Using direct calorimetry to test the accuracy of indirect calorimetry in an ectotherm.
Walsberg, Glenn E; Hoffman, Ty C M
2006-01-01
We previously demonstrated that the relationship between respiratory gas exchange and metabolic heat production is unexpectedly variable and that conventional approaches to estimating energy expenditure by indirect calorimetry can incorporate large errors. Prior studies, however, comparing direct and indirect calorimetry of animals focused only on endothermic organisms. Given that endothermy and ectothermy represent a fundamental dichotomy of animal energetics, in this analysis we explore how these contrasting physiologies correlate with the relationship between heat production and respiratory gas exchange. Simultaneous indirect and direct calorimetry in an ectotherm, the ball python (Python regius Shaw), revealed that the relationships between gas exchange and heat production were within 1% of those expected when analyses using indirect calorimetry were based on the assumption that the fasting animal catabolized only protein. This accuracy of indirect calorimetry contrasts sharply with our previous conclusions for three species of birds and mammals.
Fuster, Casilda Olveira; Fuster, Gabriel Olveira; Galindo, Antonio Dorado; Galo, Alicia Padilla; Verdugo, Julio Merino; Lozano, Francisco Miralles
2007-07-01
Undernutrition, which implies an imbalance between energy intake and energy requirements, is common in patients with cystic fibrosis. The aim of this study was to compare resting energy expenditure determined by indirect calorimetry with that obtained with commonly used predictive equations in adults with cystic fibrosis and to assess the influence of clinical variables on the values obtained. We studied 21 patients with clinically stable cystic fibrosis, obtaining data on anthropometric variables, hand grip dynamometry, electrical bioimpedance, and resting energy expenditure by indirect calorimetry. We used the intraclass correlation coefficient (ICC) and the Bland-Altman method to assess agreement between the values obtained for resting energy expenditure measured by indirect calorimetry and those obtained with the World Health Organization (WHO) and Harris-Benedict prediction equations. The prediction equations underestimated resting energy expenditure in more than 90% of cases. The agreement between the value obtained by indirect calorimetry and that calculated with the prediction equations was poor (ICC for comparisons with the WHO and Harris-Benedict equations, 0.47 and 0.41, respectively). Bland-Altman analysis revealed a variable bias between the results of indirect calorimetry and those obtained with prediction equations, irrespective of the resting energy expenditure. The difference between the values measured by indirect calorimetry and those obtained with the WHO equation was significantly larger in patients homozygous for the DeltaF508 mutation and in those with exocrine pancreatic insufficiency. The WHO and Harris-Benedict prediction equations underestimate resting energy expenditure in adults with cystic fibrosis. There is poor agreement between the values for resting energy expenditure determined by indirect calorimetry and those estimated with prediction equations. Underestimation was greater in patients with exocrine pancreatic insufficiency and patients who were homozygous for DeltaF508.
NASA Astrophysics Data System (ADS)
Vlaeva, I.; Nikolova, K.; Bodurov, I.; Marudova, M.; Tsankova, D.; Lekova, S.; Viraneva, A.; Yovcheva, T.
2017-01-01
The potential of several physical methods for investigation of the botanical origin of honey has been discussed. Samples from the three most prevalent types of honey in Bulgaria (acacia, linden and honeydew) have been used. They have been examined by laser refractometry, UV, VIS and FTIR spectroscopy, electric conductivity measurement and differential scanning calorimetry. The purpose of this study was to reveal the physical characterizations of honeys from different flora produced in Bulgaria and to identify honeys with a high apitherapy potential for future studies.
Baró, Jordi; Martín-Olalla, José-María; Romero, Francisco Javier; Gallardo, María Carmen; Salje, Ekhard K H; Vives, Eduard; Planes, Antoni
2014-03-26
The existence of temporal correlations during the intermittent dynamics of a thermally driven structural phase transition is studied in a Cu-Zn-Al alloy. The sequence of avalanches is observed by means of two techniques: acoustic emission and high sensitivity calorimetry. Both methods reveal the existence of event clustering in a way that is equivalent to the Omori correlations between aftershocks in earthquakes as are commonly used in seismology.
Non-intercalative, deoxyribose binding of boric acid to calf thymus DNA.
Ozdemir, Ayse; Gursaclı, Refiye Tekiner; Tekinay, Turgay
2014-05-01
The present study characterizes the effects of the boric acid binding on calf thymus DNA (ct-DNA) by spectroscopic and calorimetric methods. UV-Vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), isothermal titration calorimetry (ITC), and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize binding properties. Changes in the secondary structure of ct-DNA were determined by CD spectroscopy. Sizes and morphologies of boric acid-DNA complexes were determined by transmission electron microscopy (TEM). The kinetics of boric acid binding to calf thymus DNA (ct-DNA) was investigated by isothermal titration calorimetry (ITC). ITC results revealed that boric acid exhibits a moderate affinity to ct-DNA with a binding constant (K a) of 9.54 × 10(4) M(-1). FT-IR results revealed that boric acid binds to the deoxyribose sugar of DNA without disrupting the B-conformation at tested concentrations.
NASA Astrophysics Data System (ADS)
Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh
2014-10-01
A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.
Bell, Edward F; Johnson, Karen J; Dove, Edwin L
2017-04-01
Background Indirect calorimetry is the standard method for estimating energy expenditure in clinical research. Few studies have evaluated indirect calorimetry in infants by comparing it with simultaneous direct calorimetry. Our purpose was (1) to compare the energy expenditure of preterm infants determined by these two methods, direct calorimetry and indirect calorimetry; and (2) to examine the effect of body position, supine or prone, on energy expenditure. Study Design We measured energy expenditure by simultaneous direct (heat loss by gradient-layer calorimeter corrected for heat storage) and indirect calorimetry (whole-body oxygen consumption and carbon dioxide production) in 15 growing preterm infants during two consecutive interfeeding intervals, once in the supine position and once in the prone position. Results The mean energy expenditure for all measurements in both positions did not differ significantly by the method used: 2.82 (standard deviation [SD] 0.42) kcal/kg/h by direct calorimetry and 2.78 (SD 0.48) kcal/kg/h by indirect calorimetry. The energy expenditure was significantly lower, by 10%, in the prone than in the supine position, whether examined by direct calorimetry (2.67 vs. 2.97 kcal/kg/h, p < 0.001) or indirect calorimetry (2.64 vs. 2.92 kcal/kg/h, p = 0.017). Conclusion Direct calorimetry and indirect calorimetry gave similar estimates of energy expenditure. Energy expenditure was 10% lower in the prone position than in the supine position. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Kabir, Ayesha; Suresh Kumar, Gopinatha
2013-01-01
Background The thermodynamics of the base pair specificity of the binding of the polyamines spermine, spermidine, putrescine, and cadaverine with three genomic DNAs Clostridium perfringens, 27% GC, Escherichia coli, 50% GC and Micrococcus lysodeikticus, 72% GC have been studied using titration calorimetry and the data supplemented with melting studies, ethidium displacement and circular dichroism spectroscopy results. Methodology/Principal Findings Isothermal titration calorimetry, differential scanning calorimetry, optical melting studies, ethidium displacement, circular dichroism spectroscopy are the various techniques employed to characterize the interaction of four polyamines, spermine, spermidine, putersine and cadaverine with the DNAs. Polyamines bound stronger with AT rich DNA compared to the GC rich DNA and the binding varied depending on the charge on the polyamine as spermine>spermidine >putrescine>cadaverine. Thermodynamics of the interaction revealed that the binding was entropy driven with small enthalpy contribution. The binding was influenced by salt concentration suggesting the contribution from electrostatic forces to the Gibbs energy of binding to be the dominant contributor. Each system studied exhibited enthalpy-entropy compensation. The negative heat capacity changes suggested a role for hydrophobic interactions which may arise due to the non polar interactions between DNA and polyamines. Conclusion/Significance From a thermodynamic analysis, the AT base specificity of polyamines to DNAs has been elucidated for the first time and supplemented by structural studies. PMID:23894663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guener, M.; Gueler, E.; Aktas, H.
Kinetic, morphological and some thermal properties of thermally induced and deformation-induced martensite were studied in a Fe-32%Ni-0.4%Cr alloy. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and compression deformation test techniques were used for these studies. SEM observations revealed the occurrence of both athermal and isothermal martensitic transformation kinetics for producing a lenticular martensite morphology for different homogenization conditions of the prior austenite phase. The DSC measurement results showed a fair agreement with those of previous studies on ferrous alloys.
Basu, Anirban; Kumar, Gopinatha Suresh
2016-12-01
Interaction of proflavine with hemoglobin (Hgb) was studied employing spectroscopy, calorimetry, and atomic force microscopy. The equilibrium constant was found to be of the order 10 4 M -1 . The quenching of Hgb fluorescence by proflavine was due to the complex formation. Calculation of the molecular distance (r) between the donor (β-Trp37 of Hgb) and acceptor (proflavine) suggested that energy can be efficiently transferred from the β-Trp37 residue at the α1β2 interface of the protein to the dye. Proflavine induced significant secondary structural changes in Hgb. Synchronous fluorescence studies showed that proflavine altered the microenvironment around the tryptophan residues to a greater extent than the tyrosine residues. Circular dichroism spectral studies showed that proflavine caused significant reduction in the α-helical content of Hgb. The esterase activity assay further complemented the circular dichroism data. The Soret band intensity of Hgb decreased upon complexation. Differential scanning calorimetry and circular dichroism melting results revealed that proflavine induced destabilization of Hgb. The binding was driven by both positive entropy and negative enthalpy. Atomic force microscopy studies revealed that the essential morphological features of hemoglobin were retained in the presence of proflavine. Overall, insights on the photophysical aspects and energetics of the binding of proflavine with Hgb are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stroud, Mary W.
This investigation, rooted in both chemistry and education, considers outcomes occurring in a small-scale study in which concept mapping was used as an instructional intervention in an undergraduate calorimetry laboratory. A quasi-experimental, multiple-methods approach was employed since the research questions posed in this study warranted the use of both qualitative and quantitative perspectives and evaluations. For the intervention group of students, a convenience sample, post-lab concept maps, written discussions, quiz responses and learning surveys were characterized and evaluated. Archived quiz responses for non-intervention students were also analyzed for comparison. Students uniquely constructed individual concept maps containing incorrect, conceptually correct and "scientifically thin" calorimetry characterizations. Students more greatly emphasized mathematical relationships and equations utilized during the calorimetry experiment; the meaning of calorimetry concepts was demonstrated to a lesser extent.
NASA Technical Reports Server (NTRS)
Sermon, Paul A.; Self, Valerie A.; Vong, Mariana S. W.; Wurie, Alpha T.
1990-01-01
The value of in situ analysis on CO chemisorption, titration and oxidation over supported Pt catalysts using calorimetry, catalytic and micro-FTIR methods is illustrated using silica- and titania-supported samples. Isothermal CO-O and O2-CO titrations have not been widely used on metal surfaces and may be complicated if some oxide supports are reduced by CO titrant. However, they can illuminate the kinetics of CO oxidation on metal/oxide catalysts since during such titrations all O and CO coverages are scanned as a function of time. There are clear advantages in following the rates of the catalyzed CO oxidation via calorimetry and gc-ms simultaneously. At lower temperatures the evidence they provide is complementary. CO oxidation and its catalysis of CO oxidation have been extensively studied with hysteresis and oscillations apparent, and the present results suggest the benefits of a combined approach. Silica support porosity may be important in defining activity-temperature hysteresis. FTIR microspectroscopy reveals the chemical heterogeneity of the catalytic surfaces used; it is interesting that the evidence with regard to the dominant CO surface species and their reactivities with regard to surface oxygen for present oxide-supported Pt are different from those seen on graphite-supported Pt.
Dynamic Calorimetry for Students
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2007-01-01
A student experiment on dynamic calorimetry is described. Dynamic calorimetry is a powerful technique for calorimetric studies, especially at high temperatures and pressures. A low-power incandescent lamp serves as the sample. The ScienceWorkshop data-acquisition system with DataStudio software from PASCO Scientific displays the results of the…
Xia, Yu; Wang, Chuan-Zeng; Tian, Mengkui; Tao, Zhu; Ni, Xin-Long; Prior, Timothy J; Redshaw, Carl
2018-01-15
The host-guest interaction of a series of cyclohexyl-appended guests with cucurbit[8]uril (Q[8]) was studied by ¹H NMR spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography. The X-ray structure revealed that two cycloalkane moieties can be simultaneously encapsulated in the hydrophobic cavity of the Q[8] host to form a ternary complex for the first time.
Singh, Manish; Bajaj, Avinash
2014-09-28
We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.
Direct Animal Calorimetry, the Underused Gold Standard for Quantifying the Fire of Life*
Kaiyala, Karl J.; Ramsay, Douglas S.
2012-01-01
Direct animal calorimetry, the gold standard method for quantifying animal heat production (HP), has been largely supplanted by respirometric indirect calorimetry owing to the relative ease and ready commercial availability of the latter technique. Direct calorimetry, however, can accurately quantify HP and thus metabolic rate (MR) in both metabolically normal and abnormal states, whereas respirometric indirect calorimetry relies on important assumptions that apparently have never been tested in animals with genetic or pharmacologically-induced alterations that dysregulate metabolic fuel partitioning and storage so as to promote obesity and/or diabetes. Contemporary obesity and diabetes research relies heavily on metabolically abnormal animals. Recent data implicating individual and group variation in the gut microbiome in obesity and diabetes raise important questions about transforming aerobic gas exchange into HP because 99% of gut bacteria are anaerobic and they outnumber eukaryotic cells in the body by ~10-fold. Recent credible work in non-standard laboratory animals documents substantial errors in respirometry-based estimates of HP. Accordingly, it seems obvious that new research employing simultaneous direct and indirect calorimetry (total calorimetry) will be essential to validate respirometric MR phenotyping in existing and future pharmacological and genetic models of obesity and diabetes. We also detail the use of total calorimetry with simultaneous core temperature assessment as a model for studying homeostatic control in a variety of experimental situations, including acute and chronic drug administration. Finally, we offer some tips on performing direct calorimetry, both singly and in combination with indirect calorimetry and core temperature assessment. PMID:20427023
Buparvaquone loaded solid lipid nanoparticles for targeted delivery in theleriosis
Soni, Maheshkumar P.; Shelkar, Nilakash; Gaikwad, Rajiv V.; Vanage, Geeta R.; Samad, Abdul; Devarajan, Padma V.
2014-01-01
Background: Buparvaquone (BPQ), a hydroxynaphthoquinone derivative, has been investigated for the treatment of many infections and is recommended as the gold standard for the treatment of theileriosis. Theileriosis, an intramacrophage infection is localized mainly in reticuloendotheileial system (RES) organs. The present study investigates development of solid lipid nanoparticles (SLN) of BPQ for targeted delivery to the RES. Materials and Methods: BPQ SLN was prepared using melt method by adding a molten mixture into aqueous Lutrol F68 solution (80°C). Larger batches were prepared up to 6 g of BPQ with GMS: BPQ, 2:1. SLN of designed size were obtained using ultraturrax and high pressure homogenizer. A freeze and thaw study was used to optimize type and concentration of cryoprotectant with Sf: Mean particle size, Si: Initial particle size <1.3. Differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and scanning electron microscope (SEM) study was performed on optimized formulation. Formulation was investigated for in vitro serum stability, hemolysis and cell uptake study. Pharmacokinetic and biodistribution study was performed in Holtzman rat. Results: Based on solubility in lipid; glyceryl monostearate (GMS) was selected for preparation of BPQ SLN. Batches of BPQ SLN were optimized for average particle size and entrapment efficiency at <100 mg solid content. A combination of Solutol HS-15 and Lutrol F68 at 2% w/v and greater enabled the desired Sf/Si < 1.3. Differential scanning calorimetry and powder X-ray diffraction revealed decrease in crystallinity of BPQ in BPQ SLN while, scanning electron microscope revealed spherical morphology. BPQ SLN revealed good stability at 4°C and 25°C. Low hemolytic potential (<8%) and in vitro serum stability up to 5 h was observed. Cytotoxicity of SLN to the U937 cell was low. The macrophage cell line revealed high (52%) uptake of BPQ SLN in 1 h suggesting the potential to RES uptake. SLN revealed longer circulation and biodistrbution study confirmed high RES uptake (75%) in RES organs like liver lung spleen etc. Conclusion: The high RES uptake suggests BPQ SLN as a promising approach for targeted and improved delivery in theileriosis. PMID:24459400
Application of solution calorimetry in pharmaceutical and biopharmaceutical research.
Royall, P G; Gaisford, S
2005-06-01
In solution calorimetry the heat of solution (Delta(sol)H) is recorded as a solute (usually a solid) dissolves in an excess of solvent. Such measurements are valuable during all the phases of pharmaceutical formulation and the number of applications of the technique is growing. For instance, solution calorimetry is extremely useful during preformulation for the detection and quantification of polymorphs, degrees of crystallinity and percent amorphous content; knowledge of all of these parameters is essential in order to exert control over the manufacture and subsequent performance of a solid pharmaceutical. Careful experimental design and data interpretation also allows the measurement of the enthalpy of transfer (Delta(trans)H) of a solute between two phases. Because solution calorimetry does not require optically transparent solutions, and can be used to study cloudy or turbid solutions or suspensions directly, measurement of Delta(trans)H affords the opportunity to study the partitioning of drugs into, and across, biological membranes. It also allows the in-situ study of cellular systems. Furthermore, novel experimental methodologies have led to the increasing use of solution calorimetry to study a wider range of phenomena, such as the precipitation of drugs from supersaturated solutions or the formation of liposomes from phospholipid films. It is the purpose of this review to discuss some of these applications, in the context of pharmaceutical formulation and preformulation, and highlight some of the potential future areas where solution calorimetry might find applications.
Structure of water in mesoporous organosilica by calorimetry and inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Levy, Esthy; Kolesnikov, Alexander I.; Li, Jichen; Mastai, Yitzhak
2009-01-01
In this paper, we describe the preparation of mesoporous organosilica samples with hydrophilic or hydrophobic organic functionality inside the silica channel. We synthesized mesoporous organosilica of identical pore sizes based on two different organic surface functionality namely hydrophobic (based on octyltriethoxysilane OTES) and hydrophilic (3-aminopropyltriethoxysilane ATES) and MCM-41 was used as a reference system. The structure of water/ice in those porous silica samples have been investigated over a range temperatures by differential scanning calorimetry (DSC) and inelastic neutron scattering (INS). INS study revealed that water confined in hydrophobic mesoporous organosilica shows vibrational behavior strongly different than bulk water. It consists of two states: water with strong and weak hydrogen bonds (with ratio 1:2.65, respectively), compared to ice-Ih. The corresponding O-O distances in these water states are 2.67 and 2.87 Ǻ, which strongly differ compared to ice-Ih (2.76 Ǻ). INS spectra for water in hydrophilic mesoporous organosilica ATES show behavior similar to bulk water, but with greater degree of disorder.
Innovations in energy expenditure assessment.
Achamrah, Najate; Oshima, Taku; Genton, Laurence
2018-06-15
Optimal nutritional therapy has been associated with better clinical outcomes and requires providing energy as closed as possible to measured energy expenditure. We reviewed the current innovations in energy expenditure assessment in humans, focusing on indirect calorimetry and other new alternative methods. Although considered the reference method to measure energy expenditure, the use of indirect calorimetry is currently limited by the lack of an adequate device. However, recent technical developments may allow a broader use of indirect calorimetry for in-patients and out-patients. An ongoing international academic initiative to develop a new indirect calorimeter aimed to provide innovative and affordable technical solutions for many of the current limitations of indirect calorimetry. New alternative methods to indirect calorimetry, including CO2 measurements in mechanically ventilated patients, isotopic approaches and accelerometry-based fitness equipments, show promises but have been either poorly studied and/or are not accurate compared to indirect calorimetry. Therefore, to date, energy expenditure measured by indirect calorimetry remains the gold standard to guide nutritional therapy. Some new innovative methods are demonstrating promises in energy expenditure assessment, but still need to be validated. There is an ongoing need for easy-to-use, accurate and affordable indirect calorimeter for daily use in in-patients and out-patients.
Tshabalala, Thabiso N; Tomescu, Mihai-Silviu; Prior, Allan; Balakrishnan, Vijayakumar; Sayed, Yasien; Dirr, Heini W; Achilonu, Ikechukwu
2016-12-01
The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d = 115 μM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.
A generalized model for estimating the energy density of invertebrates
James, Daniel A.; Csargo, Isak J.; Von Eschen, Aaron; Thul, Megan D.; Baker, James M.; Hayer, Cari-Ann; Howell, Jessica; Krause, Jacob; Letvin, Alex; Chipps, Steven R.
2012-01-01
Invertebrate energy density (ED) values are traditionally measured using bomb calorimetry. However, many researchers rely on a few published literature sources to obtain ED values because of time and sampling constraints on measuring ED with bomb calorimetry. Literature values often do not account for spatial or temporal variability associated with invertebrate ED. Thus, these values can be unreliable for use in models and other ecological applications. We evaluated the generality of the relationship between invertebrate ED and proportion of dry-to-wet mass (pDM). We then developed and tested a regression model to predict ED from pDM based on a taxonomically, spatially, and temporally diverse sample of invertebrates representing 28 orders in aquatic (freshwater, estuarine, and marine) and terrestrial (temperate and arid) habitats from 4 continents and 2 oceans. Samples included invertebrates collected in all seasons over the last 19 y. Evaluation of these data revealed a significant relationship between ED and pDM (r2 = 0.96, p < 0.0001), where ED (as J/g wet mass) was estimated from pDM as ED = 22,960pDM − 174.2. Model evaluation showed that nearly all (98.8%) of the variability between observed and predicted values for invertebrate ED could be attributed to residual error in the model. Regression of observed on predicted values revealed that the 97.5% joint confidence region included the intercept of 0 (−103.0 ± 707.9) and slope of 1 (1.01 ± 0.12). Use of this model requires that only dry and wet mass measurements be obtained, resulting in significant time, sample size, and cost savings compared to traditional bomb calorimetry approaches. This model should prove useful for a wide range of ecological studies because it is unaffected by taxonomic, seasonal, or spatial variability.
Gavade, Chaitali; Singh, N L; Khanna, P K; Shah, Sunil
2015-12-01
In order to study structural, thermal, optical and dielectric behaviors of composites, the films of Cu/polystyrene nanocomposites were synthesized at different concentrations of Cu-nanoparticles. These polymer nanocomposites were irradiated with carbon (85 MeV) and silicon (120 MeV) ions at different fluences. The samples were characterized using different techniques viz: X-ray diffraction, UV-visible spectroscopy, differential scanning calorimetry, and impedance gain phase analyzer. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 120 MeV Si-ions, which may be attributed to radiation-induced cross-linking in polymer. Optical properties like band gap was estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength region 200-800 nm. It was found that the band gap value shifted to lower energy (from 4.38 eV to 3.40 eV) on doping with silver nanoparticles and also upon irradiation. Differential scanning calorimetry analysis revealed an increase in the glass transition temperature upon irradiation, which may be attributed to cross linking of polymer chain due to ion beam irradiation which is also corroborated with XRD analysis. Dependence of dielectric properties on frequency, ions and filler concentration was studied. The results revealed the enhancement in dielectric properties after doping nanoparticles and also upon irradiation. It was observed that the effect of Si-beam is more effectual than the C-beam because of large electronic energy loss of heavy ion.
Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph
2008-07-10
In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.
Thermodynamic Effects of Noncoded and Coded Methionine Substitutions in Calmodulin
Yamniuk, Aaron P.; Ishida, Hiroaki; Lippert, Dustin; Vogel, Hans J.
2009-01-01
The methionine residues in the calcium (Ca2+) regulatory protein calmodulin (CaM) are structurally and functionally important. They are buried within the N- and C-domains of apo-CaM but become solvent-exposed in Ca2+-CaM, where they interact with numerous target proteins. Previous structural studies have shown that methionine substitutions to the noncoded amino acids selenomethionine, ethionine, or norleucine, or mutation to leucine do not impact the main chain structure of CaM. Here we used differential scanning calorimetry to show that these substitutions enhance the stability of both domains, with the largest increase in melting temperature (19–26°C) achieved with leucine or norleucine in the apo-C-domain. Nuclear magnetic resonance spectroscopy experiments also revealed the loss of a slow conformational exchange process in the Leu-substituted apo-C-domain. In addition, isothermal titration calorimetry experiments revealed considerable changes in the enthalpy and entropy of target binding to apo-CaM and Ca2+-CaM, but the free energy of binding was largely unaffected due to enthalpy-entropy compensation. Collectively, these results demonstrate that noncoded and coded methionine substitutions can be accommodated in CaM because of the structural plasticity of the protein. However, adjustments in side-chain packing and dynamics lead to significant differences in protein stability and the thermodynamics of target binding. PMID:19217866
Ausar, Salvador F; Jayasundara, Kavisha; Akawi, Lamees; Roque, Cristopher; Sheung, Anthony; Hu, Jian; Kirkitadze, Marina; Rahman, Nausheen
2017-10-01
The pneumococcal histidine triad protein D (PhtD) is believed to play a central role in pneumococcal metal ion homeostasis and has been proposed as a promising vaccine candidate against pneumococcal disease. To investigate for potential stabilizers, a panel of physiologically relevant metals was screened using the thermal shift assay and it was found that only Zn 2+ and Mn 2+ were able to increase PhtD melting temperature. Differential scanning calorimetry analysis revealed a sequential unfolding of PhtD and the presence of at least 3 independent folding domains that can be stabilized by Zn 2+ and Mn 2+ . UV spectroscopy and fluorescence quenching studies showed significant Zn 2+ -induced tertiary structure changes in PhtD characterized by decreased accessibility of inner tryptophan residues to the aqueous solvent. Isothermal titration calorimetry data show no apparent binding to Mn 2+ but revealed a Zn 2+ :PhtD exothermic interaction stoichiometry of 3:1 with strong enthalpic contribution, suggesting that 3 of the 5 histidine triads are accessible binding sites for Zn 2+ . Only Zn +2 , but not Mn +2 , was able to increase the thermal stability of PhtD in the presence of aluminum hydroxide adjuvant, making it a promising stabilizer excipient candidate in vaccine products containing PhtD. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate.
Becker, Collin R; Currano, Luke J; Churaman, Wayne A; Stoldt, Conrad R
2010-11-01
Porous silicon (PS) films up to ∼150 μm thick with specific surface area similar to 700 m(2)/g and pore diameters similar to 3 nm are fabricated using a galvanic corrosion etching mechanism that does not require a power supply. After fabrication, the pores are impregnated with the strong oxidizer sodium perchlorate (NaClO(4)) to create a composite that constitutes a highly energetic system capable of explosion. Using bomb calorimetry, the heat of reaction is determined to be 9.9 ± 1.8 and 27.3 ± 3.2 kJ/g of PS when ignited under N(2) and O(2), respectively. Differential scanning calorimetry (DSC) reveals that the energy output is dependent on the hydrogen termination of the PS.
Exothermic low temperature sintering of Cu nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Jagjiwan; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw
2015-11-15
Sintering of the Cu nanoparticle at low temperatures resulted in exothermic behavior after its initiation. The calorimetry study of the heating of a 20 nm copper nanoparticles agglomerate revealed the evolution of 41.17 J/g of heat between 170 °C and 270 °C. High resolution transmission electron microscopy (HRTEM) images indicated that the heat generation was accompanied by sintering. The surface energy of the 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} based on the heat released during sintering. The in situ high resolution transmission electron microscope (HRTEM) investigation showed that vigorous sintering occurred betweenmore » 217 and 234 °C, which took place through the dislocation sintering mechanism. - Highlights: • Calorimetry showed exothermic behavior during heating of Cu nanoparticles between 170 and 270 °C. • Heat released due to the sintering of Cu nanoparticles was demonstrated by HRTEM. • Surface energy of 20 nm copper nanoparticles was estimated to be 1.23 × 10{sup 3} erg/cm{sup 2} during sintering. • Growth in crystallite sizes during sintering is disclosed by X-ray diffraction. • In situ HRTEM heating study showed occurrence of sintering through dislocation mechanism.« less
Yang, Qi; Yang, Guoli; Zhang, Wendou; Zhang, Sheng; Yang, Zhaohui; Xie, Gang; Wei, Qing; Chen, Sanping; Gao, Shengli
2017-07-06
A new solvent-free energetic MOF, [Pb(HBTI)] n (1) (H 3 BTI=4,5-bis(1H-tetrazole)-1H-imidazole), has been synthesized under hydrothermal and acidic conditions. It was characterized by elemental analysis, IR, thermogravimetric, differential scanning calorimetry (DSC) and SEM. Single crystal X-ray diffraction analysis revealed that 1 features a rigid 3D framework architecture free of solvent molecules. Thermal analysis demonstrated that the thermostability of 1 was up to 325 °C. Non-isothermal kinetic and apparent thermodynamic parameters of exothermic decomposition process of 1 were determined by Kissinger's and Ozawa's methods. Through oxygen-bomb combustion calorimetry, the standard molar enthalpy of formation of 1 was determined. The calculated detonation properties (heat of detonation, detonation velocity and detonation pressure) and sensitivity tests of 1 were carried out. In addition, 1 was explored as combustion promoter to accelerate the thermal decompositions of ammonium perchlorate (AP) by differential scanning calorimetry. Experimental results indicated that 1 possesses potential application prospects in the field of explosives and propellants. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Premkumar, Thathan; Govindarajan, Subbiah; Coles, Andrew E; Wight, Charles A
2005-04-07
The thermal decomposition kinetics of N(2)H(5)[Ce(pyrazine-2,3-dicarboxylate)(2)(H(2)O)] (Ce-P) have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), for the first time; TGA analysis reveals an oxidative decomposition process yielding CeO(2) as the final product with an activation energy of approximately 160 kJ mol(-1). This complex may be used as a precursor to fine particle cerium oxides due to its low temperature of decomposition.
Zhang, Xiaoping; Wang, Fang; Keer, Leon M.
2015-01-01
The objective of this study is to investigate the effect of surface treatment on the morphology and thermo-mechanical properties of bamboo fibers. The fibers are subjected to an alkali treatment using 4 wt % sodium hydroxide (NaOH) for 1 h. Mechanical measurements show that the present concentration has an insignificant effect on the fiber tensile strength. In addition, systematic experimental results characterizing the morphological aspects and thermal properties of the bamboo fibers are analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It is found that an alkali treatment may increase the effective surface area, which is in turn available for superior bonding with the matrix. Fourier transform infrared spectroscopy analysis reveals that the alkali treatment leads to a gradual removal of binding materials, such as hemicellulose and lignin from the bamboo fiber. A comparison of the curve of thermogravimetric analysis and differential scanning calorimetry for the treated and untreated samples is presented to demonstrate that the presence of treatment contributes to a better thermal stability for bamboo fibers. PMID:28793585
Baeten, Dorien; Mathot, Vincent B F; Pijpers, Thijs F J; Verkinderen, Olivier; Portale, Giuseppe; Van Puyvelde, Peter; Goderis, Bart
2015-06-01
An experimental setup, making use of a Flash DSC 1 prototype, is presented in which materials can be studied simultaneously by fast scanning calorimetry (FSC) and synchrotron wide angle X-ray diffraction (WAXD). Accumulation of multiple, identical measurements results in high quality, millisecond WAXD patterns. Patterns at every degree during the crystallization and melting of high density polyethylene at FSC typical scanning rates from 20 up to 200 °C s(-1) are discussed in terms of the temperature and scanning rate dependent material crystallinities and crystal densities. Interestingly, the combined approach reveals FSC thermal lag issues, for which can be corrected. For polyamide 11, isothermal solidification at high supercooling yields a mesomorphic phase in less than a second, whereas at very low supercooling crystals are obtained. At intermediate supercooling, mixtures of mesomorphic and crystalline material are generated at a ratio proportional to the supercooling. This ratio is constant over the isothermal solidification time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Temme, Susan M.
1995-01-01
Describes an exercise designed to be used in an Advanced Placement (AP) chemistry course to accompany the study of thermodynamics. Uses Differential Scanning Calorimetry in teaching the concepts of thermochemistry and thermodynamics. (JRH)
Methodological evaluation of indirect calorimetry data in lean and obese rats.
Rafecas, I; Esteve, M; Fernández-López, J A; Remesar, X; Alemany, M
1993-11-01
1. The applicability of current indirect calorimetry formulae to the study of energy and substrate balances on obese rats has been evaluated. The energy consumption of series of 60-day rats of Wistar, lean and obese Zucker stock were studied by means of direct and indirect calorimetry, and by establishing their energy balance through measurement of food intake and retention. Calorimetric studies encompassed a 24 h period, with gas and heat output measurements every 2 or 5 min, respectively, for direct and indirect calorimetry. 2. The analysis of fat composition (diet, whole rat, and synthesized and oxidized fat) showed only small variations that had only a limited effect on the overall energy equation parameters. 3. A gap in the nitrogen balance, which represents a urinary N excretion lower than the actual protein oxidized, resulted in significant deviations in the estimation of carbohydrate and lipid oxidized when using the equations currently available for indirect calorimetry. 4. Analysis of the amino acid composition of diet and rat protein as well as of the portion actually oxidized, and correcting for the nitrogen gap allowed the establishment of a set of equations that gave better coincidence of the calculated data with the measured substrate balance. 5. The measured heat output of all rats was lower than the estimated values calculated by means of either indirect calorimetry of direct energy balance measurement; the difference corresponded to the energy lost in water evaporation, and was in the range of one-fifth of total energy produced in the three rat stocks. 6. Wistar rats showed a biphasic circadian rhythm of substrate utilization, with alternate lipid synthesis/degradation that reversed that of carbohydrate, concordant with nocturnal feeding habits. Zucker rats did not show this rhythm; obese rats synthesized large amounts of fat during most of the light period, consuming fat at the end of the dark period, which suggests more diurnal feeding habits. Lean Zucker rats showed a similar, but less marked pattern. 7. The results obtained indicate that lean and obese rats can be studied using the same indirect calorimetry formulae provided that there is an adequate measure of protein oxidation and the composition of diet does not differ.
NASA Astrophysics Data System (ADS)
Wang, T. X.; Huang, W. M.
2017-12-01
The recent development in the temperature memory effect (TME) via differential scanning calorimetry in shape memory alloys is briefly discussed. This phenomenon was also called the thermal arrest memory effect in the literature. However, these names do not explicitly reveal the potential application of this phenomenon in temperature monitoring. On the other hand, the standard testing process of the TME has great limitation. Hence, it cannot be directly applied for temperature monitoring in most of the real engineering applications in which temperature fluctuation occurs mostly in a random manner within a certain range. However, as shown here, after proper modification, we are able to monitor the maximum or minimum temperature in either over-heating or over-cooling with reasonable accuracy.
Detectors for Linear Colliders: Calorimetry at a Future Electron-Positron Collider (3/4)
Thomson, Mark
2018-04-16
Calorimetry will play a central role in determining the physics reach at a future e+e- collider. The requirements for calorimetry place the emphasis on achieving an excellent jet energy resolution. The currently favoured option for calorimetry at a future e+e- collider is the concept of high granularity particle flow calorimetry. Here granularity and a high pattern recognition capability is more important than the single particle calorimetric response. In this lecture I will describe the recent progress in understanding the reach of high granularity particle flow calorimetry and the related R&D; efforts which concentrate on test beam demonstrations of the technological options for highly granular calorimeters. I will also discuss alternatives to particle flow, for example the technique of dual readout calorimetry.
Isoquinoline alkaloids and their binding with DNA: calorimetry and thermal analysis applications.
Bhadra, Kakali; Kumar, Gopinatha Suresh
2010-11-01
Alkaloids are a group of natural products with unmatched chemical diversity and biological relevance forming potential quality pools in drug screening. The molecular aspects of their interaction with many cellular macromolecules like DNA, RNA and proteins are being currently investigated in order to evolve the structure activity relationship. Isoquinolines constitute an important group of alkaloids. They have extensive utility in cancer therapy and a large volume of data is now emerging in the literature on their mode, mechanism and specificity of binding to DNA. Thermodynamic characterization of the binding of these alkaloids to DNA may offer key insights into the molecular aspects that drive complex formation and these data can provide valuable information about the balance of driving forces. Various thermal techniques have been conveniently used for this purpose and modern calorimetric instrumentation provides direct and quick estimation of thermodynamic parameters. Thermal melting studies and calorimetric techniques like isothermal titration calorimetry and differential scanning calorimetry have further advanced the field by providing authentic, reliable and sensitive data on various aspects of temperature dependent structural analysis of the interaction. In this review we present the application of various thermal techniques, viz. isothermal titration calorimetry, differential scanning calorimetry and optical melting studies in the characterization of drug-DNA interactions with particular emphasis on isoquinoline alkaloid-DNA interaction.
Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.
Kim, Do-Yeon; Robergs, Robert Andrew
2012-02-01
Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC.
Study of picrate salts with amines
NASA Astrophysics Data System (ADS)
Goel, Nidhi; Singh, Udai P.; Singh, Gurdip; Srivastava, Pratibha
2013-03-01
The reaction of picric acid (2,4,6-trinitrophenol) with amines [urea, cyclohexane-1,2-diamine, 1H-1,2,4-triazole-3,5-diamine, 6-phenyl-1,3.5-triazine-2,4-diamine] yielded the corresponding picrate salts 1-4. Theoretical studies reveal that the hydrogen-bond interaction energy decreases on increasing the steric hindrance in amines. The solid state structure of compounds 1-4 was measured by X-ray techniques and compared to the gas phase optimized geometries (DFT/B3LYP). Thermal stability of these salts has been studied by means of thermogravimetric-differential scanning calorimetry (TG-DSC) while kinetic parameters have been evaluated using models fitting and isoconversional methods. Thermolytic pathways have also been suggested.
Sarpietro, Maria Grazia; Giuffrida, Maria Chiara; Ottimo, Sara; Micieli, Dorotea; Castelli, Francesco
2011-04-25
Three coumarins, scopoletin (1), esculetin (2), and esculin (3), were investigated by differential scanning calorimetry and Langmuir-Blodgett techniques to gain information about the interaction of these compounds with cellular membranes. Phospholipids assembled as multilamellar vesicles or monolayers (at the air-water interface) were used as biomembrane models. Differential scanning calorimetry was employed to study the interaction of these coumarins with multilamellar vesicles and to evaluate their absorption by multilamellar vesicles. These experiments indicated that 1-3 interact in this manner to different extents. The Langmuir-Blodgett technique was used to study the effect of these coumarins on the organization of phospholipids assembled as a monolayer. The data obtained were in agreement with those obtained in the calorimetric experiments.
Differential Binding Models for Direct and Reverse Isothermal Titration Calorimetry.
Herrera, Isaac; Winnik, Mitchell A
2016-03-10
Isothermal titration calorimetry (ITC) is a technique to measure the stoichiometry and thermodynamics from binding experiments. Identifying an appropriate mathematical model to evaluate titration curves of receptors with multiple sites is challenging, particularly when the stoichiometry or binding mechanism is not available. In a recent theoretical study, we presented a differential binding model (DBM) to study calorimetry titrations independently of the interaction among the binding sites (Herrera, I.; Winnik, M. A. J. Phys. Chem. B 2013, 117, 8659-8672). Here, we build upon our DBM and show its practical application to evaluate calorimetry titrations of receptors with multiple sites independently of the titration direction. Specifically, we present a set of ordinary differential equations (ODEs) with the general form d[S]/dV that can be integrated numerically to calculate the equilibrium concentrations of free and bound species S at every injection step and, subsequently, to evaluate the volume-normalized heat signal (δQ(V) = δq/dV) of direct and reverse calorimetry titrations. Additionally, we identify factors that influence the shape of the titration curve and can be used to optimize the initial concentrations of titrant and analyte. We demonstrate the flexibility of our updated DBM by applying these differentials and a global regression analysis to direct and reverse calorimetric titrations of gadolinium ions with multidentate ligands of increasing denticity, namely, diglycolic acid (DGA), citric acid (CIT), and nitrilotriacetic acid (NTA), and use statistical tests to validate the stoichiometries for the metal-ligand pairs studied.
Krouská, J; Pekař, M; Klučáková, M; Šarac, B; Bešter-Rogač, M
2017-02-10
The thermodynamics of the micelle formation of the cationic surfactants tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) with and without the addition of hyaluronan of two molecular weights was studied in aqueous solution by titration calorimetry. Macroscopic phase separation, which was detected by calorimetry and also by conductometry, occurs when charges on the surfactant and hyaluronan are balanced. In contrast, turbidimetry and potentiometry showed hyaluronan-surfactant interactions at very low surfactant concentrations. The observed differences between systems prepared with CTAB and TTAB indicate that besides the electrostatic interactions, which probably predominate, hydrophobic effects also play a significant role in hyaluronan interactions with cationic surfactants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Accelerating rate calorimetry: A new technique for safety studies in lithium systems
NASA Technical Reports Server (NTRS)
Ebner, W. B.
1982-01-01
The role of exothermic reactions in battery test modes is discussed. The exothermic reactions are characterized with respect to their time-temperature and time-pressure behavior. Reactions occuring for any major exotherm were examined. The accelerating rate calorimetry methods was developed to study lithium cells susceptibility to thermal runaway reactions following certain abuse modes such as forced discharge into reversal and charging.
Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P; Ke, Ailong
2012-10-19
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5'-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg(2+) or Mn(2+)), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1-α1 loop.
Thermally-prepared polymorphic forms of cilostazol.
Stowell, Grayson W; Behme, Robert J; Denton, Stacy M; Pfeiffer, Inigo; Sancilio, Frederick D; Whittall, Linda B; Whittle, Robert R
2002-12-01
Prior to this study, cilostazol, an antithrombotic drug, was thought to exist as a single crystalline phase with a melting point of approximately 159 degrees C (Form A). On cooling, melts often form a glass that, when heated, may crystallize as additional crystalline polymorphic forms. Cilostazol, when reheated, subsequently forms polymorphs that melt at approximately 136 degrees C (Form B) and 146 degrees C (Form C). Free-energy temperature diagrams estimated from calorimetry data reveal that each pair of the cilostazol polymorphs (A-B, B-C, and A-C) is monotropic. Essentially pure samples of suitable crystalline shape and size permitted single crystal structural analysis of Forms A and C. Theoretical solubility ratios calculated using calorimetry data indicate that at 37 degrees C, Form B should be more than four times more soluble and Form C should be more than two times more soluble than Form A. Forms B and C could not be crystallized from solvents. Metastable forms from super cooled melts analyzed by intrinsic dissolution and Fourier transform-Raman experiments demonstrated that Forms B and C undergo a rapid, solvent-mediated recrystallization to Form A, making dissolution rate measurements difficult. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2481-2488, 2002
Fast Scanning Calorimetry Studies of Supercooled Liquids and Glasses
NASA Astrophysics Data System (ADS)
Bhattacharya, Deepanjan
This dissertation is a compilation of research results of extensive Fast Scanning Calorimetry studies of two non-crystalline materials: Toluene and Water. Motivation for fundamental studies of non-crystalline phases, a brief overview of glassy materials and concepts and definitions related to them is provided in Chapter 1. Chapter 2 provides fundamentals and details of experimental apparata, experimental protocol and calibration procedure. Chapter 3 & 4 provides extensive studies of stable non-crystalline toluene films of micrometer and nanometer thicknesses grown by vapor deposition at distinct deposition rates and temperatures and probed by Fast Scanning Calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor -deposited samples of toluene during heating with rates in excess 100,000 K/s follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics correlates with the surface roughness scale of the substrate, which is interpreted as evidence for kinetic anisotropy of the samples. We also show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited (VD) films of toluene are distinct from those of ordinary supercooled (OS) phase even when the deposition takes place at temperatures above the glass softening (Tg). The implications of these findings for the formation mechanism and structure of vapor deposited stable glasses are discussed. Chapter 5 and 6 provide detailed Fast Scanning Calorimetry studies of amorphous solid water in bulk and confining geometry (ultrathin films and nano-aggregates). Bulk-like water samples were prepared by vapor-deposition on the surface of a tungsten filament near 140 K where vapor-deposition results in low enthalpy glassy water films. The vapor deposition approach was also used to grow nano-aggregates (2- 20 nm thick) and multiple ultrathin (approximately 50 nm thick) water films alternated with benzene and methanoic films of similar dimensions. When heated from cryogenic temperatures, the ultrathin water films underwent a well manifested glass softening transition at temperatures 20 degrees below the onset of crystallization. The thermograms of nano-aggregates of ASW films show two endotherms at 40 and 10 K below the onset temperatures of crystallization. However, no such transition was observed in bulk-like water samples prior to their crystallization. These results indicate that water in confined geometry demonstrates glass softening dynamics which are dramatically distinct from those of the bulk phase. We attribute these differences to water's interfacial glass transition which occurs at temperatures tens of degrees lower than that in the bulk. Implications of these finding for past studies of glass softening dynamics in various glassy water samples are discussed in chapter 5 and 6.
1986-10-01
units and an aliphatic spacer containing eleven and respectively, ten methylene units were synthesized. Their phase behavior was studied by differential...scanning calorimetry and optical polarization microscopy, and compared with the phase behavior of the polysiloxanes and copolysiloxanes containing 4...containing eleven and respectively, ten methylene -units were synthesized. Their phase behavior was studied by differential * scanning calorimetry
Experimental Techniques for Thermodynamic Measurements of Ceramics
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Putnam, Robert L.; Navrotsky, Alexandra
1999-01-01
Experimental techniques for thermodynamic measurements on ceramic materials are reviewed. For total molar quantities, calorimetry is used. Total enthalpies are determined with combustion calorimetry or solution calorimetry. Heat capacities and entropies are determined with drop calorimetry, differential thermal methods, and adiabatic calorimetry . Three major techniques for determining partial molar quantities are discussed. These are gas equilibration techniques, Knudsen cell methods, and electrochemical techniques. Throughout this report, issues unique to ceramics are emphasized. Ceramic materials encompass a wide range of stabilities and this must be considered. In general data at high temperatures is required and the need for inert container materials presents a particular challenge.
Bharmoria, Pankaj; Kumar, Arvind
2016-05-01
While a number of reports appear on ionic liquids-proteins interactions, their thermodynamic behaviour using suitable technique like isothermal titration calorimetry is not systematically presented. Isothermal titration calorimetry (ITC) is a key technique which can directly measure the thermodynamic contribution of IL binding to protein, particularly the enthalpy, heat capacities and binding stoichiometry. Ionic liquids (ILs), owing to their unique and tunable physicochemical properties have been the central area of scientific research besides graphene in the last decade, and growing unabated. Their encounter with proteins in the biological system is inevitable considering their environmental discharge though most of them are recyclable for a number of cycles. In this article we will cover the thermodynamics of proteins upon interaction with ILs as osmolyte and surfactant. The up to date literature survey of IL-protein interactions using isothermal titration calorimetry will be discussed and parallel comparison with the results obtained for such studies with other techniques will be highlighted to demonstrate the accuracy of ITC technique. Net stability of proteins can be obtained from the difference in the free energy (ΔG) of the native (folded) and denatured (unfolded) state using the Gibbs-Helmholtz equation (ΔG=ΔH-TΔS). Isothermal titration calorimetry can directly measure the heat changes upon IL-protein interactions. Calculation of other thermodynamic parameters such as entropy, binding constant and free energy depends upon the proper fitting of the binding isotherms using various fitting models. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of Sn addition on glassy Si-Te bulk sample
NASA Astrophysics Data System (ADS)
Babanna, Jagannatha K.; Roy, Diptoshi; Varma, Sreevidya G.; Asokan, Sundarrajan; Das, Chandasree
2018-05-01
Bulk Si20Te79Sn1 glass is prepared by melt-quenching method, amorphous nature of the as-quenched glass is confirmed by XRD. I-V characteristics reveals that Si20Te79Sn1 bulk sample exhibits threshold type electrical switching behavior. The thermal parameters such as crystallization temperature, glass transition temperature are obtained using differential scanning calorimetry. The crystalline peak study of the sample annealed at crystallization temperature for 2 hr shows that the Sn atom interact with Si or Te but do not interact with the Si-Te matrix in a greater extent and it forms a separate phase network individually.
Atomistic Model of Physical Ageing in Se-rich As-Se Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovchak,R.; Shpotyuk, O.; Kozdras, A.
2007-01-01
Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.
Accuracy and Precision in Measurements of Biomass Oxidative Ratio and Carbon Oxidation State
NASA Astrophysics Data System (ADS)
Gallagher, M. E.; Masiello, C. A.; Randerson, J. T.; Chadwick, O. A.; Robertson, G. P.
2007-12-01
Ecosystem oxidative ratio (OR) is a critical parameter in the apportionment of anthropogenic CO2 between the terrestrial biosphere and ocean carbon reservoirs. OR is the ratio of O2 to CO2 in gas exchange fluxes between the terrestrial biosphere and atmosphere. Ecosystem OR is linearly related to biomass carbon oxidation state (Cox), a fundamental property of the earth system describing the bonding environment of carbon in molecules. Cox can range from -4 to +4 (CH4 to CO2). Variations in both Cox and OR are driven by photosynthesis, respiration, and decomposition. We are developing several techniques to accurately measure variations in ecosystem Cox and OR; these include elemental analysis, bomb calorimetry, and 13C nuclear magnetic resonance spectroscopy. A previous study, comparing the accuracy and precision of elemental analysis versus bomb calorimetry for pure chemicals, showed that elemental analysis-based measurements are more accurate, while calorimetry- based measurements yield more precise data. However, the limited biochemical range of natural samples makes it possible that calorimetry may ultimately prove most accurate, as well as most cost-effective. Here we examine more closely the accuracy of Cox and OR values generated by calorimetry on a large set of natural biomass samples collected from the Kellogg Biological Station-Long Term Ecological Research (KBS-LTER) site in Michigan.
Huang, Rixiang; Lau, Boris L T
2016-05-01
Nanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction. This review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed. ITC reveals the driving forces behind biomolecule-NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule-NP interactions. The thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule-NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Providing an energy supplement to cattle grazing high-quality wheat pasture can increase average daily gain; however the effects on greenhouse gas emissions are not known. Therefore we used 10 British cross-bred steers (initial weight: 206 ± 10.7 kg) in a respiration calorimetry study to evaluate t...
An evaluation: The potential of discarded tires as a source of fuel
NASA Technical Reports Server (NTRS)
Collins, L. W.; Downs, W. R.; Gibson, E. K.; Moore, G. W.
1974-01-01
The destructive distillation of rubber tire samples was studied by thermogravimetry, differential scanning calorimetry, combustion calorimetry, and mass spectroscopy. The decomposition reaction was found to be exothermic and produced a mass loss of 65 percent. The gas evolution curves that were obtained indicate that a variety of organic materials are evolved simultaneously during the decomposition of the rubber polymer.
NASA Astrophysics Data System (ADS)
Harrold, Zoë R.; Gorman-Lewis, Drew
2013-05-01
Bacterial proton and metal adsorption reactions have the capacity to affect metal speciation and transport in aqueous environments. We coupled potentiometric titration and isothermal titration calorimetry (ITC) analyses to study Bacillus subtilis spore-proton adsorption. We modeled the potentiometric data using a four and five-site non-electrostatic surface complexation model (NE-SCM). Heats of spore surface protonation from coupled ITC analyses were used to determine site specific enthalpies of protonation based on NE-SCMs. The five-site model resulted in a substantially better model fit for the heats of protonation but did not significantly improve the potentiometric titration model fit. The improvement observed in the five-site protonation heat model suggests the presence of a highly exothermic protonation reaction circa pH 7 that cannot be resolved in the less sensitive potentiometric data. From the log Ks and enthalpies we calculated corresponding site specific entropies. Log Ks and site concentrations describing spore surface protonation are statistically equivalent to B. subtilis cell surface protonation constants. Spore surface protonation enthalpies, however, are more exothermic relative to cell based adsorption suggesting a different bonding environment. The thermodynamic parameters defined in this study provide insight on molecular scale spore-surface protonation reactions. Coupled ITC and potentiometric titrations can reveal highly exothermic, and possibly endothermic, adsorption reactions that are overshadowed in potentiometric models alone. Spore-proton adsorption NE-SCMs derived in this study provide a framework for future metal adsorption studies.
Inhibition of 53BP1: Potential for Restoring Homologous Recombination In Ovarian Cancer Cells
2017-08-01
crystallography ; NMR spectroscopy; Calorimetry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE...ray crystallography ; NMR spectroscopy; Calorimetry 3. ACCOMPLISHMENTS: The PI is reminded that the recipient organization is required to obtain...originally planned. Each aim combines structural studies using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy and functional
Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P
2006-08-10
Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.
Nam, Ki Hyun; Ding, Fran; Haitjema, Charles; Huang, Qingqiu; DeLisa, Matthew P.; Ke, Ailong
2012-01-01
The CRISPR (clustered regularly interspaced short palindromic repeats) system is a prokaryotic RNA-based adaptive immune system against extrachromosomal genetic elements. Cas2 is a universally conserved core CRISPR-associated protein required for the acquisition of new spacers for CRISPR adaptation. It was previously characterized as an endoribonuclease with preference for single-stranded (ss)RNA. Here, we show using crystallography, mutagenesis, and isothermal titration calorimetry that the Bacillus halodurans Cas2 (Bha_Cas2) from the subtype I-C/Dvulg CRISPR instead possesses metal-dependent endonuclease activity against double-stranded (ds)DNA. This activity is consistent with its putative function in producing new spacers for insertion into the 5′-end of the CRISPR locus. Mutagenesis and isothermal titration calorimetry studies revealed that a single divalent metal ion (Mg2+ or Mn2+), coordinated by a symmetric Asp pair in the Bha_Cas2 dimer, is involved in the catalysis. We envision that a pH-dependent conformational change switches Cas2 into a metal-binding competent conformation for catalysis. We further propose that the distinct substrate preferences among Cas2 proteins may be determined by the sequence and structure in the β1–α1 loop. PMID:22942283
Hydrogen-bonding A(LS)2-type low-molecular-mass gelator and its thermotropic mesomorphic behavior.
Hou, Qiufei; Wang, Shichao; Zang, Libin; Wang, Xiaoliang; Jiang, Shimei
2009-10-15
A unique cholesterol-based A(LS)2-type gelator, which is a hydrogen-bonding complex based on an ALS-type non-gelator molecule 3-cholesteryl 4-(trans-2-(4-pyridinyl)vinyl)phenyl succinate and a counterpart 3-cholesteryloxycarbonylpropanoic acid, shows strong gelation ability in alcohol and aromatic solvents. The formed gel has a high Tg at low gelation concentration, and its xerogel shows fibrillar microstructure revealed by scanning electron microscopy (SEM). FTIR confirms the existence of intermolecular hydrogen bond in the gelator, and X-ray diffraction (XRD) analysis reveals that the gelator possesses a folded conformation in gel and self-assembles into the fibrillar structure mainly by van der Waals interaction between cholesteryl moieties of the gelator. Further more, the thermotropic behavior of the xerogel is studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), which shows typical optical textures of liquid crystals.
Perry, Jennifer L; Goldsmith, Michael R; Williams, T Richard; Radack, Kyle P; Christensen, Trine; Gorham, Justin; Pasquinelli, Melissa A; Toone, Eric J; Beratan, David N; Simon, John D
2006-01-01
Sudlow Site I of human serum albumin (HSA) is located in subdomain IIA of the protein and serves as a binding cavity for a variety of ligands. In this study, the binding of warfarin (W) is examined using computational techniques and isothermal titration calorimetry (ITC). The structure of the docked warfarin anion (W-) to Site I is similar to that revealed by X-ray crystallography, with a calculated binding constant of 5.8 x 10(5) M(-1). ITC experiments (pH 7.13 and I = 0.1) carried out in three different buffers (MOPs, phosphate and Tris) reveal binding of W- is accompanied by uptake of 0.30+/-0.02 protons from the solvent. This measurement suggests that the binding of W- is stabilized by an ion-pair interaction between protonated H242 and the phenoxide group of W-.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batista, Adriana S.M.; Gual, Maritza R.; Faria, Luiz O.
Poly(vinylidene fluoride) homopolymers [PVDF] homopolymers were irradiated with gamma doses ranging from 0.5 to 2.75 MGy. Differential scanning calorimetry (DSC) and FTIR spectrometry were used in order to study the effects of gamma radiation in the amorphous and crystalline polymer structures. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. The melting latent heat (LM) measuredmore » by DSC was used to construct an unambiguous relationship with the delivered dose. Regression analyses revealed that the best mathematical function that fits the experimental calibration curve is a 4-degree polynomial function, with an adjusted Rsquare of 0.99817. (authors)« less
Effect of dissolved oxygen level of water on ultrasonic power measured using calorimetry
NASA Astrophysics Data System (ADS)
Uchida, Takeyoshi; Yoshioka, Masahiro; Horiuchi, Ryuzo
2018-07-01
Ultrasonic therapeutic equipment, which exposes the human body to high-power ultrasound, is used in clinical practice to treat cancer. However, the safety of high-power ultrasound has been questioned because the equipment affects not only cancer cells but also normal cells. To evaluate the safety of ultrasound, it is necessary to accurately measure the ultrasonic power of the equipment. This is because ultrasonic power is a key quantity related to the thermal hazard of ultrasound. However, precise techniques for measuring ultrasonic power in excess of 15 W are yet to be established. We have been studying calorimetry as a precise measurement technique. In this study, we investigated the effect of the dissolved oxygen (DO) level of water on ultrasonic power by calorimetry. The results show that the measured ultrasonic power differed significantly between water samples of different DO levels. This difference in ultrasonic power arose from acoustic cavitation.
Synthesis, Characterization, and Theoretical Considerations of 1,2-bis(oxyamino)ethane Salts
NASA Technical Reports Server (NTRS)
Crake, Greg; Hawkins, Tom; Hall, Leslie; Tollison, Kerri; Brand, Adam
2003-01-01
The synthesis, characterization, theoretical calculations, and safety studies of energetic salts of 1,2- bis(oxyamino) ethane, (H2N-O-CH2-CH2-O-NH2), were carried out. The salts were characterized by vibrational (infrared, Raman), multinuclear nmr studies (1H, 13C), differential scanning calorimetry (DSC); elemental analysis; and initial safety testing (impact and friction sensitivity) . Theoretical calculations on the neutral, monoprotonated, and doubly protonated species of ethylene bisoxyamine were carried out using xxxx level of theory for the lowest energy structure and these theoretical results compared with the experimentally observed bond distances and vibrational (ir, Raman) frequency values. The single crystal X-ray diffraction study was carried out on the mono-perchlorate salt revealing a high degree of hydrogen bonding with an unexpected structure.
NASA Astrophysics Data System (ADS)
Mirzayev, Matlab N.; Mehdiyeva, Ravan N.; Garibov, Ramin G.; Ismayilova, Narmin A.; Jabarov, Sakin H.
2018-05-01
In this study, compounds of B6Si were irradiated using a 60Co gamma source that have an energy line of 1.25 MeV at the absorbed dose rates from 14.6 kGy to 194.4 kGy. Surface morphology images of the sample obtained by Scanning Electron Microscope (SEM) show that the crystal structure at a high absorbed doses (D ≥ 145.8kGy) starts to be destroyed. X-ray diffraction studies revealed that with increasing radiation absorption dose, the spectrum intensity of the sample was decreased 1.96 times compared with the initial value. Thermal properties were studied by Differential scanning calorimetry (DSC) method in the temperature range of 30-1000∘C.
NASA Astrophysics Data System (ADS)
Prokhorov, K. A.; Nikolaeva, G. Yu; Sagitova, E. A.; Pashinin, P. P.; Guseva, M. A.; Shklyaruk, B. F.; Gerasin, V. A.
2018-04-01
We report a Raman structural study of melt-mixed blends of isotactic polypropylene with two grades of polyethylene: linear high-density and branched low-density polyethylenes. Raman methods, which had been suggested for the analysis of neat polyethylene and isotactic polypropylene, were modified in this study for quantitative analysis of polyethylene/polypropylene blends. We revealed the dependence of the degree of crystallinity and conformational composition of macromolecules in the blends on relative content of the blend components and preparation conditions (quenching or annealing). We suggested a simple Raman method for evaluation of the relative content of the components in polyethylene/polypropylene blends. The degree of crystallinity of our samples, evaluated by Raman spectroscopy, is in good agreement with the results of analysis by differential scanning calorimetry.
Basu, Anirban; Suresh Kumar, Gopinatha
2016-11-15
Interaction of the food colorant tartrazine with human hemoglobin was studied using multispectroscopic and microcalorimetric techniques to gain insights into the binding mechanism and thereby the toxicity aspects. Hemoglobin spectrum showed hypochromic changes in the presence of tartrazine. Quenching of the fluorescence of hemoglobin occurred and the quenching mechanism was through a static mode as revealed from temperature dependent and time-resolved fluorescence studies. According to the FRET theory the distance between β-Trp37 of hemoglobin and bound tartrazine was evaluated to be 3.44nm. Synchronous fluorescence studies showed that tartrazine binding led to alteration of the microenvironment around the tryptophans more in comparison to tyrosines. 3D fluorescence and FTIR data provided evidence for conformational changes in the protein on binding. Circular dichroism studies revealed that the binding led to significant loss in the helicity of hemoglobin. The esterase activity assay further complemented the circular dichroism data. Microcalorimetric study using isothermal titration calorimetry revealed the binding to be exothermic and driven largely by positive entropic contribution. Dissection of the Gibbs energy change proposed the protein-dye complexation to be dominated by non-polyelectrolytic forces. Negative heat capacity change also corroborated the involvement of hydrophobic forces in the binding process. Copyright © 2016 Elsevier B.V. All rights reserved.
2012-01-01
Background Superoxide generated by non-phagocytic NADPH oxidases (NOXs) is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD) of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD) and its calcium-binding knockout mutants. Results The isothermal titration calorimetry measurement for NCaBD reveals that the calcium binding of two EF-hands are loosely associated with each other and can be treated as independent binding events. However, the Ca2+ binding studies on NCaBD(E31Q) and NCaBD(E63Q) showed their binding constants to be 6.5 × 105 and 5.0 × 102 M-1 with ΔHs of -14 and -4 kJ/mol, respectively, suggesting that intrinsic calcium binding for the 1st non-canonical EF-hand is largely enhanced by the binding of Ca2+ to the 2nd canonical EF-hand. The fluorescence quenching and CD spectra support a conformational change upon Ca2+ binding, which changes Trp residues toward a more non-polar and exposed environment and also increases its α-helix secondary structure content. All measurements exclude Mg2+-binding in NCaBD. Conclusions We demonstrated that the 1st non-canonical EF-hand of NOX5 has very weak Ca2+ binding affinity compared with the 2nd canonical EF-hand. Both EF-hands interact with each other in a cooperative manner to enhance their Ca2+ binding affinity. Our characterization reveals that the two EF-hands in the N-terminal NOX5 are Ca2+ specific. Graphical abstract PMID:22490336
Reversible phase transition in vanadium oxide films sputtered on metal substrates
NASA Astrophysics Data System (ADS)
Palai, Debajyoti; Carmel Mary Esther, A.; Porwal, Deeksha; Pradeepkumar, Maurya Sandeep; Raghavendra Kumar, D.; Bera, Parthasarathi; Sridhara, N.; Dey, Arjun
2016-11-01
Vanadium oxide films, deposited on aluminium (Al), titanium (Ti) and tantalum (Ta) metal substrates by pulsed RF magnetron sputtering at a working pressure of 1.5 x10-2 mbar at room temperature are found to display mixed crystalline vanadium oxide phases viz., VO2, V2O3, V2O5. The films have been characterized by field-emission scanning electron microscopy, X-ray diffraction, differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy, and their thermo-optical and electrical properties have been investigated. Studies of the deposited films by DSC have revealed a reversible-phase transition found in the temperature range of 45-49 °C.
Chatterjee, Sabyasachi; Kumar, Gopinatha Suresh
2016-06-01
The molecular interaction between hemoglobin (HHb), the major human heme protein, and the acridine dyes acridine orange (AO) and 9-aminoacridine (9AA) was studied by various spectroscopic, calorimetric and molecular modeling techniques. The dyes formed stable ground state complex with HHb as revealed from spectroscopic data. Temperature dependent fluorescence data showed the strength of the dye-protein complexation to be inversely proportional to temperature and the fluorescence quenching was static in nature. The binding-induced conformational change in the protein was investigated using circular dichroism, synchronous fluorescence, 3D fluorescence and FTIR spectroscopy results. Circular dichroism data also quantified the α-helicity change in hemoglobin due to the binding of acridine dyes. Calorimetric studies revealed the binding to be endothermic in nature for both AO and 9AA, though the latter had higher affinity, and this was also observed from spectroscopic data. The binding of both dyes was entropy driven. pH dependent fluorescence studies revealed the existence of electrostatic interaction between the protein and dye molecules. Molecular modeling studies specified the binding site and the non-covalent interactions involved in the association. Overall, the results revealed that a small change in the acridine chromophore leads to remarkable alteration in the structural and thermodynamic aspects of binding to HHb. Copyright © 2016 Elsevier B.V. All rights reserved.
Differential scanning calorimetry of coal
NASA Technical Reports Server (NTRS)
Gold, P. I.
1978-01-01
Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.
Li, K; Zhao, Y Y; Kang, Z L; Wang, P; Han, M Y; Xu, X L; Zhou, G H
2015-01-01
The objectives of this study were to evaluate protein thermal stability, water-protein interaction, microstructure, and protein conformation between PSE-like and normal chicken breast meat batters. Sixty pale, soft, and exudative (PSE)-like (L*>53, pH24 h<5.7) and 60 normal (46
Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience
Gill, Pooria; Moghadam, Tahereh Tohidi; Ranjbar, Bijan
2010-01-01
This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience. PMID:21119929
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porebski, Przemyslaw J.; Klimecka, Maria; Chruszcz, Maksymilian
2012-07-11
Dethiobiotin synthetase (DTBS) is involved in the biosynthesis of biotin in bacteria, fungi, and plants. As humans lack this pathway, DTBS is a promising antimicrobial drug target. We determined structures of DTBS from Helicobacter pylori (hpDTBS) bound with cofactors and a substrate analog, and described its unique characteristics relative to other DTBS proteins. Comparison with bacterial DTBS orthologs revealed considerable structural differences in nucleotide recognition. The C-terminal region of DTBS proteins, which contains two nucleotide-recognition motifs, differs greatly among DTBS proteins from different species. The structure of hpDTBS revealed that this protein is unique and does not contain a C-terminalmore » region containing one of the motifs. The single nucleotide-binding motif in hpDTBS is similar to its counterpart in GTPases; however, isothermal titration calorimetry binding studies showed that hpDTBS has a strong preference for ATP. The structural determinants of ATP specificity were assessed with X-ray crystallographic studies of hpDTBS-ATP and hpDTBS-GTP complexes. The unique mode of nucleotide recognition in hpDTBS makes this protein a good target for H. pylori-specific inhibitors of the biotin synthesis pathway.« less
NASA Astrophysics Data System (ADS)
Veena, G.; Lobo, Blaise
2018-04-01
Potassium permanganate (KMnO4) doped polyvinyl alcohol (PVA) - polyvinyl pyrrolidone (PVP) blend films were prepared by solution casting technique, in the doping range varying from 0.01 wt % up to 4.70 wt %. The microstructural changes caused by doping, and the modified properties of these films were studied using Atomic Force Microscope (AFM) and temperature dependent direct current (DC) electrical measurements. Temperature variation of electrical resistivity was found to obey Arrhenius relation, from which activation energy was determined. The study was supported by AFM scans, which showed an increase in surface roughness and the presence of spike-like structures, due to interaction of dopant with the polymeric blend. Differential Scanning Calorimetry (DSC) scans revealed two stages of degradation in KMnO4 doped PVA - PVP blend films.
Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipton, R.
2013-01-01
Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less
Sun, Lijun; Gidley, Michael J.
2017-01-01
Scope This study aims to use a combination of biochemical and biophysical methods to derive greater mechanistic understanding of the interactions between tea polyphenols and porcine pancreatic α‐amylase (PPA). Methods and results The interaction mechanism was studied through fluorescence quenching (FQ), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) and compared with inhibition kinetics. The results showed that a higher quenching effect of polyphenols corresponded to a stronger inhibitory activity against PPA. The red‐shift of maximum emission wavelength of PPA bound with some polyphenols indicated a potential structural unfolding of PPA. This was also suggested by the decreased thermostability of PPA with these polyphenols in DSC thermograms. Through thermodynamic binding analysis of ITC and inhibition kinetics, the equilibrium of competitive inhibition was shown to result from the binding of particularly galloylated polyphenols with specific sites on PPA. There were positive linear correlations between the reciprocal of competitive inhibition constant (1/K ic), quenching constant (K FQ) and binding constant (K itc). Conclusion The combination of inhibition kinetics, FQ, DSC and ITC can reasonably characterize the interactions between tea polyphenols and PPA. The galloyl moiety is an important group in catechins and theaflavins in terms of binding with and inhibiting the activity of PPA. PMID:28618113
Development of Resistive Micromegas for Sampling Calorimetry
NASA Astrophysics Data System (ADS)
Geralis, T.; Fanourakis, G.; Kalamaris, A.; Nikas, D.; Psallidas, A.; Chefdeville, M.; Karyotakis, I.; Koletsou, I.; Titov, M.
2018-02-01
Resistive micromegas is proposed as an active element for sampling calorimetry. Future linear collider experiments or the HL-LHC experiments can profit from those developments for Particle Flow Calorimetry. Micromegas possesses remarkable properties concerning gain stability, reduced ion feedback, response linearity, adaptable sensitive element granularity, fast response and high rate capability. Recent developments on Micromegas with a protective resistive layer present excellent results, resolving the problem of discharges caused by local high charge deposition, thanks to its RC-slowed charge evacuation. Higher resistivity though, may cause loss of the response linearity at high rates. We have scanned a wide range of resistivities and performed laboratory tests with X-rays that demonstrate excellent response linearity up to rates of (a few) times 10MHz/cm2, with simultaneous mitigation of discharges. Beam test studies at SPS/CERN with hadrons have also shown a remarkable stability of the resistive Micromegas and low currents for rates up to 15MHz/cm2. We present results from the aforementioned studies confronted with MC simulation
Gaba, Ann; Zhang, Kuan; Moskowitz, Carol B; Boozer, Carol N; Marder, Karen
2008-10-01
Weight loss and energy metabolism are important clinical research areas in understanding the disease mechanisms in Huntington's disease. Having an accurate method to estimate expected total energy expenditure would likely facilitate the development of studies about these features of the disease. The Harris-Benedict equation is a formula commonly used to estimate basal energy expenditure of individuals, adjusted for height, weight, age and gender. This estimate is then multiplied by a physical activity factor to estimate total daily energy needs to maintain the given weight. Data from 24-h indirect calorimetry was utilized to derive an adjustment formula for the physical activity factor of the Harris-Benedict equation for 13 early to mid-stage Huntington's disease patients. The adjusted activity factor provided the most accurate estimate of energy needs. This adjusted formula can be used in clinical assessments of Huntington's disease patients, as well as in research studies when indirect calorimetry has not been performed.
NASA Astrophysics Data System (ADS)
Tiras, E.; Dilsiz, K.; Ogul, H.; Southwick, D.; Bilki, B.; Wetzel, J.; Nachtman, J.; Onel, Y.; Winn, D.
2016-10-01
Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes have been characterized for use in a Secondary Emission (SE) Ionization Calorimetry study. SE Ionization Calorimetry is a novel technique to measure electromagnetic shower particles in extreme radiation environments. The different operation modes used in these tests were developed by modifying the conventional PMT bias circuit. These modifications were simple changes to the arrangement of the voltage dividers of the baseboard circuits. The PMTs with modified bases, referred to as operating in SE mode, are used as an SE detector module in an SE calorimeter prototype, and placed between absorber materials (Fe, Cu, Pb, W, etc.). Here, the technical design of different operation modes, as well as the characterization measurements of both SE modes and the conventional PMT mode are reported.
Oakes, Jesse; Nguyen, Tina; Britt, B Mark
2003-06-01
Ellman's method was used to determine the Michaelis-Menten parameters for the hydrolysis of acetylthiocholine by Electrophorus electricus acetylcholinesterase from 12 to 37 degrees C. Arrhenius analysis revealed that the activation energy for formation of the enzyme/substrate complex is 22.2 +/- 1.1 kJ/mole. The Arrhenius plot of k(cat) is markedly curved and attributed to comparable rates of acylation and deacylation due to the absence of evidence for a temperature-dependent enzyme conformational change by differential scanning calorimetry.
1989-06-09
revealed by differential scanning calorimetry. However, films of these polymers were not birefringent when viewed between crossed polarizers. Reports...C to 57*C. We intepret this to mean that the rigidity of the poly- mer and the intermolecular interactions are dominated by the one p-phenylphenoxy...of polymers 1-40 were measured at )-632nm using a modified critical angle method 32 (Figure 3). Films of the polymers were cast on one surface of a
Interaction of thionine with triple-, double-, and single-stranded RNAs.
Lozano, Héctor J; García, Begoña; Busto, Natalia; Leal, José M
2013-01-10
The interaction of thionine with triple, double, and single RNA helices has been fully characterized by thermodynamic and kinetic methods. The nature of the interaction of thionine with the synthetic polynucleotides poly(rU), poly(rA)·poly(rU), and poly(rA)·2poly(rU) has been studied at pH = 7.0 and 25 °C by UV absorbance, fluorescence, circular dichroism spectroscopy, viscometry, differential scanning calorimetry, and T-jump kinetic measurements. The results show that at I = 0.1 M thionine binds to a single poly(rU) strand, destabilizes the poly(rA)·2poly(rU) triplex by external binding, and intercalates into poly(rA)·poly(rU) with similar affinity to the thionine/DNA intercalated complex (Paul, P.; Kumar, G. S. J. Fluoresc. 2012, 22, 71-80). On the other hand, the differential scanning calorimetry measurements performed with thionine display a point in which the heat capacity remains unaltered, revealing the equilibrium of isothermal denaturation: thionine/poly(rA)·2poly(rU) + thionine ⇌ thionine/poly(rA)·poly(rU) + thionine/poly(rU), an outcome supported by the other techniques used. The denaturation equilibrium constant, K(D) (25 °C) = 522 M(-1), was evaluated from the affinity with the single, duplex, and triplex RNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar
Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethioninemore » (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.« less
NASA Astrophysics Data System (ADS)
Hirakawa, Satoru; Morimoto, Yoshiaki; Honda, Hisashi
2015-04-01
Electrical conductivity ( σ), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) measurements of n-C x H (2 x+1) OSO 3Li ( x= 12, 14, 16, 18, and 20) crystals were performed as a function of temperature. In addition, σ, DSC, and XRD observations of n-C x H (2 x+1) OSO 3Na and n-C x H (2 x+1) OSO 3K ( x= 12, 14, 16, 18, and 20) crystals were carried out for comparison. DSC results of the salts revealed several solid-solid phase transitions with large entropy changes (Δ S). For n-C 18 H 37 OSO 3Li and n-C 20 H 41 OSO 3Li salts, each melting point produced a small Δ S mp value compared with the total entropy change in the solid phases (Δ S tr1+Δ S tr2). Additionally, Li + ion diffusion was detected in the highest temperature solid phases. For K salts, larger σ values were detected for potassium alkylsulfates compared with those reported for alkyl carboxylate. 7Li NMR spectra of n-C 18 H 37 OSO 3Li crystals recorded in the low-temperature phase showed large asymmetry parameters, suggesting the Li + ions are localized at asymmetric sites in the crystals.
Venturi, Luca; Rocculi, Pietro; Cavani, Claudio; Placucci, Giuseppe; Dalla Rosa, Marco; Cremonini, Mauro A
2007-12-26
Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.
Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Deepanjan; Sadtchenko, Vlad, E-mail: vlad@gwu.edu
Stable non-crystalline toluene films of micrometer and nanometer thicknesses were grown by vapor deposition at distinct rates and probed by fast scanning calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor-deposited samples of toluene during heating with rates in excess 10{sup 5} K s{sup −1} follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysismore » of the transformation kinetics of vapor-deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics seems to correlate with the surface roughness scale of the substrate. The implications of these findings for the formation mechanism and structure of vapor-deposited stable glasses are discussed.« less
Thermal conductivity and combustion properties of wheat gluten foams.
Blomfeldt, Thomas O J; Nilsson, Fritjof; Holgate, Tim; Xu, Jianxiao; Johansson, Eva; Hedenqvist, Mikael S
2012-03-01
Freeze-dried wheat gluten foams were evaluated with respect to their thermal and fire-retardant properties, which are important for insulation applications. The thermal properties were assessed by differential scanning calorimetry, the laser flash method and a hot plate method. The unplasticised foam showed a similar specific heat capacity, a lower thermal diffusivity and a slightly higher thermal conductivity than conventional rigid polystyrene and polyurethane insulation foams. Interestingly, the thermal conductivity was similar to that of closed cell polyethylene and glass-wool insulation materials. Cone calorimetry showed that, compared to a polyurethane foam, both unplasticised and glycerol-plasticised foams had a significantly longer time to ignition, a lower effective heat of combustion and a higher char content. Overall, the unplasticised foam showed better fire-proof properties than the plasticized foam. The UL 94 test revealed that the unplasticised foam did not drip (form droplets of low viscous material) and, although the burning times varied, self-extinguished after flame removal. To conclude both the insulation and fire-retardant properties were very promising for the wheat gluten foam. © 2012 American Chemical Society
How to measure heat capacity of metals at 10s to 100s of GPa
NASA Astrophysics Data System (ADS)
Geballe, Z. M.; Townley, A.; Jeanloz, R.
2014-12-01
Adapting methods of calorimetry to the diamond-anvil cell can provide important new information for understanding planetary interiors. Here we show that heat capacity of metals can be measured to the 10-100 GPa range by using AC electrical heating inside diamond anvil cells. Frequencies of f ≈ 1-100 MHz must be used to contain the heat within the sample of interest, as evidenced by numerical and physical models of heat flow: f > DinsCins2/(Csamdsam)2, where Dins is the thermal diffusivity of the insulation, Cins and Csam are specific heat capacities of insulation and metal sample, and dsam is sample thickness. Heat must be deposited uniformly (e.g. skin depth > sample thickness) for the most accurate and unambiguous measurements, thereby allowing measurement of the energetics of pre-melting, melting and partial melting of metals, including iron and its alloys. In principle, high-pressure calorimetry can be used to independently determine melting at high pressures, and also to quantify latent heats of fusion, thereby revealing the density of liquid metals at Earth core conditions.
Mohsen, Amira Mohamed; Asfour, Marwa Hasanein; Salama, Abeer A A
2017-12-01
The main objective of the present work was to formulate, characterize, and evaluate silymarin (SM)-loaded bilosomes, compared to conventional liposomes, aiming at increasing the hepatoprotective activity of the drug. SM-loaded bilosomes were prepared by thin film hydration technique employing soybean phosphatidyl choline (SPC) and different bile salts. After being subjected to different methods of characterization, SM-loaded bilosomes were investigated for their hepatoprotective activity, in CCl 4 hepatointoxicated rat model. The developed SM dispersions exhibited an entrapment efficiency ranging from 21.80 ± 2.01 to 84.54 ± 2.51% and a particle size diameter in the nanometric dimensions (413 ± 96.9 to 686.9 ± 62.38 nm), with a negative zeta potential values (<-45 mV). In vitro release study revealed a lower cumulative amount of drug released from the developed formulae, compared to free drug. Ex vivo intestinal uptake study, performed using confocal laser scanning calorimetry, revealed the superiority of bilosomal uptake compared to that of liposomes. In vivo studies revealed an enhanced hepatoprotective effect of SM-loaded bilosomes/liposomes compared to free drug. These results were in good correlation with histopathological examination. These findings support the potential use of bilosomes for improving the hepatoprotective activity of SM via oral administration.
A new nanospray drying method for the preparation of nicergoline pure nanoparticles
NASA Astrophysics Data System (ADS)
Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera
2012-06-01
Three different batches of pure nanoparticles (NPs) of nicergoline (NIC) were prepared by spray drying a water:ethanol solution by a new Nano Spray Dryer Büchi B-90. Spherical pure NPs were obtained, and several analytical techniques such as differential scanning calorimetry and X-ray powder diffractometry permitted to assess their amorphous character. A comparison of the solubility, intrinsic dissolution, and drug release of original particles and pure amorphous NPs were determined, revealing an interesting improvement of biopharmaceutical properties of amorphous NPs, due to both amorphous properties and nanosize dimensions. Since in a previous work, the high-thermodynamic stability of amorphous NIC was demonstrated, this study is addressed toward the formulation of NIC as pure amorphous NPs.
Schneller, Mikkel B; Pedersen, Mogens T; Gupta, Nidhi; Aadahl, Mette; Holtermann, Andreas
2015-03-13
We compared the accuracy of five objective methods, including two newly developed methods combining accelerometry and activity type recognition (Acti4), against indirect calorimetry, to estimate total energy expenditure (EE) of different activities in semi-standardized settings. Fourteen participants performed a standardized and semi-standardized protocol including seven daily life activity types, while having their EE measured by indirect calorimetry. Simultaneously, physical activity was quantified by an ActivPAL3, two ActiGraph GT3X+'s and an Actiheart. EE was estimated by the standard ActivPAL3 software (ActivPAL), ActiGraph GT3X+ (ActiGraph) and Actiheart (Actiheart), and by a combination of activity type recognition via Acti4 software and activity counts per minute (CPM) of either a hip- or thigh-worn ActiGraph GT3X+ (AGhip + Acti4 and AGthigh + Acti4). At group level, estimated physical activities EE by Actiheart (MSE = 2.05) and AGthigh + Acti4 (MSE = 0.25) were not significantly different from measured EE by indirect calorimetry, while significantly underestimated by ActiGraph, ActivPAL and AGhip + Acti4. AGthigh + Acti4 and Actiheart explained 77% and 45%, of the individual variations in measured physical activity EE by indirect calorimetry, respectively. This study concludes that combining accelerometer data from a thigh-worn ActiGraph GT3X+ with activity type recognition improved the accuracy of activity specific EE estimation against indirect calorimetry in semi-standardized settings compared to previously validated methods using CPM only.
Basu, Anirban; Kumar, Gopinatha Suresh
2016-08-01
Interaction of the food colorant acid red 27 with double stranded DNA was investigated using spectroscopic and calorimetric methods. Absorbance and fluorescence studies suggested an intimate binding interaction between the dye and DNA. The quantum efficiency value testified an effective energy transfer from the DNA base pairs to the dye molecules. Minor groove displacement assay with Hoechst 33258 revealed that the binding occurs in the minor groove of DNA. Circular dichroism studies revealed that acid red 27 induces moderate conformational perturbations in DNA. Results of calorimetric studies suggested that the complexation process was driven largely by positive entropic contribution with a smaller favorable enthalpy contribution. The equilibrium constant of the binding was calculated to be (3.04 ± 0.09) × 10(4) M(-1) at 298.15 K. Negative heat capacity value along with the enthalpy-entropy compensation phenomenon established the involvement of dominant hydrophobic forces in the binding process. Differential scanning calorimetry studies presented evidence for an increased thermal stability of DNA on binding of acid red 27. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi
2015-01-01
This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.
NASA Astrophysics Data System (ADS)
Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les
2016-06-01
A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites.
Wang, Shujun; Zhang, Xiu; Wang, Shuo; Copeland, Les
2016-01-01
A thorough understanding of starch gelatinization is extremely important for precise control of starch functional properties for food processing and human nutrition. Here we reveal the molecular mechanism of starch gelatinization by differential scanning calorimetry (DSC) in conjunction with a protocol using the rapid viscosity analyzer (RVA) to generate material for analysis under conditions that simulated the DSC heating profiles. The results from DSC, FTIR, Raman, X-ray diffraction and small angle X-ray scattering (SAXS) analyses all showed that residual structural order remained in starch that was heated to the DSC endotherm end temperature in starch:water mixtures of 0.5 to 4:1 (v/w). We conclude from this study that the DSC endotherm of starch at a water:starch ratio of 2 to 4 (v/w) does not represent complete starch gelatinization. The DSC endotherm of starch involves not only the water uptake and swelling of amorphous regions, but also the melting of starch crystallites. PMID:27319782
Kalani, Mahshid; Yunus, Robiah
2012-01-01
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.
NASA Astrophysics Data System (ADS)
Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice
Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.
Kalani, Mahshid; Yunus, Robiah
2012-01-01
The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552
NASA Astrophysics Data System (ADS)
Islam, Md. Maidul; Pandya, Prateek; Chowdhury, Sebanti Roy; Kumar, Surat; Kumar, Gopinatha Suresh
2008-11-01
The interaction of two natural protoberberine plant alkaloids berberine and palmatine with tRNA phe was studied using various biophysical techniques and molecular modeling and the data were compared with the binding of the classical DNA intercalator, ethidium. Circular dichroic studies revealed that the tRNA conformation was moderately perturbed on binding of the alkaloids. The cooperative binding of both the alkaloids and ethidium to tRNA was revealed from absorbance and fluorescence studies. Fluorescence quenching studies advanced a conclusion that while berberine and palmatine are partially intercalated, ethidium is fully intercalated on the tRNA molecule. The binding of the alkaloids as well as ethidium stabilized the tRNA melting, and the binding constant evaluated from the averaged optical melting temperature data was in agreement with fluorescence spectral-binding data. Differential scanning calorimetry revealed that the tRNA melting showed three close transitions that were affected on binding of these small molecules. Molecular docking calculations performed showed the preferred regions of binding of these small molecules on the tRNA. Taken together, the results suggest that the binding of the alkaloids berberine and palmatine on the tRNA structure appears to be mostly by partial intercalation while ethidium intercalates fully on the tRNA. These results further advance our knowledge on the molecular aspects on the interaction of these alkaloids to tRNA.
NASA Astrophysics Data System (ADS)
Arias, Juan Marcelo; Tuttolomondo, María Eugenia; Díaz, Sonia Beatriz; Altabef, Aida Ben
2018-03-01
In order to study the interaction between L-cysteine methyl ester (CM) and multilamellar vesicles (MLV's) of DPPC, an extensive study was made by various techniques such as Infrared and Raman spectroscopy and Differential Scanning Calorimetry (DSC). Our results revealed by the different techniques used that CM interacts with the DPPC in the region of the polar head, specifying with the phosphate groups, replacing water molecules of hydration by modifying the hydration of the polar head. By Infrared spectroscopy and DSC we observed an increase in the main transition temperature (Tm) and a gradual loss of the pre-transition (Tp) with the increase of the molar ratio CM:DPPC. Of the analyzed, we can conclude that the interaction of CM with DPPC alters the degree of hydration of the membrane altering properties of the same as the transition temperature. Moreover, the results of the thiol site behavior in CM interacting in the CM/DPPC complex will be reveal the possibility of unknown functional roles of the lipidic components of the membrane.
Interactions and release of two palmitoyl peptides from phytantriol cubosomes.
Akhlaghi, Seyedeh Parinaz; Loh, Watson
2017-08-01
Phytantriol cubosomes loaded with two palmitoyl peptides (Palpepcubes), namely GHKcube and GQPRcube, were prepared using an ultrasonication protocol. The Palpepcubes dimensions were characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM). Small-angle X-ray scattering (SAXS) analyses revealed that the bicontinuous cubic structure remained even at palmitoyl peptide contents as high as 5wt.%, with an increase in the cell parameter from approximately 6.5 to 7.2nm. Isothermal titration calorimetry (ITC) was used to elucidate the interactions between the blank cubosomes and the palmitoyl peptides, revealing an exothermic process of interaction. Moreover, the in vitro release of the palmitoyl peptides from the Palpepcubes was studied using a dialysis method coupled with liquid chromatography-mass spectrometry (LC/MS) technique, in which a sustained release of up to a few days was observed. Finally, the stability of the aqueous solutions of the palmitoyl peptides and the Palpepcubes kept at room temperature and at low temperature (4°C) was studied by LC/MS method, indicating that incorporation into cubosomes increases the peptide stability significantly. Copyright © 2017 Elsevier B.V. All rights reserved.
Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech
2016-01-15
Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu(2+) with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15K in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu(2+) ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu(2+) ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu(2+) ions are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech
2016-01-01
Steady-state and time-resolved fluorescence quenching measurements supported by Isothermal Titration Calorimetry (ITC) were used to study the interactions of Cu2 + with four peptides. Two of them were taken from the N-terminal part of the FBP28 protein (formin binding protein) WW domain: Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH2 (D9) and its mutant Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr-NH2 (D9_M) as well as two mutated peptides from the B3 domain of the immunoglobulin binding protein G derived from Streptococcus: Asp-Val-Ala-Thr-Tyr-Thr-NH2 (J1) and Glu-Val-Ala-Thr-Tyr-Thr-NH2 (J2). The measurements were carried out at 298.15 K in 20 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution with a pH of 6. The fluorescence of all peptides was quenched by Cu2 + ions. The stoichiometry, conditional stability constants and thermodynamic parameters for the interactions of the Cu2 + ions with D9 and D9_M were determined from the calorimetric data. The values of the conditional stability constants were additionally determined from fluorescence quenching measurements and compared with those obtained from calorimetric studies. There was a good correlation between data obtained from the two techniques. On the other hand, the studies revealed that J1 and J2 do not exhibit an affinity towards metal ions. The obtained results prove that fluorescence quenching experiments may be successfully used in order to determine stability constants of complexes with fluorescent ligands. Finally, based on the obtained results, the coordinating properties of the peptides towards the Cu2 + ions are discussed.
Effect of solvent evaporation and coagulation on morphology development of asymmetric membranes
NASA Astrophysics Data System (ADS)
Chandrasekaran, Neelakandan; Kyu, Thein
2008-03-01
Miscibility behavior of blends of amorphous polyamide (PA) and polyvinylpyrrolidone (PVP) was studied in relation to membrane formation. Dimethylsulfoxide (DMSO) and water were used as solvent and non-solvent, respectively. Differential scanning calorimetry and cloud point measurements revealed that the binary PA/PVP blends as well as the ternary PA/PVP/DMSO system were completely miscible at all compositions. However, the addition of non-solvent (water) to this ternary system has led to phase separation. Visual turbidity study was used to establish a ternary liquid-liquid phase diagram of the PA-PVP/DMSO/water system. Scanning Electron Microscopy (SEM) showed the development of finger-like and sponge-like cross sectional morphologies during coagulation. Effects of polymer concentration, PA/PVP blend ratio, solvent/non-solvent quality, and evaporation time on the resulting membrane morphology will be discussed.
Calorimetric determination of thermal parameters for the Li/BrCl in SOCl2 (BCX) chemistry
NASA Technical Reports Server (NTRS)
Darcy, Eric C.; Kalu, Eric E.; White, Ralph E.
1990-01-01
The heat capacity of a Li-BCX DD-cell was found to be dependent on its state of charge by drop calorimetry measurements. The method of drop calorimetry involves measuring the energy (joules) gained or lost from a sample that is transferred from a bath at temperature A to one at temperature B. The thermoneutral potential is defined as the cell potential where the cell electrochemical reactions are neither exothermic nor endothermic. A Hart scientific calorimeter system, Model No. S77XX, designed for heat conduction calorimetry and drop calorimetry was used. Calorimetric analysis yielded a thermoneutral potential of 4.14 volts and a cell heat capacity dependent on the state of charge.
Wang, Gongke; Li, Xiang; Ding, Xuelian; Wang, Dongchao; Yan, Changling; Lu, Yan
2011-07-15
In this paper, binding interaction of 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimidin-2(1H)-one (EMMD) with human serum albumin (HSA) under physiological conditions was investigated by using spectroscopy, isothermal titration calorimetry (ITC) and molecular modeling techniques. The results of spectroscopic studies suggested that EMMD have a strong ability to quench the intrinsic fluorescence of HSA through static quenching procedure. ITC investigations indicated that drug-protein complex was stabilized by hydrophobic forces and hydrogen bonds, which was consistent with the results of molecular modeling studies. Competitive experiments indicated the displacement of warfarin by EMMD, which revealed that the binding site of EMMD to HSA was located at subdomain IIA. Copyright © 2011 Elsevier B.V. All rights reserved.
Designing of cardanol based polyol and its curing kinetics with melamine formaldehyde resin
Balgude, Dinesh Bapurao; Sabnis, Anagha Shyamsunder; Ghosh, Swapan Kumar
2017-01-01
Abstract Commercially used industrial baking enamels consist of alkyd or polyester resin with melamine formaldehyde. These resins are mainly derived from fossil resources. Considering growing environmental legislation regarding use of petroleum based raw materials, utilization of renewable resources to synthesize various chemistries can be the only obvious option as far as academia and industries are concerns. The present work deals with exploration of one of the natural resources (Cardanol) for polyol synthesis, its characterization (FTIR and NMR) and its curing behavior with melamine formaldehyde resin by differential scanning calorimetry (DSC). The optimized formulations from DSC study were further evaluated for general coating properties to study the suitability of developed polyol for industrial coating application. The experimental studies revealed that melamine content in the curing mixtures and thereby developed crosslinking density played an important role in deciding the coatings properties. PMID:29491791
Osmolytic Effect of Sucrose on Thermal Denaturation of Pea Seedling Copper Amine Oxidase.
Amani, Mojtaba; Barzegar, Aboozar; Mazani, Mohammad
2017-04-01
Protein stability is a subject of interest by many researchers. One of the common methods to increase the protein stability is using the osmolytes. Many studies and theories analyzed and explained osmolytic effect by equilibrium thermodynamic while most proteins undergo an irreversible denaturation. In current study we investigated the effect of sucrose as an osmolyte on the thermal denaturation of pea seedlings amine oxidase by the enzyme activity, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry. All experiments are in agreement that pea seedlings amine oxidase denaturation is controlled kinetically and its kinetic stability is increased in presence of sucrose. Differential scanning calorimetry experiments at different scanning rates showed that pea seedlings amine oxidase unfolding obeys two-state irreversible model. Fitting the differential scanning calorimetry data to two-state irreversible model showed that unfolding enthalpy and T * , temperature at which rate constant equals unit per minute, are increased while activation energy is not affected by increase in sucrose concentration. We concluded that osmolytes decrease the molecular oscillation of irreversible proteins which leads to decline in unfolding rate constant.
Winstone, Tara M L; Tran, Vy A; Turner, Raymond J
2013-10-29
The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the thermodynamics of binding between synthetic peptides composed of different portions of the DmsA leader peptide and DmsD. Only those peptides that included the complete and contiguous hydrophobic region of the DmsA leader sequence were able to bind DmsD with a 1:1 stoichiometry. Each of the peptides that were able to bind DmsD also showed some α-helical structure as indicated by circular dichroism spectroscopy. Differential scanning calorimetry revealed that DmsD gained very little thermal stability upon binding any of the DmsA leader peptides tested. Together, these results suggest that a portion of the hydrophobic region of the DmsA leader peptide determines the specificity of binding and may produce helical properties upon binding to DmsD. Overall, this study demonstrates that the recognition of the DmsA twin-arginine leader sequence by the DmsD chaperone shows unexpected rules and confirms further that the biochemistry of the interaction of the chaperone with their leaders demonstrates differences in their molecular interactions.
Chiu, Michael H.; Prenner, Elmar J.
2011-01-01
Differential Scanning Calorimetry (DSC) is a highly sensitive technique to study the thermotropic properties of many different biological macromolecules and extracts. Since its early development, DSC has been applied to the pharmaceutical field with excipient studies and DNA drugs. In recent times, more attention has been applied to lipid-based drug delivery systems and drug interactions with biomimetic membranes. Highly reproducible phase transitions have been used to determine values, such as, the type of binding interaction, purity, stability, and release from a drug delivery mechanism. This review focuses on the use of DSC for biochemical and pharmaceutical applications. PMID:21430954
Titration Calorimetry Standards and the Precision of Isothermal Titration Calorimetry Data
Baranauskienė, Lina; Petrikaitė, Vilma; Matulienė, Jurgita; Matulis, Daumantas
2009-01-01
Current Isothermal Titration Calorimetry (ITC) data in the literature have relatively high errors in the measured enthalpies of protein-ligand binding reactions. There is a need for universal validation standards for titration calorimeters. Several inorganic salt co-precipitation and buffer protonation reactions have been suggested as possible enthalpy standards. The performances of several commercial calorimeters, including the VP-ITC, ITC200, and Nano ITC-III, were validated using these suggested standard reactions. PMID:19582227
Robie, R.A.; Hemingway, B.S.; Ito, J.; Krupka, K.M.
1984-01-01
The heat capacity of Ni2SiO4-olivine has been measured between 5 and 387 K by cryogenic adiabatic-shield calorimetry and between 360 and 1000 K by differential scanning calorimetry. The heat capacity of Co2SiO4-olivine was measured between 360 and 1000 K by differential scanning calorimetry.-J.A.Z.
NASA Astrophysics Data System (ADS)
Valencia-Mora, Ricardo A.; Zavala-Lagunes, Edgar; Bucio, Emilio
2016-07-01
The modification of silicone rubber films (SR) was performed by radiation-induced graft polymerization of thermosensitive poly(N-vinylcaprolactam) (PNVCL) using gamma rays from a Co-60 source. The graft polymerization was obtained by a direct radiation method with doses from 5 to 70 kGy, at monomer concentrations between 5% and 70% in toluene. Grafting was confirmed by infrared, differential scanning calorimetry, thermogravimetric analysis, and swelling studies. The lower critical solution temperature (LCST) of the grafted SR was measured by swelling and differential scanning calorimetry.
Zechel, David L; Boraston, Alisdair B; Gloster, Tracey; Boraston, Catherine M; Macdonald, James M; Tilbrook, D Matthew G; Stick, Robert V; Davies, Gideon J
2003-11-26
The design and synthesis of transition-state mimics reflects the growing need both to understand enzymatic catalysis and to influence strategies for therapeutic intervention. Iminosugars are among the most potent inhibitors of glycosidases. Here, the binding of 1-deoxynojirimycin and (+)-isofagomine to the "family GH-1" beta-glucosidase of Thermotoga maritima is investigated by kinetic analysis, isothermal titration calorimetry, and X-ray crystallography. The binding of both of these iminosugar inhibitors is driven by a large and favorable enthalpy. The greater inhibitory power of isofagomine, relative to 1-deoxynojirimycin, however, resides in its significantly more favorable entropy; indeed the differing thermodynamic signatures of these inhibitors are further highlighted by the markedly different heat capacity values for binding. The pH dependence of catalysis and of inhibition suggests that the inhibitory species are protonated inhibitors bound to enzymes whose acid/base and nucleophile are ionized, while calorimetry indicates that one proton is released from the enzyme upon binding at the pH optimum of catalysis (pH 5.8). Given that these results contradict earlier proposals that the binding of racemic isofagomine to sweet almond beta-glucosidase was entropically driven (Bülow, A. et al. J. Am. Chem. Soc. 2000, 122, 8567-8568), we reinvestigated the binding of 1-deoxynojirimycin and isofagomine to the sweet almond enzyme. Calorimetry confirms that the binding of isofagomine to sweet almond beta-glucosidases is, as observed for the T. maritima enzyme, driven by a large favorable enthalpy. The crystallographic structures of the native T. maritima beta-glucosidase, and its complexes with isofagomine and 1-deoxynojirimycin, all at approximately 2.1 A resolution, reveal that additional ordering of bound solvent may present an entropic penalty to 1-deoxynojirimycin binding that does not penalize isofagomine.
Ahmad, Ejaz; Rabbani, Gulam; Zaidi, Nida; Singh, Saurabh; Rehan, Mohd; Khan, Mohd Moin; Rahman, Shah Kamranur; Quadri, Zainuddin; Shadab, Mohd; Ashraf, Mohd Tashfeen; Subbarao, Naidu; Bhat, Rajiv; Khan, Rizwan Hasan
2011-01-01
1-naphthol (1N), 2-naphthol (2N) and 8-quinolinol (8H) are general water pollutants. 1N and 2N are the configurational enantiomers and 8H is isoelectronic to 1N and 2N. These pollutants when ingested are transported in the blood by proteins like human serum albumin (HSA). Binding of these pollutants to HSA has been explored to elucidate the specific selectivity of molecular recognition by this multiligand binding protein. The association constants (K(b)) of these pollutants to HSA were moderate (10(4)-10(5) M(-1)). The proximity of the ligands to HSA is also revealed by their average binding distance, r, which is estimated to be in the range of 4.39-5.37 nm. The binding free energy (ΔG) in each case remains effectively the same for each site because of enthalpy-entropy compensation (EEC). The difference observed between ΔC(p) (exp) and ΔC(p) (calc) are suggested to be caused by binding-induced flexibility changes in the HSA. Efforts are also made to elaborate the differences observed in binding isotherms obtained through multiple approaches of calorimetry, spectroscopy and bioinformatics. We suggest that difference in dissociation constants of pollutants by calorimetry, spectroscopic and computational approaches could correspond to occurrence of different set of populations of pollutants having different molecular characteristics in ground state and excited state. Furthermore, our observation of enhanced binding of pollutants (2N and 8H) in the presence of hemin signifies that ligands like hemin may enhance the storage period of these pollutants in blood that may even facilitate the ill effects of these pollutants.
Calorimetric analysis of fungal degraded wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenhorn, P.R.; Baldwin, R.C.; Merrill, W. Jr.
1980-01-01
Endothermic transition and gross heat of combustion of aspenwood subjected to degradation by Lenzites trabea and Polyporus versicolor were determined by using differential scanning calorimetry (DSC) and an adiabatic O bomb. Endothermic peak areas of undegraded and fungi-degraded wood differed from each other at all levels of weight loss. The regression analysis of the DSC data vs. weight loss revealed a significant relations, although not highly correlated, for P. versicolor-degraded specimens and a nonsignificant relation for L. trabea-degraded specimens; weight loss and gross heat of combustion values of degraded specimens were significantly correlated.
Carpenter, Andrea; Ng, Vicky Lee; Chapman, Karen; Ling, Simon C; Mouzaki, Marialena
2017-03-01
Malnutrition is common in children with end-stage liver disease (ESLD) and is associated with increased morbidity and mortality. The inability to accurately estimate energy needs of these patients may contribute to their poor nutrition status. In clinical practice, predictive equations are used to calculate resting energy expenditure (cREE). The objective of this study is to assess the accuracy of commonly used equations in pediatric patients with ESLD. Retrospective study performed at the Hospital for Sick Children. Clinical, laboratory, and indirect calorimetry data from children listed for liver transplant between February 2013 and December 2014 were reviewed. Calorimetry results were compared with cREE estimated using the Food and Agriculture Organization/World Health Organization/United Nations University (FAO/WHO/UNU), Schofield [weight], and Schofield [weight and height] equations. Forty-five patients were included in this study. The median age was 9 months, and the most common indication for transplantation was biliary atresia (64%). The Schofield [weight and height], FAO/WHO/UNU, and Schofield [weight] equations were compared with indirect calorimetry and found to have a mean (SD) difference of 48.8 (344.0), 59.3 (229.8), and 206.5 (502.6) kcal/d, respectively. The FAO/WHO/UNU, Schofield [weight], and Schofield [weight and height] equations introduced a mean error of 21%, 38%, and 76%, respectively. The FAO/WHO/UNU equation tended to underestimate, whereas the Schofield equations overestimated the REE. Commonly used predictive equations perform poorly in infants and young children with ESLD. Indirect calorimetry should be used when available to guide energy provision, particularly in children who are already malnourished.
DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry
NASA Astrophysics Data System (ADS)
Batista, Adriana S. M.; Faria, Luiz O.
2017-11-01
Poly(vinylidene fluoride) homopolymer (PVDF) was investigated for use on high gamma dose dosimetry. Samples were irradiated with gamma doses ranging from 100 kGy to 3000 kGy. Differential scanning calorimetry (DSC) was used to construct an unambiguous relationship between the melting transition latent heat (LM) and the absorbed dose (D). DSC thermograms were taken immediately, 1, 2 and 8 months after the irradiation process revealing that the LMx D relationship presented no change for doses ranging from 100 to 2750 kGy. FTIR and UV-Vis spectroscopy data revealed the radio-induction of C˭O and C˭C bonds. These radio-induced bonds were responsible by the chain stiffening and chain oxidation, respectively. SEM microscopy demonstrates that the spherulitic large crystalline structures present in pristine PVDF are destroyed with doses as low as 100 kGy. The DRX analysis revealed that the main effect of high gamma doses in the crystalline structure of PVDF is to provoke a change from the pristine PVDF α-phase to the γ-phase. Both the ability to detect gamma doses in a large dose range and the low fading features make PVDF homopolymers good candidates to be investigated as high gamma dose dosimeters.
Polyethylene oxide-fullerene nanocomposites
NASA Astrophysics Data System (ADS)
Ali, Nasar; Chipara, Dorina; Lozano, Karen; Hinthorne, James; Chipara, Mircea
2017-11-01
Polyethylene oxide - fullerene nanocomposites have been prepared by using the solution path with water as solvent (only for the polymer). The dispersion of C60 within the polymer solution was achieved by high power sonication. The study aims to a better understanding on the effect of C60 nanoparticles on the macromolecular chains. Raman Wide Angle X Ray spectroscopy, Differential Scanning Calorimetry, and Thermogravimetric Analysis were used to inspect the interactions between the nanofiller and macromolecular chains. The experimental results revealed a completely different behavior of fullerene dispersed within polymeric matrices than using carbon nanotubes or nanofibers as nanofiller. The observed behavior was explained by the low aspect ratio of C60 compared to nanotubes and by the low thermal conductivity of C60 compared to the thermal conductivity of others carbon nanostructures.
Concentration-dependent effect of melatonin on DSPC membrane
NASA Astrophysics Data System (ADS)
Sahin, Ipek; Bilge, Duygu; Kazanci, Nadide; Severcan, Feride
2013-11-01
The concentration-induced effects of melatonin on distearoyl phosphatidylcholine (DSPC) model membranes were investigated by using two different non-invasive techniques, namely Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). An investigation of the Csbnd H, Cdbnd O and PO2- double bond stretching mode in FTIR spectra and DSC studies reveals that the inclusion of melatonin changes the physical properties of the DSPC multilamellar liposomes (MLVs) by shifting the main phase transition to lower temperatures, abolishing the pretransition, ordering the system in the gel phase and slightly disordering the system in the liquid crystalline phase, increasing the dynamics both in the gel phase and liquid crystalline phases. Melatonin also causes strong hydrogen bonding between Cdbnd O and PO2- groups of lipids and the water molecules around.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation
NASA Astrophysics Data System (ADS)
Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander
2018-02-01
In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.
Borowiec, Joanna; Gillin, William P; Willis, Maureen A C; Boi, Filippo S; He, Y; Wen, J Q; Wang, S L; Schulz, Leander
2018-01-11
In this study, a direct sulfidation reaction of ammonium perrhenate (NH 4 ReO 4 ) leading to a synthesis of rhenium disulfide (ReS 2 ) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS 2 . The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1T') ReS 2 with a low degree of layer stacking.
Clinical application of plasma thermograms. Utility, practical approaches and considerations.
Garbett, Nichola C; Mekmaysy, Chongkham S; DeLeeuw, Lynn; Chaires, Jonathan B
2015-04-01
Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modification underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article. Copyright © 2014 Elsevier Inc. All rights reserved.
Clinical application of plasma thermograms. Utility, practical approaches and considerations
Garbett, Nichola C.; Mekmaysy, Chongkham S.; DeLeeuw, Lynn; Chaires, Jonathan B.
2014-01-01
Differential scanning calorimetry (DSC) studies of blood plasma are part of an emerging area of the clinical application of DSC to biofluid analysis. DSC analysis of plasma from healthy individuals and patients with various diseases has revealed changes in the thermal profiles of the major plasma proteins associated with the clinical status of the patient. The sensitivity of DSC to the concentration of proteins, their interactions with other proteins or ligands, or their covalent modifications underlies the potential utility of DSC analysis. A growing body of literature has demonstrated the versatility and performance of clinical DSC analysis across a range of biofluids and in a number of disease settings. The principles, practice and challenges of DSC analysis of plasma are described in this article. PMID:25448297
Pandey, Narendra Kumar; Sehal, Hans Raj; Garg, Varun; Gaur, Tejasvi; Kumar, Bimlesh; Singh, Sachin Kumar; Gulati, Monica; Gowthamarajan, K; Bawa, Palak; Rajesh, Sarvi Yadav; Sharma, Parth; Narang, Rakesh
2017-10-01
Present study deciphers preparation of co-crystals of lipophilic glipizide by using four different acids, oxalic, malonic, stearic, and benzoic acids, in order to achieve enhanced solubility and dissolution along with stability. All co-crystals were prepared by dissolving drug and individual acids in the ratio of 1:0.5 in acetonitrile at 60-70°C for 15 min, followed by cooling at room temperature for 24 h. FT-IR spectroscopy revealed no molecular interaction between acids and drug as the internal structure and their geometric configurations remain unchanged. Differential scanning calorimetry revealed closer melting points of raw glipizide and its co-crystals, which speculates absence of difference in crystallinity as well as intermolecular bonding of the co-crystals and drug. PXRD further revealed that all the co-crystals were having similar crystallinity as that of raw glipizide except glipizide-malonic acid co-crystals. This minor difference in the relative intensities of some of the diffraction peaks could be attributed to the crystal habit or crystal size modification. SEM revealed difference in the crystal morphology for all the co-crystals. Micromeritic, solubility, dissolution, and stability data revealed that among all the prepared co-crystals, glipizide-stearic acid co-crystals were found superior. Hence, it was concluded that glipizide-stearic acid co-crystals could offer an improved drug design strategy to overcome dissolution and bioavailability related challenges associated with lipophilic glipizide.
Bioavailability enhancement of curcumin by complexation with phosphatidyl choline.
Gupta, Nishant Kumar; Dixit, Vinod Kumar
2011-05-01
Curcumin is a major constituent of rhizomes of Curcuma longa. Pharmacokinetic studies of curcumin reveal its poor absorption through intestine. Objective of the present study was to enhance bioavailability of curcumin by its complexation with phosphatidyl choline (PC). Complex of curcumin was prepared with PC and characterized on the basis of solubility, melting point, differential scanning calorimetry, thin layer chromatography, and infrared spectroscopic analysis. Everted intestine sac technique was used to study ex vivo drug absorption of curcumin-PC (CU-PC) complex and plain curcumin. Pharmacokinetic studies were performed in rats, and hepatoprotective activity of CU-PC complex was also compared with curcumin and CU-PC physical mixture in isolated rat hepatocytes. Analytical reports along with spectroscopic data revealed the formation of complex. The results of ex vivo study show that CU-PC complex has significantly increased absorption compared with curcumin, when given in equimolar doses. Complex showed enhanced bioavailability, improved pharmacokinetics, and increased hepatoprotective activity as compared with curcumin or CU-PC physical mixture. Enhanced bioavailability of CU-PC complex may be due to the amphiphilic nature of the complex, which greatly enhance the water and lipid solubility of the curcumin. The present study clearly indicates the superiority of complex over curcumin, in terms of better absorption, enhanced bioavailability, and improved pharmacokinetics. Copyright © 2010 Wiley-Liss, Inc.
Patel, V. F.; Sarai, J.
2014-01-01
The present study was aimed at investigating the effect of hydrotrope and surfactant on poor solubility of atorvastatin calcium. Excipients screening followed by factorial design was performed to study effect of excipients and manufacturing methods on solubility of drug. Three independent factors (carrier, surfactant and manufacturing method) were evaluated at two levels using solubility as a dependant variable. Solid-state characterisation was performed using Fourier transform infrared spectroscopy and differential scanning calorimetry. Optimised complex were incorporated into orally disintegrating micro tablets and in vitro dissolution test was performed. Nicotinamide, Plasdone and sodium dodecyl sulphate were emerged as promising excipients from excipient screening. General regression analysis revealed only the type of carrier has significantly enhanced (P<0.05) the solubility of drug while other factors were found to be nonsignificant. Ratio optimisation trial revealed that drug to nicotinamide ratio is more critical in enhancing the solubility of drug (40 fold increases in solubility compared to pure drug) in comparison to drug-surfactant ratio; however the presence of surfactant deemed essential. Significantly higher rate and extent of dissolution was observed from solid dispersion complex and tablets compared to dissolution of pure drug (P<0.05). Study revealed hydrotrope and surfactant have synergistic effect on solubility and dissolution of atorvastatin calcium and this can be explored further. PMID:25593381
Energy expenditure estimation during daily military routine with body-fixed sensors.
Wyss, Thomas; Mäder, Urs
2011-05-01
The purpose of this study was to develop and validate an algorithm for estimating energy expenditure during the daily military routine on the basis of data collected using body-fixed sensors. First, 8 volunteers completed isolated physical activities according to an established protocol, and the resulting data were used to develop activity-class-specific multiple linear regressions for physical activity energy expenditure on the basis of hip acceleration, heart rate, and body mass as independent variables. Second, the validity of these linear regressions was tested during the daily military routine using indirect calorimetry (n = 12). Volunteers' mean estimated energy expenditure did not significantly differ from the energy expenditure measured with indirect calorimetry (p = 0.898, 95% confidence interval = -1.97 to 1.75 kJ/min). We conclude that the developed activity-class-specific multiple linear regressions applied to the acceleration and heart rate data allow estimation of energy expenditure in 1-minute intervals during daily military routine, with accuracy equal to indirect calorimetry.
Ikenoue, Tatsuya; Lee, Young-Ho; Kardos, József; Yagi, Hisashi; Ikegami, Takahisa; Naiki, Hironobu; Goto, Yuji
2014-05-06
Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. Although the structural features of amyloid fibrils have become increasingly clearer, knowledge on the thermodynamics of fibrillation is limited. Furthermore, protein aggregation is not a target of calorimetry, one of the most powerful approaches used to study proteins. Here, with β2-microglobulin, a protein responsible for dialysis-related amyloidosis, we show direct heat measurements of the formation of amyloid fibrils using isothermal titration calorimetry (ITC). The spontaneous fibrillation after a lag phase was accompanied by exothermic heat. The thermodynamic parameters of fibrillation obtained under various protein concentrations and temperatures were consistent with the main-chain dominated structural model of fibrils, in which overall packing was less than that of the native structures. We also characterized the thermodynamics of amorphous aggregation, enabling the comparison of protein folding, amyloid fibrillation, and amorphous aggregation. These results indicate that ITC will become a promising approach for clarifying comprehensively the thermodynamics of protein folding and misfolding.
Kendall, Bradley; Bellovary, Bryanne; Gothe, Neha P
2018-06-04
The purpose of this study was to assess the accuracy of energy expenditure (EE) estimation and step tracking abilities of six activity monitors (AMs) in relation to indirect calorimetry and hand counted steps and assess the accuracy of the AMs between high and low fit individuals in order to assess the impact of exercise intensity. Fifty participants wore the Basis watch, Fitbit Flex, Polar FT7, Jawbone, Omron pedometer, and Actigraph during a maximal graded treadmill test. Correlations, intra-class correlations, and t-tests determined accuracy and agreement between AMs and criterions. The results indicate that the Omron, Fitbit, and Actigraph were accurate for measuring steps while the Basis and Jawbone significantly underestimated steps. All AMs were significantly correlated with indirect calorimetry, however, no devices showed agreement (p < .05). When comparing low and high fit groups, correlations between AMs and indirect calorimetry improved for the low fit group, suggesting AMs may be better at measuring EE at lower intensity exercise.
AC calorimetry of H2O at pressures up to 9 GPa in diamond anvil cells
NASA Astrophysics Data System (ADS)
Geballe, Zachary M.; Struzhkin, Viktor V.
2017-06-01
If successfully developed, calorimetry at tens of GPa of pressure could help characterize phase transitions in materials such as high-pressure minerals, metals, and molecular solids. Here, we extend alternating-current calorimetry to 9 GPa and 300 K in a diamond anvil cell and use it to study phase transitions in H2O. In particular, water is loaded into the sample chambers of diamond-cells, along with thin metal heaters (1 μm-thick platinum or 20 nm-thick gold on a glass substrate) that drive high-frequency temperature oscillations (20 Hz to 600 kHz; 1 to 10 K). The heaters also act as thermometers via the third-harmonic technique, yielding calorimetric data on (1) heat conduction to the diamonds and (2) heat transport into substrate and sample. Using this method during temperature cycles from 300 to 200 K, we document melting, freezing, and proton ordering and disordering transitions of H2O at 0 to 9 GPa, and characterize changes in thermal conductivity and heat capacity across these transitions. The technique and analysis pave the way for calorimetry experiments on any non-metal at pressures up to ˜100 GPa, provided a thin layer (several μm-thick) of thermal insulation supports a metallic thin-film (tens of nm thick) Joule-heater attached to low contact resistance leads inside the sample chamber of a diamond-cell.
Energetics of genome ejection from phage revealed by isothermal titration calorimetry
NASA Astrophysics Data System (ADS)
Jeembaeva, Meerim; Jonsson, Bengt; Castelnovo, Martin; Evilevitch, Alex
2009-03-01
It has been experimentally shown that ejection of double-stranded DNA from phage is driven by internal pressure reaching tens of atmospheres. This internal pressure is partially responsible for delivery of DNA into the host cell. While several theoretical models and simulations nicely describe the experimental data of internal forces either resisting active packaging or equivalently favoring spontaneous ejection, there are no direct energy measurements available that would help to verify how quantitative these theories are. We performed direct measurements of the enthalpy responsible for DNA ejection from phage λ, using Isothermal Titration Calorimetry. The phage capsids were ``opened'' in vitro by titrating λ into a solution with LamB receptor and the enthalpy of DNA ejection process was measured. In his way, enthalpy stored in λ was determined as a function of packaged DNA length comparing wild-type phage λ (48.5 kb) with a shorter λ-DNA length mutant (37.7 kb). The temperature dependence of the ejection enthalpy was also investigated. The values obtained were in good agreement with existing models and provide a better understanding of ds- DNA packaging and release mechanisms in motor-packaged viruses (e.g., tailed bacteriophages, Herpes Simplex, and adenoviruses).
Glycerol in micellar confinement with tunable rigidity
NASA Astrophysics Data System (ADS)
Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael
2016-12-01
We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.
NASA Astrophysics Data System (ADS)
Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming
2018-02-01
Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.
Review of MEMS differential scanning calorimetry for biomolecular study
NASA Astrophysics Data System (ADS)
Yu, Shifeng; Wang, Shuyu; Lu, Ming; Zuo, Lei
2017-12-01
Differential scanning calorimetry (DSC) is one of the few techniques that allow direct determination of enthalpy values for binding reactions and conformational transitions in biomolecules. It provides the thermodynamics information of the biomolecules which consists of Gibbs free energy, enthalpy and entropy in a straightforward manner that enables deep understanding of the structure function relationship in biomolecules such as the folding/unfolding of protein and DNA, and ligand bindings. This review provides an up to date overview of the applications of DSC in biomolecular study such as the bovine serum albumin denaturation study, the relationship between the melting point of lysozyme and the scanning rate. We also introduce the recent advances of the development of micro-electro-mechanic-system (MEMS) based DSCs.
Synthesis, characterization and intramolecular cyclisation study of three new liquid crystals
NASA Astrophysics Data System (ADS)
Saïdat, B.; Guermouche, M. H.; Bayle, J.-P.
2004-12-01
Internal cyclization of three new phenyldiazene liquid crystals (R is an alkyl substituent with 4, 6 or 8 carbons) with activated methylene group in the ortho position to the diazo linkage was studied . The initial liquid crystals was synthesised and characterized by ^1H NMR, electrospray mass spectrometry and differential scanning calorimetry. The final compound was characterized by ^1H NMR and differential scanning calorimetry. The kinetic of cyclization was studied at different temperatures and followed by reversed phase HPLC and a UV detection. For all the temperatures used, it appeared that the cyclisation was a first order reaction for the three compounds. The Arrhenius plot (ln reaction constant k against 1000/T) gave the mean activation energy of the cyclisation.
Scanning AC Nanocalorimetry and Its Applications
NASA Astrophysics Data System (ADS)
Xiao, Kechao
This thesis presents an AC nanocalorimetry technique that enables calorimetry measurements on very small quantities of materials over a wide range of scanning rates (from isothermal to 3x10. 3 K/s), temperatures(up to 1200 K), and environments. Such working range bridges the gap between traditional scanning calorimetry of bulk materials and nanocalorimetry. The method relies on a micromachined nanocalorimeter with negligible thermal lags between heater, thermometer, and sample. The ability to perform calorimetry measurements over such a broad range of scanning rates makes it an ideal tool to characterize the kinetics of phase transformations, reactions at elevated temperatures or to explore the behavior of materials far from equilibrium. We demonstrate the technique by performing measurements on thin-film samples of Sn, In, and Bi with thicknesses ranging from 100 to 300 nm. The experimental heat capacities and melting temperatures agree well with literature values. The measured heat capacities are insensitive to the applied AC frequency, scan rate, and heat loss to the environment over a broad range of experimental conditions. The dynamic range of scanning AC nanocalorimetry enables the combination of nanocalorimetry with in-situ x-ray diffraction (XRD) to facilitate interpretation of the calorimetry measurements. Time-resolved XRD during in-situ operation of nanocalorimetry sensors using intense, high-energy synchrotron radiation allows unprecedented characterization of thermal and structural material properties. We demonstrate this experiment with detailed characterization of the melting and solidification of elemental Bi, In and Sn thin-film samples, using heating and cooling rates up to 300 K/s. By combining scanning DC and AC nano-calorimetry techniques, we study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10. 1 to 10. 4 K/s. Upon initial melting, the Bi thin-film sample breaksup into isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials. Lastly, we apply the scanning AC nanocalorimetry technique to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59+/-0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.
Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.
Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin
2015-01-01
The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microstructural Characterization of Aluminum-Lithium Alloys 1460 and 2195
NASA Technical Reports Server (NTRS)
Wang, Z. M.; Shenoy, R. N.
1998-01-01
Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) techniques were employed to characterize the precipitate distributions in lithium-containing aluminum alloys 1460 and 2195 in the T8 condition. TEM examinations revealed delta prime and T1 as the primary strengthening precipitates in alloys 1460 and 2195 respectively. TEM results showed a close similarity of the Russian alloy 1460 to the U.S. alloy 2090, which has a similar composition and heat treatment schedule. DSC analyses also indicate a comparable delta prime volume fraction. TEM study of a fractured tensile sample of alloy 1460 showed that delta prime precipitates are sheared by dislocations during plastic deformation and that intense stress fields arise at grain boundaries due to planar slip. Differences in fracture toughness of alloys 1460 and 2195 are rationalized on the basis of a literature review and observations from the present study.
Oxygen interaction with hexagonal OsB 2 at high temperature
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2016-08-10
The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less
NASA Astrophysics Data System (ADS)
Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung
2015-12-01
In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO32- and DCCM/SeO32- complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.
Lakkadwala, Sushant; Nguyen, Sanko; Lawrence, Joseph; Nauli, Surya M; Nesamony, Jerry
2014-01-01
Solid lipid nanoparticles (SLNs) can efficiently and efficaciously incorporate anti-cancer agents. To prepare and characterise tamoxifen (TAM)-loaded SLNs. Glyceryl monostearate, Tween-80, and trehalose were used in SLNs. SLNs were tested via dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Characterisation studies revealed SLNs of about 540 nm with a negative surface charge and confirmed the entrapment of TAM in the SLNs. The entrapment efficiency was estimated to be 60%. The in vitro drug release profile demonstrated a gradual increase followed by a release plateau for several days. A drug concentration-dependent increase in cytotoxic activity was observed when the SLNs were evaluated in cell cultures. Biocompatible and stable lyophilised SLNs were successfully prepared and found to possess properties that may be utilised in an anti-cancer drug delivery system.
Oxygen interaction with hexagonal OsB 2 at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina
The stability of ReB 2-type hexagonal OsB 2 powder at high temperature with oxygen presence has been studied by thermogravimetric analysis, differential scanning calorimetry, SEM, EDS, and high-temperature scanning transmission electron microscopy and XRD. Results of the study revealed that OsB 2 ceramics interact readily with oxygen present in reducing atmosphere, especially at high temperature and produces boric acid, which decomposes on the surface of the powder resulting in the formation of boron vacancies in the hexagonal OsB 2 lattice as well as changes in the stoichiometry of the compound. It was also found that under low oxygen partial pressure,more » sintering of OsB 2 powders occurred at a relatively low temperature (900°C). Finally, hexagonal OsB 2 ceramic is prone to oxidation and it is very sensitive to oxygen partial pressures, especially at high temperatures.« less
Improved Ocular Delivery of Nepafenac by Cyclodextrin Complexation.
Shelley, Haley; Grant, Makenzie; Smith, Forrest T; Abarca, Eva M; Jayachandra Babu, R
2018-06-13
Nepafenac is a nonsteroidal anti-inflammatory drug (NSAID), currently only available as 0.1% ophthalmic suspension (Nevanac®). This study utilized hydroxypropyl-β-cyclodextrin (HPBCD) to increase the water solubility and trans-corneal permeation of nepafenac. The nepafenac-HPBCD complexation in the liquid and solid states were confirmed by phase solubility, differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR) analyses. Nepafenac 0.1% ophthalmic solution was formulated using HPBCD (same pH and osmolality as that of Nevanac®) and pig eye trans-corneal permeation was studied versus Nevanac®. Furthermore, nepafenac content in cornea, sclera, iris, lens, aqueous humor, choroid, ciliary body, retina, and vitreous humor was studied in a continuous isolated pig eye perfusion model in comparison to the suspension and Nevanac®. Permeation studies using porcine corneas revealed that the solution formulation had a permeation rate 18 times higher than Nevanac®. Furthermore, the solution had 11 times higher corneal retention than Nevanac®. Drug distribution studies using porcine eyes revealed that the solution formulation enables detectable levels in various ocular tissues while the drug was undetectable by Nevanac®. The ocular solution formulation had a significantly higher drug concentration in the cornea compared to the suspension or Nevanac®.
Heat regulation: homeostasis of central temperature in man.
Benzinger, T H
1969-10-01
Focus is on the concept of the quantitative thermostat or setpoint as it evolved experimentally, not theoretically, from measurements of central temperature at the tympanic membrane and from measurements of physiological responses by human gradient layer calorimetry and continuous analysis of oxygen consumption. Heat-flow responses as they relate to stimuli by which they are evoked -- peripheral or central temperatures at thermoreceptive sites -- and discussed, and individual systems of reflex action are described. These systems are then correlated with what is known of their tangible components -- sensory receptors, effector organs, nervous centers, and afferent or efferent nervous pathways -- classically derived from anatomical studies, lesion experiments, recording of action currents, or electrical or thermal stimulation of pertinent structures. Such as correlation is a crucial test, and when the results are consistent, they provide independent, mutual confirmation via the 2 approaches. Doubts are then removed that lesions or interferences, which are unavoidable with most neurophysiological methods, may have produced artifacts. Conversely, calorimetry allows one to observe and analyze thermoregulation in process in a human subject without disturbing normal structures or functions other than by the stresses to which the body is made to respond. Prior to a description of experimental findings, the essential methods are reviewed. With the methods of gradient layer calorimetry, tympanic (eardrum) thermonetry, and indirect calorimetry, thermoregulatory responses -- by chemical overproduction of metabolic heat -- were observed in transient states as a result of a stimulus of cold impinging on peripheral neurons or warm-inhibition removed from central structures. With tympanic thermometry permitting for the 1st time om humans the continuous recording of central thermal stimulation, and with gradient calorimetry permitting the continuous recording (with insignificant inertial distortion) of the sweating responses in precisely controlled environments of a large variety and under conditions where complete evaporation of sweat is ensured by strong but smooth air convection, a new study of physical thermoregulation was initiated in 1958. The experimental results did not support the expection that sweating would follow the average temperature of the skin in the classical tradition, with skin warm-receptors as the hypothetical origin of exciting warm-impulses and cenral temperature as a participant prescribing the action of the "thermoregulator" in some as yet undetermined, additive, manner. Vasomotor mechanisms to human thermoregulation can be assessed in quantitative manner only by whole-body calorimetry. Mechanisms of thermal homeostasis also considered include hormonal regulation, transmitter substances, conscious sensation of warmth and coordinations of behavioral and autonomic mechanisms, setpoint and its variations, and fever.
Perfluoropolyalkylether decomposition on catalytic aluminas
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1994-01-01
The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.
[Features of binding of proflavine to DNA at different DNA-ligand concentration ratios].
Berezniak, E G; gladkovskaia, N A; Khrebtova, A S; Dukhopel'nikov, E V; Zinchenko, A V
2009-01-01
The binding of proflavine to calf thymus DNA has been studied using the methods of differential scanning calorimetry and spectrophotometry. It was shown that proflavine can interact with DNA by at least 3 binding modes. At high DNA-ligand concentration ratios (P/D), proflavine intercalates into both GC- and AT-sites, with a preference to GC-rich sequences. At low P/D ratios proflavine interacts with DNA by the external binding mode. From spectrophotometric concentration dependences, the parameters of complexing of proflavine with DNA were calculated. Thermodynamic parameters of DNA melting were calculated from differential scanning calorimetry data.
NASA Astrophysics Data System (ADS)
Ferrari, R.
2018-02-01
The Dual-Readout calorimetry, developed to overcome the main limiting factor in hadronic energy measurements, has been thoroughly investigated by the DREAM/RD52 collaboration during the last 15 years. The latest results show that very interesting performance may be obtained for both e.m. and hadronic showers, together with excellent standalone e/pi separation. These results and the plans (and the expected performance) for dual-readout calorimetry in the CepC/FCC-ee environment, are presented and discussed.
Calorimetric studies of the growth of anaerobic microbes.
Miyake, Hideo; Maeda, Yukiko; Ishikawa, Takashi; Tanaka, Akiyoshi
2016-09-01
This article aims to validate the use of calorimetry to measure the growth of anaerobic microbes. It has been difficult to monitor the growth of strict anaerobes while maintaining optimal growth conditions. Traditionally, optical density and ATP concentration are usually used as measures of the growth of anaerobic microbes. However, to take these measurements it is necessary to extract an aliquot of the culture, which can be difficult while maintaining anaerobic conditions. In this study, calorimetry was used to continuously and nondestructively measure the heat generated by the growth of anaerobic microbes as a function of time. Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium cellulovorans were used as representative anaerobic microbes. Using a multiplex isothermal calorimeter, we observed that peak time (tp) of C. acetobutylicum heat evolution increased as the inoculation rate decreased. This strong correlation between the inoculation rate and tp showed that it was possible to measure the growth rate of anaerobic microbes by calorimetry. Overall, our results showed that there is a very good correlation between heat evolution and optical density/ATP concentration, validating the use of the method. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Falconer, Robert J
2016-10-01
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.
ERIC Educational Resources Information Center
Muyskens, Mark A.
1997-01-01
Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)
Calculation versus measurement of total energy expenditure.
van Lanschot, J J; Feenstra, B W; Vermeij, C G; Bruining, H A
1986-11-01
In acutely ill patients both hypo- and hyperalimentation must be avoided by adjusting caloric intake to total energy expenditure (TEE). We determined the discrepancy between basal energy expenditure (BEE) calculated from the basic Harris-Benedict formula and TEE measured by continuous indirect calorimetry in a heterogeneous group of mechanically ventilated surgical patients. We also compared the accuracy of TEE calculated from the corrected Harris-Benedict formula or estimated by intermittent indirect calorimetry to that of TEE measured by continuous indirect calorimetry. The poor correlation between calculated BEE and measured TEE was significantly (p less than .05) improved by a correction factor based on each patient's clinical condition. The mean absolute difference between calculated TEE and measured TEE was 8.9 +/- 9.6 (SD) %. Calculations were significantly (p less than .05) improved by estimating TEE from two 5-min recording periods, which suggests that continuous indirect calorimetry may not always be necessary to guide caloric replacement.
NASA Astrophysics Data System (ADS)
Subhasri, P.; Venugopal, D.; Jayaprakasam, R.; Chitravel, T.; Vijayakumar, V. N.
2018-06-01
A new class of hydrogen bonded ferroelectric liquid crystals (HBFLC) have been designed and synthesized by intermolecular hydrogen bonds between mesogenic 4-decyloxybenzoic acid (10OBA) and non-mesogenic (R)-(+)-Methylsuccinic acid (MSA) which have been confirmed through experimental and theoretical studies. Further, Mulliken population analysis clearly reveals that the existence of hydrogen bonds, strength and dynamic properties. Textural observation and its corresponding enthalpy values are analyzed by polarizing optical microscope (POM) and differential scanning calorimetry (DSC) respectively. Paramorphic changes in Sm C* phase due to the change of refractive index, which clearly reveal that the complex could be used for filtering action in photonic devices. The transition from lone pair to π* with large stabilization energy evidently exposes the chiral phases in the present HBFLC complex. Intermolecular interaction is analyzed by using natural bond orbital (NBO) studies. The highest energy in the HOMO-LUMO shows the stable phase in the HBFLC complex. Molecular structure of the HBFLC complex possesses the monoclinic which has been evinced through x-ray analysis. The randomly oriented bunch of homogeneous molecules in Sm A* phase of the HBFLC complex is reported.
Hida, Akiko; Oku, Shota; Nakashimada, Yutaka; Tajima, Takahisa; Kato, Junichi
2017-08-17
Chemotaxis enables bacteria to move toward more favorable environmental conditions. We observed chemotaxis toward boric acid by Ralstonia pseudosolanacearum Ps29. At higher concentrations, the chemotactic response of R. pseudosolanacearum toward boric acid was comparable to or higher than that toward L-malate, indicating that boric acid is a strong attractant for R. pseudosolanacearum. Chemotaxis assays under different pH conditions suggested that R. pseudosolanacearum recognizes B(OH) 3 (or B(OH 3 ) + B(OH) 4 - ) but not B(OH) 4 - alone. Our previous study revealed that R. pseudosolanacearum Ps29 harbors homologs of all 22R. pseudosolanacearum GMI1000 mcp genes. Screening of 22 mcp single-deletion mutants identified the RS_RS17100 homolog as the boric acid chemoreceptor, which was designated McpB. The McpB ligand-binding domain (LBD) was purified in order to characterize its binding to boric acid. Using isothermal titration calorimetry, we demonstrated that boric acid binds directly to the McpB LBD with a K D (dissociation constant) of 5.4 µM. Analytical ultracentrifugation studies revealed that the McpB LBD is present as a dimer that recognizes one boric acid molecule.
Mondal, Soma; Jana, Jagannath; Sengupta, Pallabi; Jana, Samarjit; Chatterjee, Subhrangsu
2016-07-19
The use of small molecules to arrest G-quadruplex structure has become a potential strategy for the development and design of a new class of anticancer therapeutics. We have studied the interaction of myricetin, a plant flavonoid and a putative anticancer agent, with human telomeric G-quadruplex TTAGGG(TTAGGG)3 DNA. Reverse transcription PCR data revealed significant repression in hTERT expression in MCF-7 breast cancer cells upon increasing the concentration of myricetin. Further, we conducted a telomeric repeat amplification protocol assay to confirm the inhibition of telomerase by myricetin. Optical spectroscopic techniques like circular dichroism, UV spectroscopy and fluorescence spectroscopy revealed the formation of a stable myricetin-G-quadruplex complex. The thermodynamic parameters of myricetin-G-quadruplex complex formation, presented through isothermal titration calorimetry studies, indicate the binding process to be thermodynamically favorable. In addition, high resolution NMR spectroscopy in conjunction with molecular dynamics simulation is employed to provide detailed mechanistic insights into the binding in the myricetin-G-quadruplex complex at the atomic level. Our results thus propose a new mode of action of myricetin as an anticancer agent via arresting telomeric G-quadruplex structure.
Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N
2016-12-21
Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).
Cartagena, Andres Felipe; Lyra, Amanda Martinez; Kapuchczinski, Aline Cristina; Urban, Amanda Migliorini; Esmerino, Luis Antonio; Klein, Traudi; Nadal, Jessica Mendes; Farago, Paulo Vitor; Campanha, Nara Hellen
2017-01-01
Miconazole nitrate has been widely employed in treatment of oral mycoses, however your immediate bio-availability and location in the affected area is critical. The aim of this study was to prepare and evaluate Eudragit® L100 and Gantrez MS-955 microparticles containing miconazole nitrate for oral delivery. Microparticles were prepared by spray-drying method to achieve high encapsulation efficiency and increase the drug solubility. The microparticles were formed containing 10% and 20% of drug on polymer Eudragit® L100 (E10 and E20), Gantrez MS-955 (G10 and G20) or their combination (EG10 and EG20). The influence of formulation factors (polymer:drug ratio, type of polymer) on yield percent, encapsulation efficiency, particle size, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry, in vitro drug release and antifungal activity were investigated. Acceptable yield, micrometer-sized and drug-loading efficiencies higher than 89% were obtained. No change in FTIR assignments was recorded after the microencapsulation procedure. X-ray and differential scanning calorimetry studies revealed amorphous/non-crystalline formulations. Miconazole nitrate-microparticles provided a remarkable increase of dissolution rate of the drug. Miconazole nitrate and G10, G20 and EG20 microparticles fitted to biexponential kinetic model, and E10, E20 and EG10 microparticles, monoexponential kinetic model. The antifungal activity test demonstrated that miconazole nitrate-microparticles possessed the same anti-Candida albicans activity as the pure drug. These results indicate that miconazole nitrate-microparticles are feasible carriers for increased release of miconazole at oral environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Małuszyńska, Hanna; Czarnecki, Piotr; Czarnecka, Anna; Pająk, Zdzisław
2012-04-01
Pyridinium chlorochromate, [C(5)H(5)NH](+)[ClCrO(3)](-) (hereafter referred to as PyClCrO(3)), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R ̅3m (I) → R3m (II) → Cm (III) → Cc (IV), c' = 2c. PyClCrO(3) is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).
NASA Astrophysics Data System (ADS)
Alvi, M. A.
2017-02-01
Bulk Se77Sb23- x Ge x material with x = 4 and 12 was prepared by employing a melt quench technique. Its amorphous as well as glassy nature was confirmed by x-ray diffraction analysis and nonisothermal differential scanning calorimetry measurements. The physical vapor condensation technique was applied to prepare nanostructured thin films of Se77Sb23- x Ge x material. The surface morphology of the films was examined using field-emission scanning electron microscopy, revealing average particle size between 20 nm and 50 nm. Systematic investigation of optical absorption data indicated that the optical transition was indirect in nature. The dark conductivity (dc conductivity) of nano-structured Se77Sb23- x Ge x thin films was also investigated at temperatures from 313 K to 463 K, revealing that it tended to increase with increasing temperature. Analyses of our experimental data also indicate that the conduction is due to thermally supported tunneling of charge carriers in confined states close to the band edges. The calculated values of activation energy agree well with the optical bandgap.
NASA Astrophysics Data System (ADS)
Sologubov, S. S.; Markin, A. V.; Smirnova, N. N.; Novozhilova, N. A.; Tatarinova, E. A.; Muzafarov, A. M.
2018-02-01
The heat capacity of a first-generation carbosilane dendrimer with terminal phenylethyl groups as a function of temperature in the range from 6 to 520 K is studied for the first time via precision adiabatic vacuum calorimetry and differential scanning calorimetry. Physical transformations, such as low-temperature structural anomaly and glass transition are detected in the above-mentioned range of temperatures, and their standard thermodynamic characteristics are determined and analyzed. The standard thermodynamic functions of the studied dendrimer in the range of T → 0 to 520 K are calculated from the experimental data, as is the standard entropy in the devitrified state at T = 298.15 K. The standard thermodynamic characteristics of the carbosilane dendrimers studied in this work and earlier are compared.
NASA Astrophysics Data System (ADS)
Shimizu, Yoshitaka; Ohte, Yoko; Yamamura, Yasuhisa; Saito, Kazuya
2009-03-01
To establish the alkyl-chain-length dependences of thermodynamic properties of typical ionic liquids [C nmim][Tf 2N], the heat capacities of compounds with n = 2 and 18 were measured by adiabatic calorimetry. The comparison with other ionic liquids and typical molecular substances reveals that the low melting point of [C nmim][Tf 2N] with a short alkyl chain mainly originate in the large fusion entropy arising from the low entropy of the crystalline phase.
Crystal Growth of Undoped and Doped ZnSe
NASA Technical Reports Server (NTRS)
Davis, Swanson L.; Chen, K.-T.; George, M. A.; Shi, D. T.; Collins, W. E.; Burger, Arnold
1997-01-01
The surface morphology of freshly cleaved ZnSe single crystal grown by the physical vapor transport (PVT) method was investigated by Atomic Force Microscopy (AFM) and the results were correlated with Differential Scanning Calorimetry (DSC) data. Selenium precipitates have been revealed in undoped doped ZnSe crystals having a size of about 50 nm. A transition temperature around 221 C in the DSC measurements is interpreted as the eutectic temperature of Se-saturated ZnSe. The AFM images of doped ZnSe also show that possible Cr clusters are uniformly distributed and they have an estimated size of about 6 nm.
ERIC Educational Resources Information Center
Harris, Jerry D.; Rusch, Aaron W.
2013-01-01
simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to characterize colorless, hydrated salts with anhydrous melting points less than 1100 degrees C. The experiment could be used to supplement the lecture discussing gravimetric techniques. It is…
Calahan, Julie L; Azali, Stephanie C; Munson, Eric J; Nagapudi, Karthik
2015-11-02
Intimate phase mixing between the drug and the polymer is considered a prerequisite to achieve good physical stability for amorphous solid dispersions. In this article, spray dried amorphous dispersions (ASDs) of AMG 517 and HPMC-as were studied by differential scanning calorimetry (DSC), solid-state NMR (SSNMR), and solution calorimetry. DSC analysis showed a weakly asymmetric (ΔTg ≈ 13.5) system with a single glass transition for blends of different compositions indicating phase mixing. The Tg-composition data was modeled using the BKCV equation to accommodate the observed negative deviation from ideality. Proton spin-lattice relaxation times in the laboratory and rotating frames ((1)H T1 and T1ρ), as measured by SSNMR, were consistent with the observation that the components of the dispersion were in intimate contact over a 10-20 nm length scale. Based on the heat of mixing calculated from solution calorimetry and the entropy of mixing calculated from the Flory-Huggins theory, the free energy of mixing was calculated. The free energy of mixing was found to be positive for all ASDs, indicating that the drug and polymer are thermodynamically predisposed to phase separation at 25 °C. This suggests that miscibility measured by DSC and SSNMR is achieved kinetically as the result of intimate mixing between drug and polymer during the spray drying process. This kinetic phase mixing is responsible for the physical stability of the ASD.
Characterization of Novel Operation Modes for Secondary Emission Ionization Calorimetry
NASA Astrophysics Data System (ADS)
Tiras, Emrah; Dilsiz, Kamuran; Ogul, Hasan; Snyder, Christina; Bilki, Burak; Onel, Yasar; Winn, David
2017-01-01
Secondary Emission (SE) Ionization Calorimetry is a novel technique to measure electromagnetic showers in high radiation environments. We have developed new operation modes by modifying the bias of the conventional PMT circuits. Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes (PMTs) with modified bases are used as SE detector modules in our SE calorimetry prototype. In this detector module, the first dynode is used as the active media as opposed to photocathode. Here, we report the technical design of new modes and characterization measurements for both SE and PMT modes.
Wei, Dan; Chen, Lixin; Xu, Tingting; He, Weiqi; Wang, Yi
2016-06-21
A preceramic polymer of B,B',B''-(dimethyl)ethyl-acrylate-silyloxyethyl-borazine was synthesized by three steps from a molecular single-source precursor and characterized by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectrometry. Six-member borazine rings and acrylate groups were effectively introduced into the preceramic polymer to activate UV photo-induced polymerization. Photo-Differential Scanning Calorimetry (Photo-DSC) and real-time FTIR techniques were adapted to investigate the photo-polymerization process. The results revealed that the borazine derivative exhibited dramatic activity by UV polymerization, the double-bond conversion of which reached a maximum in 40 s. Furthermore, the properties of the pyrogenetic products were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which proved the ceramic annealed at 1100 °C retained the amorphous phase.
Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment
NASA Astrophysics Data System (ADS)
Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu
2005-07-01
Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.
Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.
Pang, Jianmei; Luan, Yuxia; Li, Feifei; Cai, Xiaoqing; Du, Jimin; Li, Zhonghao
2011-01-01
Ibuprofen- (IBU) loaded biocompatible poly(lactic-co-glycolic acid) (PLGA) films were prepared by spreading polymer/ibuprofen solution on the nonsolvent surface. By controlling the weight ratio of drug and polymer, different drug loading polymer films can be obtained. The synthesized ibuprofen-loaded PLGA films were characterized with scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry. The drug release behavior of the as-prepared IBU-loaded PLGA films was studied to reveal their potential application in drug delivery systems. The results show the feasibility of the as-obtained films for controlling drug release. Furthermore, the drug release rate of the film could be controlled by the drug loading content and the release medium. The development of a biodegradable ibuprofen system, based on films, should be of great interest in drug delivery systems.
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Karpova, S. G.; Staroverova, O. V.; Krutikova, A. A.; Orlov, N. A.; Kucherenko, E. L.; Iordanskii, A. L.
2016-11-01
The fibrous materials (the mats) based on poly-3-hydroxybutyrate (PHB) containing the drug, dipiridomole (DPD) were produced by electrospinning (ES). Thermophysical and dynamical properties of the single filaments and the mats were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and probe electron paramagnetic resonance spectroscopy (EPR). The effect of annealing temperature on the structure and crystallinity of the fibers was examined. It was shown that the loading of DPD influences on both the melting enthalpy and the morphology of the fibers. Besides the analysis of EPR spectra revealed that there are two populations of spin-probes distributed in the rigid and nonrigid amorphous regions of the PHB fibers respectively. For all fibrous materials with different content of DPD (0-5%) the correlation between thermophysical (DSC) and dynamic data (EPR) was observed.
Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio
2008-11-27
The isothermal crystallization of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene-like tungsten disulfide nanoparticles (IF-WS2) has been studied from a thermal and morphological point of view, using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction. All the analyses revealed that the incorporation of the IF-WS2 altered significantly the crystallization behavior of PPS, in a way strongly dependent with the nanocomposite composition. The addition of IF-WS2 in 0.1 wt % proportion retarded the crystallization of PPS by increasing its fold surface free energy in a 10%. However, addition of the nanoparticles in excess of 1 wt % results in a promotion of the crystallization rate with reduction of the fold surface free energy to half the value of pure PPS.
Human immunoglobulin E flexes between acutely bent and extended conformations
Keeble, Anthony H; Wright, Michael; Cain, Katharine; Hailu, Hanna; Oxbrow, Amanda; Delgado, Jean; Shuttleworth, Lindsay K; Kao, Michael W-P; McDonnell, James M; Beavil, Andrew J; Henry, Alistair J; Sutton, Brian J
2014-01-01
Crystallographic and solution studies have shown that IgE molecules are acutely bent in their Fc region. Crystal structures reveal the Cε2 domain pair folded back onto the Cε3-Cε4 domains, but is the molecule exclusively bent or can the Cε2 domains adopt extended conformations and even “flip” from one side of the molecule to the other? We report the crystal structure of IgE-Fc captured in a fully extended, symmetrical conformation and show by molecular dynamics, calorimetry, stopped-flow kinetic, SPR and FRET analyses, that the antibody can indeed adopt such extended conformations in solution. This diversity of conformational states available to IgE-Fc offers a new perspective on IgE function in allergen recognition, as part of the B cell receptor and as a therapeutic target in allergic disease. PMID:24632569
Brünig, Thorge; Krekić, Kristijan; Bruhn, Clemens; Pietschnig, Rudolf
2016-11-02
The thermal properties of a series of twenty-four ionic liquids (ILs) have been determined by isothermal titration calorimetry (ITC) with the aim of simulating processes involving water sorption. For eleven water-free ILs, the molecular structures have been determined by X-ray crystallography in the solid state, which have been used to derive the molecular volumes of the ionic components of the ILs. Moreover, the structures reveal a high prevalence of hydrogen bonding in these compounds. A relationship between the molecular volumes and the experimentally determined energies of dilution could be established. The highest energies of dilution observed in this series were obtained for the acetate-based ILs, which underlines their potential as working fluids in sorption-based thermal energy storage systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and performance characterization of 2-(dinitromethylene)-1-nitro-1, 3-diazacyclopentane
NASA Astrophysics Data System (ADS)
Liu, Pan; Qin, Weiyan
2018-04-01
The present paper described an new effort to synthesis 2-(dinitromethylene)-l-nitro-1, 3-diaza-cyclopentane (iv), characterization an thermal studies of (iv) are also reported. 2-(dinitromethylene)-1, 3-diazacyclo-pentane (i) was synthesized from the nucleophilic substitution of ethylenediamine and 1,1-diamino-2,2-dinitroethylene (FOX-7) catalyzed by Mg(OAc)2. Then i was transformed to iv through reactions of nitration, reduction and hydrolysis. The structure of iv was characterized by IR, NMR, MS and elemental analysis. Thermal stability of iv was investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC) which revealed that decomposed at 131 °C. The experimentally determined sensitivity parameters indicated that iv is sensitive towards external stimuli. The performance of iv had been calculated using VLW equation and its crystal morphology was investigated by scanning electron microscopy (SEM).
Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito
2008-10-01
To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.
NASA Astrophysics Data System (ADS)
Mallamace, Domenico; Vasi, Sebastiano; Corsaro, Carmelo; Naccari, Clara; Clodoveo, Maria Lisa; Dugo, Giacomo; Cicero, Nicola
2017-11-01
The thermal properties of many organic extra Virgin Olive Oils (eVOOs) coming from different countries of the world were investigated by Differential Scanning Calorimetry (DSC). This technique, through a series of heating and cooling cycles, provides a specific curve, i.e., a thermogram, which represents the fingerprint of each eVOO sample. In fact, variations due to the different cultivars, geographical origin or chemical composition can be highlighted because they produce changes in the corresponding thermogram. In particular, in this work, we show the results of an unsupervised multivariate statistical analysis applied to the DSC thermograms of many organic eVOOs. This analysis allows us to discriminate the geographical origin of the different studied samples in terms of the peculiar features shown by the melting profiles of the triacylglycerol moieties.
NASA Technical Reports Server (NTRS)
Neveu, M. C.; Stocker, D. P.
1985-01-01
High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.
Calorimetry exchange program amendment to 3rd quarter CY92 report LLNL isotopic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, T.M.
1996-08-01
This report is a series of ammendments to the Calorimetry Exchange Quarterly Data Report for third quarter CY1992. The ammendment is needed due to reporting errors encountered in the Lawrence Livermore National Laboratory isotopic data.
Fate of Malathion in an Activated Sludge Municipal Wastewater Treatment System
2013-03-01
Kaletunc, G. (2002). Evaluation by differential scanning calorimetry of the heat inactivation of E. coli and lactobacillus plantarum . Applied...Inactivation of E. coli and Lactobacillus planatarun by differential scanning calorimetry. Applied Environmental Microbiology, 68(11), 5379-5386. Lee, J
USDA-ARS?s Scientific Manuscript database
Temperature dependent Raman spectroscopy (TDR) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur just prior to phase transitions. Herein we apply TDR and D...
HILIS - A HIGH INTENSITY LIGHT SYSTEM FOR ALGAE FOOD PRODUCTION,
ALGAE, PRODUCTION CONTROL), (*FOOD, FEASIBILITY STUDIES), CHLORELLA , CALORIMETRY, NUTRITION, MODEL TESTS, ILLUMINATION, BRIGHTNESS, TEMPERATURE CONTROL, HEAT TRANSFER, SPECTRUM SIGNATURES, TEST METHODS, TEST EQUIPMENT.
Direct calorimetry of free-moving eels with manipulated thyroid status
NASA Astrophysics Data System (ADS)
van Ginneken, Vincent; Ballieux, Bart; Antonissen, Erik; van der Linden, Rob; Gluvers, Ab; van den Thillart, Guido
2007-02-01
In birds and mammals, the thyroid gland secretes the iodothyronine hormones of which tetraiodothyronine (T4) is less active than triiodothyronine (T3). The action of T3 and T4 is calorigenic and is involved in the control of metabolic rate. Across all vertebrates, thyroid hormones also play a major role in differentiation, development and growth. Although the fish thyroidal system has been researched extensively, its role in thermogenesis is unclear. In this study, we measured overall heat production to an accuracy of 0.1 mW by direct calorimetry in a free-moving European eel ( Anguilla anguilla L.) with different thyroid status. Hyperthyroidism was induced by injection of T3 and T4, and hypothyroidism was induced with phenylthiourea. The results show for the first time at the organismal level, using direct calorimetry, that neither overall heat production nor overall oxygen consumption in eels is affected by hyperthyroidism. Therefore, we conclude that the thermogenic metabolism-stimulating effect of thyroid hormones (TH) is not present with a cold-blooded fish species like the European eel. This supports the concept that TH does not stimulate thermogenesis in poikilothermic species.
Liquid scintillator tiles for calorimetry
Amouzegar, M.; Belloni, A.; Bilki, B.; ...
2016-11-28
Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less
Liquid scintillator tiles for calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amouzegar, M.; Belloni, A.; Bilki, B.
Future experiments in high energy and nuclear physics may require large, inexpensive calorimeters that can continue to operate after receiving doses of 50 Mrad or more. Also, the light output of liquid scintillators suffers little degradation under irradiation. However, many challenges exist before liquids can be used in sampling calorimetry, especially regarding developing a packaging that has sufficient efficiency and uniformity of light collection, as well as suitable mechanical properties. We present the results of a study of a scintillator tile based on the EJ-309 liquid scintillator using cosmic rays and test beam on the light collection efficiency and uniformity,more » and some preliminary results on radiation hardness.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan, Kaustabh, E-mail: kaustabhdan@gmail.com; Roy, Madhusudan, E-mail: kaustabhdan@gmail.com; Datta, Alokmay, E-mail: kaustabhdan@gmail.com
2014-04-24
Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.
Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions*
2016-01-01
Chemokines, a large family of highly versatile small soluble proteins, play crucial roles in defining innate and adaptive immune responses by regulating the trafficking of leukocytes, and also play a key role in various aspects of human physiology. Chemokines share the characteristic feature of reversibly existing as monomers and dimers, and their functional response is intimately coupled to interaction with glycosaminoglycans (GAGs). Currently, nothing is known regarding the structural basis or molecular mechanisms underlying CXCL5-GAG interactions. To address this missing knowledge, we characterized the interaction of a panel of heparin oligosaccharides to CXCL5 using solution NMR, isothermal titration calorimetry, and molecular dynamics simulations. NMR studies indicated that the dimer is the high-affinity GAG binding ligand and that lysine residues from the N-loop, 40s turn, β3 strand, and C-terminal helix mediate binding. Isothermal titration calorimetry indicated a stoichiometry of two oligosaccharides per CXCL5 dimer. NMR-based structural models reveal that these residues form a contiguous surface within a monomer and, interestingly, that the GAG-binding domain overlaps with the receptor-binding domain, indicating that a GAG-bound chemokine cannot activate the receptor. Molecular dynamics simulations indicate that the roles of the individual lysines are not equivalent and that helical lysines play a more prominent role in determining binding geometry and affinity. Further, binding interactions and GAG geometry in CXCL5 are novel and distinctly different compared with the related chemokines CXCL1 and CXCL8. We conclude that a finely tuned balance between the GAG-bound dimer and free soluble monomer regulates CXCL5-mediated receptor signaling and function. PMID:27471273
Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred
2012-07-01
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.
NASA Astrophysics Data System (ADS)
Rahman, Tanzilur; Sakib Rahman, Saadman; Zurais Ibne Ashraf, Md; Ibn Muneer, Khalid; Rashed, H. M. Mamun Al
2017-10-01
Lightweighting automobiles can dramatically reduce their consumption of fossil fuels and the atmospheric CO2 concentration. Heat-treatable Al-Mg-Si has attracted a great deal of research interest due to their high strength-to-weight ratio, good formability, and resistance to corrosion. In the past, it has been reported that the mechanical properties of Al-Mg-Si can be ameliorated by the addition of Cu. However, determining the right amount of Cu content still remains a challenge. To address this the microstructure evolution, phase transformation, mechanical properties, and fracture behavior of Al-Mg-Si-xCu (x = 0, 1, 2 and 4 wt.%) alloys were studied through optical and field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, hardness measurements, and tensile tests. The obtained results indicate that the addition of Cu of up to 4 wt.% improved the hardness (17.5% increase) of the alloy, but reduced its ductility. Moreover, an alloy with 4 wt.% Cu fractured in a brittle manner while Al-Mg-Si showed ductile fracture mechanism. In addition, differential scanning calorimetry analysis revealed five exothermic peaks in all Cu containing alloys. Our results also showed that θʹ and Qʹ-type intermetallic phases formed owing to the addition of Cu, which affected the strength and ductility. Thus, Al-Mg-Si-xCu alloy with the right amount of Cu content serves as an excellent candidate for replacing more costly alloys for cost-effective lightweighting and other applications.
Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction
NASA Astrophysics Data System (ADS)
Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim
2017-09-01
Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.
NASA Astrophysics Data System (ADS)
Hazarika, S.; Mohanta, D.
2013-01-01
Naturally available green spinach, which is a rich source of potassium, was used as the key ingredient to extract mixed-phase ferroelectric crystals of nitrite and nitrate derivatives (KNO2 + KNO3). The KNO3 phase was found to be dominant for higher pH values, as revealed by the x-ray diffraction patterns. The characteristic optical absorption spectra exhibited intra-band π-π* electronic transitions, whereas Fourier transform infrared spectra exhibited characteristic N-O stretching vibrations. Differential scanning calorimetry revealed a broad endothermic peak at ˜121.8 °C, highlighting a transition from phase II to I via phase III of KNO3. Obtaining nanoscale ferroelectrics via the adoption of green synthesis is economically viable for large-scale production and possible application in ferroelectric elements/devices.
Tuning Riboswitch Regulation through Conformational Selection
Wilson, Ross C.; Smith, Angela M.; Fuchs, Ryan T.; Kleckner, Ian R.; Henkin, Tina M.; Foster, Mark P.
2010-01-01
SUMMARY The SMK box riboswitch, which represents one of three known classes of S-adenosylmethionine (SAM)-responsive riboswitches, regulates gene expression in bacteria at the level of translation initiation. In contrast to most riboswitches, which contain separate domains responsible for ligand recognition and gene regulation, the ligand-binding and regulatory domains of the SMK box riboswitch are coincident. This property was exploited to allow the first atomic-level characterization of a functionally intact riboswitch in both the ligand-bound and ligand-free states. NMR spectroscopy revealed distinct mutually exclusive RNA conformations that are differentially populated in the presence or absence of the effector metabolite. Isothermal titration calorimetry and in vivo reporter assay results revealed the thermodynamic and functional consequences of this conformational equilibrium. We present a comprehensive model of the structural, thermodynamic, and functional properties of this compact RNA regulatory element. PMID:21075119
NASA Astrophysics Data System (ADS)
Mahudeswaran, A.; Vivekanandan, J.; Vijayanand, P. S.; Kojima, T.; Kato, S.
2016-01-01
Poly(aniline-co-o-bromoaniline) (p(an-co-o-BrAn)) copolymer has been synthesized using chemical oxidation method in the hydrochloric acid medium. Copolymerization of aniline with o-bromoaniline of different compositions, such as 1:1, 1:2, 2:1, 1:3 and 3:1 molar ratios were prepared. The synthesized copolymer is soluble in polar solvents like dimethyl sulphoxide (DMSO), dimethyl formamide (DMF), Tetrahydrofuran (THF) and 1-methyl 2-pyrrolidone (NMP). The copolymer is analyzed by various characterization techniques, such as FTIR, UV-Visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), conductivity, Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). FTIR spectrum confirms the characteristic peaks of the copolymer containing benzenoid and quinoid ring stretching. UV spectrum reveals the formation of π-π∗ transition and n-π∗ transition between the energy levels. XRD peaks reveal that the copolymer possesses amorphous nature. Morphological study reveals that the agglomerated particles form globular structure and size of the each particle is about 100 nm. The electrical conductivity of the copolymers is found in the range of 10-5Scm-1. These organic semiconductor materials can be used to fabricate thinner and cheaper environmental friendly optoelectronic devices that will replace the conventional inorganic semiconductors.
Crystal Structure Variations of Sn Nanoparticles upon Heating
NASA Astrophysics Data System (ADS)
Mittal, Jagjiwan; Lin, Kwang-Lung
2018-04-01
Structural changes in Sn nanoparticles during heating below the melting point have been investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD) analysis, electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). DSC revealed that the heat required to melt the nanoparticles (28.43 J/g) was about half compared with Sn metal (52.80 J/g), which was attributed to the large surface energy contribution for the nanoparticles. ED and XRD analyses of the Sn nanoparticles revealed increased intensity for crystal planes having large interplaner distances compared with regular crystal planes with increasing heat treatment temperature (HTT). HRTEM revealed an increase in interlayer spacing at the surface and near joints between nanoparticles with the HTT, leading to an amorphous structure of nanoparticles at the surface at 220°C. These results highlight the changes that occur in the morphology and crystal structure of Sn nanoparticles at the surface and in the interior with increase of the heat treatment temperature.
Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants
Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy
2016-01-01
Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309
Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu
2017-01-19
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.
Hansen, T N; Carpenter, J F
1993-01-01
Differential scanning calorimetry and cryomicroscopy were used to investigate the effects of type I antifreeze protein (AFP) from winter flounder on 58% solutions of hydroxyethyl starch. The glass, devitrification, and melt transitions noted during rewarming were unaffected by 100 micrograms/ml AFP. Isothermal annealing experiments were undertaken to detect the effects of AFP-induced inhibition of ice crystal growth using calorimetry. A premelt endothermic peak was detected during warming after the annealing procedure. Increasing the duration or the temperature of the annealing for the temperature range from -28 and -18 degrees C resulted in a gradual increase in the enthalpy of the premelt endotherm. This transition was unaffected by 100 micrograms/ml AFP. Annealing between -18 and -10 degrees C resulted in a gradual decrease in the premelt peak enthalpy. This process was inhibited by 100 micrograms/ml AFP. Cryomicroscopic examination of the samples revealed that AFP inhibited ice recrystallization during isothermal annealing at -10 degrees C. Annealing at lower temperatures resulted in minimal ice recrystallization and no visible effect of AFP. Thus, the 100 micrograms/ml AFP to have a detectable influence on thermal events in the calorimeter, conditions must be used that result in significant ice growth without AFP and visible inhibition of this process by AFP. Images FIGURE 8 PMID:7690257
Preparation of Flame Retardant Polyacrylonitrile Fabric Based on Sol-Gel and Layer-by-Layer Assembly
Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui
2018-01-01
This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric. PMID:29570646
Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme
2004-01-01
Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the haem biosynthetic pathway, catalyses the chelation of Fe(II) into the protoporphyrin IX ring. The energetics of the binding between murine ferrochelatase and mesoporphyrin were determined using isothermal titration calorimetry, which revealed a stoichiometry of one molecule of mesoporphyrin bound per protein monomer. The binding is strongly exothermic, with a large intrinsic enthalpy (ΔH=−97.1 kJ · mol−1), and is associated with the uptake of two protons from the buffer. This proton transfer suggests that hydrogen bonding between ferrochelatase and mesoporphyrin is a key factor in the thermodynamics of the binding reaction. Differential scanning calorimetry thermograms indicated a co-operative two-state denaturation process with a single transition temperature of 56 °C for wild-type murine ferrochelatase. An increase in the thermal stability of ferrochelatase is dependent upon mesoporphyrin binding. Similarly, murine ferrochelatase variants, in which the active site Glu-289 was replaced by either glutamine or alanine and, when purified, contained specifically-bound protoporphyrin, exhibited enhanced protein stability when compared with wild-type ferrochelatase. However, in contrast with the wild-type enzyme, the thermal denaturation of ferrochelatase variants was best described as a non-co-operative denaturation process. PMID:15496139
Ren, Yuanlin; Huo, Tongguo; Qin, Yiwen; Liu, Xiaohui
2018-03-23
This paper aims to develop a novel method, i.e., sol-gel combined with layer-by-layer assembly technology, to impart flame retardancy on polyacrylonitrile (PAN) fabrics. Silica-sol was synthesized via the sol-gel process and acted as cationic solution, and phytic acid (PA) was used as the anionic medium. Flame-retardant-treated PAN fabric (FR-PAN) could achieve excellent flame retardancy with 10 bilayer (10BL) coating through layer-by-layer assembly. The structure of the fabrics was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The thermal stability and flame retardancy were evaluated by thermogravimetric (TG) analysis, cone calorimetry (CC) and limiting oxygen index (LOI). The LOI value of the coated fabric was up to 33.2 vol % and the char residue at 800 °C also increased to 57 wt %. Cone calorimetry tests revealed that, compared to the control fabric, the peak of heat release rate (PHRR) and total heat release (THR) of FR-PAN decreased by 66% and 73%, respectively. These results indicated that sol-gel combined with layer-by-layer assembly technique could impart PAN fabric with satisfactory flame-retardant properties, showing an efficient flame retardant strategy for PAN fabric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Renyu, E-mail: renyu.liu@uphs.upenn.edu; Bu, Weiming; Xi, Jin
2012-05-01
Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that themore » SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.« less
NASA Astrophysics Data System (ADS)
Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu
2017-01-01
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer.
Isothermal Titration Calorimetry Can Provide Critical Thinking Opportunities
ERIC Educational Resources Information Center
Moore, Dale E.; Goode, David R.; Seney, Caryn S.; Boatwright, Jennifer M.
2016-01-01
College chemistry faculties might not have considered including isothermal titration calorimetry (ITC) in their majors' curriculum because experimental data from this instrumental method are often analyzed via automation (software). However, the software-based data analysis can be replaced with a spreadsheet-based analysis that is readily…
Calculation of Temperature Rise in Calorimetry.
ERIC Educational Resources Information Center
Canagaratna, Sebastian G.; Witt, Jerry
1988-01-01
Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)
Subsite binding energies of an exo-polygalacturonase using isothermal titration calorimetry
USDA-ARS?s Scientific Manuscript database
Thermodynamic parameters for binding of a series of galacturonic acid oligomers to an exo-polygalacturonase, RPG16 from Rhizopus oryzae, were determined by isothermal titration calorimetry. Binding of oligomers varying in chain length from two to five galacturonic acid residues is an exothermic proc...
Giuffrida, Maria Chiara; Pignatello, Rosario; Castelli, Francesco; Sarpietro, Maria Grazia
2017-09-01
Naproxen, a nonsteroid anti-inflammatory drug studied for Alzheimer's disease, was conjugated with lipoamino acids (LAA) directly or through a diethylamine (EDA) spacer to improve the drug lipophilicity and the interaction with phospholipid bilayers. The interaction of naproxen and its prodrugs with biomembrane models consisting of dimyristoylphosphatidylcholine multilamellar vesicles was studied by differential scanning calorimetry. The transfer of prodrugs from a lipophilic carrier to a biomembrane model was also studied. Naproxen conjugation to lipoamino acids improves its interaction with biomembrane models and affects the transfer from a lipophilic carrier to biomembrane model. LAA portion may localize between the phospholipid chains; the entity of the interaction depends not only on the presence of the spacer but also on the LAA chain length. Variation of LAA portion can modulate the naproxen prodrugs affinity towards the biological membrane as well as towards the lipophilic carrier. © 2017 Royal Pharmaceutical Society.
Preparation of Solid Derivatives by Differential Scanning Calorimetry.
ERIC Educational Resources Information Center
Crandall, E. W.; Pennington, Maxine
1980-01-01
Describes the preparation of selected aldehydes and ketones, alcohols, amines, phenols, haloalkanes, and tertiaryamines by differential scanning calorimetry. Technique is advantageous because formation of the reaction product occurs and the melting point of the product is obtained on the same sample in a short time with no additional purification…
García-Prieto, Jorge Cañete; Martinez-Vizcaino, Vicente; García-Hermoso, Antonio; Sánchez-López, Mairena; Arias-Palencia, Natalia; Fonseca, Juan Fernando Ortega; Mora-Rodriguez, Ricardo
2017-10-01
The aim of this study was to examine the energy expenditure (EE) measured using indirect calorimetry (IC) during playground games and to assess the validity of heart rate (HR) and accelerometry counts as indirect indicators of EE in children´s physical activity games. 32 primary school children (9.9 ± 0.6 years old, 19.8 ± 4.9 kg · m -2 BMI and 37.6 ± 7.2 ml · kg -1 · min -1 VO 2max ). Indirect calorimetry (IC), accelerometry and HR data were simultaneously collected for each child during a 90 min session of 30 playground games. Thirty-eight sessions were recorded in 32 different children. Each game was recorded at least in three occasions in other three children. The intersubject coefficient of variation within a game was 27% for IC, 37% for accelerometry and 13% for HR. The overall mean EE in the games was 4.2 ± 1.4 kcals · min -1 per game, totaling to 375 ± 122 kcals/per 90 min/session. The correlation coefficient between indirect calorimetry and accelerometer counts was 0.48 (p = .026) for endurance games and 0.21 (p = .574) for strength games. The correlation coefficient between indirect calorimetry and HR was 0.71 (p = .032) for endurance games and 0.48 (p = .026) for strength games. Our data indicate that both accelerometer and HR monitors are useful devices for estimating EE during endurance games, but only HR monitors estimates are accurate for endurance games.
Do PICU patients meet technical criteria for performing indirect calorimetry?
Beggs, Megan R; Garcia Guerra, Gonzalo; Larsen, Bodil M K
2016-10-01
Indirect calorimetry (IC) is considered gold standard for assessing energy needs of critically ill children as predictive equations and clinical status indicators are often unreliable. Accurate assessment of energy requirements in this vulnerable population is essential given the high risk of over or underfeeding and the consequences thereof. The proportion of patients and patient days in pediatric intensive care (PICU) for which energy expenditure (EE) can be measured using IC is currently unknown. In the current study, we aimed to quantify the daily proportion of consecutive PICU patients who met technical criteria to perform indirect calorimetry and describe the technical contraindications when criteria were not met. Prospective, observational, single-centre study conducted in a cardiac and general PICU. All consecutive patients admitted for at least 96 h were included in the study. Variables collected for each patient included age at admission, admission diagnosis, and if technical criteria for indirect calorimetry were met. Technical criteria variables were collected within the same 2 h each morning and include: provision of supplemental oxygen, ventilator settings, endotracheal tube (ETT) leak, diagnosis of chest tube air leak, provision of external gas support (i.e. nitric oxide), and provision of extracorporeal membrane oxygenation (ECMO). 288 patients were included for a total of 3590 patient days between June 2014 and February 2015. The main reasons for admission were: surgery (cardiac and non-cardiac), respiratory distress, trauma, oncology and medicine/other. The median (interquartile range) patient age was 0.7 (0.3-4.6) years. The median length of PICU stay was 7 (5-14) days. Only 34% (95% CI, 32.4-35.5%) of patient days met technical criteria for IC. For patients less than 6 months of age, technical criteria were met on significantly fewer patient days (29%, p < 0.01). Moreover, 27% of patients did not meet technical criteria for IC on any day during their PICU stay. Most frequent reasons for why IC could not be performed included supplemental oxygen, ECMO, and ETT leak. In the current study, technical criteria to perform IC in the PICU were not met for 27% of patients and were not met on 66% of patient days. Moreover, criteria were met on only 29% of days for infants 6 months and younger where children 24 months of age and older still only met criteria on 40% of patient days. This data represents a major gap in the feasibility of current recommendations for assessing energy requirements of this population. Future studies are needed to improve methods of predicting and measuring energy requirements in critically ill children who do not meet current criteria for indirect calorimetry. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
Online particle detection with Neural Networks based on topological calorimetry information
NASA Astrophysics Data System (ADS)
Ciodaro, T.; Deva, D.; de Seixas, J. M.; Damazio, D.
2012-06-01
This paper presents the latest results from the Ringer algorithm, which is based on artificial neural networks for the electron identification at the online filtering system of the ATLAS particle detector, in the context of the LHC experiment at CERN. The algorithm performs topological feature extraction using the ATLAS calorimetry information (energy measurements). The extracted information is presented to a neural network classifier. Studies showed that the Ringer algorithm achieves high detection efficiency, while keeping the false alarm rate low. Optimizations, guided by detailed analysis, reduced the algorithm execution time by 59%. Also, the total memory necessary to store the Ringer algorithm information represents less than 6.2 percent of the total filtering system amount.
Experimental research in the phase change materials based on paraffin and expanded perlite
NASA Astrophysics Data System (ADS)
Jiesheng, Liu; Faping, Li; Xiaoqiang, Gong; Rongtang, Zhang
2018-06-01
In this study, paraffin (PA)/expanded perlite (EP) form-stable phase change material (PCM) was first fabricated using the direct impregnation method without vacuum treatment. Absorptive capacity results showed that the PA/EP composite can obtain good absorptive capacity with the temperature 80 °C and the time 2 h. Compared with the water absorption of EP, the decrease in the water absorption of PA/EP form-stable proved that the absorption of PA into porous EP has been carried out successfully. Scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) results show that paraffin can be well impregnated into EP pores and has good compatibility with it. Differential scanning calorimetry (DSC) results reveal that paraffin/EP composite PCM has melting temperature and latent heat of 53.6 °C and 91.3 J/g, respectively. The durability cycles results suggest that form-stable PA/EP PCM shows good durability.
NASA Astrophysics Data System (ADS)
Lopes, Cátia S. D.; Bernardes, Carlos E. S.; Piedade, M. Fátima M.; Diogo, Hermínio P.; da Piedade, Manuel E. Minas
2017-04-01
A new polymorph of 1-(4-hydroxyphenyl)pentan-1-one (4'-hydroxyvalerophenone, HVP) was identified by using differential scanning calorimetry, hot stage microscopy, and X-ray powder diffraction. This novel crystal form (form II) was obtained by crystallization from melt. It has a fusion temperature of T fus = 324.3 ± 0.2 K and an enthalpy of fusion Δfus H m o = 18.14±0.18 kJ·mol-1. These values are significantly lower than those observed for the previously known phase (form I, monoclinic, space group P21/ c, T fus = 335.6 ± 0.7 K; Δfus H m o = 26.67±0.04 kJ·mol-1), which can be prepared by crystallization from ethanol. The results here obtained, therefore, suggest that form I is thermodynamically more stable than the newly identified form II and, furthermore, that the two polymorphs are monotropically related.
Structural study of dehydration mechanisms of NH4Th(NO3)5·9H2O
NASA Astrophysics Data System (ADS)
Knyazev, A. V.; Komshina, M. E.; Baranov, E. V.; Savushkin, I. A.; Nipruk, O. V.; Lukoyanov, A. Yu.
2017-12-01
The new pentanitrate thorium compounds NH4Th(NO3)5·nH2O were synthesized and their crystal structures were determined by X-ray diffraction analysis: space group P21/n, a = 10.5476(5), b = 14.0444(7), c = 15.5287(8) Å, β = 109.4999(7)°, Z = 4; R = 0.0246 (NH4Th(NO3)5·9H2O); space group P212121, a = 8.7039(4), b = 11.9985(6), c = 16.3531(8) Å, Z = 4; R = 0.0259 (NH4Th(NO3)5·5H2O). Features of structural changes in the dehydration were revealed. Conditions of thermal decomposition of the thorium compound were established using differential scanning calorimetry. The compound was investigated by IR spectroscopy and its bands are assigned.
Electromagnetic nondestructive evaluation of tempering process in AISI D2 tool steel
NASA Astrophysics Data System (ADS)
Kahrobaee, Saeed; Kashefi, Mehrdad
2015-05-01
The present paper investigates the potential of using eddy current technique as a reliable nondestructive tool to detect microstructural changes during the different stages of tempering treatment in AISI D2 tool steel. Five stages occur in tempering of the steel: precipitation of ɛ carbides, formation of cementite, retained austenite decomposition, secondary hardening effect and spheroidization of carbides. These stages were characterized by destructive methods, including dilatometry, differential scanning calorimetry, X-ray diffraction, scanning electron microscopic observations, and hardness measurements. The microstructural changes alter the electrical resistivity/magnetic saturation, which, in turn, influence the eddy current signals. Two EC parameters, induced voltage sensed by pickup coil and impedance point detected by excitation coil, were evaluated as a function of tempering temperature to characterize the microstructural features, nondestructively. The study revealed that a good correlation exists between the EC parameters and the microstructural changes.
Impact of Protein-Metal Ion Interactions on the Crystallization of Silk Fibroin Protein
NASA Astrophysics Data System (ADS)
Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy
2009-03-01
Proteins can easily form bonds with a variety of metal ions, which provides many unique biological functions for the protein structures, and therefore controls the overall structural transformation of proteins. We use advanced thermal analysis methods such as temperature modulated differential scanning calorimetry and quasi-isothermal TMDSC, combined with Fourier transform infrared spectroscopy, and scanning electron microscopy, to investigate the protein-metallic ion interactions in Bombyx mori silk fibroin proteins. Silk samples were mixed with different metal ions (Ca^2+, K^+, Ma^2+, Na^+, Cu^2+, Mn^2+) with different mass ratios, and compared with the physical conditions in the silkworm gland. Results show that all metallic ions can directly affect the crystallization behavior and glass transition of silk fibroin. However, different ions tend to have different structural impact, including their role as plasticizer or anti-plasticizer. Detailed studies reveal important information allowing us better to understand the natural silk spinning and crystallization process.
Thermodynamic and structural characterization of an antibody gel
Esue, Osigwe; Xie, Anna X.; Kamerzell, Tim J.; Patapoff, Thomas W.
2013-01-01
Although extensively studied, protein–protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues. PMID:23425660
De Lisi, Rosario; Milioto, Stefania; Muratore, Nicola
2009-01-01
The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van’t Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van’t Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the bulk properties. PMID:19742173
Zidan, Ahmed S; Ahmed, Osama AA; Aljaeid, Bader M
2016-01-01
Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett–Burman screening design was employed to screen eight variables for their influences on the formulation’s critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%–68.8%, 53.1%–67.1%, 43.3–243.3 nm, 0.08–0.28, 9.5–53.3 mV, and 5.8%–22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-β-cyclodextrin and Eudragit® S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-β-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration, release rate, and incubation time. In conclusion, the study demonstrated the potential of polymeric nanoemulsified system to sustain the release and antibacterial activity of nicotinamide. PMID:27110111
HEATS OF FORMATION OF GIBBSITE AND LIGHT ELEMENT DOUBLE OXIDES,
The heat of formation of gibbsite , from alpha-alumina and water, has been redetermined by solution calorimetry in hydrofluoric acid at 75C. A value...calorimetry in hydrofluoric acid at 75C. In the case of the double oxides that contained alumina, gibbsite was used as a reference compound. (Author)
Benchmark testing of DIII-D neutral beam modeling with water flow calorimetry
Rauch, J. M.; Crowley, B. J.; Scoville, J. T.; ...
2016-06-02
Power loading on beamline components in the DIII-D neutral beam system is measured in this paper using water flow calorimetry. The results are used to benchmark beam transport models. Finally, anomalously high heat loads in the magnet region are investigated and a speculative hypothesis as to their origin is presented.
Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle
2012-01-01
This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...
USDA-ARS?s Scientific Manuscript database
Unbleached (grey or greige) cotton nonwoven (NW) fabrics (with 12.5% polypropylene scrim) were treated with three phosphate-nitrogen based FR formulations and evaluated with micro-scale combustion calorimetry (MCC). Heat release rate (HRR), Peak heat rate (PHRR), temperature at peak heat release ra...
Isothermal Titration Calorimetry in the Student Laboratory
ERIC Educational Resources Information Center
Wadso, Lars; Li, Yujing; Li, Xi
2011-01-01
Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…
16 CFR 1633.7 - Mattress test procedure.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Apparatus and test materials—(1) Calorimetry. The rate of heat release must be measured by means of oxygen consumption calorimetry. The calibration should follow generally accepted practices for calibration. The... maintained at a temperature greater than 15 °C (59 °F) and less than 27 °C (80.6 °F) and a relative humidity...
16 CFR 1633.7 - Mattress test procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Apparatus and test materials—(1) Calorimetry. The rate of heat release must be measured by means of oxygen consumption calorimetry. The calibration should follow generally accepted practices for calibration. The... maintained at a temperature greater than 15 °C (59 °F) and less than 27 °C (80.6 °F) and a relative humidity...
16 CFR 1633.7 - Mattress test procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Apparatus and test materials—(1) Calorimetry. The rate of heat release must be measured by means of oxygen consumption calorimetry. The calibration should follow generally accepted practices for calibration. The... maintained at a temperature greater than 15 °C (59 °F) and less than 27 °C (80.6 °F) and a relative humidity...
16 CFR 1633.7 - Mattress test procedure.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Apparatus and test materials—(1) Calorimetry. The rate of heat release must be measured by means of oxygen consumption calorimetry. The calibration should follow generally accepted practices for calibration. The... maintained at a temperature greater than 15 °C (59 °F) and less than 27 °C (80.6 °F) and a relative humidity...
Some applications of indirect calorimetry to sports medicine.
Severi, S; Malavolti, M; Battistini, N; Bedogni, G
2001-01-01
Some applications of indirect calorimetry to sports medicine are discussed and exemplified by case reports. In particular, it is suggested that oxigen consumption can be employed to assess the effects of physical activity on fat-free tissues and that the respiratory quotient may offer some insights into the food habits of athletes.
Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Suhua, E-mail: yc982@163.com; Li, Weifeng; Zhang, Shenbiao
2015-01-15
Diethanol-isopropanolamine (DEIPA) is a tertiary alkanolamine used in the formulation of cement grinding-aid additives and concrete early-strength agents. In this research, isothermal calorimetry was used to study the hydration kinetics of Portland cement with DEIPA. A combination of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC)–thermogravimetric (TG) analysis and micro-Raman spectroscopy was used to investigate the phase development in the process of hydration. Mercury intrusion porosimetry was used to study the pore size distribution and porosity. The results indicate that DEIPA promotes the formation of ettringite (AFt) and enhances the second hydration rate of the aluminatemore » and ferrite phases, the transformation of AFt into monosulfoaluminate (AFm) and the formation of microcrystalline portlandite (CH) at early stages. At later stages, DEIPA accelerates the hydration of alite and reduces the pore size and porosity.« less
Deciphering the mechanism of interaction of edifenphos with calf thymus DNA
NASA Astrophysics Data System (ADS)
Ahmad, Ajaz; Ahmad, Masood
2018-01-01
Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score - 6.84 kJ/mol.
Li, Chen; Yu, Deng-Guang; Williams, Gareth R.; Wang, Zhuan-Hua
2014-01-01
This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS) excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin. PMID:24643072
Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj
2012-11-06
In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
Fan, Fei; Wang, Weiyu; Holt, Adam P.; ...
2016-06-07
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
Liao, Jiahn-Haur; Wu, Tzu-Hua; Chen, Ming-Yi; Chen, Wei-Ting; Lu, Shou-Yun; Wang, Yi-Hsuan; Wang, Shao-Pin; Hsu, Yen-Min; Huang, Yi-Shiang; Huang, Zih-You; Lin, Yu-Ching; Chang, Ching-Ming; Huang, Fu-Yung; Wu, Shih-Hsiung
2015-12-04
In this report, the in vitro relative capabilities of curcumin (CCM) and didemethylated curcumin (DCCM) in preventing the selenite-induced crystallin aggregation were investigated by turbidity tests and isothermal titration calorimetry (ITC). DCCM showed better activity than CCM. The conformers of CCM/SeO3(2-) and DCCM/SeO3(2-) complexes were optimized by molecular orbital calculations. Results reveal that the selenite anion surrounded by CCM through the H-bonding between CCM and selenite, which is also observed via IR and NMR studied. For DCCM, the primary driving force is the formation of an acid-base adduct with selenite showing that the phenolic OH group of DCCM was responsible for forming major conformer of DCCM. The formation mechanisms of selenite complexes with CCM or DCCM explain why DCCM has greater activity than CCM in extenuating the toxicity of selenite as to prevent selenite-induced lens protein aggregation.
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Fei; Wang, Weiyu; Holt, Adam P.
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
Purification and Crystal Growth of Lead Iodide by Physical Vapor Transport Method
NASA Technical Reports Server (NTRS)
Wright, G. W.; Cole, M.; Chen, Y.-F.; Chen, K.-T.; Chen, H.; Chattopadhyay, K.; Burger, A.
1998-01-01
Lead iodide (PbI2) is a layered compound semiconductor being developed as room temperature x- and gamma-ray detector. Compared to the more studied material, mercuric iodide, PbI2 has a higher melting temperature and no phase transition until liquid phase which are indications of better mechanical properties. In this study, the source material was purified by the zone-refining process, and the purest section was extracted from center of the the zone-refined ingot to be grown by physical vapor transport (PVT) method. The zone-refined material and as-grown crystals were characterized by optical microscopy and differential scanning calorimetry (DSC) to reveal the surface morphology, purity and stoichiometry. The results shows that both materials are near-stoichiometric composition, with the purity of the as-grown crystals higher than zone-refined materials. The resistivity of the as-grown crystal (10" Omega-cm) was derived from current-voltage (I-V) measurement, and is 10 times higher than the zone-refined materials. Detail results will be presented and discussed.
Monitoring the crystallization of starch and lipid components of the cake crumb during staling.
Hesso, N; Le-Bail, A; Loisel, C; Chevallier, S; Pontoire, B; Queveau, D; Le-Bail, P
2015-11-20
Cake staling is a complex problem which has still not been fully understood. Starch polymers retrogradation, which is linked to biopolymers recrystallisation, is the most important factor affecting cake firmness in addition to water migration and fat crystallization. In this study, the effect of storage temperatures of 4°C and 20°C on starch retrogradation and fat recrystallization was investigated. Starch retrogradation can be tracked through changes in crystalline structure via X-rays diffraction as well as through melting of crystals via calorimetry. These techniques have been coupled to study the different phenomena occurring during staling. The results revealed that the storage of cakes at 20°C for 25 days showed more starch polymer retrogradation and more intense fat recrystallization in the β form than at 4°C. Consequently, the staling was delayed when a low storage temperature like 4°C was used, which is recommended to retain high quality cakes during storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Czochralski growth of LaPd2Al2 single crystals
NASA Astrophysics Data System (ADS)
Doležal, P.; Rudajevová, A.; Vlášková, K.; Kriegner, D.; Václavová, K.; Prchal, J.; Javorský, P.
2017-10-01
The present study is focused on the preparation of single crystalline LaPd2Al2 by the Czochralski method. Differential scanning calorimetry (DSC) and energy dispersive X-ray spectroscopy (EDX) analyses reveal that LaPd2Al2 is an incongruently melting phase which causes difficulties for the preparation of single crystalline LaPd2Al2 by the Czochralski method. Therefore several non-stoichiometric polycrystalline samples were studied for its preparation. Finally the successful growth of LaPd2Al2 without foreign phases has been achieved by using a non-stoichiometric precursor with atomic composition 22:39:39 (La:Pd:Al). X-ray powder diffraction, EDX analysis and DSC were used for the characterisation. A single crystalline sample was separated from the ingot prepared by the Czochralski method using the non-stoichiometric precursor. The presented procedure for the preparation of pure single phase LaPd2Al2 could be modified for other incongruently melting phases.
El-Gazayerly, O N; Makhlouf, A I A; Soelm, A M A; Mohmoud, M A
2014-01-01
Milk thistle extract is a well-known hepatoprotectant with low bioavailability (20-50%). The objective of the present study is to prepare and characterize silymarin phytosomes and to test the hepatoprotective effect of the phytosomes in CCl4 induced liver injury in rats compared to milk thistle extract. Phytosomes were prepared using lecithin from soybeans and from egg yolk. The prepared phytosomes were examined using scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy (H(1)NMR). The loading efficiency was >85% in all phytosomal formulations. Formula P2 (with the molar ratio of soybean lecithin to silybin 1:1) and P4 (with the molar ratio of egg-yolk lecithin to silybin 0.25:1) exhibited significantly (p < 0.05) faster release than milk thistle extract. The in vivo study revealed that phytosomes significantly (p < 0.05) decreased glutamic pyruvic transaminase and super oxide dismutase activities compared to milk thistle extract.
Jayakumar, S; Sudha, P N
2013-03-15
Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.
Experimental Study on the Fire Properties of Nitrocellulose with Different Structures
Wei, Ruichao; He, Yaping; Liu, Jiahao; He, Yu; Mi, Wenzhong; Yuen, Richard; Wang, Jian
2017-01-01
In order to ensure the safety of inflammable and explosive chemical substance such as nitrocellulose (NC) mixtures in the process of handing, storage, and usage, it is necessary to obtain the fire properties of NC with different exterior structures. In present study, fire properties of two commonly used nitrocelluloses with soft fiber structure and white chip structure were investigated by scanning electron microscope (SEM) and the ISO 5660 cone calorimeter. Experimental findings revealed that the most important fire properties such as ignition time, mass loss rate and ash content exhibited significant differences between the two structures of NC. Compared with the soft fiber NC, chip NC possesses a lower fire hazard, and its heat release rate intensity (HRRI) is mainly affected by the sample mass. In addition, oxygen consumption (OC) calorimetry method was compared with thermal chemistry (TC) method based on stoichiometry for HRRI calculation. HRRI results of NC with two structures obtained by these two methods showed a good consistency. PMID:28772675
The effect of cholesterol on the partitioning of 1-octanol into POPC vesicles
NASA Astrophysics Data System (ADS)
Zakariaee Kouchaksaraee, Roja
Microcalorimetry has become a method of choice for sensitive characterization of biomolecular interactions. In this study, isothermal titration calorimetry (ITC) was used to measure the partitioning of 1-octanol into lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a semi-unsaturated lipid, and cholesterol, a steroid, as a function of cholesterol molar concentration. The ITC instrument measures the heat evolved or absorbed upon titration of a liposome dispersion, at concentrations ranging from 0 to 40% cholesterol, into a suspension of 1-octanol in water. A model function was fit to the data in order to determine the partition coefficient of octanol into POPC bilayers and the enthalpy of interaction. I found that the partition coefficient increases and the heat of interaction becomes less negative with increasing cholesterol content, in contrast to results found by other groups for partitioning of alcohols into lipid-cholesterol bilayers containing saturated lipids. The heat of dilution of vesicles was also measured. Keywords: Partition coefficient; POPC; 1-Octanol; Cholesterol; Isothermal titration calorimetry; Lipid-alcohol interactions. Subject Terms: Calorimetry; Membranes (Biology); Biophysics; Biology -- Technique; Bilayer lipid membranes -- Biotechnology; Lipid membranes -- Biotechnology.
Calorimetry of a Bose–Einstein-condensed photon gas
Damm, Tobias; Schmitt, Julian; Liang, Qi; Dung, David; Vewinger, Frank; Weitz, Martin; Klaers, Jan
2016-01-01
Phase transitions, as the condensation of a gas to a liquid, are often revealed by a discontinuous behaviour of thermodynamic quantities. For liquid helium, for example, a divergence of the specific heat signals the transition from the normal fluid to the superfluid state. Apart from liquid helium, determining the specific heat of a Bose gas has proven to be a challenging task, for example, for ultracold atomic Bose gases. Here we examine the thermodynamic behaviour of a trapped two-dimensional photon gas, a system that allows us to spectroscopically determine the specific heat and the entropy of a nearly ideal Bose gas from the classical high temperature to the Bose-condensed quantum regime. The critical behaviour at the phase transition is clearly revealed by a cusp singularity of the specific heat. Regarded as a test of quantum statistical mechanics, our results demonstrate a quantitative agreement with its predictions at the microscopic level. PMID:27090978
Metastable phase in binary and ternary 12-carat gold alloys at low temperature
NASA Astrophysics Data System (ADS)
Lamiri, Imene; Abdelbaky, Mohammed S. M.; Hamana, Djamel; García-Granda, Santiago
2018-04-01
Low temperature phase transitions in 12-carat gold alloys have been investigated for binary Au-Cu and ternary Au-Cu-Ag compositions. The thermal analyses investigations using differential scanning calorimetry (DSC) and the dilatometry were performed in the 50–300 °C temperature range in order to detect the structural transformations. The thermal analyses were carried out on annealed samples at 700 °C for two hour followed by water quenching. They reveal an important new reaction for both used compositions and both thermal techniques confirm each other. This reaction has been assessed as pre-ordering reaction. SEM and STM imaging were performed on annealed samples at 700 °C for two hours and water quenched followed by a heating from room temperature up to the temperature of the new peaks obtained in the thermal study. The imaging reveals the relationship between the pre-ordering reaction and the surface aspect presented in the fact of dendrite precipitates. A series of SEM observation have been performed in order to follow the kinetic of the observed precipitates by the way of several series of heating up, from 140 to 220 °C for the binary composition and from 100 to 180 °C for the ternary composition. Furthermore, this study shows that the silver accelerates the ordering reaction.
Kiilll, Charlene Priscila; Barud, Hernane da Silva; Santagneli, Sílvia Helena; Ribeiro, Sidney José Lima; Silva, Amélia M; Tercjak, Agnieszka; Gutierrez, Junkal; Pironi, Andressa Maria; Gremião, Maria Palmira Daflon
2017-02-10
Chitosan nanoparticles have been extensively studied for both drug and protein/peptide delivery. The aim of this study was to develop an optimized chitosan nanoparticle, by ionotropic gelation method, using 3 2 full factorial design with a novel polyanion, sodium polyphosphate, well known under the trade name Graham salt. The effects of these parameters on the particle size, zeta potential, and morphology and association efficiency were investigated. The optimized nanoparticles showed an estimated size of 166.20±1.95nm, a zeta potential of 38.7±1.2mV and an efficacy of association of 97.0±2.4%. The Atomic Force Microscopy (AFM) and Scanning Electronic Microscopy (SEM) revealed spherical nanoparticles with uniform size. Molecular interactions among the components of the nanoparticles and peptide were evaluated by Fourier Transform Infrared Spectra (FTIR) and Differential Scanning Calorimetry (DSC). The obtained results indicated that, the developed nanoparticles demonstrated high biocompatible, revealing no or low toxicity in the human cancer cell line (Caco-2). In conclusion, this work provides parameters that contribute to production of chitosan nanoparticles and sodium polyphosphate with desirable size, biocompatible and enabling successful use for protein/peptides delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
SiD Linear Collider Detector R&D, DOE Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brau, James E.; Demarteau, Marcel
2015-05-15
The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Siliconmore » detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and are described in this report.« less
Nelson, J A
2016-01-01
Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. © 2016 The Fisheries Society of the British Isles.
A study of the phase transition behaviour of [(NH4)0.63Li0.37]2TeBr6
NASA Astrophysics Data System (ADS)
Karray, R.; Linda, D.; Van Der Lee, A.; Ben Salah, A.; Kabadou, A.
2012-02-01
The mixed hexabromotellurate [(NH4)0.63Li0.37]2TeBr6, presenting at room temperature a K2PtCl6-type structure with space group Fm bar 3 m, exhibits three anomalies at 195, 395 and 498 K in the differential scanning calorimetry diagram. Different techniques: dielectric investigation, High-temperature X-ray powder diffraction and infrared spectroscopic study, in the range temperature (300-470) K are applied to explore the phase transition around 395 K. Combining XRD, dielectric and differential scanning calorimetry (DSC) results, no phase transition leading to a super-ionic conductivity phase is found. At high temperature, [(NH4)0.63Li0.37]2TeBr6 is characterized by a medium conductivity σ453≈ 10-4 Ω-1m-1.
NASA Astrophysics Data System (ADS)
Snider, Barbara L.; Harmon, Kenneth M.
1994-03-01
Differential scanning calorimetry of hexamethonium chloride dihydrate shows an endothermic transition of 2.70 kcal mol -1 at 36.81°C. This correlates well with the temperatures observed by IR spectra (36°C) and equilibrium dissociation vapor pressure studies (37°C) for the transition between Type I planar cluster and Type II extended linear HOH⋯Cl - hydrogen bonding, and with the value of 2.77 kcal mol -1 for this transition derived by Hess' law treatment of dissociation vapor pressure data. Differential scanning calorimetry of hexamethonium bromide shows a rapid endothermic transition of 2.38 kcal mol -1 at 35.15°C and a very slow endothermic transition of about 12-13 kcal mol -1 centered near 50°C. This latter endotherm corresponds to the transition between Type I and Type II HOH⋯Br - hydrogen bonding observed by IR and vapor pressure studies at 49°C. The nature of the 35.15°C endotherm is not known. Hexamethonium bromide also shows a third endotherm at 142.91°C, which presumably results from melting of hydrate in the sealed DSC cell. Combined analysis of differential scanning calorimetry and dissociation vapor pressure data predicts a value of about -13 kcal mol -1 for an exothermic disproportionation at 52°C of two hexamethonium bromide monohydrate to Type II dihydrate and anhydrous bromide.
Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model.
Fotticchia, Iolanda; Guarnieri, Daniela; Fotticchia, Teresa; Falanga, Andrea Patrizia; Vecchione, Raffaele; Giancola, Concetta; Netti, Paolo Antonio
2016-08-01
Targeted therapies represent a challenge in modern medicine. In this contest, we propose a rapid and reliable methodology based on Isothermal Titration Calorimetry (ITC) coupled with confluent cell layers cultured around biocompatible templating microparticles to quantify the number of overexpressing receptors on cell membrane and study the energetics of receptor-ligand binding in near-physiological conditions. In the in vitro model here proposed we used the bEnd3 cell line as brain endothelial cells to mimic the blood brain barrier (BBB) cultured on dextran microbeads ranging from 67μm to 80μm in size (Cytodex) and the primary human umbilical vein cells (HUVEC) for comparison. The revealed affinity between transferrin (Tf) and transferrin receptor (TfR) in both systems is very high, Kd values are in the order of nM. Conversely, the value of TfRs/cell reveals a 100-fold increase in the number of TfRs per bEnd3 cells compared to HUVEC cells. The presented methodology can represent a novel and helpful strategy to identify targets, to address drug design and selectively deliver therapeutics that can cross biological barriers such as the blood brain barrier. Copyright © 2016 Elsevier B.V. All rights reserved.
Six, Karel; Berghmans, Hugo; Leuner, Christian; Dressman, Jennifer; Van Werde, Kristof; Mullens, Jules; Benoist, Luc; Thimon, Mireille; Meublat, Laurent; Verreck, Geert; Peeters, Jef; Brewster, Marcus; Van den Mooter, Guy
2003-07-01
This study was done to elucidate the physical and pharmaceutical properties of itraconazole-HPMC dispersions and the influence of water on the phase separation. Extrudates were prepared using a corotating twin-screw hot-stage extruder with fixed process parameters. Modulated-temperature differential scanning calorimetry (MTDSC) and DSC 111 were used to examine the mixing behavior of itraconazole and the carrier by evaluation of the glass transition region. High temperature diffuse reflectance infrared transform spectroscopy (HT-DRIFT) was performed to reveal interactions between itraconazole and HPMC. Dissolution was performed to investigate the pharmaceutical performance of the dispersions. Although the dissolution rate of itraconazole significantly increased, we found that the solid dispersions do not form a homogeneous system. A different picture was obtained depending on the way MTDSC analysis was performed, i.e., using open or closed sample pans. Water can evaporate in open pans, which allows itraconazole to interact with HPMC and leads to a partially mixed phase. Analysis in hermetically closed pans revealed a further phase separation as water remains on the sample and impedes the interaction between drug and polymer. Solid dispersions of itraconazole and HPMC do not form a homogeneous phase.
NASA Astrophysics Data System (ADS)
Aladool, A.; Aziz, M. M.; Wright, C. D.
2017-06-01
The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.
Miscibility Studies on Polymer Blends Modified with Phytochemicals
NASA Astrophysics Data System (ADS)
Chandrasekaran, Neelakandan; Kyu, Thein
2009-03-01
The miscibility studies related to an amorphous poly(amide)/poly(vinyl pyrrolidone) [PA/PVP] blend with a crystalline phytochemical called ``Mangiferin'' is presented. Phytochemicals are plant derived chemicals which intrinsically possess multiple salubrious properties that are associated with prevention of diseases such as cancer, diabetes, cardiovascular disease, and hypertension. Incorporation of phytochemicals into polymers has shown to have very promising applications in wound healing, drug delivery, etc. The morphology of these materials is crucial to applications like hemodialysis, which is governed by thermodynamics and kinetics of the phase separation process. Hence, miscibility studies of PA/PVP blends with and without mangiferin have been carried out using dimethyl sulfoxide as a common solvent. Differential scanning calorimetry studies revealed that the binary PA/PVP blends were completely miscible at all compositions. However, the addition of mangiferin has led to liquid-liquid phase separation and liquid-solid phase transition in a composition dependent manner. Fourier transformed infrared spectroscopy was undertaken to determine specific interaction between the polymer constituents and the role of possible hydrogen bonding among three constituents will be discussed.
USDA-ARS?s Scientific Manuscript database
Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...
Characterizing Optical Loss in Orientation Patterned III-V Materials using Laser Calorimetry
2014-03-27
nm and solid state fiber lasers . A comparison of the important properties of commonly used frequency conversion materials are shown in Table 1 [9......templates at AFRL. 32 Laser Calorimetry Experiment A THOR Labs ITC 4001 Laser diode with a 1625 nm, 50 mW fiber pigtail was used as the source
ERIC Educational Resources Information Center
Wei, Chin-Chuan; Jensen, Drake; Boyle, Tiffany; O'Brien, Leah C.; De Meo, Cristina; Shabestary, Nahid; Eder, Douglas J.
2015-01-01
To provide a research-like experience to upper-division undergraduate students in a biochemistry teaching laboratory, isothermal titration calorimetry (ITC) is employed to determine the binding constants of lysozyme and its inhibitors, N-acetyl glucosamine trimer (NAG[subscript 3]) and monomer (NAG). The extremely weak binding of lysozyme/NAG is…
USDA-ARS?s Scientific Manuscript database
The molar balance equations of indirect calorimetry are treated from the point of view of cause-effect relationship where the gaseous exchange rates representing the unknown causes heed to be inferred from a known noisy effect – gaseous concentrations. Two methods of such inversion are analyzed. Th...
NASA Astrophysics Data System (ADS)
Lee, Sehwook; Livan, Michele; Wigmans, Richard
2018-04-01
In the past 20 years, dual-readout calorimetry has emerged as a technique for measuring the properties of high-energy hadrons and hadron jets that offers considerable advantages compared with the instruments that are currently used for this purpose in experiments at the high-energy frontier. The status of this experimental technique and the challenges faced for its further development are reviewed.
Braia, Mauricio Javier; Loureiro, Dana Belén; Tubio, Gisela; Romanini, Diana
2015-12-01
Protein-polyelectrolyte complexes are very interesting systems since they can be applied in many long-established and emerging areas of biotechnology. From nanotechnology to industrial processing, these complexes are used for many purposes: to build multilayer particles for biosensors; to entrap and deliver proteins for pharmaceutical applications; to isolate and immobilize proteins. The enteric copolymer poly(methacrylic acid-co-methyl methacrylate) 1:2 (MMA) has been designed for drug delivery although its chemical properties allow to use it for other applications. Understanding the interaction between trypsin and this polymer is very important in order to optimize the mechanism of formation of this complex for different biotechnological applications.The formation of the trypsin-MMA complex was studied by spectroscopy and isothermal titration calorimetry. Structural analysis of trypsin was carried out by catalytic activity assays, circular dichroism and differential scanning calorimetry. Isothermal titration calorimetry experiments showed that the insoluble complex contains 12 trypsin molecules per MMA molecule at pH 5 and they interact with high affinity to form insoluble complexes. Both electrostatic and hydrophobic forces are involved in the formation of the complex. The structure of trypsin is not affected by the presence of MMA, although it interacts with some domains of trypsin affecting its thermal denaturation as seen in the differential scanning calorimetry experiments. Its catalytic activity is not altered. Dynamic light scattering demonstrated the presence of a soluble trypsin-copolymer complex at pH 5 and 8. Turbidimetric assays show that the insoluble complex can be dissolved by low ionic strength and/or pH in order to obtain free native trypsin. Copyright © 2015 Elsevier B.V. All rights reserved.
Van’t Hoff global analyses of variable temperature isothermal titration calorimetry data
Freiburger, Lee A.; Auclair, Karine; Mittermaier, Anthony K.
2016-01-01
Isothermal titration calorimetry (ITC) can provide detailed information on the thermodynamics of biomolecular interactions in the form of equilibrium constants, KA, and enthalpy changes, ΔHA. A powerful application of this technique involves analyzing the temperature dependences of ITC-derived KA and ΔHA values to gain insight into thermodynamic linkage between binding and additional equilibria, such as protein folding. We recently developed a general method for global analysis of variable temperature ITC data that significantly improves the accuracy of extracted thermodynamic parameters and requires no prior knowledge of the coupled equilibria. Here we report detailed validation of this method using Monte Carlo simulations and an application to study coupled folding and binding in an aminoglycoside acetyltransferase enzyme. PMID:28018008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rioux, Robert M.
In this work, we have primarily utilized isothermal titration calorimetry (ITC) and complimentary catalyst characterization techniques to study and assess the impact of solution conditions (i.e., solid-liquid) interface on the synthesis of heterogeneous and electro-catalysts. Isothermal titration calorimetry is well-known technique from biochemistry/physics, but has been applied to a far lesser extent to characterize buried solid-liquid interfaces in materials science. We demonstrate the utility and unique information provided by ITC for two distinct catalytic systems. We explored the thermodynamics associated catalyst synthesis for two systems: (i) ion-exchange or strong electrostatic adsorption for Pt and Pd salts on silica and aluminamore » materials (ii) adsorption to provide covalent attachment of metal and metal-oxo clusters to Dion-Jacobsen perovskite materials.« less
Compact determination of hydrogen isotopes
Robinson, David
2017-04-06
Scanning calorimetry of a confined, reversible hydrogen sorbent material has been previously proposed as a method to determine compositions of unknown mixtures of diatomic hydrogen isotopologues and helium. Application of this concept could result in greater process knowledge during the handling of these gases. Previously published studies have focused on mixtures that do not include tritium. This paper focuses on modeling to predict the effect of tritium in mixtures of the isotopologues on a calorimetry scan. Furthermore, the model predicts that tritium can be measured with a sensitivity comparable to that observed for hydrogen-deuterium mixtures, and that under so memore » conditions, it may be possible to determine the atomic fractions of all three isotopes in a gas mixture.« less
NASA Astrophysics Data System (ADS)
Chen, Yimin; Mu, Sen; Wang, Guoxiang; Shen, Xiang; Wang, Junqiang; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua; Wang, Rongping
2017-10-01
Glass transitions of Te-based phase-change materials (PCMs) were studied by modulated differential scanning calorimetry. It was found that both Ge2Sb2Te5 and GeTe are marginal glass formers with ΔT (= T x - T g) less than 2.1 °C when the heating rate is below 3 °C min-1. The fragilities of Ge2Sb2Te5 and GeTe can be estimated as 46.0 and 39.7, respectively, around the glass transition temperature, implying that a fragile-to-strong transition would be presented in such Te-based PCMs. The above results provide direct experimental evidence to support the investigation of crystallization kinetics in supercooled liquid PCMs.
Crystallization of Polymers Investigated by Temperature-Modulated DSC
Righetti, Maria Cristina
2017-01-01
The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation. PMID:28772807
Thermodynamic Properties of Polyphenylquinoxaline in the Temperature Range of T → 0 to 570 K
NASA Astrophysics Data System (ADS)
Smirnova, N. N.; Markin, A. V.; Samosudova, Ya. S.; Bykova, T. A.; Shifrina, Z. B.; Serkova, E. S.; Kuchkina, N. V.
2018-02-01
The thermodynamic properties of amorphous polyphenylquinoxaline in the temperature range of 6 to 570 K are studied via precision adiabatic vacuum calorimetry and differential scanning calorimetry. The thermodynamic characteristics of glass transition are determined. Standard thermodynamic functions C ° p, H°( T) - H°(0), S°( T) - S°(0), and G°( T) - H°(0) in the range of T → 0 to 570 K and the standard entropy of formation at T = 298.15 K are calculated. The low-temperature ( T ≤ 50 K) heat capacity is analyzed using a multifractal model for the processing of heat capacity, fractal dimension D values are determined, and conclusions on the topological structure of the compound are drawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.; ...
2017-02-24
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S
2017-03-15
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce 3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.
Rogers, True L; Johnston, Keith P; Williams, Robert O
2003-01-01
The objective of this study was to investigate the physical stability of micronized powders produced by the spray-freezing into liquid (SFL) particle engineeringtechnology. Danazol was formulated with polyvinyl alcohol (MW 22,000), poloxamer 407, and polyvinylpyrrolidone K-15 to form a cosolvent solution that was SFL processed. The dried micronized SFL powders were sealed in glass vials with desiccant and exposed to 25 degrees C/60% RH for 3 and 6 mo, 40 degrees C/75% RH for 1, 2, 3, and 6 mo, and conditions where the temperature was cycled between -5 and +40 degrees C (6 cycles/24 hr) with constant 75% RH for 1, 2, 3 and 4 wk. The samples were characterized by using Karl-Fisher titration, differential scanning calorimetry, x-ray diffraction, specific surface area, scanning electron microscopy, and dissolution testing. Micronized SFL powders consisting of porous aggregates with small-particle domains were characterized as having high surface areas and consisted of amorphous danazol embedded within a hydrophilic excipient matrix. Karl-Fischer titration revealed no moisture absorption over the duration of the stability studies. Differential scanning calorimetry studies demonstrated high degrees of molecular interactions between danazol, PVA, poloxamer, and PVP. Scanning electron microscopy studies confirmed these interactions, especially those between danazol and poloxamer. These interactions facilitated API dissolution in the aqueous media. Powder surface area remained constant during storage at the various stability conditions, and danazol recrystallization did not occur during the entirety of the stability studies. Micronized SFL powders containing danazol dissolved rapidly and completely within 5 min in aqueous media. No differences were observed in the enhanced dissolution profiles of danazol after exposure to the storage conditions investigated. Physically stable micronized powders produced by the SFL particle engineering technology were produced for the purpose of enhancing the dissolution of an insoluble drug. The potential of the SFL particle-engineering technology as a micronization technique for enhancing the dissolution of hydrophobic drugs was demonstrated in this study. The robustness of the micronized SFL powders to withstand stressed storage conditions was shown.
Advanced stable lipid-based formulations for a patient-centric product design.
Becker, Karin; Saurugger, Eva-Maria; Kienberger, Diana; Lopes, Diogo; Haack, Detlev; Köberle, Martin; Stehr, Michael; Lochmann, Dirk; Zimmer, Andreas; Salar-Behzadi, Sharareh
2016-01-30
Multiparticulate dosage forms are a recent strategy to meet the special needs of children, elderly people and patients suffering from dysphagia. Our study presents a novel and cost-efficient approach for the manufacturing of a taste-masked multiparticulate system with a stable immediate release profile by applying lipid-based excipients in a solvent-free hot melt coating process. The thermosensitive N-acetylcysteine (N-ac) was used as model drug and hot-melt coated with a mixture of tripalmitin and polysorbate 65. A predictive in vitro method for the evaluation of the taste masking efficiency was developed based on the deprotonation of the carboxyl group of N-ac and the decline of pH, responsible for the unpleasant sour taste of the compound. The method was confirmed using in vivo studies. Differential scanning calorimetry and X-ray scattering experiments revealed polymorphic transformation and its dependency on transformation time, temperature and emulsifier concentration. During the process, the coating was transformed almost completely into the stable β-polymorph, leading to an unaltered dissolution profile during storage. A statistical design was conducted that revealed the critical process parameters affecting the taste masking efficiency and drug release. This study shows the successful application of solvent-free hot-melt coating in the development of a taste-masked and stable formulation. Copyright © 2015 Elsevier B.V. All rights reserved.
Ebenstein, Donna; Calderon, Carlos; Troncoso, Omar P; Torres, Fernando G
2015-05-01
Dermal plates from armored catfish are bony structures that cover their body. In this paper we characterized structural, chemical, and nanomechanical properties of the dermal plates from the Amazonian fish Pterygoplichthys pardalis. Analysis of the morphology of the plates using scanning electron microscopy (SEM) revealed that the dermal plates have a sandwich-like structure composed of an inner porous matrix surrounded by two external dense layers. This is different from the plywood-like laminated structure of elasmoid fish scales but similar to the structure of osteoderms found in the dermal armour of some reptiles and mammals. Chemical analysis performed using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results revealed similarities between the composition of P. pardalis plates and the elasmoid fish scales of Arapaima gigas. Reduced moduli of P. pardalis plates measured using nanoindentation were also consistent with reported values for A. gigas scales, but further revealed that the dermal plate is an anisotropic and heterogeneous material, similar to many other fish scales and osteoderms. It is postulated that the sandwich-like structure of the dermal plates provides a lightweight and tough protective layer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jana, Jagannath; Mondal, Soma; Bhattacharjee, Payel; Sengupta, Pallabi; Roychowdhury, Tanaya; Saha, Pranay; Kundu, Pallob; Chatterjee, Subhrangsu
2017-01-01
A putative anticancer plant alkaloid, Chelerythrine binds to G-quadruplexes at promoters of VEGFA, BCL2 and KRAS genes and down regulates their expression. The association of Chelerythrine to G-quadruplex at the promoters of these oncogenes were monitored using UV absorption spectroscopy, fluorescence anisotropy, circular dichroism spectroscopy, CD melting, isothermal titration calorimetry, molecular dynamics simulation and quantitative RT-PCR technique. The pronounced hypochromism accompanied by red shifts in UV absorption spectroscopy in conjunction with ethidium bromide displacement assay indicates end stacking mode of interaction of Chelerythrine with the corresponding G-quadruplex structures. An increase in fluorescence anisotropy and CD melting temperature of Chelerythrine-quadruplex complex revealed the formation of stable Chelerythrine-quadruplex complex. Isothermal titration calorimetry data confirmed that Chelerythrine-quadruplex complex formation is thermodynamically favourable. Results of quantative RT-PCR experiment in combination with luciferase assay showed that Chelerythrine treatment to MCF7 breast cancer cells effectively down regulated transcript level of all three genes, suggesting that Chelerythrine efficiently binds to in cellulo quadruplex motifs. MD simulation provides the molecular picture showing interaction between Chelerythrine and G-quadruplex. Binding of Chelerythrine with BCL2, VEGFA and KRAS genes involved in evasion, angiogenesis and self sufficiency of cancer cells provides a new insight for the development of future therapeutics against cancer. PMID:28102286
Matulis, Daumantas; Kranz, James K; Salemme, F Raymond; Todd, Matthew J
2005-04-05
ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.
Vander Meulen, Kirk A.; Butcher, Samuel E.
2012-01-01
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop–receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH‡) and Eyring transition state entropies (ΔS‡). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH25°C = −41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH‡ = −0.6 ± 0.5). These parameters are sigificantly positively shifted in magnesium (ΔH25°C = −20.5 ± 2.1 kcal/mol, ΔH‡ = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl2). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake. PMID:22058128
Study of strength kinetics of sand concrete system of accelerated hardening
NASA Astrophysics Data System (ADS)
Sharanova, A. V.; Lenkova, D. A.; Panfilova, A. D.
2018-04-01
Methods of calorimetric analysis are used to study the dynamics of the hydration processes of concretes with different accelerator contents. The efficiency of the isothermal calorimetry method is shown for study of strength kinetics of concrete mixtures of accelerated hardening, promising for additive technologies in civil engineering.
A comprehensive approach to ascertain the binding mode of curcumin with DNA
NASA Astrophysics Data System (ADS)
Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.
2017-03-01
Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.
NASA Astrophysics Data System (ADS)
Ali, Rejwan
2010-03-01
Large unilamallar vesicle has been a model system to study many membrane functions. High Tg lipid systems offer many potential biomedical applications in lipid-based delivery applications. While the optimized vesicle functionalities are achieved by Polyethylene Glycol (PEG) polymer, modified PEG and other functional molecule incorporation, however, the host binary lipid system plays the pivotal role in pH-dependent phase transition based lipid vehicular methods. We have investigated a lipid binary system composed of 21:0 PC (1,2-dihenarachidoyl-sn-glycero-3-phosphocholine) and 18:0 PS(1,2-distearoyl-sn-glycero-3-phospho-L-serine). Preliminary studies implementing differential scanning calorimetry shows pH plays key role in temperature shift and thermotropic phase behavior of the binary system. While dynamic light scattering study shows lipid vesicle size is almost independent of pH changes. We will also present pH-dependent thermodynamic parameters to correlate underlying molecular mechanism in relevant pH-range.
Synthesis and Physical Properties of Poly(Perfluoroalkylether)Urethanes
1989-05-30
Differential scanning calorimetry and dynamic mechanical analysis showed that the incorporation of PFEG into the soft segment phase slightly enhanced...for all the polymers, using electron spectroscopy for chemical analysis (ESCA). The dynamic contact angle results indicate that the polymer surfaces...these polymers were evaluated by a variety of techniques. Differential scanning calorimetry and dynamic mechanical analysis showed that the
USDA-ARS?s Scientific Manuscript database
The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...
Energetics of metastudtite and implications for nuclear waste alteration
Guo, Xiaofeng; Ushakov, Sergey V.; Labs, Sabrina; Curtius, Hildegard; Bosbach, Dirk; Navrotsky, Alexandra
2014-01-01
Metastudtite, (UO2)O2(H2O)2, is one of two known natural peroxide minerals, but little is established about its thermodynamic stability. In this work, its standard enthalpy of formation, −1,779.6 ± 1.9 kJ/mol, was obtained by high temperature oxide melt drop solution calorimetry. Decomposition of synthetic metastudtite was characterized by thermogravimetry and differential scanning calorimetry (DSC) with ex situ X-ray diffraction analysis. Four decomposition steps were observed in oxygen atmosphere: water loss around 220 °C associated with an endothermic heat effect accompanied by amorphization; another water loss from 400 °C to 530 °C; oxygen loss from amorphous UO3 to crystallize orthorhombic α-UO2.9; and reduction to crystalline U3O8. This detailed characterization allowed calculation of formation enthalpy from heat effects on decomposition measured by DSC and by transposed temperature drop calorimetry, and both these values agree with that from drop solution calorimetry. The data explain the irreversible transformation from studtite to metastudtite, the conditions under which metastudtite may form, and its significant role in the oxidation, corrosion, and dissolution of nuclear fuel in contact with water. PMID:25422465
Energetics of metastudtite and implications for nuclear waste alteration
Guo, Xiaofeng; Ushakov, Sergey V.; Labs, Sabrina; ...
2014-11-24
Metastudtite, (UO 2)O 2(H 2O) 2, is one of two known natural peroxide minerals, but little is established about its thermodynamic stability. In this work, its standard enthalpy of formation, $-$1,779.6 ± 1.9 kJ/mol, was obtained by high temperature oxide melt drop solution calorimetry. Decomposition of synthetic metastudtite was characterized by thermogravimetry and differential scanning calorimetry (DSC) with ex situ X-ray diffraction analysis. We observed four decomposition steps in oxygen atmosphere: water loss around 220 °C associated with an endothermic heat effect accompanied by amorphization; another water loss from 400 °C to 530 °C; oxygen loss from amorphous UO 3more » to crystallize orthorhombic α-UO 2.9; and reduction to crystalline U 3O 8. This detailed characterization allowed calculation of formation enthalpy from heat effects on decomposition measured by DSC and by transposed temperature drop calorimetry, and both these values agree with that from drop solution calorimetry. The data explain the irreversible transformation from studtite to metastudtite, the conditions under which metastudtite may form, and its significant role in the oxidation, corrosion, and dissolution of nuclear fuel in contact with water.« less
Regan, Matthew D; Gill, Ivan S; Richards, Jeffrey G
2017-11-01
Anthropogenic increases in global temperature and agricultural runoff are increasing the prevalence of aquatic hypoxia throughout the world. We investigated the potential for a relatively rapid evolution of hypoxia tolerance using two isolated (for less than 11 000 years) populations of threespine stickleback: one from a lake that experiences long-term hypoxia (Alta Lake, British Columbia) and one from a lake that does not (Trout Lake, British Columbia). Loss-of-equilibrium (LOE) experiments revealed that the Alta Lake stickleback were significantly more tolerant of hypoxia than the Trout Lake stickleback, and calorimetry experiments revealed that the enhanced tolerance of Alta Lake stickleback may be associated with their ability to depress metabolic rate (as indicated by metabolic heat production) by 33% in hypoxia. The two populations showed little variation in their capacities for O 2 extraction and anaerobic metabolism. These results reveal that intraspecific variation in hypoxia tolerance can develop over relatively short geological timescales, as can metabolic rate depression, a complex biochemical response that may be favoured in long-term hypoxic environments. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Malinov, S.; Guo, Z.; Sha, W.; Wilson, A.
2001-04-01
The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the β ⇒ α transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling-transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson-Mehl-Avrami (JMA) theory and by applying the “concept of additivity.” The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the β ⇒ α transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.
Scintillating glasses for total absorption dual readout calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonvicini, V.; Driutti, A.; Cauz, D.
2012-01-01
Scintillating glasses are a potentially cheaper alternative to crystal - based calorimetry with common problems related to light collection, detection and processing. As such, their use and development are part of more extensive R&D aimed at investigating the potential of total absorption, combined with the readout (DR) technique, for hadron calorimetry. A recent series of measurements, using cosmic and particle beams from the Fermilab test beam facility and scintillating glass with the characteristics required for application of the DR technique, serve to illustrate the problems addressed and the progress achieved by this R&D. Alternative solutions for light collection (conventional andmore » silicon photomultipliers) and signal processing are compared, the separate contributions of scintillation and Cherenkov processes to the signal are evaluated and results are compared to simulation.« less
Study of the structural and thermal properties of plasma treated jute fibre
NASA Astrophysics Data System (ADS)
Sinha, E.; Rout, S. K.; Barhai, P. K.
2008-08-01
Jute fibres ( Corchorus olitorius), were treated with argon cold plasma for 5, 10 and 15 min. Structural macromolecular parameters of untreated and plasma treated fibres were investigated using small angle X-ray scattering (SAXS), and the crystallinity parameters of the same fibres were determined by using X-ray diffraction (XRD). Differential scanning calorimetry (DSC) was used to study the thermal behavior of the untreated and treated fibres. Comparison and analysis of the results confirmed the changes in the macromolecular structure after plasma treatment. This is due to the swelling of cellulosic particles constituting the fibres, caused by the bombardment of high energetic ions onto the fibre surface. Differential scanning calorimetry data demonstrated the thermal instability of the fibre after cold plasma treatment, as the thermal degradation temperature of hemicelluloses and cellulose was found lowered than that of raw fibre after plasma treatment.
Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials
NASA Astrophysics Data System (ADS)
De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge
2007-08-01
Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.
NASA Astrophysics Data System (ADS)
Udhayakumar, Gayathri; Muthukumarasamy, N.; Velauthapillai, Dhayalan; Santhosh, Shanthi Bhupathi
2017-10-01
Highly crystalline zinc incorporated hydroxyapatite (Zn-HAp) nanorods have been synthesized using microwave irradiation method. To improve bioactivity and crystallinity of pure HAp, zinc was incorporated into it. As-synthesized samples were characterized by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HRTEM), and the thermal and crystallinity behavior of Zn-HAp nanoparticle were studied by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Antibacterial activity of the as-synthesized nanorods was evaluated against two prokaryotic strains ( Escherichia coli and Staphylococcus aureus). The FT-IR studies show the presence of hydroxide and phosphate functional groups. HRTEM and FESEM images showed highly crystalline rod-shaped nanoparticles with the diameter of about 50-60 nm. EDAX revealed the presence of Ca, Zn, P, and O in the prepared samples. The crystallinity and thermal stability were further confirmed by TGA-DSC analysis. The biocompatibility evaluation results promoted that the Zn-HAp nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopaedic application.
NASA Astrophysics Data System (ADS)
Amrollahi, P.; Ataie, A.; Nozari, A.; Seyedjafari, E.; Shafiee, A.
2015-03-01
CuNi alloys are very well known, both in academia and industry, based on their wide range of applications. In the present investigation, the previously synthesized Cu0.5Ni0.5 nanoparticles (NPs) by mechano-thermal method were studied more extensively. Phase composition and morphology of the samples were studied by employing x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The Curie temperature ( T c) was determined by differential scanning calorimetry (DSC). In vitro cytotoxicity was studied through methyl-thiazolyl-tetrazolium (MTT) assay. XRD and FESEM results indicated the formation of single-phase Cu0.5Ni0.5. TEM micrographs showed that the mean particle size of powders is 20 nm. DSC results revealed that T c of mechano-thermally synthesized Cu0.5Ni0.5 is 44 °C. The MTT assay results confirmed the viability and proliferation of human bone marrow stem cells in contact with Cu0.5Ni0.5 NPs. In summary, the fabricated particles were demonstrated to have potential in low concentrations for cancer treatment applications.
Karn, Pankaj Ranjan; Jin, Su-Eon; Lee, Benjamin Joon; Sun, Bo Kyung; Kim, Min-Soo; Sung, Jong-Hyuk; Hwang, Sung-Joo
2014-01-01
Objectives The objectives of this study were to prepare cyclosporin A (CsA)-containing proliposomes using the supercritical antisolvent (SAS) process and the conventional thin film method for the comparative study of proliposomal formulations and to evaluate the physicochemical properties of these proliposomes. Methods CsA-containing proliposomes were prepared by the SAS process and the conventional film method, composed of natural and synthetic phospholipids. We investigated particle size, polydispersity index, and zeta potential of CsA-containing proliposomes. In addition, both production yield and entrapment efficiency of CsA in different proliposomes were analyzed. Physicochemical properties of CsA-containing proliposomes were also evaluated, using differential scanning calorimetry and X-ray diffraction. The morphology and size of CsA-containing proliposomes were confirmed, using scanning electron microscopy. We checked the in vitro release of CsA from CsA-containing proliposomes prepared by different preparation methods, comparing them with Restasis® as a positive control and the stability of SAS-mediated proliposomes was also studied. Results CsA-containing proliposomes formed by the SAS process had a relatively smaller particle size, with a narrow size distribution and spherical particles compared with those of conventionally prepared proliposomes. The yield and entrapment efficiency of CsA in all proliposomes varied from 85% to 92% and from 86% to 89%, respectively. Differential scanning calorimetry and X-ray diffraction studies revealed that the anhydrous lactose powder used in this formulation retained its crystalline form and that CsA was present in an amorphous form. Proliposome powders were rapidly converted to liposomes on contact with water. The in vitro release study of proliposomal formulations demonstrated a similar pattern to Restasis®. The SAS-mediated CsA-containing proliposomes were stable on storage, with no significant changes in particle size, polydispersity index, and entrapment efficiency. Conclusion These results show promising features of CsA-containing proliposomal formulations, using the SAS process for the large-scale industrial application. PMID:25395846
Crystallization kinetics of GeTe phase-change thin films grown by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Sun, Xinxing; Thelander, Erik; Gerlach, Jürgen W.; Decker, Ulrich; Rauschenbach, Bernd
2015-07-01
Pulsed laser deposition was employed to the growth of GeTe thin films on Silicon substrates. X-ray diffraction measurements reveal that the critical crystallization temperature lies between 220 and 240 °C. Differential scanning calorimetry was used to investigate the crystallization kinetics of the as-deposited films, determining the activation energy to be 3.14 eV. Optical reflectivity and in situ resistance measurements exhibited a high reflectivity contrast of ~21% and 3-4 orders of magnitude drop in resistivity of the films upon crystallization. The results show that pulsed laser deposited GeTe films can be a promising candidate for phase-change applications.
Viskunova, A A; Kaganov, B S; Sharafetdinov, Kh Kh; Plotnikova, O A; Pogozheva, A V; Vorozhko, I V
2010-01-01
A comprehensive assessment of nutritional status in 73 patients with metabolic syndrome was assessed. The consumption food pattern of the majority of examined patients have had increased energy intake with excessive fat consumption inadequate intake of complex carbohydrates. In patients with type 2 diabetes inadequate compensation of carbohydrate and lipid metabolism was marked. When assessing body composition method bioelectrical impedance analysis increased content of adipose tissue was revealed are positively correlated with insulin and tumor necrosis factor-alpha. According to indirect calorimetry, increase in the level of resting energy expenditure, reducing the rate of oxidation of fat, increase the rate of oxidation of protein and carbohydrates was noted.
D'auria, S; Barone, R; Rossi, M; Nucci, R; Barone, G; Fessas, D; Bertoli, E; Tanfani, F
1997-01-01
The effects of temperature and SDS on the three-dimensional organization and secondary structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus were investigated by CD, IR spectroscopy and differential scanning calorimetry. CD spectra in the near UV region showed that the detergent caused a remarkable change in the protein tertiary structure, and far-UV CD analysis revealed only a slight effect on secondary structure. Infrared spectroscopy showed that low concentrations of the detergent (up to 0.02%) induced slight changes in the enzyme secondary structure, whereas high concentrations caused the alpha-helix content to increase at high temperatures and prevented protein aggregation. PMID:9169619
Lootens, Didier; Bentz, Dale P.
2016-01-01
Previous research has demonstrated a linear relationship between compressive strength (mortar cubes and concrete cylinders) and cumulative heat release normalized per unit volume of (mixing) water for a wide variety of cement-based mixtures at ages of 1 d and beyond. This paper utilizes concurrent ultrasonic reflection and calorimetry measurements to further explore this relationship from the time of specimen casting to 3 d. The ultrasonic measurements permit a continuous evaluation of thickening, setting, and strength development during this time period for comparison with the ongoing chemical reactions, as characterized by isothermal calorimetry measurements. Initially, the ultrasonic strength-heat release relation depends strongly on water-to-cement ratio, as well as admixture additions, with no universal behavior. Still, each individual strength-heat release curve is consistent with a percolation-based view of the cement setting process. However, beyond about 8 h for the systems investigated in the present study, the various strength-heat release curves merge towards a single relationship that broadly characterizes the development of strength as a function of heat released (fractional space filled), demonstrating that mortar and/or concrete strength at early ages can be effectively monitored using either ultrasonic or calorimetry measurements on small paste or mortar specimens. PMID:27046956
Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto
2017-01-01
The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (~100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day−1. Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. PMID:28722205
Schön, Arne; Clarkson, Benjamin R; Jaime, Maria; Freire, Ernesto
2017-11-01
The structural stability of proteins has been traditionally studied under conditions in which the folding/unfolding reaction is reversible, since thermodynamic parameters can only be determined under these conditions. Achieving reversibility conditions in temperature stability experiments has often required performing the experiments at acidic pH or other nonphysiological solvent conditions. With the rapid development of protein drugs, the fastest growing segment in the pharmaceutical industry, the need to evaluate protein stability under formulation conditions has acquired renewed urgency. Under formulation conditions and the required high protein concentration (∼100 mg/mL), protein denaturation is irreversible and frequently coupled to aggregation and precipitation. In this article, we examine the thermal denaturation of hen egg white lysozyme (HEWL) under irreversible conditions and concentrations up to 100 mg/mL using several techniques, especially isothermal calorimetry which has been used to measure the enthalpy and kinetics of the unfolding and aggregation/precipitation at 12°C below the transition temperature measured by DSC. At those temperatures the rate of irreversible protein denaturation and aggregation of HEWL is measured to be on the order of 1 day -1 . Isothermal calorimetry appears a suitable technique to identify buffer formulation conditions that maximize the long term stability of protein drugs. © 2017 Wiley Periodicals, Inc.
Lootens, Didier; Bentz, Dale P
2016-04-01
Previous research has demonstrated a linear relationship between compressive strength (mortar cubes and concrete cylinders) and cumulative heat release normalized per unit volume of (mixing) water for a wide variety of cement-based mixtures at ages of 1 d and beyond. This paper utilizes concurrent ultrasonic reflection and calorimetry measurements to further explore this relationship from the time of specimen casting to 3 d. The ultrasonic measurements permit a continuous evaluation of thickening, setting, and strength development during this time period for comparison with the ongoing chemical reactions, as characterized by isothermal calorimetry measurements. Initially, the ultrasonic strength-heat release relation depends strongly on water-to-cement ratio, as well as admixture additions, with no universal behavior. Still, each individual strength-heat release curve is consistent with a percolation-based view of the cement setting process. However, beyond about 8 h for the systems investigated in the present study, the various strength-heat release curves merge towards a single relationship that broadly characterizes the development of strength as a function of heat released (fractional space filled), demonstrating that mortar and/or concrete strength at early ages can be effectively monitored using either ultrasonic or calorimetry measurements on small paste or mortar specimens.
ERIC Educational Resources Information Center
Bopegedera, A. M. R. P.; Perera, K. Nishanthi R.
2017-01-01
Coffee cup calorimetry, performed with calorimeters made with styrofoam coffee cups, is a familiar experiment in the general chemistry laboratory. These calorimeters are inexpensive, easy to use, and provide good insulation for most thermodynamics experiments. This paper presents the successful substitution of paper coffee cups for styrofoam cups…
Triton promotes domain formation in lipid raft mixtures.
Heerklotz, H
2002-11-01
Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds.
Triton promotes domain formation in lipid raft mixtures.
Heerklotz, H
2002-01-01
Biological membranes are supposed to contain functional domains (lipid rafts) made up in particular of sphingomyelin and cholesterol, glycolipids, and certain proteins. It is often assumed that the application of the detergent Triton at 4 degrees C allows the isolation of these rafts as a detergent-resistant membrane fraction. The current study aims to clarify whether and how Triton changes the domain properties. To this end, temperature-dependent transitions in vesicles of an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, egg sphingomyelin, and cholesterol were monitored at different Triton concentrations by differential scanning calorimetry and pressure perturbation calorimetry. Transitions initiated by the addition of Triton to the lipid mixture were studied by isothermal titration calorimetry, and the structure was investigated by (31)P-NMR. The results are discussed in terms of liquid-disordered (ld) and -ordered (lo) bilayer and micellar (mic) phases, and the typical sequence encountered with increasing Triton content or decreasing temperature is ld, ld + lo, ld + lo + mic, and lo + mic. That means that addition of Triton may create ordered domains in a homogeneous fluid membrane, which are, in turn, Triton resistant upon subsequent membrane solubilization. Hence, detergent-resistant membranes should not be assumed to resemble biological rafts in size, structure, composition, or even existence. Functional rafts may not be steady phenomena; they might form, grow, cluster or break up, shrink, and vanish according to functional requirements, regulated by rather subtle changes in the activity of membrane disordering or ordering compounds. PMID:12414701
Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.
Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter
2011-03-01
Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.
Xue, Liang; Xi, Hongjuan; Kumar, Sunil; Gray, David; Davis, Erik; Hamilton, Paris; Skriba, Michael; Arya, Dev P
2010-07-06
Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin < 1 < 3 < 4 < 2. Among them, the binding constant [(2.7 +/- 0.3) x 10(8) M(-1)] of 2 with poly(dA).2poly(dT) was the highest, almost 1000-fold greater than that of neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy-driven and gave negative DeltaC(p) values. The results described here suggest that the binding affinity of intercalator-neomycin conjugates for poly(dA).2poly(dT) increases as a function of the surface area of the intercalator moiety.
NASA Astrophysics Data System (ADS)
Barcelos, Mariana A.; Ribeiro, Carolina Gomes D.; Ferreira, Jordana; Vieira, Janaina da S.; Margem, Frederico M.; Monteiro, Sergio N.
Epoxy composites reinforced with natural lignocellulosic fibers have, in recent times, been gaining attention in engineering areas as lighter and cheaper alternatives for traditional composites such as the "fiberglass". The curaua fiber is the one strongest today being considered as reinforcement of composites for automobile interior parts. In fact, several studies are currently being dedicated to curaua fiber composites since physical and mechanical properties are required for practical uses. In this work, the thermal behavior of epoxy composites reinforced with up to 30 % in volume of curaua fibers was investigated by differential scanning calorimetry, DSC. The results showed endothermic and exothermic events associated with water release and possible molecular chain amorphous transformation. Comparison with similar composites permitted to propose mechanism that explains this DSC thermal behavior.
Effect of pH on fecal recovery of energy derived from volatile fatty acids.
Kien, C L; Liechty, E A
1987-01-01
We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.
The Energetics of Oxide Multilayer Systems: SOFC Cathode and Electrolyte Materials
NASA Astrophysics Data System (ADS)
Kemik, Nihan
Complex oxides are evoking a surge of scientific and technological interest due to the unexpected properties of their interfaces which have been shown to differ from the constituent materials. Layered oxide structures have found wide use in applications ranging from electronic and magnetic devices to solid oxide fuel cells (SOFCs). For devices such as SOFCs which utilize multilayers at elevated temperatures, it is critical to know the relative stabilities of these interfaces since they directly influence the device performance. In this work, we explored the energetics of two oxide multilayer systems which are relevant for SOFCs components using high temperature solution calorimetry and differential scanning calorimetry (DSC). The fundamental understanding of the interfacial and structural properties of multilayers combined with the information about phase stabilities is essential in materials selection for components for intermediate temperature SOFC's. For cathode materials, we investigated the family of perovskite oxides, La0.7Sr0.3MO3, where M=Mn and Fe, as well as their solid solution phase. Manganites have been the most investigated cathode material, while the ferrites are also being considered for future use due to their thermodynamic stability and close thermal expansion coefficient with the commonly used electrolyte materials. For the bulk La0.7Sr0.3FexMn1-xO 3 solid solution, high temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. It was shown that the symmetry of the perovskite structure, the valence of transition metal, and the energetics are highly interdependent and the balance between the different valence states of the Mn and Fe ions is the main factor in determining the energetics. The energetics of interfaces in multilayered structures was investigated by high temperature oxide melt solution calorimetry for the first time. The drop solution calorimetry results of La0.7Sr0.3MnO3(LSMO)/La0.7 Sr0.3FeO3(LSFO) multilayers and LSMO film are highly exothermic and differ from the bulk material with the same composition. The magnetic and electronic properties of LSMO/LSFO superlattices are highly dependent on the thickness and the structure of the individual layers. Resonant X-Ray reflectivity (XRR) technique was utilized to characterize the structure of the LSMO/LSFO superlattices. It was shown that the XRR spectra taken at the Mn and Fe absorption edges can provide more structural information than the spectra at the X-ray energy of a conventional Cu source. With this non-destructive technique, we demonstrated the ability to compare the intermixing behavior and thickness regularity throughout the thickness of different superlattice structures. For electrolyte materials, we studied the yttria stabilized zirconia (YSZ) /Al2O3 multilayer system. Differential scanning calorimetry (DSC) was used to study the crystallization of the YSZ layers to explore the effect of the interfaces on phase stabilities. It was observed that the crystallization temperature increased and the enthalpy became more exothermic as the interfacial area increased. This work demonstrated that DSC is a promising technique to study the thin film reactions and explore the interfacial enthalpies in oxide multilayer systems.
NASA Astrophysics Data System (ADS)
Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.
2016-06-01
The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.
Thermodynamic properties of chlorite and berthierine derived from calorimetric measurements
NASA Astrophysics Data System (ADS)
Blanc, Philippe; Gailhanou, Hélène; Rogez, Jacques; Mikaelian, Georges; Kawaji, Hitoshi; Warmont, Fabienne; Gaboreau, Stéphane; Grangeon, Sylvain; Grenèche, Jean-Marc; Vieillard, Philippe; Fialips, Claire I.; Giffaut, Eric; Gaucher, Eric C.; Claret, F.
2014-09-01
In the context of the deep waste disposal, we have investigated the respective stabilities of two iron-bearing clay minerals: berthierine ISGS from Illinois [USA; (Al0.975FeIII0.182FeII1.422Mg0.157Li0.035Mn0.002)(Si1.332Al0.668)O5(OH)4] and chlorite CCa-2 from Flagstaff Hill, California [USA; (Si2.633Al1.367)(Al1.116FeIII0.215Mg2.952FeII1.712Mn0.012Ca0.011)O10(OH)8]. For berthierine, the complete thermodynamic dataset was determined at 1 bar and from 2 to 310 K, using calorimetric methods. The standard enthalpies of formation were obtained by solution-reaction calorimetry at 298.15 K, and the heat capacities were measured by heat-pulse calorimetry. For chlorite, the standard enthalpy of formation is measured by solution-reaction calorimetry at 298.15 K. This is completing the entropy and heat capacity obtained previously by Gailhanou et al. (Geochim Cosmochim Acta 73:4738-4749, 2009) between 2 and 520 K, by using low-temperature adiabatic calorimetry and differential scanning calorimetry. For both minerals, the standard entropies and the Gibbs free energies of formation at 298.15 K were then calculated. An assessment of the measured properties could be carried out with respect to literature data. Eventually, the thermodynamic dataset allowed realizing theoretical calculations concerning the berthierine to chlorite transition. The latter showed that, from a thermodynamic viewpoint, the main factor controlling this transition is probably the composition of the berthierine and chlorite minerals and the nature of the secondary minerals rather than temperature.
Study on the oxidative stability of poly a-olefin aviation lubricating base oil using PDSC method
NASA Astrophysics Data System (ADS)
Wu, N.; Fei, Y. W.; Yang, H. W.; Wang, Y. M.; Zong, Z. M.
2016-08-01
The oxidation stability of the domestic and import PAO aviation lubricating base oil was studied by the method of pressurized differential scanning calorimetry testing the initial oxidation temperature. The effects of anti-oxidants were investigated, and the best ratio of antioxidants was determined.
Barmpalexis, Panagiotis; Grypioti, Agni; Eleftheriadis, Georgios K; Fatouros, Dimitris G
2018-02-01
In the present study, liquisolid formulations were developed for improving dissolution profile of aprepitant (APT) in a solid dosage form. Experimental studies were complemented with artificial neural networks and genetic programming. Specifically, the type and concentration of liquid vehicle was evaluated through saturation-solubility studies, while the effect of the amount of viscosity increasing agent (HPMC), the type of wetting (Soluplus® vs. PVP) and solubilizing (Poloxamer®407 vs. Kolliphor®ELP) agents, and the ratio of solid coating (microcrystalline cellulose) to carrier (colloidal silicon dioxide) were evaluated based on in vitro drug release studies. The optimum liquisolid formulation exhibited improved dissolution characteristics compared to the marketed product Emend®. X-ray diffraction (XRD), scanning electron microscopy (SEM) and a novel method combining particle size analysis by dynamic light scattering (DLS) and HPLC, revealed that the increase in dissolution rate of APT in the optimum liquisolid formulation was due to the formation of stable APT nanocrystals. Differential scanning calorimetry (DSC) and attenuated total reflection FTIR spectroscopy (ATR-FTIR) revealed the presence of intermolecular interactions between APT and liquisolid formulation excipients. Multilinear regression analysis (MLR), artificial neural networks (ANNs), and genetic programming (GP) were used to correlate several formulation variables with dissolution profile parameters (Y 15min and Y 30min ) using a full factorial experimental design. Results showed increased correlation efficacy for ANNs and GP (RMSE of 0.151 and 0.273, respectively) compared to MLR (RMSE = 0.413).
Glass transition of anhydrous starch by fast scanning calorimetry.
Monnier, Xavier; Maigret, Jean-Eudes; Lourdin, Denis; Saiter, Allisson
2017-10-01
By means of fast scanning calorimetry, the glass transition of anhydrous amorphous starch has been measured. With a scanning rate of 2000Ks -1 , thermal degradation of starch prior to the glass transition has been inhibited. To certify the glass transition measurement, structural relaxation of the glassy state has been investigated through physical aging as well as the concept of limiting fictive temperature. In both cases, characteristic enthalpy recovery peaks related to the structural relaxation of the glass have been observed. Thermal lag corrections based on the comparison of glass transition temperatures measured by means of differential and fast scanning calorimetry have been proposed. The complementary investigations give an anhydrous amorphous starch glass transition temperature of 312±7°C. This estimation correlates with previous extrapolation performed on hydrated starches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis
K. S., Nagapriya; Sinha, Shashank; R., Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip
2017-01-01
In this paper we report a newly developed technique – laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region. PMID:28218304
Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis.
K S, Nagapriya; Sinha, Shashank; R, Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip
2017-02-20
In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xingliang; Zhang, Zhicheng; Endrizzi, Francesco
2015-06-01
The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An 3+) from trivalent lanthanides (Ln 3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na +, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found tomore » exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln 3+ and An 3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln 3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the oxygen of a carboxylate group. These data, in conjunction with the thermodynamic parameters of Ln 3+/An 3+ complexes with HEDTA at different temperatures, will help to predict the speciation and temperature-dependent behavior of Ln 3+/An 3+ in the modified TALSPEAK process.« less
Jayanthi, Srinivas; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy; Furr, Mercede; Daily, Anna; Thurman, Ryan; Rutherford, Lindsay; Chandrashekar, Reena; Adams, Paul; Prudovsky, Igor; Suresh Kumar, Thallapuranam Krishnaswamy
2014-01-01
Fibroblast growth factor 1 (FGF1) is a heparin-binding proangiogenic protein. FGF1 lacks the conventional N-terminal signal peptide required for secretion through the endoplasmic reticulum (ER) -Golgi secretory pathway. FGF1 is released through a Cu2+ - mediated nonclassical secretion pathway. The secretion of FGF1 involves the formation of a Cu2+- mediated multiprotein release complex (MRC) including FGF1, S100A13 (a calcium-binding protein) and p40 synaptotagmin (Syt1). It is believed that binding of Cu2+ to the C2B domain is important for the release of FGF1 in to the extracellular medium. In this study, using a variety of biophysical studies, Cu2+ and lipid interactions of the C2B domain of Syt1were characterized. Isothermal titration calorimetry (ITC) experiments reveal that C2B domain binds to Cu2+ in a biphasic manner involving an initial endothermic and a subsequent exothermic phase. Fluorescence energy transfer experiments using Tb3+ show that there are two Cu2+- binding pockets on the C2B domain, and one of these is also a Ca2+- binding site. Lipid-binding studies using ITC demonstrate that the C2B domain preferentially binds to small unilamellar vesicles of phosphatidyl serine (PS). Results of the differential scanning calorimetry and limited trypsin digestion experiments suggest that C2B domain is marginally destabilized upon binding to PS vesicles. These results, for the first time, suggest that the main role of the C2B domain of Syt1 is to serve as an anchor for the FGF1 MRC on the membrane bilayer. In addition, binding of the C2B domain to the lipid bilayer is shown to significantly decrease the binding affinity of the protein to Cu2+. The study provides valuable insights on the sequence of structural events that occur in the nonclassical secretion of FGF1. PMID:25224745
Multi-walled carbon/IF-WS2 nanoparticles with improved thermal properties
NASA Astrophysics Data System (ADS)
Xu, Fang; Almeida, Trevor P.; Chang, Hong; Xia, Yongde; Wears, M. Lesley; Zhu, Yanqiu
2013-10-01
A unique new class of core-shell structured composite nanoparticles, C-coated inorganic fullerene-like WS2 (IF-WS2) hollow nanoparticles, has been created for the first time in large quantities, by a continuous chemical vapour deposition method using a rotary furnace. Transmission electron microscopy and Raman characterisations of the resulting samples reveal that the composite nanoparticles exhibited a uniform shell of carbon coating, ranging from 2-5 nm on the IF-WS2 core, with little or no agglomeration. Importantly, thermogravimetric analysis and differential scanning calorimetry analysis confirm that their thermal stability against oxidation in air has been improved by about 70 °C, compared to the pristine IF-WS2, making these new C-coated IF-WS2 nanoparticles more attractive for critical engineering applications.A unique new class of core-shell structured composite nanoparticles, C-coated inorganic fullerene-like WS2 (IF-WS2) hollow nanoparticles, has been created for the first time in large quantities, by a continuous chemical vapour deposition method using a rotary furnace. Transmission electron microscopy and Raman characterisations of the resulting samples reveal that the composite nanoparticles exhibited a uniform shell of carbon coating, ranging from 2-5 nm on the IF-WS2 core, with little or no agglomeration. Importantly, thermogravimetric analysis and differential scanning calorimetry analysis confirm that their thermal stability against oxidation in air has been improved by about 70 °C, compared to the pristine IF-WS2, making these new C-coated IF-WS2 nanoparticles more attractive for critical engineering applications. Electronic supplementary information (ESI) available: Sketch of the rotary furnace, XRD pattern comparison of IF-WS2 and 2H WS2, XRD patterns of C-coated IF-WS2 (41-50°), and TGA and MS curves for pristine IF-WS2. See DOI: 10.1039/c3nr03844k
Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I
2012-12-21
A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants. Copyright © 2012 Elsevier Ltd. All rights reserved.
Raza, Aun; Xu, Xiuquan; Xia, Li; Xia, Changkun; Tang, Jian; Ouyang, Zhen
2016-11-01
Quercetin-iron (II) complex was synthesized and characterized by elemental analysis, ultraviolet-visible spectrophotometry, fourier transform infrared spectroscopy, mass spectrometry, proton nuclear magnetic resonance spectroscopy, thermogravimetry and differential scanning calorimetry, scanning electron micrography and molar conductivity. The low molar conductivity value investigates the non-electrolyte nature of the complex. The elemental analysis and other physical and spectroscopic methods reveal the 1:2 stoichiometric ratio (metal:ligand) of the complex. Antioxidant study of the quercetin and its metal complex against 2, 2-di-phenyl-1-picryl hydrazyl radical showed that the complex has much more radical scavenging activity than free quercetin. The interaction of quercetin-iron (II) complex with DNA was determined using ultraviolet visible spectra, fluorescence spectra and agarose gel electrophoresis. The results showed that quercetin-iron (II) complex can intercalate moderately with DNA, quench a strong intercalator ethidium bromide and compete for the intercalative binding sites. The complex showed significant cleavage of pBR 322 DNA from supercoiled form to nicked circular form and these cleavage effects were dose-dependent. Moreover, the mechanism of DNA cleavage indicated that it was an oxidative cleavage pathway. These results revealed the potential nuclease activity of complex to cleave DNA. In addition, antibacterial activity of complex on E.coli and S. aureus was also investigated. The results showed that complex has higher antibacterial activity than ligand.
de Luis, D A; Aller, R; Izaola, O; Romero, E
2006-01-01
The aim of our study was to evaluate the accuracy of the equations to estimate REE in obese patents and develop a new equation in our obese population. A population of 200 obesity outpatients was analyzed in a prospective way. The following variables were specifically recorded: age, weight, body mass index (BMI), waist circumference, and waist-to-hip ratio. Basal glucose, insulin, and TSH (thyroid-stimulating hormone) were measured. An indirect calorimetry and a tetrapolar electrical bioimpedance were performed. REE measured by indirect calorimetry was compared with REE obtained by prediction equations to obese or nonobese patients. The mean age was 44.8 +/- 16.81 years and the mean BMI 34.4 +/- 5.3. Indirect calorimetry showed that, as compared to women, men had higher resting energy expenditure (REE) (1,998.1 +/- 432 vs. 1,663.9 +/- 349 kcal/day; p < 0.05) and oxygen consumption (284.6 +/- 67.7 vs. 238.6 +/- 54.3 ml/min; p < 0.05). Correlation analysis among REE obtained by indirect calorimetry and REE predicted by prediction equations showed the next data; Berstein's equation (r = 0.65; p < 0.05), Harris Benedict's equation (r = 0.58; p < 0.05), Owen's equation (r = 0.56; p < 0.05), Ireton's equation (r = 0.58; p < 0.05) and WHO's equation (r = 0.57; p < 0.05). Both the Berstein's and the Ireton's equations overpredicted REE and showed nonsignificant mean differences form measured REE. The Owen's, WHO's, and Harris Benedict's equations underpredicted REE. Our male prediction equation was REE = 58.6 + (6.1 x weight (kg)) + (1,023.7 x height (m)) - (9.5 x age). The female model was REE = 1,272.5 + (9.8 x weight (kg)) - (61.6 x height (m)) - (8.2 x age). Our prediction equations showed a nonsignificant difference with REE measured (-3.7 kcal/day) with a significant correlation coefficient (r = 0.67; p < 0.05). Previously developed prediction equations overestimated and underestimated REE measured. WHO equation developed in normal weight individuals provided the closest values. The two new equations (male and female equations) developed in our study had a good accuracy. Copyright 2006 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Pentak, Danuta
2014-03-01
The interactions between etoposide, cytarabine and 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine bilayers were studied using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR). These techniques have proven to be a very powerful tool in studying the structure and dynamics of phospholipid bilayers. In particular, DSC can provide information on the phase transition temperature and cooperativity of the lipid molecules in the absence and presence of the drug. Vibrational spectroscopy is well suited to the study of drug-lipid interactions, since it allows for an investigation of the conformation of phospholipid molecules at different levels in lipid bilayers and follows structural changes that occur during the gel to liquid-crystalline phase transition. NMR supported the determination of the main phase transition temperatures (TC) of 1,2-dihexadecanoyl-sn-glycerol-3-phosphocholine (DPPC). The main phase transition temperature (TC) determined by 1H NMR is comparable with values obtained by DSC for all studied liposomes. The location of cytarabine and etoposide in liposomes was also determined by NMR. Atomic force microscopy (AFM) images, acquired immediately after sample deposition on a mica surface, revealed the spherical shape of lipid vesicles.
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
Chu, Wei-Cheng; Lin, Wei-Sheng; Kuo, Shiao-Wei
2016-01-01
In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide–b–propylene oxide–b–ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydrogen bonding between the poly(ethylene oxide) segment of F127 and the OH groups of the DGEBA resin. Small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy all revealed evidence for the microphase separation of F127 within the epoxy resin. Glass transition temperature (Tg) phenomena and mechanical properties (modulus) were determined through differential scanning calorimetry and dynamic mechanical analysis, respectively, of samples at various blend compositions. The modulus data provided evidence for the formation of wormlike micelle structures, through a RIMPS mechanism, in the flexible epoxy resin upon blending with the F127 triblock copolymer. PMID:28773571
Yang, Qi; Chen, Sanping; Xie, Gang; Gao, Shengli
2011-12-15
An energetic coordination compound Cu(Mtta)(2)(NO(3))(2) has been synthesized by using 1-methyltetrazole (Mtta) as ligand and its structure has been characterized by X-ray single crystal diffraction. The central copper (II) cation was coordinated by four O atoms from two Mtta ligands and two N atoms from two NO(3)(-) anions to form a six-coordinated and distorted octahedral structure. 2D superamolecular layer structure was formed by the extensive intermolecular hydrogen bonds between Mtta ligands and NO(3)(-) anions. Thermal decomposition process of the compound was predicted based on DSC and TG-DTG analyses results. The kinetic parameters of the first exothermic process of the compound were studied by the Kissinger's and Ozawa-Doyle's methods. Sensitivity tests revealed that the compound was insensitive to mechanical stimuli. In addition, compound was explored as additive to promote the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimetry. Copyright © 2011 Elsevier B.V. All rights reserved.
Design and characterization of novel bis-benzamide liquid crystalline materials
NASA Astrophysics Data System (ADS)
Iqbal, Asma; Siddiqi, Humaira Masood; Akhter, Zareen; Qaiser Fatmi, Muhammad
2018-01-01
A new homologous series of symmetric, bent-shaped bis-benzamide dimers have been prepared. Several 1,n-bis(p-aminophenoxy)alkanes (n = 3, 5, 9,10,11) were employed as spacers and p-hexyloxy tails have been synthesized and appended to the spacers by amide linking groups. Different important parameters were explored using computational analysis by semi empirical method. The experimental results were correlated with theoretical studies and relationship between molecular structure and mesogenic behavior has been established. The mesomorphic properties of the resultant dimers were characterized by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) equipped with a hot stage. Change in mesomorphic properties with change of methylene spacers was observed. Enantiotropic mesogenic behavior was exhibited by D3A6, D10A6 and D11A6 and the needle like and blurred schleiren textures were observed. It was observed that increased methylene spacers chain length decreased the melting temperatures. Thermogravimetric analysis revealed the thermal stability of dimers upto 360 °C.
Kouzounis, Dimitrios; Lazaridou, Athina; Katsanidis, Eugenios
2017-08-01
Sunflower oil was structured with monoglycerides and phytosterols. The properties of the oleogels were studied by optical microscopy, large deformation mechanical measurements, dynamic rheometry and differential scanning calorimetry. The interaction between monoglycerides and phytosterols resulted in stronger oleogel networks with a differentiated crystalline structure, increased hardness and gel strength, increased storage modulus (G') values and decreased melting temperatures compared to monoglycerides oleogels. The oleogel structured with 15:5 monoglycerides to phytosterols weight ratio was selected to replace 50% of the pork backfat in frankfurter sausages. The control treatment (FSS1) presented higher values of hardness, brittleness, gumminess and chewiness than the oleogel-substituted samples (FSS2), whereas cohesiveness and elasticity did not present any differences. Instrumental color measurements indicated that FSS1 samples had higher a*, lower L* and similar b* values compared to FSS2. No differences were detected in the oxidation levels and sensory evaluation revealed similar overall liking for the two treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electron beam technology for modifying the functional properties of maize starch
NASA Astrophysics Data System (ADS)
Nemţanu, M. R.; Minea, R.; Kahraman, K.; Koksel, H.; Ng, P. K. W.; Popescu, M. I.; Mitru, E.
2007-09-01
Maize starch is a versatile biopolymer with a wide field of applications (e.g. foods, pharmaceutical products, adhesives, etc.). Nowadays there is a continuous and intensive search for new methods and techniques to modify its functional properties due to the fact that native form of starch may exhibit some disadvantages in certain applications. Radiation technology is frequently used to change the properties of different polymeric materials. Thus, the goal of the work is to discuss the application of accelerated electron beams on maize starch in the view of changing some of its functional properties. Maize starch has been irradiated with doses up to 52.15 kGy by using electron beam technology and the modifications of differential scanning calorimetry (DSC) and pasting characteristics, paste clarity, freezing and thawing stability as well as colorimetric characteristics have been investigated. The results of the study revealed that the measured properties can be modified by electron beam treatment and, therefore, this method can be an efficient and ecological alternative to obtain modified maize starch.
Chakravarty, Paroma; Kothari, Sanjeev; Deese, Alan; Lubach, Joseph W
2015-07-06
The purpose of this study was to identify and characterize precipitates obtained from a liquid formulation of GNE068.HCl, a Genentech developmental compound, and lipophilic excipients, such as propylene glycol monocaprylate, and monolaurate. Precipitates were characterized using powder X-ray diffractometry (PXRD), differential scanning calorimetry, thermogravimetry, microscopy, nuclear magnetic resonance spectroscopy (NMR; solution and solid-state) and water sorption analysis. PXRD and NMR revealed the precipitates to be crystalline solvates of propylene glycol esters. The solvates (capryolate and lauroglycolate) were isomorphic and stable up to 70 °C, beyond which melting of the lattice occurred with subsequent dissolution of the active ingredient in the melt (microscopy and variable temperature PXRD). They were found to be mechanically stable (no change in PXRD pattern upon compression) and were nonhygroscopic up to ∼70% RH (25 °C). Our results highlight the outcome of inadvertent drug-excipient interactions in two separate lipid solution formulations with good solid-state properties and, thus, potential for further development.
Kasperek, Regina; Trebacz, Hanna; Zimmer, Łukasz; Poleszak, Ewa
2014-01-01
For increased analgesic effect, new composed tablets containing diclofenac sodium (DIC) with an addition of papaverine hydrochloride (PAP) were prepared to investigate the mechanism of release of the active substances from tablets with different excipients in eight different formulations. To detect the possible interactions between active substances and excipients differential scanning calorimetry (DSC) was used. A shift of the melting point and enthalpy values of the physical mixtures of tablets components suggested a kind of interaction between components in certain formulations, however, the tabletting process was not disturbed in any of them. Kinetics of drug release from formulations was estimated by zero order, first order and Higuchi and Korsmeyer-Peppas models using results of dissolution of DIC and PAP from tablets. The study revealed that the mechanism of release of active substances was dependent on the excipients contained in tablets and the best fitted kinetics models were obtained for formulations with potentially prolonged release of DIC and PAP.
Yang, Jianping; Wang, Yunxiao; Li, Wei; Wang, Lianjun; Fan, Yuchi; Jiang, Wan; Luo, Wei; Wang, Yang; Kong, Biao; Selomulya, Cordelia; Liu, Hua Kun; Dou, Shi Xue; Zhao, Dongyuan
2017-12-01
Smart surface coatings of silicon (Si) nanoparticles are shown to be good examples for dramatically improving the cyclability of lithium-ion batteries. Most coating materials, however, face significant challenges, including a low initial Coulombic efficiency, tedious processing, and safety assessment. In this study, a facile sol-gel strategy is demonstrated to synthesize commercial Si nanoparticles encapsulated by amorphous titanium oxide (TiO 2 ), with core-shell structures, which show greatly superior electrochemical performance and high-safety lithium storage. The amorphous TiO 2 shell (≈3 nm) shows elastic behavior during lithium discharging and charging processes, maintaining high structural integrity. Interestingly, it is found that the amorphous TiO 2 shells offer superior buffering properties compared to crystalline TiO 2 layers for unprecedented cycling stability. Moreover, accelerating rate calorimetry testing reveals that the TiO 2 -encapsulated Si nanoparticles are safer than conventional carbon-coated Si-based anodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Arakawa, Yuki; Tsuji, Hideto
2017-06-01
In order to reveal the effect of fluorine substitutions on the refractive index properties for calamitic nematic materials, we carried out a comparative study with respect to non-fluorinated and two types of laterally fluorinated 1,4-bis[4-(hexyloxy)phenyl]ethynylbenzene molecules. Phase transition behaviours were investigated by differential scanning calorimetry and polarised optical microscopy. Additionally, extraordinary and ordinary refractive index and birefringence were evaluated from each single component system. All the analogues exhibited high birefringence values beyond 0.3 at 550 nm, of which an analogue with a fluorine substitution at the central benzene ring showed the highest Δn-value of 0.43. With respect to an analogue with the highest level of fluorination, Δn as well as ne and no values were declined due to decreased order parameter and diluted molecular density. Not only the mesomorphic behaviours but also optical properties strongly relied on the manner of fluorine substitution including the number and position.
Structural Insight into Amino Group-carrier Protein-mediated Lysine Biosynthesis
Yoshida, Ayako; Tomita, Takeo; Fujimura, Tsutomu; Nishiyama, Chiharu; Kuzuyama, Tomohisa; Nishiyama, Makoto
2015-01-01
In the biosynthesis of lysine by Thermus thermophilus, the metabolite α-ketoglutarate is converted to the intermediate α-aminoadipate (AAA), which is protected by the 54-amino acid acidic protein LysW. In this study, we determined the crystal structure of LysZ from T. thermophilus (TtLysZ), an amino acid kinase that catalyzes the second step in the AAA to lysine conversion, which was in a complex with LysW at a resolution of 1.85 Å. A crystal analysis coupled with isothermal titration calorimetry of the TtLysZ mutants for TtLysW revealed tight interactions between LysZ and the globular and C-terminal extension domains of the LysW protein, which were mainly attributed to electrostatic forces. These results provided structural evidence for LysW acting as a protecting molecule for the α-amino group of AAA and also as a carrier protein to guarantee better recognition by biosynthetic enzymes for the efficient biosynthesis of lysine. PMID:25392000
The two-step assemblies of basic-amino-Acid-rich Peptide with a highly charged polyoxometalate.
Zhang, Teng; Li, Hong-Wei; Wu, Yuqing; Wang, Yizhan; Wu, Lixin
2015-06-15
Two-step assembly of a peptide from HPV16 L1 with a highly charged europium-substituted polyoxometalate (POM) cluster, accompanying a great luminescence enhancement of the inorganic polyanions, is reported. The mechanism is discussed in detail by analyzing the thermodynamic parameters from isothermal titration calorimetry (ITC), time-resolved fluorescent and NMR spectra. By comparing the actions of the peptide analogues, a binding process and model are proposed accordingly. The driving forces in each binding step are clarified, and the initial POM aggregation, basic-sequence and hydrophobic C termini of peptide are revealed to contribute essentially to the two-step assembly. The present study demonstrates both a meaningful preparation for bioinorganic materials and a strategy using POMs to modulate the assembly of peptides and even proteins, which could be extended to other proteins and/or viruses by using peptides and POMs with similar properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the Formation of Sludge Intermetallic Particles in Secondary Aluminum Alloys
NASA Astrophysics Data System (ADS)
Ferraro, Stefano; Bjurenstedt, Anton; Seifeddine, Salem
2015-08-01
The primary precipitation of Fe-rich intermetallics in AlSi9Cu3(Fe) type alloys is studied for different Fe, Mn, and Cr contents and cooling rates. Differential scanning calorimetry, thermal analysis, and interrupted solidification with a rapid quenching technique were used in combination in order to assess the nucleation temperature of sludge particles, as well as to follow their evolution. The results revealed that the sludge nucleation temperature and the release of latent heat during sludge formation are functions of Fe, Mn, and Cr levels in the molten alloy ( i.e., the sludge factor, SF) and cooling rate. Moreover, it can be concluded that sensitivity to sludge formation is not affected by cooling rate; i.e., a decrease in the SF will reduce sludge nucleation temperature to the same extent for a higher cooling rate as for a lower cooling rate. The sludge formation temperature detected will assist foundries in setting the optimal molten metal temperature for preventing sludge formation in holding furnaces and plunger systems.
Wang, Ying; Edalji, Rohinton P; Panchal, Sanjay C; Sun, Chaohong; Djuric, Stevan W; Vasudevan, Anil
2017-10-26
It is advocated that kinetic and thermodynamic profiling of bioactive compounds should be incorporated and utilized as complementary tools for hit and lead optimizations in drug discovery. To assess their applications in the EED hit-to-lead optimization process, large amount of thermodynamic and kinetic data were collected and analyzed via isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR), respectively. Slower dissociation rates (k off ) of the lead compounds were observed as the program progressed. Analysis of the kinetic data indicated that compound cellular activity correlated with both K i and k off . Our analysis revealed that ITC data should be interpreted in the context of chiral purity of the compounds. The thermodynamic signatures of the EED aminopyrrolidine compounds were found to be mainly enthalpy driven with improved enthalpic contributions as the program progressed. Our study also demonstrated that significant challenges still exist in utilizing kinetic and thermodynamic parameters for hit selection.
Synthesis and characterization of a novel bio-based resin from maleated soybean oil polyols
NASA Astrophysics Data System (ADS)
Li, Y. T.; Yang, L. T.; Zhang, H.
2017-02-01
In this paper, a novel bio-based resin was prepared by the radical copolymerization of maleated soybean oil polyols (MSBOP) and styrene (ST). Structure of the product was studied by Fourier transformation infrared spectrometer (FT-IR), and the result was found to be consistent with that of theoretical structure. Swelling experiments indicated that the crosslinking degree increased with the increase of hydroxyl value. Thermal analysis by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TG) revealed that glass transition temperature (Tg) of the polymer increased with increasing hydroxyl values, and that its thermal stability showed a good correlation with the hydroxyl value. The tensile strength and impact strength were significantly affected by the hydroxyl value of soybean oil polyols. With increasing hydroxyl value, the tensile strength presented an increasing trend, while the impact strength showed a decreasing one. Moreover, the property of the polymer from elastomer to plastic character also depended on the functionality of the hydroxyl value of soybean oil polyols.
Bernadac, A.; Wu, L.-F.; Santini, C.-L.; Vidaud, C.; Sturgis, J. N.; Menguy, N.; Bergam, P.; Nicoletti, C.; Xiao, T.
2012-01-01
Spinae are tubular surface appendages broadly found in Gram-negative bacteria. Little is known about their architecture, function or origin. Here, we report structural characterization of the spinae from marine bacteria Roseobacter sp. YSCB. Electron cryo-tomography revealed that a single filament winds into a hollow flared base with progressive change to a cylinder. Proteinase K unwound the spinae into proteolysis-resistant filaments. Thermal treatment ripped the spinae into ribbons that were melted with prolonged heating. Circular dichroism spectroscopy revealed a dominant beta-structure of the spinae. Differential scanning calorimetry analyses showed three endothermic transformations at 50–85°C, 98°C and 123°C, respectively. The heating almost completely disintegrated the spinae, abolished the 98°C transition and destroyed the beta-structure. Infrared spectroscopy identified the amide I spectrum maximum at a position similar to that of amyloid fibrils. Therefore, the spinae distinguish from other bacterial appendages, e.g. flagella and stalks, in both the structure and mechanism of assembly. PMID:23230515
Solubility Enhancement of Raloxifene Using Inclusion Complexes and Cogrinding Method
Patil, Payal H.; Belgamwar, Veena S.; Patil, Pratibha R.; Surana, Sanjay J.
2013-01-01
The objective of the present work was to enhance the solubility and dissolution of practically water-insoluble drug raloxifene HCl (RLX), for the same two approaches that were used. In the first approach, drug was kneaded with hydroxypropyl-β-cyclodextrin (HPβCD), and in the second one drug was cogrinded with modified guar gum (MGG). The drug-cyclodextrin complex and drug-MGG cogrind mixtures were characterized by differential scanning calorimetry, X-ray diffraction studies, scanning electron microscopy, and Fourier transform infrared spectroscopy. The solubility and dissolution study reveals that solubility and dissolution rate of RLX remarkably increased in both methods. It was concluded that the prepared inclusion complex showed a remarkable increase in solubility and dissolution of poorly water-soluble drug raloxifene. In the cogrinding mixture, a natural modified gum is used as a surfactant and enhances the solubility and dissolution of RLX without requiring addition of organic solvent or high temperature for its preparation; thus, process is less cumbersome and cost effective. But when both methods were compared; HPβCD complexation method showed significant enhancement of drug solubility. PMID:26555984
Dielectric study on mixtures of ionic liquids.
Thoms, E; Sippel, P; Reuter, D; Weiß, M; Loidl, A; Krohns, S
2017-08-07
Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.
Chain length effect on the structure and stability of antimicrobial peptides of the (RW)n series.
Phambu, Nsoki; Almarwani, Bashiyar; Garcia, Arlette M; Hamza, Nafisa S; Muhsen, Amira; Baidoo, Jacqueline E; Sunda-Meya, Anderson
2017-08-01
Three peptides containing (RW) n -NH 2 units (where n=4, 6, and 8) have been chosen to study the effect of the chain length on the structure and stability of the peptide using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Their interactions with Escherichia coli (E. coli) membrane mimetic vesicles are discussed. Infrared results indicate that addition of (RW) n -NH 2 units increases intermolecular H bonds with antiparallel orientation. TGA and DSC results reveal that (RW) 6 -NH 2 shows the optimal chain length in terms of stability and all three peptides show a preferential interaction with one of the anionic lipids in E. coli membranes. SEM images of (RW) 4 -NH 2 present large aggregates while those of (RW) 6 -NH 2 and (RW) 8 -NH 2 present layers of sheet-like structure. In the presence of model membranes, (RW) n -NH 2 show fibrillar peptide superstructures. This study suggests that repeating structures of (RW) n -NH 2 promotes lateral assembly. Copyright © 2017 Elsevier B.V. All rights reserved.
Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K
2012-03-01
To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.
Rice Grain Quality and Consumer Preferences: A Case Study of Two Rural Towns in the Philippines
Velarde, Orlee; Demont, Matty
2016-01-01
Hedonic pricing analysis is conducted to determine the implicit values of various attributes in the market value of a good. In this study, hedonic pricing analysis was applied to measure the contribution of grain quality search and experience attributes to the price of rice in two rural towns in the Philippines. Rice samples from respondents underwent quantitative routine assessments of grain quality. In particular, gelatinization temperature and chalkiness, two parameters that are normally assessed through visual scores, were evaluated by purely quantitative means (differential scanning calorimetry and by digital image analysis). Results indicate that rice consumed by respondents had mainly similar physical and chemical grain quality attributes. The respondents’ revealed preferences were typical of what has been previously reported for Filipino rice consumers. Hedonic regression analyses showed that grain quality characteristics that affected price varied by income class. Some of the traits or socioeconomic factors that affected price were percent broken grains, gel consistency, and household per capita rice consumption. There is an income effect on rice price and the characteristics that affect price vary between income classes. PMID:26982587
Rice Grain Quality and Consumer Preferences: A Case Study of Two Rural Towns in the Philippines.
Cuevas, Rosa Paula; Pede, Valerien O; McKinley, Justin; Velarde, Orlee; Demont, Matty
2016-01-01
Hedonic pricing analysis is conducted to determine the implicit values of various attributes in the market value of a good. In this study, hedonic pricing analysis was applied to measure the contribution of grain quality search and experience attributes to the price of rice in two rural towns in the Philippines. Rice samples from respondents underwent quantitative routine assessments of grain quality. In particular, gelatinization temperature and chalkiness, two parameters that are normally assessed through visual scores, were evaluated by purely quantitative means (differential scanning calorimetry and by digital image analysis). Results indicate that rice consumed by respondents had mainly similar physical and chemical grain quality attributes. The respondents' revealed preferences were typical of what has been previously reported for Filipino rice consumers. Hedonic regression analyses showed that grain quality characteristics that affected price varied by income class. Some of the traits or socioeconomic factors that affected price were percent broken grains, gel consistency, and household per capita rice consumption. There is an income effect on rice price and the characteristics that affect price vary between income classes.
Vitorazi, L; Ould-Moussa, N; Sekar, S; Fresnais, J; Loh, W; Chapel, J-P; Berret, J-F
2014-12-21
Recent studies have pointed out the importance of polyelectrolyte assembly in the elaboration of innovative nanomaterials. Beyond their structures, many important questions on the thermodynamics of association remain unanswered. Here, we investigate the complexation between poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium acrylate) (PANa) chains using a combination of three techniques: isothermal titration calorimetry (ITC), static and dynamic light scattering and electrophoresis. Upon addition of PDADMAC to PANa or vice-versa, the results obtained by the different techniques agree well with each other, and reveal a two-step process. The primary process is the formation of highly charged polyelectrolyte complexes of size 100 nm. The secondary process is the transition towards a coacervate phase made of rich and poor polymer droplets. The binding isotherms measured are accounted for using a phenomenological model that provides the thermodynamic parameters for each reaction. Small positive enthalpies and large positive entropies consistent with a counterion release scenario are found throughout this study. Furthermore, this work stresses the importance of the underestimated formulation pathway or mixing order in polyelectrolyte complexation.
Siddiqui, Gufran Ahmed; Siddiqi, Mohammad Khursheed; Khan, Rizwan Hasan; Naeem, Aabgeena
2018-05-08
The interactions of bovine serum albumin (BSA) with vanillin (VAN) were studied using UV-vis absorption, fluorescence, synchronous fluorescence, three dimensional fluorescence spectroscopy (3D), Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and molecular docking techniques. The results revealed that VAN causes the static quenching of BSA by forming BSA-VAN complex. The thermodynamic parameters obtained using isothermal titration calorimetry (ITC) showed that the interaction between BSA and VAN is spontaneous and hydrogen bonding, van der Waals forces are mainly involved in stabilizing the complex. The distance between the donor and the acceptor was analyzed using fluorescence resonance energy transfer (FRET) which showed Forster distance of 2.58 nm. Molecular docking technique was applied to study the modes of interaction between BSA-VAN system and it was found that VAN bound to the sub-domain IIA of BSA. Structural analysis using 3D, synchronous fluorescence FTIR, and CD showed that upon binding of VAN, BSA exhibits small micro-environmental changes around tryptophan amino acid residue. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yi, Qinhua; Chen, Jianfeng; Le, Yuan; Wang, Jiexin; Xue, Chunyu; Zhao, Hong
2013-06-01
Dirithromycin (DIR) was crystallized from acetone solvent in the form of an acetone solvate. Its crystal structure belongs to monoclinic, space group P21, with the unit cell parameters a=14.688(3) Å, b=11.6120(12) Å, c=14.9129(12) Å, β=94.794(10)°, and Z=2. Results of X-ray diffraction (XRD) and thermogravimetry-differential scanning calorimetry (TG-DSC) indicated that the solvent molecules could enter the crystal lattice and thus the solvate is formed. The molecular dynamics (MD) simulation method was applied to study the solvent effect. It revealed that the relative growth rates of the main crystal habit faces changed a lot, which made the most morphologically important habit face shift from (001) face to (100) face due to polar groups or atoms exposure and hence a large solvent interaction. The prism habit predicted by a modified attachment energy (AE) model agreed well with the observed experimental morphology grown from the acetone solution. This prediction method may help for a solvent selection to improve the morphology in the drug crystallization process.
Stability of Ni-bsed bulk metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokarz, Michelle L; Speakman, Scott A; Porter, Wallace D
Several ternary (Ni{sub x}Nb{sub y}Sn{sub z}) refractory alloy glasses (RAGs) were studied at elevated temperatures in order to assess the stability of the amorphous state, i.e. devitrification, and to identify subsequent phase transformations in these materials. differential scanning calorimetry (DSC) experiments indicated a complex phase transformation sequence with several distinct crystallization and melting events being recorded above the glass transition temperature, T{sub g}. Below T{sub g} the RAG samples were studied with an in situ environmental X-ray furnace facility, which allowed step-wise isothermal ramping experiments commencing at a temperature below the reduced temperature of T/T{sub g} {approx} 0.80. Distinct crystallinemore » phases were observed when T/T{sub g} {approx} 0.84 for ternary RAG alloys, while similar experiments on Zr-based Vit 106 glass alloys did not reveal any apparent phase separation until T/T{sub g} {approx} 0.96. The phase separation kinetics followed an Arrhenius type of relationship with Ni{sub 3}Sn, and Nb{sub 2}O{sub 5} being the principle crystalline precipitates.« less
Weng, Neng-Chiao; Wu, Chih-Fu; Tsen, Wen-Chin; Wu, Cheng-Lung; Suen, Maw-Cherng
2018-01-01
Abstract In this study, 4,4′-diphenylmethane diisocyanate and polytetramethylene glycol were used to prepare a prepolymer; N,N′-bis(4-hydroxybenzylidene)-2,6-diaminopyridine (BHBP) was used as a chain extender; and these elements were combined to prepare a novel polyurethane, BHBP/PU. Gel permeation chromatography revealed that the molecular weight of the BHBP/PU samples increased as the BHBP content was increased. Fourier transform infrared spectroscopy demonstrated that high BHBP content facilitated strong hydrogen bonding in the samples. Differential thermogravimetry indicated that the initial decomposition temperature of BHBP/PU-3 was approximately 10 °C higher than that of BHBP/PU-1. Differential scanning calorimetry and dynamic mechanical analysis revealed that increasing the BHBP content substantially increased both the glass transition and dynamic glass transition temperatures of the BHBP/PU samples. The tensile strengths of BHBP/PU-1, BHBP/PU-2, and BHBP/PU-3 were 7.7, 10.9, and 21.6 MPa, respectively, with corresponding Young’s moduli of 0.7, 1.9, and 3.3 MPa. These results demonstrated that both the tensile strength and Young’s modulus of the BHBP/PU samples increased as the BHBP content was increased. Moreover, the BHBP/PU samples exhibited excellent shape recovery of >90%. PMID:29706848
Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers.
Isik, Mehmet; Ruiperez, Fernando; Sardon, Haritz; Gonzalez, Alba; Zulfiqar, Sonia; Mecerreyes, David
2016-07-01
The incorporation of ionic liquid (IL) chemistry into functional polymers has extended the properties and applications of polyelectrolytes. However, ILs are expensive due to the presence of fluorinated anions or complicated synthetic steps which limit their technological viability. Here, we show a new family of poly(ionic liquid)s (PILs) which are based in cheap and renewable chemicals and involves facile synthetic approaches. Thus, deep eutectic monomers (DEMs) are prepared for the first time by using quaternary ammonium compounds and various hydrogen bond donors such as citric acid, terephthalic acid or an amidoxime. The deep eutectic formation is made through a simple mixing of the ingredients. Differential scanning calorimetry, nuclear magnetic resonance (NMR) and computational studies reveal the formation of the DEMs due to the ionic interactions. The resulting DEMs are liquid which facilitates their polymerization using mild photopolymerization or polycondensation strategies. Spectroscopic characterizations reveal the successful formation of the polymers. By this way, a new family of PILs can be synthesized which can be used for different applications. As an example, the polymers show promising performance as solid CO2 sorbents. Altogether the deep eutectic monomer route can lead to non-toxic, cheap and easy-to-prepare alternatives to current PILs for different applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xing, Liting; Niu, Fuge; Su, Yujie; Yang, Yanjun
2016-04-01
The aim of this work was to evaluate the effects of egg freshness on baking properties and final qualities in batter systems. Batters were made with eggs of different freshness, and the properties of batter systems were studied through rheological analysis, rapid viscosity analysis (RVA), differential scanning calorimetry (DSC), batter density and expansion rate during the baking and cooling processes. Moreover, the qualities of final baked systems were investigated, including specific volume and texture profile analysis (TPA). The flow behavior of batters showed that the consistency index (K) decreased as the Haugh unit (HU) value decreased, while the flow behavior index (n) increased. Both the storage modulus (G') and loss modulus (G″) determined by mechanical spectra at 20 °C decreased with decreasing HU. RVA and DSC determinations revealed that lower-HU samples had a lower viscosity in the baking process and a shorter time for starch gelatinization and egg protein denaturation. Observation of the batter density revealed an increasing change, which was reflected by a decrease in the specific volume of final models. TPA showed significant differences in hardness and chewiness, but no significant differences in springiness and cohesiveness were found. The egg freshness affected the properties of batter systems. © 2015 Society of Chemical Industry.
Formation and Stability of Pb-Sn Embedded Multiphase Alloy Nanoparticles via Mechanical Alloying
NASA Astrophysics Data System (ADS)
Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu
2015-08-01
The present paper describes the preparation, characterization, and stability of Pb-Sn multiphase alloy nanoparticles embedded in Al matrix via mechanical alloying (MA). MA is a solid-state processing route, which can produce nanocrystalline phases by severely deforming the materials at high strain rate. Therefore, in order to understand the effect of the increasing interface as well as defects on the phase transformation behavior of Pb-Sn nanoparticles, Pb-Sn multiphase nanoparticles have been embedded in Al by MA. The nanoparticles have extensively been characterized using X-ray diffraction and transmission electron microscope. The characterization reveals the formation of biphasic as well as single-phase solid solution nanoparticles embedded in the matrix. The detailed microstructural and differential scanning calorimetry studies indicate that the formation of biphasic nanoparticles is due to size effect, mechanical attrition, and ballistic diffusion of Pb and Sn nanoparticles embedded in Al grains. Thermal characterization data reveal that the heating event consists of the melting peaks due to the multiphase nanoparticles and the peak positions shift to lower temperature with the increase in milling time. The role of interface structure is believed to play a prominent role in determining the phase stability of the nanoparticle. The results are discussed in the light of the existing literature.
NASA Technical Reports Server (NTRS)
Bryan, C. J.; Lowrie, R.
1986-01-01
The autogenous ignition temperature of four materials was determined by ASTM (G 72) and pressurized differential scanning calorimetry at 0.68-, 3.4-, and 6.8-MPa oxygen pressure. All four materials were found to ignite at lower temperatures in the ASTM method. The four materials evaluated in this program were Neoprene, Vespel SP-21, Fluorel E-2160, and nylon 6/6.
Investigation and Characterization of Water-Recrystallized Croconic Acid
2016-12-01
high- pressure synthesis. Thermal analysis, bomb calorimetry, X-ray diffraction, and Raman spectroscopy were performed on water- recrystallized...3.2.3 Raman Spectroscopy and X-ray Diffraction 12 3.2.4 Bomb Calorimetry 13 4. Conclusions 15 5. References 16 List of Symbols, Abbreviations, and...and is called the β-phase (the as-received [AR] material is also known as the α-phase). Bomb calorimeter testing of the β-CA indicated a heat of
Thermodynamics of mercaptopurine dehydration.
Niazi, S
1978-04-01
The hydrate form of mercaptopurine was shown to undergo peritectic decomposition of its water molecule, localized dissolution, and dehydration around 125 degrees. The anhydrate form was prepared by a thermal method, whose effectiveness was confirmed by X-ray diffraction, NMR spectroscopy, and differential scanning calorimetry. The activation energy for mercaptopurine dehydration calculated by various methods ranged from 45.74 to 63.04 kcal/mole. The dehydration enthalpy was calculated to be 8.27 kcal/mole by differential scanning calorimetry. The solution enthalpy for the hydrate was calculated to be 4.85 kcal/mole from its saturation solubility and differential scanning calorimetry. Anhydrate solubility in water was calculated based on initial dissolution rate data since the anhydrate converts to hydrate in aqueous media. The high degree of stability against interconversion of the hydrate and anhydrate forms and the higher solubility of the anhydrate suggest that use of the anhydrate might improve mercaptopurine bioavailability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaeili, Shahrzad; Lloyd, David J.
2005-11-15
Differential scanning calorimetry is used to quantify the evolution of the volume fraction of precipitates during age hardening in AlMgSiCu alloys. The calorimetry tests are run on alloy samples after aging for various times at 180 deg. C and the change in the collective heat effects from the major precipitation and dissolution processes in each run are used to determine the precipitation state of the samples. The method is implemented on alloys with various thermal histories prior to artificial aging, including commercial pre-aging histories. The estimated values for the relative volume fraction of precipitates are compared with the results frommore » a newly developed analytical method using isothermal calorimetry and a related quantitative transmission electron microscopy work. Excellent agreement is obtained between the results from various methods.« less
Fullmer, Susan; Benson-Davies, Sue; Earthman, Carrie P; Frankenfield, David C; Gradwell, Erica; Lee, Peggy S P; Piemonte, Tami; Trabulsi, Jillian
2015-09-01
When measurement of resting metabolic rate (RMR) by indirect calorimetry is necessary, following evidence-based protocols will ensure the individual has achieved a resting state. The purpose of this project was to update the best practices for measuring RMR by indirect calorimetry in healthy and non-critically ill adults and children found the Evidence Analysis Library of the Academy of Nutrition and Dietetics. The Evidence Analysis process described by the Academy of Nutrition and Dietetics was followed. The Ovid database was searched for papers published between 2003 and 2012 using key words identified by the work group and research consultants, studies used in the previous project were also considered (1980 to 2003), and references were hand searched. The work group worked in pairs to assign papers to specific questions; however, the work group developed evidence summaries, conclusion statements, and recommendations as a group. Only 43 papers were included to answer 21 questions about the best practices to ensure an individual is at rest when measuring RMR in the non-critically ill population. In summary, subjects should be fasted for at least 7 hours and rest for 30 minutes in a thermoneutral, quiet, and dimly lit room in the supine position before the test, without doing any activities, including fidgeting, reading, or listening to music. RMR can be measured at any time of the day as long as resting conditions are met. The duration of the effects of nicotine and caffeine and other stimulants is unknown, but lasts longer than 140 minutes and 240 minutes, respectively. The duration of the effects of various types of exercise on RMR is unknown. Recommendations for achieving steady state, preferred gas-collection devices, and use of respiratory quotient to detect measurement errors are also given. Of the 21 conclusions statements developed in this systemic review, only 5 received a grade I or II. One limitation is the low number of studies available to address the questions and most of the included studies had small sample sizes and were conducted in healthy adults. More research on how to conduct an indirect calorimetry measurement in healthy adults and children and in sick, but not critically ill, individuals is needed. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Hoda, Muddasarul; Sufi, Shamim Akhtar; Cavuturu, Bindumadhuri; Rajagopalan, Rukkumani
2018-01-01
Aim: Stabilizers are known to be an integral component of polymeric nanostructures. Ideally, they manipulate physicochemical properties of nanoparticles. Based on this hypothesis, we demonstrated that disulfiram (drug) and Poly-lactide-co-glycolide (polymer) interactions and physicochemical properties of their nanoparticles formulations are significantly influenced by the choice of stabilizers. Methodology: Electron microscopy, differential scanning calorimetry, x-ray diffraction, Raman spectrum analysis, isothermal titration calorimetry and in silico docking studies were performed. Results & discussion: Polysorbate 80 imparted highest crystallinity while Triton-X 100 imparted highest rigidity, possibly influencing drug bioavailability, blood-retention time, cellular uptake and sustained drug release. All the molecular interactions were hydrophobic in nature and entropy driven. Therefore, polymeric nanoparticles may be critically manipulated to streamline the passive targeting of drug-loaded nanoparticles. PMID:29379637
Photolyses of mammalian carboxy-hemoglobin studied by photoacoustic calorimetry
NASA Astrophysics Data System (ADS)
Zhao, JinYu; Li, JiaHuang; Zhang, Zheng; Zhang, ShuYi; Qu, Min; Fang, JianWen; Hua, ZiChun
2013-07-01
The enthalpy and conformational volume changes in the photolyses of carboxy-hemoglobin (HbCO) of human, bovine, pig, horse and rabbit are investigated by photoacoustic calorimetry. Considering the time scales of the exciting laser pulse and the receiving ultrasound transducers (PVDF films and PZT ceramics), as well as the reaction lifetimes in the photolysis processes of HbCO, the measured results are related to the geminate recombination and tertiary relaxation in photolyses of HbCO. Moreover, the quantum yields of the five mammals are also measured by laser pump-probe technique. The results show that the dynamic parameters, such as enthalpy and conformational volume changes, differ between the processes of the geminate recombination and tertiary relaxation. Also, the dynamic parameters differ among the five mammals although some of them may be consistent with each other.
Kristina F. Connor; Franklin T. Bonner
2001-01-01
This study was undertaken to determine how the results from lipid, moisture, and differential scanning calorimetry analyses conducted on silver maple (Aceraceae: Acer saccharinum L.) and red buckeye (Hippocastanaceae: Aesculus pavia L.) compared with those obtained from previous studies on white and water oaks (Fagaceae:
Whelan, Megan E; Wright, Olivia R L; Hickman, Ingrid J
2016-01-01
The purpose of this review was to assess existing evidence on the effects of chronic dietary macronutrient composition on substrate oxidation during a fasted state in healthy and overweight subjects. A systematic review of studies was conducted across five databases. Studies were included if they were English language studies of human adults, ≥19 years, used indirect calorimetry (ventilated hood technique), specified dietary macronutrient composition, and measured substrate oxidation. There was no evidence that variations of a typical, non-experimental diet influenced rate or ratio of substrate utilization, however there may be an upper and lower threshold for when macronutrient composition may directly alter preferences for fuel oxidation rates during a fasted state. This review indicates that macronutrient composition of a wide range of typical, non-experimental dietary fat and carbohydrate intakes has no effect on fasting substrate oxidation. This suggests that strict control of dietary intake prior to fasting indirect calorimetry measurements may be an unnecessary burden for study participants. Further research into the effects of long-term changes in isocaloric macronutrient shift is required.
Silman, Israel; Roth, Esther; Paz, Aviv; Triquigneaux, Mathilde M; Ehrenshaft, Marilyn; Xu, Yechun; Shnyrov, Valery L; Sussman, Joel L; Deterding, Leesa J; Ashani, Yacov; Mason, Ronald P; Weiner, Lev
2013-03-25
The photosensitizer, methylene blue (MB), generates singlet oxygen ((1)O2) that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark MB inhibits reversibly, binding being accompanied by a bathochromic shift that can be used to show its displacement by other reversible inhibitors binding to the catalytic 'anionic' subsite (CAS), the peripheral 'anionic' subsite (PAS), or bridging them. Data concerning both reversible and irreversible inhibition are here reviewed. MB protects TcAChE from thermal denaturation, and differential scanning calorimetry reveals a ~8 °C increase in the denaturation temperature. The crystal structure of the MB/TcAChE complex reveals a single MB stacked against W279 in the PAS, pointing down the gorge towards the CAS. The intrinsic fluorescence of the irreversibly inhibited enzyme displays new emission bands that can be ascribed to N'-formylkynurenine (NFK); this was indeed confirmed using anti-NFK antibodies. Mass spectroscopy revealed that two Trp residues, Trp84 in the CAS, and Trp279 in the PAS, were the only Trp residues, out of a total of 14, significantly modified by photo-oxidation, both being converted to NFK. In the presence of competitive inhibitors that displace MB from the gorge, their modification is completely prevented. Thus, photo-oxidative damage caused by MB involves targeted release of (1)O2 by the bound photosensitizer within the aqueous milieu of the active-site gorge. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haque, Syed N.; Hussain, Tariq; Chowdhry, Babur Z.; Douroumis, Dennis; Scoutaris, Nikolaos; Nokhodchi, Ali; Maniruzzaman, Mohammed
2017-12-01
This study investigated the surface of semi-crystalline composite granules produced via a novel mechano-chemical process and assessed the effect of electrostatic charging. Ibuprofen (IBU), a model drug with low solubility and known associated processing challenges was loaded in composite granules to improve its processibility and dissolution rates. Synthetic amorphous mesoporous magnesium alumina metasilicate (MAS) was co-processed with hydrophilic HPMC polymer in the presence of polyethylene glycol 2000 (PEG) and deionised water. The solid state analyses conducted by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed the existence of semi-crystalline IBU in the complex composite structures. Dynamic vapour sorption (DVS) study showed the water sorption and desorption profiles of the manufactured composite granules as well as the effect of water on the solid-state stability of IBU in various formulations. Advanced surface analysis conducted via energy dispersive X-ray (EDS) revealed homogenous distribution of the drug/excipients on the surface of the granules while atomic force microscopy (AFM) complemented the findings. The electrostatic charge analysis showed variable charge property which is affected by the size of the particles/granules. As expected, the in vitro dissolution study showed about 5 fold increase in the release rates of IBU compared to that of the bulk drug. The mechanochemical processing has been demonstrated as an efficient technique to develop semi-crystalline composite granules with enhanced dissolution rates of water insoluble drugs.
Mohamad, Soad A; Sarhan, Hatem A; Abdelkader, Hamdy; Mansour, Heba F
2017-07-01
This study aimed to formulate and evaluate vitamin B12-loaded buccal mucoadhesive hydrogel films. Various film formulations were prepared using chitosan and polyvinyl alcohol. The prepared films were characterized for thickness, weight variation, drug content, percentage moisture uptake and moisture content, surface pH, mechanical properties, in vitro release, and mucoadhesion. Vitamin B12 bioavailability from the optimized formulation was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neuroton ® I.M. injection was used for comparison. The films had acceptable mechanical and mucoadhesion properties. The percentages of moisture content of the optimized formulation were 3.2 ± 0.95, whereas the percentage drug released was 98.59 ± 1.41% at the end of 40 min. FTIR revealed the incidence of drug/polymer interaction. Differential scanning calorimetry revealed the possibility of the dispersion of cyanocobalamin in a molecular state with complete amorphization in the polymers. The estimated AUC 0-8h showed 1.5-fold increases in the bioavailability of cyanocobalamin from the optimized formulation compared with the marketed I.M. injection. These findings warrant that vitamin B12 buccal film formulation can be considered as an effective alternative portal with noninvasive and more convenient characteristics compared with the I.M. injection dosage form. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement.
Huang, Yu; Li, Jin-Mei; Lai, Zhi-Hui; Wu, Jun; Lu, Tong-Bu; Chen, Jia-Mei
2017-11-15
Both cocrystal and nanocrystal technologies have been widely used in the pharmaceutical development for poorly soluble drugs. However, the synergistic effects due to the integration of these two technologies have not been well investigated. The aim of this study is to develop a nano-sized cocrystal of phenazopyridine (PAP) with phthalimide (PI) to enhance the release rate and oral bioavailability of PAP. A PAP-PI nano-cocrystal with particle diameter of 21.4±0.1nm was successfully prepared via a sonochemical approach and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. An in vitro release study revealed a significant release rate enhancement for PAP-PI nano-cocrystal as compared to PAP-PI cocrystal and PAP hydrochloride salt. Further, a comparative oral bioavailability study in rats indicated significant improvement in C max and oral bioavailability (AUC 0-∞ ) by 1.39- and 2.44-fold, respectively. This study demonstrated that this novel nano-cocrystal technology can be a new promising option to improve release rate and absorption of poorly soluble compounds in the pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis and Characterization of a New Co-Crystal Explosive with High Energy and Good Sensitivity
NASA Astrophysics Data System (ADS)
Gao, Han; Jiang, Wei; Liu, Jie; Hao, Gazi; Xiao, Lei; Ke, Xiang; Chen, Teng
2017-10-01
A new energetic co-crystal consisting of one of the most powerful explosive molecules 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the military explosive cyclotrimethylenetrinitramine (RDX) was prepared with a simple solvent evaporation method. Scanning electron microscopy (SEM) revealed the morphology of the bar-shaped product, which differed greatly from the morphology of the individual components. Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction spectrum (XRD), and differential scanning calorimetry (DSC) proved the formation of the co-crystal at the molecular level. The result of mechanical sensitivity test indicated the sensitivity was effectively reduced compared to raw CL-20. Finally, a possible crystallization mechanism was discussed.
The thermodynamic properties of benzothiazole and benzoxazole
NASA Astrophysics Data System (ADS)
Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.
1991-08-01
This research program, funded by the Department of Energy, Office of Fossil Energy, Advanced Extraction and Process Technology, provides accurate experimental thermochemical and thermophysical properties for key organic diheteroatom-containing compounds present in heavy petroleum feedstocks, and applies the experimental information to thermodynamic analyses of key hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation reaction networks. Thermodynamic analyses, based on accurate information, provide insights for the design of cost-effective methods of heteroatom removal. The results reported here, and in a companion report to be completed, will point the way to the development of new methods of heteroatom removal from heavy petroleum. Measurements leading to the calculation of the ideal-gas thermodynamic properties are reported for benzothiazole and benzoxazole. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclinded-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Critical property estimates are made for both compounds. Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for both compounds for selected temperatures between 280 K and near 650 K. The Gibbs energies of formation will be used in a subsequent report in thermodynamic calculations to study the reaction pathways for the removal of the heteratoms by hydrogenolysis. The results obtained in this research are compared with values present in the literature. The failure of a previous adiabatic heat capacity study to see the phase transition in benzothiazole is noted. Literature vibrational frequency assignments were used to calculate ideal gas entropies in the temperature range reported here for both compounds. Resulting large deviations show the need for a revision of those assignments.
Jotterand Chaparro, Corinne; Taffé, Patrick; Moullet, Clémence; Laure Depeyre, Jocelyne; Longchamp, David; Perez, Marie-Hélène; Cotting, Jacques
2017-05-01
To determine, based on indirect calorimetry measurements, the biases of predictive equations specifically developed recently for estimating resting energy expenditure (REE) in ventilated critically ill children, or developed for healthy populations but used in critically ill children. A secondary analysis study was performed using our data on REE measured in a previous prospective study on protein and energy needs in pediatric intensive care unit. We included 75 ventilated critically ill children (median age, 21 months) in whom 407 indirect calorimetry measurements were performed. Fifteen predictive equations were used to estimate REE: the equations of White, Meyer, Mehta, Schofield, Henry, the World Health Organization, Fleisch, and Harris-Benedict and the tables of Talbot. Their differential and proportional biases (with 95% CIs) were computed and the bias plotted in graphs. The Bland-Altman method was also used. Most equations underestimated and overestimated REE between 200 and 1000 kcal/day. The equations of Mehta, Schofield, and Henry and the tables of Talbot had a bias ≤10%, but the 95% CI was large and contained values by far beyond ±10% for low REE values. Other specific equations for critically ill children had even wider biases. In ventilated critically ill children, none of the predictive equations tested met the performance criteria for the entire range of REE between 200 and 1000 kcal/day. Even the equations with the smallest bias may entail a risk of underfeeding or overfeeding, especially in the youngest children. Indirect calorimetry measurement must be preferred. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermodynamics of micellization from heat-capacity measurements.
Šarac, Bojan; Bešter-Rogač, Marija; Lah, Jurij
2014-06-23
Differential scanning calorimetry (DSC), the most important technique for studying the thermodynamics of structural transitions of biological macromolecules, is seldom used in quantitative thermodynamic studies of surfactant micellization/demicellization. The reason for this could be ascribed to an insufficient understanding of the temperature dependence of the heat capacity of surfactant solutions (DSC data) in terms of thermodynamics, which leads to problems with the design of experiments and interpretation of the output signals. We address these issues by careful design of DSC experiments performed with solutions of ionic and nonionic surfactants at various surfactant concentrations, and individual and global mass-action model analysis of the obtained DSC data. Our approach leads to reliable thermodynamic parameters of micellization for all types of surfactants, comparable with those obtained by using isothermal titration calorimetry (ITC). In summary, we demonstrate that DSC can be successfully used as an independent method to obtain temperature-dependent thermodynamic parameters for micellization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Study on solid dispersion of precipitated calcium carbonate-based oleanolic acid].
Yan, Hong-mei; Zhang, Zhen-hai; Jia, Xiao-bin; Jiang, Yan-rong; Sun, E
2015-05-01
Oleanolic acid-precipitated calcium carbonate solid dispersion was prepared by using solvent evaporation method. The microscopic structure and physicochemical properties of solid dispersion were analyzed using differential scanning calorimetry and scanning electron microscopy (SEM). And its in vitro release also was investigated. The properties of the precipitated calcium carbonate was studied which was as a carrier of oleanolic acid solid dispersion. Differential scanning calorimetry analysis suggested that oleanolic acid may be present in solid dispersion as amorphous substance. The in vitro release determination results of oleanolic acid-precipitated calcium carbonate (1: 5) solid dispersion showed accumulated dissolution rate of.oleanolic acid was up to 90% at 45 min. Accelerating experiment showed that content and in vitro dissolution of oleanolic acid solid dispersion did not change after storing over 6 months. The results indicated that in vitro dissolution of oleanolic acid was improved greatly by the solid dispersion with precipitated calcium carbonate as a carrier. The solid dispersion is a stabilizing system which has actual applied value.
NASA Astrophysics Data System (ADS)
Gutiérrez-Pichel, Manuel; Attwood, David; Taboada, Pablo; Mosquera, Víctor
Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drugs imipramine and desipramine hydrochlorides have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered solution of pH 3.0 and 5.5. Critical concentrations for aggregation of these drugs were obtained from inflections on the plots of the sound velocity against drug concentration. Positive deviation from the Debye-Hückel limiting law of the apparent molal volume of imipramine provides evidence of limited association at concentrations below the critical concentration over the temperature range studied. Apparent molal adiabatic compressibilities of the aggregates formed by the drugs, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. The critical concentration and energy involved in the aggregation process of these drugs have been evaluated using isothermal titration calorimetry. The solvent-aggregate interactions have been discussed from compressibility and calorimetry data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Eric Nicholas
2013-10-01
The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followedmore » by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.« less
The Philosophy and Feasibility of Dual Readout Calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauptman, John
2006-10-27
I will discuss the general physical ideas behind dual-readout calorimetry, their implementation in DREAM (Dual REAdout Module) with exact separation of scintillation and Cerenkov light, implementation with mixed light in DREAM fibers, anticipated implementation in PbWO4 crystals with applications to the 4th Concept detector and to CMS, use in high energy gamma-ray and cosmic ray astrophysics with Cerenkov and N2 fluorescent light, and implementation in the 4th Concept detector for muon identification.
Processing α-mercuric iodide by zone refining
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Henderson, D. O.; Biao, Y.; Zhang, K.; Silberman, E.; Nason, D.; van den Berg, L.; Ortale-Baccash, C.; Cross, E.
1993-03-01
An investigation is being conducted on zone refining α-mercuric iodide. Analytical studies using differential scanning calorimetry and anion chromatography indicate that impurities are accumulated mainly at the end where zone travel terminates. Early results indicate that single crystals can be readily grown from zone-refined material.
USDA-ARS?s Scientific Manuscript database
Given the unique physical activity patterns of preschoolers, wearable electronic devices for quantitative assessment of physical activity require validation in this population. Study objective was to validate uniaxial and triaxial accelerometers in preschoolers. Room calorimetry was performed over 3...
Crystallization behavior of polyamide-6 microcellular nanocomposites
Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Andreas Winardi
2004-09-01
The crystallization behaviors of polyamide-6 (PA-6) and its nanocomposites undergoing the microcellular injection molding process are studied using Transmission Electron Microscopy (TEM), X-ray Diffractometer (XRD), Polarized Optical Microscopy (POM), and Differential Scanning Calorimetry (DSC). The relationships among the morphology, the mechanical property of the...
Saw, M H; Hishamuddin, E; Chong, C L; Yeoh, C B; Lim, W H
2017-01-01
The effect of 0.1-0.7% (w/w) of polyglycerol esters (PGEmix-8) on palm oil crystallization was studied using focused beam reflectance measurement (FBRM) to analyze the in-line changes of crystal size distribution during the crystallization. FBRM results show that 0.1-0.5% (w/w) of PGEmix-8 did not significantly affect nucleation but slightly retarded crystal growth. The use of 0.7% (w/w) additive showed greater heterogeneous nucleation compared to those with lower dosages of additive. Crystal growth was also greatly reduced when using 0.7% (w/w) dosage. The morphological study indicated that the palm oil crystals were smaller and more even in size than when more additive was added. Isothermal crystallization studies using differential scanning calorimetry (DSC) showed increased inhibitory effects on palm oil crystal growth with increasing concentration of PGEmix-8. These results imply that PGEmix-8 is a nucleation enhancing and crystal growth retarding additive in palm oil crystallization at 0.7% (w/w) dosage. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Puglia, Carmelo; Sarpietro, Maria Grazia; Bonina, Francesco; Castelli, Francesco; Zammataro, Magda; Chiechio, Santina
2011-05-01
The present study concerns the in vitro and in vivo evaluation of benzocaine (BENZO) and lidocaine (LIDO) topical delivery from nanostructured lipid carriers (NLCs). Morphology and dimensional distribution of NLCs have been, respectively, characterized by differential scanning calorimetry (DSC) and photon correlation spectroscopy. The release pattern of BENZO and LIDO from NLCs was evaluated in vitro determining drug percutaneous absorption through excised human skin. Radiant heat tail-flick test was carried out in mice to determine the antinociceptive effect of BENZO and LIDO from NLC. DSC studies revealed that the inner oil phase of NLC plays a significant role in stabilizing the particle architecture and increasing the drug solubility. In vitro evidences show that BENZO and LIDO, when incorporated in viscosized NLC dispersions, exhibited a lower flux with respect to formulations containing the free drugs in the aqueous phase. In vivo study enabled to demonstrate that BENZO and LIDO can be released in a prolonged fashion when incorporated into lipid carriers. The results obtained pointed out NLC capability to act as an effective drug reservoir, thus prolonging the anesthetic effect of BENZO and LIDO. Copyright © 2010 Wiley-Liss, Inc.
Li, Xiangyang; Chen, Zhuo; Jin, Linhong; Hu, Deyu; Yang, Song
2016-01-01
Studies of the targets of anti-viral compounds are hot topics in the field of pesticide research. Various efficient anti-TMV (Tobacco Mosaic Virus) compounds, such as Ningnanmycin (NNM), Antofine (ATF), Dufulin (DFL) and Bingqingxiao (BQX) are available. However, the mechanisms of the action of these compounds on targets remain unclear. To further study the mechanism of the action of the anti-TMV inhibitors, the TMV coat protein (TMV CP) was expressed and self-assembled into four-layer aggregate disks in vitro, which could be reassembled into infectious virus particles with TMV RNA. The interactions between the anti-TMV compounds and the TMV CP disk were analyzed by size exclusion chromatography, isothermal titration calorimetry and native-polyacrylamide gel electrophoresis methods. The results revealed that assembly of the four-layer aggregate disk was inhibited by NNM; it changed the four-layer aggregate disk into trimers, and affected the regular assembly of TMV CP and TMV RNA. The four-layer aggregate disk of TMV CP was little inhibited by ATF, DFL and BQX. Our results provide original data, as well as new strategies and methods, for research on the mechanism of action of anti-viral drugs. PMID:26927077
NASA Astrophysics Data System (ADS)
Hussain, Naseer; Abbasi, Tasneem; Abbasi, S. A.
2016-06-01
In a first study of its kind, the composition of vermicompost derived solely from the toxic and allelopathic weed lantana has been investigated using UV-visible and Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) and differential scanning calorimetry (DSC), gas chromatography-mass spectometry (GC-MS), and scanning electron microscopy (SEM). The studies reveal that a sharp reduction in humification index, substantial mineralization of organic matter and degradation of complex aromatics such as lignin and polyphenols into simpler carbohydrates and lipids occur in the course of vermicomposting. GC-MS analysis shows significant fragmentation, bio-oxidation and molecular rearrangements of chemical compounds in vermicompost in comparison to those in lantana. SEM micrographs of vermicompost reflect strong disaggregation of material compared to the much better formed lantana matrices. The phenols and sesquiterpene lactones which are specifically responsible for the toxicity and allelopathy of lantana are seen to get significantly degraded in the course of vermicomposting - turning it into a plant-friendly organic fertilizer. The study leads to the possibility that the millions of tons of phytomass that is generated annually by lantana can be gainfully utilized in producing organic fertilizer via vermicomposting.
Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek
2017-01-01
A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.
Kavanaugh, Taylor E.; Clark, Amy Y.; Chan-Chan, Lerma H.; Ramírez-Saldaña, Maricela; Vargas-Coronado, Rossana F.; Cervantes-Uc, José M.; Hernández-Sánchez, Fernando; García, Andrés J.; Cauich-Rodríguez, Juan V.
2016-01-01
The development of elastomeric, bioresorbable and biocompatible segmented polyurethanes (SPUs) for use in tissue-engineering applications has attracted considerable interest because of the existing need of mechanically tunable scaffolds for regeneration of different tissues, but the incorporation of osteoinductive molecules into SPUs has been limited. In this study, segmented polyurethanes were synthesized from poly (ε-caprolactone)diol, 4,4’-methylene bis(cyclohexyl isocyanate) (HMDI) using biologically active compounds such as ascorbic acid, L-glutamine, β-glycerol phosphate, and dexamethasone as chain extenders. Fourier Transform Infrared Spectroscopy (FTIR) revealed the formation of both urethanes and urea linkages while Differential Scanning Calorimetry, Dynamic Mechanical Analysis, X-ray Diffraction and mechanical testing showed that these polyurethanes were semi-crystalline polymers exhibiting high deformations. Cytocompatibility studies showed that only SPUs containing β-glycerol phosphate supported human mesenchymal stem cell (hMSC) adhesion, growth, and osteogenic differentiation, rendering them potentially suitable for bone tissue regeneration, whereas other SPUs failed to support either cell growth or osteogenic differentiation, or both. This study demonstrates that modification of SPUs with osteogenic compounds can lead to new cytocompatible polymers for regenerative medicine applications. PMID:26704555
NASA Astrophysics Data System (ADS)
Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn
2018-01-01
Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.
pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.
Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J
2018-05-08
Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .
Isothermal titration calorimetry for measuring macromolecule-ligand affinity.
Duff, Michael R; Grubbs, Jordan; Howell, Elizabeth E
2011-09-07
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given.
Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity
Duff,, Michael R.; Grubbs, Jordan; Howell, Elizabeth E.
2011-01-01
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. PMID:21931288
Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter
2016-05-01
Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.
Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric
2010-02-01
The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Warsinski, Karl C.
Austempered Ductile Iron (ADI) is prone to changes in microstructure and mechanical properties when exposed to elevated service temperatures. Differential Scanning Calorimetry has been used to evaluate the stabilizing effects of copper, nickel, molybdenum, and cobalt on the ausferrite structure. Previous studies have conflated the effects of various alloy additions, and little effort has been made to systematically catalog the effects of individual elements. The focus of the current research has been to identify alloying elements that more strongly stabilize the ausferrite structure in order to improve service life of ADI at elevated temperatures. Nickel has been shown to have a moderate stabilizing effect, while copper and molybdenum cause a much sharper increase in activation energy. Cobalt has a high stabilizing effect at 0.5% addition by weight, but a further increase to 2.36% results in a slight decrease in activation energy.
NASA Astrophysics Data System (ADS)
Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping
2012-06-01
The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.
Li, Meina; Kwak, Keun-Chang; Kim, Youn Tae
2016-01-01
Conventionally, indirect calorimetry has been used to estimate oxygen consumption in an effort to accurately measure human body energy expenditure. However, calorimetry requires the subject to wear a mask that is neither convenient nor comfortable. The purpose of our study is to develop a patch-type sensor module with an embedded incremental radial basis function neural network (RBFNN) for estimating the energy expenditure. The sensor module contains one ECG electrode and a three-axis accelerometer, and can perform real-time heart rate (HR) and movement index (MI) monitoring. The embedded incremental network includes linear regression (LR) and RBFNN based on context-based fuzzy c-means (CFCM) clustering. This incremental network is constructed by building a collection of information granules through CFCM clustering that is guided by the distribution of error of the linear part of the LR model. PMID:27669249
Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang
2013-01-01
The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabuda, S. P.; Kozlova, S. G.; Department of Natural Science, Novosibirsk State University, 2, Pirogova Str., Novosibirsk 630090
Hindering of inversion transitions and a violation of mirror symmetry of the right- and left-handed configurations of diazabizyclooctane (dabco, N{sub 2}C{sub 6}H{sub 12}) enantiomers has been studied with low-temperature adiabatic calorimetry. The dabco molecules were sandwiched in a high-porous layered structure of a metal organic framework (MOF) compound. We show from the data of low-temperature adiabatic calorimetry and {sup 1}H NMR spin relaxation method that hindering of inversion transitions of dabco molecules cannot be associated with the influence of the intracrystalline self-consistent molecular field as a continuously monitoring environment within the quantum Zeno effect. In addition, lack of another manifestationmore » of this effect associated with the collisional suppression of the inversion transitions in MOF samples impregnated by helium has been shown. These results lead to the conclusion that chiral polarization is related to the fundamental effect of parity nonconservation.« less
Dhumal, Ravindra S; Shimpi, Shamkant L; Paradkar, Anant R
2007-09-01
The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.
NASA Astrophysics Data System (ADS)
Jing, Mingyang; Song, Wei; Liu, Rutao
2016-07-01
Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.
Long-term measurements of energy expenditure in severe burn injury.
Khorram-Sefat, R; Behrendt, W; Heiden, A; Hettich, R
1999-02-01
The objective of this study was to evaluate resting energy expenditure (REE) in spontaneously breathing and artificially ventilated burn patients during the entire intensive care period. In 27 patients with 51 +/- 20% body surface area burned (BSAB) the REE was determined via indirect calorimetry. Three groups were formed according to the mortality prognosis index of Zawacki et al. In groups A, B, and C the predicted mortality rates were <20%, 20% to 80%, and >80%, respectively. The frequency of acute respiratory distress syndrome (ARDS), sepsis, renal failure, and mortality increased from group A toward group C. The REE test revealed wide individual variation and was usually overestimated by all tested formulas. The mean REE was comparable in groups A, B, and C during the first 20 days (49 +/- 16% vs. 59 +/- 21% vs. 57 +/- 18% above the REE calculated by the Harris-Benedict equation, or HBEE). The REE of patients in groups A and B declined after this period, whereas the long-term ventilated patients in the prognostically unfavorable group C showed a high REE up to the 45th day, usually accompanied by severe organ dysfunction and major metabolic disorders. During this time a nutritional regimen meeting the actual REE could not be achieved. In the clinical situation when indirect calorimetry is not available, REE can be stated to be 50% to 60% above HBEE in patients with >20% BSAB for at least 20 days. Expecting a stable clinical course in patients with a predicted mortality of <20% (group A), oral nutrition usually seems sufficient after a short period of artificial nutritional support (1 week). Patients with a predicted mortality of more than 20% have a complication-burdened clinical course and a prolonged period of ventilation (groups B and C). These patients need parenteral and enteral nutrition for at least 20 days after trauma to prevent severe malnutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
Taylor, Graham J.; Heberle, Frederick A.; Seinfeld, Jason S.; ...
2017-08-15
In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interfacemore » bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ~38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.« less
ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.
Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus
2015-06-01
The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P < .001). However, the transformation behavior of Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wubben, Thomas J.; Mesecar, Andrew D.; UIC)
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine (PhP) to form dephosphocoenzyme A. This reaction sits at the branch point between the de novo pathway and the salvage pathway, and has been shown to be a rate-limiting step in the biosynthesis of CoA. Importantly, bacterial and mammalian PPATs share little sequence homology, making the enzyme a potential target for antibiotic development. A series of steady-state kinetic, product inhibition, and direct binding studies with Mycobacterium tuberculosis PPAT (MtPPAT) was conducted and suggests that the enzyme utilizesmore » a nonrapid-equilibrium random bi-bi mechanism. The kinetic response of MtPPAT to the binding of ATP was observed to be sigmoidal under fixed PhP concentrations, but substrate inhibition was observed at high PhP concentrations under subsaturating ATP concentrations, suggesting a preferred pathway to ternary complex formation. Negative cooperativity in the kinetic response of MtPPAT to PhP binding was observed under certain conditions and confirmed thermodynamically by isothermal titration calorimetry, suggesting the formation of an asymmetric quaternary structure during sequential ligation of substrates. Asymmetry in binding was also observed in isothermal titration calorimetry experiments with dephosphocoenzyme A and CoA. X-ray structures of MtPPAT in complex with PhP and the nonhydrolyzable ATP analogue adenosine-5'-[({alpha},{beta})-methyleno]triphosphate were solved to 1.57 {angstrom} and 2.68 {angstrom}, respectively. These crystal structures reveal small conformational changes in enzyme structure upon ligand binding, which may play a role in the nonrapid-equilibrium mechanism. We suggest that the proposed kinetic mechanism and asymmetric character in MtPPAT ligand binding may provide a means of reaction and pathway regulation in addition to that of the previously determined CoA feedback.« less
Tron, Cecile M; McNae, Iain W; Nutley, Margaret; Clarke, David J; Cooper, Alan; Walkinshaw, Malcolm D; Baxter, Robert L; Campopiano, Dominic J
2009-03-20
Biotin protein ligase (BPL; EC 6.3.4.15) catalyses the formation of biotinyl-5'-AMP from biotin and ATP, and the succeeding biotinylation of the biotin carboxyl carrier protein. We describe the crystal structures, at 2.4 A resolution, of the class I BPL from the hyperthermophilic bacteria Aquifex aeolicus (AaBPL) in its ligand-free form and in complex with biotin and ATP. The solvent-exposed beta- and gamma-phosphates of ATP are located in the inter-subunit cavity formed by the N- and C-terminal domains. The Arg40 residue from the conserved GXGRXG motif is shown to interact with the carboxyl group of biotin and to stabilise the alpha- and beta-phosphates of the nucleotide. The structure of the mutant AaBPL R40G in both the ligand-free and biotin-bound forms reveals that the mutated loop has collapsed, thus hindering ATP binding. Isothermal titration calorimetry indicated that the presence of biotin is not required for ATP binding to wild-type AaBPL in the absence of Mg(2+), and the binding of biotin and ATP has been determined to occur via a random but cooperative process. The affinity for biotin is relatively unaffected by the R40G mutation. In contrast, the thermodynamic data indicate that binding of ATP to AaBPL R40G is very weak in the absence or in the presence of biotin. The AaBPL R40G mutant remains catalytically active but shows poor substrate specificity; mass spectrometry and Western blot studies revealed that the mutant biotinylates both the target A. aeolicus BCCPDelta67 fragment and BSA, and is subject to self-biotinylation.
Thermal characteristics of oleochemical carbonate binary mixtures for potential latent heat storage
USDA-ARS?s Scientific Manuscript database
The present study examines the thermal properties of melting and solidification for binary mixtures between dodecyl carbonate (1a), tetradecyl carbonate (1b), hexadecyl carbonate (1c), and octadecyl carbonate (1d) by differential scanning calorimetry (DSC) in order to gain further understanding of t...
THERMODYNAMICS OF ION-EXCHANGED NATURAL CLINOPTILOLITE
Natural clinoptilolite from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 C. T...
A Self-Report Measure of Physical Activity
ERIC Educational Resources Information Center
Siegel, Donald
2005-01-01
There are multiple approaches to measuring physical activity. Among these are direct observation, electronic monitoring, direct and indirect calorimetry, and self-report instruments. Self-report instruments are the most practical and cost effective option for use with a large group. In a study by Motl, Dishman, Dowda, and Pate (2004), two groups…
Morais, Frida Mariana; Buchholz, Friederike; Maskow, Thomas
2014-01-01
Any growth or bioconversion in biofilms is accompanied by the release of heat. The heat (in J) is tightly related to the stoichiometry of the respective process via law of Hess, and the heat production rate (in W or J/s) is additionally related to the process kinetics. This heat and the heat production rate can nowadays be measured by modern calorimetry with extremely high sensitivity. Flow-through calorimetry allows the measurement of bioprocesses in biofilms in real time, without the need of invasive sample preparation and disturbing of biofilm processes. Furthermore, it can be applied for long-term measurements and is even applicable to turbid media. Chip or miniaturized calorimeters have the additional advantages of extremely short thermal equilibration times and the requirement of very small amounts of media and chemicals. The precision of flow-through chip calorimeters (about 3 mW/L) allows the detection of early stages of biofilm development (about 10(5) bacteria cm(-2)).
Sakai, Yoshiyuki; Nishikawa, Hiroki; Enomoto, Hirayuki; Yoh, Kazunori; Iwata, Yoshinori; Hasegawa, Kunihiro; Nakano, Chikage; Kishino, Kyohei; Shimono, Yoshihiro; Takata, Ryo; Nishimura, Takashi; Aizawa, Nobuhiro; Ikeda, Naoto; Takashima, Tomoyuki; Ishii, Akio; Iijima, Hiroko; Nishiguchi, Shuhei
2016-12-01
L-carnitine supplementation has been suggested to show several favorable effects on patients with liver cirrhosis (LC). However, there have been no reports regarding the effect of L-carnitine on energy metabolism in patients with LC using indirect calorimetry which is a well-established method for assessing the degree of liver malnutrition. We examined the effect of L-carnitine in patients with LC on energy metabolism using indirect calorimetry. A total of 13 LC patients who are scheduled to be treated with L-carnitine (1,800 mg/day) were analyzed in this study. None of the patients previously received L-carnitine. An evaluation of the nutritional status was performed at the initiation of L-carnitine therapy and after 4 weeks of L-carnitine therapy. We evaluated the effect of L-carnitine on the nutritional status and energy metabolism by comparing various clinical variables at these two time points. In addition, the changes in the nutritional status of the patients were also evaluated using indirect calorimetry. After 4 weeks of L-carnitine treatment, for all cases, the mean substrate oxidation rates of carbohydrate (%C) increased from 37.6% to 48.2%, the mean substrate oxidation rates of fat (%F) decreased from 40.2% to 31.9% and the mean substrate oxidation rates of protein (%P) decreased from 22.2% to 19.9%. In a subgroup analysis of patients with baseline non-protein respiratory quotient (npRQ) < 0.85, the mean %C increased from 15.3% to 34.2%, the mean %F decreased from 59.9% to 45.1%, and the mean %P decreased from 24.8% to 20.6%. After 4 weeks of L-carnitine treatment, for all cases (n = 13), the mean value of npRQ increased in comparison with the baseline levels, although the difference was not significant (0.868 ± 0.060 vs. 0.838 ± 0.097, P = 0.19). Conversely, in patients with baseline npRQ < 0.85, the npRQ value significantly increased after 4 weeks treatment of L-carnitine compared with the baseline levels (0.827 ± 0.030 vs. 0.760 ± 0.043, P = 0.016). L-carnitine supplementation can be useful for improving energy metabolism, especially in patients who have an advanced LC status and lower baseline npRQ values.
Joseph, Mini; Gupta, Riddhi Das; Prema, L; Inbakumari, Mercy; Thomas, Nihal
2017-01-01
The accuracy of existing predictive equations to determine the resting energy expenditure (REE) of professional weightlifters remains scarcely studied. Our study aimed at assessing the REE of male Asian Indian weightlifters with indirect calorimetry and to compare the measured REE (mREE) with published equations. A new equation using potential anthropometric variables to predict REE was also evaluated. REE was measured on 30 male professional weightlifters aged between 17 and 28 years using indirect calorimetry and compared with the eight formulas predicted by Harris-Benedicts, Mifflin-St. Jeor, FAO/WHO/UNU, ICMR, Cunninghams, Owen, Katch-McArdle, and Nelson. Pearson correlation coefficient, intraclass correlation coefficient, and multiple linear regression analysis were carried out to study the agreement between the different methods, association with anthropometric variables, and to formulate a new prediction equation for this population. Pearson correlation coefficients between mREE and the anthropometric variables showed positive significance with suprailiac skinfold thickness, lean body mass (LBM), waist circumference, hip circumference, bone mineral mass, and body mass. All eight predictive equations underestimated the REE of the weightlifters when compared with the mREE. The highest mean difference was 636 kcal/day (Owen, 1986) and the lowest difference was 375 kcal/day (Cunninghams, 1980). Multiple linear regression done stepwise showed that LBM was the only significant determinant of REE in this group of sportspersons. A new equation using LBM as the independent variable for calculating REE was computed. REE for weightlifters = -164.065 + 0.039 (LBM) (confidence interval -1122.984, 794.854]. This new equation reduced the mean difference with mREE by 2.36 + 369.15 kcal/day (standard error = 67.40). The significant finding of this study was that all the prediction equations underestimated the REE. The LBM was the sole determinant of REE in this population. In the absence of indirect calorimetry, the REE equation developed by us using LBM is a better predictor for calculating REE of professional male weightlifters of this region.
Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C
2016-01-01
Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.
Dubaniewicz, Thomas H; DuCarme, Joseph P
2016-09-01
Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.
Goyal, Megha; Chaudhuri, Tapan K.; Kuwajima, Kunihiro
2014-01-01
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C). PMID:25548918
Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro
2014-01-01
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Patel, Manisha H.
2010-08-18
Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein adhesin that interacts with salivary components within the salivary pellicle. AgI/II contributes to virulence and has been studied as an immunological and structural target, but a fundamental understanding of its underlying architecture has been lacking. Here we report a high-resolution (1.8 {angstrom}) crystal structure of the A{sub 3}VP{sub 1} fragment of S. mutans AgI/II that demonstrates a unique fibrillar form (155 {angstrom}) through the interaction of two noncontiguous regions in the primary sequence. The A{sub 3} repeat of the alanine-rich domain adopts an extended {alpha}-helix that intertwines with the P{submore » 1} repeat polyproline type II (PPII) helix to form a highly extended stalk-like structure heretofore unseen in prokaryotic or eukaryotic protein structures. Velocity sedimentation studies indicate that full-length AgI/II that contains three A/P repeats extends over 50 nanometers in length. Isothermal titration calorimetry revealed that the high-affinity association between the A{sub 3} and P{sub 1} helices is enthalpically driven. Two distinct binding sites on AgI/II to the host receptor salivary agglutinin (SAG) were identified by surface plasmon resonance (SPR). The current crystal structure reveals that AgI/II family proteins are extended fibrillar structures with the number of alanine- and proline-rich repeats determining their length.« less
Characterization of endogenous nanoparticles from roasted chicken breasts.
Song, Xunyu; Cao, Lin; Cong, Shuang; Song, Yukun; Tan, Mingqian
2018-06-22
Emergence of endogenous nanoparticles in thermally processed food has aroused much attention due to their unique properties and potential biological impact. The aim of this study was to investigate the presence of fluorescence nanoparticles in roasted chicken breasts, elemental composition, physico-chemical properties and their molecular interaction with human serum albumin (HSA). Transmission electron microscopy analysis revealed that the foodborne nanoparticles from roasted chicken were nearly spherical with an average particle size of 1.7 ± 0.4 nm. The elemental analysis of X-ray photoelectron spectroscopy showed the composition of nanoparticles as 47.4% C, 25.8% O and 26.1% N. The fluorescence of HSA was quenched by the nanoparticles following a static mode, and the molecular interaction of nanoparticles with HSA was spontaneous (ΔG°<0), where hydrogen bonding and van der Waals forces played an important role during HSA-nanoparticles complex stabilization through thermodynamic analysis by isothermal titration calorimetry. The principal location of the nanoparticles binding site on HSA was primarily in site I as determined by site-specific marker competition. The conformational of HSA was also changed and ɑ-helical structure decreased in the presence of nanoparticles. Our studies revealed that fluorescent nanoparticles were produced after roasting of chicken breast at 230 °C for 30 min for the first time. The obtained nanoparticles can interact with HSA in a spontaneous manner, thus providing valuable insight into foodborne NPs as well as their effects to human albumin protein.
Zhang, Zhenyi; Akyildiz, Senem; Xiao, Yafei; Gai, Zhongchao; An, Ying; Behrens, Jürgen; Wu, Geng
2015-01-01
The tumor suppressor APC employs its conserved armadillo repeat (ARM) domain to recognize many of its binding partners, including Amer1/WTX, which is mutated in Wilms' tumor and bone overgrowth syndrome. The APC–Amer1 complex has important roles in regulating Wnt signaling and cell adhesion. Three sites A1, A2, and A3 of Amer1 have been reported to mediate its interaction with APC-ARM. In this study, crystal structures of APC–ARM in complexes with Amer1-A1, -A2, and -A4, which is newly identified in this work, were determined. Combined with our GST pull-down, yeast two-hybrid, and isothermal titration calorimetry (ITC) assay results using mutants of APC and Amer1 interface residues, our structures demonstrate that Amer1-A1, -A2, and -A4, as well as other APC-binding proteins such as Asef and Sam68, all employ a common recognition pattern to associate with APC–ARM. In contrast, Amer1-A3 binds to the C-terminal side of APC–ARM through a bipartite interaction mode. Composite mutations on either APC or Amer1 disrupting all four interfaces abrogated their association in cultured cells and impaired the membrane recruitment of APC by Amer1. Our study thus comprehensively elucidated the recognition mechanism between APC and Amer1, and revealed a consensus recognition sequence employed by various APC–ARM binding partners. PMID:27462415
Zhang, Zhenyi; Akyildiz, Senem; Xiao, Yafei; Gai, Zhongchao; An, Ying; Behrens, Jürgen; Wu, Geng
2015-01-01
The tumor suppressor APC employs its conserved armadillo repeat (ARM) domain to recognize many of its binding partners, including Amer1/WTX, which is mutated in Wilms' tumor and bone overgrowth syndrome. The APC-Amer1 complex has important roles in regulating Wnt signaling and cell adhesion. Three sites A1, A2, and A3 of Amer1 have been reported to mediate its interaction with APC-ARM. In this study, crystal structures of APC-ARM in complexes with Amer1-A1, -A2, and -A4, which is newly identified in this work, were determined. Combined with our GST pull-down, yeast two-hybrid, and isothermal titration calorimetry (ITC) assay results using mutants of APC and Amer1 interface residues, our structures demonstrate that Amer1-A1, -A2, and -A4, as well as other APC-binding proteins such as Asef and Sam68, all employ a common recognition pattern to associate with APC-ARM. In contrast, Amer1-A3 binds to the C-terminal side of APC-ARM through a bipartite interaction mode. Composite mutations on either APC or Amer1 disrupting all four interfaces abrogated their association in cultured cells and impaired the membrane recruitment of APC by Amer1. Our study thus comprehensively elucidated the recognition mechanism between APC and Amer1, and revealed a consensus recognition sequence employed by various APC-ARM binding partners.
Solid state amorphization kinetic of alpha lactose upon mechanical milling.
Caron, Vincent; Willart, Jean-François; Lefort, Ronan; Derollez, Patrick; Danède, Florence; Descamps, Marc
2011-11-29
It has been previously reported that α-lactose could be totally amorphized by ball milling. In this paper we report a detailed investigation of the structural and microstructural changes by which this solid state amorphization takes place. The investigations have been performed by Powder X-ray Diffraction, Solid State Nuclear Magnetic Resonance ((13)C CP-MAS) and Differential Scanning Calorimetry. The results reveal the structural complexity of the material in the course of its amorphization so that it cannot be considered as a simple mixture made of a decreasing crystalline fraction and an increasing amorphous fraction. Heating this complexity can give rise to a fully nano-crystalline material. The results also show that chemical degradations upon heating are strongly connected to the melting process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mechanisms of fibrinogen-acebutolol interactions: Insights from DSC, CD and LS.
Hassan, Natalia; Ruso, Juan M; Somasundaran, P
2011-02-01
The complex formed due to the interaction of the amphiphilic betablocker acebutolol with fibrinogen in a buffer solution (50mN glycine, pH of 8.5) has been investigated using a multipronged physicochemical approach. Differential scanning calorimetry measurements of the complexes have shown no reversibility of thermal denaturation as indicated by the three observed peaks and the opposite role that acebutolol plays in the folding different domains of the fibrinogen molecule and the stability of such domains. While circular dichroism measurements have revealed that interaction of acebutolol with fibrinogen affects the protein secondary structure to a different extent depending on the temperature and drug concentration, dynamic light scattering analysis showed evidence for protein aggregation mainly to tetramers and dimers. Copyright © 2010 Elsevier B.V. All rights reserved.
Polymorphism of a new Mannich base - [-4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol
NASA Astrophysics Data System (ADS)
Ayeni, Ayowole O.; Watkins, Gareth M.; Hosten, Eric C.
2018-05-01
Two polymorphs (forms I and II) of a new Mannich base 4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol have been isolated and characterized by single crystal and powder (experimental and theoretical) X-ray diffraction, thermal analysis (differential scanning calorimetry), Fourier transform infrared spectroscopy. 1H and 13C nuclear magnetic resonance spectroscopy was employed in characterising the new Mannich base. Single crystal X-ray diffraction revealed that the two polymorphs contain different conformers of the Mannich base whose hydrogen bonding schemes and packing arrangements in their respective crystals are different. Thermal analysis led to the conclusion that the two polymorphs are enantiotropically related, with a transition temperature of 138.5 °C.
Multi-walled carbon/IF-WS2 nanoparticles with improved thermal properties.
Xu, Fang; Almeida, Trevor P; Chang, Hong; Xia, Yongde; Wears, M Lesley; Zhu, Yanqiu
2013-11-07
A unique new class of core-shell structured composite nanoparticles, C-coated inorganic fullerene-like WS2 (IF-WS2) hollow nanoparticles, has been created for the first time in large quantities, by a continuous chemical vapour deposition method using a rotary furnace. Transmission electron microscopy and Raman characterisations of the resulting samples reveal that the composite nanoparticles exhibited a uniform shell of carbon coating, ranging from 2-5 nm on the IF-WS2 core, with little or no agglomeration. Importantly, thermogravimetric analysis and differential scanning calorimetry analysis confirm that their thermal stability against oxidation in air has been improved by about 70 °C, compared to the pristine IF-WS2, making these new C-coated IF-WS2 nanoparticles more attractive for critical engineering applications.
Cholesterol-Induced Formation of Liquid Ordered Phase-Like Structures in Non-Phospholipid Systems.
Konno, Yoshikazu; Yoshimura, Akio; Naito, Noboru; Aramaki, Kenji
2018-01-01
The formation of liquid ordered (L o ) phase-like structures in stearyltrimethylammonium chloride/cholesterol/1,3-butanediol/water and hepta(oxyethylen) octadecyl ether/cholesterol/1,3-butanediol/water systems was investigated. Differential scanning calorimetry and X-ray scattering measurements confirmed that L o phase-like structures were formed in both surfactant/cholesterol systems, similar to the lysophospholipid/cholesterol system. It was revealed that the concentration of cholesterol at which only L o phase-like structures are formed increases in the order stearyltrimethylammonium chloride < lysophospholipid < hepta(oxyethylen) octadecyl ether. In addition, for both surfactants, the interlayer spacing, d, was larger for L o phase-like structures than for α-gel structures. These results suggest that the ionicity and structure of the hydrophilic group of each surfactant play important roles.
Electrospun polylactide/poly(ethylene glycol) hybrid fibrous scaffolds for tissue engineering.
Wang, Bei-Yu; Fu, Shao-Zhi; Ni, Pei-Yan; Peng, Jing-Rong; Zheng, Lan; Luo, Feng; Liu, Hao; Qian, Zhi-Yong
2012-02-01
The biodegradable polylactide/poly(ethylene glycol) (PLA/PEG) hybrid membranes were fabricated via electrospinning of PLA/PEG solution. Their structures and properties were investigated by scanning electron microscopy, differential scanning calorimetry, and water contact angle. In vitro hydrolytic degradation showed that PEG content influenced the degradation rate of the PLA/PEG hybrid mats. The mechanical property was measured by tensile test and the result revealed that the addition of PEG had an obvious plasticization on PLA matrix. In-vitro biocompatibility was investigated by culturing cell on the scaffolds and MTT assay. The results indicated that the cell could attach and proliferate on the membranes, so confirmed that the PLA/PEG hybrid membrane had good biocompatibility, and it could be a promising biomaterial for tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.
Total x-ray power measurements in the Sandia LIGA program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowski, Michael E.; Ting, Aili
2005-08-01
Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different frommore » the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power monitors was made at the ALS, beamline 3.3.1. This work showed that a modification of a commercially available, heat flux sensor could result in a simple, direct reading beam power meter that could be a useful for monitoring total X-ray power in Sandia's LIGA exposure stations at the ALS, APS and Stanford Synchrotron Radiation Laboratory (SSRL).« less
Appropriateness of the definition of 'sedentary' in young children: Whole-room calorimetry study.
Reilly, John J; Janssen, Xanne; Cliff, Dylan P; Okely, Anthony D
2015-09-01
The present study aimed to measure the energy cost of three common sedentary activities in young children to test whether energy expended was consistent with the recent consensus definition of 'sedentary' as 'any behaviour conducted in a sitting or reclining posture and with an energy cost ≤ 1.5 metabolic equivalents (METs)' (Sedentary Behaviour Research Network, 2012). Observational study. Whole-room calorimetry measures of television viewing, sitting at a table drawing and reading, and sitting on the floor playing with toys were made in 40 young children (mean age 5.3 years, SD 1.0). The energy cost of each sedentary activity was consistent with the recent consensus definition of sedentary: 1.17 METs (95% CI 1.07-1.27) for TV viewing; 1.38 METs (95% CI 1.30-1.46) for sitting at a table; and 1.35 METs (95% CI 1.28-1.43) for floor-based play. Common sedentary activities in young children have energy costs which are consistent with the recent consensus definition of 'sedentary', and the present study is supportive of this definition. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Photoaffinity Labeling Studies on a Promoter of Dendritic Spine Formation
NASA Astrophysics Data System (ADS)
Sibucao, Kevin Carlo Abril
The small molecule BTA-EG4 has been shown to be a promoter of dendritic spine formation. The mechanism behind this phenomenon, however, is not well understood. The work in this dissertation is motivated by this gap in knowledge. The first part of this dissertation focuses on photoaffinity labeling studies to identify the cellular targets of BTA-EG4. Chapter 1 provides a summary of Alzheimer's disease, the rational design of BTA-EG 4, and methods to determine targets of small molecules. In Chapter 2, the synthesis of a BTA-EG4-based photoaffinity labeling probe and photodegradation studies are presented. Kinetic studies demonstrate that the probe photolyzes rapidly under UV light. In Chapter 3, photoaffinity labeling studies and subsequent protein identification experiments are reported. Competition experiments with the photoaffinity labeling probe and BTA-EG4 demonstrate that the probe labels a 55-kDa protein specifically. Tandem mass spectrometry revealed that the 55-kDa protein is the actin binding protein fascin 1. The second part of this dissertation focuses on the major protein identified from photoaffinity labeling studies, fascin 1. Chapter 4 provides a brief survey of the structure and function of fascin 1. In Chapter 5, characterizations of the interaction between BTA-EG4 and fascin 1 are reported. Isothermal titration calorimetry confirms the physical binding between fascin 1 and BTA-EG6, a BTA-EG4 analog. Slow speed sedimentation assays reveal that BTA-EG4 does not affect the actin-bundling activity of fascin 1. However, GST pull-down experiments show that BTA-EG4 inhibits the binding of fascin 1 with the GTPase Rab35. In addition, this work demonstrates that BTA-EG4 may be mechanistically distinct from the known fascin inhibitor G2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sriram Goverapet; Shivaramaiah, Radha; Kent, Paul R. C.
2016-07-11
Bastnasite is a fluoro-carbonate mineral that is the largest source of rare earth elements such as Y, La and Ce. With increasing demand for REE in many emerging technologies, there is an urgent need for improving the efficiency of ore beneficiation by froth flotation. In order to design improved flotation agents that can selectively bind to the mineral surface, a fundamental understanding of the bulk and surface properties of bastnasite is essential. Density functional theory calculations using the PBEsol exchange correlation functional and the DFT-D3 dispersion correction reveal that the most stable form of La bastnsite is isomorphic to themore » structure of Ce bastnasite belonging to the P2c space group, while the Inorganic Crystal Structure Database structure in the P2m space group is ca. 11.3 kJ/mol higher in energy per LaFCO 3 formula unit. We report powder X-ray diffraction measurements on synthetic of La bastnasite to support these theoretical findings. Six different surfaces are studied by DFT, namely [100], [0001], [101], [102], [104] and [112]. Among these, the [100] surface is the most stable with a surface energy of 0.73 J/m 2 in vacuum and 0.45 J/m 2 in aqueous solution. We predicted the shape of a La bastnasite nanoparticle via thermodynamic Wulff construction to be a hexagonal prism with [100] and [0001] facets, chiseled at its ends by the [101] and [102] facets. The average surface energy of the nanoparticle in the gas phase is estimated to be 0.86 J/m 2, in good agreement with a value of 1.11 J/m 2 measured by calorimetry. The calculated adsorption energy of a water molecule varies widely with the surface plane and specific adsorption sites on a given surface. Moreover, the first layer of water molecules is predicted to adsorb strongly on the La-bastnasite surface, in agreement with water adsorption calorimetry experiments. Our work provides an important step towards a detailed atomistic understanding of the bastnasite water interface and designing collector molecules that can bind specifically to bastnasite.« less
Influence of reactive species on the modification of biomolecules generated from the soft plasma
NASA Astrophysics Data System (ADS)
Attri, Pankaj; Kumar, Naresh; Park, Ji Hoon; Yadav, Dharmendra Kumar; Choi, Sooho; Uhm, Han S.; Kim, In Tae; Choi, Eun Ha; Lee, Weontae
2015-02-01
Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of soft plasma with different feeding gases such as Air, N2 and Ar on modification of biomolecules. Hence, in this work we have used the soft plasma on biomolecules such as proteins ((Hemoglobin (Hb) and Myoglobin (Mb)), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), fluorescence spectroscopy, protein oxidation test, gel electrophoresis, UV-vis spectroscopy, dynamic light scattering (DLS) and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer (LC/CE-MS) based on qualitative and quantitative bio-analysis have been used to study the modification of amino acids. Further, the thermal analysis of the protein has been studied with differential scanning calorimetry (DSC) and CD. Additionally, we have performed docking studies of H2O2 with Hb and Mb, which reveals that H2O2 molecules preferably attack the amino acids near heme group. We have also shown that N2 gas plasma has strong deformation action on biomolecules and compared to other gases plasma.
Babu, Punuri Jayasekhar; Doble, Mukesh; Raichur, Ashok M
2018-03-01
The synergistic wound healing and antibacterial activity of silver oxide nanoparticles embedded silk fibroin (Ag 2 O-SF) spuns is reported here. UV-Vis spectro photometric analysis of these spuns showed the surface plasmon resonance (SPR) confirming the formation of the silver oxide nanoparticles (Ag 2 O NPs) on the surface of the silk fibroin (SF). Scanning electron microscope (SEM) and Differential scanning calorimetry (DSC) also confirmed the presence of Ag 2 O NPs on surface of SF. X-ray diffraction (XRD) analysis revealed the crystalline nature of both SF and Ag 2 O-SF. Fourier transform infrared spectroscopy (FT-IR) results showed the different forms of silk (I and II) and their corresponding protein (amide I, II, III) confirmations. Biodegradation study revealed insignificant changes in the morphology of Ag 2 O-SF spuns even after 14 days of immersion in phosphate buffered saline (PBS). Ag 2 O-SF spuns showed excellent antibacterial activity against both pathogen (S. aureus and M. tuberculosis) and non-pathogen (E. coli) bacteria. More importantly, In vitro wound healing (scratch assay) assay revealed fast migration of the T3T fibroblast cells through the scratch area treated with extract of Ag 2 O-SF spuns and the area was completely covered within 24 h. Cytotoxicity assay confirmed the biocompatible nature of the Ag 2 O-SF spuns, thus suggesting an ideal material for wound healing and anti-bacterial applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Cycles in metabolism and heat loss
NASA Technical Reports Server (NTRS)
Annis, J. F.; Troutman, S. J.; Webb, P.
1974-01-01
Using calorimetric techniques, subjects' metabolism, thermoregulation, and body temperatures were monitored continuously for 24-hour days, using three types of experimental routines. A water cooling garment (WCG) was used for direct calorimetry, while partitional calorimetry was used to establish a non-suited comparison for one of the routines. In this replicated routine, called the quiet day, the subjects were sedentary throughout the daytime hours and slept normally at night. Results indicate that the WCG may act to reduce 24-hour total oxygen consumption (VO2) or heat production, possibly due to the lowered energy cost of thermoregulation.
Development of quality assurance methods for epoxy graphite prepreg
NASA Technical Reports Server (NTRS)
Chen, J. S.; Hunter, A. B.
1982-01-01
Quality assurance methods for graphite epoxy/prepregs were developed. Liquid chromatography, differential scanning calorimetry, and gel permeation chromatography were investigated. These methods were applied to a second prepreg system. The resin matrix formulation was correlated with mechanical properties. Dynamic mechanical analysis and fracture toughness methods were investigated. The chromatography and calorimetry techniques were all successfully developed as quality assurance methods for graphite epoxy prepregs. The liquid chromatography method was the most sensitive to changes in resin formulation. The were also successfully applied to the second prepreg system.
Detector Developments for the High Luminosity LHC Era (1/4)
Straessner, Arno
2018-04-27
Calorimetry and Muon Spectrometers - Part I : In the first part of the lecture series, the motivation for a high luminosity upgrade of the LHC will be quickly reviewed together with the challenges for the LHC detectors. In particular, the plans and ongoing research for new calorimeter detectors will be explained. The main issues in the high-luminosity era are an improved radiation tolerance, natural ageing of detector components and challenging trigger and physics requirements. The new technological solutions for calorimetry at a high-luminosity LHC will be reviewed.
NASA Astrophysics Data System (ADS)
Stošić, Dušan; Auroux, Aline
Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.
Rao, Monica R P; Chaudhari, Jagruti; Trotta, Francesco; Caldera, Fabrizio
2018-06-04
Rilpivrine is BCS class II drug used for treatment of HIV infection. The drug has low aqueous solubility (0.0166 mg/ml) and dissolution rate leading to low bioavailability (32%). Aim of this work was to enhance solubility and dissolution of rilpivirine using beta-cyclodextrin-based nanosponges. These nanosponges are biocompatible nanoporous particles having high loading capacity to form supramolecular inclusion and non-inclusion complexes with hydrophilic and lipophilic drugs for solubility enhancement. Beta-cyclodextrin was crosslinked with carbonyl diimidazole and pyromellitic dianhydride to prepare nanosponges. The nanosponges were loaded with rilpivirine by solvent evaporation method. Binary and ternary complexes of drug with β-CD, HP-β-CD, nanosponges, and tocopherol polyethylene glycol succinate were prepared and characterized by phase solubility, saturation solubility in different media, in vitro dissolution, and in vivo pharmacokinetics. Spectral analysis by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry was performed. Results obtained from spectral characterization confirmed inclusion complexation. Phase solubility studies indicated stable complex formation. Saturation solubility was found to be 10-13-folds higher with ternary complexes in distilled water and 12-14-fold higher in 0.1 N HCl. Solubility enhancement was evident in biorelevant media. Molecular modeling studies revealed possible mode of entrapment of rilpivirine within β-CD cavities. A 3-fold increase in dissolution with ternary complexes was observed. Animal studies revealed nearly 2-fold increase in oral bioavailability of rilpivirine. It was inferred that electronic interactions, hydrogen bonding, and van der Waals forces are involved in the supramolecular interactions.
Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy
Coughlin, D. R.; Casalena, L.; Yang, F.; ...
2015-09-18
NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrsmore » at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.« less
USDA-ARS?s Scientific Manuscript database
Energy requirements vary during pregnancy due to changes in physical activity (PA) and maternal fat stores. This study measured resting metabolic rate (RMR) and PA patterns in healthy lean and overweight/obese (OW) pregnant women. RMR was measured using indirect calorimetry (MOXUS), activity pattern...
Determining Intensity Levels of Selected Wii Fit Activities in College Aged Individuals
ERIC Educational Resources Information Center
Grieser, Joshua D.; Gao, Yong; Ransdell, Lynda; Simonson, Shawn
2012-01-01
The purpose of this study was to determine the intensity of Nintendo Wii Fit games using indirect calorimetry. Twenty-five college students completed Wii Fit activity sessions at two difficulty levels within aerobics, strength, and yoga categories. Resting metabolic rate and exercise oxygen uptake were measured, and metabolic equivalents were…
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.
1989-11-01
High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.
Ultra-Fast Hadronic Calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai
2018-08-01
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. Simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less
Ultra-Fast Hadronic Calorimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, Dmitri; Lukić, Strahinja; Mokhov, Nikolai
2017-12-18
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locationsmore » w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less
Ultra-fast hadronic calorimetry
Denisov, Dmitri; Lukic, Strahinja; Mokhov, Nikolai; ...
2018-05-08
Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper the time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations with respectmore » to the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 2 ns providing opportunity for ultra-fast calorimetry. As a result, simulation results for an “ideal” calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.« less
NASA Astrophysics Data System (ADS)
Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji
2017-10-01
The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.
Effect of silica nanoparticle filler on microscopic polymer α-relaxation dynamics
NASA Astrophysics Data System (ADS)
Saito, Makina; Mashita, Ryo; Kishimoto, Hiroyuki; Masuda, Ryo; Yoda, Yoshitaka; Seto, Makoto
2017-11-01
Tyre rubber has been continuously developed to improve its performance, but the microscopic mechanisms behind these improvements, e.g. by adding nanoparticles to the rubber, are still not fully understood. We study the microscopic polymer dynamics of a rubber nanocomposite system consisting of polymer polybutadiene with 20 volume% of silica nanoparticles with diameters of 100 nm via quasi-elastic scattering experiments using gamma-ray time-domain interferometry. The result shows that the presence of silica nanoparticles caused the inter-chain α-relaxation dynamics to slow down in a shallowly supercooled state suggesting that the presence of the nanoparticles that came in contact with the polymer controlled the timescale of the polymer's α-relaxation dynamics. Conversely, the presence of nanoparticles less affects the dynamics in a lower temperature region near T g. It is consistent with the result of the differential scanning calorimetry study showing negligible T g difference among the pure polymer and the nanocomposite system. It also shows that the quasi-elastic scattering experiment can be used to reveal the polymer dynamics in nanocomposites and is appropriate for characterising their microscopic dynamics for the purpose of improving tyre performance.
Development of solid dispersions of artemisinin for transdermal delivery.
Shahzad, Yasser; Sohail, Sadia; Arshad, Muhammad Sohail; Hussain, Talib; Shah, Syed Nisar Hussain
2013-11-30
Solid dispersions of the poorly soluble drug artemisinin were developed using polymer blends of polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) with the aim of enhancing solubility and in vitro permeation of artemisinin through skin. Formulations were characterised using a combination of molecular dynamics (MD) simulations, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Solubility of artemisinin was determined in two solvents: de-ionised water and phosphate buffered saline (PBS; pH 7.4), while in vitro drug permeation studies were carried out using rabbit skin as a model membrane. MD simulations revealed miscibility between the drug and polymers. DSC confirmed the molecular dispersion of the drug in the polymer blend. Decrease in crystallinity of artemisinin with respect to polymer content and the absence of specific drug-polymer interactions were confirmed using XRD and FT-IR, respectively. The solubility of artemisinin was dramatically enhanced for the solid dispersions, as was the permeation of artemisinin from saturated solid-dispersion vehicles relative to that from saturated solutions of the pure drug. The study suggests that high energy solid forms of artemisinin could possibly enable transdermal delivery of artemisinin. Copyright © 2013 Elsevier B.V. All rights reserved.
New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.
Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes
2018-04-03
Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.
Interaction of the dietary pigment curcumin with hemoglobin: energetics of the complexation.
Basu, Anirban; Kumar, Gopinatha Suresh
2014-08-01
Thermodynamics of the interaction of the chemotherapeutic and chemopreventive dietary pigment, curcumin, with hemoglobin was studied by isothermal titration calorimetry. The binding was characterized to be exothermic. At 293.15 K, the equilibrium constant for curcumin-Hb complexation was found to be (4.88 ± 0.06) × 10(5) M(-1). The binding stoichiometry was calculated to be 1.08 ± 0.05, confirming a 1:1 complexation. The binding was driven by a large negative standard molar enthalpy change (ΔH(0) = -118.45 ± 0.05 kJ mol(-1)) and an unfavorable standard molar entropy change (TΔS(0) = -86.53 ± 0.01 kJ mol(-1)) at 293.15 K. Increasing the temperature favoured the binding, and the magnitude of the negative standard molar heat capacity change suggested the involvement of significant hydrophobic forces in the binding process. With increasing salt concentration, the magnitude of the equilibrium constant decreased slightly; and the complexation mostly involved non-polyelectrolytic forces contributing about 92-94% of the standard molar Gibbs energy change. DSC studies revealed that curcumin binding caused a partial unfolding of the protein.
PLA/PBAT Bionanocomposites with Antimicrobial Natural Rosin for Green Packaging.
Moustafa, Hesham; El Kissi, Nadia; Abou-Kandil, Ahmed I; Abdel-Aziz, Mohamed S; Dufresne, Alain
2017-06-14
The use of biodegradable polymers is of great importance nowadays in many applications. Some of the most commonly used biopolymers are polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) due to their superior properties and availability. In this manuscript, we use a facile and green modification method of organoclay (OC) by antimicrobial natural rosin which is considered as a toxicity-free reinforcing material, thus keeping the green character of the material. It increases the interlayer spacing between the clay platelets. This was proven by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and found to impart antimicrobial properties to PLA/PBAT blends. The morphology of the resulting blends was conducted using scanning and transmission electron microscopies (SEM and TEM), and evidence of exfoliation and intercalation was observed. The thermal properties of the blends were studied using differential scanning calorimetry (DSC), and a detailed study of the crystallization of both PLA and PBAT was reported showing cold crystallization behavior of PLA. The final effect on mechanical and antimicrobial properties was also investigated. The obtained results reveal excellent possibility of using expanded OC modified PLA/PBAT polymer blends by adding a green material, antimicrobial natural rosin, for food packaging and biomembranes applications.
Tseng, Boo Shan; Howlin, Robert P.; Deacon, Jill; Wharton, Julian A.; Thurner, Philipp J.; Gilmore, Brendan F.; Parsek, Matthew R.; Stoodley, Paul
2014-01-01
Staphylococcus epidermidis biofilm formation is responsible for the persistence of orthopedic implant infections. Previous studies have shown that exposure of S. epidermidis biofilms to sub-MICs of antibiotics induced an increased level of biofilm persistence. BODIPY FL-vancomycin (a fluorescent vancomycin conjugate) and confocal microscopy were used to show that the penetration of vancomycin through sub-MIC-vancomycin-treated S. epidermidis biofilms was impeded compared to that of control, untreated biofilms. Further experiments showed an increase in the extracellular DNA (eDNA) concentration in biofilms preexposed to sub-MIC vancomycin, suggesting a potential role for eDNA in the hindrance of vancomycin activity. Exogenously added, S. epidermidis DNA increased the planktonic vancomycin MIC and protected biofilm cells from lethal vancomycin concentrations. Finally, isothermal titration calorimetry (ITC) revealed that the binding constant of DNA and vancomycin was 100-fold higher than the previously reported binding constant of vancomycin and its intended cellular d-Ala-d-Ala peptide target. This study provides an explanation of the eDNA-based mechanism of antibiotic tolerance in sub-MIC-vancomycin-treated S. epidermidis biofilms, which might be an important factor for the persistence of biofilm infections. PMID:25267673
Szczurek, Justyna; Rams-Baron, Marzena; Knapik-Kowalczuk, Justyna; Antosik, Agata; Szafraniec, Joanna; Jamróz, Witold; Dulski, Mateusz; Jachowicz, Renata; Paluch, Marian
2017-04-03
In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.
Gao, Ding-Ding; Dou, Hui-Xia; Su, Hai-Xia; Zhang, Ming-Ming; Wang, Ting; Liu, Qiu-Feng; Cai, Hai-Yan; Ding, Hai-Peng; Yang, Zhuo; Zhu, Wei-Liang; Xu, Ye-Chun; Wang, He-Yao; Li, Ying-Xia
2018-05-09
Fatty acid binding protein 4 (FABP4) plays a critical role in metabolism and inflammatory processes and therefore is a potential therapeutic target for immunometabolic diseases such as diabetes and atherosclerosis. Herein, we reported the identification of naphthalene-1-sulfonamide derivatives as novel, potent and selective FABP4 inhibitors by applying a structure-based design strategy. The binding affinities of compounds 16dk, 16do and 16du to FABP4, at the molecular level, are equivalent to or even better than that of BMS309403. The X-ray crystallography complemented by the isothermal titration calorimetry studies revealed the binding mode of this series of inhibitors and the pivotal network of ordered water molecules in the binding pocket of FABP4. Moreover, compounds 16dk and 16do showed good metabolic stabilities in liver microsomes. Further extensive in vivo study demonstrated that 16dk and 16do exhibited a dramatic improvement in glucose and lipid metabolism, by decreasing fasting blood glucose and serum lipid levels, enhancing insulin sensitivity, and ameliorating hepatic steatosis in obese diabetic (db/db) mice. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Aigner, Z; Berkesi, O; Farkas, G; Szabó-Révész, P
2012-01-05
The steps of formation of an inclusion complex produced by the co-grinding of gemfibrozil and dimethyl-β-cyclodextrin were investigated by differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD) and Fourier transform infrared (FTIR) spectroscopy with curve-fitting analysis. The endothermic peak at 59.25°C reflecting the melting of gemfibrozil progressively disappeared from the DSC curves of the products on increase of the duration of co-grinding. The crystallinity of the samples too gradually decreased, and after 35min of co-grinding the product was totally amorphous. Up to this co-grinding time, XRPD and FTIR investigations indicated a linear correlation between the cyclodextrin complexation and the co-grinding time. After co-grinding for 30min, the ratio of complex formation did not increase. These studies demonstrated that co-grinding is a suitable method for the complexation of gemfibrozil with dimethyl-β-cyclodextrin. XRPD analysis revealed the amorphous state of the gemfibrozil-dimethyl-β-cyclodextrin product. FTIR spectroscopy with curve-fitting analysis may be useful as a semiquantitative analytical method for discriminating the molecular and amorphous states of gemfibrozil. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kchaou, H.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.
2017-04-01
[N(CH3)3H]CdCl3 between 295 and 433 K possesses four phases. Three phase transition at T1=416 K, T2=373 K and T3=330 K (on heating) and T1=410 K, T2=386 K and T3=322 K (on cooling) was determined by differential scanning calorimetry. Thermal hysteresis of these transitions ΔT1=6 K, ΔT2=13 K and ΔT3=8 K, indicating a first order character. The X-ray diffraction study at room temperature revealed an orthorhombic system with Pbnm space group. The vibrational characteristics have been measured at room temperature by infrared spectroscopy (400-3800 cm-1) and by polarized Raman spectroscopy (10-3800 cm-1) on microcrystals orientated with respect to the organic and inorganic sublattice. The structure of this compound was optimized by density functional theory (DFT) using B3LYP with LanL2DZ and LanL2MB basis sets. The temperature dependence of the Raman line shifts ν and the half-width Δν detect the phase transitions (T1, T2 and T3).
NASA Astrophysics Data System (ADS)
Ben Nasr, M.; Soudani, S.; Lefebvre, F.; Jelsch, C.; Ben Nasr, C.
2017-06-01
The Zn(II) complex with the monodentate ligand 4-fluoroaniline, ZnCl2(C6H4FNH2)2, has been prepared and characterized by single crystal X-ray diffraction, solid state nuclear magnetic resonance, infrared spectroscopy and differential scanning calorimetry. The Zn(II) ion is tetracoordinated by two nitrogen atoms of two monodentate 4-fluoroaniline ligands and two chlorine atoms. In the molecular arrangement, the ZnCl2(C6H4FNH2)2 entities are interconnected via Nsbnd H⋯Cl hydrogen bonds to form layers parallel to the (a, b) plane. The nature and proportion of contacts in the crystal packing were investigated through the Hirshfeld surfaces. The crystal is mainly maintained by electrostatic attractions Cl- … Hsbnd N and by extensive hydrophobic contacts as revealed by the Hirshfeld 2D fingerprint plots and statistical analysis. The13C and 19F CP-MAS NMR spectra are in agreement with the X-ray structure and confirm the phase purity of the crystalline sample. The vibrational absorption bands were identified by infrared spectroscopy. A calorimetric study shows that the title compound is stable until 262.5 °C.
Boguta, Patrycja; Sokołowska, Zofia; Skic, Kamil
2017-01-01
Thermogravimetry-coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)-was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40-220°C; R2, 220-430°C; and R3, 430-650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin.
Sokołowska, Zofia; Skic, Kamil
2017-01-01
Thermogravimetry–coupled with differential scanning calorimetry, quadrupole mass spectrometry, and Fourier-transform infrared spectroscopy (TG-DSC-QMS-FTIR)–was applied to monitor the thermal stability (in an N2 pyrolytic atmosphere) and chemical properties of natural polymers, fulvic (FA) and humic acids (HA), isolated from chemically different soils. Three temperature ranges, R1, 40–220°C; R2, 220–430°C; and R3, 430–650°C, were distinguished from the DSC data, related to the main thermal processes of different structures (including transformations without weight loss). Weight loss (ΔM) estimated from TG curves at the above temperature intervals revealed distinct differences within the samples in the content of physically adsorbed water (at R1), volatile and labile functional groups (at R2) as well as recalcitrant and refractory structures (at R3). QMS and FTIR modules enabled the chemical identification (by masses and by functional groups, respectively) of gaseous species evolved during thermal decomposition at R1, R2 and R3. Variability in shape, area and temperature of TG, DSC, QMS and FTIR peaks revealed differences in thermal stability and chemical structure of the samples between the FAs and HAs fractions of different origin. The statistical analysis showed that the parameters calculated from QMS (areas of m/z = 16, 17, 18, 44), DSC (MaxDSC) and TG (ΔM) at R1, R2 and R3 correlated with selected chemical properties of the samples, such as N, O and COOH content as well as E2/E6 and E2/E4 indexes. This indicated a high potential for the coupled method to monitor the chemical changes of humic substances. A new humification parameter, HTD, based on simple calculations of weight loss at specific temperature intervals proved to be a good alternative to indexes obtained from other methods. The above findings showed that the TG-DSC-QMS-FTIR coupled technique can represent a useful tool for the comprehensive assessment of FAs and HAs properties related to their various origin. PMID:29240819
3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
Ho, Chee Meng Benjamin; Mishra, Abhinay; Lin, Pearlyn Teo Pei; Ng, Sum Huan; Yeong, Wai Yee; Kim, Young-Jin; Yoon, Yong-Jin
2017-04-01
Fabrication of tissue engineering scaffolds with the use of novel 3D printing has gained lot of attention, however systematic investigation of biomaterials for 3D printing have not been widely explored. In this report, well-defined structures of polycaprolactone (PCL) and PCL- carbon nanotube (PCL-CNT) composite scaffolds have been designed and fabricated using a 3D printer. Conditions for 3D printing has been optimized while the effects of varying CNT percentages with PCL matrix on the thermal, mechanical and biological properties of the printed scaffolds are studied. Raman spectroscopy is used to characterise the functionalized CNTs and its interactions with PCL matrix. Mechanical properties of the composites are characterised using nanoindentation. Maximum peak load, elastic modulus and hardness increases with increasing CNT content. Differential scanning calorimetry (DSC) studies reveal the thermal and crystalline behaviour of PCL and its CNT composites. Biodegradation studies are performed in Pseudomonas Lipase enzymatic media, showing its specificity and effect on degradation rate. Cell imaging and viability studies of H9c2 cells from rat origin on the scaffolds are performed using fluorescence imaging and MTT assay, respectively. PCL and its CNT composites are able to show cell proliferation and have the potential to be used in cardiac tissue engineering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Date, Abhijit A; Srivastava, Deepika; Nagarsenker, Mangal S; Mulherkar, Rita; Panicker, Lata; Aswal, Vinod; Hassan, Puthusserickal A; Steiniger, Frank; Thamm, Jana; Fahr, Alfred
2011-10-01
In the present investigation, the feasibility of fabricating novel self-assembled cationic nanocarriers (LeciPlex) containing cetyltrimethylammonium bromide (CTAB) or didodecyldimethylammonium bromide (DDAB) and soybean lecithin using pharmaceutically acceptable biocompatible solvents such as 2-Pyrrolidone (Soluphor P) and diethyleneglycol monoethyl ether (Transcutol) was established. The interaction between DDAB/CTAB and soybean lecithin in the nanocarriers was confirmed by differential scanning calorimetry and in vitro antimicrobial studies. The positive charge on the nanocarriers was confirmed by zeta potential analysis. Transmission electron microscopy analysis could not reveal sufficient information regarding the internal structure of the nanocarriers, whereas cryotransmission electron microscopy studies indicated that these novel nanocarriers have unilamellar structure. Small-angle neutron scattering studies confirmed interaction of cationic surfactant (DDAB) and lecithin in the nanocarriers and confirmed the presence of unilamellar nanostructures. Various hydrophobic drugs could be encapsulated in the CTAB/DDAB-based lecithin nanocarriers (CTAB-LeciPlex or DDAB-LeciPlex) irrespective of their difference in log p-values. In vitro antimicrobial studies on triclosan-loaded LeciPlex confirmed entrapment of triclosan in the nanocarriers. The ability of CTAB-LeciPlex and DDAB-LeciPlex to condense plasmid DNA was established using agarose gel electrophoresis. DDAB-LeciPlex could successfully transfect pDNA in HEK-293 cells indicating potential in gene delivery.
Juluri, Abhishek; Popescu, Carmen; Zhou, Leon; Murthy, Reena N; Gowda, Vanaja K; Chetan Kumar, P; Pimparade, Manjeet B; Repka, Michael A; Murthy, S Narasimha
2016-02-01
The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220°C and CA at 230-232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ∼threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.
Spray drying of poorly soluble drugs from aqueous arginine solution.
Ojarinta, Rami; Lerminiaux, Louise; Laitinen, Riikka
2017-10-30
Co-amorphous drug-amino acid mixtures have shown potential for improving the solid-state stability and dissolution behavior of amorphous drugs. In previous studies, however these mixtures have been produced mainly with small-scale preparation methods, or with methods that have required the use of organic solvents or other dissolution enhancers. In the present study, co-amorphous ibuprofen-arginine and indomethacin-arginine mixtures were spray dried from water. The mixtures were prepared at two drug-arginine molar ratios (1:1 and 1:2). The properties of the prepared mixtures were investigated with differential scanning calorimetry, X-ray powder diffractometry, Fourier-transform infrared spectroscopy and a 24h, non-sink, dissolution study. All mixtures exhibited a single glass transition temperature (T g ), evidence of the formation of homogenous single-phase systems. Fourier transform infrared spectroscopy revealed strong interactions (mainly salt formation) that account for the positive deviation between measured and estimated T g values. No crystallization was observed during a 1-year stability study in either 1:1 or 1:2 mixtures, but in the presence of moisture, handling difficulties were encountered. The formation of co-amorphous salts led to improved dissolution characteristics when compared to the corresponding physical mixtures or to pure crystalline drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro
2017-09-01
In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.
Fluorescence Competition Assay Measurements of Free Energy Changes for RNA Pseudoknots†
2009-01-01
RNA pseudoknots have important functions, and thermodynamic stability is a key to predicting pseudoknots in RNA sequences and to understanding their functions. Traditional methods, such as UV melting and differential scanning calorimetry, for measuring RNA thermodynamics are restricted to temperature ranges around the melting temperature for a pseudoknot. Here, we report RNA pseudoknot free energy changes at 37 °C measured by fluorescence competition assays. Sequence-dependent studies for the loop 1−stem 2 region reveal (1) the individual nearest-neighbor hydrogen bonding (INN-HB) model provides a reasonable estimate for the free energy change when a Watson−Crick base pair in stem 2 is changed, (2) the loop entropy can be estimated by a statistical polymer model, although some penalty for certain loop sequences is necessary, and (3) tertiary interactions can significantly stabilize pseudoknots and extending the length of stem 2 may alter tertiary interactions such that the INN-HB model does not predict the net effect of adding a base pair. The results can inform writing of algorithms for predicting and/or designing RNA secondary structures. PMID:19921809
Mishra, Arjun K; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J Venkatesh
2015-01-09
Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein-protein interaction between SpdSyn and AdoMetDc. The protein-protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.
Morita, Emiko; Taniguchi, Hiroshi; Sakaue, Motoyoshi
2009-01-01
The purpose of our study was to investigate whether the Trp64Arg polymorphism in beta3-AR gene and the -3826A/G polymorphism in the UCP1 gene were associated with the reduction in energy expenditure and fat oxidation both in resting and aerobic exercise in Japanese. Eighty-six nonobese young healthy Japanese were recruited. Energy expenditure was measured using indirect calorimetry. The subjects performed an aerobic exercise program at 60% of their maximal heart rate for 30 minutes. The level of fat oxidation at rest and aerobic exercise of the male subjects with Trp/Arg of the beta3-AR gene was significantly lower than that of the Trp/Trp genotype. No difference in FO(0-30) was observed in the female subjects. There was no association between UCP-1 polymorphism and energy expenditure during aerobic exercise. It was revealed that the Trp64Arg polymorphism in beta3-AR gene is associated with reduction of fat oxidation both in resting and aerobic exercise in healthy, young Japanese males.
Large-scale production of PMMA/SWCNT composites based on SWCNT modified with PMMA.
Fraser, Robin Anderson; Stoeffler, Karen; Ashrafi, Behnam; Zhang, Yunfa; Simard, Benoit
2012-04-01
In this work, a two-step method consisting of in situ polymerization of polymethyl methacrylate (PMMA) in the presence of single-walled carbon nanotubes (SWCNT), followed by the redispersion of the resulting compound in dimethylformamide (DMF), was used to fabricate SWCNT modified with PMMA (SWCNT-PMMA). Raman spectroscopy revealed that PMMA was merely wrapped around the SWCNT when raw SWCNT or purified SWCNT were used as the starting material. However, PMMA was covalently bonded to SWCNT when acid treated SWCNT (SWCNT-COOH) was used as the starting material. SWCNT-PMMA compounds were further diluted in pure PMMA by conventional melt compounding at large scale (several kilograms) to obtain transparent composites containing 0.09 wt % SWCNT. The micro- and nano-dispersion of the SWCNT in the composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal and mechanical properties of the composites were determined by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile testing, and Charpy impact testing. At the the low SWCNT loading studied, the tensile properties remain unchanged, whereas the impact strength improves by 20%.
High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene
NASA Astrophysics Data System (ADS)
Bishop, M. M.; Chellappa, R. S.; Liu, Z.; Preston, D. N.; Sandstrom, M. M.; Dattelbaum, D. M.; Vohra, Y. K.; Velisavljevic, N.
2014-05-01
1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (~110 °C) and α → β (~160 °C) structural phase transitions; as well as, indicated an additional transition γ → (~210 °C), with the δ phase being stable up to ~251 °C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 °C, while β → β+δ phase transition shifted to ~300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa.
Dai, Lei; Sun, Cuixia; Li, Ruirui; Mao, Like; Liu, Fuguo; Gao, Yanxiang
2017-12-15
Curcumin (Cur) exhibits a range of bioactive properties, but its application is restrained due to its poor water solubility and sensitivity to environmental stresses. In this study, zein-lecithin composite nanoparticles were fabricated by antisolvent co-precipitation technique for delivery of Cur. The result showed that the encapsulation efficiency of Cur was significantly enhanced from 42.03% in zein nanoparticles to 99.83% in zein-lecithin composite nanoparticles. The Cur entrapped in the nanoparticles was in an amorphous state confirmed by differential scanning calorimetry and X-ray diffraction. Fourier transform infrared analysis revealed that hydrogen bonding, electrostatic interaction and hydrophobic attraction were the main interactions among zein, lecithin, and Cur. Compared with single zein and lecithin nanoparticles, zein-lecithin composite nanoparticles significantly improved the stability of Cur against thermal treatment, UV irradiation and high ionic strength. Therefore, zein-lecithin composite nanoparticles could be a potential delivery system for water-insoluble bioactive compounds with enhanced encapsulation efficiency and chemical stability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jiang, Jie; Liu, Ying; Wu, Chao; Qiu, Yang; Xu, Xiaoyan; Lv, Huiling; Bai, Andi; Liu, Xuan
2017-08-01
In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.
Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez
2013-01-01
The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146
Self-assembled hyaluronic acid nanoparticles for controlled release of agrochemicals and diosgenin.
Quiñones, Javier Pérez; Brüggemann, Oliver; Covas, Carlos Peniche; Ossipov, Dmitri A
2017-10-01
Commercial sodium hyaluronate (HA) and synthetic hydrazide-modified HA were functionalized with diosgenin and two agrochemicals (brassinosteroids DI31 and S7) with degree of substitution ranging from 5.6 to 13.1%. The HA-steroid conjugates were studied with FTIR, 1 H NMR and differential scanning calorimetry. Dynamic light scattering revealed self-assembly of the HA-steroid conjugates into stable negatively charged nanoparticles of around 159nm-441nm in water, which after drying appeared as 140nm-370nm spherically shaped nanoparticles according to transmission electron microscopy. These nanoparticles exhibited almost constant release rates of steroids for the first 8h, demonstrating sustained steroids delivery for 72h in acidic medium. The nanoparticles formed from HA-steroid conjugates were not cytotoxic to human microvascular endothelial cells (HMVEC), while the HA- brassinosteroid nanoparticles showed in vitro agrochemical activity that was superior to the activity observed for the parent brassinosteroids DI31 and S7 at 10 -5 to 10 -7 mgmL -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermodynamic Investigation of Carbamazepine-Saccharin Co-Crystal Polymorphs.
Pagire, Sudhir K; Jadav, Niten; Vangala, Venu R; Whiteside, Benjamin; Paradkar, Anant
2017-08-01
Polymorphism in active pharmaceutical ingredients can be regarded as critical for the potential that crystal form can have on the quality, efficacy, and safety of the final drug product. The current contribution aims to characterize thermodynamic interrelationship of a dimorphic co-crystal, FI and FII, involving carbamazepine (CBZ) and saccharin (SAC) molecules. Supramolecular synthesis of CBZ-SAC FI and FII has been performed using thermokinetic methods and systematically characterized by differential scanning calorimetry, powder X-ray diffraction, solubility, and slurry measurements. According to the heat of fusion rule by Burger and Ramberger, FI (ΔH fus = 121.1 J/g; melting point, 172.5°C) and FII (ΔH fus = 110.3 J/g; melting point, 164.7°C) are monotropically related. The solubility and van't Hoff plot results suggest FI stable and FII metastable forms. This study reveals that CBZ-SAC co-crystal phases, FI or FII, could be stable to heat-induced stresses; however, FII converts to FI during solution-mediated transformation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of low molecular sugars on the retrogradation of tapioca starch gels during storage
Li, Rongfang; Kang, Huaibin; Luo, Denglin; Fan, Jinling; Zhu, Wenxue; Liu, Xinfang; Tong, Qunyi
2017-01-01
The effects of low molecular sugars (sucrose, glucose and trehalose) on the retrogradation of tapioca starch (TS) gels stored at 4°C for different periods were examined with different methods. Decrease in melting enthalpy (ΔHmelt) were obtained through differential scanning calorimetry analysis. Analysis of decrease in crystallization rate constant (k) and increase in semi-crystallization time (τ1/2) results obtained from retrogradation kinetics indicated that low molecular sugars could retard the retrogradation of TS gels and further revealed trehalose as the best inhibitor among the sugars used in this study. Fourier transform infrared (FTIR) analysis indicated that the intensity ratio of 1047 to 1022 cm−1 was increased with the addition of sugars in the order of trehalose > sucrose > glucose. Decrease in hardness parameters and increase in springiness parameters obtained from texture profile analysis (TPA) analysis also indicated that low molecular sugars could retard the retrogradation of TS gels. The results of FTIR and TPA showed a consistent sugar effect on starch retrogradation with those of DSC and retrogradation kinetics analysis. PMID:29284007
Effects of low molecular sugars on the retrogradation of tapioca starch gels during storage.
Zhang, Xiaoyu; Li, Rongfang; Kang, Huaibin; Luo, Denglin; Fan, Jinling; Zhu, Wenxue; Liu, Xinfang; Tong, Qunyi
2017-01-01
The effects of low molecular sugars (sucrose, glucose and trehalose) on the retrogradation of tapioca starch (TS) gels stored at 4°C for different periods were examined with different methods. Decrease in melting enthalpy (ΔHmelt) were obtained through differential scanning calorimetry analysis. Analysis of decrease in crystallization rate constant (k) and increase in semi-crystallization time (τ1/2) results obtained from retrogradation kinetics indicated that low molecular sugars could retard the retrogradation of TS gels and further revealed trehalose as the best inhibitor among the sugars used in this study. Fourier transform infrared (FTIR) analysis indicated that the intensity ratio of 1047 to 1022 cm-1 was increased with the addition of sugars in the order of trehalose > sucrose > glucose. Decrease in hardness parameters and increase in springiness parameters obtained from texture profile analysis (TPA) analysis also indicated that low molecular sugars could retard the retrogradation of TS gels. The results of FTIR and TPA showed a consistent sugar effect on starch retrogradation with those of DSC and retrogradation kinetics analysis.
Khamanga, Sandile Maswazi; Walker, Roderick B
2012-01-01
Captopril (CPT) microparticles were manufactured by solvent evaporation using acetone (dispersion phase) and liquid paraffin (manufacturing phase) with Eudragit® and Methocel® as coat materials. Design of experiments and response surface methodology (RSM) approaches were used to optimize the process. The microparticles were characterized based on the percent of drug released and yield, microcapsule size, entrapment efficiency and Hausner ratio. Differential scanning calorimetry (DSC), Infrared (IR) spectroscopy, scanning electron microscopy (SEM) and in vitro dissolution studies were conducted. The microcapsules were spherical, free-flowing and IR and DSC thermograms revealed that CPT was stable. The percent drug released was investigated with respect to Eudragit® RS and Methocel® K100M, Methocel® K15M concentrations and homogenizing speed. The optimal conditions for microencapsulation were 1.12 g Eudragit® RS, 0.67 g Methocel® K100M and 0.39 g Methocel® K15M at a homogenizing speed of 1643 rpm and 89% CPT was released. The value of RSM-mediated microencapsulation of CPT was elucidated.
Seetapan, Nispa; Bejrapha, Piyawan; Srinuanchai, Wanwisa; Ruktanonchai, Uracha Rungsardthong
2010-01-01
In the present study, gamma-oryzanol was incorporated into glycerol behenate (Compritol 888 ATO) nanoparticles (SLNs) at 5 and 10% (w/w) of lipid phase. Increasing lipid phase concentration resulted in increased consistency and particle diameter of SLNs. Upon storage over 60 days at 4, 25 and 40 degrees C, the instability was observed by rheological analysis for all samples due to the formation of gelation. Rheological measurement revealed the increase in storage modulus and critical stress during storage at all temperatures. However, at 40 degrees C, the pronounced instability was observed from the highest increase in storage modulus and a formation of rod-like network structure from scanning electron micrographs. An increase in crystallinity, determined by differential scanning calorimetry, was also found during storage at all temperatures, confirming the instability of SLNs. Particle diameters and zeta potentials of both concentrations at all storage conditions failed to explain the observed instability. These investigations may help to develop formulations of solid lipid nanoparticles, which are optimized with respect to the desired rheological properties.
Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films.
Mishra, R K; Ramasamy, K; Lim, S M; Ismail, M F; Majeed, A B A
2014-08-01
The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R
2015-08-01
PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.
Borowiec, Joanna; Gillin, William P; Willis, Maureen; Boi, Filippo; He, Yi; Wen, Jiqiu; Wang, Shanling; Schulz, Leander
2017-12-29
In this study, a direct sulfidation reaction of ammonium perrhenate (NH<sub>4</sub>ReO<sub>4</sub>) leading to a synthesis of rhenium disulfide (ReS<sub>2</sub>) is demonstrated. These finding reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS<sub>2</sub>. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scannig calorimetry (DSC). The results indicated the formation of a lower symmetry (1T<sub>d</sub>) ReS<sub>2</sub> with a low degree of layer stacking. © 2017 IOP Publishing Ltd.
Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide
NASA Astrophysics Data System (ADS)
Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.
2018-03-01
The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).
Lipp, R
1998-12-01
The purpose of this study was to stabilize transdermal drug-delivery systems (TDDS) highly loaded with sex steroids against recrystallization of drugs during storage. To facilitate the selection of potential crystallization inhibitors a drug-excipient interaction test was also established. Analysis of the thermal behaviour of 1:1 steroid-excipient mixtures by differential scanning calorimetry (DSC) revealed that oestradiol and gestodene interact strongly with silicone dioxide and povidones, e.g. povidone K12. The addition of povidone K12 to polyacrylate-based matrix TDDS containing either 3% oestradiol or 2% gestodene resulted in stable systems which did not recrystallize during storage at 25 degrees C for more than 5 years. Significant recrystallization was, on the other hand, observed in non-stabilized reference patches even after 1 to 2 months storage. The DSC screening model proved very effective for selection of inhibitors of the crystallization of sex steroids in matrix TDDS. The crystallization inhibitor approach is a highly versatile stabilization tool for matrix patches containing high concentrations of sex steroids.
The Influence of Ultrasonic Cavitation on the Formation of Fe-Rich Intermetallics in A383 Alloy
NASA Astrophysics Data System (ADS)
Xuan, Yang; Liu, Tao; Nastac, Laurentiu; Brewer, Luke; Levin, Ilya; Arvikar, Vish
2018-06-01
The effect of ultrasonic treatment (UST) on the formation of Fe-rich intermetallics (including sludge) in the A383 alloy is investigated for different processing temperatures in the present study. Differential scanning calorimetry is used to analyze the precipitation temperature of the sludge phase. The results revealed that the sludge will precipitate at a temperature above that of the Al matrix and the precipitation temperature decreases with an increasing cooling rate. UST cavitation applied at different temperatures (600 °C to 750 °C) during the solidification process breaks the sludge into small island-like pieces. However, the aggregation trend of the sludge is not changed. Sludge with small size and uniform distribution is obtained when UST is applied at 600 °C, which is lower than the precipitation temperature of the sludge. At the highest temperature (850 °C), the application of UST has no effect on the formation of either sludge or α-Fe intermetallics. At 750 °C, UST promotes the formation of the sludge when applied at 750 °C.
Robles-García, Miguel Ángel; Del-Toro-Sánchez, Carmen Lizette; Márquez-Ríos, Enrique; Barrera-Rodríguez, Arturo; Aguilar, Jacobo; Aguilar, José A; Reynoso-Marín, Francisco Javier; Ceja, I; Dórame-Miranda, R; Rodríguez-Félix, Francisco
2018-07-15
In this study, cellulose of bagasse from Agave tequilana Weber var. azul was extracted to elaborate nanofibers by the electrospinning technique. Fiber characterization was performed using Transmission Electron Microscopy (TEM), x-ray, Fournier Transform-InfraRed (FT-IR) spectroscopy, and thermal analysis by Differential Scanning Calorimetry-Thermogravimetric Analysis (DSC-TGA). Different diameters (ranging from 54.57 ± 0.02 to 171 ± 0.01 nm) of nanofibers were obtained. Cellulose nanofibers were analyzed by means of x-ray diffraction, where we observed a total loss of crystallinity in comparison with the cellulose, while FT-IR spectroscopy revealed that the hemicellulose and lignin present in the agave bagasse were removed. Thermal analysis showed that nanofibers exhibit enhanced thermal properties, and the zeta potential value (-32.5 mV) demonstrated moderate stability in the sample. In conclusion, the nanofibers obtained provide other alternatives-of-use for this agro-industrial residue and could have potential in various industrial applications, among these encapsulation of bioactive compounds and reinforcing material, to mention a few. Copyright © 2018 Elsevier Ltd. All rights reserved.
Xie, Yike; Chen, Zhongjian; Su, Rui; Li, Ye; Qi, Jianping; Wu, Wei; Lu, Yi
2017-01-01
Ursodeoxycholic acid, usually used to dissolve cholesterol gallstones in clinic, is a typical hydrophobic drug with poor oral bioavailability due to dissolution rate-limited performance. The objective of this study was to increase the dissolution of ursodeoxycholic acid by amorphous nanosuspensions. Nanoprecipitation based on acid-base neutralization was used to prepare the nanosuspensions with central composite design to optimize the formula. The nanosuspensions were characterized by particle size, morphology, crystallology and dissolution. The ursodeoxycholic acid nanosuspensions showed mean particle size around 380 nm with polydispersion index value about 0.25. Scanning electron microscope observed high coverage of HPMC-E50 onto the surface of the nanosuspensions. Differential scanning calorimetry and powder X-ray diffractometry revealed amorphous structure of the ursodeoxycholic acid nanosuspensions. A significant increase of dissolution in acidic media was achieved by the amorphous nanosuspensions compared with the physical mixture. It can be predicted that the amorphous nanosuspensions show great potential in improving the oral bioavailability of ursodeoxycholic acid. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effect of squalane on mebendazole-loaded Compritol® nanoparticles.
Graves, Richard A; Ledet, Grace A; Nation, Cedric A; Pramar, Yashoda V; Bostanian, Levon A; Mandal, Tarun K
2015-01-01
The objective of this study is to develop nanostructured lipid formulations of Compritol for the delivery of mebendazole. The formulations were prepared with Compritol 888 ATO, squalane, and Pluronic F68. Nine batches with different amounts of modifier, squalane, and drug were prepared. The formulations were characterized by evaluating particle size, morphology, and zeta potential. The thermal properties of the formulations were analyzed by differential scanning calorimetry (DSC). The encapsulation efficiency of each formulation and the drug release rates from each formulation were quantified by UPLC. The particles were spherical and had median particle sizes between 300 and 600 nm (50th percentile). A linear relationship was observed between Compritol/squalane composition and the melting point of the mixture. The DSC scans of the formulations revealed some recrystallization of the drug from the formulations, and the amount of recrystallization correlated with the amount of squalane in the formulation. Approximately, 70% efficiency of encapsulation was observed in the formulations with 30% (w/w) squalane, and these formulations also had faster dissolution rates compared to the other formulations. Overall, the formulations with 30% squalane are the preferred formulation for future testing.
Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment.
Nayak, Aditya P; Tiyaboonchai, Waree; Patankar, Swati; Madhusudhan, Basavaraj; Souto, Eliana B
2010-11-01
In the present work, curcuminoids-loaded lipid nanoparticles for parenteral administration were successfully prepared by a nanoemulsion technique employing high-speed homogenizer and ultrasonic probe. For the production of nanoparticles, trimyristin, tristerin and glyceryl monostearate were selected as solid lipids and medium chain triglyceride (MCT) as liquid lipid. Scanning electron microscopy (SEM) revealed the spherical nature of the particles with sizes ranging between 120 and 250 nm measured by photon correlation spectroscopy (PCS). The zeta potential of the particles ranged between -28 and -45 mV depending on the nature of the lipid matrix produced, which also influenced the entrapment efficiency (EE) and drug loading capacity (LC) found to be in the range of 80-94% and 1.62-3.27%, respectively. The LC increased reciprocally on increasing the amount of MCT as confirmed by differential scanning calorimetry (DSC). DSC analyses revealed that increasing imperfections within the lipid matrix allowed for increasing encapsulation parameters. Nanoparticles were further sterilized by filtration process which was found to be superior over autoclaving in preventing thermal degradation of thermo-sensitive curcuminoids. The in vivo pharmacodynamic activity revealed 2-fold increase in antimalarial activity of curcuminoids entrapped in lipid nanoparticles when compared to free curcuminoids at the tested dosage level. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Novel Technique for Quantitative Fast Scanning Calorimetry on Electrospun Fibers
NASA Astrophysics Data System (ADS)
Thomas, David; Govinna, Nelaka; Schick, Christoph; Cebe, Peggy
Fast scanning chip calorimetry allows for the study of polymers which have rapid nucleation and/or crystallization kinetics, or degrade within their melting range. Heating rates used, up to 4000 K/s, allow studies of hetero and homogeneous nucleation at time scales inaccessible with conventional calorimeters, whose rates are typically <0.5 K/s. Polyethylene terephthalate (PET) and polyvinyl alcohol (PVA) were chosen in the development of a new methodology to obtain quantitative fast scanning thermal data from electrospun nanofibers using a Flash DSC1. The structure of nanofibers requires special methods to load nanogram-sized samples onto a UFSC1 sensor. Fibers were directly spun onto TEM grids which provide a durable substrate to support bundles of nanofibers and possess excellent thermal conductivity allowing for a strong, repeatable signal and ensure good sample to sensor contact. As spun samples were held isothermally at temperatures ranging from Tg to Tm then heated at 2,000 K/s to assess as-spun crystallinity and cold crystallization behaviors. Above Tm the fibers break up into micro- and nano-droplets. On these samples, melt crystallization experiments were performed to study nucleation and crystallization of polymer confined to nanodroplet morphology. NSF DMR-1608125.
NASA Astrophysics Data System (ADS)
Cheema, Mohammad Arif; Siddiq, Mohammad; Barbosa, Silvia; Castro, Emilio; Egea, José A.; Antelo, Luis T.; Taboada, Pablo; Mosquera, Víctor
2007-07-01
Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of the physico-chemical properties of the drug in different environments to understand the mechanism of action of the drug. Thioridazine can be considered as a hydrotrope if we considered that the term comprise hydrophilic and hydrophobic moieties that form aggregates by a stacking mechanism as it is the case of all the phenothiazine tranquillizing drugs. The association properties of the amphiphilic phenothiazine drug thioridazine hydrochloride were investigated by density, ultrasound, isothermal titration calorimetry and dynamic light scattering (DLS), yielding values of the critical concentration, adiabatic apparent compressibilities and hydrodynamic radius. The DLS data were analyzed according to the treatment of the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory to study the stability of the system. The aim of the study is to obtain information about the physico-chemical characterization of the drug in aqueous solution and the effect of ethanol on the aggregate stability of this amphiphilic drug. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups.
Escobar, Jhon Fernando Berrío; Restrepo, Manuel Humberto Pastrana; Fernández, Diana Margarita Márquez; Martínez, Alejandro Martínez; Giordani, Cristiano; Castelli, Francesco; Sarpietro, Maria Grazia
2018-06-01
Differential scanning calorimetry (DSC) is a thermoanalytical technique which provides information on the interaction between drugs and models of cell membranes. Studies on the calorimetric behavior of hydrated phospholipids within liposomes are employed to shed light on the changes in the physico-chemical properties when interacting with drugs. In this report, new potential anti-cancer drugs such as uridine and uridine derivatives (acetonide and its succinate), 3β-5α,8α-endoperoxide-cholestan-6-en-3-ol (5,8-epidioxicholesterol) and conjugate (uridine acetonide-epidioxicholesterol succinate) have been synthesized. Steglich esterification method using coupling agents allowed to obtain the uridine acetonide-sterol conjugate. The study on the interaction between the drugs and dimiristoyl-phophatidilcholine (DMPC) liposomes has been conducted by the use of DSC. The analysis of the DSC curves indicated that the uridine and derivatives (acetonide and its succinate) present a very soft interaction with the DMPC liposomes, whereas the 5,8-epidioxicholesterol and the conjugate showed a strong effect on the thermotropic behavior. Our results suggested that the lipophilic character of uridine acetonide-sterol conjugate improves the affinity with the DMPC liposomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Roux, María Victoria; Temprado, Manuel; Notario, Rafael; Foces-Foces, Concepción; Emel'yanenko, Vladimir N; Verevkin, Sergey P
2008-08-14
This paper reports the value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K for barbituric acid. The enthalpies of combustion and sublimation were measured by static bomb combustion calorimetry and transference (transpiration) method in a saturated N2 stream and a gas-phase enthalpy of formation value of -(534.3 +/- 1.7) kJ x mol(-1) was determined at T = 298.15 K. G3-calculated enthalpies of formation are in very good agreement with the experimental value. The behavior of the sample as a function of the temperature was studied by differential scanning calorimetry, and a new polymorph of barbituric acid at high temperature was found. In the solid state, two anhydrous forms are known displaying two out of the six hydrogen-bonding patterns observed in the alkyl/alkenyl derivatives retrieved from the Cambridge Crystallographic Database. The stability of these motifs has been analyzed by theoretical calculations. X-ray powder diffraction technique was used to establish to which polymorphic form corresponds to the commercial sample used in this study and to characterize the new form at high temperature.
Analog VS Digital Hadron Calorimetry at a Future Electron-Positron Linear Collider
NASA Astrophysics Data System (ADS)
Magill, Stephen R.
2005-02-01
Precision jet measurements at a future e+e- linear collider may only be possible using so-called Particle Flow Algorithms (PFAs). While there are many possible implementations of P-flow techniques, they all have in common separation of induced calorimeter showers from charged and neutral hadrons (as well as photons) within a jet. Shower reconstruction in the calorimeter becomes more important than energy measurement of hadrons. The calorimeter cells must be highly granular both transverse to the particle trajectory and in longitudinal segmentation. It is probable that as the cell size decreases, it will be harder to get an energy measure from each cell (analog calorimetry). Using only the hit information (digital calorimetry) may be the best way to measure the neutral hadron energy contribution to jets. In this paper, comparisons of analog and digital methods of measuring the contributions of neutral hadrons to jets are made in simulation and in the context of a particular PFA, indicating that the digital method is at least equal to the analog case in jet energy resolution.
Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions
NASA Astrophysics Data System (ADS)
Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.
2011-05-01
The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.
Calorimetric Study of Alkali Metal Ion (K +, Na +, Li +) Exchange in a Clay-Like MXene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Geetu; Muthuswamy, Elayaraja; Naguib, Michael
Intercalation of ions in layered materials has been explored to improve the rate capability in Li-ion batteries and supercapacitors. This work investigates the energetics of alkali ion exchange in a clay-like MXene, Ti 3C 2T x, where T x stands for anionic surface moieties, by immersion calorimetry in aqueous solutions. The measured immersion enthalpies of clay-like Ti 3C 2T x, ΔH imm, at 25 °C in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.19 (±0.56), -5.90 (±0.31), -1.31 (±0.20), and -1.29 (±0.13) kJ/mol of MXene, respectively. Inductively coupled plasma mass spectrometry is used tomore » obtain the concentrations of alkali ions in the solid and aqueous phases. Using these concentrations, the enthalpies of exchange of alkali metal ions (Li+, Na+, and K+) are calculated; ΔHex in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.3 (±2.2), 21.0 (±0.9), -1.3 (±0.2), and 302.4 (±0.6) kJ/mol of MXene, respectively. Both immersion and exchange enthalpies are most exothermic for potassium. This suggests that K+ ions interact more strongly with anions present in the interlayers of this MXene than Na + and Li + ions. Water vapor adsorption calorimetry indicates very weak interaction of water with the MXene, while immersion calorimetry suggests a weakly hydrophilic nature of the MXene surface.« less
Calorimetric Study of Alkali Metal Ion (K +, Na +, Li +) Exchange in a Clay-Like MXene
Sharma, Geetu; Muthuswamy, Elayaraja; Naguib, Michael; ...
2017-06-21
Intercalation of ions in layered materials has been explored to improve the rate capability in Li-ion batteries and supercapacitors. This work investigates the energetics of alkali ion exchange in a clay-like MXene, Ti 3C 2T x, where T x stands for anionic surface moieties, by immersion calorimetry in aqueous solutions. The measured immersion enthalpies of clay-like Ti 3C 2T x, ΔH imm, at 25 °C in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.19 (±0.56), -5.90 (±0.31), -1.31 (±0.20), and -1.29 (±0.13) kJ/mol of MXene, respectively. Inductively coupled plasma mass spectrometry is used tomore » obtain the concentrations of alkali ions in the solid and aqueous phases. Using these concentrations, the enthalpies of exchange of alkali metal ions (Li+, Na+, and K+) are calculated; ΔHex in 1 M KCl, 1 M NaCl, 1 M LiCl, and nanopure water are -9.3 (±2.2), 21.0 (±0.9), -1.3 (±0.2), and 302.4 (±0.6) kJ/mol of MXene, respectively. Both immersion and exchange enthalpies are most exothermic for potassium. This suggests that K+ ions interact more strongly with anions present in the interlayers of this MXene than Na + and Li + ions. Water vapor adsorption calorimetry indicates very weak interaction of water with the MXene, while immersion calorimetry suggests a weakly hydrophilic nature of the MXene surface.« less
NASA Astrophysics Data System (ADS)
Pragna Lakshmi, T.; Mondal, Moumita; Ramadas, Krishna; Natarajan, Sakthivel
2017-08-01
Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.
Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu
2012-05-09
Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.
Preparation and Evaluation of Montelukast Sodium Loaded Solid Lipid Nanoparticles
Priyanka, K; Sathali, A Abdul Hasan
2012-01-01
Solid lipid nanoparticles (SLNs) are an alternative carrier system used to load the drug for targeting, to improve the bioavailability by increasing its solubility, and protecting the drug from presystemic metabolism. The avoidance of presystemic metabolism is due to the nano-metric size range, so that the liver cannot uptake the drug from the delivery system and is not metabolized by the liver. Montelukast sodium is an anti-asthmatic drug, because of its poor oral bioavailability, presystemic metabolism, and decreased half-life; it was chosen to formulate as the solid lipid nanoparticle (SLN) system by hot homogenization followed by an ultrasonication method, to overcome the above. Compritol ATO 888, stearic acid, and glyceryl monostearate were used as a lipid matrix and polyvinyl alcohol as a surfactant. The prepared formulations have been evaluated for entrapment efficiency, drug content, in vitro drug release, particle size analysis, scanning electron microscopy, Fourier transform-infrared studies (FT-IR), differential scanning calorimetry (DSC), and stability. Particle size analysis revealed that the SLN prepared from the higher melting point lipid showed a larger particle size and with increased carbon chain length of the fatty acids. Entrapment efficiency (EE) was ranging from 42% to 92%. In vitro release studies showed maximum cumulative drug release was obtained for F 1 (59.1%) containing stearic acid, and the lowest was observed for F 18 (28.1%) containing compritol ATO 888 after 12 h and all the formulations followed first-order release kinetics. FT-IR and DSC studies revealed no interaction between drug and lipids. Studies showed that increase in lipid concentration, increased particle size, EE, and maintained the sustained release of drug. Among all, compritol ATO 888 was chosen as the best lipid for formulating SLN because it had high EE and sustained the drug release. PMID:23112531
Grajzer, Magdalena; Prescha, Anna; Korzonek, Katarzyna; Wojakowska, Anna; Dziadas, Mariusz; Kulma, Anna; Grajeta, Halina
2015-12-01
Two new commercially available high linolenic oils, pressed at low temperature from rose hip seeds, were characterised for their composition, quality and DPPH radical scavenging activity. The oxidative stability of oils was assessed using differential scanning calorimetry (DSC). Phytosterols, tocopherols and carotenoids contents were up to 6485.4; 1124.7; and 107.7 mg/kg, respectively. Phenolic compounds determined for the first time in rose hip oil totalled up to 783.55 μg/kg, with a predominant presence of p-coumaric acid methyl ester. Antiradical activity of the oils reached up to 3.00 mM/kg TEAC. The acid, peroxide and p-anisidine values as well as iron and copper contents indicated good quality of the oils. Relatively high protection against oxidative stress in the oils seemed to be a result of their high antioxidant capacity and the level of unsaturation of fatty acids. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rongeat, Carine; Llamas-Jansa, Isabel; Doppiu, Stefania; Deledda, Stefano; Borgschulte, Andreas; Schultz, Ludwig; Gutfleisch, Oliver
2007-11-22
Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.
Zhang, Hui; Taxipalati, Maierhaba; Que, Fei; Feng, Fengqin
2013-12-01
The microstructure transitions of a food-grade U-type microemulsion system containing glycerol monolaurate and propionic acid at a 1:1 mass ratio as oil phase and Tween 80 as surfactant were investigated along a water dilution line at a ratio of 80:20 mass% surfactant/oil phase, based on a previously studied phase diagram. From the water thermal behaviours detected by differential scanning calorimetry, three structural regions are identified along the dilution line. In the first region, all water molecules are confined to the water core of the reverse micelles, leading to the formation of w/o microemulsion. As the water content increases, the water gains mobility, transforms into bicontinuous in the second region, and finally the microemulsion become o/w in the third region. The thermal transition points coincide with the structural phase transitions by electrical conductivity measurements, indicating that the structural transitions occur at 35 and 65 mass% of water along the dilution line. Copyright © 2013 Elsevier Ltd. All rights reserved.
Steady State Condition in the Measurement of VO
Cadena, M; Sacristan, E; Infante, O; Escalante, B; Rodriguez, F
2005-01-01
Resting Metabolic Rate (RMR) is computed using VO
Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph
2012-04-12
Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.
Measuring the validity and reliability of the Apple Watch as a physical activity monitor.
Zhang, Peng; Godin, Steven D; Owens, Matthew V
2018-04-04
This study aimed to investigate the validity and reliability of the energy expenditure (EE) estimation of Apple Watch among college students. Thirty college students completed two sets of three 10-minute treadmill walking and running trials while wearing three Apple Watches and being connected to indirect calorimetry. The walking trials were at speeds of 54, 80, and 107 m•min-1 while the running trials were at 134, 161, 188m•min-1. Energy expenditure comparisons were made using Two-way ANOVA with repeatedmeasures. Reliability was analyzed by Intraclass Correlation. There was no significant device x speed interactions (F (15, 696) = 1.113, p = 0.341) between the indirect calorimetry (criterion) and Apple Watch. The lowest Inter-Class Correlation (ICC) scores were 0.49 (95%CI) at 54 while the highest were 0.72 (95%CI) at 107 and 134 m•min-1. Apple Watch demonstrated a low to moderate validity and reliability on measuring EE.
Klapötke, Thomas M; Stierstorfer, Jörg
2008-08-07
The highly energetic compound 1,3,5-triaminoguanidinium dinitramide (1) was prepared in high yield (82%) according to a new synthesis by the reaction of potassium dinitramide and triaminoguanidinium perchlorate. The heat of formation was calculated in an extensive computational study (CBS-4M). With this the detonation parameters of compound were computed using the EXPLO5 software: D = 8796 m s(-1), p = 299 kbar. In addition, a full characterization of the chemical properties (single X-ray diffraction, IR and Raman spectroscopy, multinuclear NMR spectroscopy, mass spectrometry and elemental analysis) as well as of the energetic characteristics (differential scanning calorimetry, thermal safety calorimetry, impact, friction and electrostatic tests) is given in this work. Due to the high impact (2 J) and friction sensitivity (24 N) several attempts to reduce these sensitivities were performed by the addition of wax. The performance of was tested applying a "Koenen" steel sleeve test resulting in a critical diameter of > or =10 mm.
van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W
2006-03-09
The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed diazepam was calculated (12-27 wt.%). In contrast to the PVP-diazepam solid dispersions, DVS-experiments revealed that inulin was not hydrophobised by diazepam. Consequently, the size of diazepam clusters could not be estimated. It was concluded that TMDSC enables characterization and quantification of the molecular distribution in amorphous solid dispersions. When the hygroscopicity of the carrier is reduced by the drug, DVS in combination with TMDSC can be used to estimate the size of amorphous drug clusters.
Walking for Health in Pregnancy: Assessment by Indirect Calorimetry and Accelerometry
ERIC Educational Resources Information Center
DiNallo, Jennifer M.; Le Masurier, Guy C.; Williams, Nancy I.; Downs, Danielle Symons
2008-01-01
The purpose of this study was to examine RT3 accelerometer activity counts and activity energy expenditure of 36 pregnant women at 20 and 32 weeks' gestation during treadmill walking and free-living conditions. During treadmill walking, oxygen consumption was collected, and activity energy expenditure was estimated for a 30-min walk at a…
Cryogenic Laser Calorimetry for Impurity Analysis
NASA Technical Reports Server (NTRS)
Swimm, R. T.
1985-01-01
The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.
Influence of solvents on the habit modification of alpha lactose monohydrate single crystals
NASA Astrophysics Data System (ADS)
Parimaladevi, P.; Srinivasan, K.
2013-02-01
Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.
Second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass.
Cao, Q P; Li, J F; Zhang, P N; Horsewell, A; Jiang, J Z; Zhou, Y H
2007-06-20
The second amorphous-to-crystalline phase transformation in Cu(60)Ti(20)Zr(20) bulk metallic glass was investigated by differential scanning calorimetry and x-ray diffractometry. The difference of the Gibbs free energies between the amorphous phase and the crystalline products during the transformation is estimated to be about 2.46 kJ mol(-1) at 753 K, much smaller than the 61 kJ mol(-1) obtained assuming that it is a polymorphic transformation. It was revealed that the phase transformation occurs through a eutectic crystallization of Cu(51)Zr(14) and Cu(2)TiZr, having an effective activation energy of the order of 400 kJ mol(-1). The average Avrami exponent n is about 2.0, indicating that the crystallization is diffusion controlled.