2,2) spurion analysis are invalidated. These anomalies appear only if supersymmetry is enhanced beyond N=(2,2) . These anomalies explain why the conformal manifolds of the K3 and T 4 sigma models are not Kähler and do not factorize into chiral and twisted chiral moduli spaces and why there are no N=(2,2) gauged linear sigma models that cover these conformal manifolds. We also present these results from the point of view of the Riemann curvature of conformal manifolds.

  8. Asymmetry dependence of the nuclear caloric curve

    NASA Astrophysics Data System (ADS)

    McIntosh, A. B.; Bonasera, A.; Cammarata, P.; Hagel, K.; Heilborn, L.; Kohley, Z.; Mabiala, J.; May, L. W.; Marini, P.; Raphelt, A.; Souliotis, G. A.; Wuenschel, S.; Zarrella, A.; Yennello, S. J.

    2013-02-01

    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A = 50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry N-Z/A. An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei.

  9. New developments in caloric materials for cooling applications

    NASA Astrophysics Data System (ADS)

    Crossley, S.; Mathur, N. D.; Moya, X.

    2015-06-01

    Caloric materials are in the spotlight as candidates for future environmentally friendly cooling technologies. We describe stimulating recent developments in the three caloric strands that are now being studied collectively, namely magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects.

  10. Oxytocin reduces caloric intake in men

    PubMed Central

    Lawson, Elizabeth A.; Marengi, Dean A.; DeSanti, Rebecca L.; Holmes, Tara M.; Schoenfeld, David A.; Tolley, Christiane J.

    2015-01-01

    Objective Preclinical studies indicate that oxytocin is anorexigenic and has beneficial metabolic effects. Oxytocin effects on nutrition and metabolism in humans are not well defined. We hypothesized that oxytocin would reduce caloric intake and appetite, and alter levels of appetite-regulating hormones. We also explored metabolic effects of oxytocin. Methods We performed a randomized, placebo-controlled crossover study of single-dose intranasal oxytocin (24 IU) in 25 fasting healthy men. After oxytocin/placebo, subjects selected breakfast from a menu, and were given double portions. Caloric content of food consumed was measured. Visual analogue scales were used to assess appetite and blood was drawn for appetite-regulating hormones, insulin, and glucose before and after oxytocin/placebo. Indirect calorimetry assessed resting energy expenditure (REE) and substrate utilization. Results Oxytocin reduced caloric intake with a preferential effect on fat intake and increased levels of the anorexigenic hormone cholecystokinin without affecting appetite or other appetite-regulating hormones. There was no effect of oxytocin on REE. Oxytocin resulted in a shift from carbohydrate to fat utilization and improved insulin sensitivity. Conclusions Intranasal oxytocin reduces caloric intake and has beneficial metabolic effects in men without concerning side effects. The efficacy and safety of sustained oxytocin administration in the treatment of obesity warrants investigation. PMID:25865294

  11. 18 CFR 41.3 - Shortened procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Shortened procedure. 41.3 Section 41.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... both, in any combination, by the shortened procedure, the Commission shall thereupon issue a...

  12. 10 CFR 590.316 - Shortened proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Shortened proceedings. 590.316 Section 590.316 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Procedures § 590.316 Shortened proceedings. In any...

  13. 10 CFR 590.316 - Shortened proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Shortened proceedings. 590.316 Section 590.316 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Procedures § 590.316 Shortened proceedings. In...

  14. Report on Time-Shortened Degree Program.

    ERIC Educational Resources Information Center

    Magill, Samuel H.

    Since January 1971, a number of colleges and universities have announced time-shortened degree programs. In the interest of examining and clarifying the various approaches to and understanding of time-shortened degrees, this brief analysis is offered. There appear to be 4 approaches to the reduction of time spent on the way to the B.A. degree, one…

  15. 10 CFR 590.316 - Shortened proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Shortened proceedings. 590.316 Section 590.316 Energy DEPARTMENT OF ENERGY (CONTINUED) NATURAL GAS (ECONOMIC REGULATORY ADMINISTRATION) ADMINISTRATIVE PROCEDURES WITH RESPECT TO THE IMPORT AND EXPORT OF NATURAL GAS Procedures § 590.316 Shortened proceedings. In...

  16. Does the consumption of caloric and non-caloric beverages with a meal affect energy intake?

    PubMed

    DellaValle, Diane M; Roe, Liane S; Rolls, Barbara J

    2005-04-01

    Beverages are frequently consumed with meals, but their influence on meal energy intake is not understood. We hypothesized that differences in the energy, nutrient content, and sensory properties of beverages consumed with a meal would affect intake. Forty-four women ate lunch in the laboratory once a week for 6 weeks. Lunch was consumed ad libitum, and was served with one of five beverages that were consumed in full, or no beverage. The beverages were 360 g of water, diet cola, regular cola, orange juice, and 1% milk. Results showed an effect of beverage type on meal intake (p<0.0001). Energy intake did not differ among the non-caloric and no-beverage conditions. Similarly, energy intake from lunch (including beverage) did not differ among the caloric beverage conditions. When a caloric beverage (156 kcal; 653 kJ) was consumed with the meal, energy intake was 104+/-16 kcal (435+/-67 kJ) greater than when a non-caloric beverage or no beverage was consumed. Subjects' ratings of fullness after lunch did not differ among the beverage conditions, but were lower for the no-beverage condition. These results show that when caloric beverages are consumed with a meal they add to energy intake from food, without significantly affecting satiety ratings.

  17. 17 CFR 10.92 - Shortened procedure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... section, the term “statement” includes (1) Statements of fact signed and sworn to by persons having... shortened procedure must be sworn to by persons having knowledge thereof and, except under...

  18. 17 CFR 10.92 - Shortened procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section, the term “statement” includes (1) Statements of fact signed and sworn to by persons having... shortened procedure must be sworn to by persons having knowledge thereof and, except under...

  19. Shortening reaction of human tibialis anterior.

    PubMed

    Berardelli, A; Hallett, M

    1984-02-01

    The shortening reaction of tibialis anterior was observed in 6 of 25 normal subjects, in 6 of 40 patients with upper motor neuron syndromes, and in 11 of 17 patients with Parkinson's disease. The latency of the shortening reaction was comparable with that of the latter part of the long-latency stretch reflexes. The magnitude of the shortening reaction increased with the velocity of the movement that produced it and increased with background voluntary force of plantar flexion in all but the patients with Parkinson's disease. It was not affected by vibration in the patients with Parkinson's disease. The presence of the shortening reaction was not correlated with the clinical impression of increased tone.

  20. On the characteristics of caloric nystagmus in healthy persons. [in response to caloric stimuli

    NASA Technical Reports Server (NTRS)

    Bodo, D.; Baranova, V. P.; Matsnev, E. I.; Yakovleva, M. Y.

    1974-01-01

    The asymmetry of reflex activity of labyrinths and directional preponderance of the reaction were studied on healthy persons subjected to caloric tests. Calorization with hot water was accompanied by less pronounced reactions in all parameters of nystagmus than analogous indices at cold water stimulation. The symmetry of labyrinth function shifted to the right in individuals with greater activity of the left central vestibular formations, analogous to right handedness behavior. It is concluded that asymmetry of reflex nystagmus in healthy persons can be due to a certain preponderance of functional activity in structures of the left hemisphere of the brain.

  1. On the characteristics of caloric nystagmus in healthy persons. [in response to caloric stimuli

    NASA Technical Reports Server (NTRS)

    Bodo, D.; Baranova, V. P.; Matsnev, E. I.; Yakovleva, M. Y.

    1974-01-01

    The asymmetry of reflex activity of labyrinths and directional preponderance of the reaction were studied on healthy persons subjected to caloric tests. Calorization with hot water was accompanied by less pronounced reactions in all parameters of nystagmus than analogous indices at cold water stimulation. The symmetry of labyrinth function shifted to the right in individuals with greater activity of the left central vestibular formations, analogous to right handedness behavior. It is concluded that asymmetry of reflex nystagmus in healthy persons can be due to a certain preponderance of functional activity in structures of the left hemisphere of the brain.

  2. Energy restriction and potential energy restriction mimetics.

    PubMed

    Nikolai, Sibylle; Pallauf, Kathrin; Huebbe, Patricia; Rimbach, Gerald

    2015-12-01

    Energy restriction (ER; also known as caloric restriction) is the only nutritional intervention that has repeatedly been shown to increase lifespan in model organisms and may delay ageing in humans. In the present review we discuss current scientific literature on ER and its molecular, metabolic and hormonal effects. Moreover, criteria for the classification of substances that might induce positive ER-like changes without having to reduce energy intake are summarised. Additionally, the putative ER mimetics (ERM) 2-deoxy-d-glucose, metformin, rapamycin, resveratrol, spermidine and lipoic acid and their suggested molecular targets are discussed. While there are reports on these ERM candidates that describe lifespan extension in model organisms, data on longevity-inducing effects in higher organisms such as mice remain controversial or are missing. Furthermore, some of these candidates produce detrimental side effects such as immunosuppression or lactic acidosis, or have not been tested for safety in long-term studies. Up to now, there are no known ERM that could be recommended without limitations for use in humans.

  3. Caloric intake and Alzheimer's disease. Experimental approaches and therapeutic implications.

    PubMed

    Pasinetti, Giulio Maria; Zhao, Zhong; Qin, Weiping; Ho, Lap; Shrishailam, Yemul; Macgrogan, Donal; Ressmann, Wendy; Humala, Nelson; Liu, Xunxian; Romero, Carmen; Stetka, Breton; Chen, Linghong; Ksiezak-Reding, Hanna; Wang, Jun

    2007-01-01

    Alzheimer's disease (AD) is a rapidly growing public health concern with potentially devastating effects. Presently, there are no known cures or effective preventive strategies. While genetic factors are relevant in early-onset cases, they appear to play less of a role in late-onset sporadic AD cases, the most common form of AD. Due to the fact that the disease typically strikes very late in life, delaying symptoms could be as good as a cure for many people. For example, it is now widely accepted that if the onset of the disease could be delayed by even 5 years, the incidence could be cut in half. Both clinical and epidemiological evidence suggests that modification of lifestyle factors such as nutrition may prove crucial to AD management given the mounting experimental evidence suggesting that brain cells are remarkably responsive to "what somebody is doing". Among other nongenetic factors influencing AD, recent studies strongly support the evidence that caloric intake may play a role in the relative risk for AD clinical dementia. Indeed, the effect of diet in AD has been an area of research that has produced promising results, at least experimentally. Most importantly, as mechanistic pathways are defined and their biochemical functions scrutinized, the evidence supporting a direct link between nutrition and AD neuropathology continues to grow. Our work, as well as that of others, has recently resulted in the development of experimental dietary regimens that might promote, attenuate or even reverse features of AD. Most remarkably, while we found that high caloric intake based on saturated fat promotes AD type Beta-amyloidosis, conversely we found that dietary restriction based on reduced carbohydrate intake is able to prevent it. This evidence is very exciting and is, in part, consistent with current epidemiological studies suggesting that obesity and diabetes are associated with a >4-fold increased risk of developing AD. The clarification of the mechanisms

  4. Modeling microscale heat transfer using Calore.

    SciTech Connect

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  5. A new light on caloric test--what was disclosed by three dimensional analysis of caloric nystagmus?

    NASA Technical Reports Server (NTRS)

    Arai, Y.

    2001-01-01

    For better understanding of caloric nystagmus, this phenomenon will be reviewed historically in three stages. 1) The first light on caloric nystagmus was thrown by Barany 1906. Through direct observation of eye movements, Barany established the caloric test as an important tool to determine the side of lesion for vertigo. 2) The second light is shed by electrooculogram (EOG) from the late 1950th. EOG enabled qualitative analysis of caloric nystagmus, and proved Barany's convection theory, but resulted in neglect of vertical and roll eye movements. 3) The third light is gained by 3D recording of eye movements started from the late 1980th. 3D recordings of eye movements enabled us to analyze the spatial orientation of caloric nystagmus, and disclose the close correlation of the nystagmus components in the head vertical and the space vertical planes, suggesting a contribution of the velocity storage integrator. The 3D property of caloric nystagmus will be explained in detail.

  6. A new light on caloric test--what was disclosed by three dimensional analysis of caloric nystagmus?

    NASA Technical Reports Server (NTRS)

    Arai, Y.

    2001-01-01

    For better understanding of caloric nystagmus, this phenomenon will be reviewed historically in three stages. 1) The first light on caloric nystagmus was thrown by Barany 1906. Through direct observation of eye movements, Barany established the caloric test as an important tool to determine the side of lesion for vertigo. 2) The second light is shed by electrooculogram (EOG) from the late 1950th. EOG enabled qualitative analysis of caloric nystagmus, and proved Barany's convection theory, but resulted in neglect of vertical and roll eye movements. 3) The third light is gained by 3D recording of eye movements started from the late 1980th. 3D recordings of eye movements enabled us to analyze the spatial orientation of caloric nystagmus, and disclose the close correlation of the nystagmus components in the head vertical and the space vertical planes, suggesting a contribution of the velocity storage integrator. The 3D property of caloric nystagmus will be explained in detail.

  7. A new light on caloric test--what was disclosed by three dimensional analysis of caloric nystagmus?

    PubMed

    Arai, Y

    2001-12-01

    For better understanding of caloric nystagmus, this phenomenon will be reviewed historically in three stages. 1) The first light on caloric nystagmus was thrown by Barany 1906. Through direct observation of eye movements, Barany established the caloric test as an important tool to determine the side of lesion for vertigo. 2) The second light is shed by electrooculogram (EOG) from the late 1950th. EOG enabled qualitative analysis of caloric nystagmus, and proved Barany's convection theory, but resulted in neglect of vertical and roll eye movements. 3) The third light is gained by 3D recording of eye movements started from the late 1980th. 3D recordings of eye movements enabled us to analyze the spatial orientation of caloric nystagmus, and disclose the close correlation of the nystagmus components in the head vertical and the space vertical planes, suggesting a contribution of the velocity storage integrator. The 3D property of caloric nystagmus will be explained in detail.

  8. A Dissociation Between Recognition and Hedonic Value in Caloric and Non-caloric Carbonated Soft Drinks

    PubMed Central

    Delogu, Franco; Huddas, Claire; Steven, Katelyn; Hachem, Souheila; Lodhia, Luv; Fernandez, Ryan; Logerstedt, Macee

    2016-01-01

    Consumption of sugar-sweetened beverages (SSBs) is considered to be a contributor to diabetes and the epidemic of obesity in many countries. The popularity of non-caloric carbonated soft drinks as an alternative to SSBs may be a factor in reducing the health risks associated with SSBs consumption. This study focuses on the perceptual discrimination of SSBs from artificially sweetened beverages (ASBs). Fifty-five college students rated 14 commercially available carbonated soft drinks in terms of sweetness and likeability. They were also asked to recognize, if the drinks contained sugar or a non-caloric artificial sweetener. Overall, participants showed poor accuracy in discriminating drinks’ sweeteners, with significantly lower accuracy for SSBs than ASBs. Interestingly, we found a dissociation between sweetener recognition and drink pleasantness. In fact, in spite of a chance-level discrimination accuracy of SSBs, their taste was systematically preferred to the taste of non-caloric beverages. Our findings support the idea that hedonic value of carbonated soft drinks is dissociable from its identification and that the activation of the pleasure system seems not to require explicit recognition of the sweetener contained in the soft drink. We hypothesize that preference for carbonated soft drinks containing sugar over non-caloric alternatives might be modulated by metabolic factors that are independent from conscious and rational consumers’ choices. PMID:26858681

  9. A Dissociation Between Recognition and Hedonic Value in Caloric and Non-caloric Carbonated Soft Drinks.

    PubMed

    Delogu, Franco; Huddas, Claire; Steven, Katelyn; Hachem, Souheila; Lodhia, Luv; Fernandez, Ryan; Logerstedt, Macee

    2016-01-01

    Consumption of sugar-sweetened beverages (SSBs) is considered to be a contributor to diabetes and the epidemic of obesity in many countries. The popularity of non-caloric carbonated soft drinks as an alternative to SSBs may be a factor in reducing the health risks associated with SSBs consumption. This study focuses on the perceptual discrimination of SSBs from artificially sweetened beverages (ASBs). Fifty-five college students rated 14 commercially available carbonated soft drinks in terms of sweetness and likeability. They were also asked to recognize, if the drinks contained sugar or a non-caloric artificial sweetener. Overall, participants showed poor accuracy in discriminating drinks' sweeteners, with significantly lower accuracy for SSBs than ASBs. Interestingly, we found a dissociation between sweetener recognition and drink pleasantness. In fact, in spite of a chance-level discrimination accuracy of SSBs, their taste was systematically preferred to the taste of non-caloric beverages. Our findings support the idea that hedonic value of carbonated soft drinks is dissociable from its identification and that the activation of the pleasure system seems not to require explicit recognition of the sweetener contained in the soft drink. We hypothesize that preference for carbonated soft drinks containing sugar over non-caloric alternatives might be modulated by metabolic factors that are independent from conscious and rational consumers' choices.

  10. Calorie anticipation alters food intake after low-caloric not high-caloric preloads.

    PubMed

    Hogenkamp, P S; Cedernaes, J; Chapman, C D; Vogel, H; Hjorth, O C; Zarei, S; Lundberg, L S; Brooks, S J; Dickson, S L; Benedict, C; Schiöth, H B

    2013-08-01

    Cognitive factors and anticipation are known to influence food intake. The current study examined the effect of anticipation and actual consumption of food on hormone (ghrelin, cortisol, and insulin) and glucose levels, appetite and ad libitum intake, to assess whether changes in hormone levels might explain the predicted differences in subsequent food intake. During four breakfast sessions, participants consumed a yogurt preload that was either low caloric (LC: 180 kcal/300 g) or high caloric (HC: 530 kcal/300 g) and was provided with either consistent or inconsistent calorie information (i.e., stating the caloric content of the preload was low or high). Appetite ratings and hormone and glucose levels were measured at baseline (t = 0), after providing the calorie information about the preload (t = 20), after consumption of the preload (t = 40), and just before ad libitum intake (t = 60). Ad libitum intake was lower after HC preloads (as compared to LC preloads; P < 0.01). Intake after LC preloads was higher when provided with (consistent) LC information (467±254 kcal) as compared to (inconsistent) HC information (346±210 kcal), but intake after the HC preloads did not depend on the information provided (LC information: 290±178 kcal, HC information: 333±179 kcal; caloric load*information P = 0.03). Hormone levels did not respond in an anticipatory manner, and the post-prandial responses depended on actual calories consumed. These results suggest that both cognitive and physiological information determine food intake. When actual caloric intake was sufficient to produce physiological satiety, cognitive factors played no role; however, when physiological satiety was limited, cognitively induced satiety reduced intake to comparable levels. Copyright © 2012 The Obesity Society.

  11. Caloric intake and expenditure of obese boys.

    PubMed

    Waxman, M; Stunkard, A J

    1980-02-01

    Caloric intake and expenditure of children in four families were assessed by nonparticipant observations of family dinners and school lunches. In each family there were one obese boy and one nonobese brother whose ages were within two years of each other. For family dinners the nonobese brother served as a control; for school lunches, a nonobese peer served as a control. The obese boys consumed more calories (766 +/- 290) than did their nonobese brothers at dinner (504 +/- 183) and far more (907 +/- 217) than their nonobese peers at lunch (500 +/- 386). The obese boys also ate faster (65.7 +/- 37.0 kcal/minute) than their brothers at dinner (31.7 +/- 13.8 kcal/minute) and far faster (103.5 +/- 40.9 kcal/minute) than their nonobese peers at lunch (46.2 +/- 22.5 kcal/minute). Time-sampled activity assessments showed the obese boys far less active than their controls inside the home, slightly less active outside the home, and equally active at school. When these activity values were converted into energy expenditure by measurement of oxygen consumption, obese boys expended more calories in moving than did their controls; as a result, there was no difference in energy expenditure between obese and nonobese boys at home and greater energy expenditure outside the home and at school. Increased intake, thus, and not decreased caloric output maintained the obesity of these four boys. In this respect, obesity in childhood may differ from obesity in adult life.

  12. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  13. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures...

  14. Caloric Beverage Intake Among Adult Supplemental Nutrition Assistance Program Participants

    PubMed Central

    2014-01-01

    Objectives. We compared sugar-sweetened beverage (SSB), alcohol, and other caloric beverage (juice and milk) consumption of Supplemental Nutrition Assistance Program (SNAP) participants with that of low-income nonparticipants. Methods. We used 1 day of dietary intake data from the 2005–2008 National Health and Nutrition Examination Survey for 4594 adults aged 20 years and older with household income at or below 250% of the federal poverty line. We used bivariate and multivariate methods to compare the probability of consuming and the amount of calories consumed for each beverage type across 3 groups: current SNAP participants, former participants, and nonparticipants. We used instrumental variable methods to control for unobservable differences in participant groups. Results. After controlling for observable characteristics, SNAP participants were no more likely to consume SSBs than were nonparticipants. Instrumental variable estimates showed that current participants consumed fewer calories from SSBs than did similar nonparticipants. We found no differences in alcoholic beverage consumption, which cannot be purchased with SNAP benefits. Conclusions. SNAP participants are not unique in their consumption of SSBs or alcoholic beverages. Purchase restrictions may have little effect on SSB consumption. PMID:25033141

  15. Caloric beverage intake among adult supplemental nutrition assistance program participants.

    PubMed

    Todd, Jessica E; Ver Ploeg, Michele

    2014-09-01

    We compared sugar-sweetened beverage (SSB), alcohol, and other caloric beverage (juice and milk) consumption of Supplemental Nutrition Assistance Program (SNAP) participants with that of low-income nonparticipants. We used 1 day of dietary intake data from the 2005-2008 National Health and Nutrition Examination Survey for 4594 adults aged 20 years and older with household income at or below 250% of the federal poverty line. We used bivariate and multivariate methods to compare the probability of consuming and the amount of calories consumed for each beverage type across 3 groups: current SNAP participants, former participants, and nonparticipants. We used instrumental variable methods to control for unobservable differences in participant groups. After controlling for observable characteristics, SNAP participants were no more likely to consume SSBs than were nonparticipants. Instrumental variable estimates showed that current participants consumed fewer calories from SSBs than did similar nonparticipants. We found no differences in alcoholic beverage consumption, which cannot be purchased with SNAP benefits. SNAP participants are not unique in their consumption of SSBs or alcoholic beverages. Purchase restrictions may have little effect on SSB consumption.

  16. Caloric stress alters fat characteristics and Hsp70 expression in milk somatic cells of lactating beef cows.

    PubMed

    Eitam, Harel; Brosh, Arieh; Orlov, Alla; Izhaki, Ido; Shabtay, Ariel

    2009-03-01

    Selection for higher production rate in cattle inhabiting challenging habitats may be considered disadvantageous because of possible deleterious effects on immunity and reproduction and, consequently, on calf crop percentage. In Israel, free-grazing high productive beef cows experience reduction in nutritional quality of forage during up to 8 months of the year. As milk production by dams dictates calf performance, dam's nutritional needs and rebreeding rates, the aim of the present study was to test how lactating beef cows deal with combined caloric and protein stress both at the productive and self protective levels. For this purpose, we studied the effect of long-term caloric stress on milk characteristics and gene expression of stress and milk components producing proteins. Lactating dams responded to caloric stress by decreased body weight, milk, and milk protein production. To compensate for total energy loses in milk, they produced milk of higher fat concentration and shifted the proportions of its fatty acids towards long and unsaturated ones. This was reflected by increased mRNA transcription of the fatty acid binding protein. Prolonged low-energy diet promoted cell-specific heat shock protein (Hsp) response; whereas significant increase of Hsp90 but unchanged levels of Hsp70 proteins were observed in white blood cells, the expression of Hsp70 in milk somatic cells was markedly attenuated, in parallel with a marked increase of alpha(s1)-casein expression. At the mammary gland level, these results may indicate a decrease in turnover of proteins and a shift to an exclusive expression of milk components producing factors. Similar responses to caloric stress were revealed also in ketotic dairy cows. Ketosis promoted a shift towards long and unsaturated fatty acids and an increased expression of alpha(s1)-casein in milk somatic cells. These findings may reflect an evolutionary-preserved mechanism in lactating cows for coping with caloric restriction. Overall

  17. Discriminating between energetic content and dietary composition as an explanation for dietary restriction effects.

    PubMed

    Ellers, Jacintha; Ruhe, Bas; Visser, Bertanne

    2011-12-01

    A reduction in dietary calories has been shown to prolong life span in a wide variety of taxa, but there has been much debate about confounding factors such as nutritional composition of the diet, or reallocation of nutrients from reduced reproduction. To disentangle the contribution of these different mechanisms to extension of life span, we study the effect of caloric restriction on longevity and fecundity in two species of sugar-feeding parasitoid wasps. They have a simple diet that consists of carbohydrates only, and they do not resorb eggs, which rules out the proposed alternative explanations for beneficial effects of caloric restriction. Two caloric restriction treatments were applied: first, dietary dilution to investigate the effect of carbohydrate concentration in the diet; and second, intermittent feeding to examine the effect of feeding frequency on longevity and fecundity. Only the dietary dilution treatment showed an effect of caloric restriction with the highest longevity recorded at 80% sucrose (w/v). No effect of dietary regime was found on fecundity. We also measured the weight increase of the parasitoids after feeding to obtain an estimate of consumption. A constant quantity of the sugar solution was consumed in all dietary dilution treatments, hence caloric intake was proportional to sucrose concentrations. Although the present study does not disqualify the relevance of nutrient composition in other species, our data unequivocally demonstrate that caloric restriction alone is sufficient to extend life span and invalidate alternative explanations.

  18. 18 CFR 349.3 - Shortened procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Shortened procedure. 349.3 Section 349.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... thereupon issue a notice setting a schedule for the filing of memoranda. The person electing the use of...

  19. 18 CFR 286.105 - Shortened procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Shortened procedure. 286.105 Section 286.105 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... procedure, the Commission shall thereupon issue a notice setting a schedule for the filing of memoranda....

  20. 18 CFR 286.105 - Shortened procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Shortened procedure. 286.105 Section 286.105 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... challenge one or more audit findings, or proposed remedies, or both, in any combination, by the...

  1. 18 CFR 349.3 - Shortened procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Shortened procedure. 349.3 Section 349.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... described in § 349.1 notifies the Commission that it seeks to challenge one or more audit findings,...

  2. 18 CFR 158.3 - Shortened procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Shortened procedure. 158.3 Section 158.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... notifies the Commission that it seeks to challenge one or more audit findings, or proposed remedies,...

  3. 18 CFR 41.3 - Shortened procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Shortened procedure. 41.3 Section 41.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... notifies the Commission that it seeks to challenge one or more audit findings, or proposed remedies,...

  4. Computer Batch Files Shorten Many Complicated Procedures.

    ERIC Educational Resources Information Center

    Deppa, Joan

    1987-01-01

    Defines "batch files," claiming that they can shorten many complicated computer procedures. Describes how batch file was created using the computer program "PC-Write" to streamline the process of creating a work disk and increase students' computer literacy. Lists and discusses each element in the file. Provides references for…

  5. Counting calories in Drosophila diet restriction.

    PubMed

    Min, Kyung-Jin; Flatt, Thomas; Kulaots, Indrek; Tatar, Marc

    2007-03-01

    The extension of life span by diet restriction in Drosophila has been argued to occur without limiting calories. Here we directly measure the calories assimilated by flies when maintained on full- and restricted-diets. We find that caloric intake is reduced on all diets that extend life span. Flies on low-yeast diet are long-lived and consume about half the calories of flies on high-yeast diets, regardless of the energetic content of the diet itself. Since caloric intake correlates with yeast concentration and thus with the intake of every metabolite in this dietary component, it is premature to conclude for Drosophila that calories do not explain extension of life span.

  6. Caloric vestibular stimulation in aphasic syndrome

    PubMed Central

    Wilkinson, David; Morris, Rachael; Milberg, William; Sakel, Mohamed

    2013-01-01

    Caloric vestibular stimulation (CVS) is commonly used to diagnose brainstem disorder but its therapeutic application is much less established. Based on the finding that CVS increases blood flow to brain structures associated with language and communication, we assessed whether the procedure has potential to relieve symptoms of post-stroke aphasia. Three participants, each presenting with chronic, unilateral lesions to the left hemisphere, were administered daily CVS for four consecutive weeks. Relative to their pre-treatment baseline scores, two of the three participants showed significant improvement on both picture and responsive naming at immediate and 1-week follow-up. One of these participants also showed improved sentence repetition, and another showed improved auditory word discrimination. No adverse reactions were reported. These data provide the first, albeit tentative, evidence that CVS may relieve expressive and receptive symptoms of aphasia. A larger, sham-controlled study is now needed to further assess efficacy. PMID:24391559

  7. 9 CFR 319.701 - Mixed fat shortening.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may be identified either as “Shortening Prepared with Meat Fats and Vegetable Oils” or “Shortening Prepared with Vegetable Oils and Meat Fats” depending on the predominance of the fat and oils used, or...

  8. 9 CFR 319.701 - Mixed fat shortening.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may be identified either as “Shortening Prepared with Meat Fats and Vegetable Oils” or “Shortening Prepared with Vegetable Oils and Meat Fats” depending on the predominance of the fat and oils used, or...

  9. 9 CFR 319.701 - Mixed fat shortening.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may be identified either as “Shortening Prepared with Meat Fats and Vegetable Oils” or “Shortening Prepared with Vegetable Oils and Meat Fats” depending on the predominance of the fat and oils used, or...

  10. 9 CFR 319.701 - Mixed fat shortening.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may be identified either as “Shortening Prepared with Meat Fats and Vegetable Oils” or “Shortening Prepared with Vegetable Oils and Meat Fats” depending on the predominance of the fat and oils used, or...

  11. 9 CFR 319.701 - Mixed fat shortening.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 319.701 Mixed fat shortening. Shortening prepared with a mixture of meat fats and vegetable oils may be identified either as “Shortening Prepared with Meat Fats and Vegetable Oils” or “Shortening Prepared with Vegetable Oils and Meat Fats” depending on the predominance of the fat and oils used, or...

  12. Telomere Shortening in Familial and Sporadic Pulmonary Fibrosis

    PubMed Central

    Cronkhite, Jennifer T.; Xing, Chao; Raghu, Ganesh; Chin, Kelly M.; Torres, Fernando; Rosenblatt, Randall L.; Garcia, Christine Kim

    2008-01-01

    Rationale: Heterozygous mutations in the coding regions of the telomerase genes, TERT and TERC, have been found in familial and sporadic cases of idiopathic interstitial pneumonia. All affected patients with mutations have short telomeres. Objectives: To test whether telomere shortening is a frequent mechanism underlying pulmonary fibrosis, we have characterized telomere lengths in subjects with familial or sporadic disease who do not have coding mutations in TERT or TERC. Methods: Using a modified Southern blot assay, the telomerase restriction fragment length method, and a quantitative polymerase chain reaction assay we have measured telomere lengths of genomic DNA isolated from circulating leukocytes from normal control subjects and subjects with pulmonary fibrosis. Measurements and Main Results: All affected patients with telomerase mutations, including case subjects heterozygous for newly reported mutations in TERT, have short telomere lengths. A significantly higher proportion of probands with familial pulmonary fibrosis (24%) and sporadic case subjects (23%) in which no coding mutation in TERT or TERC was found had telomere lengths less than the 10th percentile when compared with control subjects (P = 2.6 × 10−8). Pulmonary fibrosis affectation status was significantly associated with telomerase restriction fragment lengths, even after controlling for age, sex, and ethnicity (P = 6.1 × 10−11). Overall, 25% of sporadic cases and 37% of familial cases of pulmonary fibrosis had telomere lengths less than the 10th percentile. Conclusions: A significant fraction of individuals with pulmonary fibrosis have short telomere lengths that cannot be explained by coding mutations in telomerase. Telomere shortening of circulating leukocytes may be a marker for an increased predisposition toward the development of this age-associated disease. PMID:18635888

  13. Normal Caloric Responses during Acute Phase of Vestibular Neuritis

    PubMed Central

    Lee, Sun-Uk; Park, Seong-Ho; Kim, Hyo-Jung; Koo, Ja-Won

    2016-01-01

    Background and Purpose We report a novel finding of caloric conversion from normal responses into unilateral paresis during the acute phase of vestibular neuritis (VN). Methods We recruited 893 patients with a diagnosis of VN at Dizziness Clinic of Seoul National University Bundang Hospital from 2003 to 2014 after excluding 28 patients with isolated inferior divisional VN (n=14) and those without follow-up tests despite normal caloric responses initially (n=14). We retrospectively analyzed the neurotological findings in four (0.5%) of the patients who showed a conversion from initially normal caloric responses into unilateral paresis during the acute phase. Results In those four patients, the initial caloric tests were performed within 2 days of symptom onset, and conversion into unilateral caloric paresis was documented 1–4 days later. The clinical and laboratory findings during the initial evaluation were consistent with VN in all four patients except for normal findings in bedside head impulse tests in one of them. Conclusions Normal findings in caloric tests should be interpreted with caution during the acute phase of suspected VN. Follow-up evaluation should be considered when the findings of the initial caloric test are normal, but VN remains the most plausible diagnosis. PMID:26932259

  14. Unix version of CALOR89 for calorimeter applications

    SciTech Connect

    Handler, T. . Dept. of Physics and Astronomy); Job, P.K.; Price, L.E. . High Energy Physics Div.); Gabriel, T.A. )

    1992-05-12

    CALOR89 is a system of coupled Monte Carlo particle transport computer codes which has been successfully employed for the estimation of calorimeter parameters in High Energy Physics. In the past CALOR89 has been running on various IBM machines and on CRAY X-MP at Lawrence Livermore Lab. These machines had non-unix operating systems. In this report we present a UNIX version of CALOR89, which is especially suited for the UNIX work stations. Moreover CALOR89 is also been supplemented with two new program packages which makes it more user friendly. CALPREP is a program for the preparation of the input files for CALOR89 in general geometry and ANALYZ is an analysis package to extract the final results from CALOR89 relevant to calorimeters. This report also provides two script files LCALOR and PCALOR. LCALOR runs CALOR89 sequences of programs and EGS4 for a given configuration sequentially on a single processor and PCALOR concurrently on a multiprocessor unix workstation.

  15. Unix version of CALOR89 for calorimeter applications

    SciTech Connect

    Handler, T.; Job, P.K.; Price, L.E.; Gabriel, T.A.

    1992-05-12

    CALOR89 is a system of coupled Monte Carlo particle transport computer codes which has been successfully employed for the estimation of calorimeter parameters in High Energy Physics. In the past CALOR89 has been running on various IBM machines and on CRAY X-MP at Lawrence Livermore Lab. These machines had non-unix operating systems. In this report we present a UNIX version of CALOR89, which is especially suited for the UNIX work stations. Moreover CALOR89 is also been supplemented with two new program packages which makes it more user friendly. CALPREP is a program for the preparation of the input files for CALOR89 in general geometry and ANALYZ is an analysis package to extract the final results from CALOR89 relevant to calorimeters. This report also provides two script files LCALOR and PCALOR. LCALOR runs CALOR89 sequences of programs and EGS4 for a given configuration sequentially on a single processor and PCALOR concurrently on a multiprocessor unix workstation.

  16. Restrictive cardiomyopathy

    MedlinePlus

    Cardiomyopathy - restrictive; Infiltrative cardiomyopathy; Idiopathic myocardial fibrosis ... In a case of restrictive cardiomyopathy, the heart muscle is of normal size or slightly enlarged. Most of the time, it also pumps normally. However, it does ...

  17. Lateral mobility of minibasins during shortening: Insights from the SE Precaspian Basin, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Duffy, Oliver B.; Fernandez, Naiara; Hudec, Michael R.; Jackson, Martin P. A.; Burg, George; Dooley, Tim P.; Jackson, Christopher A.-L.

    2017-04-01

    Minibasin provinces are widespread and can be found in all types of salt tectonic settings, many of which are prone to shortening. Previous studies of how minibasin provinces shorten assume that the salt between the minibasins is homogeneous and that the base of salt is flat or of low relief, such that minibasins are free to move laterally. Here we investigate how minibasin provinces respond to shortening when the lateral mobility of the minibasins is restricted by intra-salt sediment bodies, in order to gain a greater understanding of the controls on the structural styles and modes of tectono-stratigraphic evolution exhibited in minibasin provinces. We examine a borehole-constrained, 3D seismic reflection dataset from the SE Precaspian Basin (onshore western Kazakhstan). The study area is characterised by large, supra-salt minibasins and an array of smaller intra-salt sediment packages distributed between these larger minibasins. We first outline the evidence of episodic shortening between the Late Triassic and present, after the onset of supra-salt minibasin subsidence. Next, we document spatial variations in shortening style, showing how these relate to the concentration of intra-salt sediment packages. Finally, we develop synoptic models showing how intra-salt sediment packages influence both the lateral mobility of minibasins during shortening and the resultant structural style, and we compare and contrast our findings with existing models and other natural examples of shortened minibasin provinces. We conclude that minibasin provinces may have different degrees of lateral mobility depending on the presence, or absence, of intrasalt barriers, and that these variations provide a first-order control on basin-shortening style and tectono-stratigraphic evolution.

  18. Effects of Caloric Intake on Learning and Memory Function in Juvenile C57BL/6J Mice.

    PubMed

    Xu, Bao-Lei; Wang, Rong; Ma, Li-Na; Dong, Wen; Zhao, Zhi-Wei; Zhang, Jing-Shuang; Wang, Yu-Lan; Zhang, Xu

    2015-01-01

    Dietary composition may influence neuronal function as well as processes underlying synaptic plasticity. In this study, we aimed to determine the effect of high and low caloric diets on a mouse model of learning and memory and to explore mechanisms underlying this process. Mice were divided into three different dietary groups: normal control (n = 12), high-caloric (HC) diet (n = 12), and low-caloric (LC) diet (n = 12). After 6 months, mice were evaluated on the Morris water maze to assess spatial memory ability. We found that HC diet impaired learning and memory function relative to both control and LC diet. The levels of SIRT1 as well as its downstream effectors p53, p16, and peroxisome proliferator-activated receptor γ (PPARγ) were decreased in brain tissues obtained from HC mice. LC upregulated SIRT1 but downregulated p53, p16, and PPARγ. The expressions of PI3K and Akt were not altered after HC or LC diet treatment, but both LC and HC elevated the levels of phosphorylated-cAMP response element-binding protein (p-CREB) and IGF-1 in hippocampal CA1 region. Therefore, HC diet-induced dysfunction in learning and memory may be prevented by caloric restriction via regulation of the SIRT1-p53 or IGF-1 signaling pathways and phosphorylation of CREB.

  19. Some strategies for improving caloric responses with ferroelectrics

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Scott, James F.; Dkhil, Brahim

    2016-06-01

    Many important breakthroughs and significant engineering developments have been achieved during the past two decades in the field of caloric materials. In this review, we address ferroelectrics emerging as ideal materials which permit both giant elastocaloric and/or electrocaloric responses near room temperature. We summarize recent strategies for improving caloric responses using geometrical optimization, maximizing the number of coexisting phases, combining positive and negative caloric responses, introducing extra degree of freedom like mechanical stress/pressure, and multicaloric effect driven by either single stimulus or multiple stimuli. This review highlights the promising perspective of ferroelectrics for developing next-generation solid-state refrigeration.

  20. Theory of giant-caloric effects in multiferroic materials

    NASA Astrophysics Data System (ADS)

    Vopson, Melvin M.

    2013-08-01

    A generalized thermodynamic theory of giant-caloric effects in coupled multiferroic solids is introduced. The generalized theory allows analytical derivation of any caloric effect in solids displaying any type of cross coupling. In the particular cases of the non-coupled ferroic materials, the theory reproduces the well-known formulae describing magnetocaloric, electrocaloric or elastocaloric effects. This work facilitates adequate modeling tools and analytical relations capable of predicting caloric effects in complex coupled multiferroic materials, which is very beneficial to future developments in solid-state cooling technologies.

  1. The shortened spinal cord in tetraodontiform fishes.

    PubMed

    Uehara, Masato; Hosaka, Yoshinao Z; Doi, Hiroyuki; Sakai, Harumi

    2015-03-01

    In teleosts, the spinal cord generally extends along the entire vertebral canal. The Tetraodontiformes, in which the spinal cord is greatly reduced in length with a distinct long filum terminale and cauda equina, have been regarded as an aberration. The aims of this study are: 1) to elucidate whether the spinal cord in all tetraodontiform fishes shorten with the filum terminale, and 2) to describe the gross anatomical and histological differences in the spinal cord among all families of the Tetraodontiformes. Representative species from all families of the Tetraodontiformes, and for comparison the carp as a common teleost, were investigated. In the Triacanthodidae, Triacanthidae, and Triodontidae, which are the more ancestral taxa of the Tetraodontiformes, the spinal cord extends through the entire vertebral canal. In the Triacanthidae and Triodontidae, the caudal half or more spinal segments of the spinal cord, however, lack gray matter and consist largely of nerve fibers. In the other tetraodontiform families, the spinal cord is shortened forming a filum terminale with the cauda equina, which is prolonged as far as the last vertebra. The shortened spinal cord is divided into three groups. In the Ostraciidae and Molidae, the spinal cord tapers abruptly at the cranium or first vertebra forming a cord-like filum terminale. In the Monacanthidae, Tetraodontidae, and Diodontidae, it abruptly flattens at the rostral vertebrae forming a flat filum terminale. The spinal cord is relatively longer in the Monacanthidae than that in the other two families. It is suggested by histological features of the flat filum terminale that shortening of the spinal cord in this group progresses in order of the Monacanthidae, Tetraodontidae, and Diodontidae. In the Balistidae and Aracanidae, the cord is relatively long and then gradually decreased in dorso-ventral thickness.

  2. Mechanism of Shortened Bones in Mucopolysaccharidosis VII

    PubMed Central

    Metcalf, Jason A.; Zhang, Yanming; Hilton, Matthew J.; Long, Fanxin; Ponder, Katherine P.

    2009-01-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease in which deficiency in β-glucuronidase results in glycosaminoglycan (GAG) accumulation in and around cells, causing shortened long bones through mechanisms that remain largely unclear. We demonstrate here that MPS VII mice accumulate massive amounts of the GAG chondroitin-4-sulfate (C4S) in their growth plates, the cartilaginous region near the ends of long bones responsible for growth. MPS VII mice also have only 60% of the normal number of chondrocytes in the growth plate and 55% of normal chondrocyte proliferation at 3 weeks of age. We hypothesized that this reduction in proliferation was due to C4S-mediated overactivation of fibroblast growth factor receptor 3 (FGFR3). However, MPS VII mice that were FGFR3-deficient still had shortened bones, suggesting that FGFR3 is not required for the bone defect. Further study revealed that MPS VII growth plates had reduced tyrosine phosphorylation of STAT3, a pro-proliferative transcription factor. This was accompanied by a decrease in expression of leukemia inhibitory factor (LIF) and other interleukin 6 family cytokines, and a reduction in phosphorylated tyrosine kinase 2 (TYK2), Janus kinase 1 (JAK1), and JAK2, known activators of STAT3 phosphorylation. Intriguingly, loss of function mutations in LIF and its receptor leads to shortened bones. This suggests that accumulation of C4S in the growth plate leads to reduced expression of LIF and reduced STAT3-tyrosine phosphorylation, which results in reduced chondrocyte proliferation and ultimately shortened bones. PMID:19375967

  3. Mechanism of shortened bones in mucopolysaccharidosis VII.

    PubMed

    Metcalf, Jason A; Zhang, Yanming; Hilton, Matthew J; Long, Fanxin; Ponder, Katherine P

    2009-07-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease in which deficiency in beta-glucuronidase results in glycosaminoglycan (GAG) accumulation in and around cells, causing shortened long bones through mechanisms that remain largely unclear. We demonstrate here that MPS VII mice accumulate massive amounts of the GAG chondroitin-4-sulfate (C4S) in their growth plates, the cartilaginous region near the ends of long bones responsible for growth. MPS VII mice also have only 60% of the normal number of chondrocytes in the growth plate and 55% of normal chondrocyte proliferation at 3weeks of age. We hypothesized that this reduction in proliferation was due to C4S-mediated overactivation of fibroblast growth factor receptor 3 (FGFR3). However, MPS VII mice that were FGFR3-deficient still had shortened bones, suggesting that FGFR3 is not required for the bone defect. Further study revealed that MPS VII growth plates had reduced tyrosine phosphorylation of STAT3, a pro-proliferative transcription factor. This was accompanied by a decrease in expression of leukemia inhibitory factor (LIF) and other interleukin 6 family cytokines, and a reduction in phosphorylated tyrosine kinase 2 (TYK2), Janus kinase 1 (JAK1), and JAK2, known activators of STAT3 phosphorylation. Intriguingly, loss of function mutations in LIF and its receptor leads to shortened bones. This suggests that accumulation of C4S in the growth plate leads to reduced expression of LIF and reduced STAT3 tyrosine phosphorylation, which results in reduced chondrocyte proliferation and ultimately shortened bones.

  4. Telomere shortening in leukocyte subpopulations in depression

    PubMed Central

    2014-01-01

    Background Telomere shortening is a normal age-related process. However, premature shortening of telomeres in leukocytes – as has been reported in depression – may increase the risk for age-related diseases. While previous studies investigated telomere length in peripheral blood mononuclear cells (PBMCs) as a whole, this study investigated specific changes in the clonal composition of white blood cells of the adaptive immune system (CD4+ helper and CD8+ cytotoxic T lymphocytes, and CD20+ B lymphocytes). Methods Forty-four females with a history of unipolar depression were investigated and compared to fifty age-matched female controls. Telomere lengths were compared between three groups: 1) individuals with a history of depression but currently no clinically relevant depressive symptoms, 2) individuals with a history of depression with relevant symptoms of depression, and 3) healthy age-matched controls. Telomere length was assessed using quantitative fluorescence in situ hybridization (qFISH). Results Both groups with a history of unipolar depression (with and without current depressive symptoms) showed significantly shorter telomeres in all three lymphocyte subpopulations. The effect was stronger in CD8+ and CD20+ cells than in CD4+ cells. Individuals with a history of depression and with (without) current symptoms exhibited a CD8+ telomere length shortening corresponding to an age differential of 27.9 (25.3) years. Conclusions A history of depression is associated with shortened telomeres in the main effector populations of the adaptive immune system. Shorter telomeres seem to persist in individuals with lifetime depression independently of the severity of depressive symptoms. CD8+ cytotoxic T cells and CD20+ B cells seem to be particularly affected in depression. The total number of depressive episodes did not influence telomere length in the investigated adaptive immune cell populations. PMID:24996455

  5. Studies on flagellar shortening in Chlamydomonas reinhardtii

    SciTech Connect

    Cherniack, J.

    1985-01-01

    Flagellar shortening of Chlamydomonas reinhardtii was promoted by sodium chloride, pyrophosphate (sodium, potassium and ammonium salts), EDTA and EGTA, succinate, citrate and oxalate (sodium salts), caffeine and aminophylline. Removal of calcium from the medium potentiated the effects of these agents in inducing shortening. Investigations of the release of phosphorylated compounds to the medium during pyrophosphate-induced flagellar shortening of cells pre-labelled with /sup 32/P, revealed an as yet unidentified /sup 32/P-labelled compound with distinct chromatographic properties. Chromatography and electrophoresis indicates that it is a small, highly polar molecule with a high charge to mass ratio, containing thermo- and acid-labile phosphate linkages. Investigations showed of the release of /sup 35/S-labelled protein to the medium from cells pre-labelled with /sup 35/S-sulfate showed that flagellated cells released two prominent polypeptides which comigrated with ..cap alpha..- and ..beta..-flagellar tubulin on SDS polyacrylamide gel electrophoresis, while deflagellated cells did not.

  6. Shortening amplitude affects the incomplete force recovery after active shortening in mouse soleus muscle.

    PubMed

    Van Noten, Pieter; Van Leemputte, Marc

    2009-12-11

    Compared to isometric contraction, the force producing capacity of muscle is reduced (force depression, FD) after a work producing shortening phase. It has been suggested that FD results from an inhibition of cross-bridge binding. Because the rate constants of the exponential force (re)development are thought to be primarily determined by cross-bridge attachment/detachment rate, we aimed to investigate the components of force redevelopment (REDEV) after 0.6, 1.2 and 2.4mm shortening, resulting in varying amounts of FD (from about 5% to about 16%), in mouse soleus muscle (n=11). Compared to isometric force development (DEV), the time to reach steady-state during REDEV was about 3 times longer (370 versus 1261ms) increasing with increasing amplitude. Contrary to a single, a double exponential function with one component set equal to the rate constant of DEV (14.3s(-1)), accurately described REDEV (RMS<0.8%). The rate constant of the additional slow component decreased with increasing shortening amplitude and was associated with work delivered during shortening (R(2)=0.75) and FD (R(2)=0.77). We concluded that a work related slow exponential component is induced to the trajectory of incomplete force recovery after shortening, causing FD. These results suggest that after shortening, aside from cross-bridges with normal attachment/detachment rate, cross-bridges with reduced cycling rate are active.

  7. Caloric balance during simulated and actual space flight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Heidelbaugh, N. D.; Smith, M. C., Jr.; Reid, J. M.

    1973-01-01

    The in-flight caloric intakes of all Apollo astronauts are examined and shown to average about 25 kcal per kg per day. Measurement of weight changes following recovery indicates that about 0.15 kg of fat was lost per man per day in-flight for an average deficit of about 19 kcal per kg per day. Measurement of the caloric intake of astronauts under ground-based conditions and during hypobaric exposure indicated a caloric requirement which was not significantly different from the in-flight requirement adjusted for weight loss. Partial metabolic balance data and measurements of bone loss and body volume revealed that protein and mineral losses also occurred to an extent which would reduce the size of estimated in-flight caloric deficits.

  8. [Correlation between bedside triple test by videonystagmoscope and caloric test].

    PubMed

    Wu, H Y; Jiang, H; Zhao, Y; Gao, Z Q

    2016-08-07

    To investigate the correlation between rapid bedside triple test and caloric test. We reviewed clinical records of 313 consecutive patients presenting with vertigo at our ear-nose-throat clinic.RESULTS of bedside vestibular tests in all patients were compared with caloric test. The sensitivity, specificity, and positive and negative predictive values for the triple test relative to caloric test were calculated. Compared with the caloric test results, the sensitivity, specificity, positive predictive value(PPV), and negative predictive value(NPV) of the triple test were 65.1%, 94.0%, 90.5% and 75.5%, respectively. As a predictive screening for patients with vertigo, the bedside triple test is a rapid, reliable tool for clinical diagnosis.

  9. Caloric balance during simulated and actual space flight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Heidelbaugh, N. D.; Smith, M. C., Jr.; Reid, J. M.

    1973-01-01

    The in-flight caloric intakes of all Apollo astronauts are examined and shown to average about 25 kcal per kg per day. Measurement of weight changes following recovery indicates that about 0.15 kg of fat was lost per man per day in-flight for an average deficit of about 19 kcal per kg per day. Measurement of the caloric intake of astronauts under ground-based conditions and during hypobaric exposure indicated a caloric requirement which was not significantly different from the in-flight requirement adjusted for weight loss. Partial metabolic balance data and measurements of bone loss and body volume revealed that protein and mineral losses also occurred to an extent which would reduce the size of estimated in-flight caloric deficits.

  10. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  11. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric... or water to the ear canal at controlled rates of flow and temperature and that is intended...

  12. Caloric vestibular stimulation modulates nociceptive evoked potentials

    PubMed Central

    Ferrè, Elisa Raffaella; Haggard, Patrick; Bottini, Gabriella; Iannetti, Gian Domenico

    2016-01-01

    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold-water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS, and to 1 hour after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated by either subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex. PMID:26282602

  13. Caloric vestibular stimulation modulates nociceptive evoked potentials.

    PubMed

    Ferrè, Elisa Raffaella; Haggard, Patrick; Bottini, Gabriella; Iannetti, Gian Domenico

    2015-12-01

    Vestibular stimulation has been reported to alleviate central pain. Clinical and physiological studies confirm pervasive interactions between vestibular signals and somatosensory circuits, including nociception. However, the neural mechanisms underlying vestibular-induced analgesia remain unclear, and previous clinical studies cannot rule out explanations based on alternative, non-specific effects such as distraction or placebo. To investigate how vestibular inputs influence nociception, we combined caloric vestibular stimulation (CVS) with psychophysical and electrocortical responses elicited by nociceptive-specific laser stimulation in humans (laser-evoked potentials, LEPs). Cold water CVS applied to the left ear resulted in significantly lower subjective pain intensity for experimental laser pain to the left hand immediately after CVS, relative both to before CVS and to 1 h after CVS. This transient reduction in pain perception was associated with reduced amplitude of all LEP components, including the early N1 wave reflecting the first arrival of nociceptive input to primary somatosensory cortex. We conclude that cold left ear CVS elicits a modulation of both nociceptive processing and pain perception. The analgesic effect induced by CVS could be mediated either by subcortical gating of the ascending nociceptive input, or by direct modulation of the primary somatosensory cortex.

  14. Characteristics of vestibulosensory reactions studied by experimental caloric test

    NASA Technical Reports Server (NTRS)

    Kapranov, V. Z.

    1980-01-01

    Vestibulo-sensory reactions were studied in 135 workers who were in contact with nitroethers, by the method of an experimental caloric test. The response vestibulo-sensory reactions were recorded by means of an electroencephalograph. The changes in the sensory reaction depended on the duration of the workers' contact with toxic agents. A study of illusion reactions by the labyrinth calorization widens diagnostic possibilities in the examination of functional condition of the vestibular analyser considerably.

  15. Asymmetry dependence of the caloric curve for mononuclei

    NASA Astrophysics Data System (ADS)

    Hoel, C.; Sobotka, L. G.; Charity, R. J.

    2007-01-01

    The asymmetry dependence of the caloric curve, for mononuclear configurations, is studied as a function of neutron-to-proton asymmetry with a model that allows for independent variation of the neutron and proton surface diffusenesses. The evolution of the effective mass with density and excitation is included in a schematic fashion and the entropies are extracted in a local density approximation. The plateau in the caloric curve displays only a slight sensitivity to the asymmetry.

  16. Use of caloric and non-caloric sweeteners in US consumer packaged foods, 2005–9

    PubMed Central

    Ng, Shu Wen; Slining, Meghan M.; Popkin, Barry M.

    2012-01-01

    Our understanding of the use of caloric (CS) and non-caloric sweeteners (NCS) in the US food supply is limited. This study utilizes full ingredient list and nutrition facts panel (NFP) data from Gladson Nutrition Database, and nationally representative purchases of consumer packaged foods from Nielsen Homescan in 2005 through 2009 to understand the use of CS (including FJC) and NCS in CPG foods. Of the 85,451 uniquely formulated foods purchased during 2005–2009, 75% contain sweeteners (68% with CS only, 1% with NCS only, 6% with both CS and NCS). CS are in >95% of cakes/cookies/pies, granola/protein/energy bars, ready-to-eat cereals, sweet snacks, and sugar-sweetened beverages. NCS are in >33% of yogurts and sports/energy drinks, 42% of waters (plain or flavored), and most diet sweetened beverages. Across unique products, corn syrup is the most commonly listed sweetener, followed by sorghum, cane sugar, high fructose corn syrup and FJC. Also, 77% of all calories purchased in the US in 2005–2009 contained CS and 3% contained NCS, while 73% of the volume of foods purchased contained CS and 15% contained NCS. Trends during this period suggest a shift towards the purchase of NCS-containing products.Our study poses a challenge toward monitoring sweetener consumption in the US by discussing the need and options available to improve measures of CS and NCS, and additional requirements on NFPs on CPG foods. PMID:23102182

  17. Double rf system for bunch shortening

    SciTech Connect

    Chin, Yong Ho.

    1990-11-01

    It was suggested by Zisman that the combination of the two systems (double rf system) may be more effective to shorten a bunch, compromising between the desirable and the undesirable effects mentioned above. In this paper, we demonstrate that a double rf system is, in fact, quite effective in optimizing the rf performance. The parameters used are explained, and some handy formulae for bunch parameters are derived. We consider an example of bunch shortening by adding a higher-harmonic rf system to the main rf system. The parameters of the main rf system are unchanged. The double rf system, however, can be used for another purpose. Namely, the original bunch length can be obtained with a main rf voltage substantially lower than for a single rf system without necessitating a high-power source for the higher-harmonic cavities. Using a double rf system, the momentum acceptance remains large enough for ample beam lifetime. Moreover, the increase in nonlinearity of the rf waveform increases the synchrotron tune spread, which potentially helps a beam to be stabilized against longitudinal coupled-bunch instabilities. We will show some examples of this application. We discuss the choice of the higher-harmonic frequency.

  18. Access conditions affect binge-type shortening consumption in rats

    PubMed Central

    Wojnicki, F.H.E.; Johnson, D.S.; Corwin, R.L.W.

    2009-01-01

    When non-food-deprived rats are given intermittent access to certain substances, consumption of those substances is greater than when more frequent access is provided. The present study examined the effects of three different shortening access conditions on subsequent shortening intake in rats. Each of the three different shortening conditions lasted five weeks and was followed by a five-week period in which shortening access was limited by time (1 hr of availability) on either an Intermittent (Monday, Wednesday, Friday) or Daily schedule of access. In Part 1, limiting the quantity of shortening provided during the 1-hour period of availability attenuated subsequent 1-hr shortening intake in the Intermittent access group, but had no statistically significant effect in the Daily access group. In Part 2, unrestricted availability of shortening (24-hr/day-7days/week) attenuated subsequent 1-hr shortening intake in all groups. In Part 3, shortening non-availability for five weeks enhanced subsequent 1-hr shortening intake in all groups. It was also shown that rats under an Intermittent, but not a Daily, schedule of access consumed as much shortening during a 1 hr period of availability, as was consumed in 24-hr when shortening availability was unrestricted. These results demonstrate that while intermittent access is necessary and sufficient to stimulate binge-type eating in rats, the behavioral history can modulate binge size. PMID:18851983

  19. Analysis of caloric test responses in sudden hearing loss.

    PubMed

    Shih, Cheng-Ping; Chou, Yu-Ching; Chen, Hsin-Chien; Lee, Jih-Chin; Chu, Yueng-Hsiang; Wang, Chih-Hung

    2017-02-01

    Sudden sensorineural hearing loss is characterized by a rapid-onset hearing loss that develops within 3 days. Vertigo may also be present. We conducted a retrospective study to investigate whether the severity of a loss of caloric function is associated with the initial hearing loss and with hearing recovery. Our study population was made up of 135 patients-67 men and 68 women, aged 25 to 71 years (mean: 50.9)-with sudden sensorineural hearing loss who had undergone bithermal caloric testing. We compared various patient factors according to patients' hearing level and their response to caloric testing. We also analyzed the canal paresis (CP) value in patients with an abnormal caloric response according to three factors: disease severity, vertigo, and hearing recovery, and we evaluated the correlation between the loss of caloric function and hearing outcomes. We found that an abnormal caloric response was significantly associated with a profound hearing loss at presentation, the presence of vertigo, and poor hearing recovery. Among patients with an abnormal caloric response, the CP value was significantly correlated with hearing recovery (r = 0.503, p = 0.001). Poor hearing recovery was seen in 80% of patients with a CP value of ≥40% but in only 25% of patients with a value of <40%; in addition, the degree of hearing recovery was worse in the patients with a CP value of ≥40% (p = 0.002). We conclude that a CP value of ≥40% is a significant prognostic factor for an unfavorable treatment outcome.

  20. Proximate composition and caloric content of eight Lake Michigan fishes

    USGS Publications Warehouse

    Rottiers, Donald V.; Tucker, Robert M.

    1982-01-01

    We measured the proximate composition (percentage lipid, water, fat-free dry material, ash) and caloric content of eight species of Lake Michigan fish: lake trout (Salvelinus namaycush), coho salmon (Oncorhynchus kisutch), lake whitefish (Coregonus clupeaformis), bloater (Coregonus hoyi), alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), deepwater sculpin (Myoxocephalus quadricornis), and slimy sculpin (Cottus cognatus). Except for alewives, proximate composition and caloric content did not differ significantly between males and females. And, for coho salmon, there was no significant difference in composition between fish collected in different years. Lipid and caloric content of lake trout increased directly with age. In all species examined, lipids and caloric contents were significantly lower in small, presumably immature, fish than in larger, older fish. Lipid content of lake trout, lake whitefish, and bloaters (range of means, 16-22%) was nearly 3 times higher than that of coho salmon, sculpins, rainbow smelt, and alewives (range of means, 5.2-7.0%). The mean caloric content ranged from 6.9 to 7.1 kcal/g for species high in lipids and from 5.8 to 6.3 kcal/g for species low in lipids. Although the caloric content of all species varied directly with lipid content and inversely with water content, an increase in lipid content did not always coincide with a proportional increase in caloric content when other components of fish composition were essentially unchanged. This observation suggests that the energy content of fish estimated from the proximate composition by using universal conversion factors may not necessarily be accurate.

  1. Changes of ampulla pressure in the semicircular canal of pigeons by caloric stimulation

    NASA Astrophysics Data System (ADS)

    Wada, Yoshiro; Suzuki, Hiroyuki; Watanabe, Satoru

    Still now several hypotheses about the mechanisms of the caloric nystagmus have been in conclusive. In this study we confirmed the convection effect and the volume change effect of the endolymph in horizontal semicircular canal following the caloric stimulation using pigeons ( Columba livia). Although the direction of the caloric nystagmus depended on the head position and the stimulus site of calorization, the caloric nystagmus disappeared after plugging of horizontal semicircular canal. On the other hand, the ampulla pressure increased by cold calorization and decreased by hot calorization and these pressure changes had no relation to the head position. These results show that the main role of the mechanisms of the caloric nystagmus under 1G is the convection effect but the volume change effect may act on the caloric nystagmus not only under 1G but also under microgravity.

  2. Shortened Engineered Human Antibody CH2 Domains

    PubMed Central

    Gong, Rui; Wang, Yanping; Feng, Yang; Zhao, Qi; Dimitrov, Dimiter S.

    2011-01-01

    The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. We have shown previously that an isolated human CH2 domain is relatively unstable to thermally induced unfolding, but its stability can be improved by engineering an additional disulfide bond (Gong, R., Vu, B. K., Feng, Y., Prieto, D. A., Dyba, M. A., Walsh, J. D., Prabakaran, P., Veenstra, T. D., Tarasov, S. G., Ishima, R., and Dimitrov, D. S. (2009) J. Biol. Chem. 284, 14203–14210). We have hypothesized that the stability of this engineered antibody domain could be further increased by removing unstructured residues. To test our hypothesis, we removed the seven N-terminal residues that are in a random coil as suggested by our analysis of the isolated CH2 crystal structure and NMR data. The resulting shortened engineered CH2 (m01s) was highly soluble, monomeric, and remarkably stable, with a melting temperature (Tm) of 82.6 °C, which is about 10 and 30 °C higher than those of the original stabilized CH2 (m01) and CH2, respectively. m01s and m01 were more resistant to protease digestion than CH2. A newly identified anti-CH2 antibody that recognizes a conformational epitope bound to m01s significantly better (>10-fold higher affinity) than to CH2 and slightly better than to m01. m01s bound to a recombinant soluble human neonatal Fc receptor at pH 6.0 more strongly than CH2. These data suggest that shortening the m01 N terminus significantly increases stability without disrupting its conformation and that our approach for increasing stability and decreasing size by removing unstructured regions may also apply to other proteins. PMID:21669873

  3. Shortened forms of provocative lead chelation

    SciTech Connect

    Sokas, R.K.; Atleson, J.; Keogh, J.P.

    1988-05-01

    Shortened urinary lead collections following provocative chelation have been standardized for pediatric patients, but have not been considered adequate for adults. This study compared shortened urine collections for lead excretion post chelation with standard 24-hour collections. Thirty-five patients without known current lead exposure and with serum creatinine measurements less than 2 mg/dL were hospitalized and had provocative chelation performed as follows: One gram of CaNa2-ethylenediaminetetraacetic acid (EDTA) was administered in 250 mL of a 5% dextrose in water solution intravenously over one hour; the same dose was repeated 12 hours later. A 24-hour urine collection for lead excretion was begun at the time of initiation of the first dose. At three hours and six hours from start of first dose, each patient was instructed to void, total volume to that point was recorded, and a 10-mL aliquot was withdrawn for lead measurement. Both three-hour and six-hour urinary lead excretion following a single dose of EDTA correlated linearly with 24-hour lead excretion post chelation (r = .89 and .94, respectively). When a 24-hour level of 600 micrograms was defined as true positive the three-hour collection had a sensitivity of 76% and specificity of 95% and six-hour urinary lead excretion had 82% sensitivity and 100% specificity. Mild renal insufficiency (reflected by serum creatinine levels between 1.5 and 2.1 mg/dL) did not significantly alter the correlation between three-, six-, and 24-hour urinary post-chelation lead excretion.

  4. Meal timing influences daily caloric intake in healthy adults.

    PubMed

    Reid, Kathryn J; Baron, Kelly G; Zee, Phyllis C

    2014-11-01

    The role that meal pattern plays in weight regulation is a popular topic of scientific and common debate. The goal of this study was to evaluate the relationship between meal timing with caloric intake and body mass index (BMI). We hypothesized that late meal timing and eating closer to sleep onset time would be associated with greater energy intake and higher BMI. Participants included 59 individuals recruited from the community. Rest/activity patterns were assessed using 7 days of wrist actigraphy, and caloric intake was evaluated using 7 days of diet logs. Results demonstrated that the timing of meals was associated with overall energy intake but not with BMI. In multivariate analyses controlling for age, sex, sleep duration, and timing, eating more frequently, later timing of the last meal, and a shorter duration between last meal and sleep onset predicted higher total caloric intake. In a mediational model, eating frequency explained the relationship between eating closer to sleep onset and total caloric intake. Results suggest that later relative timing of meals, particularly eating close to sleep, could lead to weight gain due to a greater number of eating occasions and higher total daily caloric intake. These findings have important implications for the development of novel, time-based interventions for weight management.

  5. Meal timing influences daily caloric intake in healthy adults

    PubMed Central

    Reid, Kathryn J.; Baron, Kelly G.; Zee, Phyllis C.

    2016-01-01

    The role that meal pattern plays in weight regulation is a popular topic of scientific and common debate. The goal of this study was to evaluate the relationship between meal timing with caloric intake and body mass index (BMI). We hypothesized that latemeal timing and eating closer to sleep onset time would be associated with greater energy intake and higher BMI. Participants included 59 individuals recruited from the community. Rest/activity patterns were assessed using seven days of wrist actigraphy, and caloric intake was evaluated using seven days of diet logs. Results demonstrated that the timing of meals was associated with overall energy intake but not with BMI. In multivariate analyses controlling for age, gender, sleep duration, and timing; eating more frequently, later timing of the last meal, and a shorter duration between last meal and sleep onset predicted higher total caloric intake. In a mediational model, eating frequency explained the relationship between eating closer to sleep onset and total caloric intake. Results suggest that later relative timing of meals, particularly eating close to sleep, could lead to weight gain due to a greater number of eating occasions and higher total daily caloric intake. These findings have important implications for the development of novel, time-based interventions for weight management. PMID:25439026

  6. Modeling and design aspects of active caloric regenerators

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Kurt

    2015-03-01

    A cooling device based on a solid caloric material using, for example, the elastocaloric, magnetocaloric, barocaloric or electrocaloric effect has the potential to replace vapor-compression based systems for a variety of applications. Any caloric device using a solid refrigerant may benefit from using a regenerative cycle to increase the operating temperature span. This presentation shows how all active caloric regenerators can be modeled using similar techniques and how they are related to passive regenerator performance. The advantages and disadvantages of using a regenerative cycle are also discussed. The issue of hysteresis in caloric materials is investigated from a system/thermodynamic standpoint and the effects on cooling power and efficiency are quantified using a numerical model of an active regenerator using model caloric materials with assumed properties. The implementation in a working device will be discussed for elastocaloric and magnetocaloric cooling devices. It is shown that demagnetization effects for magnetocaloric systems and stress concentration effects in elastocaloric system reduce the overall effect in the regenerator and care must be taken in regenerator design for both technologies. Other loss mechanisms outside the regenerator such as heat leaks are also discussed. Finally, experimental results for active magnetic regenerative cooler are given for a range of operating conditions. The most recently published device uses a regenerator consisting of Gd and three alloys of GdY and has demonstrated a COP over 3.

  7. Tetanic force potentiation of mouse fast muscle is shortening speed dependent.

    PubMed

    Gittings, William; Huang, Jian; Vandenboom, Rene

    2012-10-01

    The activity dependent potentiation of peak isometric force associated with phosphorylation of the myosin regulatory light chain (RLC) is generally restricted to low activation frequencies. The purpose of this study was to determine if muscle shortening speed influenced the stimulus frequency domain over which concentric force potentiation was observed. To this end, mouse extensor digitorum longus (EDL) muscles (in vitro, 25 °C) were activated at a range of test frequencies (10, 25, 45, 70 or 100 Hz) during shortening ramps at 0.10, 0.30 or 0.50 of the maximal velocity of shortening (V(max)). This procedure was performed before and after a standard conditioning stimulus (CS) that elevated RLC phosphorylation from 0.08 ± 0.01 (rest) to 0.55 ± 0.01 (stimulated) moles phosphate per mol RLC, respectively (n = 9-11) (P < 0.01). When data from all test frequencies were collapsed, the CS potentiated mean concentric force at 0.10, 0.30 and 0.50 V(max) to 1.02 ± 0.03, 1.37 ± 0.03 and 1.59 ± 0.05 of unpotentiated, pre-CS values, respectively (n = 8, P < 0.05). In addition, increasing shortening speed also increased the activation frequency at which concentric force potentiation was maximal, i.e. from 10 Hz at 0.10 V(max) to 10-25 and 25-45 Hz at 0.30 and 0.50 V(max), respectively. These results indicate that both the magnitude of and activation frequency dependence for concentric force potentiation of mouse EDL muscle is shortening speed dependent. Thus, muscle shortening speed may be a critical factor determining the functional utility of the myosin RLC phosphorylation mechanism.

  8. Comparison between caloric and canal impulse rotatory test.

    PubMed

    Cohen, B; Dobler, S; Sauron, B; Hazan, A; Peytral, C; Fombeur, J P

    2002-01-01

    It has been suggested that the rotatory test using videosnystagmoscopy can also be applied for identification of vestibular canal paresis. In this study, we test this hypothesis by comparing the results of a canal impulse rotatory test with those of the caloric test using the method described by Freyss. Our study indicates that only in 38% of all tested patients, the same results between the two tests have been obtained. Furthermore, which the group with abnormal findings is observed separately, in 24% patients only these two test methods lead to the same results. Consequently, the canal impulse rotatory test cannot replace the caloric test.

  9. Comparison between caloric and canal impulse rotatory test.

    PubMed

    Cohen, B; Dobler, S; Sauron, B; Hazan, A; Peytral, C; Fombeur, J P

    2002-01-01

    It has been suggested that the rotatory test using videonystagmoscopy can also be applied for identification of vestibular canal paresis. In this study, we test this hypothesis by comparing the results of a canal impulse rotatory test with those of the caloric test using the method described by Freyss. Our study indicates that only in 38% of all tested patients, the same results between the two tests have been obtained. Furthermore, when the group with abnormal findings is observed separately, in 24% patients only these two test methods lead to the same results. Consequently, the canal impulse rotatory test cannot replace the caloric test.

  10. Caloric stress alters fat characteristics and Hsp70 expression in milk somatic cells of lactating beef cows

    PubMed Central

    Eitam, Harel; Brosh, Arieh; Orlov, Alla; Izhaki, Ido

    2008-01-01

    Selection for higher production rate in cattle inhabiting challenging habitats may be considered disadvantageous because of possible deleterious effects on immunity and reproduction and, consequently, on calf crop percentage. In Israel, free-grazing high productive beef cows experience reduction in nutritional quality of forage during up to 8 months of the year. As milk production by dams dictates calf performance, dam’s nutritional needs and rebreeding rates, the aim of the present study was to test how lactating beef cows deal with combined caloric and protein stress both at the productive and self protective levels. For this purpose, we studied the effect of long-term caloric stress on milk characteristics and gene expression of stress and milk components producing proteins. Lactating dams responded to caloric stress by decreased body weight, milk, and milk protein production. To compensate for total energy loses in milk, they produced milk of higher fat concentration and shifted the proportions of its fatty acids towards long and unsaturated ones. This was reflected by increased mRNA transcription of the fatty acid binding protein. Prolonged low-energy diet promoted cell-specific heat shock protein (Hsp) response; whereas significant increase of Hsp90 but unchanged levels of Hsp70 proteins were observed in white blood cells, the expression of Hsp70 in milk somatic cells was markedly attenuated, in parallel with a marked increase of αs1-casein expression. At the mammary gland level, these results may indicate a decrease in turnover of proteins and a shift to an exclusive expression of milk components producing factors. Similar responses to caloric stress were revealed also in ketotic dairy cows. Ketosis promoted a shift towards long and unsaturated fatty acids and an increased expression of αs1-casein in milk somatic cells. These findings may reflect an evolutionary-preserved mechanism in lactating cows for coping with caloric restriction. Overall, our

  11. Extension of Drosophila Lifespan by Rhodiola rosea Depends on Dietary Carbohydrate and Caloric Content in a Simplified Diet.

    PubMed

    Schriner, Samuel E; Coskun, Volkan; Hogan, Sean P; Nguyen, Cindy T; Lopez, Terry E; Jafari, Mahtab

    2016-03-01

    The root and rhizome extract of Rhodiola rosea has been extensively used in traditional medicine to improve physical and mental performance and to protect against stress. We, and others, have reported that R. rosea can extend lifespan in flies, worms, and yeast. We also previously found that the extract can act independently of dietary restriction (DR), a treatment that can extend lifespan in a range of model organisms. In flies, DR is implemented through a reduction in dietary yeast content. Here, we report that the ability of R. rosea extract to extend lifespan in flies is dependent on the carbohydrate and caloric content when supplemented with a simplified diet composed of yeast and sucrose. R. rosea extract elevated the sugar content in flies and down-regulated hexokinase expression, suggesting that it perturbs carbohydrate metabolism in flies. In our previous studies, bananas, barley malt, and corn syrup provided dietary carbohydrates, and R. rosea extract could extend lifespan with a range of caloric levels. We conclude that the lifespan-extending effect of R. rosea extract in flies is dependent on dietary carbohydrate and caloric contents coupled with an interaction with complex dietary components present in bananas, barley, or corn.

  12. Andrew shortens lifetime of Louisiana Barrier Islands

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Because the Isles Dernieres, a series of four barrier islands off the coast of Louisiana, have one of the most rapidly eroding shorelines in the world, geologists at the U.S. Geological Survey and the Louisiana Geological Survey have been monitoring erosion activity over the last several years, said Jeff Williams of the USGS in Reston, Va. Hurricane Andrew, which struck the state on August 26, caused severe erosional damage to these islands that has shortened their lifetimes.Before Andrew struck, geologists projected that Raccoon Island would disappear below sea level by the year 2001 and that Whiskey Island would disappear by 2016. Now, due to the severe erosion from Hurricane Andrew, the scientists claim that the islands may disappear before the turn of the century, and the other islands in the Dernieres chain are expected to follow suit within 2 decades. Raccoon, Whiskey, Trinity, and East islands make up the Isles Dernieres, which existed as one island, known as the Isle Derniere, before an 1856 hurricane and subsequent erosion.

  13. Trace-shortened Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Solomon, G.

    1994-01-01

    Reed-Solomon (RS) codes have been part of standard NASA telecommunications systems for many years. RS codes are character-oriented error-correcting codes, and their principal use in space applications has been as outer codes in concatenated coding systems. However, for a given character size, say m bits, RS codes are limited to a length of, at most, 2(exp m). It is known in theory that longer character-oriented codes would be superior to RS codes in concatenation applications, but until recently no practical class of 'long' character-oriented codes had been discovered. In 1992, however, Solomon discovered an extensive class of such codes, which are now called trace-shortened Reed-Solomon (TSRS) codes. In this article, we will continue the study of TSRS codes. Our main result is a formula for the dimension of any TSRS code, as a function of its error-correcting power. Using this formula, we will give several examples of TSRS codes, some of which look very promising as candidate outer codes in high-performance coded telecommunications systems.

  14. The basolateral nucleus of the amygdala mediates caloric sugar preference over a non-caloric sweetener in mice.

    PubMed

    Yasoshima, Y; Yoshizawa, H; Shimura, T; Miyamoto, T

    2015-04-16

    Neurobiological and genetic mechanisms underlying increased intake of and preference for nutritive sugars over non-nutritive sweeteners are not fully understood. We examined the roles of subnuclei of the amygdala in the shift in preference for a nutritive sugar. Food-deprived mice alternately received caloric sucrose (1.0 M) on odd-numbered training days and a non-caloric artificial sweetener (2.5 mM saccharin) on even-numbered training days. During training, mice with sham lesions of the basolateral (BLA) or central (CeA) nucleus of the amygdala increased their intake of 1.0 M sucrose, but not saccharin. Trained mice with sham lesions showed a significant shift in preference toward less concentrated sucrose (0.075 M) over the saccharin in a two-bottle choice test, although the mice showed an equivalent preference for these sweeteners before training. No increased intake of or preference for sucrose before and after the alternating training was observed in non-food-deprived mice. Excitotoxic lesions centered in the BLA impaired the increase in 1.0M sucrose intake and shift in preference toward 0.075 M sucrose over saccharin. Microlesions with iontophoretic excitotoxin injections into the CeA did not block the training-dependent changes. These results suggest that food-deprived animals selectively shift their preference for a caloric sugar over a non-caloric sweetener through the alternate consumption of caloric and non-caloric sweet substances. The present data also suggest that the BLA, but not CeA, plays a role in the selective shift in sweetener preference. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Metabolic effects of intermittent access to caloric or non-caloric sweetened solutions in mice fed a high-caloric diet.

    PubMed

    Soto, Marion; Chaumontet, Catherine; Even, Patrick C; Azzout-Marniche, Dalila; Tomé, Daniel; Fromentin, Gilles

    2017-03-24

    Human consumption of obesogenic diets and soft drinks, sweetened with different molecules, is increasing worldwide, and increases the risk of metabolic diseases. We hypothesized that the chronic consumption of caloric (sucrose, high-fructose corn syrup (HFCS), maltodextrin) and non-caloric (sucralose) solutions under 2-hour intermittent access, alongside the consumption of a high-fat high-sucrose diet, would result in differential obesity-associated metabolic abnormalities in mice. Male C57BL/6 mice had ad libitum access to an HFHS diet and to water (water control group). In addition, some mice had access, 2h/day, 5days/week (randomly chosen) for 12weeks, to different solutions: i) a sucrose solution (2.1kJ/ml), ii) an HFCS solution (2.1kJ/ml), iii) a maltodextrin solution (2.1kJ/ml) and a sucralose solution (60mM) (n=15/group). Despite no changes in total caloric intake, 2h-intermittent access to the sucrose, HFCS or maltodextrin solutions led to increased body weight and accumulation of lipids in the liver when compared to the group consuming water only. The HFCS and sucrose solutions induced a higher fat mass in various fat depots, glucose intolerance, increased glucose oxidation at the expense of lipid oxidation, and a lower hypothalamic expression of NPY in the fasted state. HFCS also reduced proopiomelanocortin expression in the hypothalamus. 2h-intermittent access to sucralose did not result in significant changes in body composition, but caused a stronger expression of CART in the hypothalamus. Finally, sucrose intake showed a trend to increase the expression of various receptors in the nucleus accumbens, linked to dopamine, opioid and endocannabinoid signaling. In conclusion, 2h-intermittent access to caloric solutions (especially those sweetened with sucrose and HFCS), but not sucralose, resulted in adverse metabolic consequences in high-fat high-sucrose-fed mice.

  16. On the undetected error probability for shortened Hamming codes

    NASA Technical Reports Server (NTRS)

    Fujiwara, T.; Kasami, T.; Kitai, A.; Lin, S.

    1985-01-01

    Shortened Hamming codes are widely used for error detection in data communications. In this paper, a method for computing the probability of an undetected error for these codes is presented. This method is then used to evaluate the error-detection performance of the shortened codes obtained from the two distance-four Hamming codes adopted by CCITT X.25 for error control for packet-switched networks. It is shown that shortening a code does affect its error-detection performance.

  17. Atherosclerotic changes of vessels caused by restriction of movement

    NASA Technical Reports Server (NTRS)

    Gvishiani, G. S.; Kobakhidze, N. G.; Mchedlishvili, M. G.; Dekanosidze, T. I.

    1980-01-01

    The effect of restriction of movement on the development of atheroscelerosis was studied in rabbits. Drastic restriction of movement for 20 and 30 days causes atherosclerotic alterations of the aorta and shifts in ECG which are characteristic of coronary atherosclerosis. At the same time, shortening of the duration of blood coagulation and an increase in the content of catecholamines and beta-lipoproteids occur.

  18. Restrictive cardiomyopathies.

    PubMed

    Nihoyannopoulos, Petros; Dawson, David

    2009-12-01

    Restrictive cardiomyopathies constitute a heterogenous group of heart muscle conditions that all have, in common, the symptoms of heart failure. Diastolic dysfunction with preserved systolic function is often the only echocardiographic abnormality that may be noted, although systolic dysfunction may also be an integral part of some specific pathologies, particularly in the most advanced cases such as amyloid infiltration of the heart. By far, the majority of restrictive cardiomyopathies are secondary to a systemic disorder such as amyloidosis, sarcoidosis, scleroderma, haemochromatosis, eosinophilic heart disease, or as a result of radiation treatment. The much more rare diagnosis of idiopathic restrictive cardiomyopathy is supported only by the absence of specific pathology on either endomyocardial biopsies or at post-mortem. Restrictive cardiomyopathy is diagnosed based on medical history, physical examination, and tests: such as blood tests, electrocardiogram, chest X-ray, echocardiography, and magnetic resonance imaging. With its wide availability, echocardiography is probably the most important investigation to identify the left ventricular dysfunction and should be performed early and by groups that are familiar with the wide variety of aetiologies. Finally, on rare occasions, the differential diagnosis from constrictive pericarditis may be necessary.

  19. Ulnar or radial