Sample records for cam subgrid scheme

  1. A Diagnostic PDF Cloud Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng

    2018-02-01

    Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.

  2. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Klein, S. A.; Ma, H. -Y.

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  3. A cloudy planetary boundary layer oscillation arising from the coupling of turbulence with precipitation in climate simulations

    DOE PAGES

    Zheng, X.; Klein, S. A.; Ma, H. -Y.; ...

    2017-08-24

    The Community Atmosphere Model (CAM) adopts Cloud Layers Unified By Binormals (CLUBB) scheme and an updated microphysics (MG2) scheme for a more unified treatment of cloud processes. This makes interactions between parameterizations tighter and more explicit. In this study, a cloudy planetary boundary layer (PBL) oscillation related to interaction between CLUBB and MG2 is identified in CAM. This highlights the need for consistency between the coupled subgrid processes in climate model development. This oscillation occurs most often in the marine cumulus cloud regime. The oscillation occurs only if the modeled PBL is strongly decoupled and precipitation evaporates below the cloud.more » Two aspects of the parameterized coupling assumptions between CLUBB and MG2 schemes cause the oscillation: (1) a parameterized relationship between rain evaporation and CLUBB's subgrid spatial variance of moisture and heat that induces an extra cooling in the lower PBL and (2) rain evaporation which happens at a too low an altitude because of the precipitation fraction parameterization in MG2. Either one of these two conditions can overly stabilize the PBL and reduce the upward moisture transport to the cloud layer so that the PBL collapses. Global simulations prove that turning off the evaporation-variance coupling and improving the precipitation fraction parameterization effectively reduces the cloudy PBL oscillation in marine cumulus clouds. By evaluating the causes of the oscillation in CAM, we have identified the PBL processes that should be examined in models having similar oscillations. This study may draw the attention of the modeling and observational communities to the issue of coupling between parameterized physical processes.« less

  4. Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE

    DOE PAGES

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; ...

    2008-02-27

    [1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less

  5. Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE

    NASA Astrophysics Data System (ADS)

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven

    2008-02-01

    Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.

  6. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong

    2016-02-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. In Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.

  7. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE PAGES

    Zhang, Kai; Zhao, Chun; Wan, Hui; ...

    2016-02-12

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less

  8. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Zhao, Chun; Wan, Hui

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less

  9. Impact of Stochastic Parameterization Schemes on Coupled and Uncoupled Climate Simulations with the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Berner, J.; Coleman, D.; Palmer, T.

    2015-12-01

    Stochastic parameterizations have been used for more than a decade in atmospheric models to represent the variability of unresolved sub-grid processes. They have a beneficial effect on the spread and mean state of medium- and extended-range forecasts (Buizza et al. 1999, Palmer et al. 2009). There is also increasing evidence that stochastic parameterization of unresolved processes could be beneficial for the climate of an atmospheric model through noise enhanced variability, noise-induced drift (Berner et al. 2008), and by enabling the climate simulator to explore other flow regimes (Christensen et al. 2015; Dawson and Palmer 2015). We present results showing the impact of including the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) in coupled runs of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4) with historical forcing. The SPPT scheme accounts for uncertainty in the CAM physical parameterization schemes, including the convection scheme, by perturbing the parametrised temperature, moisture and wind tendencies with a multiplicative noise term. SPPT results in a large improvement in the variability of the CAM4 modeled climate. In particular, SPPT results in a significant improvement to the representation of the El Nino-Southern Oscillation in CAM4, improving the power spectrum, as well as both the inter- and intra-annual variability of tropical pacific sea surface temperatures. References: Berner, J., Doblas-Reyes, F. J., Palmer, T. N., Shutts, G. J., & Weisheimer, A., 2008. Phil. Trans. R. Soc A, 366, 2559-2577 Buizza, R., Miller, M. and Palmer, T. N., 1999. Q.J.R. Meteorol. Soc., 125, 2887-2908. Christensen, H. M., I. M. Moroz & T. N. Palmer, 2015. Clim. Dynam., doi: 10.1007/s00382-014-2239-9 Dawson, A. and T. N. Palmer, 2015. Clim. Dynam., doi: 10.1007/s00382-014-2238-x Palmer, T.N., R. Buizza, F. Doblas-Reyes, et al., 2009, ECMWF technical memorandum 598.

  10. Impact of a Stochastic Parameterization Scheme on El Nino-Southern Oscillation in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Christensen, H. M.; Berner, J.; Sardeshmukh, P. D.

    2017-12-01

    Stochastic parameterizations have been used for more than a decade in atmospheric models. They provide a way to represent model uncertainty through representing the variability of unresolved sub-grid processes, and have been shown to have a beneficial effect on the spread and mean state for medium- and extended-range forecasts. There is increasing evidence that stochastic parameterization of unresolved processes can improve the bias in mean and variability, e.g. by introducing a noise-induced drift (nonlinear rectification), and by changing the residence time and structure of flow regimes. We present results showing the impact of including the Stochastically Perturbed Parameterization Tendencies scheme (SPPT) in coupled runs of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 4 (CAM4) with historical forcing. SPPT results in a significant improvement in the representation of the El Nino-Southern Oscillation in CAM4, improving the power spectrum, as well as both the inter- and intra-annual variability of tropical pacific sea surface temperatures. We use a Linear Inverse Modelling framework to gain insight into the mechanisms by which SPPT has improved ENSO-variability.

  11. Collaborative Project. A Flexible Atmospheric Modeling Framework for the Community Earth System Model (CESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gettelman, Andrew

    2015-10-01

    In this project we have been upgrading the Multiscale Modeling Framework (MMF) in the Community Atmosphere Model (CAM), also known as Super-Parameterized CAM (SP-CAM). This has included a major effort to update the coding standards and interface with CAM so that it can be placed on the main development trunk. It has also included development of a new software structure for CAM to be able to handle sub-grid column information. These efforts have formed the major thrust of the work.

  12. An Evaluation of Marine Boundary Layer Cloud Property Simulations in the Community Atmosphere Model Using Satellite Observations: Conventional Subgrid Parameterization versus CLUBB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hua; Zhang, Zhibo; Ma, Po-Lun

    This paper presents a two-step evaluation of the marine boundary layer (MBL) cloud properties from two Community Atmospheric Model (version 5.3, CAM5) simulations, one based on the CAM5 standard parameterization schemes (CAM5-Base), and the other on the Cloud Layers Unified By Binormals (CLUBB) scheme (CAM5-CLUBB). In the first step, we compare the cloud properties directly from model outputs between the two simulations. We find that the CAM5-CLUBB run produces more MBL clouds in the tropical and subtropical large-scale descending regions. Moreover, the stratocumulus (Sc) to cumulus (Cu) cloud regime transition is much smoother in CAM5-CLUBB than in CAM5-Base. In addition,more » in CAM5-Base we find some grid cells with very small low cloud fraction (<20%) to have very high in-cloud water content (mixing ratio up to 400mg/kg). We find no such grid cells in the CAM5-CLUBB run. However, we also note that both simulations, especially CAM5-CLUBB, produce a significant amount of “empty” low cloud cells with significant cloud fraction (up to 70%) and near-zero in-cloud water content. In the second step, we use satellite observations from CERES, MODIS and CloudSat to evaluate the simulated MBL cloud properties by employing the COSP satellite simulators. We note that a feature of the COSP-MODIS simulator to mimic the minimum detection threshold of MODIS cloud masking removes much more low clouds from CAM5-CLUBB than it does from CAM5-Base. This leads to a surprising result — in the large-scale descending regions CAM5-CLUBB has a smaller COSP-MODIS cloud fraction and weaker shortwave cloud radiative forcing than CAM5-Base. A sensitivity study suggests that this is because CAM5-CLUBB suffers more from the above-mentioned “empty” clouds issue than CAM5-Base. The COSP-MODIS cloud droplet effective radius in CAM5-CLUBB shows a spatial increase from coastal St toward Cu, which is in qualitative agreement with MODIS observations. In contrast, COSP-MODIS cloud droplet effective radius in CAM5-Base almost remains a constant. In comparison with CloudSat observations, the histogram of the radar reflectivity from modeled MBL clouds is too narrow without a distinct separation between cloud and drizzle modes. Moreover, the probability of drizzle in both simulations is almost twice as high as the observation. Future studies are needed to understand the causes of these differences and their potential connection with the “empty” cloud issues in the model.« less

  13. Joint DEnKF-albedo assimilation scheme that considers the common land model subgrid heterogeneity and a snow density-based observation operator for improving snow depth simulations

    NASA Astrophysics Data System (ADS)

    Xu, Jianhui; Zhang, Feifei; Zhao, Yi; Shu, Hong; Zhong, Kaiwen

    2016-07-01

    For the large-area snow depth (SD) data sets with high spatial resolution in the Altay region of Northern Xinjiang, China, we present a deterministic ensemble Kalman filter (DEnKF)-albedo assimilation scheme that considers the common land model (CoLM) subgrid heterogeneity. In the albedo assimilation of DEnKF-albedo, the assimilated albedos over each subgrid tile are estimated with the MCD43C1 bidirectional reflectance distribution function (BRDF) parameters product and CoLM calculated solar zenith angle. The BRDF parameters are hypothesized to be consistent over all subgrid tiles within a specified grid. In the SCF assimilation of DEnKF-albedo, a DEnKF combining a snow density-based observation operator considers the effects of the CoLM subgrid heterogeneity and is employed to assimilate MODIS SCF to update SD states over all subgrid tiles. The MODIS SCF over a grid is compared with the area-weighted sum of model predicted SCF over all the subgrid tiles within the grid. The results are validated with in situ SD measurements and AMSR-E product. Compared with the simulations, the DEnKF-albedo scheme can reduce errors of SD simulations and accurately simulate the seasonal variability of SD. Furthermore, it can improve simulations of SD spatiotemporal distribution in the Altay region, which is more accurate and shows more detail than the AMSR-E product.

  14. Modeling of the Wegener Bergeron Findeisen process—implications for aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Storelvmo, T.; Kristjánsson, J. E.; Lohmann, U.; Iversen, T.; Kirkevåg, A.; Seland, Ø.

    2008-10-01

    A new parameterization of the Wegener-Bergeron-Findeisen (WBF) process has been developed, and implemented in the general circulation model CAM-Oslo. The new parameterization scheme has important implications for the process of phase transition in mixed-phase clouds. The new treatment of the WBF process replaces a previous formulation, in which the onset of the WBF effect depended on a threshold value of the mixing ratio of cloud ice. As no observational guidance for such a threshold value exists, the previous treatment added uncertainty to estimates of aerosol effects on mixed-phase clouds. The new scheme takes subgrid variability into account when simulating the WBF process, allowing for smoother phase transitions in mixed-phase clouds compared to the previous approach. The new parameterization yields a model state which gives reasonable agreement with observed quantities, allowing for calculations of aerosol effects on mixed-phase clouds involving a reduced number of tunable parameters. Furthermore, we find a significant sensitivity to perturbations in ice nuclei concentrations with the new parameterization, which leads to a reversal of the traditional cloud lifetime effect.

  15. Evaluation of WRF physical parameterizations against ARM/ASR Observations in the post-cold-frontal region to improve low-level clouds representation in CAM5

    NASA Astrophysics Data System (ADS)

    Lamraoui, F.; Booth, J. F.; Naud, C. M.

    2017-12-01

    The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.

  16. Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS)

    NASA Technical Reports Server (NTRS)

    Seth, Anji; Giorgi, Filippo; Dickinson, Robert E.

    1994-01-01

    A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces st the scale of an atmospheric model (AM) grid cells. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climate forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominat vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.

  17. Development of fine-resolution analyses and expanded large-scale forcing properties. Part II: Scale-awareness and application to single-column model experiments

    DOE PAGES

    Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...

    2015-01-20

    Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less

  18. An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection

    NASA Astrophysics Data System (ADS)

    Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.

    2018-03-01

    Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.

  19. Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud – radiation interactions

    EPA Science Inventory

    The radiation schemes in the Weather Research and Forecasting (WRF) model have previously not accounted for the presence of subgrid-scale cumulus clouds, thereby resulting in unattenuated shortwave radiation, which can lead to overly energetic convection and overpredicted surface...

  20. A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.

    PubMed

    Catarinucci, Luca; Tarricone, Luciano

    2009-01-01

    The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human-antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.

  1. ED(MF)n: Humidity-Convection Feedbacks in a Mass Flux Scheme Based on Resolved Size Densities

    NASA Astrophysics Data System (ADS)

    Neggers, R.

    2014-12-01

    Cumulus cloud populations remain at least partially unresolved in present-day numerical simulations of global weather and climate, and accordingly their impact on the larger-scale flow has to be represented through parameterization. Various methods have been developed over the years, ranging in complexity from the early bulk models relying on a single plume to more recent approaches that attempt to reconstruct the underlying probability density functions, such as statistical schemes and multiple plume approaches. Most of these "classic" methods capture key aspects of cumulus cloud populations, and have been successfully implemented in operational weather and climate models. However, the ever finer discretizations of operational circulation models, driven by advances in the computational efficiency of supercomputers, is creating new problems for existing sub-grid schemes. Ideally, a sub-grid scheme should automatically adapt its impact on the resolved scales to the dimension of the grid-box within which it is supposed to act. It can be argued that this is only possible when i) the scheme is aware of the range of scales of the processes it represents, and ii) it can distinguish between contributions as a function of size. How to conceptually represent this knowledge of scale in existing parameterization schemes remains an open question that is actively researched. This study considers a relatively new class of models for sub-grid transport in which ideas from the field of population dynamics are merged with the concept of multi plume modelling. More precisely, a multiple mass flux framework for moist convective transport is formulated in which the ensemble of plumes is created in "size-space". It is argued that thus resolving the underlying size-densities creates opportunities for introducing scale-awareness and scale-adaptivity in the scheme. The behavior of an implementation of this framework in the Eddy Diffusivity Mass Flux (EDMF) model, named ED(MF)n, is examined for a standard case of subtropical marine shallow cumulus. We ask if a system of multiple independently resolved plumes is able to automatically create the vertical profile of bulk (mass) flux at which the sub-grid scale transport balances the imposed larger-scale forcings in the cloud layer.

  2. Evaluation of WRF Simulations With Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Beljaars, A.; Wang, Y.; Huang, B.; Lin, C.; Chen, Y.; Wu, H.

    2017-09-01

    Weather Research and Forecasting (WRF) simulations with different selections of subgrid orographic drag over the Tibetan Plateau have been evaluated with observation and ERA-Interim reanalysis. Results show that the subgrid orographic drag schemes, especially the turbulent orographic form drag (TOFD) scheme, efficiently reduce the 10 m wind speed bias and RMS error with respect to station measurements. With the combination of gravity wave, flow blocking and TOFD schemes, wind speed is simulated more realistically than with the individual schemes only. Improvements are also seen in the 2 m air temperature and surface pressure. The gravity wave drag, flow blocking drag, and TOFD schemes combined have the smallest station mean bias (-2.05°C in 2 m air temperature and 1.27 hPa in surface pressure) and RMS error (3.59°C in 2 m air temperature and 2.37 hPa in surface pressure). Meanwhile, the TOFD scheme contributes more to the improvements than the gravity wave drag and flow blocking schemes. The improvements are more pronounced at low levels of the atmosphere than at high levels due to the stronger drag enhancement on the low-level flow. The reduced near-surface cold bias and high-pressure bias over the Tibetan Plateau are the result of changes in the low-level wind components associated with the geostrophic balance. The enhanced drag directly leads to weakened westerlies but also enhances the a-geostrophic flow in this case reducing (enhancing) the northerlies (southerlies), which bring more warm air across the Himalaya Mountain ranges from South Asia (bring less cold air from the north) to the interior Tibetan Plateau.

  3. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  4. Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.

    2012-12-01

    Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.

  5. Large-eddy Simulation of Stratocumulus-topped Atmospheric Boundary Layers with Dynamic Subgrid-scale Models

    NASA Technical Reports Server (NTRS)

    Senocak, Inane

    2003-01-01

    The objective of the present study is to evaluate the dynamic procedure in LES of stratocumulus topped atmospheric boundary layer and assess the relative importance of subgrid-scale modeling, cloud microphysics and radiation modeling on the predictions. The simulations will also be used to gain insight into the processes leading to cloud top entrainment instability and cloud breakup. In this report we document the governing equations, numerical schemes and physical models that are employed in the Goddard Cumulus Ensemble model (GCEM3D). We also present the subgrid-scale dynamic procedures that have been implemented in the GCEM3D code for the purpose of the present study.

  6. An improved snow scheme for the ECMWF land surface model: Description and offline validation

    Treesearch

    Emanuel Dutra; Gianpaolo Balsamo; Pedro Viterbo; Pedro M. A. Miranda; Anton Beljaars; Christoph Schar; Kelly Elder

    2010-01-01

    A new snow scheme for the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model has been tested and validated. The scheme includes a new parameterization of snow density, incorporating a liquid water reservoir, and revised formulations for the subgrid snow cover fraction and snow albedo. Offline validation (covering a wide range of spatial and...

  7. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE PAGES

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...

    2017-09-14

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  8. Towards improved parameterization of a macroscale hydrologic model in a discontinuous permafrost boreal forest ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.

    Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less

  9. Preparing CAM-SE for Multi-Tracer Applications: CAM-SE-Cslam

    NASA Astrophysics Data System (ADS)

    Lauritzen, P. H.; Taylor, M.; Goldhaber, S.

    2014-12-01

    The NCAR-DOE spectral element (SE) dynamical core comes from the HOMME (High-Order Modeling Environment; Dennis et al., 2012) and it is available in CAM. The CAM-SE dynamical core is designed with intrinsic mimetic properties guaranteeing total energy conservation (to time-truncation errors) and mass-conservation, and has demonstrated excellent scalability on massively parallel compute platforms (Taylor, 2011). For applications involving many tracers such as chemistry and biochemistry modeling, CAM-SE has been found to be significantly more computationally costly than the current "workhorse" model CAM-FV (Finite-Volume; Lin 2004). Hence a multi-tracer efficient scheme, called the CSLAM (Conservative Semi-Lagrangian Multi-tracer; Lauritzen et al., 2011) scheme, has been implemented in the HOMME (Erath et al., 2012). The CSLAM scheme has recently been cast in flux-form in HOMME so that it can be coupled to the SE dynamical core through conventional flux-coupling methods where the SE dynamical core provides background air mass fluxes to CSLAM. Since the CSLAM scheme makes use of a finite-volume gnomonic cubed-sphere grid and hence does not operate on the SE quadrature grid, the capability of running tracer advection, the physical parameterization suite and dynamics on separate grids has been implemented in CAM-SE. The default CAM-SE-CSLAM setup is to run physics on the quasi-equal area CSLAM grid. The capability of running physics on a different grid than the SE dynamical core may provide a more consistent coupling since the physics grid option operates with quasi-equal-area cell average values rather than non-equi-distant grid-point (SE quadrature point) values. Preliminary results on the performance of CAM-SE-CSLAM will be presented.

  10. How Difficult is it to Reduce Low-Level Cloud Biases With the Higher-Order Turbulence Closure Approach in Climate Models?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2015-01-01

    Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC is that cloud water content is much higher than in CAM5, which is combined with higher low-cloud coverage to produce larger shortwave CREs in some low-cloud prevailing regions. Thus, the cloud-radiative feedbacks are exaggerated there. The turning exercise is focused on microphysical parameters, which are also commonly used for tuning in climate models. The results will be discussed in this presentation.

  11. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  12. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  13. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE PAGES

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.; ...

    2016-07-19

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  14. Comparison of GCM subgrid fluxes calculated using BATS and SiB schemes with a coupled land-atmosphere high-resolution model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Jinmei; Arritt, R.W.

    The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation,more » many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.« less

  15. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE PAGES

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    2017-02-22

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  16. Exploring new topography-based subgrid spatial structures for improving land surface modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Leung, Lai-Yung Ruby

    Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less

  17. Efficient implicit LES method for the simulation of turbulent cavitating flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan

    2016-07-01

    We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less

  18. Shortwave radiation parameterization scheme for subgrid topography

    NASA Astrophysics Data System (ADS)

    Helbig, N.; LöWe, H.

    2012-02-01

    Topography is well known to alter the shortwave radiation balance at the surface. A detailed radiation balance is therefore required in mountainous terrain. In order to maintain the computational performance of large-scale models while at the same time increasing grid resolutions, subgrid parameterizations are gaining more importance. A complete radiation parameterization scheme for subgrid topography accounting for shading, limited sky view, and terrain reflections is presented. Each radiative flux is parameterized individually as a function of sky view factor, slope and sun elevation angle, and albedo. We validated the parameterization with domain-averaged values computed from a distributed radiation model which includes a detailed shortwave radiation balance. Furthermore, we quantify the individual topographic impacts on the shortwave radiation balance. Rather than using a limited set of real topographies we used a large ensemble of simulated topographies with a wide range of typical terrain characteristics to study all topographic influences on the radiation balance. To this end slopes and partial derivatives of seven real topographies from Switzerland and the United States were analyzed and Gaussian statistics were found to best approximate real topographies. Parameterized direct beam radiation presented previously compared well with modeled values over the entire range of slope angles. The approximation of multiple, anisotropic terrain reflections with single, isotropic terrain reflections was confirmed as long as domain-averaged values are considered. The validation of all parameterized radiative fluxes showed that it is indeed not necessary to compute subgrid fluxes in order to account for all topographic influences in large grid sizes.

  19. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; ...

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme.This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  20. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE PAGES

    Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; ...

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysicsmore » scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. In conclusion, the new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  1. Log-Normal Turbulence Dissipation in Global Ocean Models

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor

    2018-03-01

    Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.

  2. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yuxing; Fan, Jiwen; Xiao, Heng

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less

  3. Implicit and explicit subgrid-scale modeling in discontinuous Galerkin methods for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime

    2017-11-01

    Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.

  4. Investigating the scale-adaptivity of a shallow cumulus parameterization scheme with LES

    NASA Astrophysics Data System (ADS)

    Brast, Maren; Schemann, Vera; Neggers, Roel

    2017-04-01

    In this study we investigate the scale-adaptivity of a new parameterization scheme for shallow cumulus clouds in the gray zone. The Eddy-Diffusivity Multiple Mass-Flux (or ED(MF)n ) scheme is a bin-macrophysics scheme, in which subgrid transport is formulated in terms of discretized size densities. While scale-adaptivity in the ED-component is achieved using a pragmatic blending approach, the MF-component is filtered such that only the transport by plumes smaller than the grid size is maintained. For testing, ED(MF)n is implemented in a large-eddy simulation (LES) model, replacing the original subgrid-scheme for turbulent transport. LES thus plays the role of a non-hydrostatic testing ground, which can be run at different resolutions to study the behavior of the parameterization scheme in the boundary-layer gray zone. In this range convective cumulus clouds are partially resolved. We find that at high resolutions the clouds and the turbulent transport are predominantly resolved by the LES, and the transport represented by ED(MF)n is small. This partitioning changes towards coarser resolutions, with the representation of shallow cumulus clouds becoming exclusively carried by the ED(MF)n. The way the partitioning changes with grid-spacing matches the results of previous LES studies, suggesting some scale-adaptivity is captured. Sensitivity studies show that a scale-inadaptive ED component stays too active at high resolutions, and that the results are fairly insensitive to the number of transporting updrafts in the ED(MF)n scheme. Other assumptions in the scheme, such as the distribution of updrafts across sizes and the value of the area fraction covered by updrafts, are found to affect the location of the gray zone.

  5. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  6. Parallel Synthesis and Biocatalytic Amplification of Marine-Inspired Libraries: An Integrated Approach Toward Discovering New Chemotherapeutics

    DTIC Science & Technology

    2007-09-01

    m (Cyt-m). We chose to study the oxidation of camphor to hydroxycamphor (Scheme 1) because it is the natural reaction for P450cam and there was...only one known reaction product. 10 O O HO camphor 5-exo-hydroxycamphor Scheme 1. The hydroxylation of camphor by P450cam, producing...phases, and 250 rpm. The oxidation of camphor to hydroxycamphor is 100% coupled with NADH oxidation, allowing for a direct correlation of NADH

  7. Sensitivities of Summertime Mesoscale Circulations in the Coastal Carolinas to Modifications of the Kain-Fritsch Cumulus Parameterization.

    PubMed

    Sims, Aaron P; Alapaty, Kiran; Raman, Sethu

    2017-01-01

    Two mesoscale circulations, the Sandhills circulation and the sea breeze, influence the initiation of deep convection over the Sandhills and the coast in the Carolinas during the summer months. The interaction of these two circulations causes additional convection in this coastal region. Accurate representation of mesoscale convection is difficult as numerical models have problems with the prediction of the timing, amount, and location of precipitation. To address this issue, the authors have incorporated modifications to the Kain-Fritsch (KF) convective parameterization scheme and evaluated these mesoscale interactions using a high-resolution numerical model. The modifications include changes to the subgrid-scale cloud formulation, the convective turnover time scale, and the formulation of the updraft entrainment rates. The use of a grid-scaling adjustment parameter modulates the impact of the KF scheme as a function of the horizontal grid spacing used in a simulation. Results indicate that the impact of this modified cumulus parameterization scheme is more effective on domains with coarser grid sizes. Other results include a decrease in surface and near-surface temperatures in areas of deep convection (due to the inclusion of the effects of subgrid-scale clouds on the radiation), improvement in the timing of convection, and an increase in the strength of deep convection.

  8. GEM-AC, a stratospheric-tropospheric global and regional model for air quality and climate change: evaluation of gas phase properties

    NASA Astrophysics Data System (ADS)

    Kaminski, J. W.; Semeniuk, K.; McConnell, J. C.; Lupu, A.; Mamun, A.

    2012-12-01

    The Global Environmental Multiscale model for Air Quality and climate change (GEM-AC) is a global general circulation model based on the GEM model developed by the Meteorological Service of Canada for operational weather forecasting. It can be run with a global uniform (GU) grid or a global variable (GV) grid where the core has uniform grid spacing and the exterior grid expands. With a GV grid high resolution regional runs can be accomplished without a concern for boundary conditions. The work described here uses GEM version 3.3.2. The gas-phase chemistry consists in detailed reactions of Ox, NOx, HOx, CO, CH4, NMVOCs, halocarbons, ClOx and BrO. We have recently added elements of the Global Modal-aerosol eXtension (GMXe) scheme to address aerosol microphysics and gas-aerosol partitioning. The evaluation of the MESSY GMXe aerosol scheme is addressed in another poster. The Canadian aerosol module (CAM) is also available. Tracers are advected using the semi-Lagrangian scheme native to GEM. The vertical transport includes parameterized subgrid scale turbulence and large scale convection. Dry deposition is implemented as a flux boundary condition in the vertical diffusion equation. For climate runs the GHGs CO2, CH4, N2O, CFCs in the radiation scheme are adjusted to the scenario considered. In GV regional mode at high resolutions a lake model, FLAKE is also included. Wet removal comprises both in-cloud and below-cloud scavenging. With the gas phase chemistry the model has been run for a series of ten year time slices on a 3°×3° global grid with 77 hybrid levels from the surface to 0.15 hPa. The tropospheric and stratospheric gas phase results are compared with satellite measurements including, ACE, MIPAS, MOPITT, and OSIRIS. Current evaluations of the ozone field and other stratospheric fields are encouraging and tropospheric lifetimes for CH4 and CH3CCl3 are in reasonable accord with tropospheric models. We will present results for current and future climate conditions forced by SST for 2050.

  9. Using Intel Xeon Phi to accelerate the WRF TEMF planetary boundary layer scheme

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen

    2014-05-01

    The Weather Research and Forecasting (WRF) model is designed for numerical weather prediction and atmospheric research. The WRF software infrastructure consists of several components such as dynamic solvers and physics schemes. Numerical models are used to resolve the large-scale flow. However, subgrid-scale parameterizations are for an estimation of small-scale properties (e.g., boundary layer turbulence and convection, clouds, radiation). Those have a significant influence on the resolved scale due to the complex nonlinear nature of the atmosphere. For the cloudy planetary boundary layer (PBL), it is fundamental to parameterize vertical turbulent fluxes and subgrid-scale condensation in a realistic manner. A parameterization based on the Total Energy - Mass Flux (TEMF) that unifies turbulence and moist convection components produces a better result that the other PBL schemes. For that reason, the TEMF scheme is chosen as the PBL scheme we optimized for Intel Many Integrated Core (MIC), which ushers in a new era of supercomputing speed, performance, and compatibility. It allows the developers to run code at trillions of calculations per second using the familiar programming model. In this paper, we present our optimization results for TEMF planetary boundary layer scheme. The optimizations that were performed were quite generic in nature. Those optimizations included vectorization of the code to utilize vector units inside each CPU. Furthermore, memory access was improved by scalarizing some of the intermediate arrays. The results show that the optimization improved MIC performance by 14.8x. Furthermore, the optimizations increased CPU performance by 2.6x compared to the original multi-threaded code on quad core Intel Xeon E5-2603 running at 1.8 GHz. Compared to the optimized code running on a single CPU socket the optimized MIC code is 6.2x faster.

  10. Effects of Planetary Boundary Layer Parameterizations on CWRF Regional Climate Simulation

    NASA Astrophysics Data System (ADS)

    Liu, S.; Liang, X.

    2011-12-01

    Planetary Boundary Layer (PBL) parameterizations incorporated in CWRF (Climate extension of the Weather Research and Forecasting model) are first evaluated by comparing simulated PBL heights with observations. Among the 10 evaluated PBL schemes, 2 (CAM, UW) are new in CWRF while the other 8 are original WRF schemes. MYJ, QNSE and UW determine the PBL heights based on turbulent kinetic energy (TKE) profiles, while others (YSU, ACM, GFS, CAM, TEMF) are from bulk Richardson criteria. All TKE-based schemes (MYJ, MYNN, QNSE, UW, Boulac) substantially underestimate convective or residual PBL heights from noon toward evening, while others (ACM, CAM, YSU) well capture the observed diurnal cycle except for the GFS with systematic overestimation. These differences among the schemes are representative over most areas of the simulation domain, suggesting systematic behaviors of the parameterizations. Lower PBL heights simulated by the QNSE and MYJ are consistent with their smaller Bowen ratios and heavier rainfalls, while higher PBL tops by the GFS correspond to warmer surface temperatures. Effects of PBL parameterizations on CWRF regional climate simulation are then compared. The QNSE PBL scheme yields systematically heavier rainfall almost everywhere and throughout the year; this is identified with a much greater surface Bowen ratio (smaller sensible versus larger latent heating) and wetter soil moisture than other PBL schemes. Its predecessor MYJ scheme shares the same deficiency to a lesser degree. For temperature, the performance of the QNSE and MYJ schemes remains poor, having substantially larger rms errors in all seasons. GFS PBL scheme also produces large warm biases. Pronounced sensitivities are also found to the PBL schemes in winter and spring over most areas except the southern U.S. (Southeast, Gulf States, NAM); excluding the outliers (QNSE, MYJ, GFS) that cause extreme biases of -6 to +3°C, the differences among the schemes are still visible (±2°C), where the CAM is generally more realistic. QNSE, MYJ, GFS and BouLac PBL parameterizations are identified as obvious outliers of overall performance in representing precipitation, surface air temperature or PBL height variations. Their poor performance may result from deficiencies in physical formulations, dependences on applicable scales, or trouble numerical implementations, requiring future detailed investigation to isolate the actual cause.

  11. A Vertically Resolved Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    1984-01-01

    Increase of the vertical resolution of the GLAS Fourth Order General Circulation Model (GCM) near the Earth's surface and installation of a new package of parameterization schemes for subgrid-scale physical processes were sought so that the GLAS Model GCM will predict the resolved vertical structure of the planetary boundary layer (PBL) for all grid points.

  12. Uncertain Representations of Sub-Grid Pollutant Transport in Chemistry-Transport Models and Impacts on Long-Range Transport and Global Composition

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Zhu, Z.; Ott, L. E.; Molod, A.; Duncan, B. N.; Nielsen, J. E.

    2009-01-01

    Sub-grid transport, by convection and turbulence, is known to play an important role in lofting pollutants from their source regions. Consequently, the long-range transport and climatology of simulated atmospheric composition are impacted. This study uses the Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric model to study pollutant transport. The baseline model uses a Relaxed Arakawa-Schubert (RAS) scheme that represents convection through a sequence of linearly entraining cloud plumes characterized by unique detrainment levels. Thermodynamics, moisture and trace gases are transported in the same manner. Various approximate forms of trace-gas transport are implemented, in which the box-averaged cloud mass fluxes from RAS are used with different numerical approaches. Substantial impacts on forward-model simulations of CO (using a linearized chemistry) are evident. In particular, some aspects of simulations using a diffusive form of sub-grid transport bear more resemblance to space-biased CO observations than do the baseline simulations with RAS transport. Implications for transport in the real atmosphere will be discussed. Another issue of importance is that many adjoint/inversion computations use simplified representations of sub-grid transport that may be inconsistent with the forward models: implications will be discussed. Finally, simulations using a complex chemistry model in GEOS-5 (in place of the linearized CO model) are underway: noteworthy results from this simulation will be mentioned.

  13. A general range-separated double-hybrid density-functional theory

    NASA Astrophysics Data System (ADS)

    Kalai, Cairedine; Toulouse, Julien

    2018-04-01

    A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.

  14. Improving and Understanding Climate Models: Scale-Aware Parameterization of Cloud Water Inhomogeneity and Sensitivity of MJO Simulation to Physical Parameters in a Convection Scheme

    NASA Astrophysics Data System (ADS)

    Xie, Xin

    Microphysics and convection parameterizations are two key components in a climate model to simulate realistic climatology and variability of cloud distribution and the cycles of energy and water. When a model has varying grid size or simulations have to be run with different resolutions, scale-aware parameterization is desirable so that we do not have to tune model parameters tailored to a particular grid size. The subgrid variability of cloud hydrometers is known to impact microphysics processes in climate models and is found to highly depend on spatial scale. A scale- aware liquid cloud subgrid variability parameterization is derived and implemented in the Community Earth System Model (CESM) in this study using long-term radar-based ground measurements from the Atmospheric Radiation Measurement (ARM) program. When used in the default CESM1 with the finite-volume dynamic core where a constant liquid inhomogeneity parameter was assumed, the newly developed parameterization reduces the cloud inhomogeneity in high latitudes and increases it in low latitudes. This is due to both the smaller grid size in high latitudes, and larger grid size in low latitudes in the longitude-latitude grid setting of CESM as well as the variation of the stability of the atmosphere. The single column model and general circulation model (GCM) sensitivity experiments show that the new parameterization increases the cloud liquid water path in polar regions and decreases it in low latitudes. Current CESM1 simulation suffers from the bias of both the pacific double ITCZ precipitation and weak Madden-Julian oscillation (MJO). Previous studies show that convective parameterization with multiple plumes may have the capability to alleviate such biases in a more uniform and physical way. A multiple-plume mass flux convective parameterization is used in Community Atmospheric Model (CAM) to investigate the sensitivity of MJO simulations. We show that MJO simulation is sensitive to entrainment rate specification. We found that shallow plumes can generate and sustain the MJO propagation in the model.

  15. Collaborative Research: Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenes, Athanasios

    The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated newmore » parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.« less

  16. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  17. Impacts of Subgrid Heterogeneous Mixing between Cloud Liquid and Ice on the Wegner-Bergeron-Findeisen Process and Mixed-phase Clouds in NCAR CAM5

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, M.; Zhang, D.; Wang, Z.; Wang, Y.

    2017-12-01

    Mixed-phase clouds are persistently observed over the Arctic and the phase partitioning between cloud liquid and ice hydrometeors in mixed-phase clouds has important impacts on the surface energy budget and Arctic climate. In this study, we test the NCAR Community Atmosphere Model Version 5 (CAM5) with the single-column and weather forecast configurations and evaluate the model performance against observation data from the DOE Atmospheric Radiation Measurement (ARM) Program's M-PACE field campaign in October 2004 and long-term ground-based multi-sensor remote sensing measurements. Like most global climate models, we find that CAM5 also poorly simulates the phase partitioning in mixed-phase clouds by significantly underestimating the cloud liquid water content. Assuming pocket structures in the distribution of cloud liquid and ice in mixed-phase clouds as suggested by in situ observations provides a plausible solution to improve the model performance by reducing the Wegner-Bergeron-Findeisen (WBF) process rate. In this study, the modification of the WBF process in the CAM5 model has been achieved with applying a stochastic perturbation to the time scale of the WBF process relevant to both ice and snow to account for the heterogeneous mixture of cloud liquid and ice. Our results show that this modification of WBF process improves the modeled phase partitioning in the mixed-phase clouds. The seasonal variation of mixed-phase cloud properties is also better reproduced in the model in comparison with the long-term ground-based remote sensing observations. Furthermore, the phase partitioning is insensitive to the reassignment time step of perturbations.

  18. NCAR global model topography generation software for unstructured grids

    NASA Astrophysics Data System (ADS)

    Lauritzen, P. H.; Bacmeister, J. T.; Callaghan, P. F.; Taylor, M. A.

    2015-06-01

    It is the purpose of this paper to document the NCAR global model topography generation software for unstructured grids. Given a model grid, the software computes the fraction of the grid box covered by land, the gridbox mean elevation, and associated sub-grid scale variances commonly used for gravity wave and turbulent mountain stress parameterizations. The software supports regular latitude-longitude grids as well as unstructured grids; e.g. icosahedral, Voronoi, cubed-sphere and variable resolution grids. As an example application and in the spirit of documenting model development, exploratory simulations illustrating the impacts of topographic smoothing with the NCAR-DOE CESM (Community Earth System Model) CAM5.2-SE (Community Atmosphere Model version 5.2 - Spectral Elements dynamical core) are shown.

  19. New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection

    NASA Astrophysics Data System (ADS)

    Aubé, M.; Simoneau, A.

    2018-05-01

    Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016-17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications. After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada).

  20. Explicit Convection over the Western Pacific Warm Pool in the Community Atmospheric Model.

    NASA Astrophysics Data System (ADS)

    Ziemiaski, Micha Z.; Grabowski, Wojciech W.; Moncrieff, Mitchell W.

    2005-05-01

    This paper reports on the application of the cloud-resolving convection parameterization (CRCP) to the Community Atmospheric Model (CAM), the atmospheric component of the Community Climate System Model (CCSM). The cornerstone of CRCP is the use of a two-dimensional zonally oriented cloud-system-resolving model to represent processes on mesoscales at the subgrid scale of a climate model. Herein, CRCP is applied at each climate model column over the tropical western Pacific warm pool, in a domain spanning 10°S-10°N, 150°-170°E. Results from the CRCP simulation are compared with CAM in its standard configuration.The CRCP simulation shows significant improvements of the warm pool climate. The cloud condensate distribution is much improved as well as the bias of the tropopause height. More realistic structure of the intertropical convergence zone (ITCZ) during the boreal winter and better representation of the variability of convection are evident. In particular, the diurnal cycle of precipitation has phase and amplitude in good agreement with observations. Also improved is the large-scale organization of the tropical convection, especially superclusters associated with Madden-Julian oscillation (MJO)-like systems. Location and propagation characteristics, as well as lower-tropospheric cyclonic and upper-tropospheric anticyclonic gyres, are more realistic than in the standard CAM. Finally, the simulations support an analytic theory of dynamical coupling between organized convection and equatorial beta-plane vorticity dynamics associated with MJO-like systems.

  1. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE PAGES

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more » By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm −3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  2. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S.; Mathur, R.; Pleim, J.

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF–CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN,more » and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM 2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF–CMAQ/CAM (WRF–CMAQ/RRTMG), respectively. The evaluation of PM 2.5 chemical composition reveals that in August, WRF–CMAQ/CAM (WRF–CMAQ/RRTMG) consistently underestimated the observed SO 4 2- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF–CMAQ/CAM, WRF–CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both configurations captured SWCF and longwave cloud forcing (LWCF) very well for the 4 km simulation over eastern Texas, when all clouds were resolved by the finer resolution domain. The simulations of WRF–CMAQ/CAM and WRF–CMAQ/RRTMG show dramatic improvements for SWCF, LWCF, cloud optical depth (COD), cloud fractions and precipitation over the ocean relative to those of WRF default cases in August. The model performance in September is similar to that in August, except for a greater overestimation of PM 2.5 due to the overestimations of SO 4 2-, NH 4 +, NO 3 -, and TC over the EUS, less underestimation of clouds (SWCF) over the land areas due to the lower SWCF values, and fewer convective clouds in September. Finally, this work shows that inclusion of indirect aerosol effect treatments in WRF–CMAQ represents a significant advancement and milestone in air quality modeling and the development of integrated emissions control strategies for air quality management and climate change mitigation.« less

  3. A Minimal Three-Dimensional Tropical Cyclone Model.

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyan; Smith, Roger K.; Ulrich, Wolfgang

    2001-07-01

    A minimal 3D numerical model designed for basic studies of tropical cyclone behavior is described. The model is formulated in coordinates on an f or plane and has three vertical levels, one characterizing a shallow boundary layer and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale. The subgrid-scale schemes are based on the mass-flux models suggested by Arakawa and Ooyama in the late 1960s, but modified to include the effects of precipitation-cooled downdrafts. They differ from one another in the closure that determines the cloud-base mass flux. One closure is based on the assumption of boundary layer quasi-equilibrium proposed by Raymond and Emanuel.It is shown that a realistic hurricane-like vortex develops from a moderate strength initial vortex, even when the initial environment is slightly stable to deep convection. This is true for all three cumulus schemes as well as in the case where only the explicit release of latent heat is included. In all cases there is a period of gestation during which the boundary layer moisture in the inner core region increases on account of surface moisture fluxes, followed by a period of rapid deepening. Precipitation from the convection scheme dominates the explicit precipitation in the early stages of development, but this situation is reversed as the vortex matures. These findings are similar to those of Baik et al., who used the Betts-Miller parameterization scheme in an axisymmetric model with 11 levels in the vertical. The most striking difference between the model results using different convection schemes is the length of the gestation period, whereas the maximum intensity attained is similar for the three schemes. The calculations suggest the hypothesis that the period of rapid development in tropical cyclones is accompanied by a change in the character of deep convection in the inner core region from buoyantly driven, predominantly upright convection to slantwise forced moist ascent.

  4. Evaluating and Understanding Parameterized Convective Processes and their Role in the Development of Mesoscale Precipitation Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, J. Michael; Kain, John S.

    1997-01-01

    Research efforts during the second year have centered on improving the manner in which convective stabilization is achieved in the Penn State/NCAR mesoscale model MM5. Ways of improving this stabilization have been investigated by (1) refining the partitioning between the Kain-Fritsch convective parameterization scheme and the grid scale by introducing a form of moist convective adjustment; (2) using radar data to define locations of subgrid-scale convection during a dynamic initialization period; and (3) parameterizing deep-convective feedbacks as subgrid-scale sources and sinks of mass. These investigations were conducted by simulating a long-lived convectively-generated mesoscale vortex that occurred during 14-18 Jul. 1982 and the 10-11 Jun. 1985 squall line that occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. The long-lived vortex tracked across the central Plains states and was responsible for multiple convective outbreaks during its lifetime.

  5. Chapman Conference on the Hydrologic Aspects of Global Climate Change, Lake Chelan, WA, June 12-14, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)

    1992-01-01

    The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.

  6. Simulation of summertime ozone over North America

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Logan, Jennifer A.; Yevich, Rose M.; Gardner, Geraldine M.; Spivakovsky, Clarisa M.; Wofsy, Steven C.; Munger, J. W.; Sillman, Sanford; Prather, Michael J.; Rogers, Michael O.

    1993-01-01

    The concentrations of O3 and its precursors over North America are simulated for three summer months with a 3D, continental-scale photochemical model using meteorological input from the Goddard Institute for Space Studies (GISS) GCM. The model has 4 x 5 deg grid resolution and represents nonlinear chemistry in urban and industrial plumes with a subgrid nested scheme. Simulated median afternoon O3 concentrations at rural U.S. sites are within 5 ppb of observations in most cases, except in the south central U.S., where concentrations are overpredicted by 15-20 ppb. The model captures successfully the development of regional high-O3 episodes over the northeastern United States on the back side of weak, warm, stagnant anticyclones. Simulated concentrations of CO and nonmethane hydrocarbons are generally in good agreement with observations, concentrations of NO(x) are underpredicted by 10-30 percent, and concentrations of PANs are overpredicted by a factor of 2 to 3. The overprediction of PANs is attributed to flaws in the photochemical mechanism, including excessive production from oxidation of isoprene, and may also reflect an underestimate of PANs deposition. Subgrid nonlinear chemistry as captured by the nested plumes scheme decreases the net O3 production computed in the U.S. boundary layer by 8 percent on average.

  7. Correction of Excessive Precipitation over Steep and High Mountains in a GCM: A Simple Method of Parameterizing the Thermal Effects of Subgrid Topographic Variation

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2015-01-01

    The excessive precipitation over steep and high mountains (EPSM) in GCMs and meso-scale models is due to a lack of parameterization of the thermal effects of the subgrid-scale topographic variation. These thermal effects drive subgrid-scale heated slope induced vertical circulations (SHVC). SHVC provide a ventilation effect of removing heat from the boundary layer of resolvable-scale mountain slopes and depositing it higher up. The lack of SHVC parameterization is the cause of EPSM. The author has previously proposed a method of parameterizing SHVC, here termed SHVC.1. Although this has been successful in avoiding EPSM, the drawback of SHVC.1 is that it suppresses convective type precipitation in the regions where it is applied. In this article we propose a new method of parameterizing SHVC, here termed SHVC.2. In SHVC.2 the potential temperature and mixing ratio of the boundary layer are changed when used as input to the cumulus parameterization scheme over mountainous regions. This allows the cumulus parameterization to assume the additional function of SHVC parameterization. SHVC.2 has been tested in NASA Goddard's GEOS-5 GCM. It achieves the primary goal of avoiding EPSM while also avoiding the suppression of convective-type precipitation in regions where it is applied.

  8. Accurate estimates of 3D Ising critical exponents using the coherent-anomaly method

    NASA Astrophysics Data System (ADS)

    Kolesik, Miroslav; Suzuki, Masuo

    1995-02-01

    An analysis of the critical behavior of the three-dimensional Ising model using the coherent-anomaly method (CAM) is presented. Various sources of errors in CAM estimates of critical exponents are discussed, and an improved scheme for the CAM data analysis is tested. Using a set of mean-field type approximations based on the variational series expansion approach, accuracy comparable to the most precise conventional methods has been achieved. Our results for the critical exponents are given by α = 0.108(5), β = 0.327(4), γ = 1.237(4) and δ = 4.77(5).

  9. Numerical simulation of turbulence in the presence of shear

    NASA Technical Reports Server (NTRS)

    Shaanan, S.; Ferziger, J. H.; Reynolds, W. C.

    1975-01-01

    The numerical calculations are presented of the large eddy structure of turbulent flows, by use of the averaged Navier-Stokes equations, where averages are taken over spatial regions small compared to the size of the computational grid. The subgrid components of motion are modeled by a local eddy-viscosity model. A new finite-difference scheme is proposed to represent the nonlinear average advective term which has fourth-order accuracy. This scheme exhibits several advantages over existing schemes with regard to the following: (1) the scheme is compact as it extends only one point away in each direction from the point to which it is applied; (2) it gives better resolution for high wave-number waves in the solution of Poisson equation, and (3) it reduces programming complexity and computation time. Examples worked out in detail are the decay of isotropic turbulence, homogeneous turbulent shear flow, and homogeneous turbulent shear flow with system rotation.

  10. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  11. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE PAGES

    Wang, Yong; Zhang, Guang J.

    2016-09-29

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  12. Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Zhang, Guang J.

    In this paper, the stochastic deep convection parameterization of Plant and Craig (PC) is implemented in the Community Atmospheric Model version 5 (CAM5) to incorporate the stochastic processes of convection into the Zhang-McFarlane (ZM) deterministic deep convective scheme. Its impacts on deep convection, shallow convection, large-scale precipitation and associated dynamic and thermodynamic fields are investigated. Results show that with the introduction of the PC stochastic parameterization, deep convection is decreased while shallow convection is enhanced. The decrease in deep convection is mainly caused by the stochastic process and the spatial averaging of input quantities for the PC scheme. More detrainedmore » liquid water associated with more shallow convection leads to significant increase in liquid water and ice water paths, which increases large-scale precipitation in tropical regions. Specific humidity, relative humidity, zonal wind in the tropics, and precipitable water are all improved. The simulation of shortwave cloud forcing (SWCF) is also improved. The PC stochastic parameterization decreases the global mean SWCF from -52.25 W/m 2 in the standard CAM5 to -48.86 W/m 2, close to -47.16 W/m 2 in observations. The improvement in SWCF over the tropics is due to decreased low cloud fraction simulated by the stochastic scheme. Sensitivity tests of tuning parameters are also performed to investigate the sensitivity of simulated climatology to uncertain parameters in the stochastic deep convection scheme.« less

  13. Towards information-optimal simulation of partial differential equations.

    PubMed

    Leike, Reimar H; Enßlin, Torsten A

    2018-03-01

    Most simulation schemes for partial differential equations (PDEs) focus on minimizing a simple error norm of a discretized version of a field. This paper takes a fundamentally different approach; the discretized field is interpreted as data providing information about a real physical field that is unknown. This information is sought to be conserved by the scheme as the field evolves in time. Such an information theoretic approach to simulation was pursued before by information field dynamics (IFD). In this paper we work out the theory of IFD for nonlinear PDEs in a noiseless Gaussian approximation. The result is an action that can be minimized to obtain an information-optimal simulation scheme. It can be brought into a closed form using field operators to calculate the appearing Gaussian integrals. The resulting simulation schemes are tested numerically in two instances for the Burgers equation. Their accuracy surpasses finite-difference schemes on the same resolution. The IFD scheme, however, has to be correctly informed on the subgrid correlation structure. In certain limiting cases we recover well-known simulation schemes like spectral Fourier-Galerkin methods. We discuss implications of the approximations made.

  14. Downscaling scheme to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, Annika; Venema, Victor; Lindau, Ralf; Ament, Felix; Simmer, Clemens

    2010-05-01

    The earth's surface is characterized by heterogeneity at a broad range of scales. Weather forecast models and climate models are not able to resolve this heterogeneity at the smaller scales. Many processes in the soil or at the surface, however, are highly nonlinear. This holds, for example, for evaporation processes, where stomata or aerodynamic resistances are nonlinear functions of the local micro-climate. Other examples are threshold dependent processes, e.g., the generation of runoff or the melting of snow. It has been shown that using averaged parameters in the computation of these processes leads to errors and especially biases, due to the involved nonlinearities. Thus it is necessary to account for the sub-grid scale surface heterogeneities in atmospheric modeling. One approach to take the variability of the earth's surface into account is the mosaic approach. Here the soil-vegetation-atmosphere transfer (SVAT) model is run on an explicit higher resolution than the atmospheric part of a coupled model, which is feasible due to generally lower computational costs of a SVAT model compared to the atmospheric part. The question arises how to deal with the scale differences at the interface between the two resolutions. Usually the assumption of a homogeneous forcing for all sub-pixels is made. However, over a heterogeneous surface, usually the boundary layer is also heterogeneous. Thus, by assuming a constant atmospheric forcing again biases in the turbulent heat fluxes may occur due to neglected atmospheric forcing variability. Therefore we have developed and tested a downscaling scheme to disaggregate the atmospheric variables of the lower atmosphere that are used as input to force a SVAT model. Our downscaling scheme consists of three steps: 1) a bi-quadratic spline interpolation of the coarse-resolution field; 2) a "deterministic" part, where relationships between surface and near-surface variables are exploited; and 3) a noise-generation step, in which the still missing, not explained, variance is added as noise. The scheme has been developed and tested based on high-resolution (400 m) model output of the weather forecast (and regional climate) COSMO model. Downscaling steps 1 and 2 reduce the error made by the homogeneous assumption considerably, whereas the third step leads to close agreement of the sub-grid scale variance with the reference. This is, however, achieved at the cost of higher root mean square errors. Thus, before applying the downscaling system to atmospheric data a decision should be made whether the lowest possible errors (apply only downscaling step 1 and 2) or a most realistic sub-grid scale variability (apply also step 3) is desired. This downscaling scheme is currently being implemented into the COSMO model, where it will be used in combination with the mosaic approach. However, this downscaling scheme can also be applied to drive stand-alone SVAT models or hydrological models, which usually also need high-resolution atmospheric forcing data.

  15. Quantifying the uncertainties of aerosol indirect effects and impacts on decadal-scale climate variability in NCAR CAM5 and CESM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sungsu

    2014-12-12

    The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets andmore » ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be directly implemented into the CAM5 as a practical parameterization, and substantially contributes to achieving the project goal. Through an intensive research for about one year, we found appropriate mathematical formulation and tried to implement it into the CAM5 PBL and activation routine as a practical parameterized numerical code. During these processes, however, the Postdoc applied for another position in Sweden, Europe, and accepted a job offer there, and left NCAR in August 2014. In Sweden, Dr. Anna Fitch is still working on this subject in a part time, planning to finalize the research and to write the paper in a near future.« less

  16. An Eddy-Diffusivity Mass-flux (EDMF) closure for the unified representation of cloud and convective processes

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Schneider, T.; Teixeira, J.; Lam, R.; Pressel, K. G.

    2014-12-01

    Sub-grid scale (SGS) closures in current climate models are usually decomposed into several largely independent parameterization schemes for different cloud and convective processes, such as boundary layer turbulence, shallow convection, and deep convection. These separate parameterizations usually do not converge as the resolution is increased or as physical limits are taken. This makes it difficult to represent the interactions and smooth transition among different cloud and convective regimes. Here we present an eddy-diffusivity mass-flux (EDMF) closure that represents all sub-grid scale turbulent, convective, and cloud processes in a unified parameterization scheme. The buoyant updrafts and precipitative downdrafts are parameterized with a prognostic multiple-plume mass-flux (MF) scheme. The prognostic term for the mass flux is kept so that the life cycles of convective plumes are better represented. The interaction between updrafts and downdrafts are parameterized with the buoyancy-sorting model. The turbulent mixing outside plumes is represented by eddy diffusion, in which eddy diffusivity (ED) is determined from a turbulent kinetic energy (TKE) calculated from a TKE balance that couples the environment with updrafts and downdrafts. Similarly, tracer variances are decomposed consistently between updrafts, downdrafts and the environment. The closure is internally coupled with a probabilistic cloud scheme and a simple precipitation scheme. We have also developed a relatively simple two-stream radiative scheme that includes the longwave (LW) and shortwave (SW) effects of clouds, and the LW effect of water vapor. We have tested this closure in a single-column model for various regimes spanning stratocumulus, shallow cumulus, and deep convection. The model is also run towards statistical equilibrium with climatologically relevant large-scale forcings. These model tests are validated against large-eddy simulation (LES) with the same forcings. The comparison of results verifies the capacity of this closure to realistically represent different cloud and convective processes. Implementation of the closure in an idealized GCM allows us to study cloud feedbacks to climate change and to study the interactions between clouds, convections, and the large-scale circulation.

  17. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).

  18. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three models (CAM5, CAM5-IPHOC and SPCAM-IPHOC), with emphasis on low-level clouds and precipitation. Detailed comparisons of scatter diagrams among the monthly-mean low-level cloudiness, PBL height, surface relative humidity and lower tropospheric stability (LTS) reveal the relative strengths and weaknesses for five coastal low-cloud regions among the three models. Observations from CloudSat and CALIPSO and ECMWF Interim reanalysis are used as the truths for the comparisons. We found that the standard CAM5 underestimates cloudiness and produces small cloud fractions at low PBL heights that contradict with observations. CAM5-IPHOC tends to overestimate low clouds but the ranges of LTS and PBL height variations are most realistic. SPCAM-IPHOC seems to produce most realistic results with relatively consistent results from one region to another. Further comparisons with other atmospheric environmental variables will be helpful to reveal the causes of model deficiencies so that SPCAM-IPHOC results will provide guidance to the other two models.

  19. Ensemble-based assimilation of fractional snow-covered area satellite retrievals to estimate the snow distribution at Arctic sites

    NASA Astrophysics Data System (ADS)

    Aalstad, Kristoffer; Westermann, Sebastian; Vikhamar Schuler, Thomas; Boike, Julia; Bertino, Laurent

    2018-01-01

    With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.

  20. Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Blaisdell, Gregory A.

    1996-01-01

    The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.

  1. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, Mina R.; Georgiadis, Nicholas J.; DeBonis, James R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing Large-Eddy Simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the highorder method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  2. Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.

    2017-12-01

    The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS

  3. Comparison of High-Order and Low-Order Methods for Large-Eddy Simulation of a Compressible Shear Layer

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.; DeBonis, J. R.

    2015-01-01

    The objective of this work is to compare a high-order solver with a low-order solver for performing large-eddy simulations (LES) of a compressible mixing layer. The high-order method is the Wave-Resolving LES (WRLES) solver employing a Dispersion Relation Preserving (DRP) scheme. The low-order solver is the Wind-US code, which employs the second-order Roe Physical scheme. Both solvers are used to perform LES of the turbulent mixing between two supersonic streams at a convective Mach number of 0.46. The high-order and low-order methods are evaluated at two different levels of grid resolution. For a fine grid resolution, the low-order method produces a very similar solution to the high-order method. At this fine resolution the effects of numerical scheme, subgrid scale modeling, and filtering were found to be negligible. Both methods predict turbulent stresses that are in reasonable agreement with experimental data. However, when the grid resolution is coarsened, the difference between the two solvers becomes apparent. The low-order method deviates from experimental results when the resolution is no longer adequate. The high-order DRP solution shows minimal grid dependence. The effects of subgrid scale modeling and spatial filtering were found to be negligible at both resolutions. For the high-order solver on the fine mesh, a parametric study of the spanwise width was conducted to determine its effect on solution accuracy. An insufficient spanwise width was found to impose an artificial spanwise mode and limit the resolved spanwise modes. We estimate that the spanwise depth needs to be 2.5 times larger than the largest coherent structures to capture the largest spanwise mode and accurately predict turbulent mixing.

  4. Implementing a warm cloud microphysics parameterization for convective clouds in NCAR CESM

    NASA Astrophysics Data System (ADS)

    Shiu, C.; Chen, Y.; Chen, W.; Li, J. F.; Tsai, I.; Chen, J.; Hsu, H.

    2013-12-01

    Most of cumulus convection schemes use simple empirical approaches to convert cloud liquid mass to rain water or cloud ice to snow e.g. using a constant autoconversion rate and dividing cloud liquid mass into cloud water and ice as function of air temperature (e.g. Zhang and McFarlane scheme in NCAR CAM model). There are few studies trying to use cloud microphysical schemes to better simulate such precipitation processes in the convective schemes of global models (e.g. Lohmann [2008] and Song, Zhang, and Li [2012]). A two-moment warm cloud parameterization (i.e. Chen and Liu [2004]) is implemented into the deep convection scheme of CAM5.2 of CESM model for treatment of conversion of cloud liquid water to rain water. Short-term AMIP type global simulations are conducted to evaluate the possible impacts from the modification of this physical parameterization. Simulated results are further compared to observational results from AMWG diagnostic package and CloudSAT data sets. Several sensitivity tests regarding to changes in cloud top droplet concentration (here as a rough testing for aerosol indirect effects) and changes in detrained cloud size of convective cloud ice are also carried out to understand their possible impacts on the cloud and precipitation simulations.

  5. A compatible high-order meshless method for the Stokes equations with applications to suspension flows

    NASA Astrophysics Data System (ADS)

    Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe

    2018-02-01

    A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.

  6. Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm.

    PubMed

    Pernice, W H; Payne, F P; Gallagher, D F

    2007-09-03

    We present a novel numerical scheme for the simulation of the field enhancement by metal nano-particles in the time domain. The algorithm is based on a combination of the finite-difference time-domain method and the pseudo-spectral time-domain method for dispersive materials. The hybrid solver leads to an efficient subgridding algorithm that does not suffer from spurious field spikes as do FDTD schemes. Simulation of the field enhancement by gold particles shows the expected exponential field profile. The enhancement factors are computed for single particles and particle arrays. Due to the geometry conforming mesh the algorithm is stable for long integration times and thus suitable for the simulation of resonance phenomena in coupled nano-particle structures.

  7. Towards uncertainty estimates in global operational forecasts of trace gases in the Copernicus Atmosphere Monitoring System

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Bouarar, I.; Chabrillat, S. H.; Christophe, Y.; Thierno, D.; Karydis, V.; Marecal, V.; Pozzer, A.; Flemming, J.

    2017-12-01

    Operational atmospheric composition analyses and forecasts such as developed in the Copernicus Atmosphere Monitoring Service (CAMS) rely on modules describing emissions, chemical conversion, transport and removal processing, as well as data assimilation methods. The CAMS forecasts can be used to drive regional air quality models across the world. Critical analyses of uncertainties in any of these processes are continuously needed to advance the quality of such systems on a global scale, ranging from the surface up to the stratosphere. With regard to the atmospheric chemistry to describe the fate of trace gases, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere combined with the Cariolle scheme to describe stratospheric ozone, as integrated in ECMWF's Integrated Forecasting System (IFS). It is further constrained by assimilation of satellite observations of CO, O3 and NO2. As part of CAMS we have recently developed three fully independent schemes to describe the chemical conversion throughout the atmosphere. These parameterizations originate from parent model codes in MOZART, MOCAGE and a combination of TM5/BASCOE. In this contribution we evaluate the correspondence and elemental differences in the performance of the three schemes in an otherwise identical model configuration (excluding data-assimilation) against a large range of in-situ and satellite-based observations of ozone, CO, VOC's and chlorine-containing trace gases for both troposphere and stratosphere. This analysis aims to provide a measure of model uncertainty in the operational system for tracers that are not, or poorly, constrained by data assimilation. It aims also to provide guidance on the directions for further model improvement with regard to the chemical conversion module.

  8. New Content Addressable Memory (CAM) Technologies for Big Data and Intelligent Electronics Enabled by Magneto-Electric Ternary CAM

    DTIC Science & Technology

    2017-12-11

    provides ultra-low energy search operations. To improve throughput, the in-array pipeline scheme has been developed, allowing the MeTCAM to operate at a...controlled magnetic tunnel junction (VC-MTJ), which not only reduces cell area (thus achieving higher density) but also eliminates standby energy . This...Variations of the cell design are presented and evaluated. The results indicated a potential 90x improvement in the energy efficiency and a 50x

  9. A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Chao, Winston C.; Sud, Y. C.; Walker, G. K.

    1994-01-01

    A generalized form of the second-order van Leer transport scheme is derived. Several constraints to the implied subgrid linear distribution are discussed. A very simple positive-definite scheme can be derived directly from the generalized form. A monotonic version of the scheme is applied to the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) for the moisture transport calculations, replacing the original fourth-order center-differencing scheme. Comparisons with the original scheme are made in idealized tests as well as in a summer climate simulation using the full GLA GCM. A distinct advantage of the monotonic transport scheme is its ability to transport sharp gradients without producing spurious oscillations and unphysical negative mixing ratio. Within the context of low-resolution climate simulations, the aforementioned characteristics are demonstrated to be very beneficial in regions where cumulus convection is active. The model-produced precipitation pattern using the new transport scheme is more coherently organized both in time and in space, and correlates better with observations. The side effect of the filling algorithm used in conjunction with the original scheme is also discussed, in the context of idealized tests. The major weakness of the proposed transport scheme with a local monotonic constraint is its substantial implicit diffusion at low resolution. Alternative constraints are discussed to counter this problem.

  10. A multi-resolution approach to electromagnetic modelling

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-07-01

    We present a multi-resolution approach for 3-D magnetotelluric forward modelling. Our approach is motivated by the fact that fine-grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. With a conventional structured finite difference grid, the fine discretization required to adequately represent rapid variations near the surface is continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modelling is especially important for solving regularized inversion problems. We implement a multi-resolution finite difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of subgrids, with each subgrid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modelling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modelling operators on interfaces between adjacent subgrids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models shows that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  11. Sensitivity of aerosol loading and properties to cloudiness

    NASA Astrophysics Data System (ADS)

    Iversen, T.; Seland, O.; Kirkevag, A.; Kristjansson, J. E.

    2005-12-01

    Clouds influence aerosols in various ways. Sulfate is swiftly produced in liquid phase provided there is both sulfur dioxide and oxidants available. Nucleation and Aitken mode aerosol particles efficiently grow in size by collision and coagulation with cloud droplets. When precipitation is formed, aerosol and precursor gases may be quickly removed bay rainout. The dynamics associated with clouds in some cases may swiftly mix aerosols deeply into the troposphere. In some cases Aitken-mode particles may be formed in cloud droplets by splitting agglomerates of particulate matter such as black carbon In this presentation we will discuss how global cloudiness may influence the burden, residence time, and spatial distribution of sulfate, black carbon and particulate organic matter. A similar physico-chemical scheme for there compounds has been implemented in three generations of the NCAR community climate model (CCM3, CAM2 and CAM3). The scheme is documented in the literature and is a part of the Aerocom-intercomparison. There are many differences between these models. With respect to aerosols, a major difference is that CAM3 has a considerably higher global cloud volume and more then twice the amount of cloud water than CAM2 and CCM3. Atmospheric simulations have been made with prescribed ocean temperatures. It is slightly surprising to discover that certain aspects of the aerosols are not particularly sensitive to these differences in cloud availability. This sensitivity will be compared to sensitivities with respect to processing in deep convective clouds.

  12. Global Simulations of Ice nucleation and Ice Supersaturation with an Improved Cloud Scheme in the Community Atmosphere Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gettelman, A.; Liu, Xiaohong; Ghan, Steven J.

    2010-09-28

    A process-based treatment of ice supersaturation and ice-nucleation is implemented in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). The new scheme is designed to allow (1) supersaturation with respect to ice, (2) ice nucleation by aerosol particles and (3) ice cloud cover consistent with ice microphysics. The scheme is implemented with a 4-class 2 moment microphysics code and is used to evaluate ice cloud nucleation mechanisms and supersaturation in CAM. The new model is able to reproduce field observations of ice mass and mixed phase cloud occurrence better than previous versions of the model. Simulations indicatemore » heterogeneous freezing and contact nucleation on dust are both potentially important over remote areas of the Arctic. Cloud forcing and hence climate is sensitive to different formulations of the ice microphysics. Arctic radiative fluxes are sensitive to the parameterization of ice clouds. These results indicate that ice clouds are potentially an important part of understanding cloud forcing and potential cloud feedbacks, particularly in the Arctic.« less

  13. CAA for Jet Noise Physics

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda

    2001-01-01

    Dr. Mankbadi summarized recent CAA results. Examples of the effect of various boundary condition schemes on the computed acoustic field, for a point source in a uniform flow, were shown. Solutions showing the impact of inflow excitations on the result were also shown. Results from a large eddy simulation, using a fourth-order MacCormack scheme with a Smagorinsky sub-grid turbulence model, were shown for a Mach 2.1 unheated jet. The results showed that the results were free from spurious modes. Results were shown for a Mach 1.4 jet using LES in the near field and the Kirchhoff method for the far field. Predicted flow field characteristics were shown to be in good agreement with data and predicted far field directivities were shown to be in qualitative agree with experimental measurements.

  14. CAA for Jet Noise Physics: Issues and Recent Progress

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda

    2001-01-01

    Dr. Mankbadi summarized recent CAA results. Examples of the effect of various boundary condition schemes on the computed acoustic field, for a point source in a uniform flow, were shown. Solutions showing the impact of inflow excitations on the result were also shown. Results from a large eddy simulation, using a fourth-order MacCormack scheme with a Smagorinsky sub-grid turbulence model, were shown for a Mach 2.1 unheated jet. The results showed that the results were free from spurious modes. Results were shown for a Mach 1.4 jet using LES in the near field and the Kirchhoff method for the far field. Predicted flow field characteristics were shown to be in good agreement with data and predicted far field directivities were shown to be in qualitative agree with experimental measurements.

  15. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.

    PubMed

    Chumakov, Sergei G

    2008-09-01

    We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.

  16. Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Werner, F.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S.; Eisenkolb, F.; Eschbach, S.; Florin, D.; Föhr, C.; Funk, S.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Lahmann, R.; Marszalek, A.; Pfeifer, M.; Principe, G.; Pühlhofer, G.; Pürckhauer, S.; Rajda, P. J.; Reimer, O.; Santangelo, A.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Wolf, D.; Zietara, K.; CTA Consortium

    2017-12-01

    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.

  17. Active Control of Combustion Instability in a Ramjet Using Large-Eddy Simulations

    DTIC Science & Technology

    1992-09-01

    model is also used to determine the turbulent subgrid fluxes appearing in the momentum equations. Thus, the subgrid stresses in the momentum transport...flows and in flows with complex geometries. To include the effect of walls, an additional correction has been used to ensure that the subgrid stress ...subgrid stress Ty varies as y+3 near the wall. A major issue for LES of complex flows is whether the primary assumption that the subgrid scales are

  18. Mutation Induced Conformational Change In CaMKII Peptide Alters Binding Affinity to CaM Through Alternate Binding Site

    NASA Astrophysics Data System (ADS)

    Ezerski, Jacob; Cheung, Margaret

    CaM forms distinct conformation states through modifications in its charge distribution upon binding to Ca2+ ions. The occurrence of protein structural change resulting from an altered charge distribution is paramount in the scheme of cellular signaling. Not only is charge induced structural change observed in CaM, it is also seen in an essential binding target: calmodulin-depended protein kinase II (CaMKII). In order to investigate the mechanism of selectivity in relation to changes in secondary structure, the CaM binding domain of CaMKII is isolated. Experimentally, charged residues of the CaMKII peptide are systematically mutated to alanine, resulting in altered binding kinetics between the peptide and the Ca2+ saturated state of CaM. We perform an all atom simulation of the wildtype (RRK) and mutated (AAA) CaMKII peptides and generate structures from the trajectory. We analyze RRK and AAA using DSSP and find significant structural differences due to the mutation. Structures from the RRK and AAA ensembles are then selected and docked onto the crystal structure of Ca2+ saturated CaM. We observe that RRK binds to CaM at the C-terminus, whereas the 3-residue mutation, AAA, shows increased patterns of binding to the N-terminus and linker regions of CaM. Due to the conformational change of the peptide ensemble from charged residue mutation, a distinct change in the binding site can be seen, which offers an explanation to experimentally observed changes in kinetic binding rates

  19. Perfectly matched layers in a divergence preserving ADI scheme for electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, C.; ETH Zurich, Chair of Computational Science, 8092 Zuerich; Adelmann, A., E-mail: andreas.adelmann@psi.ch

    For numerical simulations of highly relativistic and transversely accelerated charged particles including radiation fast algorithms are needed. While the radiation in particle accelerators has wavelengths in the order of 100 {mu}m the computational domain has dimensions roughly five orders of magnitude larger resulting in very large mesh sizes. The particles are confined to a small area of this domain only. To resolve the smallest scales close to the particles subgrids are envisioned. For reasons of stability the alternating direction implicit (ADI) scheme by Smithe et al. [D.N. Smithe, J.R. Cary, J.A. Carlsson, Divergence preservation in the ADI algorithms for electromagnetics,more » J. Comput. Phys. 228 (2009) 7289-7299] for Maxwell equations has been adopted. At the boundary of the domain absorbing boundary conditions have to be employed to prevent reflection of the radiation. In this paper we show how the divergence preserving ADI scheme has to be formulated in perfectly matched layers (PML) and compare the performance in several scenarios.« less

  20. Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.

    PubMed

    Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong

    2017-06-01

    Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.

  1. Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow

    NASA Technical Reports Server (NTRS)

    Clark, R. A.; Ferziger, J. H.; Reynolds, W. C.

    1977-01-01

    An exact turbulent flow field was calculated on a three-dimensional grid with 64 points on a side. The flow simulates grid-generated turbulence from wind tunnel experiments. In this simulation, the grid spacing is small enough to include essentially all of the viscous energy dissipation, and the box is large enough to contain the largest eddy in the flow. The method is limited to low-turbulence Reynolds numbers, in our case R sub lambda = 36.6. To complete the calculation using a reasonable amount of computer time with reasonable accuracy, a third-order time-integration scheme was developed which runs at about the same speed as a simple first-order scheme. It obtains this accuracy by saving the velocity field and its first-time derivative at each time step. Fourth-order accurate space-differencing is used.

  2. Performance of a TKE diffusion scheme in ECMWF IFS Single Column Model

    NASA Astrophysics Data System (ADS)

    Svensson, Jacob; Bazile, Eric; Sandu, Irina; Svensson, Gunilla

    2015-04-01

    Numerical Weather Prediction models (NWP) as well as climate models are used for decision making on all levels in society and their performance and accuracy are of great importance for both economical and safety reasons. Today's extensive use of weather apps and websites that directly uses model output even more highlights the importance of realistic output parameters. The turbulent atmospheric boundary layer (ABL) includes many physical processes which occur on a subgrid scale and need to be parameterized. As the absolute major part of the biosphere is located in the ABL, it is of great importance that these subgrid processes are parametrized so that they give realistic values of e.g. temperature and wind on the levels close to the surface. GEWEX (Global Energy and Water Exchange Project) Atmospheric Boundary Layer Study (GABLS), has the overall objective to improve the understanding and the representation of the atmospheric boundary layers in climate models. The study has pointed out that there is a need for a better understanding and representation of stable atmospheric boundary layers (SBL). Therefore four test cases have been designed to highlight the performance of and differences between a number of climate models and NWP:s in SBL. In the experiments, most global NWP and climate models have shown to be too diffusive in stable conditions and thus give too weak temperature gradients, too strong momentum mixing and too weak ageostrophic Ekman flow. The reason for this is that the models need enhanced diffusion to create enough friction for the large scale weather systems, which otherwise would be too fast and too active. In the GABLS test cases, turbulence schemes that use Turbulent Kinetic Energy (TKE) have shown to be more skilful than schemes that only use stability and gradients. TKE as a prognostic variable allows for advection both vertically and horizontally and gives a "memory" from previous time steps. Therefore, e.g. the ECMWF-GABLS workshop in 2011 recommended a move for global NWP models towards a TKE scheme. Here a comparison between a TKE diffusion scheme (based on the implementation in the ARPEGE model by Meteo France) is compared to ECMWF:s IFS operational first-order scheme and to a less diffusive version, using a single column version of ECMWF:s IFS model. Results from the test cases GABLS 1, 3 and 4 together with the Diurnal land/atmosphere coupling experiment (DICE) are presented.

  3. Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits H.; Remmerswaal, Ronald A.; Verstappen, Roel

    2017-01-01

    We study the construction of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. In particular, we aim to consolidate a systematic approach of constructing subgrid-scale models, based on the idea that it is desirable that subgrid-scale models are consistent with the mathematical and physical properties of the Navier-Stokes equations and the turbulent stresses. To that end, we first discuss in detail the symmetries of the Navier-Stokes equations, and the near-wall scaling behavior, realizability and dissipation properties of the turbulent stresses. We furthermore summarize the requirements that subgrid-scale models have to satisfy in order to preserve these important mathematical and physical properties. In this fashion, a framework of model constraints arises that we apply to analyze the behavior of a number of existing subgrid-scale models that are based on the local velocity gradient. We show that these subgrid-scale models do not satisfy all the desired properties, after which we explain that this is partly due to incompatibilities between model constraints and limitations of velocity-gradient-based subgrid-scale models. However, we also reason that the current framework shows that there is room for improvement in the properties and, hence, the behavior of existing subgrid-scale models. We furthermore show how compatible model constraints can be combined to construct new subgrid-scale models that have desirable properties built into them. We provide a few examples of such new models, of which a new model of eddy viscosity type, that is based on the vortex stretching magnitude, is successfully tested in large-eddy simulations of decaying homogeneous isotropic turbulence and turbulent plane-channel flow.

  4. Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations

    NASA Astrophysics Data System (ADS)

    Fambri, Francesco; Dumbser, Michael; Zanotti, Olindo

    2017-11-01

    This paper presents an arbitrary high-order accurate ADER Discontinuous Galerkin (DG) method on space-time adaptive meshes (AMR) for the solution of two important families of non-linear time dependent partial differential equations for compressible dissipative flows : the compressible Navier-Stokes equations and the equations of viscous and resistive magnetohydrodynamics in two and three space-dimensions. The work continues a recent series of papers concerning the development and application of a proper a posteriori subcell finite volume limiting procedure suitable for discontinuous Galerkin methods (Dumbser et al., 2014, Zanotti et al., 2015 [40,41]). It is a well known fact that a major weakness of high order DG methods lies in the difficulty of limiting discontinuous solutions, which generate spurious oscillations, namely the so-called 'Gibbs phenomenon'. In the present work, a nonlinear stabilization of the scheme is sequentially and locally introduced only for troubled cells on the basis of a novel a posteriori detection criterion, i.e. the MOOD approach. The main benefits of the MOOD paradigm, i.e. the computational robustness even in the presence of strong shocks, are preserved and the numerical diffusion is considerably reduced also for the limited cells by resorting to a proper sub-grid. In practice the method first produces a so-called candidate solution by using a high order accurate unlimited DG scheme. Then, a set of numerical and physical detection criteria is applied to the candidate solution, namely: positivity of pressure and density, absence of floating point errors and satisfaction of a discrete maximum principle in the sense of polynomials. Furthermore, in those cells where at least one of these criteria is violated the computed candidate solution is detected as troubled and is locally rejected. Subsequently, a more reliable numerical solution is recomputed a posteriori by employing a more robust but still very accurate ADER-WENO finite volume scheme on the subgrid averages within that troubled cell. Finally, a high order DG polynomial is reconstructed back from the evolved subcell averages. We apply the whole approach for the first time to the equations of compressible gas dynamics and magnetohydrodynamics in the presence of viscosity, thermal conductivity and magnetic resistivity, therefore extending our family of adaptive ADER-DG schemes to cases for which the numerical fluxes also depend on the gradient of the state vector. The distinguished high-resolution properties of the presented numerical scheme standout against a wide number of non-trivial test cases both for the compressible Navier-Stokes and the viscous and resistive magnetohydrodynamics equations. The present results show clearly that the shock-capturing capability of the news schemes is significantly enhanced within a cell-by-cell Adaptive Mesh Refinement (AMR) implementation together with time accurate local time stepping (LTS).

  5. Testing ice microphysics parameterizations in the NCAR Community Atmospheric Model Version 3 using Tropical Warm Pool-International Cloud Experiment data

    DOE PAGES

    Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...

    2009-07-23

    Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less

  6. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Loubère, Raphaël

    2016-08-01

    In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.

  7. Analysis and modeling of subgrid scalar mixing using numerical data

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.

  8. A Lagrangian dynamic subgrid-scale model turbulence

    NASA Technical Reports Server (NTRS)

    Meneveau, C.; Lund, T. S.; Cabot, W.

    1994-01-01

    A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.

  9. A multi-resolution approach to electromagnetic modeling.

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu

    2018-04-01

    We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.

  10. Implement a Sub-grid Turbulent Orographic Form Drag in WRF and its application to Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Yang, K.; Wang, Y.; Huang, B.

    2017-12-01

    Sub-grid-scale orographic variation exerts turbulent form drag on atmospheric flows. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the stress to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag on each model layer. To investigate the effect of the new scheme, WRF with the old and new one was used to simulate the climate over the complex terrain of the Tibetan Plateau. The two schemes were evaluated in terms of the direct impact (on wind) and the indirect impact (on air temperature, surface pressure and precipitation). Both in winter and summer, the new TOFD scheme reduces the mean bias in the surface wind, and clearly reduces the root mean square error (RMSEs) in comparisons with the station measurements (Figure 1). Meanwhile, the 2-m air temperature and surface pressure is also improved (Figure 2) due to the more warm air northward transport across south boundary of TP in winter. The 2-m air temperature is hardly improved in summer but the precipitation improvement is more obvious, with reduced mean bias and RMSEs. This is due to the weakening of water vapor flux (at low-level flow with the new scheme) crossing the Himalayan Mountains from South Asia.

  11. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walko, Robert

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of themore » atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.« less

  12. Particle tagging and its implications for stellar population dynamics

    NASA Astrophysics Data System (ADS)

    Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.

    2017-07-01

    We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.

  13. A Subgrid Approach for Modeling Microtopography Effects on Overland Flow: Application to Polygonal Tundra: Modeling Archive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad Jan; Ethan Coon; Scott Painter

    This Modeling Archive is in support of an NGEE Arctic manuscript under review. A new subgrid model was implemented in the Advanced Terrestrial Simulator (ATS) to capture micro-topography effects on surface flow. A comparison of the fine-scale simulations on seven individual ice-wedge polygons and a cluster of polygons was made between the results of the subgrid model and no-subgrid model. Our finding confirms that the effects of small-scale spatial heterogeneities can be captured in the coarsened models. The dataset contains meshes, inputfiles, subgrid parameters used in the simulations. Python scripts for post-processing and files for geometric analyses are also included.

  14. Influence of Different CAM Strategies on the Fit of Partial Crown Restorations: A Digital Three-dimensional Evaluation.

    PubMed

    Zimmermann, M; Valcanaia, A; Neiva, G; Mehl, A; Fasbinder, D

    2018-04-09

    CAM fabrication is an important step within the CAD/CAM process. The internal fit of restorations is influenced by the accuracy of the subtractive CAM procedure. Little is known about how CAM strategies might influence the fit of CAD/CAM fabricated restorations. The aim of this study was to three-dimensionally evaluate the fit of CAD/CAM fabricated zirconia-reinforced lithium silicate ceramic partial crowns fabricated with three different CAM strategies. The null hypothesis was that different CAM strategies did not influence the fitting accuracy of CAD/CAM fabricated zirconia-reinforced lithium silicate ceramic partial crowns. Preparation for a partial crown was performed on a maxillary right first molar on a typodont. A chairside CAD/CAM system with the intraoral scanning device CEREC Omnicam (Dentsply Sirona, York, PA, USA) and the 3+1 axis milling unit CEREC MCXL was used. There were three groups with different CAM strategies: step bur 12 (12), step bur 12S (12S), and two step-mode (12TWO). The zirconia-reinforced lithium silicate ceramic Celtra Duo (Dentsply Sirona) was used as the CAD/CAM material. A new 3D method for evaluating the fit was applied, consisting of the quadrant scan with the intraoral scanning device CEREC Omnicam. The scan of the PVS material adherent to the preparation and the preparation scan were matched, and the difference analysis was performed with special software OraCheck (Cyfex AG, Zurich, Switzerland). Three areas were selected for analysis: margin (MA), axial (AX), and occlusal (OC). Statistical analysis was performed using 80% percentile, one-way ANOVA, and the post hoc Scheffé test with α=0.05. Statistically significant differences were found both within and between the test groups. The aspect axial fit results varied from 90.5 ± 20.1 μm for the two-step milling mode (12TWO_AX) to 122.8 ± 12.2 μm for the milling with step bur 12S (12S_AX). The worst result in all groups was found for the aspect occlusal fit with the highest value for group 12S of 222.8 ± 35.6 μm. Group two-step milling mode (12TWO) performed statistically significantly better from groups 12 and 12S for the occlusal fit ( p<0.05). Deviation patterns were visually analyzed with a color-coded scheme for each restoration. CAM strategy influenced the internal adaptation of zirconia-reinforced lithium silicate partial crowns fabricated with a chairside CAD/CAM system. Sensible selection of specific areas of internal adaptation and fit is an important factor for evaluating the CAM accuracy of CAD/CAM systems.

  15. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE PAGES

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; ...

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  16. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  17. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  18. From nonlinear optimization to convex optimization through firefly algorithm and indirect approach with applications to CAD/CAM.

    PubMed

    Gálvez, Akemi; Iglesias, Andrés

    2013-01-01

    Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.

  19. From Nonlinear Optimization to Convex Optimization through Firefly Algorithm and Indirect Approach with Applications to CAD/CAM

    PubMed Central

    Gálvez, Akemi; Iglesias, Andrés

    2013-01-01

    Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380

  20. Effective control parameters in a deep convection scheme for improved simulation of the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ho; Seo, Kyong-Hwan

    2017-06-01

    This work seeks to find the most effective parameters in a deep convection scheme (relaxed Arakawa-Schubert scheme) of the National Centers of Environmental Prediction Climate Forecast System model for improved simulation of the Madden-Julian Oscillation (MJO). A suite of sensitivity experiments are performed by changing physical components such as the relaxation parameter of mass flux for adjustment of the environment, the evaporation rate from large-scale precipitation, the moisture trigger threshold using relative humidity of the boundary layer, and the fraction of re-evaporation of convective (subgrid-scale) rainfall. Among them, the last two parameters are found to produce a significant improvement. Increasing the strength of these two parameters reduces light rainfall that inhibits complete formation of the tropical convective system or supplies more moisture that help increase a potential energy to large-scale environment in the lower troposphere (especially at 700 hPa), leading to moisture preconditioning favorable for further development and eastward propagation of the MJO. In a more humid environment, more organized MJO structure (i.e., space-time spectral signal, eastward propagation, and tilted vertical structure) is produced.

  1. High-resolution subgrid models: background, grid generation, and implementation

    NASA Astrophysics Data System (ADS)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  2. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Liu, Yangang

    2014-12-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  3. Direct Comparisons of Ice Cloud Macro- and Microphysical Properties Simulated by the Community Atmosphere Model CAM5 with HIPPO Aircraft Observations

    NASA Astrophysics Data System (ADS)

    Wu, C.; Liu, X.; Diao, M.; Zhang, K.; Gettelman, A.

    2015-12-01

    A dominant source of uncertainty within climate system modeling lies in the representation of cloud processes. This is not only because of the great complexity in cloud microphysics, but also because of the large variations of cloud amount and macroscopic properties in time and space. In this study, the cloud properties simulated by the Community Atmosphere Model version 5.4 (CAM5.4) are evaluated using the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011). CAM5.4 is driven by the meteorology (U, V, and T) from GEOS5 analysis, while water vapor, hydrometeors and aerosols are calculated by the model itself. For direct comparison of CAM5.4 and HIPPO observations, model output is collocated with HIPPO flights. Generally, the model has an ability to capture specific cloud systems of meso- to large-scales. In total, the model can reproduce 80% of observed cloud occurrences inside model grid boxes, and even higher (93%) for ice clouds (T≤-40°C). However, the model produces plenty of clouds that are not presented in the observation. The model also simulates significantly larger cloud fraction including for ice clouds compared to the observation. Further analysis shows that the overestimation is a result of bias in relative humidity (RH) in the model. The bias of RH can be mostly attributed to the discrepancies of water vapor, and to a lesser extent to those of temperature. Down to the micro-scale level of ice clouds, the model can simulate reasonably well the magnitude of ice and snow number concentration (Ni, with diameter larger than 75 μm). However, the model simulates fewer occurrences of Ni>50 L-1. This can be partially ascribed to the low bias of aerosol number concentration (Naer, with diameter between 0.1-1 μm) simulated by the model. Moreover, the model significantly underestimates both the number mean diameter (Di,n) and the volume mean diameter (Di,v) of ice/snow. The result shows that the underestimation may be related to a weaker positive relationship between Di,n and Naer and/or the underestimation of Naer. Finally, it is suggested that better representation of sub-grid variability of meteorology (e.g., water vapor) is needed to improve the formation and evolution of ice clouds in the model.

  4. Minimizing Dispersion in FDTD Methods with CFL Limit Extension

    NASA Astrophysics Data System (ADS)

    Sun, Chen

    The CFL extension in FDTD methods is receiving considerable attention in order to reduce the computational effort and save the simulation time. One of the major issues in the CFL extension methods is the increased dispersion. We formulate a decomposition of FDTD equations to study the behaviour of the dispersion. A compensation scheme to reduce the dispersion in CFL extension is constructed and proposed. We further study the CFL extension in a FDTD subgridding case, where we improve the accuracy by acting only on the FDTD equations of the fine grid. Numerical results confirm the efficiency of the proposed method for minimising dispersion.

  5. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more » allowing for more realistic representation of cloud radiation interactions in large-scale models.« less

  6. Variable-Resolution Ensemble Climatology Modeling of Sierra Nevada Snowpack within the Community Earth System Model (CESM)

    NASA Astrophysics Data System (ADS)

    Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.; Levy, M.; Taylor, M.

    2014-12-01

    Snowpack is crucial for the western USA, providing around 75% of the total fresh water supply (Cayan et al., 1996) and buffering against seasonal aridity impacts on agricultural, ecosystem, and urban water demands. The resilience of the California water system is largely dependent on natural stores provided by snowpack. This resilience has shown vulnerabilities due to anthropogenic global climate change. Historically, the northern Sierras showed a net decline of 50-75% in snow water equivalent (SWE) while the southern Sierras showed a net accumulation of 30% (Mote et al., 2005). Future trends of SWE highlight that western USA SWE may decline by 40-70% (Pierce and Cayan, 2013), snowfall may decrease by 25-40% (Pierce and Cayan, 2013), and more winter storms may tend towards rain rather than snow (Bales et al., 2006). The volatility of Sierran snowpack presents a need for scientific tools to help water managers and policy makers assess current and future trends. A burgeoning tool to analyze these trends comes in the form of variable-resolution global climate modeling (VRGCM). VRGCMs serve as a bridge between regional and global models and provide added resolution in areas of need, eliminate lateral boundary forcings, provide model runtime speed up, and utilize a common dynamical core, physics scheme and sub-grid scale parameterization package. A cubed-sphere variable-resolution grid with 25 km horizontal resolution over the western USA was developed for use in the Community Atmosphere Model (CAM) within the Community Earth System Model (CESM). A 25-year three-member ensemble climatology (1980-2005) is presented and major snowpack metrics such as SWE, snow depth, snow cover, and two-meter surface temperature are assessed. The ensemble simulation is also compared to observational, reanalysis, and WRF model datasets. The variable-resolution model provides a mechanism for reaching towards non-hydrostatic scales and simulations are currently being developed with refined nests of 12.5km resolution over California.

  7. Three-Dimensional Digital Evaluation of the Fit of Endocrowns Fabricated from Different CAD/CAM Materials.

    PubMed

    Zimmermann, Moritz; Valcanaia, Andre; Neiva, Gisele; Mehl, Albert; Fasbinder, Dennis

    2018-03-06

    A wide variety of CAD/CAM materials are available for single-tooth restorations. CAD/CAM material characteristics are different and may influence CAM fabrication accuracy. There is no study investigating the influence of different CAD/CAM materials on the final fit of the restoration. The aim of this study was to evaluate the fit of endocrowns fabricated from different CAD/CAM materials using a new 3D evaluation method with an intraoral scanning system. The null hypothesis was that there are no significant differences for the fitting accuracy of different CAD/CAM materials. Preparation for an endocrown was performed on a maxillary right first molar on a typodont, and restorations were fabricated with a chairside CAD/CAM system (CEREC Omnicam, MCXL). Three groups using three different CAD/CAM materials were established (each n = 10): zirconia-reinforced lithium silicate ceramic (Celtra Duo; CD), leucite-reinforced silicate ceramic (Empress CAD; EM), resin nanoceramic (Lava Ultimate; LU). A 3D digital measurement technique (OraCheck, Cyfex AG) using an intraoral scanner (CEREC Omnicam) was used to measure the difference in fit between the three materials for a master endocrown preparation. The preparation scan and the endocrown fit scan were matched with special difference analysis software OraCheck. Three areas were selected for fitting accuracy measurements: margin (MA), axial (AX), occlusal (OC). Statistical analysis was performed using 80% percentile, one-way ANOVA, and post-hoc Scheffé test. Significance level was set to p = 0.05. Results varied from best 88.9 ± 7.7 μm for marginal fit of resin nanoceramic restorations (LU_MA) to worst 182.3 ± 24.0 μm for occlusal fit of zirconia-reinforced lithium silicate restorations (CD_OC). Statistically significant differences were found both within and among the test groups. Group CD performed statistically significantly different from group LU for marginal fit (MA) and axial fit (AX) (p < 0.05). For occlusal fit (OC), no statistically significant differences were found within all three test groups (p > 0.05). Deviation pattern for differences was visually analyzed with a color-coded scheme for each restoration. Statistically significant differences were found for different CAD/CAM materials if the CAM procedure was identical. Within the limitations of this study, the choice of CAD/CAM material may influence the fitting accuracy of CAD/CAM-fabricated restorations. © 2018 by the American College of Prosthodontists.

  8. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning

    NASA Astrophysics Data System (ADS)

    Molina, J. F.; Moreno, J. A.; Castro, A.; Rodríguez, C.; Fershtater, G. B.

    2015-09-01

    Dependencies of plagioclase/amphibole Al-Si partitioning, DAl/Siplg/amp, and amphibole/liquid Mg partitioning, DMgamp/liq, on temperature, pressure and phase compositions are investigated employing robust regression methods based on MM-estimators. A database with 92 amphibole-plagioclase pairs - temperature range: 650-1050 °C; amphibole compositional limits: > 0.02 apfu (23O) Ti and > 0.05 apfu Al - and 148 amphibole-glass pairs - temperature range: 800-1100 °C; amphibole compositional limit: CaM4/(CaM4 + NaM4) > 0.75 - compiled from experiments in the literature was used for the calculations (amphibole normalization scheme: 13-CNK method).

  9. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla

    2016-08-01

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  10. Simulation of the Summer Monsoon Rainfall over East Asia using the NCEP GFS Cumulus Parameterization at Different Horizontal Resolutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kyo-Sun; Hong, Song You; Yoon, Jin-Ho

    2014-10-01

    The most recent version of Simplified Arakawa-Schubert (SAS) cumulus scheme in National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) has been implemented into the Weather and Research Forecasting (WRF) model with a modification of triggering condition and convective mass flux to become depending on model’s horizontal grid spacing. East Asian Summer Monsoon of 2006 from June to August is selected to evaluate the performance of the modified GFS SAS scheme. Simulated monsoon rainfall with the modified GFS SAS scheme shows better agreement with observation compared to the original GFS SAS scheme. The original GFS SAS schememore » simulates the similar ratio of subgrid-scale precipitation, which is calculated from a cumulus scheme, against total precipitation regardless of model’s horizontal grid spacing. This is counter-intuitive because the portion of resolved clouds in a grid box should be increased as the model grid spacing decreases. This counter-intuitive behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. Further, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts-Miller-Janjic) are chosen to investigate the role of a horizontal resolution on simulated monsoon rainfall. The performance of high-resolution modeling is not always enhanced as the spatial resolution becomes higher. Even though improvement of probability density function of rain rate and long wave fluxes by the higher-resolution simulation is robust regardless of a choice of cumulus parameterization scheme, the overall skill score of surface rainfall is not monotonically increasing with spatial resolution.« less

  11. Cloud microphysics modification with an online coupled COSMO-MUSCAT regional model

    NASA Astrophysics Data System (ADS)

    Sudhakar, D.; Quaas, J.; Wolke, R.; Stoll, J.; Muehlbauer, A. D.; Tegen, I.

    2015-12-01

    Abstract: The quantification of clouds, aerosols, and aerosol-cloud interactions in models, continues to be a challenge (IPCC, 2013). In this scenario two-moment bulk microphysical scheme is used to understand the aerosol-cloud interactions in the regional model COSMO (Consortium for Small Scale Modeling). The two-moment scheme in COSMO has been especially designed to represent aerosol effects on the microphysics of mixed-phase clouds (Seifert et al., 2006). To improve the model predictability, the radiation scheme has been coupled with two-moment microphysical scheme. Further, the cloud microphysics parameterization has been modified via coupling COSMO with MUSCAT (MultiScale Chemistry Aerosol Transport model, Wolke et al., 2004). In this study, we will be discussing the initial result from the online-coupled COSMO-MUSCAT model system with modified two-moment parameterization scheme along with COSP (CFMIP Observational Simulator Package) satellite simulator. This online coupled model system aims to improve the sub-grid scale process in the regional weather prediction scenario. The constant aerosol concentration used in the Seifert and Beheng, (2006) parameterizations in COSMO model has been replaced by aerosol concentration derived from MUSCAT model. The cloud microphysical process from the modified two-moment scheme is compared with stand-alone COSMO model. To validate the robustness of the model simulation, the coupled model system is integrated with COSP satellite simulator (Muhlbauer et al., 2012). Further, the simulations are compared with MODIS (Moderate Resolution Imaging Spectroradiometer) and ISCCP (International Satellite Cloud Climatology Project) satellite products.

  12. Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Lee, V.; ...

    2016-05-13

    At least in conventional hydrostatic ice-sheet models, the numerical error associated with grounding line dynamics can be reduced by modifications to the discretization scheme. These involve altering the integration formulae for the basal traction and/or driving stress close to the grounding line and exhibit lower – if still first-order – error in the MISMIP3d experiments. MISMIP3d may not represent the variety of real ice streams, in that it lacks strong lateral stresses, and imposes a large basal traction at the grounding line. We study resolution sensitivity in the context of extreme forcing simulations of the entire Antarctic ice sheet, using the BISICLES adaptive mesh ice-sheet model with two schemes: the original treatment, and a scheme, which modifies the discretization of the basal traction. The second scheme does indeed improve accuracy – by around a factor of two – for a given mesh spacing, butmore » $$\\lesssim 1$$ km resolution is still necessary. For example, in coarser resolution simulations Thwaites Glacier retreats so slowly that other ice streams divert its trunk. In contrast, with $$\\lesssim 1$$ km meshes, the same glacier retreats far more quickly and triggers the final phase of West Antarctic collapse a century before any such diversion can take place.« less

  13. Robust backstepping control of an interlink converter in a hybrid AC/DC microgrid based on feedback linearisation method

    NASA Astrophysics Data System (ADS)

    Dehkordi, N. Mahdian; Sadati, N.; Hamzeh, M.

    2017-09-01

    This paper presents a robust dc-link voltage as well as a current control strategy for a bidirectional interlink converter (BIC) in a hybrid ac/dc microgrid. To enhance the dc-bus voltage control, conventional methods strive to measure and feedforward the load or source power in the dc-bus control scheme. However, the conventional feedforward-based approaches require remote measurement with communications. Moreover, conventional methods suffer from stability and performance issues, mainly due to the use of the small-signal-based control design method. To overcome these issues, in this paper, the power from DG units of the dc subgrid imposed on the BIC is considered an unmeasurable disturbance signal. In the proposed method, in contrast to existing methods, using the nonlinear model of BIC, a robust controller that does not need the remote measurement with communications effectively rejects the impact of the disturbance signal imposed on the BIC's dc-link voltage. To avoid communication links, the robust controller has a plug-and-play feature that makes it possible to add a DG/load to or remove it from the dc subgrid without distorting the hybrid microgrid stability. Finally, Monte Carlo simulations are conducted to confirm the effectiveness of the proposed control strategy in MATLAB/SimPowerSystems software environment.

  14. Parameterization of subgrid-scale stress by the velocity gradient tensor

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.; Novikov, E. A.

    1993-01-01

    The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.

  15. Modeling Street-Level Inundation in Galveston, Texas City, and Houston during 2008 Hurricane Ike: Now and Implications for the Future

    NASA Astrophysics Data System (ADS)

    Loftis, D.

    2016-02-01

    In the wake of Hurricane Katrina (2005), Hurricane Ike (2008) is the second most devastating tropical cyclone to make landfall in the Gulf of Mexico in recent history. The path of the eye of Hurricane Ike passing directly over the Galveston's City Center requires the finesse of a street-level hydrodynamic model to accurately resolve the spatial inundation extent observed during the storm. A version of the Holland wind model was coupled with a sub-grid hydrodynamic model to address the complexity of spatially-varying hurricane force winds on the irregular movement of fluid though the streets of the coastal cities adjacent to the Galveston Bay. Sub-grid modeling technology is useful for incorporating high-resolution lidar-derived elevation measurements into the conventional hydrodynamic modeling framework to resolve detailed topographic features for inclusion in a hydrological transport model for storm surge simulations. Buildings were mosaicked into a lidar-derived Digital Surface Model at 5m spatial resolution for the study area, and in turn, embedded within a sub-grid layer of the hydrodynamic model mesh in a cross-scale approach to address the movement of Ike's storm surge from the Gulf of Mexico through the Galveston Bay, up estuaries and onto land. Model predictions for timing and depth of flooding during Hurricane Ike were compared with 8 verified water level gauges throughout the study area to evaluate the effectiveness of the sub-grid model's partial wetting and drying scheme. Statistical comparison yielded a mean R2 of 0.914, a relative error of 4.19%, and a root-mean-squared error of 19.47cm. A rigorous point-to-point comparison between street-level model results and 217 high water mark observations collected by the USGS and FEMA at several sites after the storm revealed that the model predicted the depth of inundation comparably well with an aggregate root-mean-squared error 0.283m. Finally, sea-level rise scenarios using Hurricane Ike as a base case revealed future storm-induced inundation could extend 0.6-2.8 km inland corresponding to increases in mean sea level of 37.5-150 cm based upon IPCC climate change prediction scenarios specified in their 5th assessment report in 2013.

  16. Representing the Seasonal Variation of Marine Stratus and Stratocumulus near the Western Coast of Continents

    NASA Astrophysics Data System (ADS)

    He, Y.; Dickinson, R.

    2005-12-01

    The seasonal variation of marine stratus and stratocumulus (MSC) plays a significant role in ocean- atmosphere-land interaction during the seasonal transition of basic climate in the Eastern Pacific. A key factor in parameterization of MSC cloud cover is atmospheric stability. In this study, we examine the importance of lower troposphere stability for Marine Stratus and Stratocumulus (MSC) cloud cover variations over subtropical oceans on monthly and seasonal timescales. Our approach is to consider a two-layer conceptual model with moist denser boundary layer air topped by dry lighter free air beneath a trade wind inversion at around 700 mb.The vertical integrated dry static energy is of central importance in the lower troposphere. The variation of dry static energy transport and latent heat release leads to the variation of cloud top radiative forcing, which is a function of low cloud cover. A diagnostic cloud cover scheme derived from the model is a nonlinear function of lower troposphere stability and large-scale subsidence. Use ERA-40 and ISCCP-FD data as input, the scheme reproduces well the seasonal variation of low cloud cover in four MSC regions near the western coast of continents. NCAR CAM linear empirical cloud cover scheme could explain 16% of the observed ISCCP monthly covariance in the southeast subtropical Pacific during 1990 to 2000 period; while the new cloud cover scheme could explain 50% of the total covariance. When implementing new scheme into NCAR CAM3.1, it is found that the seasonal phase of MSC is better simulated near the Peruvian region, but the seasonal amplitudes of MSC cloud cover in four MSC regions using both schemes have systematic problems. Possible causes for model cloud biases are investigated through numerical experiments. The importance of MSC cloud cover in the eastern Pacific on local mean climate is also discussed.

  17. Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.

    2016-01-01

    The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.

  18. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Jan, A.; Painter, S. L.; Coon, E. T.

    2017-12-01

    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  19. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.

  20. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    NASA Astrophysics Data System (ADS)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  1. The Impact of Varying the Physics Grid Resolution Relative to the Dynamical Core Resolution in CAM-SE-CSLAM

    NASA Astrophysics Data System (ADS)

    Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.

    2017-12-01

    The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.

  2. Applying graphics user interface ot group technology classification and coding at the Boeing aerospace company

    NASA Astrophysics Data System (ADS)

    Ness, P. H.; Jacobson, H.

    1984-10-01

    The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.

  3. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  4. The structure of supersonic jet flow and its radiated sound

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Hayder, M. E.; Povinelli, Louis A.

    1993-01-01

    Large-eddy simulation of a supersonic jet is presented with emphasis on capturing the unsteady features of the flow pertinent to sound emission. A high-accuracy numerical scheme is used to solve the filtered, unsteady, compressible Navier-Stokes equations while modelling the subgrid-scale turbulence. For random inflow disturbance, the wave-like feature of the large-scale structure is demonstrated. The large-scale structure was then enhanced by imposing harmonic disturbances to the inflow. The limitation of using the full Navier-Stokes equation to calculate the far-field sound is discussed. Application of Lighthill's acoustic analogy is given with the objective of highlighting the difficulties that arise from the non-compactness of the source term.

  5. Large-eddy simulation of a backward facing step flow using a least-squares spectral element method

    NASA Technical Reports Server (NTRS)

    Chan, Daniel C.; Mittal, Rajat

    1996-01-01

    We report preliminary results obtained from the large eddy simulation of a backward facing step at a Reynolds number of 5100. The numerical platform is based on a high order Legendre spectral element spatial discretization and a least squares time integration scheme. A non-reflective outflow boundary condition is in place to minimize the effect of downstream influence. Smagorinsky model with Van Driest near wall damping is used for sub-grid scale modeling. Comparisons of mean velocity profiles and wall pressure show good agreement with benchmark data. More studies are needed to evaluate the sensitivity of this method on numerical parameters before it is applied to complex engineering problems.

  6. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  7. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  8. A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.

    2016-12-01

    Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.

  9. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Shan, Huimei

    2014-02-04

    The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relativelymore » homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.« less

  10. Downscaling Aerosols and the Impact of Neglected Subgrid Processes on Direct Aerosol Radiative Forcing for a Representative Global Climate Model Grid Spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, William I.; Qian, Yun; Fast, Jerome D.

    2011-07-13

    Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less

  11. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  12. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    DOE PAGES

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less

  13. Direct comparisons of ice cloud macro- and microphysical properties simulated by the Community Atmosphere Model version 5 with HIPPO aircraft observations

    NASA Astrophysics Data System (ADS)

    Wu, Chenglai; Liu, Xiaohong; Diao, Minghui; Zhang, Kai; Gettelman, Andrew; Lu, Zheng; Penner, Joyce E.; Lin, Zhaohui

    2017-04-01

    In this study we evaluate cloud properties simulated by the Community Atmosphere Model version 5 (CAM5) using in situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) campaign for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes and even higher (94.3 %) for ice clouds (T ≤ -40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 µm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.

  14. Progress on Implementing Additional Physics Schemes into ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (USEPA) has a team of scientists developing a next generation air quality modeling system employing the Model for Prediction Across Scales – Atmosphere (MPAS-A) as its meteorological foundation. Several preferred physics schemes and options available in the Weather Research and Forecasting (WRF) model are regularly used by the USEPA with the Community Multiscale Air Quality (CMAQ) model to conduct retrospective air quality simulations. These include the Pleim surface layer, the Pleim-Xiu (PX) land surface model with fractional land use for a 40-class National Land Cover Database (NLCD40), the Asymmetric Convective Model 2 (ACM2) planetary boundary layer scheme, the Kain-Fritsch (KF) convective parameterization with subgrid-scale cloud feedback to the radiation schemes and a scale-aware convective time scale, and analysis nudging four-dimensional data assimilation (FDDA). All of these physics modules and options have already been implemented by the USEPA into MPAS-A v4.0, tested, and evaluated (please see the presentations of R. Gilliam and R. Bullock at this workshop). Since the release of MPAS v5.1 in May 2017, work has been under way to implement these preferred physics options into the MPAS-A v5.1 code. Test simulations of a summer month are being conducted on a global variable resolution mesh with the higher resolution cells centered over the contiguous United States. Driving fields for the FDDA and soil nudging are

  15. Status of the NectarCAM camera project

    NASA Astrophysics Data System (ADS)

    Glicenstein, J.-F.; Barcelo, M.; Barrio, J.-A.; Blanch, O.; Boix, J.; Bolmont, J.; Boutonnet, C.; Brun, P.; Chabanne, E.; Champion, C.; Colonges, S.; Corona, P.; Courty, B.; Delagnes, E.; Delgado, C.; Diaz, C.; Ernenwein, J.-P.; Fegan, S.; Ferreira, O.; Fesquet, M.; Fontaine, G.; Fouque, N.; Henault, F.; Gascón, D.; Giebels, B.; Herranz, D.; Hermel, R.; Hoffmann, D.; Horan, D.; Houles, J.; Jean, P.; Karkar, S.; Knödlseder, J.; Martinez, G.; Lamanna, G.; LeFlour, T.; Lévêque, A.; Lopez-Coto, R.; Louis, F.; Moudden, Y.; Moulin, E.; Nayman, P.; Nunio, F.; Olive, J.-F.; Panazol, J.-L.; Pavy, S.; Petrucci, P.-O.; Punch, M.; Prast, Julie; Ramon, P.; Rateau, S.; Ribó, M.; Rosier-Lees, S.; Sanuy, A.; Sizun, P.; Sieiro, J.; Sulanke, K.-H.; Tavernet, J.-P.; Tejedor, L. A.; Toussenel, F.; Vasileiadis, G.; Voisin, V.; Waegebert, V.; Zurbach, C.

    2014-07-01

    NectarCAM is a camera designed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range 100 GeV to 30 TeV. It has a modular design based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 7 to 8 degrees. Each module includes the photomultiplier bases, High Voltage supply, pre-amplifier, trigger, readout and Thernet transceiver. Events recorded last between a few nanoseconds and tens of nanoseconds. A flexible trigger scheme allows to read out very long events. NectarCAM can sustain a data rate of 10 kHz. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, the cooling of electronics, read-out, clock distribution, slow control, data-acquisition, trigger, monitoring and services. A 133-pixel prototype with full scale mechanics, cooling, data acquisition and slow control will be built at the end of 2014.

  16. Effects of a Simple Convective Organization Scheme in a Two-Plume GCM

    NASA Astrophysics Data System (ADS)

    Chen, Baohua; Mapes, Brian E.

    2018-03-01

    A set of experiments is described with the Community Atmosphere Model (CAM5) using a two-plume convection scheme. To represent the differences of organized convection from General Circulation Model (GCM) assumptions of isolated plumes in uniform environments, a dimensionless prognostic "organization" tracer Ω is invoked to lend the second plume a buoyancy advantage relative to the first, as described in Mapes and Neale (2016). When low-entrainment plumes are unconditionally available (Ω = 1 everywhere), deep convection occurs too easily, with consequences including premature (upstream) rainfall in inflows to the deep tropics, excessive convective versus large-scale rainfall, poor relationships to the vapor field, stable bias in the mean state, weak and poor tropical variability, and midday peak in diurnal rainfall over land. Some of these are shown to also be characteristic of CAM4 with its separated deep and shallow convection schemes. When low-entrainment plumes are forbidden by setting Ω = 0 everywhere, some opposite problems can be discerned. In between those extreme cases, an interactive Ω driven by the evaporation of precipitation acts as a local positive feedback loop, concentrating deep convection: In areas of little recent rain, only highly entraining plumes can occur, unfavorable for rain production. This tunable mechanism steadily increases precipitation variance in both space and time, as illustrated here with maps, time-longitude series, and spectra, while avoiding some mean state biases as illustrated with process-oriented diagnostics such as conserved variable profiles and vapor-binned precipitation curves.

  17. Recent Upgrades to the NASA Ames Mars General Circulation Model: Applications to Mars' Water Cycle

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Wilson, R. J.; Schaeffer, J.

    2008-09-01

    We report on recent improvements to the NASA Ames Mars general circulation model (GCM), a robust 3D climate-modeling tool that is state-of-the-art in terms of its physics parameterizations and subgrid-scale processes, and which can be applied to investigate physical and dynamical processes of the present (and past) Mars climate system. The most recent version (gcm2.1, v.24) of the Ames Mars GCM utilizes a more generalized radiation code (based on a two-stream approximation with correlated k's); an updated transport scheme (van Leer formulation); a cloud microphysics scheme that assumes a log-normal particle size distribution whose first two moments are treated as atmospheric tracers, and which includes the nucleation, growth and sedimentation of ice crystals. Atmospheric aerosols (e.g., dust and water-ice) can either be radiatively active or inactive. We apply this version of the Ames GCM to investigate key aspects of the present water cycle on Mars. Atmospheric dust is partially interactive in our simulations; namely, the radiation code "sees" a prescribed distribution that follows the MGS thermal emission spectrometer (TES) year-one measurements with a self-consistent vertical depth scale that varies with season. The cloud microphysics code interacts with a transported dust tracer column whose surface source is adjusted to maintain the TES distribution. The model is run from an initially dry state with a better representation of the north residual cap (NRC) which accounts for both surface-ice and bare-soil components. A seasonally repeatable water cycle is obtained within five Mars years. Our sub-grid scale representation of the NRC provides for a more realistic flux of moisture to the atmosphere and a much drier water cycle consistent with recent spacecraft observations (e.g., Mars Express PFS, corrected MGS/TES) compared to models that assume a spatially uniform and homogeneous north residual polar cap.

  18. Eddy damping, backscatter, and subgrid stresses in subgrid modeling of turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1991-01-01

    The Brief Report demonstrates the relationship of eddy-viscosity models to subgrid stresses. A formula that determines the relative importance of the cross stress and the Reynolds stress for the net eddy-damping and backscatter contributions is derived. The cross-stress term with sharp-cut filtering is identified as an important quantity to model. These concepts could prove useful as a basis for constructing specific models for the Reynolds and cross stresses.

  19. Improvements, testing and development of the ADM-τ sub-grid surface tension model for two-phase LES

    NASA Astrophysics Data System (ADS)

    Aniszewski, Wojciech

    2016-12-01

    In this paper, a specific subgrid term occurring in Large Eddy Simulation (LES) of two-phase flows is investigated. This and other subgrid terms are presented, we subsequently elaborate on the existing models for those and re-formulate the ADM-τ model for sub-grid surface tension previously published by these authors. This paper presents a substantial, conceptual simplification over the original model version, accompanied by a decrease in its computational cost. At the same time, it addresses the issues the original model version faced, e.g. introduces non-isotropic applicability criteria based on resolved interface's principal curvature radii. Additionally, this paper introduces more throughout testing of the ADM-τ, in both simple and complex flows.

  20. Mixing Layer Formation near the Tropopause Due to Gravity Wave Critical Level Interactions in a Cloud-Resolving Model.

    NASA Astrophysics Data System (ADS)

    Moustaoui, Mohamed; Joseph, Binson; Teitelbaum, Hector

    2004-12-01

    A plausible mechanism for the formation of mixing layers in the lower stratosphere above regions of tropical convection is demonstrated numerically using high-resolution, two-dimensional (2D), anelastic, nonlinear, cloud-resolving simulations. One noteworthy point is that the mixing layer simulated in this study is free of anvil clouds and well above the cloud anvil top located in the upper troposphere. Hence, the present mechanism is complementary to the well-known process by which overshooting cloud turrets causes mixing within stratospheric anvil clouds. The paper is organized as a case study verifying the proposed mechanism using atmospheric soundings obtained during the Central Equatorial Pacific Experiment (CEPEX), when several such mixing layers, devoid of anvil clouds, had been observed. The basic dynamical ingredient of the present mechanism is (quasi stationary) gravity wave critical level interactions, occurring in association with a reversal of stratospheric westerlies to easterlies below the tropopause region. The robustness of the results is shown through simulations at different resolutions. The insensitivity of the qualitative results to the details of the subgrid scheme is also evinced through further simulations with and without subgrid mixing terms. From Lagrangian reconstruction of (passive) ozone fields, it is shown that the mixing layer is formed kinematically through advection by the resolved-scale (nonlinear) velocity field.


  1. Jupiter Wallpaper

    NASA Image and Video Library

    2017-03-08

    When team members from NASA's Juno mission invited the public to process JunoCam images, they did not anticipate that they would receive back such beautiful, creative expressions of art. The oranges and grayed-out regions of blue-green in this tiled and color-enhanced image resemble a color scheme much like Romantic era paintings, but more abstract. The lack of discreet objects to focus on allows the mind to seek familiar Earthly shapes, and the brightest spots seem to draw the eye. Citizen scientist Eric Jorgensen created this Jovian artwork with a JunoCam image taken when the spacecraft was at an altitude of 11,100 miles (17,800 kilometers) above Jupiter's cloudtops on Dec. 11, 2016 at 9:22 a.m. PT (12:22 p.m. ET). http://photojournal.jpl.nasa.gov/catalog/PIA21385

  2. Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling: Quantifying Aerosol Subgrid Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangxing; Qian, Yun; Yan, Huiping

    One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis.more » The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).« less

  3. Effects of Topography-based Subgrid Structures on Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Ruby, L.; Brunke, M.; Thornton, P. E.; Zeng, X.; Ghan, S. J.

    2017-12-01

    Topography has major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Consequently, accurate climate and land surface simulations in mountainous regions cannot be achieved without considering the effects of topographic spatial heterogeneity. To test a computationally less expensive hyper-resolution land surface modeling approach, we developed topography-based landunits within a hierarchical subgrid spatial structure to improve representation of land surface processes in the ACME Land Model (ALM) with minimal increase in computational demand, while improving the ability to capture the spatial heterogeneity of atmospheric forcing and land cover influenced by topography. This study focuses on evaluation of the impacts of the new spatial structures on modeling land surface processes. As a first step, we compare ALM simulations with and without subgrid topography and driven by grid cell mean atmospheric forcing to isolate the impacts of the subgrid topography on the simulated land surface states and fluxes. Recognizing that subgrid topography also has important effects on atmospheric processes that control temperature, radiation, and precipitation, methods are being developed to downscale atmospheric forcings. Hence in the second step, the impacts of the subgrid topographic structure on land surface modeling will be evaluated by including spatial downscaling of the atmospheric forcings. Preliminary results on the atmospheric downscaling and the effects of the new spatial structures on the ALM simulations will be presented.

  4. A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1996-11-01

    Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.

  5. Structure-Preserving Variational Multiscale Modeling of Turbulent Incompressible Flow with Subgrid Vortices

    NASA Astrophysics Data System (ADS)

    Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey

    2017-11-01

    In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.

  6. Evaluation of a vortex-based subgrid stress model using DNS databases

    NASA Technical Reports Server (NTRS)

    Misra, Ashish; Lund, Thomas S.

    1996-01-01

    The performance of a SubGrid Stress (SGS) model for Large-Eddy Simulation (LES) developed by Misra k Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32(exp 3) grid. The physical viability of the model assumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number R(sub (lambda)) approximately equals 90 are compared with filtered DNS fields. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the stretch of the subgrid vorticity by the resolved velocity-gradient tensor show reasonable agreement with the DNS data. The model is also tested in LES of decaying isotropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot & Corrsin (1971).

  7. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  8. The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for their utility in gauging model performance and QPF variability.

  9. Using large eddy simulations to reveal the size, strength, and phase of updraft and downdraft cores of an Arctic mixed-phase stratocumulus cloud

    DOE PAGES

    Roesler, Erika L.; Posselt, Derek J.; Rood, Richard B.

    2017-04-06

    Three-dimensional large eddy simulations (LES) are used to analyze a springtime Arctic mixed-phase stratocumulus observed on 26 April 2008 during the Indirect and Semi-Direct Aerosol Campaign. Two subgrid-scale turbulence parameterizations are compared. The first scheme is a 1.5-order turbulent kinetic energy (1.5-TKE) parameterization that has been previously applied to boundary layer cloud simulations. The second scheme, Cloud Layers Unified By Binormals (CLUBB), provides higher-order turbulent closure with scale awareness. The simulations, in comparisons with observations, show that both schemes produce the liquid profiles within measurement variability but underpredict ice water mass and overpredict ice number concentration. The simulation using CLUBBmore » underpredicted liquid water path more than the simulation using the 1.5-TKE scheme, so the turbulent length scale and horizontal grid box size were increased to increase liquid water path and reduce dissipative energy. The LES simulations show this stratocumulus cloud to maintain a closed cellular structure, similar to observations. The updraft and downdraft cores self-organize into a larger meso-γ-scale convective pattern with the 1.5-TKE scheme, but the cores remain more isotropic with the CLUBB scheme. Additionally, the cores are often composed of liquid and ice instead of exclusively containing one or the other. Furthermore, these results provide insight into traditionally unresolved and unmeasurable aspects of an Arctic mixed-phase cloud. From analysis, this cloud's updraft and downdraft cores appear smaller than other closed-cell stratocumulus such as midlatitude stratocumulus and Arctic autumnal mixed-phase stratocumulus due to the weaker downdrafts and lower precipitation rates.« less

  10. Impact of the snow cover scheme on snow distribution and energy budget modeling over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong; Xie, Zhenghui; Jia, Binghao; Sun, Genhou; Du, Yizhen; Song, Haiqing

    2018-02-01

    This paper presents the impact of two snow cover schemes (NY07 and SL12) in the Community Land Model version 4.5 (CLM4.5) on the snow distribution and surface energy budget over the Tibetan Plateau. The simulated snow cover fraction (SCF), snow depth, and snow cover days were evaluated against in situ snow depth observations and a satellite-based snow cover product and snow depth dataset. The results show that the SL12 scheme, which considers snow accumulation and snowmelt processes separately, has a higher overall accuracy (81.8%) than the NY07 (75.8%). The newer scheme performs better in the prediction of overall accuracy compared with the NY07; however, SL12 yields a 15.1% underestimation rate while NY07 overestimated the SCF with a 15.2% overestimation rate. Both two schemes capture the distribution of the maximum snow depth well but show large positive biases in the average value through all periods (3.37, 3.15, and 1.48 cm for NY07; 3.91, 3.52, and 1.17 cm for SL12) and overestimate snow cover days compared with the satellite-based product and in situ observations. Higher altitudes show larger root-mean-square errors (RMSEs) in the simulations of snow depth and snow cover days during the snow-free period. Moreover, the surface energy flux estimations from the SL12 scheme are generally superior to the simulation from NY07 when evaluated against ground-based observations, in particular for net radiation and sensible heat flux. This study has great implications for further improvement of the subgrid-scale snow variations over the Tibetan Plateau.

  11. Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.

    2010-01-01

    As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.

  12. Effects of Parameterized Orographic Drag on Weather Forecasting and Simulated Climatology Over East Asia During Boreal Summer

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Joo; Choi, Suk-Jin; Koo, Myung-Seo; Kim, Jung-Eun; Kwon, Young Cheol; Hong, Song-You

    2017-10-01

    The impact of subgrid orographic drag on weather forecasting and simulated climatology over East Asia in boreal summer is examined using two parameterization schemes in a global forecast model. The schemes consider gravity wave drag (GWD) with and without lower-level wave breaking drag (LLWD) and flow-blocking drag (FBD). Simulation results from sensitivity experiments verify that the scheme with LLWD and FBD improves the intensity of a summertime continental high over the northern part of the Korean Peninsula, which is exaggerated with GWD only. This is because the enhanced lower tropospheric drag due to the effects of lower-level wave breaking and flow blocking slows down the wind flowing out of the high-pressure system in the lower troposphere. It is found that the decreased lower-level divergence induces a compensating weakening of middle- to upper-level convergence aloft. Extended experiments for medium-range forecasts for July 2013 and seasonal simulations for June to August of 2013-2015 are also conducted. Statistical skill scores for medium-range forecasting are improved not only in low-level winds but also in surface pressure when both LLWD and FBD are considered. A simulated climatology of summertime monsoon circulation in East Asia is also realistically reproduced.

  13. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur

    2009-07-01

    For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).

  14. Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation

    PubMed Central

    Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton

    2016-01-01

    Abstract A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model‐dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model‐dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low‐level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales. PMID:27668040

  15. Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation

    NASA Astrophysics Data System (ADS)

    Sandu, Irina; Bechtold, Peter; Beljaars, Anton; Bozzo, Alessio; Pithan, Felix; Shepherd, Theodore G.; Zadra, Ayrton

    2016-03-01

    A recent intercomparison exercise proposed by the Working Group for Numerical Experimentation (WGNE) revealed that the parameterized, or unresolved, surface stress in weather forecast models is highly model-dependent, especially over orography. Models of comparable resolution differ over land by as much as 20% in zonal mean total subgrid surface stress (τtot). The way τtot is partitioned between the different parameterizations is also model-dependent. In this study, we simulated in a particular model an increase in τtot comparable with the spread found in the WGNE intercomparison. This increase was simulated in two ways, namely by increasing independently the contributions to τtot of the turbulent orographic form drag scheme (TOFD) and of the orographic low-level blocking scheme (BLOCK). Increasing the parameterized orographic drag leads to significant changes in surface pressure, zonal wind and temperature in the Northern Hemisphere during winter both in 10 day weather forecasts and in seasonal integrations. However, the magnitude of these changes in circulation strongly depends on which scheme is modified. In 10 day forecasts, stronger changes are found when the TOFD stress is increased, while on seasonal time scales the effects are of comparable magnitude, although different in detail. At these time scales, the BLOCK scheme affects the lower stratosphere winds through changes in the resolved planetary waves which are associated with surface impacts, while the TOFD effects are mostly limited to the lower troposphere. The partitioning of τtot between the two schemes appears to play an important role at all time scales.

  16. On the TFNS Subgrid Models for Liquid-Fueled Turbulent Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Wey, Thomas

    2014-01-01

    This paper describes the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models used to emulate the major processes occurring in the turbulence-chemistry interaction. These two subgrid models are termed as LEM-like model and EUPDF-like model (Eulerian probability density function), respectively. Two-phase turbulent combustion in a single-element lean-direct-injection (LDI) combustor is calculated by employing the TFNS/LEM-like approach as well as the TFNS/EUPDF-like approach. Results obtained from the TFNS approach employing these two different subgrid models are compared with each other, along with the experimental data, followed by more detailed comparison between the results of an updated calculation using the TFNS/LEM-like model and the experimental data.

  17. Copernicus observational searches for OH and H2O in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Smith, W. H.; Snow, T. P., Jr.

    1983-01-01

    An intensive search for OH and H2O in the directions of sigma Sco, alpha Cam, and micron Per was undertaken with the Copernicus satellite. Multiple scans were carried out over the wavelength region for the expected absorption features due to the OH D-X and H2O C-X transitions. The feature due to OH was detected marginally towards sigma Sco, and only an upper limit can be given towards alpha Cam. H2O was not detected in any of the stars at the signal level accumulated. The OH abundance towards sigma Sco and the respective lower limits for the OH/H2O ratios are discussed with regard to the extant models for the steady state abundances of OH and H2O, and shown not to be inconsistent with ion-molecule schemes.

  18. Copernicus observational searches for OH and H2O in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Smith, W. H.; Snow, T. P., Jr.

    1979-01-01

    An intensive search for OH and H2O in the directions of Sigma Sco, Alpha Cam, and Omicron Per was undertaken with the Copernicus satellite. Multiple scans were carried out over the wavelength region for the expected absorption features due to the OH D-X and H2O C-X transitions. The feature due to OH was possibly detected toward Sigma Sco, and only an upper limit can be given toward Alpha Cam. H2O was not detected in any of the stars at the signal level accumulated. The OH abundance toward Sigma Sco and the respective lower limits for the OH/H2O ratios are discussed with regard to the extant models for the steady-state abundances of OH and H2O, and shown not to be inconsistent with ion-molecule schemes.

  19. The importance of topography controlled sub-grid process heterogeneity in distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Nijzink, R. C.; Samaniego, L.; Mai, J.; Kumar, R.; Thober, S.; Zink, M.; Schäfer, D.; Savenije, H. H. G.; Hrachowitz, M.

    2015-12-01

    Heterogeneity of landscape features like terrain, soil, and vegetation properties affect the partitioning of water and energy. However, it remains unclear to which extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated in the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge based model constraints reduces model uncertainty; and (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both, the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as overall measure for model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 % respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. Besides, it was shown that suitable semi-quantitative prior constraints in combination with the transfer function based regularization approach of mHM, can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.

  20. The importance of topography-controlled sub-grid process heterogeneity and semi-quantitative prior constraints in distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Samaniego, Luis; Mai, Juliane; Kumar, Rohini; Thober, Stephan; Zink, Matthias; Schäfer, David; Savenije, Hubert H. G.; Hrachowitz, Markus

    2016-03-01

    Heterogeneity of landscape features like terrain, soil, and vegetation properties affects the partitioning of water and energy. However, it remains unclear to what extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated into the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge-based model constraints reduces model uncertainty, and whether (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge-based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as an overall measure of model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 %, respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. In addition, it was shown that suitable semi-quantitative prior constraints in combination with the transfer-function-based regularization approach of mHM can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.

  1. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong

    Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less

  2. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong; Peng, Yiran; Liu, Yangang

    2017-05-01

    Aerosol-induced increase of relative dispersion of cloud droplet size distribution ɛ exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius (Re) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled as the dispersion effect), which can help reconcile global climate models (GCMs) with the satellite observations. However, the total dispersion effects on both Re and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). In order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of Re and Au explicitly accounting for ɛ are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ɛ reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. Additionally, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m-2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m-2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δɛ/ΔNc).

  3. Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects

    DOE PAGES

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...

    2017-05-12

    Aerosol-induced increase of relative dispersion of cloud droplet size distribution ε exerts a warming effect and partly offsets the cooling of aerosol indirect radiative forcing (AIF) associated with increased droplet concentration by increasing the cloud droplet effective radius ( R e) and enhancing the cloud-to-rain autoconversion rate (Au) (labeled aBut, the total dispersion effects on both R e and Au are not fully considered in most GCMs, especially in different versions of the Community Atmospheric Model (CAM). Furthermore, in order to accurately evaluate the dispersion effect on AIF, the new complete cloud parameterizations of R e and Au explicitly accountingmore » for ε are implemented into the CAM version 5.1 (CAM5.1), and a suite of sensitivity experiments is conducted with different representations of ε reported in the literature. It is shown that the shortwave cloud radiative forcing is much better simulated with the new cloud parameterizations as compared to the standard scheme in CAM5.1, whereas the influences on longwave cloud radiative forcing and surface precipitation are minimal. In addition, consideration of the dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, especially in the Northern Hemisphere. The corresponding AIF with the dispersion effect considered can also be reduced substantially by a range of 0.10 to 0.21 W m -2 at the global scale and by a much bigger margin of 0.25 to 0.39 W m -2 for the Northern Hemisphere in comparison with that of fixed relative dispersion, mainly dependent on the change of relative dispersion and droplet concentrations (Δε/ΔN).« less

  4. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  5. Effect of LES models on the entrainment of a passive scalar in a turbulent planar jet

    NASA Astrophysics Data System (ADS)

    Chambel Lopes, Diogo; da Silva, Carlos; Reis, Ricardo; Raman, Venkat

    2011-11-01

    Direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. Specifically the effect of subgrid-scale models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent. It has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. The subgrid scales of motion near the T/NT interface are far from equilibrium and contain an important fraction of the total kinetic energy. Model constants used in several subgrid-scale models such as the Smagorinsky and the gradient models need to be corrected near the jet edge. The procedure used to obtain the dynamic Smagorinsky constant is not able to cope with the intermittent nature of this region.

  6. Filter size definition in anisotropic subgrid models for large eddy simulation on irregular grids

    NASA Astrophysics Data System (ADS)

    Abbà, Antonella; Campaniello, Dario; Nini, Michele

    2017-06-01

    The definition of the characteristic filter size to be used for subgrid scales models in large eddy simulation using irregular grids is still an unclosed problem. We investigate some different approaches to the definition of the filter length for anisotropic subgrid scale models and we propose a tensorial formulation based on the inertial ellipsoid of the grid element. The results demonstrate an improvement in the prediction of several key features of the flow when the anisotropicity of the grid is explicitly taken into account with the tensorial filter size.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  8. The Impact of Chemical Mechanism Design on Simulated Surface Ozone in CAM-Chem

    NASA Astrophysics Data System (ADS)

    Schwantes, R.; Emmons, L. K.; Orlando, J. J.; Tyndall, G. S.

    2017-12-01

    Many regions in the United States have poor air quality because of high levels of ozone. Global and regional chemical transport models are important tools for recommending regulatory policy directions to efficiently reduce ozone. Ozone is intrinsically hard to simulate in global and regional models because the amount of ozone present is controlled by large non-linear sources and sinks. Recent field campaigns have concluded that monoterpene chemistry is particularly important for the NOx budget and thereby O3 formation. However, many regional and global models have none or heavily reduced monoterpene chemical schemes. In this study, the chemical mechanism for isoprene and monoterpene oxidation will be significantly improved and updated in CAM-Chem (Community Atmosphere Model with chemistry), which is a component of the Community Earth System Model (CESM). In particular, the updates will focus on accurately portraying organic nitrate formation and fate. The impact of various uncertainties (e.g., nitrate yields, later generation chemistry, loss of organic nitrates to aerosols via hydrolysis, etc.) on ozone formation will be tested. This study will both improve the chemistry in CAM-Chem and reveal lingering uncertainties that have the largest impact on ozone formation.

  9. Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1

    DOE PAGES

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong; ...

    2018-01-10

    In previous studies we see that accurate descriptions of the cloud droplet effective radius (Re) and the autoconversion process of cloud droplets to raindrops (Au) can effectively improve simulated clouds and surface precipitation, and reduce the uncertainty of aerosol indirect effects in global climate models (GCMs). In this paper, we implement cloud microphysical schemes including two-moment Au and R e considering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics atmospheric GCM (IAP AGCM 4.1), which is the atmospheric component of the Chinese Academy of Sciences-Earth System model (CAS-ESM 1.0). An analysismore » of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave (SWCF) and longwave cloud radiative forcings (LWCF) as compared to the standard scheme in IAP AGCM 4.1. The new schemes also effectively enhance the large-scale precipitation, especially over low latitudes, although the influences of total precipitation are insignificant for different schemes. Further studies show that similar results can be found with the Community Atmosphere Model 5.1 (CAM5.1).« less

  10. Role of Microphysical Parameterizations with Droplet Relative Dispersion in IAP AGCM 4.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoning; Zhang, He; Liu, Xiaodong

    In previous studies we see that accurate descriptions of the cloud droplet effective radius (Re) and the autoconversion process of cloud droplets to raindrops (Au) can effectively improve simulated clouds and surface precipitation, and reduce the uncertainty of aerosol indirect effects in global climate models (GCMs). In this paper, we implement cloud microphysical schemes including two-moment Au and R e considering relative dispersion of the cloud droplet size distribution into version 4.1 of the Institute of Atmospheric Physics atmospheric GCM (IAP AGCM 4.1), which is the atmospheric component of the Chinese Academy of Sciences-Earth System model (CAS-ESM 1.0). An analysismore » of the effects of different schemes shows that the newly implemented schemes can improve both the simulated shortwave (SWCF) and longwave cloud radiative forcings (LWCF) as compared to the standard scheme in IAP AGCM 4.1. The new schemes also effectively enhance the large-scale precipitation, especially over low latitudes, although the influences of total precipitation are insignificant for different schemes. Further studies show that similar results can be found with the Community Atmosphere Model 5.1 (CAM5.1).« less

  11. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  12. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less

  13. A multiscale modeling framework model (superparameterized CAM5) with a higher-order turbulence closure: Model description and low-cloud simulations

    DOE PAGES

    Wang, Minghuai; Larson, Vincent E.; Ghan, Steven; ...

    2015-04-18

    In this study, a higher-order turbulence closure scheme, called Cloud Layers Unified by Binormals (CLUBB), is implemented into a Multi-scale Modeling Framework (MMF) model to improve low cloud simulations. The performance of CLUBB in MMF simulations with two different microphysics configurations (one-moment cloud microphysics without aerosol treatment and two-moment cloud microphysics coupled with aerosol treatment) is evaluated against observations and further compared with results from the Community Atmosphere Model, Version 5 (CAM5) with conventional cloud parameterizations. CLUBB is found to improve low cloud simulations in the MMF, and the improvement is particularly evident in the stratocumulus-to-cumulus transition regions. Compared tomore » the single-moment cloud microphysics, CLUBB with two-moment microphysics produces clouds that are closer to the coast, and agrees better with observations. In the stratocumulus-to cumulus transition regions, CLUBB with two-moment cloud microphysics produces shortwave cloud forcing in better agreement with observations, while CLUBB with single moment cloud microphysics overestimates shortwave cloud forcing. CLUBB is further found to produce quantitatively similar improvements in the MMF and CAM5, with slightly better performance in the MMF simulations (e.g., MMF with CLUBB generally produces low clouds that are closer to the coast than CAM5 with CLUBB). As a result, improved low cloud simulations in MMF make it an even more attractive tool for studying aerosol-cloud-precipitation interactions.« less

  14. Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-07-01

    Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.

  15. Fine-scale application of WRF-CAM5 during a dust storm episode over East Asia: Sensitivity to grid resolutions and aerosol activation parameterizations

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhang, Yang; Zhang, Xin; Fan, Jiwen; Leung, L. Ruby; Zheng, Bo; Zhang, Qiang; He, Kebin

    2018-03-01

    An advanced online-coupled meteorology and chemistry model WRF-CAM5 has been applied to East Asia using triple-nested domains at different grid resolutions (i.e., 36-, 12-, and 4-km) to simulate a severe dust storm period in spring 2010. Analyses are performed to evaluate the model performance and investigate model sensitivity to different horizontal grid sizes and aerosol activation parameterizations and to examine aerosol-cloud interactions and their impacts on the air quality. A comprehensive model evaluation of the baseline simulations using the default Abdul-Razzak and Ghan (AG) aerosol activation scheme shows that the model can well predict major meteorological variables such as 2-m temperature (T2), water vapor mixing ratio (Q2), 10-m wind speed (WS10) and wind direction (WD10), and shortwave and longwave radiation across different resolutions with domain-average normalized mean biases typically within ±15%. The baseline simulations also show moderate biases for precipitation and moderate-to-large underpredictions for other major variables associated with aerosol-cloud interactions such as cloud droplet number concentration (CDNC), cloud optical thickness (COT), and cloud liquid water path (LWP) due to uncertainties or limitations in the aerosol-cloud treatments. The model performance is sensitive to grid resolutions, especially for surface meteorological variables such as T2, Q2, WS10, and WD10, with the performance generally improving at finer grid resolutions for those variables. Comparison of the sensitivity simulations with an alternative (i.e., the Fountoukis and Nenes (FN) series scheme) and the default (i.e., AG scheme) aerosol activation scheme shows that the former predicts larger values for cloud variables such as CDNC and COT across all grid resolutions and improves the overall domain-average model performance for many cloud/radiation variables and precipitation. Sensitivity simulations using the FN series scheme also have large impacts on radiations, T2, precipitation, and air quality (e.g., decreasing O3) through complex aerosol-radiation-cloud-chemistry feedbacks. The inclusion of adsorptive activation of dust particles in the FN series scheme has similar impacts on the meteorology and air quality but to lesser extent as compared to differences between the FN series and AG schemes. Compared to the overall differences between the FN series and AG schemes, impacts of adsorptive activation of dust particles can contribute significantly to the increase of total CDNC (∼45%) during dust storm events and indicate their importance in modulating regional climate over East Asia.

  16. Toroidal figures of equilibrium from a second-order accurate, accelerated SCF method with subgrid approach

    NASA Astrophysics Data System (ADS)

    Huré, J.-M.; Hersant, F.

    2017-02-01

    We compute the structure of a self-gravitating torus with polytropic equation of state (EOS) rotating in an imposed centrifugal potential. The Poisson solver is based on isotropic multigrid with optimal covering factor (fluid section-to-grid area ratio). We work at second order in the grid resolution for both finite difference and quadrature schemes. For soft EOS (I.e. polytropic index n ≥ 1), the underlying second order is naturally recovered for boundary values and any other integrated quantity sensitive to the mass density (mass, angular momentum, volume, virial parameter, etc.), I.e. errors vary with the number N of nodes per direction as ˜1/N2. This is, however, not observed for purely geometrical quantities (surface area, meridional section area, volume), unless a subgrid approach is considered (I.e. boundary detection). Equilibrium sequences are also much better described, especially close to critical rotation. Yet another technical effort is required for hard EOS (n < 1), due to infinite mass density gradients at the fluid surface. We fix the problem by using kernel splitting. Finally, we propose an accelerated version of the self-consistent field (SCF) algorithm based on a node-by-node pre-conditioning of the mass density at each step. The computing time is reduced by a factor of 2 typically, regardless of the polytropic index. There is a priori no obstacle to applying these results and techniques to ellipsoidal configurations and even to 3D configurations.

  17. A Parameterization for Land-Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land.

    NASA Astrophysics Data System (ADS)

    Wetzel, Peter J.; Boone, Aaron

    1995-07-01

    This paper presents a general description of, and demonstrates the capabilities of, the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE). The PLACE model is a detailed process model of the partly cloudy atmospheric boundary layer and underlying heterogeneous land surfaces. In its development, particular attention has been given to three of the model's subprocesses: the prediction of boundary layer cloud amount, the treatment of surface and soil subgrid heterogeneity, and the liquid water budget. The model includes a three-parameter nonprecipitating cumulus model that feeds back to the surface and boundary layer through radiative effects. Surface heterogeneity in the PLACE model is treated both statistically and by resolving explicit subgrid patches. The model maintains a vertical column of liquid water that is divided into seven reservoirs, from the surface interception store down to bedrock.Five single-day demonstration cases are presented, in which the PLACE model was initialized, run, and compared to field observations from four diverse sites. The model is shown to predict cloud amount well in these while predicting the surface fluxes with similar accuracy. A slight tendency to underpredict boundary layer depth is noted in all cases.Sensitivity tests were also run using anemometer-level forcing provided by the Project for Inter-comparison of Land-surface Parameterization Schemes (PILPS). The purpose is to demonstrate the relative impact of heterogeneity of surface parameters on the predicted annual mean surface fluxes. Significant sensitivity to subgrid variability of certain parameters is demonstrated, particularly to parameters related to soil moisture. A major result is that the PLACE-computed impact of total (homogeneous) deforestation of a rain forest is comparable in magnitude to the effect of imposing heterogeneity of certain surface variables, and is similarly comparable to the overall variance among the other PILPS participant models. Were this result to be bourne out by further analysis, it would suggest that today's average land surface parameterization has little credibility when applied to discriminating the local impacts of any plausible future climate change.

  18. Detached-Eddy Simulation of Flow Non-Linearity of Fluid-Structural Interactions Using High Order Schemes

    DTIC Science & Technology

    2009-05-01

    j = − 2 3 µ̃ ∂ ũk ∂xk δi j + µ̃( ∂ ũi ∂x j + ∂ ũ j ∂xi ), i, j = 1,2,3 (2.2) The above equation is in...µ̃(T̃ ) is determined by Sutherland law. The σ is the subgrid scale stress tensor due to the filtering process and is expressed as: σi j = −ρ̄(ũiu j ...ũiũ j ) (2.3) The energy flux Q is expressed as: Qi = ũ j (τ̄i j +σi j )− q̄i +Φi (2.4) where Φ is the subscale heat flux: Φi = −Cpρ̄(ũiT −

  19. GEWEX Cloud Systems Study (GCSS)

    NASA Technical Reports Server (NTRS)

    Moncrieff, Mitch

    1993-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.

  20. Development of comprehensive numerical schemes for predicting evaporating gas-droplets flow processes of a liquid-fueled combustor

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1990-01-01

    An existing Computational Fluid Dynamics code for simulating complex turbulent flows inside a liquid rocket combustion chamber was validated and further developed. The Advanced Rocket Injector/Combustor Code (ARICC) is simplified and validated against benchmark flow situations for laminar and turbulent flows. The numerical method used in ARICC Code is re-examined for incompressible flow calculations. For turbulent flows, both the subgrid and the two equation k-epsilon turbulence models are studied. Cases tested include idealized Burger's equation in complex geometries and boundaries, a laminar pipe flow, a high Reynolds number turbulent flow, and a confined coaxial jet with recirculations. The accuracy of the algorithm is examined by comparing the numerical results with the analytical solutions as well as experimented data with different grid sizes.

  1. Numerical modeling of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles

    NASA Astrophysics Data System (ADS)

    Castiglioni, Giacomo

    Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general cases. Additionally, a two-dimensional sweep of angles of attack from 0° to 5° is performed showing a qualitative prediction of the jump in lift and drag coefficients due to the appearance of the laminar separation bubble. The numerical dissipation inhibits the predictive capabilities of large eddy simulations whenever it is of the same order of magnitude or larger than the sub-grid scale dissipation. The need to estimate the numerical dissipation is most pressing for low-order methods employed by commercial computational fluid dynamics codes. Following the recent work of Schranner et al., the equations and procedure for estimating the numerical dissipation rate and the numerical viscosity in a commercial code are presented. The method allows for the computation of the numerical dissipation rate and numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent way, using only information provided by the code in question. The method is first tested for a three-dimensional Taylor-Green vortex flow in a simple cubic domain and compared with benchmark results obtained using an accurate, incompressible spectral solver. Afterwards the same procedure is applied for the first time to a realistic flow configuration, specifically to the above discussed laminar separation bubble flow over a NACA 0012 airfoil. The method appears to be quite robust and its application reveals that for the code and the flow in question the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of the classical Smagorinsky sub-grid scale model, confirming the previously qualitative finding.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, E. P.; Rosner, R., E-mail: eph2001@columbia.edu

    In this paper, we provide support for the Rayleigh-Taylor-(RT)-based subgrid model used in full-star simulations of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed, the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is varied. The flame speed is well predicted by an RT-based flame speed model.more » Next, the above scalings are used to calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally, we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar. By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales. Overall, these results support the RT subgrid model.« less

  3. Copernicus observational searches for OH and H/sub 2/O in diffuse clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, W.H.; Snow, T.P. Jr.

    1979-03-01

    An intensive search for OH and H/sub 2/O in the directions of sigma Sco, ..cap alpha.. Cam, and omicron Per was undertaken with the Copernicus satellite. Multiple scans were carried out over the wavelength region for the expected absorption features due to the OH D--X and H/sub 2/O C--X transitions. The feature due to OH was possibly detected toward sigma Sco, and only an upper limit can be given toward ..cap alpha.. Cam. H/sub 2/O was not detected in any of the stars at the signal level accumulated. The OH abundance toward sigma Sco and the respective lower limits formore » the OH/H/sub 2/O ratios are discussed with regard to the extant models for the steady-state abundances of OH and H/sub 2/O, and shown not to be inconsistent with ion-molecule schemes.« less

  4. Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction

    NASA Astrophysics Data System (ADS)

    Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).

  5. ON JOINT DETERMINISTIC GRID MODELING AND SUB-GRID VARIABILITY CONCEPTUAL FRAMEWORK FOR MODEL EVALUATION

    EPA Science Inventory

    The general situation, (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing gridbased air quality modeling results with observations. Typically, grid models ignore or parameterize processes ...

  6. A fully covariant mean-field dynamo closure for numerical 3 + 1 resistive GRMHD

    NASA Astrophysics Data System (ADS)

    Bucciantini, N.; Del Zanna, L.

    2013-01-01

    The powerful high-energy phenomena typically encountered in astrophysics invariably involve physical engines, like neutron stars and black hole accretion discs, characterized by a combination of highly magnetized plasmas, strong gravitational fields and relativistic motions. In recent years, numerical schemes for general relativistic magnetohydrodynamics (GRMHD) have been developed to model the multidimensional dynamics of such systems, including the possibility of evolving space-time. Such schemes have been also extended beyond the ideal limit including the effects of resistivity, in an attempt to model dissipative physical processes acting on small scales (subgrid effects) over the global dynamics. Along the same lines, the magnetic field could be amplified by the presence of turbulent dynamo processes, as often invoked to explain the high values of magnetization required in accretion discs and neutron stars. Here we present, for the first time, a further extension to include the possibility of a mean-field dynamo action within the framework of numerical 3 + 1 (resistive) GRMHD. A fully covariant dynamo closure is proposed, in analogy with the classical theory, assuming a simple α-effect in the comoving frame. Its implementation into a finite-difference scheme for GRMHD in dynamical space-times (the x-echo code by Bucciantini & Del Zanna) is described, and a set of numerical test is presented and compared with analytical solutions wherever possible.

  7. Improvements in sub-grid, microphysics averages using quadrature based approaches

    NASA Astrophysics Data System (ADS)

    Chowdhary, K.; Debusschere, B.; Larson, V. E.

    2013-12-01

    Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.

  8. Soil Surface Runoff Scheme for Improving Land-Hydrology and Surface Fluxes in Simple SiB (SSiB)

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    Evapotranspiration on land is hard to measure and difficult to simulate. On the scale of a GCM grid, there is large subgrid-scale variability of orography, soil moisture, and vegetation. Our hope is to be able to tune the biophysical constants of vegetation and soil parameters to get the most realistic space-averaged diurnal cycle of evaporation and its climatology. Field experiments such as First ISLSCP Field Experiment (FIFE), Boreal Ecosystem-Atmosphere Study (BOREAS), and LBA help a great deal in improving our evapotranspiration schemes. However, these improvements have to be matched with, and coupled to, consistent improvement in land-hydrology; otherwise, the runoff problems will intrinsically reflect on the soil moisture and evapotranspiration errors. Indeed, a realistic runoff simulation also ensures a reasonable evapotranspiration simulation provided the precipitation forcing is reliable. We have been working on all of the above problems to improve the simulated hydrologic cycle. Through our participation in the evaluation and intercomparison of land-models under the behest of Global Soil Wetness Project (GSWP), we identified a few problems with Simple SiB (SSIB; Xue et al., 1991) hydrology in regions of significant snowmelt. Sud and Mocko (1999) show that inclusion of a separate snowpack model, with its own energy budget and fluxes with the atmosphere aloft and soil beneath, helps to ameliorate some of the deficiencies of delayed snowmelt and excessive spring season runoff. Thus, much more realistic timing of melt water generation was simulated with the new snowpack model in the subsequent GSWP re-evaluations using 2 years of ISLSCP Initiative I forcing data for 1987 and 1988. However, we noted an overcorrection of the low meltwater infiltration of SSiB. While the improvement in snowmelt timing was found everywhere, the snowmelt infiltration has became excessive in some regions, e.g., Lena river basin. This leads to much reduced runoff in many basins as compared to observations. We believe this is a consequence of neglect of the influence of subgrid-scale variations in orography that affects the production of surface runoff.

  9. Assessment of stretched vortex subgrid-scale models for LES of incompressible inhomogeneous turbulent flow

    PubMed Central

    Shetty, Dinesh A.; Frankel, Steven H.

    2013-01-01

    Summary The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. PMID:24187423

  10. Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds

    NASA Astrophysics Data System (ADS)

    Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.

    2015-12-01

    An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.

  11. SUBGRID PARAMETERIZATION OF SNOW DISTRIBUTION FOR AN ENERGY AND MASS BALANCE SNOW COVER MODEL. (R824784)

    EPA Science Inventory

    Representation of sub-element scale variability in snow accumulation and ablation is increasingly recognized as important in distributed hydrologic modelling. Representing sub-grid scale variability may be accomplished through numerical integration of a nested grid or through a l...

  12. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations.

    PubMed

    Ida, Masato; Taniguchi, Nobuyuki

    2003-09-01

    This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.

  13. Sub-grid drag model for immersed vertical cylinders in fluidized beds

    DOE PAGES

    Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...

    2017-01-03

    Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less

  14. Cold Season QPF: Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations

    NASA Technical Reports Server (NTRS)

    Molthan, A. L.; Haynes, J. A.; Jedlovec, G. L.; Lapenta, W. M.

    2009-01-01

    As operational numerical weather prediction is performed at increasingly finer spatial resolution, precipitation traditionally represented by sub-grid scale parameterization schemes is now being calculated explicitly through the use of single- or multi-moment, bulk water microphysics schemes. As computational resources grow, the real-time application of these schemes is becoming available to a broader audience, ranging from national meteorological centers to their component forecast offices. A need for improved quantitative precipitation forecasts has been highlighted by the United States Weather Research Program, which advised that gains in forecasting skill will draw upon improved simulations of clouds and cloud microphysical processes. Investments in space-borne remote sensing have produced the NASA A-Train of polar orbiting satellites, specially equipped to observe and catalog cloud properties. The NASA CloudSat instrument, a recent addition to the A-Train and the first 94 GHz radar system operated in space, provides a unique opportunity to compare observed cloud profiles to their modeled counterparts. Comparisons are available through the use of a radiative transfer model (QuickBeam), which simulates 94 GHz radar returns based on the microphysics of cloudy model profiles and the prescribed characteristics of their constituent hydrometeor classes. CloudSat observations of snowfall are presented for a case in the central United States, with comparisons made to precipitating clouds as simulated by the Weather Research and Forecasting Model and the Goddard single-moment microphysics scheme. An additional forecast cycle is performed with a temperature-based parameterization of the snow distribution slope parameter, with comparisons to CloudSat observations provided through the QuickBeam simulator.

  15. Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data

    DOE PAGES

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    2017-01-22

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  16. Approaches for Subgrid Parameterization: Does Scaling Help?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-04-01

    Arguably the scaling behavior is a well-established fact in many geophysical systems. There are already many theoretical studies elucidating this issue. However, the scaling law is slow to be introduced in "operational" geophysical modelling, notably for weather forecast as well as climate projection models. The main purpose of this presentation is to ask why, and try to answer this question. As a reference point, the presentation reviews the three major approaches for traditional subgrid parameterization: moment, PDF (probability density function), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in the atmosphere and the oceans. The PDF approach is intuitively appealing as it directly deals with a distribution of variables in subgrid scale in a more direct manner. The third category, originally proposed by Aubry et al (1988) in context of the wall boundary-layer turbulence, is specifically designed to represent coherencies in compact manner by a low--dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (POD, or empirical orthogonal functions, EOF) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. The mass-flux formulation that is currently adopted in majority of atmospheric models for parameterizing convection can also be considered a special case of the mode decomposition, adopting the segmentally-constant modes for the expansion basis. The mode decomposition can, furthermore, be re-interpreted as a type of Galarkin approach for numerically modelling the subgrid-scale processes. Simple extrapolation of this re-interpretation further suggests us that the subgrid parameterization problem may be re-interpreted as a type of mesh-refinement problem in numerical modelling. We furthermore see a link between the subgrid parameterization and downscaling problems along this line. The mode decomposition approach would also be the best framework for linking between the traditional parameterizations and the scaling perspectives. However, by seeing the link more clearly, we also see strength and weakness of introducing the scaling perspectives into parameterizations. Any diagnosis under a mode decomposition would immediately reveal a power-law nature of the spectrum. However, exploiting this knowledge in operational parameterization would be a different story. It is symbolic to realize that POD studies have been focusing on representing the largest-scale coherency within a grid box under a high truncation. This problem is already hard enough. Looking at differently, the scaling law is a very concise manner for characterizing many subgrid-scale variabilities in systems. We may even argue that the scaling law can provide almost complete subgrid-scale information in order to construct a parameterization, but with a major missing link: its amplitude must be specified by an additional condition. The condition called "closure" in the parameterization problem, and known to be a tough problem. We should also realize that the studies of the scaling behavior tend to be statistical in the sense that it hardly provides complete information for constructing a parameterization: can we specify the coefficients of all the decomposition modes by a scaling law perfectly when the first few leading modes are specified? Arguably, the renormalization group (RNG) is a very powerful tool for reducing a system with a scaling behavior into a low dimension, say, under an appropriate mode decomposition procedure. However, RNG is analytical tool: it is extremely hard to apply it to real complex geophysical systems. It appears that it is still a long way to go for us before we can begin to exploit the scaling law in order to construct operational subgrid parameterizations in effective manner.

  17. Study of compressible turbulent flows in supersonic environment by large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Genin, Franklin

    The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is considered. It is shown that the levels of turbulence are increased through the interaction, and that the mixing is significantly improved in this flow configuration. However, the region of increased mixing is found to be localized to a region close to the impact of the shocks, and that the statistical levels of turbulence relax to their undisturbed levels some short distance downstream of the interaction. The present developments are finally applied to a practical configuration relevant to scramjet injection. The normal injection of a sonic jet into a supersonic crossflow is considered numerically, and compared to the results of an experimental study. A fair agreement in the statistics of mean and fluctuating velocity fields is obtained. Furthermore, some of the instantaneous flow structures observed in experimental visualizations are identified in the present simulation. The dynamics of the interaction for the reference case, based on the experimental study, as well as for a case of higher freestream Mach number and a case of higher momentum ratio, are examined. The classical instantaneous vortical structures are identified, and their generation mechanisms, specific to supersonic flow, are highlighted. Furthermore, two vortical structures, recently revealed in low-speed jets in crossflow but never documented for high-speed flows, are identified during the flow evolution.

  18. The evaluation and development of the Met Office Unified Model using surface and space borne radar.

    NASA Astrophysics Data System (ADS)

    Petch, J.

    2012-12-01

    The Met Office Unified Model is used for the prediction of weather and climate on time scales of hours through to centuries. Therefore, the parametrizations in that model need to work on weather and climate timescale, and with grid-lengths from hundres of meters through to several hundred kilometres. Focusing on the development of the cloud and radiation schemes I will discuss how we are using ground-based remote-sensing observations from Chilbolton (England) and a combination of Cloudsat and Calipso data to evaluate and improve the performance of the model. I will show how the prediction of the clouds has improved since the AR5 version of the model and how we have developed an improved cloud generator to rebresent the sub-grid variability of clouds for radiative transfer.

  19. Sensitivity of a cloud parameterization package in the National Center for Atmospheric Research Community Climate Model

    NASA Astrophysics Data System (ADS)

    Kao, C.-Y. J.; Smith, W. S.

    1999-05-01

    A physically based cloud parameterization package, which includes the Arakawa-Schubert (AS) scheme for subgrid-scale convective clouds and the Sundqvist (SUN) scheme for nonconvective grid-scale layered clouds (hereafter referred to as the SUNAS cloud package), is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, Version 2 (CCM2). The AS scheme is used for a more reasonable heating distribution due to convective clouds and their associated precipitation. The SUN scheme allows for the prognostic computation of cloud water so that the cloud optical properties are more physically determined for shortwave and longwave radiation calculations. In addition, the formation of anvil-like clouds from deep convective systems is able to be simulated with the SUNAS package. A 10-year simulation spanning the period from 1980 to 1989 is conducted, and the effect of the cloud package on the January climate is assessed by comparing it with various available data sets and the National Center for Environmental Protection/NCAR reanalysis. Strengths and deficiencies of both the SUN and AS methods are identified and discussed. The AS scheme improves some aspects of the model dynamics and precipitation, especially with respect to the Pacific North America (PNA) pattern. CCM2's tendency to produce a westward bias of the 500 mbar stationary wave (time-averaged zonal anomalies) in the PNA sector is remedied apparently because of a less "locked-in" heating pattern in the tropics. The additional degree of freedom added by the prognostic calculation of cloud water in the SUN scheme produces interesting results in the modeled cloud and radiation fields compared with data. In general, too little cloud water forms in the tropics, while excessive cloud cover and cloud liquid water are simulated in midlatitudes. This results in a somewhat degraded simulation of the radiation budget. The overall simulated precipitation by the SUNAS package is, however, substantially improved over the original CCM2.

  20. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-07-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBHs) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion on to a point mass, and the related estimate of the drag force exerted on to a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply-limited accretion scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force, it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates on to the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  1. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    NASA Astrophysics Data System (ADS)

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-01-01

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling multispecies processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense. Existing lower and upper bounds on linear correlation coefficients are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are populated here using a "cSigma" parameterization that we introduce based on the aforementioned bounds on correlations. The method has three advantages: (1) the computational expense is tolerable; (2) the correlations are, by construction, guaranteed to be consistent with each other; and (3) the methodology is fairly general and hence may be applicable to other problems. The method is tested noninteractively using simulations of three Arctic mixed-phase cloud cases from two field experiments: the Indirect and Semi-Direct Aerosol Campaign and the Mixed-Phase Arctic Cloud Experiment. Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  2. Bondi or not Bondi: the impact of resolution on accretion and drag force modelling for Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Beckmann, R. S.; Slyz, A.; Devriendt, J.

    2018-04-01

    Whilst in galaxy-size simulations, supermassive black holes (SMBH) are entirely handled by sub-grid algorithms, computational power now allows the accretion radius of such objects to be resolved in smaller scale simulations. In this paper, we investigate the impact of resolution on two commonly used SMBH sub-grid algorithms; the Bondi-Hoyle-Lyttleton (BHL) formula for accretion onto a point mass, and the related estimate of the drag force exerted onto a point mass by a gaseous medium. We find that when the accretion region around the black hole scales with resolution, and the BHL formula is evaluated using local mass-averaged quantities, the accretion algorithm smoothly transitions from the analytic BHL formula (at low resolution) to a supply limited accretion (SLA) scheme (at high resolution). However, when a similar procedure is employed to estimate the drag force it can lead to significant errors in its magnitude, and/or apply this force in the wrong direction in highly resolved simulations. At high Mach numbers and for small accretors, we also find evidence of the advective-acoustic instability operating in the adiabatic case, and of an instability developing around the wake's stagnation point in the quasi-isothermal case. Moreover, at very high resolution, and Mach numbers above M_∞ ≥ 3, the flow behind the accretion bow shock becomes entirely dominated by these instabilities. As a result, accretion rates onto the black hole drop by about an order of magnitude in the adiabatic case, compared to the analytic BHL formula.

  3. Vertical overlap of probability density functions of cloud and precipitation hydrometeors: CLOUD AND PRECIPITATION PDF OVERLAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Larson, Vincent E.

    Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continentalmore » and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.« less

  4. Recursive renormalization group theory based subgrid modeling

    NASA Technical Reports Server (NTRS)

    Zhou, YE

    1991-01-01

    Advancing the knowledge and understanding of turbulence theory is addressed. Specific problems to be addressed will include studies of subgrid models to understand the effects of unresolved small scale dynamics on the large scale motion which, if successful, might substantially reduce the number of degrees of freedom that need to be computed in turbulence simulation.

  5. A flexible importance sampling method for integrating subgrid processes

    DOE PAGES

    Raut, E. K.; Larson, V. E.

    2016-01-29

    Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). Here, the resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less

  6. Subgrid-scale models for large-eddy simulation of rotating turbulent flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits; Trias, Xavier; Abkar, Mahdi; Bae, Hyunji Jane; Lozano-Duran, Adrian; Verstappen, Roel

    2016-11-01

    This paper discusses subgrid models for large-eddy simulation of anisotropic flows using anisotropic grids. In particular, we are looking into ways to model not only the subgrid dissipation, but also transport processes, since these are expected to play an important role in rotating turbulent flows. We therefore consider subgrid-scale models of the form τ = - 2νt S +μt (SΩ - ΩS) , where the eddy-viscosity νt is given by the minimum-dissipation model, μt represents a transport coefficient; S is the symmetric part of the velocity gradient and Ω the skew-symmetric part. To incorporate the effect of mesh anisotropy the filter length is taken in such a way that it minimizes the difference between the turbulent stress in physical and computational space, where the physical space is covered by an anisotropic mesh and the computational space is isotropic. The resulting model is successfully tested for rotating homogeneous isotropic turbulence and rotating plane-channel flows. The research was largely carried out during the CTR SP 2016. M.S, and R.V. acknowledge the financial support to attend this Summer Program.

  7. A stochastic parameterization for deep convection using cellular automata

    NASA Astrophysics Data System (ADS)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in large-scale variables in regions where convective activity is large. A two month extended evaluation of the deterministic behaviour of the scheme indicate a neutral impact on forecast skill. References: Bengtsson, L., H. Körnich, E. Källén, and G. Svensson, 2011: Large-scale dynamical response to sub-grid scale organization provided by cellular automata. Journal of the Atmospheric Sciences, 68, 3132-3144. Frenkel, Y., A. Majda, and B. Khouider, 2011: Using the stochastic multicloud model to improve tropical convective parameterization: A paradigm example. Journal of the Atmospheric Sciences, doi: 10.1175/JAS-D-11-0148.1. Huang, X.-Y., 1988: The organization of moist convection by internal 365 gravity waves. Tellus A, 42, 270-285. Khouider, B., J. Biello, and A. Majda, 2010: A Stochastic Multicloud Model for Tropical Convection. Comm. Math. Sci., 8, 187-216. Palmer, T., 2011: Towards the Probabilistic Earth-System Simulator: A Vision for the Future of Climate and Weather Prediction. Quarterly Journal of the Royal Meteorological Society 138 (2012) 841-861 Plant, R. and G. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87-105.

  8. Simulation of Boundary-Layer Cumulus and Stratocumulus Clouds using a Cloud-Resolving Model With Low- and Third-Order Turbulence Closures

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Cheng, Anning

    2007-01-01

    The effects of subgrid-scale condensation and transport become more important as the grid spacings increase from those typically used in large-eddy simulation (LES) to those typically used in cloud-resolving models (CRMs). Incorporation of these effects can be achieved by a joint probability density function approach that utilizes higher-order moments of thermodynamic and dynamic variables. This study examines how well shallow cumulus and stratocumulus clouds are simulated by two versions of a CRM that is implemented with low-order and third-order turbulence closures (LOC and TOC) when a typical CRM horizontal resolution is used and what roles the subgrid-scale and resolved-scale processes play as the horizontal grid spacing of the CRM becomes finer. Cumulus clouds were mostly produced through subgrid-scale transport processes while stratocumulus clouds were produced through both subgrid-scale and resolved-scale processes in the TOC version of the CRM when a typical CRM grid spacing is used. The LOC version of the CRM relied upon resolved-scale circulations to produce both cumulus and stratocumulus clouds, due to small subgrid-scale transports. The mean profiles of thermodynamic variables, cloud fraction and liquid water content exhibit significant differences between the two versions of the CRM, with the TOC results agreeing better with the LES than the LOC results. The characteristics, temporal evolution and mean profiles of shallow cumulus and stratocumulus clouds are weakly dependent upon the horizontal grid spacing used in the TOC CRM. However, the ratio of the subgrid-scale to resolved-scale fluxes becomes smaller as the horizontal grid spacing decreases. The subcloud-layer fluxes are mostly due to the resolved scales when a grid spacing less than or equal to 1 km is used. The overall results of the TOC simulations suggest that a 1-km grid spacing is a good choice for CRM simulation of shallow cumulus and stratocumulus.

  9. Testing the skill of numerical hydraulic modeling to simulate spatiotemporal flooding patterns in the Logone floodplain, Cameroon

    NASA Astrophysics Data System (ADS)

    Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan

    2016-08-01

    Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic dynamics. These results suggest that analysis of global inundation is feasible using a sub-grid model, but that spatial patterns at sub-kilometer resolutions still need to be adequately predicted.

  10. The application of depletion curves for parameterization of subgrid variability of snow

    Treesearch

    C. H. Luce; D. G. Tarboton

    2004-01-01

    Parameterization of subgrid-scale variability in snow accumulation and melt is important for improvements in distributed snowmelt modelling. We have taken the approach of using depletion curves that relate fractional snowcovered area to element-average snow water equivalent to parameterize the effect of snowpack heterogeneity within a physically based mass and energy...

  11. Impact of baryonic physics on intrinsic alignments

    DOE PAGES

    Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu

    2017-01-11

    We explore the effects of specific assumptions in the subgrid models of star formation and stellar and AGN feedback on intrinsic alignments of galaxies in cosmological simulations of "MassiveBlack-II" family. Using smaller volume simulations, we explored the parameter space of the subgrid star formation and feedback model and found remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientationmore » of the stellar distribution. Finally, our results are also consistent with a similar study by the EAGLE simulation team.« less

  12. Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M. S.; Keene, W. C.; Easter, Richard C.

    2013-02-22

    A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-solved multiphase chemistry module that maximizes both computational speed andmore » repeatability of Ros- 2 and RODAS-3 results versus Ros-3, and (2) to identify potential implementation strategies for future versions of this and similar coupled systems. RODAS-3 was faster than Ros-2 and Ros-3 with good reproduction of Ros-3 results, while Ros-2 was both slower and substantially less reproducible relative to Ros-3 results. Modal-CAM with MECCA chemistry was a factor of 15 slower than modal-CAM using standard chemistry. MECCA chemistry integration times demonstrated a systematic frequency distribution for all three solvers, and revealed that the change in run-time performance was due to a change in the frequency distribution of chemical integration times; the peak frequency was similar for all solvers. This suggests that efficient chemistry-focused load-balancing schemes can be developed that rely on the parameters of this frequency distribution.« less

  13. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.

    The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less

  14. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

    DOE PAGES

    Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.; ...

    2016-05-20

    The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less

  15. Evaluation of decadal hindcasts using satellite simulators

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Mazurkiewicz, Alex; Schröder, Marc

    2013-04-01

    The evaluation of dynamical ensemble forecast systems requires a solid validation of basic processes such as the global atmospheric water and energy cycle. The value of any validation approach strongly depends on the quality of the observational data records used. Current approaches utilize in situ measurements, remote sensing data and reanalyses. Related data records are subject to a number of uncertainties and limitations such as representativeness, spatial and temporal resolution and homogeneity. However, recently several climate data records with known and sufficient quality became available. In particular, the satellite data records offer the opportunity to obtain reference information on global scales including the oceans. Here we consider the simulation of satellite radiances from the climate model output enabling an evaluation in the instrument's parameter space to avoid uncertainties stemming from the application of retrieval schemes in order to minimise uncertainties on the reference side. Utilizing the CFMIP Observation Simulator Package (COSP) we develop satellite simulators for the Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) and the Infrared Atmospheric Sounding Interferometer (IASI). The simulators are applied within the MiKlip project funded by BMBF (German Federal Ministry of Education and Research) to evaluate decadal climate predictions performed with the MPI-ESM developed at the Max Planck Institute for Meteorology. While TRMM PR enables the evaluation of the vertical structure of precipitation over tropical and sub-tropical areas, IASI is used to support the global evaluation of clouds and radiation. In a first step the reliability of the developed simulators needs to be explored. The simulation of radiances in the instrument space requires the generation of sub-grid scale variability from the climate model output. Furthermore, assumptions are made to simulate radiances such as, for example, the distribution of different hydrometeor types. Therefore, testing is performed to determine the extent to which the quality of the simulator results depends on the applied methods used to generate sub-grid variability (e.g. sub-grid resolution). Moreover, the sensitivity of results to the choice of different distributions of hydrometeors is explored. The model evaluation is carried out in a statistical manner using histograms of radar reflectivities (TRMM PR) and brightness temperatures (IASI). Finally, methods to deduce data suitable for probabilistic evaluation of decadal hindcasts such as simple indices are discussed.

  16. Application of the CloudSat and NEXRAD Radars Toward Improvements in High Resolution Operational Forecasts

    NASA Technical Reports Server (NTRS)

    Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.

    2008-01-01

    As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.

  17. Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM)

    DOE PAGES

    Guo, Zhun; Wang, Minghuai; Qian, Yun; ...

    2015-07-03

    In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained bymore » the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. Furthermore, this study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.« less

  18. Global Climate Models Intercomparison of Anthropogenic Aerosols Effects on Regional Climate over North Pacific

    NASA Astrophysics Data System (ADS)

    Hu, J.; Zhang, R.; Wang, Y.; Ming, Y.; Lin, Y.; Pan, B.

    2015-12-01

    Aerosols can alter atmospheric radiation and cloud physics, which further exert impacts on weather and global climate. With the development and industrialization of the developing Asian countries, anthropogenic aerosols have received considerable attentions and remain to be the largest uncertainty in the climate projection. Here we assess the performance of two stat-of-art global climate models (National Center for Atmospheric Research-Community Atmosphere Model 5 (CAM5) and Geophysical Fluid Dynamics Laboratory Atmosphere Model 3 (AM3)) in simulating the impacts of anthropogenic aerosols on North Pacific storm track region. By contrasting two aerosol scenarios, i.e. present day (PD) and pre-industrial (PI), both models show aerosol optical depth (AOD) enhanced by about 22%, with CAM5 AOD 40% lower in magnitude due to the long range transport of anthropogenic aerosols. Aerosol effects on the ice water path (IWP), stratiform precipitation, convergence and convection strengths in the two models are distinctive in patterns and magnitudes. AM3 shows qualitatively good agreement with long-term satellite observations, while CAM5 overestimates convection and liquid water path resulting in an underestimation of large-scale precipitation and IWP. Due to coarse resolution and parameterization in convection schemes, both models' performance on convection needs to be improved. Aerosols performance on large-scale circulation and radiative budget are also examined in this study.

  19. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  20. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    NASA Astrophysics Data System (ADS)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  1. A physics based multiscale modeling of cavitating flows.

    PubMed

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L

    2017-03-02

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.

  2. Filter and Grid Resolution in DG-LES

    NASA Astrophysics Data System (ADS)

    Miao, Ling; Sammak, Shervin; Madnia, Cyrus K.; Givi, Peyman

    2017-11-01

    The discontinuous Galerkin (DG) methodology has proven very effective for large eddy simulation (LES) of turbulent flows. Two important parameters in DG-LES are the grid resolution (h) and the filter size (Δ). In most previous work, the filter size is usually set to be proportional to the grid spacing. In this work, the DG method is combined with a subgrid scale (SGS) closure which is equivalent to that of the filtered density function (FDF). The resulting hybrid scheme is particularly attractive because a larger portion of the resolved energy is captured as the order of spectral approximation increases. Different cases for LES of a three-dimensional temporally developing mixing layer are appraised and a systematic parametric study is conducted to investigate the effects of grid resolution, the filter width size, and the order of spectral discretization. Comparative assessments are also made via the use of high resolution direct numerical simulation (DNS) data.

  3. Numerical analysis of a high-order unstructured overset grid method for compressible LES of turbomachinery

    NASA Astrophysics Data System (ADS)

    de Laborderie, J.; Duchaine, F.; Gicquel, L.; Vermorel, O.; Wang, G.; Moreau, S.

    2018-06-01

    Large-Eddy Simulation (LES) is recognized as a promising method for high-fidelity flow predictions in turbomachinery applications. The presented approach consists of the coupling of several instances of the same LES unstructured solver through an overset grid method. A high-order interpolation, implemented within this coupling method, is introduced and evaluated on several test cases. It is shown to be third order accurate, to preserve the accuracy of various second and third order convective schemes and to ensure the continuity of diffusive fluxes and subgrid scale tensors even in detrimental interface configurations. In this analysis, three types of spurious waves generated at the interface are identified. They are significantly reduced by the high-order interpolation at the interface. The latter having the same cost as the original lower order method, the high-order overset grid method appears as a promising alternative to be used in all the applications.

  4. A physics based multiscale modeling of cavitating flows

    PubMed Central

    Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.

    2018-01-01

    Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773

  5. Ocean Turbulence V: Mesoscale Modeling in Level Coordinates. The Effect of Random Nature of Density

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    1998-01-01

    The main result of this paper is the derivation of a new expression for the tracer subgrid term in level coordinates S(l) to be employed in O-GCM. The novel feature is the proper account of the random nature of the density field which strongly affects the transformation from isopycnal to level coordinates of the variables of interest, velocity and tracer fields, their correlation functions and ultimately the subgrid terms. In deriving our result we made use of measured properties of vertical ocean turbulence. The major new results are: 1) the new subgrid expression is different from that of the heuristic GM model, 2) u++(tracer)=1/2u+(thickness), where u++ and u+ are the tracer and thickness bolus velocities. In previous models, u++ = u+, 2) the subgrid for a tracer tau is not the same as that for the density rho even when one accounts for the obvious absence of a diffusion term in the latter. The difference stems from a new treatment of the stochastic nature of the density, 3) the mesoscale diffusivity enters both locally and non-locally, as the integral over all z's from the bottom of the ocean to the level z.

  6. Application of Seasonal CRM Integrations to Develop Statistics and Improved GCM Parameterization of Subgrid Cloud-Radiation Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaoqing Wu; Xin-Zhong Liang; Sunwook Park

    2007-01-23

    The works supported by this ARM project lay the solid foundation for improving the parameterization of subgrid cloud-radiation interactions in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and concurrent ARM observations to produce long-term, consistent cloud and radiative property datasets at the cloud scale (Wu et al. 2006, 2007). With these datasets, we have investigated the mesoscale enhancement of cloud systems on surface heat fluxes (Wu and Guimond 2006), quantified the effects of cloud horizontal inhomogeneity and vertical overlap on the domain-averaged radiative fluxes (Wu and Liang 2005), and subsequently validatedmore » and improved the physically-based mosaic treatment of subgrid cloud-radiation interactions (Liang and Wu 2005). We have implemented the mosaic treatment into the CCM3. The 5-year (1979-1983) AMIP-type simulation showed significant impacts of subgrid cloud-radiation interaction on the climate simulations (Wu and Liang 2005). We have actively participated in CRM intercomparisons that foster the identification and physical understanding of common errors in cloud-scale modeling (Xie et al. 2005; Xu et al. 2005, Grabowski et al. 2005).« less

  7. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  8. Using ARM Measurements to Understand and Reduce the Double ITCZ Biases in the Community Atmospheric Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Minghua

    1. Understanding of the observed variability of ITCZ in the equatorial eastern Pacific. The annual mean precipitation in the eastern Pacific has a maximum zonal band north of the equator in the ITCZ where the maximum SST is located. During the boreal spring (referring to February, March, and April throughout the present paper), because of the accumulated solar radiation heating and oceanic heat transport, a secondary maximum of SST exists in the southeastern equatorial Pacific. Associated with this warm SST is also a seasonal transitional maximum of precipitation in the same region in boreal spring, exhibited as a weak doublemore » ITCZ pattern in the equatorial eastern Pacific. This climatological seasonal variation, however, varies greatly from year to year: double ITCZ in the boreal spring occurs in some years but not in other years; when there a single ITCZ, it can appear either north, south or at the equator. Understanding this observed variability is critical to find the ultimate cause of the double ITCZ in climate models. Seasonal variation of ITCZ south of the eastern equatorial Pacific: By analyzing data from satellites, field measurements and atmospheric reanalysis, we have found that in the region where spurious ITCZ in models occurs, there is a “seasonal cloud transition” — from stratocumulus to shallow cumulus and eventually to deep convection —in the South Equatorial Pacific (SEP) from September to April that is similar to the spatial cloud transition from the California coast to the equator. This seasonal transition is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence. This finding of seasonal cloud transition points to the same source of model errors in the ITCZ simulations as in simulation of stratocumulus-cumulus-deep convection transition. It provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double Inter-tropical Convergence Zone (ITCZ) in most models. This work is recently published in Yu et al. (2016). Interannual variation of ITCZ south of the eastern equatorial Pacific: By analyzing data from satellites, field measurements and atmospheric reanalysis, we have characterized the interannual variation of boreal spring precipitation in the eastern tropical Pacific and found the cause of the observed interannual variability. We have shown that ITCZ in this region can occur as a single ITCZ along the Equator, single ITCZ north of the Equator, single ITCZ south of the Equator, and double ITCZ on both sides of the Equator. We have found that convective instability only plays a secondary role in the ITCZ interannual variability. Instead, the remote impact of the Pacific basin-wide SST on the horizontal gradient of surface pressure and wind convergence is the primary driver of this interannual variability. Results point to the need to include moisture convergence in convection schemes to improve the simulation of precipitation in the eastern tropical Pacific. This result has been recently submitted for publication (Yu and Zhang 2016). 2. Improvement of model parameterizations to reduce the double ITCZ bias We analyzed the current status of climate model performance in simulating precipitation in the equatorial Pacific. We have found that the double ITCZ bias has not been reduced in CMIP5 models relative to CMIP4 models. We have characterized the dynamic structure of the common bias by using precipitation, sea surface temperature, surface winds and sea-level. Results are published in Zhang et al. (2015): Since cumulus convection plays a significant role in the double ITCZ behavior in models, we have used measurements from ARM and other sources to carry out a systematic analysis of the roles of shallow and deep convection in the CAM. We found that in both CAM4 and CAM5, when the intensity of deep convection decreases as a result of parameterization change, the intensity of shallow convection increases, leading to very different changes in precipitation partitions but little change in the total precipitation. The different precipitation partition however can manifest themselves in other measures of model performances including temperature and humidity. This study points to the need to treat model physical parameterizations as integrated system rather than individual components. Results from this study are published in Wang and Zhang (2013). Since shallow convection interacts with the deep convection scheme and surface turbulence to trigger the double ITCZ, we studied methods to improve the shallow convection scheme in climate models. We investigated the bulk budgets of the vertical velocity and its parameterization in convective cores, convective updrafts, and clouds by using large-eddy simulation (LES) of four shallow convection cases including one from ARM. We proposed optimal forms of the Simpson and Wiggert equation to calculate the vertical velocity in bulk mass flux convection schemes for convective cores, convective updrafts, and convective clouds as parameterization schemes. The new scheme is published in Wang and Zhang (2014). By using long-term radar-based ground measurements from ARM, we derived a scale-aware inhomogeneity parameterization of cloud liquid water in climate models. We found a relationship between the inhomogeneity parameter and the model grid size as well as atmospheric stability. This relationship is implemented in the CESM to describe the subgrid-scale cloud inhomogeneity. Relative to the default CESM with the finite-volume dynamic core at 2-degree resolution, the new parameterization leads to smaller cloud inhomogeneity and larger cloud liquid-water path in high latitudes, and the opposite effect in low latitudes, with the regional impact on shortwave cloud radiation effect of up to 10 W/m 2. This is due to both the smaller (larger) grid size in high (low) latitudes in the longitude-latitude grid setting of CESM and the more stable (unstable) atmosphere. This parameterization is expected lead to more realistic simulation of tropical precipitation in high-resolution models. Results from this study are reported in Xie and Zhang (2015).« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Heng; Gustafson, William I.; Wang, Hailong

    Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactionsmore » contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.« less

  10. Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in a global dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, Chao; Ciais, Philippe; Li, Wei

    2018-02-01

    Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both simulations. The lower ELUC from shifting cultivation in Sage simulations depends on the predefined forest clearing priority rules in the model and the assumed rotation length. A set of sensitivity model runs over Africa reveal that a longer rotation length over the historical period likely results in higher emissions. Our results highlight that although gross land use change as a former missing emission component is included by a growing number of DGVMs, its contribution to overall ELUC remains uncertain and tends to be overestimated when models ignore sub-grid secondary forests.

  11. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins: SOIL MOISTURE SCALE GAP

    DOE PAGES

    Baker, I. T.; Sellers, P. J.; Denning, A. S.; ...

    2017-03-01

    The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed tomore » represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.« less

  12. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen

    2011-08-16

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense.Existing lower and upper bounds (inequalities) on linear correlation coefficients provide useful guidance, but these bounds are too loose to serve directly as a method to predict subgrid correlations. Therefore,more » this paper proposes an alternative method that is based on a blend of theory and empiricism. The method begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are parameterized here using a cosine row-wise formula that is inspired by the aforementioned bounds on correlations. The method has three advantages: 1) the computational expense is tolerable; 2) the correlations are, by construction, guaranteed to be consistent with each other; and 3) the methodology is fairly general and hence may be applicable to other problems. The method is tested non-interactively using simulations of three Arctic mixed-phase cloud cases from two different field experiments: the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE). Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.« less

  13. Subplane collision probabilities method applied to control rod cusping in 2D/1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Aaron M.; Collins, Benjamin S.; Stimpson, Shane G.

    The MPACT code is being jointly developed by the University of Michigan and Oak Ridge National Laboratory. It uses the 2D/1D method to solve neutron transport problems for reactors. The 2D/1D method decomposes the problem into a stack of 2D planes, and uses a high fidelity transport method to resolve all heterogeneity in each plane. These planes are then coupled axially using a lower order solver. Using this scheme, 3D solutions to the transport equation can be obtained at a much lower cost.One assumption made by the 2D/1D method is that the materials are axially homogeneous for each 2D plane.more » Violation of this assumption requires homogenization, which can significantly reduce the accuracy of the calculation. This paper presents two new subgrid methods to address this issue. The first method is polynomial decusping, a simple correction used to address control rods partially inserted into a 2D plane. The second is the subplane collision probabilities method, which is a more accurate, more robust subgrid method that can be applied to other axial heterogeneities.Each method was applied to a variety of problems. Results were compared to fine mesh solutions which had no axial heterogeneity and to Monte Carlo reference solutions generated using KENO-VI. It was shown that the polynomial decusping method was effective in many cases, but it had some limitations, with 3D pin power errors as high as 25% compared to KENO-VI. In conclusion, the subplane collision probabilities method performed much better, lowering the maximum pin power error to less than 5% in every calculation.« less

  14. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  15. Subplane collision probabilities method applied to control rod cusping in 2D/1D

    DOE PAGES

    Graham, Aaron M.; Collins, Benjamin S.; Stimpson, Shane G.; ...

    2018-04-06

    The MPACT code is being jointly developed by the University of Michigan and Oak Ridge National Laboratory. It uses the 2D/1D method to solve neutron transport problems for reactors. The 2D/1D method decomposes the problem into a stack of 2D planes, and uses a high fidelity transport method to resolve all heterogeneity in each plane. These planes are then coupled axially using a lower order solver. Using this scheme, 3D solutions to the transport equation can be obtained at a much lower cost.One assumption made by the 2D/1D method is that the materials are axially homogeneous for each 2D plane.more » Violation of this assumption requires homogenization, which can significantly reduce the accuracy of the calculation. This paper presents two new subgrid methods to address this issue. The first method is polynomial decusping, a simple correction used to address control rods partially inserted into a 2D plane. The second is the subplane collision probabilities method, which is a more accurate, more robust subgrid method that can be applied to other axial heterogeneities.Each method was applied to a variety of problems. Results were compared to fine mesh solutions which had no axial heterogeneity and to Monte Carlo reference solutions generated using KENO-VI. It was shown that the polynomial decusping method was effective in many cases, but it had some limitations, with 3D pin power errors as high as 25% compared to KENO-VI. In conclusion, the subplane collision probabilities method performed much better, lowering the maximum pin power error to less than 5% in every calculation.« less

  16. Closing the scale gap between land surface parameterizations and GCMs with a new scheme, SiB3-Bins: SOIL MOISTURE SCALE GAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, I. T.; Sellers, P. J.; Denning, A. S.

    The interaction of land with the atmosphere is sensitive to soil moisture (W). Evapotranspiration (ET) reacts to soil moisture in a nonlinear way, f(W), as soils dry from saturation to wilt point. This nonlinear behavior and the fact that soil moisture varies on scales as small as 1–10 m in nature, while numerical general circulation models (GCMs) have grid cell sizes on the order of 1 to 100s of kilometers, makes the calculation of grid cell-average ET problematic. It is impractical to simulate the land in GCMs on the small scales seen in nature, so techniques have been developed tomore » represent subgrid scale heterogeneity, including: (1) statistical-dynamical representations of grid subelements of varying wetness, (2) relaxation of f(W), (3) moderating f(W) with approximations of catchment hydrology, (4) “tiling” the landscape into vegetation types, and (5) hyperresolution. Here we present an alternative method for representing subgrid variability in W, one proven in a conceptual framework where landscape-scale W is represented as a series of “Bins” of increasing wetness from dry to saturated. The grid cell-level f(W) is defined by the integral of the fractional area of the wetness bins and the value of f(W) associated with each. This approach accounts for the spatiotemporal dynamics of W. We implemented this approach in the SiB3 land surface parameterization and then evaluated its performance against a control, which assumes a horizontally uniform field of W. We demonstrate that the Bins method, with a physical basis, attenuates unrealistic jumps in model state and ET seen in the control runs.« less

  17. Annual Research Briefs, 1998

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1998-01-01

    The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.

  18. Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.

    2016-12-01

    Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and sedimentation models owing to the different time scales of the physical and ecological processes. The coupled model is being applied to Delaware marsh evolution in response to rising sea level and changing sediment supplies.

  19. Operational forecasting with the subgrid technique on the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Sehili, Aissa

    2017-04-01

    Modern remote sensing technologies can deliver very detailed land surface height data that should be considered for more accurate simulations. In that case, and even if some compromise is made with regard to grid resolution of an unstructured grid, simulations still will require large grids which can be computationally very demanding. The subgrid technique, first published by Casulli (2009), is based on the idea of making use of the available detailed subgrid bathymetric information while performing computations on relatively coarse grids permitting large time steps. Consequently, accuracy and efficiency are drastically enhanced if compared to the classical linear method, where the underlying bathymetry is solely discretized by the computational grid. The algorithm guarantees rigorous mass conservation and nonnegative water depths for any time step size. Computational grid-cells are permitted to be wet, partially wet or dry and no drying threshold is needed. The subgrid technique is used in an operational forecast model for water level, current velocity, salinity and temperature of the Elbe estuary in Germany. Comparison is performed with the comparatively highly resolved classical unstructured grid model UnTRIM. The daily meteorological forcing data are delivered by the German Weather Service (DWD) using the ICON-EU model. Open boundary data are delivered by the coastal model BSHcmod of the German Federal Maritime and Hydrographic Agency (BSH). Comparison of predicted water levels between classical and subgrid model shows a very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out within less than 10 minutes on standard PC-like hardware. The model is capable of permanently delivering highly resolved temporal and spatial information on water level, current velocity, salinity and temperature for the whole estuary. The model offers also the possibility to recalculate any previous situation. This can be helpful to figure out for instance the context in which a certain event occurred like an accident. In addition to measurement, the model can be used to improve navigability by adjusting the tidal transit-schedule for container vessels that are depending on the tide to approach or leave the port of Hamburg.

  20. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  1. Simulations and parameterisation of shallow volcanic plumes of Piton de la Fournaise, Reunion Island, using Meso-NH version 4-9-3

    NASA Astrophysics Data System (ADS)

    Sivia, S. G.; Gheusi, F.; Mari, C.; Di Muro, A.

    2015-05-01

    In mesoscale models (resolution ~ 1 km) used for regional dispersion of pollution plumes the volcanic heat sources and emissions of gases and aerosols, as well as the induced atmospheric convective motions, are all sub-grid-scale processes (mostly true for weak effusive eruptions) which need to be parameterised. We propose a modified formulation of the EDMF scheme (eddy diffusivity/mass flux) proposed by Pergaud et al. (2009) which is based on a single sub-grid updraft model. It is used to represent volcano induced updrafts tested for a case study of the January 2010 summit eruption of Piton de la Fournaise (PdF) volcano. The validation of this modified formulation using a reference large eddy simulation (LES) focuses on the ability of the model to transport tracer concentrations up to 1-2 km above the ground in the lower troposphere as is the case of majority of PdF eruptions. The modelled volcanic plume agrees reasonably with the profiles of SO2 (sulfur dioxide) tracer concentrations and specific humidity found from the reference LES. Sensitivity tests performed for the modified formulation of the EDMF scheme emphasise the sensitivity of the parameterisation to ambient fresh air entrainment at the plume base.

  2. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.

  3. Antitumor activity of a dual cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM expressing tumor cells.

    PubMed

    Schanzer, Juergen M; Fichtner, Iduna; Baeuerle, Patrick A; Kufer, Peter

    2006-01-01

    Cytokine targeting to tumor-associated antigens via antibody cytokine fusion proteins has demonstrated potent antitumor activity in numerous animal models and has led to the clinical development of 2 antibody-interleukin-2 (IL-2) fusion proteins. We previously reported on the construction and in vitro properties of a "dual" cytokine fusion protein for simultaneous targeted delivery of human granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-2 to human tumors. The fusion protein is based on a heterodimerized core structure formed by human CH1 and Ckappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused single-chain antibody fragments specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). For testing the antitumor activity in syngeneic mouse xenograft models, we developed "dual cytokine heterominibodies" with murine cytokines (mDCH). mDCH fusion proteins and, as controls, "single cytokine heterominibodies" (SCH) carrying either murine GM-CSF (mGM-CSF) or murine IL-2 (mIL-2) were constructed, of which all retained the specific activities of cytokines and binding to the Ep-CAM antigen on human Ep-CAM transfected mouse colon carcinoma CT26-KSA cells. Over a 5-day treatment course, DCH fusion proteins induced significant inhibition of established pulmonary CT26-KSA metastases in immune-competent Balb/c mice at low daily doses of 1 mug of fusion protein per mouse. However, with the tested dosing schemes, antitumor activity of mDCH was largely independent of cytokine targeting to tumors as demonstrated by a control protein with mutated Ep-CAM binding sites. Single cytokine fusion proteins mSCH-GM-CSF and mSCH-IL-2 showed similar antitumor activity as the dual cytokine fusion protein mDCH, indicating that GM-CSF and IL-2 in one molecule did not significantly synergize in tumor rejection under our experimental conditions. Our results seem to contradict the notion that IL-2 and GM-CSF can synergize in antitumor activity and that with conventional dose regimens, their specific targeting to tumors, as tested here with 2 antibodies of different affinities, enhances their antitumor activity.

  4. LEM-CF Premixed Tool Kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-01-19

    The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.

  5. Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao

    2017-03-01

    In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.

  6. Subcellular distributions of rat CaM kinase phosphatase N and other members of the CaM kinase regulatory system.

    PubMed

    Kitani, Takako; Okuno, Sachiko; Takeuchi, Masayuki; Fujisawa, Hitoshi

    2003-07-01

    Ca2+/Calmodulin-dependent protein kinase (CaM kinase) regulatory system is composed of multifunctional CaM kinases such as CaM kinases IV and I, upstream CaM kinases such as CaM kinase kinases alpha and beta, which activate multifunctional CaM kinases, and CaM kinase phosphatases such as CaM kinase phosphatase and CaM kinase phosphatase N, which deactivate the activated multifunctional CaM kinases. To understand the combinations of CaM kinases I and IV, CaM kinase kinases alpha and beta, and CaM kinase phosphatases, the locations of the enzymes in the cell were examined by immunocytochemical studies of cultured cells. The results indicate that CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase occur in the cytoplasm and that CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N occur inside the cellular nucleus, suggesting that there are at least two different sets of CaM kinase regulatory systems, one consisting of CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase in the cytoplasm and the other consisting of CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N in the nucleus.

  7. Intercomparison of planetary boundary layer parameterization and its impacts on surface ozone concentration in the WRF/Chem model for a case study in Houston/Texas

    NASA Astrophysics Data System (ADS)

    Cuchiara, G. C.; Li, X.; Carvalho, J.; Rappenglück, B.

    2014-10-01

    With over 6 million inhabitants the Houston metropolitan area is the fourth-largest in the United States. Ozone concentration in this southeast Texas region frequently exceeds the National Ambient Air Quality Standard (NAAQS). For this reason our study employed the Weather Research and Forecasting model with Chemistry (WRF/Chem) to quantify meteorological prediction differences produced by four widely used PBL schemes and analyzed its impact on ozone predictions. The model results were compared to observational data in order to identify one superior PBL scheme better suited for the area. The four PBL schemes include two first-order closure schemes, the Yonsei University (YSU) and the Asymmetric Convective Model version 2 (ACM2); as well as two turbulent kinetic energy closure schemes, the Mellor-Yamada-Janjic (MYJ) and Quasi-Normal Scale Elimination (QNSE). Four 24 h forecasts were performed, one for each PBL scheme. Simulated vertical profiles for temperature, potential temperature, relative humidity, water vapor mixing ratio, and the u-v components of the wind were compared to measurements collected during the Second Texas Air Quality Study (TexAQS-II) Radical and Aerosol Measurements Project (TRAMP) experiment in summer 2006. Simulated ozone was compared against TRAMP data, and air quality stations from Continuous Monitoring Station (CAMS). Also, the evolutions of the PBL height and vertical mixing properties within the PBL for the four simulations were explored. Although the results yielded high correlation coefficients and small biases in almost all meteorological variables, the overall results did not indicate any preferred PBL scheme for the Houston case. However, for ozone prediction the YSU scheme showed greatest agreements with observed values.

  8. Intercomparison of Planetary Boundary Layer Parameterization and its Impacts on Surface Ozone Concentration in the WRF/Chem Model for a Case Study in Houston/Texas

    NASA Astrophysics Data System (ADS)

    Cuchiara, Gustavo C.; Li, Xiangshang; Carvalho, Jonas; Rappenglück, Bernhard

    2015-04-01

    With over 6 million inhabitants the Houston metropolitan area is the fourth-largest in the United States. Ozone concentration in this southeast Texas region frequently exceeds the National Ambient Air Quality Standard (NAAQS). For this reason our study employed the Weather Research and Forecasting model with Chemistry (WRF/Chem) to quantify meteorological prediction differences produced by four widely used PBL schemes and analyzed its impact on ozone predictions. The model results were compared to observational data in order to identify one superior PBL scheme better suited for the area. The four PBL schemes include two first-order closure schemes, the Yonsei University (YSU) and the Asymmetric Convective Model version 2 (ACM2); as well as two turbulent kinetic energy closure schemes, the Mellor-Yamada-Janjic (MYJ) and Quasi-Normal Scale Elimination (QNSE). Four 24 h forecasts were performed, one for each PBL scheme. Simulated vertical profiles for temperature, potential temperature, relative humidity, water vapor mixing ratio, and the u-v components of the wind were compared to measurements collected during the Second Texas Air Quality Study (TexAQS-II) Radical and Aerosol Measurements Project (TRAMP) experiment in summer 2006. Simulated ozone was compared against TRAMP data, and air quality stations from Continuous Monitoring Station (CAMS). Also, the evolutions of the PBL height and vertical mixing properties within the PBL for the four simulations were explored. Although the results yielded high correlation coefficients and small biases in almost all meteorological variables, the overall results did not indicate any preferred PBL scheme for the Houston case. However, for ozone prediction the YSU scheme showed greatest agreements with observed values.

  9. Interaction of deep and shallow convection is key to Madden-Julian Oscillation simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Song, Xiaoliang

    2009-05-01

    This study investigates the role of the interaction between deep and shallow convection in MJO simulation using the NCAR CAM3. Two simulations were performed, one using a revised Zhang-McFarlane convection scheme for deep convection and the Hack scheme for shallow convection, and the other disallowing shallow convection below 700 mb in the tropical belt. The two simulations produce dramatically different MJO characteristics. While the control simulation produces realistic MJOs, the simulation without shallow convection has very weak MJO signals in the Indian Ocean and western Pacific. Composite analysis finds that shallow convection serves to precondition the lower troposphere by moistening it ahead of deep convection. It also produces enhanced low-level mass convergence below 850 mb ahead of deep convection. This work, together with previous studies, suggests that a correct simulation of the interaction between deep and shallow convection is key to MJO simulation in global climate models.

  10. A simple dynamic subgrid-scale model for LES of particle-laden turbulence

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz

    2017-04-01

    In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.

  11. Microphysical and macrophysical characteristics of ice and mixed-phase clouds compared between in-situ observations from the NSF ORCAS campaign and the NCAR Community Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.

    2016-12-01

    Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of ice supersaturation, as well as the correlations between ice water content and liquid water content in the CAM5 simulations.

  12. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM)

    NASA Astrophysics Data System (ADS)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.

    2015-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research will provide a better understanding of model deficiencies in reproducing and predicting droughts in the future, which is essential to the economic, ecologic and social well being of the High Plains.

  13. Boreal Winter MJO Teleconnection in the Community Atmosphere Model Version 5 with the Unified Convection Parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Changhyun; Park, Sungsu; Kim, Daehyun

    2015-10-01

    The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, influences weather and climate in the extratropics through atmospheric teleconnection. In this study, two simulations using the Community Atmosphere Model version 5 (CAM5) - one with the default shallow and deep convection schemes and the other with the Unified Convection scheme (UNICON) - are employed to examine the impacts of cumulus parameterizations on the simulation of the boreal wintertime MJO teleconnection in the Northern Hemisphere. We demonstrate that the UNICON substantially improves the MJO teleconnection. When the UNICON is employed, the simulated circulation anomalies associated with the MJO bettermore » resemble the observed counterpart, compared to the simulation with the default convection schemes. Quantitatively, the pattern correlation for the 300-hPa geopotential height anomalies between the simulations and observation increases from 0.07 for the default schemes to 0.54 for the UNICON. These circulation anomalies associated with the MJO further help to enhance the surface air temperature and precipitation anomalies over North America, although room for improvement is still evident. Initial value calculations suggest that the realistic MJO teleconnection with the UNICON is not attributed to the changes in the background wind, but primarily to the improved tropical convective heating associated with the MJO.« less

  14. Parallel Simulation of Unsteady Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics within each LES grid cell. Finite-rate kinetics can be included without any closure and this approach actually provides a means to predict the turbulent rates and the turbulent flame speed. The subgrid combustion model requires resolution of the local time scales associated with small-scale mixing, molecular diffusion and chemical kinetics and, therefore, within each grid cell, a significant amount of computations must be carried out before the large-scale (LES resolved) effects are incorporated. Therefore, this approach is uniquely suited for parallel processing and has been implemented on various systems such as: Intel Paragon, IBM SP-2, Cray T3D and SGI Power Challenge (PC) using the system independent Message Passing Interface (MPI) compiler. In this paper, timing data on these machines is reported along with some characteristic results.

  15. Model Validation for Propulsion - On the TFNS and LES Subgrid Models for a Bluff Body Stabilized Flame

    NASA Technical Reports Server (NTRS)

    Wey, Thomas

    2017-01-01

    This paper summarizes the reacting results of simulating a bluff body stabilized flame experiment of Volvo Validation Rig using a releasable edition of the National Combustion Code (NCC). The turbulence models selected to investigate the configuration are the sub-grid scaled kinetic energy coupled large eddy simulation (K-LES) and the time-filtered Navier-Stokes (TFNS) simulation. The turbulence chemistry interaction used is linear eddy mixing (LEM).

  16. A satellite simulator for TRMM PR applied to climate model simulations

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  17. A study of two subgrid-scale models and their effects on wake breakdown behind a wind turbine in uniform inflow

    NASA Astrophysics Data System (ADS)

    Martinez, Luis; Meneveau, Charles

    2014-11-01

    Large Eddy Simulations (LES) of the flow past a single wind turbine with uniform inflow have been performed. A goal of the simulations is to compare two turbulence subgrid-scale models and their effects in predicting the initial breakdown, transition and evolution of the wake behind the turbine. Prior works have often observed negligible sensitivities to subgrid-scale models. The flow is modeled using an in-house LES with pseudo-spectral discretization in horizontal planes and centered finite differencing in the vertical direction. Turbines are represented using the actuator line model. We compare the standard constant-coefficient Smagorinsky subgrid-scale model with the Lagrangian Scale Dependent Dynamic model (LSDM). The LSDM model predicts faster transition to turbulence in the wake, whereas the standard Smagorinsky model predicts significantly delayed transition. The specified Smagorinsky coefficient is larger than the dynamic one on average, increasing diffusion thus delaying transition. A second goal is to compare the resulting near-blade properties such as local aerodynamic forces from the LES with Blade Element Momentum Theory. Results will also be compared with those of the SOWFA package, the wind energy CFD framework from NREL. This work is supported by NSF (IGERT and IIA-1243482) and computations use XSEDE resources, and has benefitted from interactions with Dr. M. Churchfield of NREL.

  18. A comparison of East Asian summer monsoon simulations from CAM3.1 with three dynamic cores

    NASA Astrophysics Data System (ADS)

    Wei, Ting; Wang, Lanning; Dong, Wenjie; Dong, Min; Zhang, Jingyong

    2011-12-01

    This paper examines the sensitivity of CAM3.1 simulations of East Asian summer monsoon (EASM) to the choice of dynamic cores using three long-term simulations, one with each of the following cores: the Eulerian spectral transform method (EUL), semi-Lagrangian scheme (SLD) and finite volume approach (FV). Our results indicate that the dynamic cores significantly influence the simulated fields not only through dynamics, such as wind, but also through physical processes, such as precipitation. Generally speaking, SLD is superior to EUL and FV in simulating the climatological features of EASM and its interannual variability. The SLD version of the CAM model partially reduces its known deficiency in simulating the climatological features of East Asian summer precipitation. The strength and position of simulated western Pacific subtropical high (WPSH) and its ridge line compare more favourably with observations in SLD and FV than in EUL. They contribute to the intensification of the south-easterly along the south of WPSH and the vertical motion through the troposphere around 30° N, where the subtropical rain belt exists. Additionally, SLD simulates the scope of the westerly jet core over East Asia more realistically than the other two dynamic cores do. Considerable systematic errors of the seasonal migration of monsoon rain belt and water vapour flux exist in all of the three versions of CAM3.1 model, although it captures the broad northward shift of convection, and the simulated results share similarities. The interannual variation of EASM is found to be more accurate in SLD simulation, which reasonably reproduces the leading combined patterns of precipitation and 850-hPa winds in East Asia, as well as the 2.5- and 10-year periods of Li-Zeng EASM index. These results emphasise the importance of dynamic cores for the EASM simulation as distinct from the simulation's sensitivity to the physical parameterisations.

  19. 75 FR 25210 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...-9276--Multi Cam NSN: 8415-01-579-9272--Multi Cam NSN: 8415-01-579-9267--Multi Cam NSN: 8415-01-579-9260--Multi Cam NSN: 8415-01-579-9219--Multi Cam NSN: 8415-01-579-9210--Multi Cam NSN: 8415-01-579-9197--Multi Cam NSN: 8415-01-579-9189--Multi Cam NSN: 8415-01-579-9182--Multi Cam NSN: 8415-01-579-9175--Multi Cam...

  20. Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.

  1. Stretch-rate relationships for turbulent premixed combustion LES subgrid models measured using temporally resolved diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Adam M.; Driscoll, James F.

    2010-07-15

    Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgridmore » strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be implemented in numerical simulations of turbulent premixed combustion. (author)« less

  2. Efficient non-hydrostatic modelling of 3D wave-induced currents using a subgrid approach

    NASA Astrophysics Data System (ADS)

    Rijnsdorp, Dirk P.; Smit, Pieter B.; Zijlema, Marcel; Reniers, Ad J. H. M.

    2017-08-01

    Wave-induced currents are an ubiquitous feature in coastal waters that can spread material over the surf zone and the inner shelf. These currents are typically under resolved in non-hydrostatic wave-flow models due to computational constraints. Specifically, the low vertical resolutions adequate to describe the wave dynamics - and required to feasibly compute at the scales of a field site - are too coarse to account for the relevant details of the three-dimensional (3D) flow field. To describe the relevant dynamics of both wave and currents, while retaining a model framework that can be applied at field scales, we propose a two grid approach to solve the governing equations. With this approach, the vertical accelerations and non-hydrostatic pressures are resolved on a relatively coarse vertical grid (which is sufficient to accurately resolve the wave dynamics), whereas the horizontal velocities and turbulent stresses are resolved on a much finer subgrid (of which the resolution is dictated by the vertical scale of the mean flows). This approach ensures that the discrete pressure Poisson equation - the solution of which dominates the computational effort - is evaluated on the coarse grid scale, thereby greatly improving efficiency, while providing a fine vertical resolution to resolve the vertical variation of the mean flow. This work presents the general methodology, and discusses the numerical implementation in the SWASH wave-flow model. Model predictions are compared with observations of three flume experiments to demonstrate that the subgrid approach captures both the nearshore evolution of the waves, and the wave-induced flows like the undertow profile and longshore current. The accuracy of the subgrid predictions is comparable to fully resolved 3D simulations - but at much reduced computational costs. The findings of this work thereby demonstrate that the subgrid approach has the potential to make 3D non-hydrostatic simulations feasible at the scale of a realistic coastal region.

  3. Use of complementary and alternative medicine by lymphoma survivors in South Korea.

    PubMed

    Kim, Kisook; Kim, Soo Hyun; Ok, Oh Nam; Kim, Im-Ryung; Lee, Suyeon; Kim, So Hee; Kim, Won Seog; Ryu, Min-Hee; Lee, Moon Hee

    2018-04-01

    We aimed to examine the experience of complementary and alternative medicine (CAM) use and its association with health-related quality of life (HRQOL) in lymphoma survivors in South Korea. The participants were 869 lymphoma survivors from three hospitals in South Korea, all diagnosed with lymphoma at least 24 months prior to participation. Self-reported questionnaires were used to assess CAM use. The questionnaire addressed types of CAM used, sources of information about CAM, reason for CAM use, satisfaction with CAM use, discussion of CAM use with doctors, experience of side effects, costs of CAM use, and intentions to continue using CAM. HRQOL was measured with the EORTC QLQ-C30. Of the 869 participants, 42.2% had experience using CAM, and there were statistically significant differences among CAM users and non-users in terms of sex, religion, and time since diagnosis. A special diet (e.g., ginseng, chitosan, mixed cereals) was the most commonly used type of CAM, and most CAM users (82.1%) were satisfied with their CAM use. Most CAM users (77.5%) did not discuss the use of CAM with their doctors, and only 9.2% reported any side effects from CAM. CAM users showed significantly lower HRQOL scores than did non-users. A significant number of lymphoma survivors in Korea have used CAM, and most CAM users are satisfied with their CAM use. Oncology nurses should be aware of the range of CAM use among patients and reflect their responses in their treatment and/or follow-up care. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Parameterization of GCM subgrid nonprecipitating cumulus and stratocumulus clouds using stochastic/phenomenological methods. Annual technical progress report, 1 December 1992--30 November 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, R.B.

    1993-08-27

    This document is a progress report to the USDOE Atmospheric Radiation and Measurement Program (ARM). The overall project goal is to relate subgrid-cumulus-cloud formation, coverage, and population characteristics to statistical properties of surface-layer air, which in turn are modulated by heterogeneous land-usage within GCM-grid-box-size regions. The motivation is to improve the understanding and prediction of climate change by more accurately describing radiative and cloud processes.

  5. Characterization of Cloud Water-Content Distribution

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  6. Resolution-dependent behavior of subgrid-scale vertical transport in the Zhang-McFarlane convection parameterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Heng; Gustafson, Jr., William I.; Hagos, Samson M.

    2015-04-18

    With this study, to better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km 2s.

  7. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Melissa R.; Aziz, H. M. Abdul; Coletti, Mark A.

    Changing human activity within a geographical location may have significant influence on the global climate, but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes to affect global climate within that modeling framework. Additionally, we must have tools that provide decision support and inform local and regional policies regarding mitigation of and adaptation to climate change. The development of next-generation earth system models, that can produce actionable results with minimum uncertainties, depends on understanding global climate change and human activity interactions at policy implementation scales. Unfortunately, at best we currently have only limitedmore » schemes for relating high-resolution sectoral emissions to real-time weather, ultimately to become part of larger regions and well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we know about these processes, what we can model, where we have gaps in these areas and how we can rise to the challenge to fill these gaps.« less

  9. Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.

    NASA Astrophysics Data System (ADS)

    Wasistho, Bono

    2005-11-01

    We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.

  10. Modeling of Turbulent Free Shear Flows

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; DeBonis, James R.; Georgiadis, Nicolas J.

    2013-01-01

    The modeling of turbulent free shear flows is crucial to the simulation of many aerospace applications, yet often receives less attention than the modeling of wall boundary layers. Thus, while turbulence model development in general has proceeded very slowly in the past twenty years, progress for free shear flows has been even more so. This paper highlights some of the fundamental issues in modeling free shear flows for propulsion applications, presents a review of past modeling efforts, and identifies areas where further research is needed. Among the topics discussed are differences between planar and axisymmetric flows, development versus self-similar regions, the effect of compressibility and the evolution of compressibility corrections, the effect of temperature on jets, and the significance of turbulent Prandtl and Schmidt numbers for reacting shear flows. Large eddy simulation greatly reduces the amount of empiricism in the physical modeling, but is sensitive to a number of numerical issues. This paper includes an overview of the importance of numerical scheme, mesh resolution, boundary treatment, sub-grid modeling, and filtering in conducting a successful simulation.

  11. The implementation and validation of improved landsurface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    Landsurface hydrological parameterizations are implemented in the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: (1) runoff and evapotranspiration functions that include the effects of subgrid scale spatial variability and use physically based equations of hydrologic flux at the soil surface, and (2) a realistic soil moisture diffusion scheme for the movement of water in the soil column. A one dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three dimensional GCM. Results of the final simulation with the GISS GCM and the new landsurface hydrology indicate that the runoff rate, especially in the tropics is significantly improved. As a result, the remaining components of the heat and moisture balance show comparable improvements when compared to observations. The validation of model results is carried from the large global (ocean and landsurface) scale, to the zonal, continental, and finally the finer river basin scales.

  12. Improved Discretization of Grounding Lines and Calving Fronts using an Embedded-Boundary Approach in BISICLES

    NASA Astrophysics Data System (ADS)

    Martin, D. F.; Cornford, S. L.; Schwartz, P.; Bhalla, A.; Johansen, H.; Ng, E.

    2017-12-01

    Correctly representing grounding line and calving-front dynamics is of fundamental importance in modeling marine ice sheets, since the configuration of these interfaces exerts a controlling influence on the dynamics of the ice sheet. Traditional ice sheet models have struggled to correctly represent these regions without very high spatial resolution. We have developed a front-tracking discretization for grounding lines and calving fronts based on the Chombo embedded-boundary cut-cell framework. This promises better representation of these interfaces vs. a traditional stair-step discretization on Cartesian meshes like those currently used in the block-structured AMR BISICLES code. The dynamic adaptivity of the BISICLES model complements the subgrid-scale discretizations of this scheme, producing a robust approach for tracking the evolution of these interfaces. Also, the fundamental discontinuous nature of flow across grounding lines is respected by mathematically treating it as a material phase change. We present examples of this approach to demonstrate its effectiveness.

  13. Sub-grid scale precipitation in ALCMs: re-assessing the land surface sensitivity using a single column model

    NASA Astrophysics Data System (ADS)

    Pitman, Andrew J.; Yang, Zong-Liang; Henderson-Sellers, Ann

    1993-10-01

    The sensitivity of a land surface scheme to the distribution of precipitation within a general circulation model's grid element is investigated. Earlier experiments which showed considerable sensitivity of the runoff and evaporation simulation to the distribution of precipitation are repeated in the light of other results which show no sensitivity of evaporation to the distribution of precipitation. Results show that while the earlier results over-estimated the sensitivity of the surface hydrology to the precipitation distribution, the general conclusion that the system is sensitive is supported. It is found that changing the distribution of precipitation from falling over 100% of the grid square to falling over 10% leads to a reduction in evaporation from 1578 mm y-1 to 1195 mm y -1 while runoff increases from 278 mm y-1 to 602 mm y-1. The sensitivity is explained in terms of evaporation being dominated by available energy when precipitation falls over nearly the entire grid square, but by moisture availability (mainly intercepted water) when it falls over little of the grid square. These results also indicate that earlier work using stand-alone forcing to drive land surface schemes ‘off-line’, and to investigate the sensitivity of land surface codes to various parameters, leads to results which are non-repeatable in single column simulations.

  14. A large eddy simulation scheme for turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1993-01-01

    The recent development of the dynamic subgrid-scale (SGS) model has provided a consistent method for generating localized turbulent mixing models and has opened up great possibilities for applying the large eddy simulation (LES) technique to real world problems. Given the fact that the direct numerical simulation (DNS) can not solve for engineering flow problems in the foreseeable future (Reynolds 1989), the LES is certainly an attractive alternative. It seems only natural to bring this new development in SGS modeling to bear on the reacting flows. The major stumbling block for introducing LES to reacting flow problems has been the proper modeling of the reaction source terms. Various models have been proposed, but none of them has a wide range of applicability. For example, some of the models in combustion have been based on the flamelet assumption which is only valid for relatively fast reactions. Some other models have neglected the effects of chemical reactions on the turbulent mixing time scale, which is certainly not valid for fast and non-isothermal reactions. The probability density function (PDF) method can be usefully employed to deal with the modeling of the reaction source terms. In order to fit into the framework of LES, a new PDF, the large eddy PDF (LEPDF), is introduced. This PDF provides an accurate representation for the filtered chemical source terms and can be readily calculated in the simulations. The details of this scheme are described.

  15. Development and Testing of Coupled Land-surface, PBL and Shallow/Deep Convective Parameterizations within the MM5

    NASA Technical Reports Server (NTRS)

    Stauffer, David R.; Seaman, Nelson L.; Munoz, Ricardo C.

    2000-01-01

    The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins using a 3-D mesoscale model, the PSUINCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. It was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having a detailed land-surface parameterization, an advanced boundary-layer parameterization, and a more complete shallow convection parameterization than are available in most current models. The methodology was based on the application in the MM5 of new or recently improved parameterizations covering these three physical processes. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the Southern Great Plains (SGP): (1) the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) described by Wetzel and Boone; (2) the 1.5-order turbulent kinetic energy (TKE)-predicting scheme of Shafran et al.; and (3) the hybrid-closure sub-grid shallow convection parameterization of Deng. Each of these schemes has been tested extensively through this study and the latter two have been improved significantly to extend their capabilities.

  16. Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2016-12-01

    At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).

  17. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less

  18. Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems.

    PubMed

    Schymanski, Stanislaus J; Kleidon, Axel; Stieglitz, Marc; Narula, Jatin

    2010-05-12

    Feedbacks between water use, biomass and infiltration capacity in semiarid ecosystems have been shown to lead to the spontaneous formation of vegetation patterns in a simple model. The formation of patterns permits the maintenance of larger overall biomass at low rainfall rates compared with homogeneous vegetation. This results in a bias of models run at larger scales neglecting subgrid-scale variability. In the present study, we investigate the question whether subgrid-scale heterogeneity can be parameterized as the outcome of optimal partitioning between bare soil and vegetated area. We find that a two-box model reproduces the time-averaged biomass of the patterns emerging in a 100 x 100 grid model if the vegetated fraction is optimized for maximum entropy production (MEP). This suggests that the proposed optimality-based representation of subgrid-scale heterogeneity may be generally applicable to different systems and at different scales. The implications for our understanding of self-organized behaviour and its modelling are discussed.

  19. A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi

    2016-09-01

    Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).

  20. Large-eddy simulation of the passage of a shock wave through homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Braun, N. O.; Pullin, D. I.; Meiron, D. I.

    2017-11-01

    The passage of a nominally plane shockwave through homogeneous, compressible turbulence is a canonical problem representative of flows seen in supernovae, supersonic combustion engines, and inertial confinement fusion. The interaction of isotropic turbulence with a stationary normal shockwave is considered at inertial range Taylor Reynolds numbers, Reλ = 100 - 2500 , using Large Eddy Simulation (LES). The unresolved, subgrid terms are approximated by the stretched-vortex model (Kosovic et al., 2002), which allows self-consistent reconstruction of the subgrid contributions to the turbulent statistics of interest. The mesh is adaptively refined in the vicinity of the shock to resolve small amplitude shock oscillations, and the implications of mesh refinement on the subgrid modeling are considered. Simulations are performed at a range of shock Mach numbers, Ms = 1.2 - 3.0 , and turbulent Mach numbers, Mt = 0.06 - 0.18 , to explore the parameter space of the interaction at high Reynolds number. The LES shows reasonable agreement with linear analysis and lower Reynolds number direct numerical simulations. LANL Subcontract 305963.

  1. Computing Flows Using Chimera and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Zheng, Yao

    2006-01-01

    DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.

  2. A Priori Subgrid Scale Modeling for a Droplet Laden Temporal Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2000-01-01

    Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using a direct numerical simulation (DNS) database. The DNS is for a Reynolds number (based on initial vorticity thickness) of 600, with droplet mass loading of 0.2. The gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. Since Large Eddy Simulation (LES) of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be given by the filtered variables plus a correction based on the filtered standard deviation, which can be computed from the sub-grid scale (SGS) standard deviation. This model predicts unfiltered variables at droplet locations better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: Smagorinsky, gradient and scale-similarity. When properly calibrated, the gradient and scale-similarity methods give results in excellent agreement with the DNS.

  3. A new subgrid-scale representation of hydrometeor fields using a multivariate PDF

    DOE PAGES

    Griffin, Brian M.; Larson, Vincent E.

    2016-06-03

    The subgrid-scale representation of hydrometeor fields is important for calculating microphysical process rates. In order to represent subgrid-scale variability, the Cloud Layers Unified By Binormals (CLUBB) parameterization uses a multivariate probability density function (PDF). In addition to vertical velocity, temperature, and moisture fields, the PDF includes hydrometeor fields. Previously, hydrometeor fields were assumed to follow a multivariate single lognormal distribution. Now, in order to better represent the distribution of hydrometeors, two new multivariate PDFs are formulated and introduced.The new PDFs represent hydrometeors using either a delta-lognormal or a delta-double-lognormal shape. The two new PDF distributions, plus the previous single lognormalmore » shape, are compared to histograms of data taken from large-eddy simulations (LESs) of a precipitating cumulus case, a drizzling stratocumulus case, and a deep convective case. In conclusion, the warm microphysical process rates produced by the different hydrometeor PDFs are compared to the same process rates produced by the LES.« less

  4. Beliefs, decision-making, and dialogue about complementary and alternative medicine (CAM) within families using CAM: a qualitative study.

    PubMed

    Nichol, James; Thompson, Elizabeth A; Shaw, Alison

    2011-02-01

    The rise in complementary and alternative medicine (CAM) use is well documented. Surveys provide varying estimates of the prevalence of CAM use. Qualitative research has explored individuals' decision-making regarding CAM. This study aimed to examine the family as a context for beliefs, decision-making, and dialogue about CAM. Families were recruited via the Avon Longitudinal Study of Parents and Children. A subsample of CAM users was targeted using purposeful sampling. Focus groups and interviews were conducted with 15 families and the data were analyzed thematically. Family understandings and beliefs about CAM: CAM was understood as treatments provided outside mainstream care, offering a more "natural" and "holistic" approach, tailored to individual needs and overlapping with wider healthy lifestyle practices. Hierarchies of acceptability of CAM: Physical and "mainstream" therapies were widely supported, with "fringe" therapies producing the most polarized views. There was a belief particularly among fathers and young people that certain therapies rely on "placebo" effects and their value was contested. Types of CAM users within families: Family members were predominantly "pragmatic" CAM users, with "committed" users (all mothers) characterized by deeper philosophical commitment to CAM and skepticism toward conventional medicine. Family dynamics of CAM decision-making: Mothers tended to "champion" CAM within families, while not determining family CAM use. Fathers largely positioned themselves as lacking expertise or skeptical of CAM. Young people were beginning to articulate independent and more critical views of CAM, some directly challenging their mother's perspective. However, all families shared openness to CAM as part of broader beliefs in proactive healthy lifestyles. Family focus groups and interviews allow a window on beliefs, decision-making, and dialogue about CAM within families, illuminating the CAM "champion" role held by mothers, and young people's developing autonomy regarding health beliefs and decision-making.

  5. Seamless atmospheric modeling across the hydrostatic-nonhydrostatic scales - preliminary results using an unstructured-Voronoi mesh for weather prediction.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2015-12-01

    One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.

  6. Large-Eddy Atmosphere-Land-Surface Modelling over Heterogeneous Surfaces: Model Development and Comparison with Measurements

    NASA Astrophysics Data System (ADS)

    Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne

    2013-08-01

    A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.

  7. Special Issue: Very large eddy simulation. Issue Edited by Dimitris Drikakis.Copyright © 2002 John Wiley & Sons, Ltd.Save Title to My Profile

    E-MailPrint

    Volume 39, Issue 9, Pages 763-864(30 July 2002)

    Research Article

    Embedded turbulence model in numerical methods for hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Drikakis, D.

    2002-07-01

    The paper describes the use of numerical methods for hyperbolic conservation laws as an embedded turbulence modelling approach. Different Godunov-type schemes are utilized in computations of Burgers' turbulence and a two-dimensional mixing layer. The schemes include a total variation diminishing, characteristic-based scheme which is developed in this paper using the flux limiter approach. The embedded turbulence modelling property of the above methods is demonstrated through coarsely resolved large eddy simulations with and without subgrid scale models. Copyright

  8. Computations of Complex Three-Dimensional Turbulent Free Jets

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.

  9. The natural emergence of the correlation between H2 and star formation rate surface densities in galaxy simulations

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Bovino, Stefano; Capelo, Pedro R.; Volonteri, Marta; Silk, Joseph

    2018-03-01

    In this study, we present a suite of high-resolution numerical simulations of an isolated galaxy to test a sub-grid framework to consistently follow the formation and dissociation of H2 with non-equilibrium chemistry. The latter is solved via the package KROME, coupled to the mesh-less hydrodynamic code GIZMO. We include the effect of star formation (SF), modelled with a physically motivated prescription independent of H2, supernova feedback and mass-losses from low-mass stars, extragalactic and local stellar radiation, and dust and H2 shielding, to investigate the emergence of the observed correlation between H2 and SF rate surface densities. We present two different sub-grid models and compare them with on-the-fly radiative transfer (RT) calculations, to assess the main differences and limits of the different approaches. We also discuss a sub-grid clumping factor model to enhance the H2 formation, consistent with our SF prescription, which is crucial, at the achieved resolution, to reproduce the correlation with H2. We find that both sub-grid models perform very well relative to the RT simulation, giving comparable results, with moderate differences, but at much lower computational cost. We also find that, while the Kennicutt-Schmidt relation for the total gas is not strongly affected by the different ingredients included in the simulations, the H2-based counterpart is much more sensitive, because of the crucial role played by the dissociating radiative flux and the gas shielding.

  10. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  11. Uncertainties in modelling the climate impact of irrigation

    NASA Astrophysics Data System (ADS)

    de Vrese, Philipp; Hagemann, Stefan

    2017-11-01

    Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land surface is more than three times larger when assuming a low irrigation effectiveness than when a high effectiveness is assumed. For certain variables, such as the vertically integrated water vapour, the impact is almost an order of magnitude larger. The timing of irrigation also has non-negligible effects on the simulated climate impacts and it can strongly alter their seasonality.

  12. Complementary and alternative medicine (CAM) among hospitalised patients: reported use of CAM and reasons for use, CAM preferred during hospitalisation, and the socio-demographic determinants of CAM users.

    PubMed

    Shorofi, Seyed Afshin

    2011-11-01

    This paper reports a study to examine hospitalised patients' frequency and patterns of CAM use, their reasons for CAM use, their preferences of CAMs during hospitalisation, and the association between patients' socio-demographic variables and use of each individual CAM/CAM domain. A convenience sample of 353 patients hospitalised in 19 surgical wards at four metropolitan hospitals completed a questionnaire on CAM use and socio-demographic variables. The response rate was 73.5%, and over 90% of the sample acknowledged using CAMs. Non-herbal supplements (60.3%) and massage therapy (45%) were the most frequently used CAMs, with biologically based therapies (68.8%) as well as mind-body interventions (65.4%) being the most often used CAM domains. About 1 in 10 patients (9.6%) used CAMs from all five domains. With the exception of herbal-botanical therapies, self-prayer for health reasons/spiritual healing and music therapy, all CAMs were mainly used on an 'only when needed' basis. The most common reason nominated for using CAMs was that '[it] fits into my way of life/philosophy' (26%). The majority of patients declared interest in and support for the hospital providing CAMs. Patients were most inclined to choose therapies categorised as manipulative and body-based methods (65.4%) for use in hospital. Massage therapy (53.5%) and non-herbal supplements (43.1%) were the top two CAMs favoured for use in hospital. CAM use was also dependent of socio-demographic data (age, gender, marital status, place of residence, education level, religion, and income in hospitalised patients). The use of CAMs is pervasive amongst surgical in-patients, making it feasible to initially assess these patients for CAM use and provide them with clinically approved CAMs where possible. Notwithstanding that CAM use is fairly predictable by socio-demographic variables, further studies should be directed to know the variables useful for predicting the use of each CAM approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Discrepant Views of Oncologists and Cancer Patients on Complementary and Alternative Medicine in a Chinese General Hospital.

    PubMed

    Yang, Geliang; Zhang, Huiqing; Gan, Zheng; Fan, Yifu; Gu, Wei; Ling, Changquan

    2018-06-01

    Complementary and alternative medicine (CAM) has been widely used by cancer patients but rarely discussed by oncologists. This study was designed to evaluate the communication gap between China's oncologists and cancer patients on CAM. Two parallel cross-sectional studies assessed 83 oncologists and 402 cancer patients on CAM communication between patients and oncologists, and attitudes toward CAM use and clinical decisions about CAM. A majority (75.1%) of the cancer patients (302/402) were identified as CAM users within the most recent three months while 77.6% of the cancer patients (312/402) were identified as CAM users since diagnosis of cancer. Oncologists and patients responded differently ( P < .001) on CAM communications. Both oncologists and patients expected that CAM could improve the immune system. They both agreed that oncologists usually discouraged their patients from using CAM. Regarding the effectiveness of CAM, cancer patients were more likely to believe that CAM was effective while oncologists had more concerns about adverse effects of CAM use. CAM use by patients was predicted by disease duration (≥9 months) in the multivariable logistic regression model. China's oncologists and cancer patients may hold discrepant views on CAM. China's oncologists are encouraged to improve their knowledge on CAM and to initiate more discussions with their patients regarding effective and the safe use of CAM.

  14. Comparison of improved range of motion between cam-type femoroacetabular impingement and borderline developmental dysplasia of the hip -evaluation by virtual osteochondroplasty using computer simulation.

    PubMed

    Kubota, So; Inaba, Yutaka; Kobayashi, Naomi; Choe, Hyonmin; Tezuka, Taro; Saito, Tomoyuki

    2017-10-16

    While cam resection is essential to achieve a good clinical result with respect to femoroacetabular impingement (FAI), it is unclear whether it should also be performed in cases of borderline developmental dysplasia of the hip (DDH) with a cam deformity. The aim of this study was to evaluate improvements in range of motion (ROM) in cases of cam-type FAI and borderline DDH after virtual osteochondroplasty using a computer impingement simulation. Thirty-eight symptomatic hips in 31 patients (11male and 20 female) diagnosed with cam-type FAI or borderline DDH were analyzed. There were divided into a cam-type FAI group (cam-FAI group: 15 hips), borderline DDH without cam group (DDH W/O cam group: 12 hips), and borderline DDH with cam group (DDH W/ cam group: 11 hips). The bony impingement point on the femoral head-neck junction at 90° flexion and maximum internal rotation of the hip joint was identified using ZedHip® software. Virtual osteochondroplasty of the impingement point was then performed in all cases. The maximum flexion angle and maximum internal rotation angle at 90° flexion were measured before and after virtual osteochondroplasty at two resection ranges (i.e., slight and sufficient). The mean improvement in the internal rotation angle in the DDH W/ cam group after slight resection was significantly greater than that in the DDH W/O cam group (P = 0.046). Furthermore, the mean improvement in the internal rotation angle in the DDH W/ cam and cam-FAI groups after sufficient resection was significantly greater than that in the DDH W/O cam group (DDH W/ cam vs DDH W/O cam: P = 0.002, cam-FAI vs DDH W/O cam: P = 0.043). Virtual osteochondroplasty resulted in a significant improvement in internal rotation angle in DDH W/ cam group but not in DDH W/O cam group. Thus, borderline DDH cases with cam deformity may be better to consider performing osteochondroplasty.

  15. An Idealized Test of the Response of the Community Atmosphere Model to Near-Grid-Scale Forcing Across Hydrostatic Resolutions

    NASA Astrophysics Data System (ADS)

    Herrington, A. R.; Reed, K. A.

    2018-02-01

    A set of idealized experiments are developed using the Community Atmosphere Model (CAM) to understand the vertical velocity response to reductions in forcing scale that is known to occur when the horizontal resolution of the model is increased. The test consists of a set of rising bubble experiments, in which the horizontal radius of the bubble and the model grid spacing are simultaneously reduced. The test is performed with moisture, through incorporating moist physics routines of varying complexity, although convection schemes are not considered. Results confirm that the vertical velocity in CAM is to first-order, proportional to the inverse of the horizontal forcing scale, which is consistent with a scale analysis of the dry equations of motion. In contrast, experiments in which the coupling time step between the moist physics routines and the dynamical core (i.e., the "physics" time step) are relaxed back to more conventional values results in severely damped vertical motion at high resolution, degrading the scaling. A set of aqua-planet simulations using different physics time steps are found to be consistent with the results of the idealized experiments.

  16. Partial Least Squares and Neural Networks for Quantitative Calibration of Laser-induced Breakdown Spectroscopy (LIBs) of Geologic Samples

    NASA Technical Reports Server (NTRS)

    Anderson, R. B.; Morris, Richard V.; Clegg, S. M.; Humphries, S. D.; Wiens, R. C.; Bell, J. F., III; Mertzman, S. A.

    2010-01-01

    The ChemCam instrument [1] on the Mars Science Laboratory (MSL) rover will be used to obtain the chemical composition of surface targets within 7 m of the rover using Laser Induced Breakdown Spectroscopy (LIBS). ChemCam analyzes atomic emission spectra (240-800 nm) from a plasma created by a pulsed Nd:KGW 1067 nm laser. The LIBS spectra can be used in a semiquantitative way to rapidly classify targets (e.g., basalt, andesite, carbonate, sulfate, etc.) and in a quantitative way to estimate their major and minor element chemical compositions. Quantitative chemical analysis from LIBS spectra is complicated by a number of factors, including chemical matrix effects [2]. Recent work has shown promising results using multivariate techniques such as partial least squares (PLS) regression and artificial neural networks (ANN) to predict elemental abundances in samples [e.g. 2-6]. To develop, refine, and evaluate analysis schemes for LIBS spectra of geologic materials, we collected spectra of a diverse set of well-characterized natural geologic samples and are comparing the predictive abilities of PLS, cascade correlation ANN (CC-ANN) and multilayer perceptron ANN (MLP-ANN) analysis procedures.

  17. Improving the representation of soluble iron in climate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie

    Funding from this grant supported Rachel Sanza, Yan Zhang and partially Samuel Albani. Substantial progress has been made on inclusion of mineralogy, showing the quality of the simulations, and the impact on radiation in the CAM4 and CAM5 (Scanza et al., 2015). In addition, the elemental distribution has been evaluated (and partially supported by this grant) (Zhang et al., 2015), showing that using spatial distributions of mineralogy, improved resperentation of Fe, Ca and Al are possible, compared to the limited available data. A new intermediate complexity soluble iron scheme was implemented in the Bulk Aerosol Model (BAM), which was completedmore » as part of Rachel Scanza’s PhD thesis. Currently Rachel is writing up at least two first author papers describing the general methods and comparison to observations (Scanza et al., in prep.), as well as papers describing the sensitivity to preindustrial conditions and interannual variability. This work lead to the lead PI being asked to write a commentary in Nature (Mahowald, 2013) and two review papers (Mahowald et al., 2014, Mahowald et al., submitted) and contributed to related papers (Albani et al., 2016, Albani et al., 2014, Albani et al., 2015).« less

  18. Aspects on HTS applications in confined power grids

    NASA Astrophysics Data System (ADS)

    Arndt, T.; Grundmann, J.; Kuhnert, A.; Kummeth, P.; Nick, W.; Oomen, M.; Schacherer, C.; Schmidt, W.

    2014-12-01

    In an increasing number of electric power grids the share of distributed energy generation is also increasing. The grids have to cope with a considerable change of power flow, which has an impact on the optimum topology of the grids and sub-grids (high-voltage, medium-voltage and low-voltage sub-grids) and the size of quasi-autonomous grid sections. Furthermore the stability of grids is influenced by its size. Thus special benefits of HTS applications in the power grid might become most visible in confined power grids.

  19. Use of complementary and alternative medicine among patients: classification criteria determine level of use.

    PubMed

    Kristoffersen, Agnete Egilsdatter; Fønnebø, Vinjar; Norheim, Arne Johan

    2008-10-01

    Self-reported use of complementary and alternative medicine (CAM) among patients varies widely between studies, possibly because the definition of a CAM user is not comparable. This makes it difficult to compare studies. The aim of this study is to present a six-level model for classifying patients' reported exposure to CAM. Prayer, physical exercise, special diets, over-the-counter products/CAM techniques, and personal visits to a CAM practitioner are successively removed from the model in a reductive fashion. By applying the model to responses given by Norwegian patients with cancer, we found that 72% use CAM if the user was defined to include all types of CAM. This proportion was reduced successively to only 11% in the same patient group when a CAM user was defined as a user visiting a CAM practitioner four or more times. When considering a sample of 10 recently published studies of CAM use among patients with breast cancer, we found 98% use when the CAM user was defined to include all sorts of CAM. This proportion was reduced successively to only 20% when a CAM user was defined as a user of a CAM practitioner. We recommend future surveys of CAM use to report at more than one level and to clarify which intensity level of CAM use the report is based on.

  20. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.

    PubMed

    Winter, Klaus; Holtum, Joseph A M

    2014-07-01

    Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under conditions of drought stress, in plants that otherwise employ C3 or C4 photosynthesis. In its cleanest form, the upregulation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogenetically programmed unidirectional C3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through comparisons of C3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. These technologies and facultative CAM systems, when joined, are expected to contribute in a major way towards our goal of understanding the essence of CAM. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. A systematic review of the traits and cognitions associated with use of and belief in complementary and alternative medicine (CAM).

    PubMed

    Galbraith, Niall; Moss, Tim; Galbraith, Victoria; Purewal, Satvinder

    2018-08-01

    Complementary and alternative medicine (CAM) use is widespread despite the controversy over its effectiveness. Although previous reviews have examined the demographics and attitudes of CAM users, there is no existing review on the traits or cognitions which characterise either CAM users or those who believe in CAM effectiveness. The current systematic review set out to address these gaps in the literature by applying a narrative synthesis. A bibliographic search and manual searches were undertaken and key authors were contacted. Twenty-three papers were selected. The trait openness to experience was positively associated with CAM use but not CAM belief. Absorption and various types of coping were also positively associated with CAM use and belief. No other trait was reliably associated with CAM use or belief. Intuitive thinking and ontological confusions were positively associated with belief in CAM effectiveness; intuitive thinking was also positively associated with CAM use. Studies researching cognitions in CAM use/belief were mostly on non-clinical samples, whilst studies on traits and CAM use/belief were mostly on patients. The quality of studies varied but unrepresentative samples, untested outcome measures and simplistic statistical analyses were the most common flaws. Traits and cognition might be important correlates of CAM use and also of faith in CAM.

  2. Reasons for continuing use of Complementary and Alternative Medicine (CAM) in students: a consumer commitment model.

    PubMed

    Sirois, Fuschia M; Salamonsen, Anita; Kristoffersen, Agnete E

    2016-02-24

    Research on continued CAM use has been largely atheoretical and has not considered the broader range of psychological and behavioral factors that may be involved. The purpose of this study was to test a new conceptual model of commitment to CAM use that implicates utilitarian (trust in CAM) and symbolic (perceived fit with CAM) in psychological and behavioral dimensions of CAM commitment. A student sample of CAM consumers, (N = 159) completed a survey about their CAM use, CAM-related values, intentions for future CAM use, CAM word-of-mouth behavior, and perceptions of being an ongoing CAM consumer. Analysis revealed that the utilitarian, symbolic, and CAM commitment variables were significantly related, with r's ranging from .54 to .73. A series hierarchical regression analyses controlling for relevant demographic variables found that the utilitarian and symbolic values uniquely accounted for significant and substantial proportion of the variance in each of the three CAM commitment indicators (R(2) from .37 to .57). The findings provide preliminary support for the new model that posits that CAM commitment is a multi-dimensional psychological state with behavioral indicators. Further research with large-scale samples and longitudinal designs is warranted to understand the potential value of the new model.

  3. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2017-04-01

    In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1

  4. Scaling analysis of cloud and rain water in marine stratocumulus and implications for scale-aware microphysical parameterizations

    NASA Astrophysics Data System (ADS)

    Witte, M.; Morrison, H.; Jensen, J. B.; Bansemer, A.; Gettelman, A.

    2017-12-01

    The spatial covariance of cloud and rain water (or in simpler terms, small and large drops, respectively) is an important quantity for accurate prediction of the accretion rate in bulk microphysical parameterizations that account for subgrid variability using assumed probability density functions (pdfs). Past diagnoses of this covariance from remote sensing, in situ measurements and large eddy simulation output have implicitly assumed that the magnitude of the covariance is insensitive to grain size (i.e. horizontal resolution) and averaging length, but this is not the case because both cloud and rain water exhibit scale invariance across a wide range of scales - from tens of centimeters to tens of kilometers in the case of cloud water, a range that we will show is primarily limited by instrumentation and sampling issues. Since the individual variances systematically vary as a function of spatial scale, it should be expected that the covariance follows a similar relationship. In this study, we quantify the scaling properties of cloud and rain water content and their covariability from high frequency in situ aircraft measurements of marine stratocumulus taken over the southeastern Pacific Ocean aboard the NSF/NCAR C-130 during the VOCALS-REx field experiment of October-November 2008. First we confirm that cloud and rain water scale in distinct manners, indicating that there is a statistically and potentially physically significant difference in the spatial structure of the two fields. Next, we demonstrate that the covariance is a strong function of spatial scale, which implies important caveats regarding the ability of limited-area models with domains smaller than a few tens of kilometers across to accurately reproduce the spatial organization of precipitation. Finally, we present preliminary work on the development of a scale-aware parameterization of cloud-rain water subgrid covariability based in multifractal analysis intended for application in large-scale model microphysics schemes.

  5. Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models

    NASA Astrophysics Data System (ADS)

    Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn

    2018-05-01

    The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.

  6. Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution

    PubMed Central

    Halling, D. Brent; Kenrick, Sophia A.; Riggs, Austen F.

    2014-01-01

    Ca2+ activates SK Ca2+-activated K+ channels through the protein Ca2+ sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca2+ regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca2+ concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca2+, SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At <5 nM Ca2+, 1SKp/1CaM and 2SKp/1CaM were observed; however, 1SKp/2CaM was absent. Analytical ultracentrifugation was used to characterize the physical properties of the three SKp/CaM stoichiometries. In high Ca2+, the sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca2+ and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca2+ or with CaM in molar excess. In low Ca2+ both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca2+. These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating. PMID:24420768

  7. Calcium-dependent stoichiometries of the KCa2.2 (SK) intracellular domain/calmodulin complex in solution.

    PubMed

    Halling, D Brent; Kenrick, Sophia A; Riggs, Austen F; Aldrich, Richard W

    2014-02-01

    Ca(2+) activates SK Ca(2+)-activated K(+) channels through the protein Ca(2+) sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca(2+) regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca(2+) concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca(2+), SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At <5 nM Ca(2+), 1SKp/1CaM and 2SKp/1CaM were observed; however, 1SKp/2CaM was absent. Analytical ultracentrifugation was used to characterize the physical properties of the three SKp/CaM stoichiometries. In high Ca(2+), the sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca(2+) and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca(2+) or with CaM in molar excess. In low Ca(2+) both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca(2+). These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating.

  8. Complementary and alternative medicine (CAM) among Australian hospital-based nurses: knowledge, attitude, personal and professional use, reasons for use, CAM referrals, and socio-demographic predictors of CAM users.

    PubMed

    Shorofi, Seyed Afshin; Arbon, Paul

    2017-05-01

    This study was intended to examine CAM among Australian hospital-based nurses, identifying their knowledge, attitude, personal and professional use, reasons for use, CAM referrals, and socio-demographic predictors of CAM users. Nurses holding a qualification in nursing and working in surgical wards were included using a convenience sampling technique. A self-complete questionnaire was developed to achieve the aims of the study. Descriptive and non-parametric statistics were calculated to describe and analyse data. Overall, 95.7% and 49.7% of nurses reported personal and professional use of CAM, respectively. The most popular CAM/CAM domain personally and professionally used by nurses was massage therapy and mind-body therapies. The primary reason for personal use of CAM was "[it] fits into my way of life/philosophy". Furthermore, massage therapists were the most commonly recommended CAM practitioners to patients. Only 15.8% of nurses would always ask patients about use of herbal medicines as part of nursing history taking. Over one-fifth (22.4%) of nurses rated their attitude as having a very positive, and 60.3% rated themselves as having very little or no knowledge of CAM. A positive correlation was also found between knowledge and attitude about CAM. Positive attitude and higher knowledge about CAM were positively correlated to CAM referrals. Several socio-demographic factors predicted personal and professional use of CAM. This study revealed that nurses generally believe not to have sufficient knowledge of CAM but are open to use CAM with patients. Nurses' positive attitude toward and personal use of CAM could be an indication that they are poised for further integration of evidence-based CAM into nursing practice to treat whole person. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An integrative review of complementary and alternative medicine use for back pain: a focus on prevalence, reasons for use, influential factors, self-perceived effectiveness, and communication.

    PubMed

    Murthy, Vijayendra; Sibbritt, David W; Adams, Jon

    2015-08-01

    Back pain is the most prevalent of musculoskeletal conditions, and back pain sufferers have been identified as high users of complementary and alternative medicine (CAM). Despite lacking evidence, CAM treatments (e.g., acupuncture, chiropractic, and massage) and CAM products (eg, vitamins, supplements, and aromatherapy oils) for back pain care have become widely available internationally, and CAM use by back pain sufferers has become a significant health service issue. However, to date, there has been no integrative review on CAM use for back pain. This study aims to conduct an integrative review on CAM use for back pain focusing on prevalence of use, commonly used CAM, characteristics of users, factors influencing decision making, self-perceived effectiveness, and communication with health-care providers. The study is based on an integrative literature review. A comprehensive search of international literature from 2000 to 2014 in MEDLINE, CINHAL, AMED, DARE, EMBASE, ExceptaMedica, psycINFO, and SCOPUS databases was conducted. The search was limited to peer-reviewed articles published in English language and reporting empirical research findings on CAM use for back pain. The review reveals a considerable variation in prevalences of CAM use for back pain internationally. Acupuncture, chiropractic, osteopathy, and massage therapy are the commonly used CAM treatments besides a range of self-prescribed CAM, and back pain sufferers use CAM alongside conventional medical treatments. Female gender, chronicity of back pain, and previous exposure to CAM are key predictors of CAM use for back pain as highlighted from the reviewed literature. Family, friends, and recommendation by doctors appear to influence decision making on CAM use for back pain. The review reveals that users of CAM for back pain tend to report CAM as beneficial, but there is little knowledge on communication between CAM users with back pain and health-care providers about such use. Existing literature is largely based on the research investigating CAM use for back pain among a range of other health conditions. Further rigorous research is needed to investigate the use of a wider range of CAM treatments, particularly self-prescribed CAM for back pain. The review findings provide insights for health-care providers and policy makers on the range of CAM treatments used by back pain sufferers. Conventional medical and CAM practitioners should be aware of back pain sufferers' decision making regarding a range of CAM treatments and be prepared to communicate with patients on safe and effective CAM treatments for back pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Cryogenic Cam Butterfly Valve

    NASA Technical Reports Server (NTRS)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  11. Complementary and Alternative Medicine: A Clinical Study in 1,016 Hematology/Oncology Patients.

    PubMed

    Hierl, Marina; Pfirstinger, Jochen; Andreesen, Reinhard; Holler, Ernst; Mayer, Stephanie; Wolff, Daniel; Vogelhuber, Martin

    2017-01-01

    Surveys state a widespread use of complementary and alternative medicine (CAM) in patients with malignant diseases. CAM methods might potentially interfere with the metabolization of tumor-specific therapy. However, there is little communication about CAM use in hematology/oncology patients between patients, CAM providers, and oncologists. A self-administered questionnaire was handed out to all patients attending to the hematology/oncology outpatient clinic of Regensburg University Hospital. Subsequently, a chart review of all CAM users was performed. Questionnaires of 1,016 patients were analyzed. Of these patients, 30% used CAM, preferably vitamins and micronutrients. Main information sources for CAM methods were physicians/nonmedical practitioners and friends/relatives. CAM therapies were provided mainly by licensed physicians (29%), followed by nonmedical practitioners (14%) and the patients themselves (13%). Although 62% of the CAM users agreed that the oncologist may know about their CAM therapy, a chart entry about CAM use was found only in 41%. CAM is frequently used by hematology/oncology patients. Systematic communication about CAM is essential to avoid possible drug interactions. © 2017 S. Karger AG, Basel.

  12. CAM practitioners in the Australian health workforce: an underutilized resource

    PubMed Central

    2012-01-01

    Background CAM practitioners are a valuable but underutilizes resource in Australian health care. Despite increasing public support for complementary and alternative medicine (CAM) little is known about the CAM workforce. Apart from the registered professions of chiropractic, osteopathy and Chinese medicine, accurate information about the number of CAM practitioners in the workforce has been difficult to obtain. It appears that many non-registered CAM practitioners, although highly qualified, are not working to their full capacity. Discussion Increasing public endorsement of CAM stands in contrast to the negative attitude toward the CAM workforce by some members of the medical and other health professions and by government policy makers. The marginalisation of the CAM workforce is evident in prejudicial attitudes held by some members of the medical and other health professions and its exclusion from government policy making. Inconsistent educational standards has meant that non-registered CAM practitioners, including highly qualified and competent ones, are frequently overlooked. Legitimising their contribution to the health workforce could alleviate workforce shortages and provide opportunities for redesigned job roles and new multidisciplinary teams. Priorities for better utilisation of the CAM workforce include establishing a guaranteed minimum education standard for more CAM occupation groups through national registration, providing interprofessional education that includes CAM practitioners, developing courses to upgrade CAM practitioners' professional skills in areas of indentified need, and increasing support for CAM research. Summary Marginalisation of the CAM workforce has disadvantaged those qualified and competent CAM practitioners who practise evidence-informed medicine on the basis of many years of university training. Legitimising and expanding the important contribution of CAM practitioners could alleviate projected health workforce shortages, particularly for the prevention and management of chronic health conditions and for health promotion. PMID:23116374

  13. CAM practitioners in the Australian health workforce: an underutilized resource.

    PubMed

    Grace, Sandra

    2012-11-02

    CAM practitioners are a valuable but underutilizes resource in Australian health care. Despite increasing public support for complementary and alternative medicine (CAM) little is known about the CAM workforce. Apart from the registered professions of chiropractic, osteopathy and Chinese medicine, accurate information about the number of CAM practitioners in the workforce has been difficult to obtain. It appears that many non-registered CAM practitioners, although highly qualified, are not working to their full capacity. Increasing public endorsement of CAM stands in contrast to the negative attitude toward the CAM workforce by some members of the medical and other health professions and by government policy makers. The marginalisation of the CAM workforce is evident in prejudicial attitudes held by some members of the medical and other health professions and its exclusion from government policy making. Inconsistent educational standards has meant that non-registered CAM practitioners, including highly qualified and competent ones, are frequently overlooked. Legitimising their contribution to the health workforce could alleviate workforce shortages and provide opportunities for redesigned job roles and new multidisciplinary teams. Priorities for better utilisation of the CAM workforce include establishing a guaranteed minimum education standard for more CAM occupation groups through national registration, providing interprofessional education that includes CAM practitioners, developing courses to upgrade CAM practitioners' professional skills in areas of indentified need, and increasing support for CAM research. Marginalisation of the CAM workforce has disadvantaged those qualified and competent CAM practitioners who practise evidence-informed medicine on the basis of many years of university training. Legitimising and expanding the important contribution of CAM practitioners could alleviate projected health workforce shortages, particularly for the prevention and management of chronic health conditions and for health promotion.

  14. The utilisation of Complementary and Alternative Medicine (CAM) among ethnic minorities in South Korea

    PubMed Central

    2014-01-01

    Background Race has been reported to affect the use of complementary and alternative medicine (CAM), but there is very little research on the use of CAM by ethnicity in Korea. This study explores the prevalence of CAM use among ethnic minorities in South Korea. Methods The design is a descriptive and cross-sectional study. A convenience sample of ethnic minorities was recruited from two public healthcare centres in Gyeonggi province. The survey instrument included 37 questions regarding CAM use, factors influencing use of CAM, self-health management, and the socio-demographic profile of study participants. Results Sixty-two percent of study participants reported the use of CAM. Multivitamins (53.3%), acupuncture (48.9%), and traditional Korean herbal medicine (38.9%) were popular CAM modalities in our sample. Other notable CAM modalities included herbal plants, therapeutic massage, and moxibustion therapy. The majority of CAM users (52.2%) received CAM services to treat diseases or as a secondary treatment while receiving conventional care. Having positive perceptions toward the effectiveness of CAM was a major determining factor in CAM use. Conclusions Physicians need to be aware of the fact that many ethnic minorities use CAM therapies. Many CAM users reported that they want doctors to know about their CAM use and have a basic understanding of traditional medicine in their home country. Overcoming language and cultural barriers will help reduce unwanted medical complications. High prevalence of CAM use among ethnic minorities in our study warrants further studies using larger sample population. PMID:24641983

  15. Backbone resonance assignments of complexes of human voltage-dependent sodium channel NaV1.2 IQ motif peptide bound to apo calmodulin and to the C-domain fragment of apo calmodulin.

    PubMed

    Mahling, Ryan; Kilpatrick, Adina M; Shea, Madeline A

    2017-10-01

    Human voltage-gated sodium channel Na V 1.2 has a single pore-forming α-subunit and two transmembrane β-subunits. Expressed primarily in the brain, Na V 1.2 is critical for initiation and propagation of action potentials. Milliseconds after the pore opens, sodium influx is terminated by inactivation processes mediated by regulatory proteins including calmodulin (CaM). Both calcium-free (apo) CaM and calcium-saturated CaM bind tightly to an IQ motif in the C-terminal tail of the α-subunit. Our thermodynamic studies and solution structure (2KXW) of a C-domain fragment of apo 13 C, 15 N- CaM (CaM C ) bound to an unlabeled peptide with the sequence of rat Na V 1.2 IQ motif showed that apo CaM C (a) was necessary and sufficient for binding, and (b) bound more favorably than calcium-saturated CaM C . However, we could not monitor the Na V 1.2 residues directly, and no structure of full-length CaM (including the N-domain of CaM (CaM N )) was determined. To distinguish contributions of CaM N and CaM C , we used solution NMR spectroscopy to assign the backbone resonances of a complex containing a 13 C, 15 N-labeled peptide with the sequence of human Na V 1.2 IQ motif (Na V 1.2 IQp ) bound to apo 13 C, 15 N-CaM or apo 13 C, 15 N-CaM C . Comparing the assignments of apo CaM in complex with Na V 1.2 IQp to those of free apo CaM showed that residues within CaM C were significantly perturbed, while residues within CaM N were essentially unchanged. The chemical shifts of residues in Na V 1.2 IQp and in the C-domain of CaM were nearly identical regardless of whether CaM N was covalently linked to CaM C . This suggests that CaM N does not influence apo CaM binding to Na V 1.2 IQp .

  16. Development and application of a reactive plume-in-grid model: evaluation over Greater Paris

    NASA Astrophysics Data System (ADS)

    Korsakissok, I.; Mallet, V.

    2010-09-01

    Emissions from major point sources are badly represented by classical Eulerian models. An overestimation of the horizontal plume dilution, a bad representation of the vertical diffusion as well as an incorrect estimate of the chemical reaction rates are the main limitations of such models in the vicinity of major point sources. The plume-in-grid method is a multiscale modeling technique that couples a local-scale Gaussian puff model with an Eulerian model in order to better represent these emissions. We present the plume-in-grid model developed in the air quality modeling system Polyphemus, with full gaseous chemistry. The model is evaluated on the metropolitan Île-de-France region, during six months (summer 2001). The subgrid-scale treatment is used for 89 major point sources, a selection based on the emission rates of NOx and SO2. Results with and without the subgrid treatment of point emissions are compared, and their performance by comparison to the observations on measurement stations is assessed. A sensitivity study is also carried out, on several local-scale parameters as well as on the vertical diffusion within the urban area. Primary pollutants are shown to be the most impacted by the plume-in-grid treatment. SO2 is the most impacted pollutant, since the point sources account for an important part of the total SO2 emissions, whereas NOx emissions are mostly due to traffic. The spatial impact of the subgrid treatment is localized in the vicinity of the sources, especially for reactive species (NOx and O3). Ozone is mostly sensitive to the time step between two puff emissions which influences the in-plume chemical reactions, whereas the almost-passive species SO2 is more sensitive to the injection time, which determines the duration of the subgrid-scale treatment. Future developments include an extension to handle aerosol chemistry, and an application to the modeling of line sources in order to use the subgrid treatment with road emissions. The latter is expected to lead to more striking results, due to the importance of traffic emissions for the pollutants of interest.

  17. Allosteric Effects of the Anti-Psychotic Drug Trifluoperazine on the Energetics of Calcium Binding by Calmodulin

    PubMed Central

    Feldkamp, Michael D.; O'Donnell, Susan E.; Yu, Liping; Shea, Madeline A.

    2010-01-01

    Trifluoperazine (TFP; Stelazine™) is an antagonist of calmodulin (CaM), an essential regulator of calcium-dependent signal transduction. Reports differ regarding whether, or where, TFP binds to apo CaM. Three crystallographic structures (1CTR, 1A29, 1LIN) show TFP bound to (Ca2+)4-CaM in ratios of 1, 2 or 4 TFP per CaM. In all of these, CaM domains adopt the “open” conformation seen in CaM-kinase complexes having increased calcium affinity. Most reports suggest TFP also increases calcium affinity of CaM. To compare TFP binding to apo CaM and (Ca2+)4-CaM, and explore differential effects on the N- and C-domains of CaM, stoichiometric TFP titrations of CaM were monitored by 15N-HSQC NMR. Two TFP bound to apo CaM, while four bound to (Ca2+)4-CaM. In both cases, the preferred site was in the C-domain. During the titrations, biphasic responses for some resonances suggested inter-site interactions. TFP-binding sites in apo CaM appeared distinct from those in (Ca2+)4-CaM. In equilibrium calcium titrations at defined ratios of TFP:CaM, TFP reduced calcium affinity at most levels tested; this is similar to the effect of many IQ-motifs on CaM. However, at the highest level tested, TFP raised the calcium affinity of the N-domain of CaM. A model of conformational switching is proposed to explain how TFP can exert opposing allosteric effects on calcium affinity by binding to different sites in the “closed”, “semi-open” and “open” domains of CaM. In physiological processes, apo CaM, as well as (Ca2+)4-CaM, needs to be considered a potential target of drug action. PMID:20544963

  18. Aeroacoustic prediction of turbulent free shear flows

    NASA Astrophysics Data System (ADS)

    Bodony, Daniel Joseph

    2005-12-01

    For many people living in the immediate vicinity of an active airport the noise of jet aircraft flying overhead can be a nuisance, if not worse. Airports, which are held accountable for the noise they produce, and upcoming international noise limits are pressuring the major airframe and jet engine manufacturers to bring quieter aircraft into service. However, component designers need a predictive tool that can estimate the sound generated by a new configuration. Current noise prediction techniques are almost entirely based on previously collected experimental data and are applicable only to evolutionary, not revolutionary, changes in the basic design. Physical models of final candidate designs must still be built and tested before a single design is selected. By focusing on the noise produced in the jet engine exhaust at take-off conditions, the prediction of sound generated by turbulent flows is addressed. The technique of large-eddy simulation is used to calculate directly the radiated sound produced by jets at different operating conditions. Predicted noise spectra agree with measurements for frequencies up to, and slightly beyond, the peak frequency. Higher frequencies are missed, however, due to the limited resolution of the simulations. Two methods of estimating the 'missing' noise are discussed. In the first a subgrid scale noise model, analogous to a subgrid scale closure model, is proposed. In the second method the governing equations are expressed in a wavelet basis from which simplified time-dependent equations for the subgrid scale fluctuations can be derived. These equations are inexpensively integrated to yield estimates of the subgrid scale fluctuations with proper space-time dynamics.

  19. Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model

    NASA Astrophysics Data System (ADS)

    Lim, Kyo-Sun Sunny; Lim, Jong-Myoung; Shin, Hyeyum Hailey; Hong, Jinkyu; Ji, Young-Yong; Lee, Wanno

    2018-06-01

    A substantial over-prediction bias at low-to-moderate wind speeds in the Weather Research and Forecasting (WRF) model has been reported in the previous studies. Low-level wind fields play an important role in dispersion of air pollutants, including radionuclides, in a high-resolution WRF framework. By implementing two subgrid-scale orography parameterizations (Jimenez and Dudhia in J Appl Meteorol Climatol 51:300-316, 2012; Mass and Ovens in WRF model physics: problems, solutions and a new paradigm for progress. Preprints, 2010 WRF Users' Workshop, NCAR, Boulder, Colo. http://www.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%204/4-1_WRFworkshop2010Final.pdf, 2010), we tried to compare the performance of parameterizations and to enhance the forecast skill of low-level wind fields over the central western part of South Korea. Even though both subgrid-scale orography parameterizations significantly alleviated the positive bias at 10-m wind speed, the parameterization by Jimenez and Dudhia revealed a better forecast skill in wind speed under our modeling configuration. Implementation of the subgrid-scale orography parameterizations in the model did not affect the forecast skills in other meteorological fields including 10-m wind direction. Our study also brought up the problem of discrepancy in the definition of "10-m" wind between model physics parameterizations and observations, which can cause overestimated winds in model simulations. The overestimation was larger in stable conditions than in unstable conditions, indicating that the weak diurnal cycle in the model could be attributed to the representation error.

  20. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    NASA Technical Reports Server (NTRS)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  1. LES with and without explicit filtering: comparison and assessment of various models

    NASA Astrophysics Data System (ADS)

    Winckelmans, Gregoire S.; Jeanmart, Herve; Wray, Alan A.; Carati, Daniele

    2000-11-01

    The proper mathematical formalism for large eddy simulation (LES) of turbulent flows assumes that a regular ``explicit" filter (i.e., a filter with a well-defined second moment, such as the gaussian, the top hat, etc.) is applied to the equations of fluid motion. This filter is then responsible for a ``filtered-scale" stress. Because of the discretization of the filtered equations, using the LES grid, there is also a ``subgrid-scale" stress. The global effective stress is found to be the discretization of a filtered-scale stress plus a subgrid-scale stress. The former can be partially reconstructed from an exact, infinite, series, the first term of which is the ``tensor-diffusivity" model of Leonard and is found, in practice, to be sufficient for modeling. Alternatively, sufficient reconstruction can also be achieved using the ``scale-similarity" model of Bardina. The latter corresponds to loss of information: it cannot be reconstructed; its effect (essentially dissipation) must be modeled using ad hoc modeling strategies (such as the dynamic version of the ``effective viscosity" model of Smagorinsky). Practitionners also often assume LES without explicit filtering: the effective stress is then only a subgrid-scale stress. We here compare the performance of various LES models for both approaches (with and without explicit filtering), and for cases without solid boundaries: (1) decay of isotropic turbulence; (2) decay of aircraft wake vortices in a turbulent atmosphere. One main conclusion is that better subgrid-scale models are still needed, the effective viscosity models being too active at the large scales.

  2. The prevalence, patterns of usage and people's attitude towards complementary and alternative medicine (CAM) among the Indian community in Chatsworth, South Africa.

    PubMed

    Singh, Vimal; Raidoo, Deshandra M; Harries, Catherine S

    2004-02-04

    The purpose of this study was to determine, among the Indian community of Chatsworth, South Africa, the prevalence and utilisation patterns of complementary and alternative medicine (CAM), attitudes associated with CAM use and communication patterns of CAM users with their primary care doctors. Face-to-face structured interviews were conducted in Chatsworth, a suburb of Durban in which South Africans of Indian origin predominantly reside. Participants were 200 randomly selected adult English-speaking Indian residents. The prevalence of CAM usage for period 2000/2001 was 38.5% (95% confidence interval 31.7% to 45.6%). Spiritual healing and herbal/natural medicines, including vitamins were the most common types of CAM used, accounting for 42.8% and 48.1% respectively of overall CAM usage. People used CAM to treat conditions including diabetes mellitus, headaches, arthritis and joint pains, stress, skin disorders, backaches, hypertension and nasal disorders. Half of the CAM users used allopathic medicines concurrently. The cost of CAM utilization over this 1-year period, incurred by 80.5% of users for the duration of therapy for their most troublesome condition was below R500 (approximately US50 dollars). Age, sex, marital status, religion, level of education and income were shown not to influence the use of CAM. Greater than half (51.9%) of CAM users did so either upon the advice of someone they knew, or after noticing a CAM advertisement in the local press. Seventy-nine percent of CAM users indicated that they had positive outcomes with their treatments. Fifty four percent of CAM users (excluding those using spiritual healing only) failed to inform their doctors that they used CAM. The main reason given by half of this group was that informing their doctors did not seem necessary. The prevalence of CAM in Chatsworth is similar to findings in other parts of the world. Although CAM was used to treat many different ailments, this practice could not be attributed to any particular demographic profile. The majority of CAM users were satisfied with the effects of CAM. Findings support a need for greater integration of allopathic medicine and CAM, as well as improved communication between patients and caregivers regarding CAM usage.

  3. The prevalence, patterns of usage and people's attitude towards complementary and alternative medicine (CAM) among the Indian community in Chatsworth, South Africa

    PubMed Central

    Singh, Vimal; Raidoo, Deshandra M; Harries, Catherine S

    2004-01-01

    Background The purpose of this study was to determine, among the Indian community of Chatsworth, South Africa, the prevalence and utilisation patterns of complementary and alternative medicine (CAM), attitudes associated with CAM use and communication patterns of CAM users with their primary care doctors. Methods Face-to-face structured interviews were conducted in Chatsworth, a suburb of Durban in which South Africans of Indian origin predominantly reside. Participants were 200 randomly selected adult English-speaking Indian residents. Results The prevalence of CAM usage for period 2000/2001 was 38.5% (95% confidence interval 31.7% to 45.6%). Spiritual healing and herbal/natural medicines, including vitamins were the most common types of CAM used, accounting for 42.8% and 48.1% respectively of overall CAM usage. People used CAM to treat conditions including diabetes mellitus, headaches, arthritis and joint pains, stress, skin disorders, backaches, hypertension and nasal disorders. Half of the CAM users used allopathic medicines concurrently. The cost of CAM utilization over this 1-year period, incurred by 80.5% of users for the duration of therapy for their most troublesome condition was below R500 (approximately US$50). Age, sex, marital status, religion, level of education and income were shown not to influence the use of CAM. Greater than half (51.9%) of CAM users did so either upon the advice of someone they knew, or after noticing a CAM advertisement in the local press. Seventy-nine percent of CAM users indicated that they had positive outcomes with their treatments. Fifty four percent of CAM users (excluding those using spiritual healing only) failed to inform their doctors that they used CAM. The main reason given by half of this group was that informing their doctors did not seem necessary. Conclusion The prevalence of CAM in Chatsworth is similar to findings in other parts of the world. Although CAM was used to treat many different ailments, this practice could not be attributed to any particular demographic profile. The majority of CAM users were satisfied with the effects of CAM. Findings support a need for greater integration of allopathic medicine and CAM, as well as improved communication between patients and caregivers regarding CAM usage. PMID:15018622

  4. Survey of practices and policies relating to the use of complementary and alternative medicines and therapies in New South Wales cancer services.

    PubMed

    Raszeja, V M; Jordens, C F C; Kerridge, I H

    2013-01-01

    To examine policies and practices relating to the provision, prescription and monitoring of complementary and alternative medicine and therapies (CAM) in conventional cancer services in NSW. Self-administered questionnaire sent to directors of all 65 eligible cancer services in NSW in 2009. Forty-three services responded to the survey (response rate 66%). Only six (14%) services reported having formal policies about CAM. Most (n = 33, 77%) expected that patients would be asked about CAM use during their initial assessment. Eight services (19%) provided and/or prescribed CAM for patients, and most of these (n = 7) recorded details of CAM use in patients' records. Only four (9%) services permitted CAM practitioners from the community to attend inpatients, whereas 24 (56%) permitted inpatients to bring in their own CAM. Most of these services (n = 17) required medical approval for the use of CAM. Of the latter, most (n = 13) recorded the use of approved CAM, but only seven recorded use of unapproved CAM and only three refused permission to continue use of unapproved CAM. Most cancer services in NSW recognise potential CAM use by patients and expect medical staff to ask patients about their use of CAM. While few cancer services provided or prescribed CAM, over half permitted inpatients to bring their own CAM into hospital. There was little control over the use of CAM, however, and monitoring was lax. Given the wide usage of CAM by patients with cancer, this lack of control may compromise clinical outcomes, with potentially dangerous consequences. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  5. Disclosure of complementary and alternative medicine use to health care providers among HIV-infected women.

    PubMed

    Liu, Chenglong; Yang, Yang; Gange, Stephen J; Weber, Kathleen; Sharp, Gerald B; Wilson, Tracey E; Levine, Alexandra; Robison, Esther; Goparaju, Lakshmi; Gandhi, Monica; Ganhdi, Monica; Merenstein, Dan

    2009-11-01

    To determine prevalence and predictors of complementary and alternative medicine (CAM) use disclosure to health care providers and whether CAM use disclosure is associated with highly active antiretroviral therapy (HAART) adherence among HIV-infected women, we analyzed longitudinal data collected between October 1994 and March 2002 from HIV-infected CAM-using women enrolled in the Women's Interagency HIV Study. Repeated measures Poisson regression models were constructed to evaluate associations of selected predictors with CAM use disclosure and association between CAM use disclosure and HAART adherence. A total of 1,377 HIV-infected women reported CAM use during study follow-up and contributed a total of 4,689 CAM-using person visits. The overall prevalence of CAM use disclosure to health care providers was 36% across study visits. Women over 45 years old, with a college education, or with health insurance coverage were more likely to disclose their CAM use to health care providers, whereas women identified as non-Hispanic Black or other ethnicities were less likely to communicate their CAM usage. More health care provider visits, more CAM domains used, and higher health care satisfaction scores had significant relationships with increased levels of CAM use disclosure. Restricting analysis to use of herbal or nonherbal medications only, similar results were obtained. Compared to other CAM domains, mind-body practice had the lowest prevalence of CAM use disclosure. Additionally, CAM use disclosure was significantly associated with higher HAART adherence. From this study, we showed that a high percentage of HIV-infected women did not discuss their CAM use with health care providers. Interventions targeted towards both physicians and patients may enhance communication of CAM use, avoid potential adverse events and drug interactions, and enhance HAART adherence.

  6. Disclosure of Complementary and Alternative Medicine Use to Health Care Providers among HIV-Infected Women

    PubMed Central

    Yang, Yang; Gange, Stephen J.; Weber, Kathleen; Sharp, Gerald B.; Wilson, Tracey E.; Levine, Alexandra; Robison, Esther; Goparaju, Lakshmi; Gandhi, Monica; Merenstein, Dan

    2009-01-01

    Abstract To determine prevalence and predictors of complementary and alternative medicine (CAM) use disclosure to health care providers and whether CAM use disclosure is associated with highly active antiretroviral therapy (HAART) adherence among HIV-infected women, we analyzed longitudinal data collected between October 1994 and March 2002 from HIV-infected CAM-using women enrolled in the Women's Interagency HIV Study. Repeated measures Poisson regression models were constructed to evaluate associations of selected predictors with CAM use disclosure and association between CAM use disclosure and HAART adherence. A total of 1377 HIV-infected women reported CAM use during study follow-up and contributed a total of 4689 CAM-using person visits. The overall prevalence of CAM use disclosure to health care providers was 36% across study visits. Women over 45 years old, with a college education, or with health insurance coverage were more likely to disclose their CAM use to health care providers, whereas women identified as non-Hispanic Black or other ethnicities were less likely to communicate their CAM usage. More health care provider visits, more CAM domains used, and higher health care satisfaction scores had significant relationships with increased levels of CAM use disclosure. Restricting analysis to use of herbal or nonherbal medications only, similar results were obtained. Compared to other CAM domains, mind–body practice had the lowest prevalence of CAM use disclosure. Additionally, CAM use disclosure was significantly associated with higher HAART adherence. From this study, we showed that a high percentage of HIV-infected women did not discuss their CAM use with health care providers. Interventions targeted towards both physicians and patients may enhance communication of CAM use, avoid potential adverse events and drug interactions, and enhance HAART adherence. PMID:19821723

  7. Complementary and alternative medicine use among paediatric emergency department patients.

    PubMed

    Taylor, David McDonald; Dhir, Reetika; Craig, Simon S; Lammers, Thalia; Gardiner, Kaya; Hunter, Kirrily; Joffe, Paul; Krieser, David; Babl, Franz E

    2015-09-01

    To determine the period prevalence and nature of complementary and alternative medicine (CAM) use among paediatric emergency department (ED) patients and the perceptions of CAM among the CAM administrators. A survey was undertaken in four Victorian EDs (January to September 2013). A convenience sample of parents/carers accompanying paediatric patients completed a self-administered questionnaire. The main outcome measures were CAM use and perceptions of CAM. The parents/carers of 883 patients participated. Three hundred eighty-eight (43.9%, 95% confidence interval (CI) 40.6-47.3) and 53 (6.0%, 95% CI 4.6-7.8) patients had taken a CAM within the previous 12 months and on the day of presentation, respectively. There were no gender differences between CAM users and non-users (P = 0.83). The use of CAM was significantly more common among older patients (P < 0.001), those with European ethnicity (P = 0.046) and among those with chronic disease (P < 0.01). Fish oil, garlic, chamomile and acidophilus were the most commonly used CAM. Only 4.4% of CAM use was reported to the ED doctor. There were reports of potentially dangerous CAM use (St John's wort, ginseng). Parents/carers who had administered CAM were more likely to report that CAMs are safe, drug free and could prevent illness (P < 0.01). In addition, a number of this group reported that CAMs are more effective than prescription medicines and safe when taken with prescription medicines. CAM use is common among paediatric ED patients although rarely reported to the ED doctor. Parents/carers who administer CAM have differing perceptions of CAM safety from those who do not. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  8. Classification of CAM use and its correlates in patients with early-stage breast cancer.

    PubMed

    Saquib, Juliann; Madlensky, Lisa; Kealey, Sheila; Saquib, Nazmus; Natarajan, Loki; Newman, Vicky A; Patterson, Ruth E; Pierce, John P

    2011-06-01

    Self-reported use of complementary and alternative medicine (CAM) has been shown to increase following a cancer diagnosis, and breast cancer survivors are the heaviest users among cancer survivors. The aim of this study was to determine whether the prevalence estimate of CAM use varied according to classification of CAM. The authors used a comprehensive system to classify CAM users and test differences in demographic, lifestyle, quality of life, and cancer characteristics among them. Participants were 2562 breast cancer survivors participating in the Women's Healthy Eating and Living (WHEL) Study, aged 28 to 74 years. A structured telephone interview assessed CAM use, questioning about specific CAM practices, and whether use was related to cancer. This study examined CAM use in relation to demographics, health behaviors, and quality of life. Approximately 80% of the women used CAM for general purposes but only 50% reported CAM use for cancer purposes. Visual imagery, spiritual healing, and meditation were the most frequently used practices for cancer purposes. CAM use, defined as consulting a CAM practitioner and regular use, was significantly related to younger age, higher education, increased fruit and vegetable intake, and lower body mass index (P < .05). CAM users who had seen a practitioner were also more likely to report poor physical and mental health than non-CAM users (P < .05). CAM use was not associated with changes in physical and mental health between study baseline and 1-year follow-up. This study addressed important differences in the classification of CAM use among breast cancer survivors. Future studies need to further test the potential benefits and risks associated with CAM use.

  9. EpCAM and the biology of hepatic stem/progenitor cells

    PubMed Central

    Theise, Neil D.; Schmelzer, Eva; Boulter, Luke; Gires, Olivier; van Grunsven, Leo A.

    2014-01-01

    Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein, which is frequently and highly expressed on carcinomas, tumor-initiating cells, selected tissue progenitors, and embryonic and adult stem cells. During liver development, EpCAM demonstrates a dynamic expression, since it can be detected in fetal liver, including cells of the parenchyma, whereas mature hepatocytes are devoid of EpCAM. Liver regeneration is associated with a population of EpCAM-positive cells within ductular reactions, which gradually lose the expression of EpCAM along with maturation into hepatocytes. EpCAM can be switched on and off through a wide panel of strategies to fine-tune EpCAM-dependent functional and differentiative traits. EpCAM-associated functions relate to cell–cell adhesion, proliferation, maintenance of a pluripotent state, regulation of differentiation, migration, and invasion. These functions can be conferred by the full-length protein and/or EpCAM-derived fragments, which are generated upon regulated intramembrane proteolysis. Control by EpCAM therefore not only depends on the presence of full-length EpCAM at cellular membranes but also on varying rates of the formation of EpCAM-derived fragments that have their own regulatory properties and on changes in the association of EpCAM with interaction partners. Thus spatiotemporal localization of EpCAM in immature liver progenitors, transit-amplifying cells, and mature liver cells will decisively impact the regulation of EpCAM functions and might be one of the triggers that contributes to the adaptive processes in stem/progenitor cell lineages. This review will summarize EpCAM-related molecular events and how they relate to hepatobiliary differentiation and regeneration. PMID:25477371

  10. Large-eddy simulation of laminar-turbulent breakdown at high speeds with dynamic subgrid-scale modeling

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1993-01-01

    The laminar-turbulent breakdown of a boundary-layer flow along a hollow cylinder at Mach 4.5 is investigated with large-eddy simulation. The subgrid scales are modeled dynamically, where the model coefficients are determined from the local resolved field. The behavior of the dynamic-model coefficients is investigated through both an a priori test with direct numerical simulation data for the same case and a complete large-eddy simulation. Both formulations proposed by Germano et al. and Lilly are used for the determination of unique coefficients for the dynamic model and their results are compared and assessed. The behavior and the energy cascade of the subgrid-scale field structure are investigated at various stages of the transition process. The investigations are able to duplicate a high-speed transition phenomenon observed in experiments and explained only recently by the direct numerical simulations of Pruett and Zang, which is the appearance of 'rope-like' waves. The nonlinear evolution and breakdown of the laminar boundary layer and the structure of the flow field during the transition process were also investigated.

  11. On the Subgrid-Scale Modeling of Compressible Turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle; Zeman, Otto

    1990-01-01

    A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.

  12. Use of complementary and alternative medicine before and after organ removal due to urologic cancer

    PubMed Central

    Mani, Jens; Juengel, Eva; Arslan, Ilhan; Bartsch, Georg; Filmann, Natalie; Ackermann, Hanns; Nelson, Karen; Haferkamp, Axel; Engl, Tobias; Blaheta, Roman A

    2015-01-01

    Objective Many patients use complementary and alternative medicine (CAM) as primary treatment or symptom relief for a variety of illnesses. This study was designed to investigate the influence of surgical removal of a tumor-bearing urogenital organ on CAM use. Methods From 2007 to 2011, 350 patients underwent major urological surgery for kidney, prostate, or bladder cancer at the Goethe-University Hospital, Frankfurt, Germany. Data from 172 patients (49%), who returned a questionnaire, were retrospectively evaluated using the hospital information system along with the questionnaire to objectify CAM use 2 years before and after surgery. Results From the 172 patients returning questionnaires, 56 (33%) used CAM before and/or after surgery and 116 (67%) never used CAM. Of the 56 CAM users, 30 (54%) used CAM presurgery and 53 (95%) used CAM postsurgery, indicating a significant change of mind about CAM use. Patients of German nationality used CAM significantly more than patients of other nationalities. Higher educational status (high-school diploma or higher) was a significant factor in favor of CAM use. The most common type of CAM used before/after surgery was an alternative medical system (63/49%), a manipulative and body-based method (50/19%), and a biological-based therapy (37/32%). Information about CAM, either provided by medical professionals or by other sources, was the main reason determining whether patients used CAM or not. Conclusion The number of patients using CAM almost doubled after surgical removal of a cancer-bearing organ. Better awareness and understanding of CAM use by medical professionals could improve patient counseling. PMID:26491269

  13. The welcoming attitude of dermatologists towards complementary and alternative medicine despite their lack of knowledge and training.

    PubMed

    AlGhamdi, Khalid M; Khurrum, Huma; Asiri, Yousif

    2017-09-01

    Background / aim: Although complementary and alternative medicine (CAM) use is highly prevalent, there is very limited information on dermatologists' attitudes and knowledge about CAM. In this survey, we aimed to study the knowledge and attitude of dermatologists in Saudi Arabia towards CAM. Furthermore, we assessed dermatologists' intention to receive CAM education and training. Methods and design: We collected data through an online cross-sectional survey sent to email addresses of dermatologists in Saudi Arabia. Questions included socio-demographic data, knowledge and attitudes towards CAM practice. Results: A total of 93 questionnaires were returned from dermatologists in various regions of Saudi Arabia. The mean age was 41.7 ± 10.3 (range, 25-63) years. A total of 67% of dermatologists had welcoming attitudes towards CAM. We did not find any significant relationship between age, gender, experience or any other factor and positive attitudes towards CAM. More than 70% of participants reported an interest in learning about CAM. However, only 9 (9.7%) dermatologists had attended CAM courses. Sixty-one participants (65.6%) were eager to receive CAM-specific education, and 66% of dermatologists acknowledged having previously discussed CAM with their patients. The most important reason that dermatologists did not discuss CAM with their patients was a lack of studies supporting CAM (66.7%) and the belief that doctors' knowledge on CAM is insufficient (58.1%). Conclusion: A greater number of dermatologists have an affirmative attitude towards CAM. The willingness to improve knowledge and training indicates that the CAM field could potentially grow in dermatology.

  14. Pattern and predictors of complementary and alternative medicine (CAM) use among pediatric patients with epilepsy.

    PubMed

    Doering, Jan H; Reuner, Gitta; Kadish, Navah E; Pietz, Joachim; Schubert-Bast, Susanne

    2013-10-01

    Parents of pediatric patients with chronic conditions such as epilepsy increasingly opt for complementary and alternative medicine (CAM). However, data on the pattern and reasons of CAM use in childhood epilepsy are scarce. The objectives of this study were as follows: first, to characterize CAM use among pediatric patients with epilepsy by assessing its spectrum, prevalence, costs, and frequency of use; second, to evaluate the influence of CAM use on compliance and satisfaction with conventional care as well as to explore parent-child neurologist communication concerning CAM; and third, to investigate predictors of CAM use. A postal survey was administered to all parents of pediatric outpatients with epilepsy aged 6 to 12, who have received treatment at the neuropediatric outpatient clinic of the University Children's Hospital Heidelberg between 2007 and 2009. One hundred thirty-two of the 297 distributed questionnaires were suitable for inclusion in statistical analysis (44.7%). Forty-nine participants indicated that their children used CAM during the previous year (37.1%). Thirty different types of CAM were used, with homeopathy (55.1%), osteopathy (24.5%), and kinesiology (16.3%) being the most commonly named. A mean of 86€ (0€-500€) and 3h (1 h-30 h) per month was committed to CAM treatment. Only 53% of the users informed their child neurologist of the additional CAM treatment, while 85.6% of all parents wished to discuss CAM options with their child neurologist. Seventy-five percent of users considered the CAM treatment effective. Among the participants most likely to seek CAM treatment are parents whose children show a long duration of epileptic symptoms, parents who make use of CAM treatment themselves, and parents who value a holistic and natural treatment approach. A substantial portion of pediatric patients with epilepsy receive CAM treatment. The high prevalence of use and significant level of financial and time resources spent on CAM indicate the high importance of these treatment options for parents. On the other hand, communication concerning CAM with the child neurologist is largely insufficient despite the wish to speak about CAM. Complementary and alternative medicine users' high compliance with conventional treatment and high perceived effectiveness of CAM support an integrative approach to CAM for pediatric patients with epilepsy. Our study implies that in addition to open parent-child neurologist communication, active inquiry on CAM treatments is necessary to enable informed decision making by parents and to establish the suitability of CAM treatment for the patient. Reliable predictors for CAM use, which allow for improved identification of patients with a high likelihood to receive CAM treatment, are the duration of the illness, use of CAM by the parents themselves, and the desire of the parents to receive a holistic and natural treatment for their child. © 2013.

  15. Geneva mechanism. [including star wheel and driver

    NASA Technical Reports Server (NTRS)

    Summers, R. H.; Kenney, R. L. (Inventor)

    1974-01-01

    An improved Geneva mechanism is characterized by a driven star-wheel having a segmented cam-follower surface. Star-wheel driver includes a restraining cam having a segmented cam surface for engaging the cam-follower surface of the star-wheel and antifriction rollers pinned to the restraining cam for engaging the cam-follower surface.

  16. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?

    PubMed Central

    Herrera, Ana

    2009-01-01

    Background In obligate Crassulacean acid metabolism (CAM), up to 99 % of CO2 assimilation occurs during the night, therefore supporting the hypothesis that CAM is adaptive because it allows CO2 fixation during the part of the day with lower evaporative demand, making life in water-limited environments possible. By comparison, in facultative CAM (inducible CAM, C3-CAM) and CAM-cycling plants drought-induced dark CO2 fixation may only be, with few exceptions, a small proportion of C3 CO2 assimilation in watered plants and occur during a few days. From the viewpoint of survival the adaptive advantages, i.e. increased fitness, of facultative CAM and CAM-cycling are not obvious. Therefore, it is hypothesized that, if it is to increase fitness, CAM must aid in reproduction. Scope An examination of published reports of 23 facultative CAM and CAM-cycling species finds that, in 19 species, drought-induced dark CO2 fixation represents on average 11 % of C3 CO2 assimilation of watered plants. Evidence is discussed on the impact of the operation of CAM in facultative and CAM-cycling plants on their survival – carbon balance, water conservation, water absorption, photo-protection of the photosynthetic apparatus – and reproductive effort. It is concluded that in some species, but not all, facultative and cycling CAM contribute, rather than to increase carbon balance, to increase water-use efficiency, water absorption, prevention of photoinhibition and reproductive output. PMID:18708641

  17. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?

    PubMed

    Herrera, Ana

    2009-02-01

    In obligate Crassulacean acid metabolism (CAM), up to 99 % of CO(2) assimilation occurs during the night, therefore supporting the hypothesis that CAM is adaptive because it allows CO(2) fixation during the part of the day with lower evaporative demand, making life in water-limited environments possible. By comparison, in facultative CAM (inducible CAM, C(3)-CAM) and CAM-cycling plants drought-induced dark CO(2) fixation may only be, with few exceptions, a small proportion of C(3) CO(2) assimilation in watered plants and occur during a few days. From the viewpoint of survival the adaptive advantages, i.e. increased fitness, of facultative CAM and CAM-cycling are not obvious. Therefore, it is hypothesized that, if it is to increase fitness, CAM must aid in reproduction. Scope An examination of published reports of 23 facultative CAM and CAM-cycling species finds that, in 19 species, drought-induced dark CO(2) fixation represents on average 11 % of C(3) CO(2) assimilation of watered plants. Evidence is discussed on the impact of the operation of CAM in facultative and CAM-cycling plants on their survival--carbon balance, water conservation, water absorption, photo-protection of the photosynthetic apparatus--and reproductive effort. It is concluded that in some species, but not all, facultative and cycling CAM contribute, rather than to increase carbon balance, to increase water-use efficiency, water absorption, prevention of photoinhibition and reproductive output.

  18. Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm

    NASA Astrophysics Data System (ADS)

    von Larcher, Th; Klein, R.

    2012-04-01

    Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.

  19. A Prospective, Multicenter Study of Complementary/Alternative Medicine (CAM) Utilization During Definitive Radiation for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, Meena S., E-mail: meena.moran@yale.edu; Department of Radiation Therapy, William W. Backus Hospital, Norwich, Connecticut; Ma Shuangge

    Purpose: Although complementary and alternative medicine (CAM) utilization in breast cancer patients is reported to be high, there are few data on CAM practices in breast patients specifically during radiation. This prospective, multi-institutional study was conducted to define CAM utilization in breast cancer during definitive radiation. Materials/Methods: A validated CAM instrument with a self-skin assessment was administered to 360 Stage 0-III breast cancer patients from 5 centers during the last week of radiation. All data were analyzed to detect significant differences between users/nonusers. Results: CAM usage was reported in 54% of the study cohort (n=194/360). Of CAM users, 71% reportedmore » activity-based CAM (eg, Reiki, meditation), 26% topical CAM, and 45% oral CAM. Only 16% received advice/counseling from naturopathic/homeopathic/medical professionals before initiating CAM. CAM use significantly correlated with higher education level (P<.001), inversely correlated with concomitant hormone/radiation therapy use (P=.010), with a trend toward greater use in younger patients (P=.066). On multivariate analysis, level of education (OR: 6.821, 95% CI: 2.307-20.168, P<.001) and hormones/radiation therapy (OR: 0.573, 95% CI: 0.347-0.949, P=.031) independently predicted for CAM use. Significantly lower skin toxicity scores were reported in CAM users vs nonusers, respectively (mild: 34% vs 25%, severe: 17% vs 29%, P=.017). Conclusion: This is the first prospective study to assess CAM practices in breast patients during radiation, with definition of these practices as the first step for future investigation of CAM/radiation interactions. These results should alert radiation oncologists that a large percentage of breast cancer patients use CAM during radiation without disclosure or consideration for potential interactions, and should encourage increased awareness, communication, and documentation of CAM practices in patients undergoing radiation treatment for breast cancer.« less

  20. Influence of Superparameterization and a Higher-Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5: How Parameterization Changes Rainfall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kai; Fu, Rong; Shaikh, Muhammad J.

    We evaluate the Community Atmosphere Model Version 5 (CAM5) with a higher-order turbulence closure scheme, named Cloud Layers Unified By Binomials (CLUBB), and a Multiscale Modeling Framework (MMF) with two different microphysics configurations to investigate their influences on rainfall simulations over Southern Amazonia. The two different microphysics configurations in MMF are the one-moment cloud microphysics without aerosol treatment (SAM1MOM) and two-moment cloud microphysics coupled with aerosol treatment (SAM2MOM). Results show that both MMF-SAM2MOM and CLUBB effectively reduce the low biases of rainfall, mainly during the wet season. The CLUBB reduces low biases of humidity in the lower troposphere with furthermore » reduced shallow clouds. The latter enables more surface solar flux, leading to stronger convection and more rainfall. MMF, especially MMF-SAM2MOM, unstablizes the atmosphere with more moisture and higher atmospheric temperatures in the atmospheric boundary layer, allowing the growth of more extreme convection and further generating more deep convection. MMF-SAM2MOM significantly increases rainfall in the afternoon, but it does not reduce the early bias of the diurnal rainfall peak; LUBB, on the other hand, delays the afternoon peak time and produces more precipitation in the early morning, due to more realistic gradual transition between shallow and deep convection. MMF appears to be able to realistically capture the observed increase of relative humidity prior to deep convection, especially with its two-moment configuration. In contrast, in CAM5 and CAM5 with CLUBB, occurrence of deep convection in these models appears to be a result of stronger heating rather than higher relative humidity.« less

  1. Quality of Life in CAM and Non-CAM Users among Breast Cancer Patients during Chemotherapy in Malaysia

    PubMed Central

    Chui, Ping Lei; Abdullah, Khatijah Lim; Wong, Li Ping; Taib, Nur Aishah

    2015-01-01

    Background Complementary and alternative medicine (CAM) use has become increasingly popular among patients with cancer. The purposes of this study were to compare the QOL in CAM users and non-CAM users and to determine whether CAM use influences QOL among breast cancer patients during chemotherapy. Methodology A cross-sectional survey was conducted at two outpatient chemotherapy centers. A total of 546 patients completed the questionnaires on CAM use. QOL was evaluated based on the European Organization for Research and Treatment of Cancer (EORTC) core quality of life (QLQ-C30) and breast cancer-specific quality of life (QLQ-BR23) questionnaires. Results A total of 70.7% of patients were identified as CAM users. There was no significant difference in global health status scores and in all five subscales of the QLQ C30 functional scales between CAM users and non-CAM users. On the QLQ-C30 symptom scales, CAM users (44.96±3.89) had significantly (p = 0.01) higher mean scores for financial difficulties than non-CAM users (36.29±4.81). On the QLQ-BR23 functional scales, CAM users reported significantly higher mean scores for sexual enjoyment (6.01±12.84 vs. 4.64±12.76, p = 0.04) than non-CAM users. On the QLQ-BR23 symptom scales, CAM users reported higher systemic therapy side effects (41.34±2.01 vs. 37.22±2.48, p = 0.04) and breast symptoms (15.76±2.13 vs. 11.08±2.62, p = 0.02) than non-CAM users. Multivariate logistic regression analysis indicated that the use of CAM modality was not significantly associated with higher global health status scores (p = 0.71). Conclusion While the findings indicated that there was no significant difference between users and non-users of CAM in terms of QOL, CAM may be used by health professionals as a surrogate to monitor patients with higher systemic therapy side effects and breast symptoms. Furthermore, given that CAM users reported higher financial burdens (which may have contributed to increased distress), patients should be encouraged to discuss the potential benefits and/or disadvantages of using CAM with their healthcare providers. PMID:26451732

  2. Prayer-for-health and complementary alternative medicine use among Malaysian breast cancer patients during chemotherapy.

    PubMed

    Chui, Ping Lei; Abdullah, Khatijah Lim; Wong, Li Ping; Taib, Nur Aishah

    2014-10-30

    The inclusion of prayer-for-health (PFH) in the definition of complementary alternative medicine (CAM) has resulted in higher levels of CAM use. The objective of this study was to assess PFH and CAM use among breast cancer patients undergoing chemotherapy. A cross-sectional study was performed at two chemotherapy providers. Patients were questioned about use of three categories of CAM, mind-body practices (MBPs), natural products (NPs) and traditional medicine (TM). PFH was also examined separately from CAM to better characterise the patterns of CAM and PFH used during chemotherapy. A total of 546 eligible patients participated in the study; 70.7% (n = 386) reported using some form of CAM, and 29.3% (n = 160) were non-CAM users. When PFH was excluded as a CAM, fewer patients reported the use of CAM (66.1%; n = 361). The total number of patients who used MBPs decreased from 342 to 183. The most common CAM use category was NPs (82.8%), followed by MBPs (50.7%), and TM (35.7%). CAM users were more likely to have a tertiary education (OR 2.11, 95% CI 1.15-3.89 vs. primary/lower), have household incomes > RM 3,000 (≈944 USD) per month (OR 2.32, 95% CI 1.40-3.84 vs. ≤RM 3,000 (≈944 USD)), and have advanced cancer (OR 1.75, 95% CI 1.18-2.59 vs. early stage cancer), compared with non-CAM users. The CAM users were less likely to have their chemotherapy on schedule (OR 0.24, 95% CI 0.10-0.58 vs. chemotherapy postponed) than non-CAM users. Most MBPs were perceived to be more helpful by their users, compared with the users of NPs and TM. CAM use was prevalent among breast cancer patients. Excluding PFH from the definition of CAM reduced the prevalence of overall CAM use. Overall, CAM use was associated with higher education levels and household incomes, advanced cancer and lower chemotherapy schedule compliance. Many patients perceived MBP to be beneficial for improving overall well-being during chemotherapy. These findings, while preliminary, clearly indicate the differences in CAM use when PFH is included in, and excluded from, the definition of CAM.

  3. Collecting Information About a CAM Practitioner’s Practice: A Preliminary Report of a Self-Interview Methodology

    PubMed Central

    Elder, William G.; Purdy, Hunter; Bentley, Andrew

    2009-01-01

    To prepare allopathic providers to advise patients about complementary and alternative medicine (CAM) therapies, the University of Kentucky CAM curriculum integration project has identified and trained CAM practitioners to coteach, precept, and demonstrate their respective practices. This project is interested in integrating CAM practitioners as teachers into this university and has formed a multidisciplinary committee for advice. The committee has recognized the importance of increased understanding of CAM practices to enhance communication within itself and to decide to which CAM practices students should receive exposure. This article reports our attempt to create a CAM practice description, based on questions general to CAM practice and specific to a particular approach. Because there is limited existing systematic research on CAM practice characteristics, these questions may interest researchers conducting qualitative studies, especially those seeking an example of questions to ask CAM practitioners. We also believe this practice description will be of general interest. PMID:19890441

  4. Association of complementary and alternative medicine use with highly active antiretroviral therapy initiation.

    PubMed

    Merenstein, Daniel; Yang, Yang; Schneider, Michael F; Goparaju, Lakshmi; Weber, Kathleen; Sharma, Anjali; Levine, Alexandra M; Sharp, Gerald B; Gandhi, Monica; Liu, Chenglong

    2008-01-01

    To assess whether complementary and alternative medicine (CAM) use is associated with the timing of highly active antiretroviral therapy (HAART) initiation among human immunodeficiency virus (HIV)-infected participants of the Women's Interagency HIV Study. Prospective cohort study between January 1996 and March 2002. Differences in the cumulative incidence of HAART initiation were compared between CAM users and non-CAM users using a logrank test. Cox regression model was used to assess associations of CAM exposures with time to HAART initiation. MAIN OUTCOME AND EXPOSURES: Study outcome was time from January 1996 to initiation of HAART. Primary exposure was use of any CAM modality before January 1996, and secondary exposures included the number and type of CAM modalities used (ingestible CAM medication, body practice, or spiritual healing) during the same period. One thousand thirty-four HIV-infected women contributed a total of 4987 person-visits during follow-up. At any time point, the cumulative incidence of HAART initiation among CAM users was higher than that among non-CAM users. After adjustment for potential confounders, those reporting CAM use were 1.34 times (95% confidence interval: 1.09, 1.64) more likely to initiate HAART than non-CAM users. Female CAM users initiated HAART regimens earlier than non-CAM users. Initiation of HAART is an important clinical marker, but more research is needed to elucidate the role specific CAM modalities play in HIV disease progression.

  5. Disclosure of Complementary and Alternative Medicine to Conventional Medical Providers: Variation by Race/Ethnicity and Type of CAM

    PubMed Central

    Chao, Maria T.; Wade, Christine; Kronenberg, Fredi

    2009-01-01

    Background Complementary and alternative medicine (CAM) is often used alongside conventional medical care, yet fewer than half of patients disclose CAM use to medical doctors. CAM disclosure is particularly low among racial/ethnic minorities, but reasons for differences, such as type of CAM used or quality of conventional healthcare, have not been explored. Objective We tested the hypotheses that disclosure of CAM use to medical doctors is higher for provider-based CAM and among non-Hispanic whites, and that access to and quality of conventional medical care account for racial/ethnic differences in CAM disclosure. Methods Bivariate and multiple variable analyses of the 2002 National Health Interview Survey and 2001 Health Care Quality Survey were performed. Results Disclosure of CAM use to medical providers was higher for provider-based than self-care CAM. Disclosure of any CAM was associated with access to and quality of conventional care and higher among non-Latino whites relative to minorities. Having a regular doctor and quality patient–provider relationship mitigated racial/ethnic differences in CAM disclosure. Conclusion Insufficient disclosure of CAM use to conventional providers, particularly for self-care practices and among minority populations, represents a serious challenge in medical encounter communications. Efforts to improve disclosure of CAM use should be aimed at improving consistency of care and patient–physician communication across racial/ethnic groups. PMID:19024232

  6. Consequences of systematic model drift in DYNAMO MJO hindcasts with SP-CAM and CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannah, Walter M.; Maloney, Eric D.; Pritchard, Michael S.

    Hindcast simulations of MJO events during the dynamics of the MJO (DYNAMO) field campaign are conducted with two models, one with conventional parameterization (CAM5) and a comparable model that utilizes superparameterization (SP–CAM). SP–CAM is shown to produce a qualitatively better reproduction of the fluctuations of precipitation and low–level zonal wind associated with the first two DYNAMO MJO events compared to CAM5. Interestingly, skill metrics using the real–time multivariate MJO index (RMM) suggest the opposite conclusion that CAM5 has more skill than SP–CAM. This inconsistency can be explained by a systematic increase of RMM amplitude with lead time, which results frommore » a drift of the large–scale wind field in SP–CAM that projects strongly onto the RMM index. CAM5 hindcasts exhibit a contraction of the moisture distribution, in which extreme wet and dry conditions become less frequent with lead time. SP–CAM hindcasts better reproduce the observed moisture distribution, but also have stronger drift patterns of moisture budget terms, such as an increase in drying by meridional advection in SP–CAM. This advection tendency in SP–CAM appears to be associated with enhanced off–equatorial synoptic eddy activity with lead time. In conclusion, systematic drift moisture tendencies in SP–CAM are of similar magnitude to intraseasonal moisture tendencies, and therefore are important for understanding MJO prediction skill.« less

  7. Complementary and conventional medicine: a concept map

    PubMed Central

    Baldwin, Carol M; Kroesen, Kendall; Trochim, William M; Bell, Iris R

    2004-01-01

    Background Despite the substantive literature from survey research that has accumulated on complementary and alternative medicine (CAM) in the United States and elsewhere, very little research has been done to assess conceptual domains that CAM and conventional providers would emphasize in CAM survey studies. The objective of this study is to describe and interpret the results of concept mapping with conventional and CAM practitioners from a variety of backgrounds on the topic of CAM. Methods Concept mapping, including free sorts, ratings, and multidimensional scaling was used to organize conceptual domains relevant to CAM into a visual "cluster map." The panel consisted of CAM providers, conventional providers, and university faculty, and was convened to help formulate conceptual domains to guide the development of a CAM survey for use with United States military veterans. Results Eight conceptual clusters were identified: 1) Self-assessment, Self-care, and Quality of Life; 2) Health Status, Health Behaviors; 3) Self-assessment of Health; 4) Practical/Economic/ Environmental Concerns; 5) Needs Assessment; 6) CAM vs. Conventional Medicine; 7) Knowledge of CAM; and 8) Experience with CAM. The clusters suggest panelists saw interactions between CAM and conventional medicine as a critical component of the current medical landscape. Conclusions Concept mapping provided insight into how CAM and conventional providers view the domain of health care, and was shown to be a useful tool in the formulation of CAM-related conceptual domains. PMID:15018623

  8. Complementary alternative medicine for children with autism: a physician survey.

    PubMed

    Golnik, Allison E; Ireland, Marjorie

    2009-07-01

    Previous studies suggest over half of children with autism are using complementary alternative medicine (CAM). In this study, physicians responded (n = 539, 19% response rate) to a survey regarding CAM use in children with autism. Physicians encouraged multi-vitamins (49%), essential fatty acids (25%), melatonin (25%) and probiotics (19%) and discouraged withholding immunizations (76%), chelation (61%), anti-infectives (57%), delaying immunizations (55%) and secretin (43%). Physicians encouraging CAM were more likely to desire CAM training, inquire about CAM use, be female, be younger, and report greater autism visits, autism education and CAM knowledge. Physicians were more likely to desire CAM training, inquire about CAM and view CAM as a challenge for children with autism compared to children with other neurodevelopmental and chronic/complex conditions.

  9. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    PubMed

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  10. Use of complementary and alternative medicine (CAM) in autism spectrum disorder (ASD): comparison of Chinese and western culture (Part A).

    PubMed

    Wong, V C N

    2009-03-01

    A cross-sectional survey of the use of CAM by children was undertaken in the Duchess of Kent Children's Hospital in Hong Kong (March-December 2006). A questionnaire survey concerning the use of CAM was administered to chief caretakers (only the mothers) who accompanied children with neurodevelopmental disabilities followed up in our Neurodevelopmental paediatrics clinics. Four hundred and thirty agreed for interview of which 98 (22.8%) had Autism Spectrum Disorder (ASD). CAM was used in 40.8% for ASD and 21.4% of non-ASD (p < 0.001). We describe the profile of use of CAM in ASD in this part A paper. The three most common type of CAM use was Acupuncture (47.5%), Sensory Integration (42.5%), and Chinese Medicine (30%). About 76.9% of interviewees expected CAM to augment conventional treatment. Although 47.5% used both conventional western medicine and CAM, only 22.4% disclosed the use of CAM to Doctors. The following factors were significantly related to CAM use: father's job and mother's religion. Our frequency of CAM used in children with ASD was lower in Canada (52%) and USA (74%, 92%). The main CAM use in western culture was biological-based therapy whereas acupuncture was the most common CAM used in our locality.

  11. Integrating CAM into nursing curricula: CAM camp as an educational intervention.

    PubMed

    Cornman, B Jane; Carr, Catherine A; Heitkemper, Margaret M

    2006-05-01

    In 2002, the University of Washington School of Nursing (SON) partnered with Bastyr University on a five-year plan to offer a four-week intensive "CAM Camp" (CAMp) for SON faculty members and medical students from across the country. The four-week educational program introduced attendees to various complementary and alternative medicine (CAM) modalities through didactic and experiential learning. To enhance complementary and alternative medicine content in a SON curriculum and to increase SON faculty knowledge and understanding about (1) the range of CAM therapies, (2) the theoretic and cultural backgrounds of these therapies, and (3) their potential contributions to the health of diverse populations. A descriptive pretest, posttest design was used to compare pre-CAMp CAM knowledge and CAM course content with post-CAMp knowledge levels of faculty and course CAM content. On post-CAMp surveys, familiarity with CAM modalities was rated with mixed results as compared with positive reports on the qualitative interviews. Interview results were more positive about CAM in general and were less specific about individual CAM topics. Statistically significant increases in competences were evident in each of 13 competencies rated with four competencies at P < .01. The number of required and elective courses containing CAM content increased as did the CAM content in continuing education conferences offered by the SON.

  12. Valve actuator for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, T.

    1987-06-16

    A valve actuating mechanism is described for an overhead valve and overhead cam type internal combustion engine in which the camshaft is positioned above and between the valve and a cam follower seat member in a cylinder head of the engine. The cam follower seat member is threadedly mounted in the cylinder head and has a semi-spherical recess facing upwardly. A cam follower has an adjustable bolt threadedly received in one end of the cam follower. The adjustable bolt has a spherical fulcrum engaging the semispherical recess of the seat member. The cam follower also has a downwardly facing meansmore » on the other end for engaging the valve and an upwardly facing slipper face for sliding engagement with a cam on the camshaft. The cam is adapted to rotate across the slipper face in the direction of the valve. The slipper face has a surface shape for engaging the cam at the start of valve-lifting movement of the cam follower at a point through which a line tangent to the slipper face is substantially parallel to a line through contact points between the cam follower. The seat member and valve for minimizing the lateral forces are imposed on the cam follower by the cam at the start of the valve-lifting movement.« less

  13. Evaluation of complementary-alternative medicine (CAM) questionnaire development for Indonesian clinical psychologists: A pilot study.

    PubMed

    Liem, Andrian; Newcombe, Peter A; Pohlman, Annie

    2017-08-01

    This study aimed to evaluate questionnaire development to measure the knowledge of Complementary-Alternative Medicine (CAM), attitudes towards CAM, CAM experiences, and CAM educational needs of clinical psychologists in Indonesia. A 26-item questionnaire was developed through an extensive literature search. Data was obtained from provisional psychologists from the Master of Professional Clinical Psychology programs at two established public universities in urban areas of Indonesia. To validate the questionnaire, panel reviews by executive members of the Indonesian Clinical Psychology Association (ICPA), experts in health psychology, and experts in public health and CAM provided their professional judgements. The self-reporting questionnaire consisted of four scales including: knowledge of CAM (6 items), attitudes towards CAM (10 items), CAM experiences (4 items), and CAM educational needs (6 items). All scales, except CAM Experiences, were assessed on a 7-point Likert scale. Sixty provisional psychologists were eligible to complete the questionnaire with a response rate of 73% (N=44). The results showed that the CAM questionnaire was reliable (Cronbach's coefficient alpha range=0.62-0.96; item-total correlation range=0.14-0.92) and demonstrated content validity. Following further psychometric evaluation, the CAM questionnaire may provide the evidence-based information to inform the education and practice of Indonesian clinical psychologists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Attitudes towards complementary and alternative medicine among medical and psychology students.

    PubMed

    Ditte, Darja; Schulz, Wolfgang; Ernst, Gundula; Schmid-Ott, Gerhard

    2011-03-01

    The use of complementary and alternative medicine (CAM) is increasing in Europe as well as in the USA, but CAM courses are infrequently integrated into medical curricula. In Europe, but also especially in the USA and in Canada, the attitudes of medical students and health science professionals in various disciplines towards CAM have been the subject of investigation. Most studies report positive attitudes. The main aim of this study was to compare the attitudes towards CAM of medical and psychology students in Germany. An additional set of questions concerned how CAM utilisation and emotional and physical condition affect CAM-related attitudes. Two hundred thirty-three medical students and 55 psychology students were questioned concerning their attitudes towards CAM using the Questionnaire on Attitudes Towards Complementary Medical Treatment (QACAM). Both medical students and psychology students were sceptical about the diagnostic and the therapeutic proficiency of doctors and practitioners of CAM. Students' attitudes towards CAM correlated neither with their experiences as CAM patients nor with their emotional and physical condition. It can be assumed that German medical and psychology students will be reluctant to use or recommend CAM in their professional careers. Further studies should examine more closely the correlation between attitudes towards CAM and the students' worldview as well as their existing knowledge of the effectiveness of CAM.

  15. Fusion and Compatibility of Camphor and Octane Plasmids in Pseudomonas

    PubMed Central

    Chou, George I. N.; Katz, Dvorah; Gunsalus, I. C.

    1974-01-01

    The octane (OCT) plasmid in Pseudomonas putida derived from the ω-hydroxylase-carrying strain of Coon and coworkers is transferable to the camphor (CAM) plasmid-bearing strain by conjugation or by transduction. While the majority of the Cam +Oct+ exconjugants segregate Cam+ or Oct+ cells, exconjugants with stable Cam +Oct+ phenotype (CAM-OCT) can be detected at a low frequency. The transductants are all of the CAM-OCT phenotype. In the stable Cam +Oct+ strains, the OCT plasmid resembles the CAM plasmid with respect to curing by mitomycin C, transfer in conjugation, and reaction to ts (temperature-sensitive) mutation specifically affecting CAM plasmid replication. Therefore, it is suggested that certain regions of homology exist between the CAM and OCT plasmids that enable them to recombine to form a single plasmid, and to overcome the incompatibility barrier that prevents their coexisting. PMID:4527812

  16. Concentration of clarithromycin and 14-R-hydroxy-clarithromycin in plasma of patients with Mycobacterium avium complex infection, before and after the addition of rifampicin.

    PubMed

    Yamamoto, F; Harada, S; Mitsuyama, T; Harada, Y; Kitahara, Y; Yoshida, M; Nakanishi, Y

    2004-02-01

    Clarithromycin (CAM) and rifampicin (RFP) have both been recognized to be effective antibiotic agents against Mycobacterium avium complex (MAC) infection. Rifamycin derivatives including RFP and rifabutin modulate the CAM metabolism by inducing the hepatic cytochrome p-450 3A4. To clarify the effect of RFP on the CAM metabolism, we measured the plasma concentration of CAM and 14-R-hydroxyclarithromycin (M-5), the major metabolite of CAM, in 9 patients suffering from MAC infection before and after the addition of RFP. After the addition of RFP, the mean plasma concentration of CAM significantly decreased, while that of M-5 did not. In addition, the amount of CAM + M-5 concentration also significantly decreased. As M-5 is less effective against MAC infection than CAM, more attention should thus be paid to the plasma CAM concentration in patients administered CAM and RFP concomitantly.

  17. The use of complementary and alternative medicine among people living with diabetes in Sydney.

    PubMed

    Manya, Kiran; Champion, Bernard; Dunning, Trisha

    2012-01-12

    Complementary and alternative medicine (CAM) is common in patients with chronic disease such as diabetes mellitus. The primary objective of the study was to determine the overall prevalence and type of CAM use in individuals with diabetes mellitus (DM) in Western Sydney and to compare the prevalence and factors associated with CAM use with the literature. A multicenter cross-sectional study was undertaken using a self-completed questionnaire distributed to patients with DM attending a public hospital and specialist endocrinology clinics in the region. The type of DM and pattern of CAM utilisation were analyzed. Sixty nine people responded to the questionnaire: age range of 18-75 years during a twelve week collection period. Overall, 32 respondents with diabetes were using some form of CAM, resulting in a utilisation rate of 46.3%. Twenty of the 32 CAM users used CAM specifically to treat their diabetes accounting for 28.9% of the respondent sample population. Multivitamins (40%), cinnamon, Co-enzyme q10 and prayer were the most frequently used CAM modalities. There was no significant difference between males and females, age range, income or diabetes complications between CAM and non-CAM users. (p values each > 0.05) The factor most significantly associated with CAM usage was being born overseas (p = 0.044). Almost half the respondents (46.3%) used CAM: 28% used CAM specifically to treat their diabetes. Individuals born overseas were significantly more likely to use CAM than those born in Australia. Other factors such as age, gender, wealth and duration of living with diabetes were not associated with higher rate of CAM usage.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge Jin; Fishman, Jessica; Annenberg School for Communication at University of Pennsylvania, University of Pennsylvania Health System, Philadelphia, Pennsylvania

    Purpose: Despite the extensive use of complementary and alternative medicine (CAM) among cancer patients, patient-physician communication regarding CAM therapies remains limited. This study quantified the extent of patient-physician communication about CAM and identified factors associated with its discussion in radiation therapy (RT) settings. Methods and Materials: We conducted a cross-sectional survey of 305 RT patients at an urban academic cancer center. Patients with different cancer types were recruited in their last week of RT. Participants self-reported their demographic characteristics, health status, CAM use, patient-physician communication regarding CAM, and rationale for/against discussing CAM therapies with physicians. Multivariate logistic regression was usedmore » to identify relationships between demographic/clinical variables and patients' discussion of CAM with radiation oncologists. Results: Among the 305 participants, 133 (43.6%) reported using CAM, and only 37 (12.1%) reported discussing CAM therapies with their radiation oncologists. In multivariate analyses, female patients (adjusted odds ratio [AOR] 0.45, 95% confidence interval [CI] 0.21-0.98) and patients with full-time employment (AOR 0.32, 95% CI 0.12-0.81) were less likely to discuss CAM with their radiation oncologists. CAM users (AOR 4.28, 95% CI 1.93-9.53) were more likely to discuss CAM with their radiation oncologists than were non-CAM users. Conclusions: Despite the common use of CAM among oncology patients, discussions regarding these treatments occur rarely in the RT setting, particularly among female and full-time employed patients. Clinicians and patients should incorporate discussions of CAM to guide its appropriate use and to maximize possible benefit while minimizing potential harm.« less

  19. Complementary and alternative medicine use in radiotherapy: what are patients using?

    PubMed

    Gillett, John; Ientile, Clare; Hiscock, Joanne; Plank, Ashley; Martin, Jarad M

    2012-11-01

    Complementary and alternative medicine (CAM) use by patients could interact in unpredictable ways with conventional therapies. This trial was designed to study the prevalence, types, and clinical implications of CAM use in patients with cancer who are receiving radiotherapy. A validated questionnaire was given to consenting outpatients in this ethics-approved study. Questions specified types of CAM used, clinician knowledge, reason for use, perceived effectiveness, safety, and cost. Of the 101 assessable questionnaires, 38 patients (38%) of the total patient group used CAM, with vitamins (53%), antioxidants (29%), spiritual/meditation practices (29%), and herbs (18%) being the most commonly used. The intention of CAM use was to improve quality of life in 69% of patients and for either hope of cure or to assist other forms of treatment in 26%. The majority of patients (58%) were using CAM prior to their diagnosis of cancer, with 40% starting at diagnosis or during conventional treatment. Patients spent up to $300/month on CAM use. Patients using CAM were significantly more likely to also receive chemotherapy versus non-CAM users (45% versus 24%, p=0.045). Significantly fewer CAM users expected cure from conventional therapy, compared to non-CAM users (50% versus 75%, p=0.016). More CAM users expected conventional therapy to prolong life (58% versus 32%, p<0.001). Only 40% discussed CAM use with their oncologists. CAM is commonly used by patients with cancer. CAMs, particularly antioxidants, are being taken which could negate the underlying free-radical tumorcidal effects of radiotherapy. Oncologists need to have greater awareness of this use and of its potential adverse consequences.

  20. Calcium-Dependent Energetics of Calmodulin Domain Interactions with Regulatory Regions of the Ryanodine Receptor Type 1 (RyR1)

    PubMed Central

    Newman, Rhonda A.; Sorensen, Brenda R.; Kilpatrick, Adina M.; Shea, Madeline A.

    2014-01-01

    Calmodulin (CaM) plays a vital role in calcium homeostasis by allosterically modulating intracellular calcium channels including the homo-tetrameric human Ryanodine Receptor Type 1 (hRyR1). Apo (calcium-free) CaM activates hRyR1 while calcium-saturated CaM inhibits it. Two CaM-binding regions (residues 1975–1999 and 3614–3643) identified in each RyR1 monomer were proposed to allow CaM to bridge adjacent RyR1 subunits. We explored the distinct roles of CaM domains by using fluorescence anisotropy to determine the affinity of CaM1–148 (full-length), CaM1–80 (N-domain) and CaM76–148 (C-domain) for peptides encompassing hRyR1 residues 1975–1999 or 3614–3643. Both CaM1–148 and CaM76–148 associated in a calcium-independent manner with similar affinities for hRyR1(3614–3643)p while CaM1–80 required calcium and bound ~250-fold more weakly. Association of CaM1–148, CaM1–80 and CaM76–148 with hRyR1(1975–1999)p was much less favorable than with hRyR1(3614–3643)p; differences between the two CaM domains were smaller. Equilibrium calcium titrations monitored by steady-state fluorescence demonstrated that both hRyR1 peptides increased the calcium-binding affinity of both CaM domains. These thermodynamic properties support a prior model in which the CaM C-domain associates with RyR1(3614–3643) at low levels of calcium, positioning CaM to rapidly respond to calcium efflux. However, the affinity of the N-domain of CaM for hRyR1(1975–1999)p is insufficient to explain a model in which CaM bridges adjacent RyR1 subunits within the tetramer. This indicates that other protein factors or properties of the tertiary or quaternary structure of hRyR1 contribute to the energetics of CaM-mediated regulation. PMID:25145833

  1. Use of Complementary and Alternative Medicine Among Dermatology Outpatients: Results From a National Survey.

    PubMed

    AlGhamdi, Khalid M; Khurrum, Huma; Al-Natour, Sahar H; Alghamdi, Waleed; Mubki, Thamer; Alzolibani, Abdulatif; Hafez, Dhafer Mohammed Y; AlDraibi, Mohammed

    2015-01-01

    Little is known about the prevalence and practice of complementary and alternative medicine (CAM) among dermatology patients in the Arab world. The aim of this study was to determine knowledge and attitudes about CAM, prevalence of its use, reasons for its use, and types of CAM used in dermatology patients in Saudi Arabia. This was a national survey of various regions of Saudi Arabia. In this cross-sectional study, dermatology outpatients were interviewed using a questionnaire. Sociodemographic characteristics, acceptability, utilization pattern, and reasons for CAM use were elicited. Dermatology life quality index (DLQI) was obtained. Overall, 1901 patients returned complete questionnaires out of 2500 distributed (76% response rate). Of these, 808 (40%) were CAM users, and the majority were woman (55.1%), with a mean age of 31.6±12 years. Most were literate (71.2%) and just over half were married (51.9%). Patients with acute skin diseases were found to be more likely to use CAM (P=.027). The mean DLQI score was higher (worse quality of life) among CAM users than among nonusers (P=.002). The results showed that 315 of 801 (40%) and 250 of 601 (30%) CAM users agreed that CAM methods are safer and more effective than modern medicine, respectively, and 83% will continue to use CAM in future. The most commonly used CAM modalities were vitamins, prayers, natural products, and herbs. Responses indicated that 379 of 803 (47.2%) CAM users did not consult their doctor before using CAM, and 219 of 743 (30%) did not obtain sufficient answers regarding CAM use from their dermatologists. There is a significant use of CAM among dermatology outpatients in Saudi Arabia. In view of the common belief that CAM has fewer side effects than conventional medicine, dermatologists need to increase their awareness of CAM. © The Author(s) 2015.

  2. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  3. Features of complementary and alternative medicine use by patients with coronary artery disease in Beijing: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Complementary and alternative medicine (CAM) is commonly used in China for the management of coronary artery disease (CAD). However, few studies have been conducted to investigate the prevalence, perceived effectiveness, types, and reasons of CAM use in patients diagnosed with CAD. Methods A cross-sectional study design was adopted. Questionnaires were distributed at the outpatient cardiac clinics of four tertiary-level teaching general hospitals in Beijing. Quantitative data were analyzed using Student’s t-test. Categorical data were analyzed using chi-square test. Logistic regression was employed to explore factors associated with the use of CAM as well as CAM use features in Chinese medicine (CM) hospitals when significant differences were found upon comparisons. Results From May to July, 2009, a total of 600 questionnaires were distributed, and 546 patients with a diagnosis of CAD responded with valid values and were included in the present study. CAM was used by 69.1% of the patients with CAD; the majority (75.9%) of these CAM users believes that CAM is effective. “Few side effects” (49.6%) was the main reason of CAM use; whereas “doubt of effect” (61.5%) was the main reason for non-use. Patent herbal medicine (90.7%) was the most commonly used CAM type. Compared with non-CAM users, CAM users tended to be older (p < 0.01), have a longer disease duration (p = 0.02) and better current health status. In addition, CAM users had significant lower odds for emergency admission and hospitalization within the past one year. Patients with CAD from CM and WM hospitals differ in CAM use frequency, types, perceived effectiveness, as well as reasons for CAM use or non-CAM use. Conclusion The present study suggested a group of significant factors which could influence the use of CAM in patients with CAD. CAM use patterns differ in patients from CM and WM hospitals. PMID:24160843

  4. The role of complementary and alternative medicine (CAM) in Germany - a focus group study of GPs.

    PubMed

    Joos, Stefanie; Musselmann, Berthold; Miksch, Antje; Rosemann, Thomas; Szecsenyi, Joachim

    2008-06-12

    There has been a marked increase in the use of complementary and alternative medicine (CAM) in recent years worldwide. In Germany, apart from 'Heilpraktiker' (= state-licensed, non-medical CAM practitioners), some general practitioners (GPs) provide CAM in their practices. This paper aims to explore the attitudes of GPs about the role of CAM in Germany, in relation to the healthcare system, quality of care, medical education and research. Furthermore, experiences of GPs integrating CAM in their daily practice were explored. Using a qualitative methodological approach 3 focus groups with a convenience sample of 17 GPs were conducted. The discussions were transcribed verbatim and analysed using qualitative content analysis. The majority of the participating GPs had integrated one or more CAM therapies into their every-day practice. Four key themes were identified based on the topics covered in the focus groups: the role of CAM within the German healthcare system, quality of care, education and research. Within the theme 'role of CAM within the healthcare system' there were five categories: integration of CAM, CAM in the Statutory Health Insurance, modernisation of the Statutory Health Insurance Act, individual healthcare services and 'Heilpraktiker'. Regarding quality of care there were two broad groups of GPs: those who thought patients would benefit from standardizing CAM and those who feared that quality control would interfere with the individual approach of CAM. The main issues identified relating to research and education were the need for the development of alternative research strategies and the low quality of existing CAM education respectively. The majority of the participating GPs considered CAM as a reasonable complementary approach within primary care. The study increased our understanding of GPs attitudes about the role of CAM within the German healthcare system and the use of 'Heilpraktiker' as a competing CAM-provider. It seems to be a need for increased funding for research, better education and remuneration by the Statutory Health Insurance in order to improve access to 'Integrative medicine' in Germany.

  5. Inflammatory bowel disease professionals’ attitudes to and experiences of complementary and alternative medicine

    PubMed Central

    2013-01-01

    Background Complementary and alternative medicine (CAM) use in patients with IBD is on the increase. Patients report they use CAM when their condition is unresponsive to conventional medication or when they suffer from side-effects, negative stress and disease-related concerns. CAM use may improve patients’ well-being but it can also lead to side-effects and interactions with conventional medications. Research on attitudes to and experiences of CAM among healthcare professionals working with IBD patients is not well studied. Studies in this area could lead to enhanced awareness of and improved communication about CAM between care staff and IBD patients. The aim of this study was to explore IBD professionals’ attitudes to and experience of CAM. Methods Sixteen physicians and nurses, 26–70 years old, who had worked with IBD patients for 1–42 years, were recruited. Semi-structured qualitative interviews were conducted. Qualitative content analysis was performed. Results Participants stated patients used CAM to improve their well-being generally and there conditions specifically. Participants had a positive attitude towards CAM and respected their patients’ decision to use it, but reported a lack of CAM knowledge. They required education about CAM to be able to meet patients’ needs and provide adequate information. The result of this study indicates that there is a need for CAM education to be implemented in nursing and medical school. Conclusions All participants had experience of IBD patients who had used CAM in an attempt to achieve improvement and well-being. Attitudes to CAM were mainly positive, although a problematic aspect was lack of knowledge and evidence in relation to CAM. Implementing CAM education in nursing and medical school will allow healthcare professionals to gain an understanding of therapies widely used by patients with IBD. In clinical practice, using a standard questionnaire regarding CAM use allow healthcare professionals to better understand their patients’ wishes and current CAM use. PMID:24325595

  6. Taiwanese adult cancer patients' reports of using complementary therapies.

    PubMed

    Lu, Jui-Hua; Tsay, Shiow-Luan; Sung, Su-Ching

    2010-01-01

    More information is needed by cancer clinicians regarding cancer patients' use of complementary and alternative medicine (CAM). In this qualitative study, in-depth interviews were used to obtain the reports of adult cancer patients regarding their use of CAM. Seven cancer patients (4 women, 3 men) who reported using CAM were recruited by snowball sampling. Content analysis was used to examine the interview transcriptions. Five themes and multiple categories were identified related to CAM use: (1) facing the challenges of cancer (I can't be defeated, need to cooperate with conventional medical treatment, rebuilding my confidence), (2) handling the physical and psychological distress of CAM use (extra loading due to the therapy, uncertainty and fear about the efficacy of CAM, being understood and supported, feeling guilty about being sick, (3) lifestyle disruption (altering social life, changing family living style), (4) having reasons for seeking other therapies (finding a way to cure the disease, boosting my immunity, improving my overall health status, and prolonging life and searching for peace of mind), and (5) unresolved practical concerns about CAM (finding an easy and effective way to practice CAM, needing CAM to be integrated into mainstream health care, and where to get the related information). Adult Taiwanese cancer patients who use CAM do experience burdens secondary to CAM use and prefer that oncology specialists be more informed about CAM. Oncology specialists who know where adult cancer patients could obtain helpful information about CAM would help to decrease the burdens that patients who use CAM experience.

  7. ASSOCIATION OF COMPLEMENTARY AND ALTERNATIVE MEDICINE USE WITH HIGHLY ACTIVE ANTIRETROVIRAL THERAPY INITIATION

    PubMed Central

    Merenstein, Daniel; Yang, Yang; Schneider, Michael F.; Goparaju, Lakshmi; Weber, Kathleen; Sharma, Anjali; Levine, Alexandra M.; Sharp, Gerald B.; Gandhi, Monica; Liu, Chenglong

    2009-01-01

    Objective To assess whether complementary and alternative medicine (CAM) use is associated with the timing of highly active antiretroviral therapy (HAART) initiation among human immunodeficiency virus (HIV)–infected participants of the Women’s Interagency HIV Study. Study Methods Prospective cohort study between January 1996 and March 2002. Differences in the cumulative incidence of HAART initiation were compared between CAM users and non–CAM users using a logrank test. Cox regression model was used to assess associations of CAM exposures with time to HAART initiation. Main Outcome and Exposures Study outcome was time from January 1996 to initiation of HAART. Primary exposure was use of any CAM modality before January 1996, and secondary exposures included the number and type of CAM modalities used (ingestible CAM medication, body practice, or spiritual healing) during the same period. Results One thousand thirty-four HIV-infected women contributed a total of 4987 person-visits during follow-up. At any time point, the cumulative incidence of HAART initiation among CAM users was higher than that among non–CAM users. After adjustment for potential confounders, those reporting CAM use were 1.34 times (95% confidence interval: 1.09, 1.64) more likely to initiate HAART than non–CAM users. Conclusion Female CAM users initiated HAART regimens earlier than non–CAM users. Initiation of HAART is an important clinical marker, but more research is needed to elucidate the role specific CAM modalities play in HIV disease progression. PMID:18780580

  8. Optical Aptamer Probes of Fluorescent Imaging to Rapid Monitoring of Circulating Tumor Cell

    PubMed Central

    Hwang, Ji Yeon; Kim, Sang Tae; Han, Ho-Seong; Kim, Kyunggon; Han, Jin Soo

    2016-01-01

    Fluorescence detecting of exogenous EpCAM (epithelial cell adhesion molecule) or muc1 (mucin1) expression correlated to cancer metastasis using nanoparticles provides pivotal information on CTC (circulating tumor cell) occurrence in a noninvasive tool. In this study, we study a new skill to detect extracellular EpCAM/muc1 using quantum dot-based aptamer beacon (QD-EpCAM/muc1 ALB (aptamer linker beacon). The QD-EpCAM/muc1 ALB was designed using QDs (quantum dots) and probe. The EpCAM/muc1-targeting aptamer contains a Ep-CAM/muc1 binding sequence and BHQ1 (black hole quencher 1) or BHQ2 (black hole quencher2). In the absence of target EpCAM/muc1, the QD-EpCAM/muc1 ALB forms a partial duplex loop-like aptamer beacon and remained in quenched state because the BHQ1/2 quenches the fluorescence signal-on of the QD-EpCAM/muc1 ALB. The binding of EpCAM/muc1 of CTC to the EpCAM/muc1 binding aptamer sequence of the EpCAM/muc1-targeting oligonucleotide triggered the dissociation of the BHQ1/2 quencher and subsequent signal-on of a green/red fluorescence signal. Furthermore, acute inflammation was stimulated by trigger such as caerulein in vivo, which resulted in increased fluorescent signal of the cy5.5-EpCAM/muc1 ALB during cancer metastasis due to exogenous expression of EpCAM/muc1 in Panc02-implanted mouse model. PMID:27886058

  9. RACORO Continental Boundary Layer Cloud Investigations: 3. Separation of Parameterization Biases in Single-Column Model CAM5 Simulations of Shallow Cumulus

    NASA Technical Reports Server (NTRS)

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; Fridlind, Ann; Endo, Satoshi; Song, Hua; Feng, Sha; Toto, Tami; Li, Zhijin; Zhang, Minghua

    2015-01-01

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.

  10. RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus

    DOE PAGES

    Lin, Wuyin; Liu, Yangang; Vogelmann, Andrew M.; ...

    2015-06-19

    Climatically important low-level clouds are commonly misrepresented in climate models. The FAst-physics System TEstbed and Research (FASTER) project has constructed case studies from the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary-layer clouds. This paper focuses on using the single-column Community Atmosphere Model version 5 (SCAM5) simulations of a multi-day continental shallow cumulus case to identify specific parameterization causes of low-cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only amore » relatively minor role. In-depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under-produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over-produce low-level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large-eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low-cloud biases.« less

  11. Sensitivity of CAM5-simulated Arctic clouds and radiation to ice nucleation parameterization

    DOE PAGES

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; ...

    2013-08-06

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and amore » decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron–Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. As a result, issues with the observations and the model–observation comparison in the Arctic region are discussed.« less

  12. What should students learn about complementary and alternative medicine?

    PubMed

    Gaster, Barak; Unterborn, John N; Scott, Richard B; Schneeweiss, Ronald

    2007-10-01

    With thousands of complementary and alternative medicine (CAM) treatments currently being used in the United States today, it is challenging to design a concise body of CAM content which will fit into already overly full curricula for health care students. The purpose of this article is to outline key principles which 15 National Center for Complementary and Alternative Medicine-funded education programs found useful when developing CAM course-work and selecting CAM content. Three key guiding principles are discussed: teach foundational CAM competencies to give students a framework for learning about CAM; choose specific content on the basis of evidence, demographics and condition (what conditions are most appropriate for CAM therapies?); and finally, provide students with skills for future learning, including where to find reliable information about CAM and how to search the scientific literature and assess the results of CAM research. Most of the programs developed evidence-based guides to help students find reliable CAM resources. The cumulative experiences of the 15 programs have been compiled, and an annotated table outlining the most highly recommended resources about CAM is presented.

  13. Complementary and alternative health care in Israel

    PubMed Central

    2012-01-01

    The paper explores the patterns of coexistence of alternative/complementary health care (CAM) and conventional medicine in Israel in the cultural, political, and social contexts of the society. The data are drawn from over ten years of sociological research on CAM in Israel, which included observation, survey research, and over one hundred in-depth interviews with a variety of CAM practitioners - many with bio-medical credentials - and with policy makers in the major medical institutions. The analysis considers the reasons for CAM use, number of practitioners, the frequency of CAM use and some of its correlates, and how CAM is regulated. The structure of the relationship between the conventional health care system and CAM is discussed in the public sector, which provides two-thirds of CAM services, and in the private sector, which provides about one-third. The history of the development of these structures and some of the dilemmas of their operation are discussed. A number of policy issues are considered against this background: regulation and licensing, CAM in primary care, reimbursement for CAM treatment, and the inclusion of CAM in education and training for the health professions. PMID:22913721

  14. Is prayer CAM?

    PubMed

    Tippens, Kim; Marsman, Kevin; Zwickey, Heather

    2009-04-01

    Alternative medicine researchers and policy makers have classified prayer as a mind-body intervention, and thus, a modality of complementary and alternative medicine (CAM). As such, numerous epidemiological surveys of CAM utilization-which have included prayer-depict increasing CAM use, particularly in specific racial and ethnic groups. This paper discusses the implications of conflating prayer and CAM, especially regarding the definitions of both concepts and the resulting statistics of CAM utilization.

  15. Prevalence and determinants of complementary and alternative medicine use among infertile patients in Lebanon: a cross sectional study

    PubMed Central

    2012-01-01

    Background Complementary and alternative medicine (CAM) is widely used for the treatment of infertility. While the Middle East and North Africa region has been shown to house one of the fastest growing markets of CAM products in the world, research describing the use of CAM therapies among Middle-Eastern infertile patients is minimal. The aim of this study is to examine the prevalence, characteristics and determinants of CAM use among infertile patients in Lebanon. Methods A cross sectional survey design was used to carry out face-to-face interviews with 213 consecutive patients attending the Assisted Reproductive Unit at a major academic medical center in Beirut. The questionnaire comprised three sections: socio-demographic and lifestyle characteristics, infertility-related aspects and information on CAM use. The main outcome measure was the use of CAM modalities for infertility treatment. Determinants of CAM use were assessed through the logistic regression method. Results Overall, 41% of interviewed patients reported using a CAM modality at least once for their infertility. There was a differential by gender in the most commonly used CAM therapies; where males mostly used functional foods (e.g. honey & nuts) (82.9%) while females mostly relied on spiritual healing/prayer (56.5%). Factors associated with CAM use were higher household income (OR: 0.305, 95% CI: 0.132–0.703) and sex, with females using less CAM than males (OR: 0.12, 95% CI: 0.051–0.278). The older patients were diagnosed with infertility, the lower the odds of CAM use (p for trend <0.05). Almost half of the participants (48%) were advised on CAM use by their friends, and only 13% reported CAM use to their physician. Conclusions The considerably high use of CAM modalities among Lebanese infertile patients, added to a poor CAM use disclosure to physicians, underscore the need to integrate CAM into the education and training of health professionals, as well as enhance infertile patients' awareness on safe use of CAM products. PMID:22901284

  16. Complementary and alternative medicine use by visitors to rural Japanese family medicine clinics: results from the international complementary and alternative medicine survey.

    PubMed

    Shumer, Gregory; Warber, Sara; Motohara, Satoko; Yajima, Ayaka; Plegue, Melissa; Bialko, Matthew; Iida, Tomoko; Sano, Kiyoshi; Amenomori, Masaki; Tsuda, Tsukasa; Fetters, Michael D

    2014-09-25

    There is growing interest in the use of complementary and alternative medicine (CAM) throughout the world, however previous research done in Japan has focused primarily on CAM use in major cities. The purpose of this study was to develop and distribute a Japanese version of the International Complementary and Alternative Medicine Questionnaire (I-CAM-Q) to assess the use of CAM among people who visit rural Japanese family medicine clinics. Using a Japanese version of the International Complementary and Alternative Medicine Questionnaire (I-CAM-Q), a cross-sectional survey was conducted in three rural family medicine clinics. All patients and those accompanying patients who met inclusion criteria were eligible to participate. Data were entered into SPSS Statistics and analyzed for use by age, gender, and location. Of the 519 respondents who participated in the project, 415 participants reported CAM use in the past 12 months (80.0%). When prayer is excluded, the prevalence of CAM use drops to 77.3% in the past year, or 403 respondents. The most common forms of CAM used by respondents were pain relief pads (n = 170, 32.8%), herbal medicines/supplements (n = 167, 32.2%), and massage by self or family (n = 166, 32.0%). Female respondents, individuals with higher levels of education, and those with poorer overall health status were more likely to use CAM than respondents without these characteristics. Only 22.8% of CAM therapies used were reported to physicians by survey participants. These data indicate that CAM use in rural Japan is common. The results are consistent with previous studies that show that Japanese individuals are more interested in forms of CAM such as pain relief pads and massage, than in mind-body forms of CAM like relaxation and meditation. Due to the high utilization of certain CAM practices, and given that most CAM users do not disclose their CAM use to their doctors, we conclude that physicians in rural Japan would benefit by asking about CAM use during patient interviews, and by familiarizing themselves with the potential benefits and risks of commonly used CAM modalities.

  17. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.

    PubMed

    Yang, Xiaohan; Cushman, John C; Borland, Anne M; Edwards, Erika J; Wullschleger, Stan D; Tuskan, Gerald A; Owen, Nick A; Griffiths, Howard; Smith, J Andrew C; De Paoli, Henrique C; Weston, David J; Cottingham, Robert; Hartwell, James; Davis, Sarah C; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul; Stewart, J Ryan; Guo, Hao-Bo; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W M; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A; Petereit, Juli; Nair, Sujithkumar S; Casey, Erin; Hettich, Robert L; Ceusters, Johan; Ranjan, Priya; Palla, Kaitlin J; Yin, Hengfu; Reyes-García, Casandra; Andrade, José Luis; Freschi, Luciano; Beltrán, Juan D; Dever, Louisa V; Boxall, Susanna F; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F; Aguilar, Cristobal N; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A M

    2015-08-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO2 uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food, feed, and bioenergy crops. An improved understanding of CAM has potential for high returns on research investment. To exploit the potential of CAM crops and CAM bioengineering, it will be necessary to elucidate the evolution, genomic features, and regulatory mechanisms of CAM. Field trials and predictive models will be required to assess the productivity of CAM crops, while new synthetic biology approaches need to be developed for CAM engineering. Infrastructure will be needed for CAM model systems, field trials, mutant collections, and data management. © 2015 ORNL/UT-Battelle New Phytologist © 2015 New Phytologist Trust.

  18. Socioeconomic Factors and Women's Use of Complementary and Alternative Medicine in Four Racial/Ethnic Groups

    PubMed Central

    Chao, Maria T.; Wade, Christine M.

    2014-01-01

    Objective Higher socioeconomic status (SES) is associated with using complementary and alternative medicine (CAM) in national surveys. Less is known about how socioeconomic factors affect CAM use in US subpopulations. We examined whether the relationship between SES and CAM use differs by racial/ethnic groups. Methods Using national survey data, we assessed education and income effects on women's CAM use in four racial/ethnic groups (Whites, Blacks, Mexican Americans, and Chinese Americans), controlling for age, health status, and geographic region. CAM use was defined as using any of 11 domains in the prior year. Results Adjusted effects of SES on CAM use were similar among Mexican American and non-Hispanic White women—education had a distinct gradient effect, with each increasing level of education significantly more likely to use CAM; household income ≥$60,000 was associated with CAM use compared to income <$20,000. For Chinese American women, socioeconomic factors were not associated with CAM use when controlling for confounders. Although income was not associated with CAM use among African American women, college graduates were three times more likely to use CAM than those with less than a high school education, adjusting for confounders. Conclusion SES effects on CAM use are not uniform across racial/ethnic populations. Other factors, such as culture and social networks, may interact with SES to influence CAM use in minority populations. PMID:18447102

  19. Oncologists' experiences of discussing complementary and alternative treatment options with their cancer patients. A qualitative analysis.

    PubMed

    Corina, Güthlin; Christine, Holmberg; Klein, Gudrun

    2016-09-01

    The rising use of complementary and alternative medicine (CAM) means oncologists are increasingly asked by patients to discuss CAM treatment options. However, no formal training or established standards are available on the subject. The aim of this paper was to investigate real-world discussions of CAM treatments. In particular, we wanted to learn about the values, norms and defining features that characterise oncologist-patient discussions on CAM. Semi-standardised interviews with 17 oncologists were analysed using interpretation pattern analysis combined with thematic analysis. Advice on CAM is seen by oncologists as an important service they provide to their patients, even though their knowledge of the subject is often limited. Many interviewees mentioned an apparent lack of scientific proof, especially when their aim was to warn patients against the use of CAM. Discussions on CAM tend to reflect the idea that CAM belongs 'to another world', and judging by the interviews with oncologists, this notion appears to be shared by patients and oncologists alike. Oncologists require reliable information on CAM and would profit from training in the communication of CAM treatment options to patients. Knowing scientific data on CAM would also lower barriers stemming from the view that CAM belongs 'to another world'. Under- and postgraduate education programmes should include training on how to respond to requests addressing possible CAM options.

  20. The impact of EpCAM expression on response to chemotherapy and clinical outcomes in patients with epithelial ovarian cancer.

    PubMed

    Tayama, Shingo; Motohara, Takeshi; Narantuya, Dashdemberel; Li, Chenyan; Fujimoto, Koichi; Sakaguchi, Isao; Tashiro, Hironori; Saya, Hideyuki; Nagano, Osamu; Katabuchi, Hidetaka

    2017-07-04

    Epithelial ovarian cancer is a highly lethal malignancy; moreover, overcoming chemoresistance is the major challenging in treating ovarian cancer patients. The cancer stem cell (CSC) hypothesis considers CSCs to be the main culprits in driving tumor initiation, metastasis, and resistance to conventional therapy. Although growing evidence suggest that CSCs are responsible for chemoresistance, the contribution of CSC marker EpCAM to resistance to chemotherapy remains unresolved.Here we have demonstrated that ovarian cancers containing high levels of EpCAM have a significantly much lower probability of achieving overall responsive rates after first-line chemotherapy. In addition, multivariate analysis revealed that EpCAM expression is an independent risk factor for chemoresistance, indicating that EpCAM expression is a predictive biomarker of chemotherapeutic response. Consistent with these clinical observations, in vitro assays, we found that the subpopulation of EpCAM-positive ovarian cancer cells shows a significantly higher viability compared with EpCAM-negative cells in response to cisplatin treatment by preventing chemotherapy-induced apoptosis, which is regulated by EpCAM-Bcl-2 axis. Furthermore, in an in vivo mouse model, platinum agents preferentially eliminated EpCAM-negative cells in comparison with EpCAM-positive cells, suggesting that the remaining subpopulation of EpCAM-positive cells contributes to tumor recurrence after chemotherapy. Finally, we also found that an increased expression of EpCAM is associated with poor prognosis in ovarian cancer patients.Our findings highlight the clinical significance of EpCAM in the resistance to chemotherapy and provide a rationale for EpCAM-targeted therapy to improve chemoresistance. Targeting EpCAM should be a promising approach to effectively extirpate the CSCs as the putative root of ovarian cancer.

  1. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy.

    PubMed

    Kohorst, Philipp; Junghanns, Janet; Dittmer, Marc P; Borchers, Lothar; Stiesch, Meike

    2011-08-01

    The aim of the present in vitro study was to evaluate the influence of different processing routes on the fitting accuracy of four-unit zirconia fixed dental prostheses (FDPs) fabricated by computer-aided design/computer-aided manufacturing (CAD/CAM). Three groups of zirconia frameworks with ten specimens each were fabricated. Frameworks of one group (CerconCAM) were produced by means of a laboratory CAM-only system. The other frameworks were made with different CAD/CAM systems; on the one hand by in-laboratory production (CerconCAD/CAM) and on the other hand by centralized production in a milling center (Compartis) after forwarding geometrical data. Frameworks were then veneered with the recommended ceramics, and marginal accuracy was determined using a replica technique. Horizontal marginal discrepancy, vertical marginal discrepancy, absolute marginal discrepancy, and marginal gap were evaluated. Statistical analyses were performed by one-way analysis of variance (ANOVA), with the level of significance chosen at 0.05. Mean horizontal discrepancies ranged between 22 μm (CerconCAM) and 58 μm (Compartis), vertical discrepancies ranged between 63 μm (CerconCAD/CAM) and 162 μm (CerconCAM), and absolute marginal discrepancies ranged between 94 μm (CerconCAD/CAM) and 181 μm (CerconCAM). The marginal gap varied between 72 μm (CerconCAD/CAM) and 112 μm (CerconCAM, Compartis). Statistical analysis revealed that, with all measurements, the marginal accuracy of the zirconia FDPs was significantly influenced by the processing route used (p < 0.05). Within the limitations of this study, all restorations showed a clinically acceptable marginal accuracy; however, the results suggest that the CAD/CAM systems are more precise than the CAM-only system for the manufacture of four-unit FDPs.

  2. Attitudes, Knowledge, Use, and Recommendation of Complementary and Alternative Medicine by Health Professionals in Western Mexico.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Rios-Gonzalez, Blanca Estela; Lopez-Barragan, Liliana; Saldaña-Cruz, Ana Miriam; Rodriguez-Vazquez, Katya

    2016-01-01

    The use of complementary and alternative medicine (CAM) has increased in many countries, and this has altered the knowledge, attitudes, and treatment recommendations of health professionals in regard to CAM. Considering Mexican health professionals׳ lack of knowledge of CAM, in this report we surveyed 100 biomedical researchers and Ph.D. students and 107 specialized physicians and residents of a medical specialty in Guadalajara, México (Western Mexico) with a questionnaire to address their attitudes, knowledge, use, and recommendation of CAM. We observed that significantly more researchers had ever used CAM than physicians (83% vs. 69.2%, P = .023) and that only 36.4% of physicians had ever recommended CAM. Female researchers tended to have ever used CAM more than male researchers, but CAM use did not differ between genders in the physician group or by age in either group. Homeopathy, herbal medicine, and massage therapy were the most commonly used CAMs in both the groups. Physicians more frequently recommended homeopathy, massage therapy, and yoga to their patients than other forms of CAM, and physicians had the highest perception of safety and had taken the most courses in homeopathy. All CAMs were perceived to have high efficacy (>60%) in both the groups. The attitude questionnaire reported favorable attitudes toward CAM in both the groups. We observed a high rate of Mexican health professionals that had ever used CAM, and they had mainly used homeopathy, massage therapy, and herbal medicine. However, the recommendation rate of CAM by Mexican physicians was significantly lower than that in other countries, which is probably due to the lack of CAM training in most Mexican medical schools. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. EpCAM expression in primary tumour tissues and metastases: an immunohistochemical analysis.

    PubMed

    Spizzo, Gilbert; Fong, Dominic; Wurm, Martin; Ensinger, Christian; Obrist, Peter; Hofer, Carina; Mazzoleni, Guido; Gastl, Guenther; Went, Philip

    2011-05-01

    Epithelial cell adhesion molecule (EpCAM) is a cell surface protein with oncogenic features that is expressed on healthy human epithelia and corresponding malignant tumours. EpCAM expression frequently correlates with more aggressive tumour behaviour and new EpCAM-specific therapeutic agents have recently been approved for clinical use in patients with cancer. However, no consensus exists on how and when to evaluate EpCAM expression in patients with cancer. EpCAM expression was assessed by a well-established immunohistochemical staining protocol in 2291 primary tumour tissues and in 108 metastases using the EpCAM-specific antibody clone VU1D9. A total immunostaining score was calculated as the product of a proportion score and an intensity score. Four expression subgroups (no, weak, moderate and intense) were defined. As described previously, the term 'EpCAM overexpression' was reserved for tissues showing a total immunostaining score >4. EpCAM was highly expressed in most tumours of gastrointestinal origin and in some carcinomas of the genitourinary tract. However, hepatocellular carcinomas, clear cell renal cell cancer, urothelial cancer and squamous cell cancers were frequently EpCAM negative. EpCAM expression in breast cancer depended on the histological subtype; lobular histology usually showed no or weak expression. Most metastases were EpCAM positive and they frequently reflected the expression phenotype of the primary tumour. EpCAM expression was detected on adenocarcinomas of various primary sites. If EpCAM-specific antibodies are intended to be used in patients with cancer, we recommend prior immunohistochemical evaluation of EpCAM expression, particularly in patients with renal cell cancer, hepatocellular carcinoma, urothelial carcinoma, breast cancer and squamous cell carcinomas.

  4. The use of complementary and alternative medicine among people living with diabetes in Sydney

    PubMed Central

    2012-01-01

    Background Complementary and alternative medicine (CAM) is common in patients with chronic disease such as diabetes mellitus. The primary objective of the study was to determine the overall prevalence and type of CAM use in individuals with diabetes mellitus (DM) in Western Sydney and to compare the prevalence and factors associated with CAM use with the literature. Methods A multicenter cross-sectional study was undertaken using a self-completed questionnaire distributed to patients with DM attending a public hospital and specialist endocrinology clinics in the region. The type of DM and pattern of CAM utilisation were analyzed. Results Sixty nine people responded to the questionnaire: age range of 18-75 years during a twelve week collection period. Overall, 32 respondents with diabetes were using some form of CAM, resulting in a utilisation rate of 46.3%. Twenty of the 32 CAM users used CAM specifically to treat their diabetes accounting for 28.9% of the respondent sample population. Multivitamins (40%), cinnamon, Co-enzyme q10 and prayer were the most frequently used CAM modalities. There was no significant difference between males and females, age range, income or diabetes complications between CAM and non-CAM users. (p values each > 0.05) The factor most significantly associated with CAM usage was being born overseas (p = 0.044). Conclusions Almost half the respondents (46.3%) used CAM: 28% used CAM specifically to treat their diabetes. Individuals born overseas were significantly more likely to use CAM than those born in Australia. Other factors such as age, gender, wealth and duration of living with diabetes were not associated with higher rate of CAM usage. PMID:22240113

  5. Subgrid-scale parameterization and low-frequency variability: a response theory approach

    NASA Astrophysics Data System (ADS)

    Demaeyer, Jonathan; Vannitsem, Stéphane

    2016-04-01

    Weather and climate models are limited in the possible range of resolved spatial and temporal scales. However, due to the huge space- and time-scale ranges involved in the Earth System dynamics, the effects of many sub-grid processes should be parameterized. These parameterizations have an impact on the forecasts or projections. It could also affect the low-frequency variability present in the system (such as the one associated to ENSO or NAO). An important question is therefore to know what is the impact of stochastic parameterizations on the Low-Frequency Variability generated by the system and its model representation. In this context, we consider a stochastic subgrid-scale parameterization based on the Ruelle's response theory and proposed in Wouters and Lucarini (2012). We test this approach in the context of a low-order coupled ocean-atmosphere model, detailed in Vannitsem et al. (2015), for which a part of the atmospheric modes is considered as unresolved. A natural separation of the phase-space into a slow invariant set and its fast complement allows for an analytical derivation of the different terms involved in the parameterization, namely the average, the fluctuation and the long memory terms. Its application to the low-order system reveals that a considerable correction of the low-frequency variability along the invariant subset can be obtained. This new approach of scale separation opens new avenues of subgrid-scale parameterizations in multiscale systems used for climate forecasts. References: Vannitsem S, Demaeyer J, De Cruz L, Ghil M. 2015. Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model. Physica D: Nonlinear Phenomena 309: 71-85. Wouters J, Lucarini V. 2012. Disentangling multi-level systems: averaging, correlations and memory. Journal of Statistical Mechanics: Theory and Experiment 2012(03): P03 003.

  6. The effects of spatial heterogeneity and subsurface lateral transfer on evapotranspiration estimates in large scale Earth system models

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.; Fan, Y.; Kirchner, J. W.; Miralles, D. G.

    2017-12-01

    Most Earth system models (ESM) average over considerable sub-grid heterogeneity in land surface properties, and overlook subsurface lateral flow. This could potentially bias evapotranspiration (ET) estimates and has implications for future temperature predictions, since overestimations in ET imply greater latent heat fluxes and potential underestimation of dry and warm conditions in the context of climate change. Here we quantify the bias in evaporation estimates that may arise from the fact that ESMs average over considerable heterogeneity in surface properties, and also neglect lateral transfer of water across the heterogeneous landscapes at global scale. We use a Budyko framework to express ET as a function of P and PET to derive simple sub-grid closure relations that quantify how spatial heterogeneity and lateral transfer could affect average ET as seen from the atmosphere. We show that averaging over sub-grid heterogeneity in P and PET, as typical Earth system models do, leads to overestimation of average ET. Our analysis at global scale shows that the effects of sub-grid heterogeneity will be most pronounced in steep mountainous areas where the topographic gradient is high and where P is inversely correlated with PET across the landscape. In addition, we use the Total Water Storage (TWS) anomaly estimates from the Gravity Recovery and Climate Experiment (GRACE) remote sensing product and assimilate it into the Global Land Evaporation Amsterdam Model (GLEAM) to correct for existing free drainage lower boundary condition in GLEAM and quantify whether, and how much, accounting for changes in terrestrial storage can improve the simulation of soil moisture and regional ET fluxes at global scale.

  7. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.

    PubMed

    Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H

    2014-07-01

    In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.

  8. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  9. Critical assessment of density functional theory for computing vibrational (hyper)polarizabilities

    NASA Astrophysics Data System (ADS)

    Zaleśny, R.; Bulik, I. W.; Mikołajczyk, M.; Bartkowiak, W.; Luis, J. M.; Kirtman, B.; Avramopoulos, A.; Papadopoulos, M. G.

    2012-12-01

    Despite undisputed success of the density functional theory (DFT) in various branches of chemistry and physics, an application of the DFT for reliable predictions of nonlinear optical properties of molecules has been questioned a decade ago. As it was shown by Champagne, et al. [1, 2, 3] most conventional DFT schemes were unable to qualitatively predict the response of conjugated oligomers to a static electric field. Long-range corrected (LRC) functionals, like LC-BLYP or CAM-B3LYP, have been proposed to alleviate this deficiency. The reliability of LRC functionals for evaluating molecular (hyper)polarizabilities is studied for various groups of organic systems, with a special focus on vibrational corrections to the electric properties.

  10. College Access Marketing

    ERIC Educational Resources Information Center

    Tremblay, Christopher W.

    2011-01-01

    College Access Marketing (CAM) is a relatively new phenomenon that seeks to positively influence the college-going rate. This report defines CAM, describes CAM examples, and discusses how CAM seeks to counter barriers to college. It explores four main elements of CAM: information, marketing, advocacy, and social mobilization. Further, it…

  11. Complementary and alternative medicine in pulmonology.

    PubMed

    Mark, John D; Chung, Youngran

    2015-06-01

    To provide a comprehensive review of complementary and alternative medicine (CAM) therapies for the treatment of pulmonary disorders in children. The use of complementary medicine (CAM) is commonly used by both children and adults with breathing problems, and especially in chronic pulmonary disorders such as asthma and cystic fibrosis. Many clinics and hospitals now offer CAM, even though most of the conventionally trained health practitioners have little knowledge or education regarding CAM therapies. Research in CAM that demonstrates overall benefit is lacking, especially in children. Often parents do not report CAM use to their child's healthcare provider and this could compromise their overall quality of care. Although many research studies evaluating CAM therapies have methodological flaws, data exist to support CAM therapies in treating children with pulmonary disorders. This review examines the latest evidence of CAM use and effectiveness in children with pulmonary disorders. Physicians should be aware of the many CAM therapy options and the research surrounding them in order to provide their patients with the most current and accurate information available.

  12. Pattern and frequency of use of complementary and alternative medicine among patients with epilepsy in the midwestern United States.

    PubMed

    Liow, Kore; Ablah, Elizabeth; Nguyen, John C; Sadler, Toni; Wolfe, Deborah; Tran, Ky-Dieu; Guo, Lisa; Hoang, Tina

    2007-06-01

    Complementary and alternative medicine (CAM) is recognized to be commonly used by patients, yet there have been few studies regarding the scope of CAM use by patients with epilepsy. This study assessed usage and perceptions of CAM by patients with epilepsy in the midwest of the United States. A 25-item survey was administered to adult patients with epilepsy, and data were collected from 228 patients. The survey collected demographics, specific CAM usage, adverse effects of CAM therapy, and perceptions of the effectiveness of CAM. Thirty-nine percent reported using CAM; 25% reported using CAM specifically for their epilepsy. Prayer/spirituality was the most commonly used form of CAM (46%), followed by "mega" vitamins (25%), chiropractic care (24%), and stress management (16%). CAM use is common among midwestern patients with epilepsy, although the pattern of use may be slightly different than in other regions of the United States and elsewhere.

  13. Is Prayer CAM?

    PubMed Central

    Marsman, Kevin; Zwickey, Heather

    2009-01-01

    Abstract Background Alternative medicine researchers and policy makers have classified prayer as a mind–body intervention, and thus, a modality of complementary and alternative medicine (CAM). As such, numerous epidemiological surveys of CAM utilization—which have included prayer—depict increasing CAM use, particularly in specific racial and ethnic groups. Objectives This paper discusses the implications of conflating prayer and CAM, especially regarding the definitions of both concepts and the resulting statistics of CAM utilization. PMID:19388867

  14. L1-CAM in cancerous tissues.

    PubMed

    Gavert, Nancy; Ben-Shmuel, Amir; Raveh, Shani; Ben-Ze'ev, Avri

    2008-11-01

    L1-cell adhesion molecule (L1-CAM) is a cell adhesion receptor of the immunoglobulin superfamily, known for its roles in nerve cell function. While originally believed to be present only in brain cells, in recent years L1-CAM has been detected in other tissues, and in a variety of cancer cells, including some common types of human cancer. We review the prevalence of L1-CAM in human cancer, the possible mechanisms involved in L1-CAM-mediated tumorigenesis, and cancer therapies based upon L1-CAM antibody treatment. In colon cancer cells, the L1-CAM gene was identified as a target of the Wnt/beta-catenin-TCF signaling pathway, and L1-CAM was exclusively detected at the invasive front of colon and ovarian cancer tissue. The expression of L1-CAM in normal and cancer cells enhanced tumorigenesis and conferred metastasis in colon cancer cells. Antibodies against the L1-CAM ectodomain severely inhibited the proliferation of a variety of cancer cells in culture and reduced tumor burden when injected into mice harboring cancer cells expressing L1-CAM. These results, in addition to the presence of L1-CAM on the cell surface and its restricted distribution in normal tissues, make it an ideal target for tumor therapy.

  15. Perception, attitude and usage of complementary and alternative medicine among doctors and patients in a tertiary care hospital in India.

    PubMed

    Roy, Vandana; Gupta, Monica; Ghosh, Raktim Kumar

    2015-01-01

    Complementary and alternative medicine (CAM) has been practiced in India for thousands of years. The aim of this study was to determine the extent of use, perception and attitude of doctors and patients utilizing the same healthcare facility. This study was conducted among 200 doctors working at a tertiary care teaching Hospital, India and 403 patients attending the same, to determine the extent of usage, attitude and perception toward CAM. The use of CAM was more among doctors (58%) when compared with the patients (28%). Among doctors, those who had utilized CAM themselves, recommended CAM as a therapy to their patients (52%) and enquired about its use from patients (37%) to a greater extent. CAM was used concomitantly with allopathic medicine by 60% patients. Very few patients (7%) were asked by their doctors about CAM use, and only 19% patients voluntarily informed their doctors about the CAM they were using. Most patients who used CAM felt it to be more effective, safer, less costly and easily available in comparison to allopathic medicines. CAM is used commonly by both doctors and patients. There is a lack of communication between doctors and patients regarding CAM, which may be improved by sensitization of doctors and inclusion of CAM in the medical curriculum.

  16. Molecular cloning and expression of the calmodulin gene from guinea pig hearts.

    PubMed

    Feng, Rui; Liu, Yan; Sun, Xuefei; Wang, Yan; Hu, Huiyuan; Guo, Feng; Zhao, Jinsheng; Hao, Liying

    2015-06-01

    The aim of the present study was to isolate and characterize a complementary DNA (cDNA) clone encoding the calmodulin (CaM; GenBank accession no. FJ012165) gene from guinea pig hearts. The CaM gene was amplified from cDNA collected from guinea pig hearts and inserted into a pGEM®-T Easy vector. Subsequently, CaM nucleotide and protein sequence similarity analysis was conducted between guinea pigs and other species. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to investigate the CaM 3 expression patterns in different guinea pig tissues. Sequence analysis revealed that the CaM gene isolated from the guinea pig heart had ∼90% sequence identity with the CaM 3 genes in humans, mice and rats. Furthermore, the deduced peptide sequences of CaM 3 in the guinea pig showed 100% homology to the CaM proteins from other species. In addition, the RT-PCR results indicated that CaM 3 was widely and differentially expressed in guinea pigs. In conclusion, the current study provided valuable information with regard to the cloning and expression of CaM 3 in guinea pig hearts. These findings may be helpful for understanding the function of CaM3 and the possible role of CaM3 in cardiovascular diseases.

  17. Trick or treat? Australian newspaper portrayal of complementary and alternative medicine for the treatment of cancer.

    PubMed

    Mercurio, Reegan; Eliott, Jaklin Ardath

    2011-01-01

    Many cancer patients within developed nations cite the media as informing their decisions to use complementary and alternative medicine (CAM). The present study describes (1) Australian newspaper coverage of CAM use for cancer between 1998 and 2007; (2) trends in reporting frequency and characteristics; and (3) how the Australian press framed stories on CAM use for cancer. This study is a content analysis featuring quantitative and qualitative techniques, the latter guided by 'media framing', of targeted newspaper articles. One hundred nineteen articles focused on CAM use for the treatment of cancer were identified. Quantitative analysis found that biologically based CAMs were most frequently described and breast cancer most mentioned. Two thirds of all articles described CAM use in the context of a cure, with approximately half of these opposing this reason for use. Potential benefits of CAM were discussed more frequently than potential risks, and information on costs and how to access CAM were uncommon. Recommendations included advice to use complementary, not alternative therapies, yet advice to discuss CAM with a medical doctor was rare. Qualitative analysis found six CAM cancer-related frames, four in support of CAM use for cancer treatment. The dominant frame constructed CAM as legitimate tools to assist biomedicine (even to cure), with others depicting CAM as normal and necessary or as addressing limitations of biomedicine. Negative frames depicted CAM as questionable and risky practices and the industry/practitioners as possessing malevolent intent. These findings have implications for biomedical practitioners attempting to determine, respect and assist patient choices about their treatment.

  18. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation.

    PubMed

    Conacci-Sorrell, Maralice; Kaplan, Anna; Raveh, Shani; Gavert, Nancy; Sakurai, Takeshi; Ben-Ze'ev, Avri

    2005-12-15

    Nr-CAM, a cell-cell adhesion molecule of the immunoglobulin-like cell adhesion molecule family, known for its function in neuronal outgrowth and guidance, was recently identified as a target gene of beta-catenin signaling in human melanoma and colon carcinoma cells and tissue. Retrovirally mediated transduction of Nr-CAM into fibroblasts induces cell motility and tumorigenesis. We investigated the mechanisms by which Nr-CAM can confer properties related to tumor cell behavior and found that Nr-CAM expression in NIH3T3 cells protects cells from apoptosis in the absence of serum by constitutively activating the extracellular signal-regulated kinase and AKT signaling pathways. We detected a metalloprotease-mediated shedding of Nr-CAM into the culture medium of cells transfected with Nr-CAM, and of endogenous Nr-CAM in B16 melanoma cells. Conditioned medium and purified Nr-CAM-Fc fusion protein both enhanced cell motility, proliferation, and extracellular signal-regulated kinase and AKT activation. Moreover, Nr-CAM was found in complex with alpha4beta1 integrins in melanoma cells, indicating that it can mediate, in addition to homophilic cell-cell adhesion, heterophilic adhesion with extracellular matrix receptors. Suppression of Nr-CAM levels by small interfering RNA in B16 melanoma inhibited the adhesive and tumorigenic capacities of these cells. Stable expression of the Nr-CAM ectodomain in NIH3T3 cells conferred cell transformation and tumorigenesis in mice, suggesting that the metalloprotease-mediated shedding of Nr-CAM is a principal route for promoting oncogenesis by Nr-CAM.

  19. The use of complementary and alternative medicines by patients with peripheral neuropathy.

    PubMed

    Brunelli, Brian; Gorson, Kenneth C

    2004-03-15

    Complementary and alternative medicine (CAM) therapies have become increasingly popular and are used regularly by patients with chronic neurological disorders. The prevalence and characteristics of CAM use by patients with peripheral neuropathy is unknown. We performed a prospective, questionnaire-based study to determine the prevalence and patterns of use of CAM therapies in 180 consecutive outpatients with peripheral neuropathy. The use of CAM was reported by 77 patients (43%) with neuropathy. The most frequent were megavitamins (35%), magnets (30%), acupuncture (30%), herbal remedies (22%), and chiropractic manipulation (21%); 37 (48%) tried more than one form of alternative treatment. Seventeen respondents (27%) thought their neuropathy symptoms improved with these approaches. Those who used CAM were slightly younger (mean age 62 vs. 65 years, p = 0.05) and more often college educated (39% vs. 24%, p = 0.03) compared to CAM nonusers. They also more often reported burning neuropathic pain (62% vs. 44%, p = 0.01). Patients with diabetic neuropathy used CAM more frequently than others (p = 0.03). The most common reason for using CAM was inadequate pain control (32%). Almost half of patients did not consult a physician before starting CAM. We conclude that there is a high prevalence of CAM use in our patients with neuropathy, and one-quarter reported that their symptoms improved. CAM users were better educated than nonusers, but most did not discuss CAM treatments with their physician. Neuropathic pain was substantially more common in CAM users, and lack of pain control was the most common reason for CAM use.

  20. The role of complementary and alternative medicine (CAM) routines and rituals in men with cancer and their significant others (SOs): a qualitative investigation.

    PubMed

    Klafke, Nadja; Eliott, Jaklin A; Olver, Ian N; Wittert, Gary A

    2014-05-01

    Complementary and alternative medicine (CAM) is frequently used in cancer patients, often with contribution of the significant others (SOs), but without consultation of healthcare professionals. This research explored how cancer patients integrate and maintain CAM use in their everyday life, and how SOs are involved in it. In this qualitative study, male participants were selected from a preceding Australian survey on CAM use in men with cancer (94 % response rate and 86 % consent rate for follow-up interview). Semistructured interviews were conducted with 26 men and 24 SOs until data saturation was reached. Interview transcripts were coded and analyzed thematically, thereby paying close attention to participants' language in use. A major theme associated with high CAM use was "CAM routines and rituals," as it was identified that men with cancer practiced CAM as (1) functional routines, (2) meaningful rituals, and (3) mental/spiritual routines or/and rituals. Regular CAM use was associated with intrapersonal and interpersonal benefits: CAM routines provided men with certainty and control, and CAM rituals functioned for cancer patients and their SOs as a means to create meaning, thereby working to counter fear and uncertainty consequent upon a diagnosis of cancer. SOs contributed most to men's uptake and maintenance of dietary-based CAM in ritualistic form resulting in interpersonal bonding and enhanced closeness. CAM routines and rituals constitute key elements in cancer patients' regular and satisfied CAM use, and they promote familial strengthening. Clinicians and physicians can convey these benefits to patient consultations, further promoting the safe and effective use of CAM.

  1. Modeled hydraulic redistribution in tree-grass, CAM-grass, and tree-CAM associations: the implications of crassulacean acid metabolism (CAM).

    PubMed

    Yu, Kailiang; Foster, Adrianna

    2016-04-01

    Past studies have largely focused on hydraulic redistribution (HR) in trees, shrubs, and grasses, and recognized its role in interspecies interactions. HR in plants that conduct crassulacean acid metabolism (CAM), however, remains poorly investigated, as does the effect of HR on transpiration in different vegetation associations (i.e., tree-grass, CAM-grass, and tree-CAM associations). We have developed a mechanistic model to investigate the net direction and magnitude of HR at the patch scale for tree-grass, CAM-grass, and tree-CAM associations at the growing season to yearly timescale. The modeling results show that deep-rooted CAM plants in CAM-grass associations could perform hydraulic lift at a higher rate than trees in tree-grass associations in a relatively wet environment, as explained by a significant increase in grass transpiration rate in the shallow soil layer, balancing a lower transpiration rate by CAM plants. By comparison, trees in tree-CAM associations may perform hydraulic descent at a higher rate than those in tree-grass associations in a dry environment. Model simulations also show that hydraulic lift increases the transpiration of shallow-rooted plants, while hydraulic descent increases that of deep-rooted plants. CAM plants transpire during the night and thus perform HR during the day. Based on these model simulations, we suggest that the ability of CAM plants to perform HR at a higher rate may have different effects on the surrounding plant community than those of plants with C3 or C4 photosynthetic pathways (i.e., diurnal transpiration).

  2. Older adults' use of complementary and alternative medicine for mental health: findings from the 2002 National Health Interview Survey.

    PubMed

    Grzywacz, Joseph G; Suerken, Cynthia K; Quandt, Sara A; Bell, Ronny A; Lang, Wei; Arcury, Thomas A

    2006-06-01

    To compare complementary and alternative medicine (CAM) use among adults 65 and older with and without self-reported anxiety or depression, and to investigate the prevalence and predictors of CAM use for treatment by persons with anxiety or depression. Cross-sectional survey. Computer-assisted interviews conducted in participants' homes. Subjects included 5827 adults aged 65 and older who participated in the 2002 National Health Interview Survey including the Alternative Health Supplement. None. Overall use of CAM, use of four categories of CAM, and use of 20 CAM modalities. CAM use for treatment of any health condition, and CAM use to treat mental health. Eighty-one and seven tenths percent (81.7%) of older adults with self-reported anxiety or depression who used CAM in the past year, whereas 64.6% of older adults without these conditions used CAM. Differences in CAM use were driven by elevated use of spiritual practices, relaxation techniques, and use of nonvitamin, nonmineral natural products by patients with symptoms of mental conditions. Fewer than 20% of CAM users with self-reported anxiety or depression used CAM for their mental health. Few personal and health-related factors predicted CAM use for treatment among older adults with self-reported anxiety or depression. Older adults with self-reported anxiety or depression were more likely to use spiritual practices, relaxation techniques, and nonvitamin, nonmineral natural products than elders in good mental health. However, for the majority of older adults with self-reported anxiety or depression, CAM was used for purposes other than treating mental health.

  3. Subgrid geoelectric field specification for GIC modeling

    NASA Astrophysics Data System (ADS)

    Butala, M.; Grawe, M.; Kamalabadi, F.; Makela, J. J.

    2017-12-01

    Geomagnetically induced currents (GICs) result from surface geomagnetic field (ěc{B}) variation driven by space weather disturbances. For the most intense disturbances, the consequences can range from power grid instability to even widespread failure. Modeling GICs to assess vulnerability requires the specification of the surface geoelectric field (ěc{E}) at all spatial locations coincident with the electric power system. In this study, we investigate how to best reproduce ěc{E} given the available sparse, irregularly spaced magnetometer measurements of ěc{B} and suitable electromagnetic transfer functions (EMTFs) to transform the local ěc{B} to ěc{E}. The assessment is made against ground truth from publicly available ěc{E} measurements provided by the EarthScope magnetotelluric (MT) array, a set of 7 fixed and several transportable joint ěc{B} and ěc{E} sensors. The scope of this study spans several dimensions: geomagnetic disturbance intensity, spatial interpolation scheme, and EMTF type, i.e., 1-D models based on studies of local geology and 3-D models derived from the EarthScope MT data.

  4. Modulation of precipitation by conditional symmetric instability release

    NASA Astrophysics Data System (ADS)

    Glinton, Michael R.; Gray, Suzanne L.; Chagnon, Jeffrey M.; Morcrette, Cyril J.

    2017-03-01

    Although many theoretical and observational studies have investigated the mechanism of conditional symmetric instability (CSI) release and associated it with mesoscale atmospheric phenomena such as frontal precipitation bands, cloud heads in rapidly developing extratropical cyclones and sting jets, its climatology and contribution to precipitation have not been extensively documented. The aim of this paper is to quantify the contribution of CSI release, yielding slantwise convection, to climatological precipitation accumulations for the North Atlantic and western Europe. Case studies reveal that CSI release could be common along cold fronts of mature extratropical cyclones and the North Atlantic storm track is found to be a region with large CSI according to two independent CSI metrics. Correlations of CSI with accumulated precipitation are also large in this region and CSI release is inferred to be occurring about 20% of the total time over depths of over 1 km. We conclude that the inability of current global weather forecast and climate prediction models to represent CSI release (due to insufficient resolution yet lack of subgrid parametrization schemes) may lead to errors in precipitation distributions, particularly in the region of the North Atlantic storm track.

  5. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

    PubMed Central

    Palmer, T. N.

    2014-01-01

    This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic–dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only. PMID:24842038

  6. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

    PubMed

    Palmer, T N

    2014-06-28

    This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic-dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only.

  7. Parameterizing deep convection using the assumed probability density function method

    DOE PAGES

    Storer, R. L.; Griffin, B. M.; Höft, J.; ...

    2014-06-11

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method. The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing ismore » weak. The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  8. The implementation and validation of improved land-surface hydrology in an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Johnson, Kevin D.; Entekhabi, Dara; Eagleson, Peter S.

    1993-01-01

    New land-surface hydrologic parameterizations are implemented into the NASA Goddard Institute for Space Studies (GISS) General Circulation Model (GCM). These parameterizations are: 1) runoff and evapotranspiration functions that include the effects of subgrid-scale spatial variability and use physically based equations of hydrologic flux at the soil surface and 2) a realistic soil moisture diffusion scheme for the movement of water and root sink in the soil column. A one-dimensional climate model with a complete hydrologic cycle is used to screen the basic sensitivities of the hydrological parameterizations before implementation into the full three-dimensional GCM. Results of the final simulation with the GISS GCM and the new land-surface hydrology indicate that the runoff rate, especially in the tropics, is significantly improved. As a result, the remaining components of the heat and moisture balance show similar improvements when compared to observations. The validation of model results is carried from the large global (ocean and land-surface) scale to the zonal, continental, and finally the regional river basin scales.

  9. Parameterizing deep convection using the assumed probability density function method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storer, R. L.; Griffin, B. M.; Höft, J.

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and midlatitude deep convection. These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak.more » The same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  10. Parameterizing deep convection using the assumed probability density function method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storer, R. L.; Griffin, B. M.; Hoft, Jan

    2015-01-06

    Due to their coarse horizontal resolution, present-day climate models must parameterize deep convection. This paper presents single-column simulations of deep convection using a probability density function (PDF) parameterization. The PDF parameterization predicts the PDF of subgrid variability of turbulence, clouds, and hydrometeors. That variability is interfaced to a prognostic microphysics scheme using a Monte Carlo sampling method.The PDF parameterization is used to simulate tropical deep convection, the transition from shallow to deep convection over land, and mid-latitude deep convection.These parameterized single-column simulations are compared with 3-D reference simulations. The agreement is satisfactory except when the convective forcing is weak. Themore » same PDF parameterization is also used to simulate shallow cumulus and stratocumulus layers. The PDF method is sufficiently general to adequately simulate these five deep, shallow, and stratiform cloud cases with a single equation set. This raises hopes that it may be possible in the future, with further refinements at coarse time step and grid spacing, to parameterize all cloud types in a large-scale model in a unified way.« less

  11. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM.more » To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.« less

  12. An evidence-based review of commonly used dietary supplements.

    PubMed

    Laird, John

    2015-07-01

    Use of complementary and alternative medicine (CAM) is increasing in the United States. Physician assistants need to know about the efficacy of CAM therapies if they practice integrative medicine (which combines CAM and traditional therapies), recommend a CAM therapy occasionally as part of their treatment plan, refer patients to CAM providers, or have patients who self-select CAM therapies. This article describes integrative medicine and reviews the most commonly used dietary supplements.

  13. Integrating Complementary and Alternative Medicine Education Into the Pharmacy Curriculum

    PubMed Central

    Wallis, Marianne

    2008-01-01

    Objectives To evaluate the effectiveness of an integrated approach to the teaching of evidence-based complementary and alternative medicine (CAM) in a pharmacy curriculum. Design Evidence-based CAM education was integrated throughout the third, fourth, and fifth years of the pharmacy curriculum. Specifically, an introductory module focusing on CAM familiarization was added in the third year and integrated, evidence-based teaching related to CAM was incorporated into clinical topics through lectures and clinical case studies in the fourth and fifth years. Assessment Students' self-assessed and actual CAM knowledge increased, as did their use of evidence-based CAM resources. However, only 30% of the fourth-year students felt they had learned enough about CAM. Students preferred having CAM teaching integrated into the curriculum beginning in the first year rather than waiting until later in their education. Conclusion CAM education integrated over several years of study increases students' knowledge and application. PMID:19002274

  14. Complementary and Alternative Medicine (CAM) use by Malaysian oncology patients.

    PubMed

    Farooqui, Maryam; Hassali, Mohamed Azmi; Abdul Shatar, Aishah Knight; Shafie, Asrul Akmal; Seang, Tan Boon; Farooqui, Muhammad Aslam

    2012-05-01

    The current study sought to evaluate Malaysian oncology patients' decision making about the use of Complementary and Alternative Medicine (CAM) for the management of their care. Patients were interviewed across three major Malaysian ethnic groups, Malay, Chinese and Indian. Thematic content analysis identified four central themes: Conceptualizing CAM, the decision making process; rationale given for selecting or rejecting CAM and barriers to CAM use. Participants generally used the term 'traditional medicine', referred to locally as 'ubat kampung', meaning medicine derived from 'local traditions'. Mixed reactions were shown concerning the effectiveness of CAM to cure cancer and the slow progression of CAM results and treatment costs were cited as major barriers to CAM use. Concerns regarding safety and efficacy of CAM in ameliorating cancer as well as potential interactions with conventional therapies highlighted the importance of patients' knowledge about cancer treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. L1-CAM and N-CAM: From Adhesion Proteins to Pharmacological Targets.

    PubMed

    Colombo, Federico; Meldolesi, Jacopo

    2015-11-01

    L1 cell adhesion molecule (L1-CAM) and neural cell adhesion molecule (N-CAM), key members of the immunoglobulin-like CAM (Ig-CAM) family, were first recognized to play critical roles in surface interactions of neurons, by binding with each other and with extracellular matrix (ECM) proteins. Subsequently, adhesion was recognized to include signaling due to both activation of β-integrin, with the generation of intracellular cascades, and integration with the surface cytoskeleton. The importance of the two Ig-CAMs was revealed by their activation of the tyrosine kinase receptors of fibroblast growth factor (FGF), epidermal growth factor (EGF), and nerve growth factor (NGF). Based on these complex signaling properties, L1-CAM and N-CAM have become of great potential pharmacological interest in neurons and cancers. Treatment of neurodegenerative disorders and cognitive deficits of neurons is aimed to increase the cell Ig-CAM tone, possibly provided by synthetic/mimetic peptides. In cancer cells, where Ig-CAMs are often overexpressed, the proteins are employed for prognosis. The approaches to therapy are based on protein downregulation, antibodies, and adoptive immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish*

    PubMed Central

    Zacharias, Triantafyllos; Kulej, Katarzyna; Wang, Kevin; Torggler, Raffaela; la Cour, Jonas M.

    2016-01-01

    Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish. PMID:27815504

  17. [Complementary and alternative medicine in primary care in Switzerland].

    PubMed

    Déglon-Fischer, Agnès; Barth, Jürgen; Ausfeld-Hafter, Brigitte

    2009-08-01

    This study investigated the current supply of complementary and alternative medicine (CAM) in Swiss primary care. Information was collected on physicians' qualifications in CAM, frequency of patients' demand for CAM, physicians' supply and temporal resources for CAM as well as physicians' referrals to CAM. 750 (500 German-speaking and 250 French-speaking) randomly selected Swiss female and male primary care physicians were asked to complete a questionnaire (response rate 50.4%). Sociodemographic data on professional training, place of residence, and sex were used to calculate a weighting factor to correct the responders' data in the analysis accordingly. 14.2% of the physicians were qualified in at least one CAM discipline. Around 30% (95% confidence interval 25.4-34.6%) of the physicians were asked for CAM by their patients more than once a week. Homeopathy and phytotherapy were the most frequently offered therapies, followed by traditional Chinese medicine (TCM)/acupuncture. 62.5% (57.6-67.4%) of the physicians refer their patients to CAM. Most patients were referred to TCM/acupuncture. Of the 37.2% (32.6-42.4%) of the physicians who do not refer their patients to CAM, around 40% (35.1-44.9%) offer it themselves. About three quarters of the physicians offer CAM themselves or refer their patients to CAM treatments. CAM is very important in primary medical care in Switzerland. Clear regulations for CAM are required in order to ensure a high quality in care. Copyright 2009 S. Karger AG, Basel.

  18. Complementary and alternative medicine use in patients with hematological cancers in Malaysia.

    PubMed

    Gan, G G; Leong, Y C; Bee, P C; Chin, E; Teh, A K H

    2015-08-01

    Complementary and alternative medicine (CAM) is often used by cancer patients, but not many studies had been published on the prevalence of CAM use in patients with hematological cancers. This study aims to determine the prevalence of CAM and type of CAM used in this group of patients in a multiracial and multicultural country. This is a cross-sectional survey carried out in two hospitals in Malaysia. Patients with underlying hematological cancers were asked to complete the questionnaires on CAM and the Hospital Anxiety and Depression Scale. A total of 245 patients participated. The prevalence of CAM use was 70.2 %. The most common types of CAM used are biological-based therapies (90.2 %) and mind-body interventions (42 %). Vitamin and diet supplements (68.6 %) and folk/herb remedies (58 %) are the most common biological-based therapies used. There is no significant association of CAM use with age, gender, education level, and household income. Female patients are more likely to use more than one CAM therapies. The most common reason reported for CAM use was to boost immunity (57 %) and cure (24 %). Majority of patients (65 %) felt CAM was effective, and 60 % did not inform their physicians regarding CAM usage. In view of the high prevalence of CAM use in patients with hematological cancers, it is important that the physicians play an active role in seeking information from patients and to monitor possible drug-vitamin-herbal interactions.

  19. Use of Complementary and Alternative Medicine (CAM) as Part of the Oncological Treatment: Survey about Patients' Attitude towards CAM in a University-Based Oncology Center in Germany.

    PubMed

    Kessel, Kerstin A; Lettner, Sabrina; Kessel, Carmen; Bier, Henning; Biedermann, Tilo; Friess, Helmut; Herrschbach, Peter; Gschwend, Jürgen E; Meyer, Bernhard; Peschel, Christian; Schmid, Roland; Schwaiger, Markus; Wolff, Klaus-Dietrich; Combs, Stephanie E

    2016-01-01

    To understand if and which patients would be open-minded to Complementary and Alternative Medicine (CAM) use parallel to their oncological treatment. Moreover, we sought to determine which methods are most accepted and which are the primary motivators to use CAM. We developed and anonymously conducted a questionnaire for patients in the oncology center (TU Munich). Questions focus on different CAM methods, previous experiences, and willingness to apply or use CAM when offered in a university-based setting. A total of 171 of 376 patients (37.4% women, 62.0% men, 0.6% unknown) participated. This corresponds to a return rate of 45%. Median age was 64 years (17-87 years). Of all participants, 15.2% used CAM during their oncological therapy; 32.7% have used it in the past. The majority (81.9%) was not using CAM during therapy; 55.5% have not used CAM in the past respectively. The analysis revealed a significant correlation between education and CAM use during therapy (r = 0.18; p = 0.02), and CAM use in the past (r = 0.17; p = 0.04). Of all patients using CAM during therapy, favored methods were food supplements (42.3%), vitamins/minerals (42.3%), massage (34.6%). Motivations are especially the reduction of side effect and stress, the positive effect of certain CAM-treatments on the immune system and tumor therapy. Results showed no difference between women and men. Most patients not having had any experience with CAM complain about the deficiency of information by their treating oncologist (31.4%) as well as missing treatment possibilities (54.3%). Since many patients believe in study results demonstrating the efficacy of CAM, it stresses our task to develop innovative study protocols to investigate the outcomes of certain CAM on symptom reduction or other endpoints. Thus, prospective trials and innovative evidence-based treatment concepts to include CAM into high-end oncology is what patients demand and what a modern oncology center should offer.

  20. A Comprehensive Two-moment Warm Microphysical Bulk Scheme :

    NASA Astrophysics Data System (ADS)

    Caro, D.; Wobrock, W.; Flossmann, A.; Chaumerliac, N.

    The microphysic properties of gaz, aerosol particles, and hydrometeors have impli- cations at local scale (precipitations, pollution peak,..), at regional scale (inundation, acid rains,...), and also, at global scale (radiative forcing,...). So, a multi-scale study is necessary to understand and forecast in a good way meteorological phenomena con- cerning clouds. However, it cannot be carried with detailed microphysic model, on account of computers limitations. So, microphysical bulk schemes have to estimate the n´ large scale z properties of clouds due to smaller scale processes and charac- teristics. So, the development of such bulk scheme is rather important to go further in the knowledge of earth climate and in the forecasting of intense meteorological phenomena. Here, a quasi-spectral microphysic warm scheme has been developed to predict the concentrations and mixing ratios of aerosols, cloud droplets and raindrops. It considers, explicitely and analytically, the nucleation of droplets (Abdul-Razzak et al., 2000), condensation/evaporation (Chaumerliac et al., 1987), the breakup and collision-coalescence processes with the Long (1974) Ss kernels and the Berry and ´ Reinhardt (1974) Ss autoconversion parameterization, but also, the aerosols and gaz ´ scavenging. First, the parameterization has been estimated in the simplest dynamic framework of an air parcel model, with the results of the detailed scavenging model, DESCAM (Flossmann et al., 1985). Then, it has been tested, in the dynamic frame- work of a kinematic model (Szumowski et al., 1998) dedicated to the HaRP cam- paign (Hawaiian Rainband Project, 1990), with the observations and with the results of the two dimensional detailed microphysic scheme, DESCAM 2-D (Flossmann et al., 1988), implement in the CLARK model (Clark and Farley, 1984).

  1. The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Ye, Zhou

    1997-01-01

    The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analytical statistical theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state in which the inertial range energy spectrum scales as k(sup -2) and the turbulent time scale is the inverse rotation rate. This scaling has been derived previously by heuristic arguments.

  2. Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2008-10-01

    Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.

  3. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an arraymore » of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.« less

  4. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  5. Model Uncertainty Quantification Methods For Data Assimilation In Partially Observed Multi-Scale Systems

    NASA Astrophysics Data System (ADS)

    Pathiraja, S. D.; van Leeuwen, P. J.

    2017-12-01

    Model Uncertainty Quantification remains one of the central challenges of effective Data Assimilation (DA) in complex partially observed non-linear systems. Stochastic parameterization methods have been proposed in recent years as a means of capturing the uncertainty associated with unresolved sub-grid scale processes. Such approaches generally require some knowledge of the true sub-grid scale process or rely on full observations of the larger scale resolved process. We present a methodology for estimating the statistics of sub-grid scale processes using only partial observations of the resolved process. It finds model error realisations over a training period by minimizing their conditional variance, constrained by available observations. Special is that these realisations are binned conditioned on the previous model state during the minimization process, allowing for the recovery of complex error structures. The efficacy of the approach is demonstrated through numerical experiments on the multi-scale Lorenz 96' model. We consider different parameterizations of the model with both small and large time scale separations between slow and fast variables. Results are compared to two existing methods for accounting for model uncertainty in DA and shown to provide improved analyses and forecasts.

  6. Cloud-In-Cell modeling of shocked particle-laden flows at a ``SPARSE'' cost

    NASA Astrophysics Data System (ADS)

    Taverniers, Soren; Jacobs, Gustaaf; Sen, Oishik; Udaykumar, H. S.

    2017-11-01

    A common tool for enabling process-scale simulations of shocked particle-laden flows is Eulerian-Lagrangian Particle-Source-In-Cell (PSIC) modeling where each particle is traced in its Lagrangian frame and treated as a mathematical point. Its dynamics are governed by Stokes drag corrected for high Reynolds and Mach numbers. The computational burden is often reduced further through a ``Cloud-In-Cell'' (CIC) approach which amalgamates groups of physical particles into computational ``macro-particles''. CIC does not account for subgrid particle fluctuations, leading to erroneous predictions of cloud dynamics. A Subgrid Particle-Averaged Reynolds-Stress Equivalent (SPARSE) model is proposed that incorporates subgrid interphase velocity and temperature perturbations. A bivariate Gaussian source distribution, whose covariance captures the cloud's deformation to first order, accounts for the particles' momentum and energy influence on the carrier gas. SPARSE is validated by conducting tests on the interaction of a particle cloud with the accelerated flow behind a shock. The cloud's average dynamics and its deformation over time predicted with SPARSE converge to their counterparts computed with reference PSIC models as the number of Gaussians is increased from 1 to 16. This work was supported by AFOSR Grant No. FA9550-16-1-0008.

  7. Photochemical grid model performance with varying horizontal grid resolution and sub-grid plume treatment for the Martins Creek near-field SO2 study

    NASA Astrophysics Data System (ADS)

    Baker, Kirk R.; Hawkins, Andy; Kelly, James T.

    2014-12-01

    Near source modeling is needed to assess primary and secondary pollutant impacts from single sources and single source complexes. Source-receptor relationships need to be resolved from tens of meters to tens of kilometers. Dispersion models are typically applied for near-source primary pollutant impacts but lack complex photochemistry. Photochemical models provide a realistic chemical environment but are typically applied using grid cell sizes that may be larger than the distance between sources and receptors. It is important to understand the impacts of grid resolution and sub-grid plume treatments on photochemical modeling of near-source primary pollution gradients. Here, the CAMx photochemical grid model is applied using multiple grid resolutions and sub-grid plume treatment for SO2 and compared with a receptor mesonet largely impacted by nearby sources approximately 3-17 km away in a complex terrain environment. Measurements are compared with model estimates of SO2 at 4- and 1-km resolution, both with and without sub-grid plume treatment and inclusion of finer two-way grid nests. Annual average estimated SO2 mixing ratios are highest nearest the sources and decrease as distance from the sources increase. In general, CAMx estimates of SO2 do not compare well with the near-source observations when paired in space and time. Given the proximity of these sources and receptors, accuracy in wind vector estimation is critical for applications that pair pollutant predictions and observations in time and space. In typical permit applications, predictions and observations are not paired in time and space and the entire distributions of each are directly compared. Using this approach, model estimates using 1-km grid resolution best match the distribution of observations and are most comparable to similar studies that used dispersion and Lagrangian modeling systems. Model-estimated SO2 increases as grid cell size decreases from 4 km to 250 m. However, it is notable that the 1-km model estimates using 1-km meteorological model input are higher than the 1-km model simulation that used interpolated 4-km meteorology. The inclusion of sub-grid plume treatment did not improve model skill in predicting SO2 in time and space and generally acts to keep emitted mass aloft.

  8. Development and application of a reactive plume-in-grid model: evaluation over Greater Paris

    NASA Astrophysics Data System (ADS)

    Korsakissok, I.; Mallet, V.

    2010-02-01

    Emissions from major point sources are badly represented by classical Eulerian models. An overestimation of the horizontal plume dilution, a bad representation of the vertical diffusion as well as an incorrect estimate of the chemical reaction rates are the main limitations of such models in the vicinity of major point sources. The plume-in-grid method is a multiscale modeling technique that couples a local-scale Gaussian puff model with an Eulerian model in order to better represent these emissions. We present the plume-in-grid model developed in the air quality modeling system Polyphemus, with full gaseous chemistry. The model is evaluated on the metropolitan Île-de-France region, during six months (summer 2001). The subgrid-scale treatment is used for 89 major point sources, a selection based on the emission rates of NOx and SO2. Results with and without the subgrid treatment of point emissions are compared, and their performance by comparison to the observations at measurement stations is assessed. A sensitivity study is also carried out, on several local-scale parameters as well as on the vertical diffusion within the urban area. Primary pollutants are shown to be the most impacted by the plume-in-grid treatment, with a decrease in RMSE by up to about -17% for SO2 and -7% for NO at measurement stations. SO2 is the most impacted pollutant, since the point sources account for an important part of the total SO2 emissions, whereas NOx emissions are mostly due to traffic. The spatial impact of the subgrid treatment is localized in the vicinity of the sources, especially for reactive species (NOx and O3). Reactive species are mostly sensitive to the local-scale parameters, such as the time step between two puff emissions which influences the in-plume chemical reactions, whereas the almost-passive species SO2 is more sensitive to the injection time, which determines the duration of the subgrid-scale treatment. Future developments include an extension to handle aerosol chemistry, and an application to the modeling of line sources in order to use the subgrid treatment with road emissions. The latter is expected to lead to more striking results, due to the importance of traffic emissions for the pollutants of interest.

  9. The path to CAM6: coupled simulations with CAM5.4 and CAM5.5

    NASA Astrophysics Data System (ADS)

    Bogenschutz, Peter A.; Gettelman, Andrew; Hannay, Cecile; Larson, Vincent E.; Neale, Richard B.; Craig, Cheryl; Chen, Chih-Chieh

    2018-01-01

    This paper documents coupled simulations of two developmental versions of the Community Atmosphere Model (CAM) towards CAM6. The configuration called CAM5.4 introduces new microphysics, aerosol, and ice nucleation changes, among others to CAM. The CAM5.5 configuration represents a more radical departure, as it uses an assumed probability density function (PDF)-based unified cloud parameterization to replace the turbulence, shallow convection, and warm cloud macrophysics in CAM. This assumed PDF method has been widely used in the last decade in atmosphere-only climate simulations but has never been documented in coupled mode. Here, we compare the simulated coupled climates of CAM5.4 and CAM5.5 and compare them to the control coupled simulation produced by CAM5.3. We find that CAM5.5 has lower cloud forcing biases when compared to the control simulations. Improvements are also seen in the simulated amplitude of the Niño-3.4 index, an improved representation of the diurnal cycle of precipitation, subtropical surface wind stresses, and double Intertropical Convergence Zone biases. Degradations are seen in Amazon precipitation as well as slightly colder sea surface temperatures and thinner Arctic sea ice. Simulation of the 20th century results in a credible simulation that ends slightly colder than the control coupled simulation. The authors find this is due to aerosol indirect effects that are slightly stronger in the new version of the model and propose a solution to ameliorate this. Overall, in these early coupled simulations, CAM5.5 produces a credible climate that is appropriate for science applications and is ready for integration into the National Center for Atmospheric Research's (NCAR's) next-generation climate model.

  10. Complementary and Alternative Medicine Use and Symptom Burden in Women Undergoing Chemotherapy for Breast Cancer in Malaysia.

    PubMed

    Chui, Ping Lei; Abdullah, Khatijah Lim; Wong, Li Ping; Taib, Nur Aishah

    Complementary and alternative medicine (CAM) is commonly used for cancer- and chemotherapy-related symptoms. Nurses are likely to encounter many CAM users in their practice. The aims of this study were to assess CAM use and examine the symptom burden of CAM and non-CAM users among patients with breast cancer who are undergoing chemotherapy. A CAM use questionnaire and the Side-Effect Burden Scale were administered to 546 patients. Complementary and alternative medicine use was categorized as mind-body practices (MBPs), natural products (NPs), or traditional medicine (TM). We identified 386 CAM users (70.7%) in this study. The CAM users reported a higher marginal mean total symptom burden score (40.39 ± 2.6) than non-CAM users (36.93 ± 3.21), although this difference was not statistically significant (P = .09). Triple-modality (MBP-NP-TM) CAM users had a significantly higher marginal mean total symptom burden score (47.44 ± 4.12) than single-modality (MBP) users (34.09 ± 4.43). The risk of having a high total symptom burden score was 12.9-fold higher among the MBP-NP-TM users than among the MBP users. Complementary and alternative medicine use is common among Malaysian patients who are undergoing chemotherapy for breast cancer. However, CAM and non-CAM users reported similar symptom burdens, although single-modality use of MBP is likely associated with a lower symptom burden. Nurses should keep abreast of current developments and trends in CAM use. Understanding CAM use and the related symptom burden will allow nurses to initiate open discussion and guide their patients in seeking additional information or referrals for a particular therapy.

  11. Medical student attitudes towards complementary and alternative medicine (CAM) in medical education: a critical review.

    PubMed

    Joyce, Paul; Wardle, Jon; Zaslawski, Chris

    2016-12-01

    Background This paper aims to remedy a gap in the knowledge by presenting the first critical review of the literature on major themes relating to medical students perceptions and attitudes towards the exponentially growing field of complementary and alternative medicine (CAM). MethodsAfter a comprehensive database search of the literature, 21 papers were chosen as suitable for the review. The results from these papers were tabled and discussed. ResultsThe results indicated that medical students lacked knowledge of CAM and are generally positive towards CAM education (especially in the preclinical years, if it provided evidence of efficacy and post-placement). Medical students thought that CAM should generally be incorporated into the medical curriculum mainly so they can confidently undertake referral to CAM practitioners. Being able to communicate with future patients about their CAM use was a major motivation for medical students to learn about CAM and a factor for medical student support of further incorporation of CAM content in the medical curricula. Educational exposure to CAM in many forms and in many papers was shown to significantly affect medical student attitudes to CAM. This may be reflective of the fact that, outside direct CAM training, there may be limited accessible opportunities for medical students and if integration is to occur, educational exposure is most important. ConclusionsThe rise of CAM as a social and clinical phenomenon necessitates consideration of further inclusion of these topics in the medical curriculum, if future physicians are to be able to fully discharge their role as care providers in an increasingly medically pluralistic world. However, the inclusion of CAM needs to be done in an objective and critical manner, which is relevant to the learner.

  12. Complementary and alternative medicine in breast cancer patients.

    PubMed

    Nahleh, Zeina; Tabbara, Imad A

    2003-09-01

    Complementary and Alternative Medicine (CAM) is becoming increasingly popular among cancer patients, in particular those with breast cancer. It represents one of the fastest growing treatment modalities in the United States. Therefore, knowledge of CAM therapies is becoming necessary for physicians and other health care providers. CAM encompasses a wide range of modalities including special diet and nutrition, mind-body approaches, and traditional Chinese medicine. We reviewed the biomedical literature on CAM use in breast cancer patients, using Medline search from 1975 until 2002. In addition, consensus reports and books on CAM and breast cancer were included in the review. We evaluated the prevalence of CAM use in breast cancer patients, the reasons cited for its use, the different available modalities, and the reported outcomes. Use of CAM in breast cancer patients ranges between 48% and 70% in the United States. The most commonly used CAM modalities include dietary supplements, mind-body approaches, and acupuncture. The reasons cited for using CAM were to boost the immune system, improve the quality of life, prevent recurrence of cancer, provide control over life, and treat breast cancer and the side effects of treatment. Several studies reported favorable results including improved survival, better pain control, reduced anxiety, improvement in coping strategies and significant efficacy in treating nausea and vomiting. Other less well-organized trials have reported either no benefit or negative effect of CAM and potential toxicity of some commercial products. CAM is a growing field in health care and particularly among breast cancer patients. Knowledge of CAM by physicians, especially oncologists, is necessary. Oncologists should be willing to discuss the role of CAM with their patients and encourage patients to participate in well-organized research about CAM.

  13. Nitric Oxide Mediates the Hormonal Control of Crassulacean Acid Metabolism Expression in Young Pineapple Plants1[W][OA

    PubMed Central

    Freschi, Luciano; Rodrigues, Maria Aurineide; Domingues, Douglas Silva; Purgatto, Eduardo; Van Sluys, Marie-Anne; Magalhaes, Jose Ronaldo; Kaiser, Werner M.; Mercier, Helenice

    2010-01-01

    Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up- and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants. PMID:20147491

  14. Calcium triggers reversal of calmodulin on nested anti-parallel sites in the IQ motif of the neuronal voltage-dependent sodium channel NaV1.2.

    PubMed

    Hovey, Liam; Fowler, C Andrew; Mahling, Ryan; Lin, Zesen; Miller, Mark Stephen; Marx, Dagan C; Yoder, Jesse B; Kim, Elaine H; Tefft, Kristin M; Waite, Brett C; Feldkamp, Michael D; Yu, Liping; Shea, Madeline A

    2017-05-01

    Several members of the voltage-gated sodium channel family are regulated by calmodulin (CaM) and ionic calcium. The neuronal voltage-gated sodium channel Na V 1.2 contains binding sites for both apo (calcium-depleted) and calcium-saturated CaM. We have determined equilibrium dissociation constants for rat Na V 1.2 IQ motif [IQRAYRRYLLK] binding to apo CaM (~3nM) and (Ca 2+ ) 4 -CaM (~85nM), showing that apo CaM binding is favored by 30-fold. For both apo and (Ca 2+ ) 4 -CaM, NMR demonstrated that Na V 1.2 IQ motif peptide (Na V 1.2 IQp ) exclusively made contacts with C-domain residues of CaM (CaM C ). To understand how calcium triggers conformational change at the CaM-IQ interface, we determined a solution structure (2M5E.pdb) of (Ca 2+ ) 2 -CaM C bound to Na V 1.2 IQp . The polarity of (Ca 2+ ) 2 -CaM C relative to the IQ motif was opposite to that seen in apo CaM C -Na v 1.2 IQp (2KXW), revealing that CaM C recognizes nested, anti-parallel sites in Na v 1.2 IQp . Reversal of CaM may require transient release from the IQ motif during calcium binding, and facilitate a re-orientation of CaM N allowing interactions with non-IQ Na V 1.2 residues or auxiliary regulatory proteins interacting in the vicinity of the IQ motif. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Integrative medicine or infiltrative pseudoscience?

    PubMed

    Li, Ben; Forbes, Thomas L; Byrne, John

    2018-01-02

    Evidence-based medicine, first described in 1992, offers a clear, systematic, and scientific approach to the practice of medicine. Recently, the non-evidence-based practice of complementary and alternative medicine (CAM) has been increasing in the United States and around the world, particularly at medical institutions known for providing rigorous evidence-based care. The use of CAM may cause harm to patients through interactions with evidence-based medications or if patients choose to forego evidence-based care. CAM may also put financial strain on patients as most CAM expenditures are paid out-of-pocket. Despite these drawbacks, patients continue to use CAM due to media promotion of CAM therapies, dissatisfaction with conventional healthcare, and a desire for more holistic care. Given the increasing demand for CAM, many medical institutions now offer CAM services. Recently, there has been controversy surrounding the leaders of several CAM centres based at a highly respected academic medical institution, as they publicly expressed anti-vaccination views. These controversies demonstrate the non-evidence-based philosophies that run deep within CAM that are contrary to the evidence-based care that academic medical institutions should provide. Although there are financial incentives for institutions to provide CAM, it is important to recognize that this legitimizes CAM and may cause harm to patients. The poor regulation of CAM allows for the continued distribution of products and services that have not been rigorously tested for safety and efficacy. Governments in Australia and England have successfully improved regulation of CAM and can serve as a model to other countries. Copyright © 2017 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  16. Occurrence and co-occurrence of types of complementary and alternative medicine use by age, gender, ethnicity, and education among adults in the United States: the 2002 National Health Interview Survey (NHIS).

    PubMed

    Neiberg, Rebecca H; Aickin, Mikel; Grzywacz, Joseph G; Lang, Wei; Quandt, Sara A; Bell, Ronny A; Arcury, Thomas A

    2011-04-01

    There are widespread assumptions that a large proportion of American adults use a variety of complementary and alternative medicine (CAM) therapies. The goal of this study is to explore the clustering or linkages among CAM categories in the general population. Linkset analysis and data from the 2002 National Health Interview Survey (NHIS) were used to address two specific aims. First, the dominant linkages of CAM categories used by the same individual were delineated, and population estimates were generated of the percentage of American adults using different linksets of CAM categories. Second, it was determined whether dominant linkages of CAM modalities differ by age, gender, ethnicity, and education. Linkset analysis, a method of estimating co-occurrence beyond chance, was used on data from the 2002 NHIS (N = 29,862) to identify possible sets of CAM use. Most adults use CAM therapies from a single category. Approximately 20% of adults combined two CAM categories, with the combination of mind-body therapies and biologically based therapies estimated to be most common. Only 5% of adults use therapies representing three or more CAM categories. Combining therapies across multiple CAM categories was more common among those 46-64, women, whites, and those with a college education. The results of this study allow researchers to refine descriptions of CAM use in the adult population. Most adults do not use a wide assortment of CAM; most use therapies within a single CAM category. Sets of CAM use were found to differ by age, gender, ethnicity, and education in ways consistent with previous research.

  17. Women's reasons for complementary and alternative medicine use: racial/ethnic differences.

    PubMed

    Chao, Maria T; Wade, Christine; Kronenberg, Fredi; Kalmuss, Debra; Cushman, Linda F

    2006-10-01

    Although racial/ethnic differences in the prevalence of complementary and alternative medicine (CAM) utilization have been documented, differences in the reasons for using CAM have not been empirically assessed. In an increasingly diverse society, understanding differences in rates of and reasons for CAM use could elucidate cultural and social factors of health behaviors and inform health care improvements. The current study examines reasons for CAM use among women in four racial/ethnic groups. A national telephone survey of 3172 women aged 18 years and older was conducted in four languages. Respondents were asked about their use of remedies or treatments not typically prescribed by a medical doctor. This study focuses on those women who used CAM in the previous year and their reasons for using CAM. Non-Hispanic white women were most likely to cite personal beliefs for CAM use. Cost of conventional medicine was most prevalent among Mexican-American women CAM users. Physician referral, family and friends, and media sources were all equally likely to lead to CAM use in non-Hispanic white women. In contrast, informal networks of family and friends were the most important social influences of CAM use among African-, Mexican-, and Chinese-American women. Racial/ethnic differences in reasons for CAM use highlight cultural and social factors that are important to consider in public evaluation of the risks and benefits of CAM remedies and treatments.

  18. Prevalence and Correlates of Complementary and Alternative Medicine Use among Patients with Lung Cancer: A Cross-Sectional Study in Beirut, Lebanon

    PubMed Central

    Anouti, Bilal; Haibe, Yolla

    2017-01-01

    Patients with lung cancer are increasingly seeking complementary and alternative medicine (CAM) to improve their physiological and psychological well-being. This study aimed to assess CAM use among lung cancer patients in Lebanon. Using a cross-sectional design, 150 lung cancer patients attending the Basile Cancer Institute at the American University of Beirut Medical Center were interviewed. Participants completed a questionnaire addressing sociodemographic characteristics, lung cancer condition, and use of CAM. The main outcome of interest was “use of any CAM therapy since diagnosis.” Prevalence of CAM use was 41%. The most commonly used CAM modality among study participants was “dietary supplements/special foods.” Results of the multiple logistic regression analyses showed that CAM use was positively associated with Lebanese nationality and paying for treatment out of pocket and was negatively associated with unemployment and having other chronic diseases. About 10% of patients used CAM on an alternative base, 58% did not disclose CAM use to their physician, and only 2% cited health professionals as influencing their choice of CAM. This study revealed a prevalent CAM use among lung cancer patients in Lebanon, with a marginal role for physicians in guiding this use. Promoting an open-communication and a patient-centered approach regarding CAM use is warranted. PMID:28912824

  19. Complementary and alternative medicine in the undergraduate medical curriculum: a survey of Korean medical schools.

    PubMed

    Kim, Do Yeun; Park, Wan Beom; Kang, Hee Cheol; Kim, Mi Jung; Park, Kyu-Hyun; Min, Byung-Il; Suh, Duk-Joon; Lee, Hye Won; Jung, Seung Pil; Chun, Mison; Lee, Soon Nam

    2012-09-01

    The current status of complementary and alternative medicine (CAM) education in Korean medical schools is still largely unknown, despite a growing need for a CAM component in medical education. The prevalence, scope, and diversity of CAM courses in Korean medical school education were evaluated. Participants included academic or curriculum deans and faculty at each of the 41 Korean medical schools. A mail survey was conducted from 2007 to 2010. Replies were received from all 41 schools. CAM was officially taught at 35 schools (85.4%), and 32 schools (91.4%) provided academic credit for CAM courses. The most common courses were introduction to CAM or integrative medicine (88.6%), traditional Korean medicine (57.1%), homeopathy and naturopathy (31.4%), and acupuncture (28.6%). Educational formats included lectures by professors and lectures and/or demonstrations by practitioners. The value order of core competencies was attitude (40/41), knowledge (32/41), and skill (6/41). Reasons for not initiating a CAM curriculum were a non-evidence-based approach in assessing the efficacy of CAM, insufficiently reliable reference resources, and insufficient time to educate students in CAM. This survey reveals heterogeneity in the content, format, and requirements among CAM courses at Korean medical schools. Korean medical school students should be instructed in CAM with a more consistent educational approach to help patients who participate in or demand CAM.

  20. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis.

    PubMed

    Gavert, Nancy; Sheffer, Michal; Raveh, Shani; Spaderna, Simone; Shtutman, Michael; Brabletz, Thomas; Barany, Francis; Paty, Phillip; Notterman, Daniel; Domany, Eytan; Ben-Ze'ev, Avri

    2007-08-15

    L1-CAM, a neuronal cell adhesion receptor, is also expressed in a variety of cancer cells. Recent studies identified L1-CAM as a target gene of beta-catenin-T-cell factor (TCF) signaling expressed at the invasive front of human colon cancer tissue. We found that L1-CAM expression in colon cancer cells lacking L1-CAM confers metastatic capacity, and mice injected in their spleen with such cells form liver metastases. We identified ADAM10, a metalloproteinase that cleaves the L1-CAM extracellular domain, as a novel target gene of beta-catenin-TCF signaling. ADAM10 overexpression in colon cancer cells displaying endogenous L1-CAM enhanced L1-CAM cleavage and induced liver metastasis, and ADAM10 also enhanced metastasis in colon cancer cells stably transfected with L1-CAM. DNA microarray analysis of genes induced by L1-CAM in colon cancer cells identified a cluster of genes also elevated in a large set of human colon carcinoma tissue samples. Expression of these genes in normal colon epithelium was low. These results indicate that there is a gene program induced by L1-CAM in colon cancer cells that is also present in colorectal cancer tissue and suggest that L1-CAM can serve as target for colon cancer therapy.

  1. Women's Reasons for Complementary and Alternative Medicine Use: Racial/Ethnic Differences

    PubMed Central

    CHAO, MARIA T.; WADE, CHRISTINE; KRONENBERG, FREDI; KALMUSS, DEBRA; CUSHMAN, LINDA F.

    2009-01-01

    Objectives Although racial/ethnic differences in the prevalence of complementary and alternative medicine (CAM) utilization have been documented, differences in the reasons for using CAM have not been empirically assessed. In an increasingly diverse society, understanding differences in rates of and reasons for CAM use could elucidate cultural and social factors of health behaviors and inform health care improvements. The current study examines reasons for CAM use among women in four racial/ethnic groups. Design A national telephone survey of 3172 women aged 18 years and older was conducted in four languages. Respondents were asked about their use of remedies or treatments not typically prescribed by a medical doctor. This study focuses on those women who used CAM in the previous year and their reasons for using CAM. Results Non-Hispanic white women were most likely to cite personal beliefs for CAM use. Cost of conventional medicine was most prevalent among Mexican-American women CAM users. Physician referral, family and friends, and media sources were all equally likely to lead to CAM use in non-Hispanic white women. In contrast, informal networks of family and friends were the most important social influences of CAM use among African-, Mexican-, and Chinese-American women. Conclusions Racial/ethnic differences in reasons for CAM use highlight cultural and social factors that are important to consider in public evaluation of the risks and benefits of CAM remedies and treatments. PMID:17034277

  2. Complementary and alternative medicine use by Canadian university students.

    PubMed

    Teper, Amy M; Tsai, Ellen

    2008-01-01

    Studies investigating Complementary and Alternative Medicine (CAM) prevalence are outdated and are generalized across different demographic groups due to their national scope. Determining trends among specific populations is necessary to gain insight into the growing popularity of CAM. To determine the prevalence and factors associated with CAM use among Canadian university undergraduate students and to determine student views regarding CAM research, education and policy-making decisions. Two arbitrarily selected undergraduate student classes at Queen's University were surveyed for this cross-sectional descriptive study. Information was provided by 128 respondents via questionnaire (75% response rate) on key demographics, CAM use and satisfaction with mainstream Canadian healthcare. Upon completion of the survey, voluntary participation was requested for the interview portion resulting in 7 semi-structured qualitative interviews. Of the 128 participants, 90 (70%) claimed to be users of at least one CAM modality. Female gender was strongly associated with CAM use (p<0.001). Other characteristics that may be correlated include being enrolled in a health-related academic program, being dissatisfied with certain aspects of the healthcare system and having parents who use CAM. The majority of respondents desired more research and education on CAM and more collaboration between the two healthcare streams. Canadian university undergraduate students are active CAM users and interest in CAM is high among this population. Further investigation is required to ensure that students are using CAM safely and appropriately.

  3. Self-latching eccentric cam for dual stroke compressor or pump

    DOEpatents

    Sisk, Francis J.

    1985-01-01

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270.degree. around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass 74 of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions.

  4. Self-latching eccentric cam for dual stroke compressor or pump

    DOEpatents

    Sisk, F.J.

    1985-01-22

    For a dual capacity refrigerant compressor of the type which has an eccentric cam rotatable on a crankpin between two opposite positions which changes the total eccentricity of the crankpin and cam so as to obtain two different stroke lengths, the rotation of the cam on the crankpin being effected by a reversal of motor operation, the cam moves through an angle of about 270[degree] around the crankpin so that a centrifugal force torque tending to hold the cam in place is available at least in the reduced stroke length position of the cam, and by providing lightening cavities and eccentric weightings, the center of mass of the cam can be shifted to obtain the centrifugal torque in the proper direction at both the maximum and reduced stroke positions. 7 figs.

  5. High prevalence but limited evidence in complementary and alternative medicine: guidelines for future research

    PubMed Central

    2014-01-01

    The use of complementary and alternative Medicine (CAM) has increased over the past two decades in Europe. Nonetheless, research investigating the evidence to support its use remains limited. The CAMbrella project funded by the European Commission aimed to develop a strategic research agenda starting by systematically evaluating the state of CAM in the EU. CAMbrella involved 9 work packages covering issues such as the definition of CAM; its legal status, provision and use in the EU; and a synthesis of international research perspectives. Based on the work package reports, we developed a strategic and methodologically robust research roadmap based on expert workshops, a systematic Delphi-based process and a final consensus conference. The CAMbrella project suggests six core areas for research to examine the potential contribution of CAM to the health care challenges faced by the EU. These areas include evaluating the prevalence of CAM use in Europe; the EU cititzens’ needs and attitudes regarding CAM; the safety of CAM; the comparative effectiveness of CAM; the effects of meaning and context on CAM outcomes; and different models for integrating CAM into existing health care systems. CAM research should use methods generally accepted in the evaluation of health services, including comparative effectiveness studies and mixed-methods designs. A research strategy is urgently needed, ideally led by a European CAM coordinating research office dedicated to fostering systematic communication between EU governments, the public, charitable and industry funders, researchers and other stakeholders. A European Centre for CAM should also be established to monitor and further a coordinated research strategy with sufficient funds to commission and promote high quality, independent research focusing on the public’s health needs and pan-European collaboration. There is a disparity between highly prevalent use of CAM in Europe and solid knowledge about it. A strategic approach on CAM research should be established to investigate the identified gaps of knowledge and to address upcoming health care challenges. PMID:24499316

  6. Use of complementary and alternative medicine (CAM) by parents in their children and adolescents with epilepsy - Prevelance, predictors and parents' assessment.

    PubMed

    Hartmann, Nicole; Neininger, Martina P; Bernhard, Matthias K; Syrbe, Steffen; Nickel, Petra; Merkenschlager, Andreas; Kiess, Wieland; Bertsche, Thilo; Bertsche, Astrid

    2016-01-01

    The use of complementary and alternative medicine (CAM) is popular. Parents of children suffering from epilepsy may also consider administering CAM to their children. Systematic data about frequency of and motivations for CAM use, however, are scarce. In a university hospital's neuropaediatric department parents of patients aged 0-18 years suffering from epilepsy were consecutively invited to take part in a structured interview during 4 months in 2014. Of the invited parents, 164/165 (99%) agreed to participate. From those, 21/164 (13%) stated that they used CAM in their child. The highest independent predictive value of CAM use was the occurrence of adverse drug events (ADE) of anticonvulsants as judged by parents. Patients affected by ADE had a 5.6 higher chance of receiving CAM compared to patients without ADE. Most commonly used were homeopathy (14/21, 67%) and osteopathy (12/21, 57%). The internet was the most frequently used source of information (14/21, 67%). Of the parents, 10/21 (48%) described positive effects of CAM on seizure frequency, 12/21 (57%) on general condition of their child, and 20/21 (95%) wished to continue CAM for epilepsy therapy. From the non-users of CAM, 91/143 (66%) expressed the desire to learn more about CAM for epilepsy therapy. Our study was performed in a university hospital in a large urban city in Eastern Germany. CAM user rates can differ in other parts of Germany and Europe, in other institutions and for chronic diseases other than epilepsy. The main reason for CAM use was the occurrence of ADE of anticonvulsants. More than half of the parents saw a benefit of CAM for their children. Almost all parents wished to continue CAM use, even those who did not see concrete positive effects. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  7. Perspectives of Oncology Nurses on Complementary and Alternative Medicine in Turkey: A Cross-Sectional Survey.

    PubMed

    Gok Metin, Zehra; Izgu, Nur; Karadas, Canan; Arikan Donmez, Ayse

    In Turkey, between 22.1% and 84.1% of patients with cancer use complementary and alternative medicine (CAM). However, few CAM-related studies have focused on the perspective of oncology nurses. This study aimed to determine the knowledge, attitudes, and practices of Turkish oncology nurses regarding CAM. A descriptive cross-sectional survey of 127 participants was conducted in Ankara, Turkey. A semistructured questionnaire including characteristics, knowledge, attitudes, and practices of oncology nurses toward CAM was administered to participants. We found that more than half of nurses (54.0%) surveyed had no information on CAM modalities. Most oncology nurses (81.1%) used audiovisual media sources to obtain CAM information. Many nurses (81.3%) reported not using any CAM in cancer care, and only 26.8% recommended CAM to patients. Most nurses used CAM to accelerate wound healing (19.7%) and to manage symptoms, including constipation and diarrhea (8.8%) and anxiety (7.9%). Music (52.8%), massage (49.6%), and exercise (48.8%) were stated to be beneficial. Important barriers to use CAM for patients with cancer involved a lack of knowledge (60.6%); needing physician approval to apply any CAM methods to patients (52.1%); legal and institutional issues (47.2%); and limited educational, training, or certificate programs (44.1%). There is a need for increased knowledge about CAM by oncology nurses, considering their vital role in symptom management of patients with cancer. This can be achieved through solving legal and institutional problems, structured and comprehensive education/training programs, and the integration of CAM therapy into cancer care guidelines.

  8. Preventive Screening of Women Who Use Complementary and Alternative Medicine Providers

    PubMed Central

    Tyree, Patrick T.; Lafferty, William E.

    2009-01-01

    Abstract Background Many women use complementary and alternative medicine (CAM). Although CAM use has been associated with reductions in conventionally recommended pediatric preventive care (e.g., vaccination), little is known about associations between CAM use and receipt of recommended preventive screening in women. Methods Using Washington State insurance data from 2000 to 2003, the authors generated clustered logistic regression models, examining associations between provider-based CAM use and receipt of screening tests for Chlamydia trachomatis, breast cancer, and cervical cancer: (1) contrasting women who used CAM providers only (alternative use) and women who used both conventional and CAM providers (complementary use) with women who used conventional care only and (2) testing associations between screening and use of four specific CAM provider types—naturopathic physicians, chiropractors, massage therapists, and acupuncturists. Results Both alternative and complementary use was associated with reduced Chlamydia screening. Cancer screening increased with complementary use but decreased with alternative use of CAM. Use of naturopathy was associated with decreased mammography, whereas all four CAM therapies were positively associated with Papanicolaou testing. Conclusions When used in conjunction with conventional care, use of provider-based CAM may signal high interest in various types of health-promoting behavior, including cancer screening. Negative associations between CAM and Chlamydia screening and between naturopathy and mammography require additional study. Interventions with CAM providers and their patients, aimed at improving rates of conventionally recommended screening, might encourage greater focus on preventive care, an important task when CAM providers serve as women's only contact with the healthcare system. PMID:19630554

  9. Perception of cancer patients of their disease, self-efficacy and locus of control and usage of complementary and alternative medicine.

    PubMed

    Ebel, Marie-Desirée; Rudolph, Ivonne; Keinki, Christian; Hoppe, Andrea; Muecke, Ralph; Micke, Oliver; Muenstedt, Karsten; Huebner, Jutta

    2015-08-01

    A high percentage of cancer patients use complementary and alternative medicine (CAM). The aim of our study was to learn more about the association of CAM usage, information needs, perceived impact of disease, locus of control and self-efficacy of cancer patients. We asked patients attending a series of lectures on CAM using a standardized questionnaire which integrated questions on information needs, CAM and validated short questionnaires on self-efficacy, perception of the disease and locus of control of reinforcement. One hundred and eighty-five patients answered the questionnaire, from whom 45 % used CAM. Sixty percentage disclosed using CAM to the general practitioner and 57 % to the oncologist. Physicians and nurses, print media and the Internet are the most important source of information on CAM (used by 20-25 % each). Impact on neither daily life, perceived personal control nor coherence was associated with CAM usage, disclosure to physicians or sources of information. There also was no association between CAM usage and self-efficacy. In contrast, there was a significant association between CAM user rate and a high external locus of control. While CAM usage is agreed upon by many physicians due to the idea that it helps patients to become active and feel more in control of the disease, our data are in favor of the contrary. A strong perception of external locus of control seems to be a driver of CAM usage. Physicians should be aware of this association when counseling on CAM.

  10. Belief in complementary and alternative medicine is related to age and paranormal beliefs in adults.

    PubMed

    Van den Bulck, Jan; Custers, Kathleen

    2010-04-01

    The use of complementary and alternative medicine (CAM) is widespread, even among people who use conventional medicine. Positive beliefs about CAM are common among physicians and medical students. Little is known about the beliefs regarding CAM among the general public. Among science students, belief in CAM was predicted by belief in the paranormal. In a cross-sectional study, 712 randomly selected adults (>18 years old) responded to the CAM Health Belief Questionnaire (CHBQ) and a paranormal beliefs scale. CAM beliefs were very prevalent in this sample of adult Flemish men and women. Zero-order correlations indicated that belief in CAM was associated with age (r = 0.173 P < 0.001) level of education (r = -0.079 P = 0.039) social desirability (r = -0.119 P = 0.002) and paranormal belief (r = 0.365 P < 0.001). In a multivariate model, two variables predicted CAM beliefs. Support for CAM increased with age (regression coefficient: 0.01; 95% confidence interval (CI): 0.006 to 0.014), but the strongest relationship existed between support for CAM and beliefs in the paranormal. Paranormal beliefs accounted for 14% of the variance of the CAM beliefs (regression coefficient: 0.376; 95%: CI 0.30-0.44). The level of education (regression coefficient: 0.06; 95% CI: -0.014-0.129) and social desirability (regression coefficient: -0.023; 95% CI: -0.048-0.026) did not make a significant contribution to the explained variance (<0.1%, P = 0.867). Support of CAM was very prevalent in this Flemish adult population. CAM beliefs were strongly associated with paranormal beliefs.

  11. The Use of Complementary and Alternative Medicine among Lebanese Adults: Results from a National Survey

    PubMed Central

    Naja, F.; Alameddine, M.; Itani, L.; Shoaib, H.; Hariri, D.; Talhouk, S.

    2015-01-01

    Objective. To examine the prevalence and correlates of Complementary and Alternative Medicine (CAM) use in Lebanon. Methods. A cross-sectional survey was conducted through face to face interviews on a nationally representative sample of 1,475 Lebanese adults. The survey questionnaire explored the sociodemographic and health related characteristics as well as the types and modes of CAM use. The main outcome in this study was the use of CAM during the last 12 months. Results. Prevalence of CAM use was 29.87% with “folk herbs” being the most commonly used (75%). Two out of five CAM users indicated using it as alternative to conventional therapies and only 28.4% of users disclosed the use of CAM to their physician. CAM use was significantly associated with higher income, presence of a chronic disease, and lack of access to needed health care. Lower odds of CAM use were observed among older adults and those with a higher education level. Conclusions. This study revealed a high prevalence of CAM use in Lebanon. Health policy and decision makers need to facilitate proper regulation and integration of CAM into mainstream medicine and educate health care providers and the public alike on the safe and effective use of CAM therapies. PMID:26106436

  12. Negotiating complementary and alternative medicine use in primary care visits with older patients

    PubMed Central

    Koenig, Christopher J.; Ho, Evelyn Y.; Yadegar, Vivien; Tarn, Derjung M.

    2013-01-01

    Objective To empirically investigate the ways in which patients and providers discuss Complementary and Alternative Medicine (CAM) treatment in primary care visits. Methods Audio recordings from visits between 256 adult patients aged 50 years and older and 28 primary care physicians were transcribed and analyzed using discourse analysis, an empirical sociolinguistic methodology focusing on how language is used to negotiate meaning. Results Discussion about CAM occurred 128 times in 82 of 256 visits (32.0%). The most frequently discussed CAM modalities were non-vitamin, non-mineral supplements and massage. Three physician–patient interactions were analyzed turn-by-turn to demonstrate negotiations about CAM use. Patients raised CAM discussions to seek physician expertise about treatments, and physicians adopted a range of responses along a continuum that included encouragement, neutrality, and discouragement. Despite differential knowledge about CAM treatments, physicians helped patients assess the risks and benefits of CAM treatments and made recommendations based on patient preferences for treatment. Conclusion Regardless of a physician's stance or knowledge about CAM, she or he can help patients negotiate CAM treatment decisions. Practice implications Providers do not have to possess extensive knowledge about specific CAM treatments to have meaningful discussions with patients and to give patients a framework for evaluating CAM treatment use. PMID:22483672

  13. Complementary and alternative medicine use among adults in Enugu, Nigeria.

    PubMed

    Onyiapat, Jane-Lovena E; Okoronkwo, Ijeoma L; Ogbonnaya, Ngozi P

    2011-03-04

    Attention and interest in the use of Complementary and Alternative Medicine (CAM) has been reawakened globally. Evidence from studies carried out in different parts of the world has established that CAM use is very common and varies among populations. This study investigated the use of CAM among adults in Enugu urban, irrespective of their health status. It provided information on the prevalence of CAM use, forms of CAM remedies used and reasons for utilizing them The study areas were three local government areas in Enugu urban of Enugu State. Cross-sectional survey using questionnaires were administered to randomly selected households. All consenting participants were used for the study 732 participants (37.2% males and 62.8% females) were used for the study. Ages ranged from 18 - 65 years. 620 (84.7%) of the adult population have used CAM ranging from one single type to twenty different types while 112 (15.3%) have not used any form of CAM. The most commonly used CAM product was the biological products, followed by prayer/faith healing. Major reasons for using CAM include their natural state and also for health promotion and maintenance. There is need for adequate policy formulation and regulation to ensure safety and efficacy of CAM products. Measures to ensure rational use of CAM should be instituted.

  14. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple.

    PubMed

    Wai, Ching M; VanBuren, Robert; Zhang, Jisen; Huang, Lixian; Miao, Wenjing; Edger, Patrick P; Yim, Won C; Priest, Henry D; Meyers, Blake C; Mockler, Todd; Smith, J Andrew C; Cushman, John C; Ming, Ray

    2017-10-01

    The altered carbon assimilation pathway of crassulacean acid metabolism (CAM) photosynthesis results in an up to 80% higher water-use efficiency than C 3 photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA) expression patterns in the obligate CAM plant pineapple [Ananas comosus (L.) Merr.]. The high-resolution transcriptome atlas allowed us to distinguish between CAM-related and non-CAM gene copies. A differential gene co-expression network across green and white leaf diel datasets identified genes with circadian oscillation, CAM-related functions, and source-sink relations. Gene co-expression clusters containing CAM pathway genes are enriched with clock-associated cis-elements, suggesting circadian regulation of CAM. About 20% of pineapple microRNAs have diel expression patterns, with several that target key CAM-related genes. Expression and physiology data provide a model for CAM-specific carbohydrate flux and long-distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering of CAM into C 3 photosynthesis crop species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  15. Negotiating complementary and alternative medicine use in primary care visits with older patients.

    PubMed

    Koenig, Christopher J; Ho, Evelyn Y; Yadegar, Vivien; Tarn, Derjung M

    2012-12-01

    To empirically investigate the ways in which patients and providers discuss Complementary and Alternative Medicine (CAM) treatment in primary care visits. Audio recordings from visits between 256 adult patients aged 50 years and older and 28 primary care physicians were transcribed and analyzed using discourse analysis, an empirical sociolinguistic methodology focusing on how language is used to negotiate meaning. Discussion about CAM occurred 128 times in 82 of 256 visits (32.0%). The most frequently discussed CAM modalities were non-vitamin, non-mineral supplements and massage. Three physician-patient interactions were analyzed turn-by-turn to demonstrate negotiations about CAM use. Patients raised CAM discussions to seek physician expertise about treatments, and physicians adopted a range of responses along a continuum that included encouragement, neutrality, and discouragement. Despite differential knowledge about CAM treatments, physicians helped patients assess the risks and benefits of CAM treatments and made recommendations based on patient preferences for treatment. Regardless of a physician's stance or knowledge about CAM, she or he can help patients negotiate CAM treatment decisions. Providers do not have to possess extensive knowledge about specific CAM treatments to have meaningful discussions with patients and to give patients a framework for evaluating CAM treatment use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Limited Effect of Anthropogenic Nitrogen Oxides on Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Unger, N.; Hodzic, A.; Knote, C. J.; Tilmes, S.; Emmons, L. K.; Lamarque, J. F.; Yu, P.

    2014-12-01

    Globally secondary organic aerosol (SOA) is mostly formed from biogenic vegetation emissions and as such is regarded as natural aerosol that cannot be reduced by emission control legislation. However, recent research implies that human activities facilitate SOA formation by affecting the amount of precursor emission, the chemical processing and the partitioning into the aerosol phase. Among the multiple human influences, nitrogen oxides (NO + NO2 = NOx) have been assumed to play a critical role in the chemical formation of low volatile compounds. The goal of this study is to improve the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-Chem) by implementing an updated 4-product Volatility Basis Set (VBS) scheme, and apply it to investigate the impact of anthropogenic NOx on SOA. We first compare three different SOA parameterizations: a 2-product model and the updated VBS model both with and without a SOA aging parameterization. Secondly we evaluate predicted organic aerosol amounts against surface measurement from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns. We then perform sensitivity experiments to examine how the SOA loading responds to a 50% reduction in anthropogenic NOx in different regions. We find limited SOA reductions of -2.3%, -5.6% and -4.0% for global, southeastern U.S. and Amazon NOx perturbations, respectively. To investigate the chemical processes in more detail, we also use a simplified box model with the same gas-phase chemistry and gas-aerosol partitioning mechanism as in CAM4-Chem to examine the SOA yields dependence on initial precursor emissions and background NOx level. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- versus high-NOx pathways, OH versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.

  17. Complementary and alternative medicine (CAM) use in an Italian cohort of pediatric headache patients: the tip of the iceberg.

    PubMed

    Dalla Libera, D; Colombo, B; Pavan, G; Comi, G

    2014-05-01

    The use of complementary alternative medicine (CAM) in paediatric populations is considerably increased, especially for pain and chronic conditions, as demonstrated by epidemiological surveys both in Europe and in the USA. In our study, CAM was used in 76 % patients of a cohort of 124 children affected by headache (age 4-16 years; 67 % female; 70 % migraine without aura, 12 % migraine with aura, 18 % tensive headache according to IHS criteria) consecutively recruited at a Pediatric Headache University Center. CAM was used as preventive treatment in 80 % cases. The main reasons for seeking CAM were: the wish of avoiding chronic use of drugs with their related side effects, the desire of an integrated approach, the reported inefficacy of conventional medicine, and a more suitable children disposition to CAM than to pharmacological compound. Female gender, younger age, migraine without aura, parents' higher educational status, maternal use of CAM and other associated chronic conditions, correlated with CAM use (p < 0.05). 73 % patients chose CAM also to treat other diseases (i.e. allergies, colitis, asthma, insomnia, muscle-scheletric disorders and dysmenorrhoea). The most assumed CAM were: herbal remedies (64 %) such as Valeriana, Ginkgo biloba, Boswellia serrata, Vitex agnus-castus, passion flower, Linden tree; vitamins/minerals supplements (40 %) with magnesium, 5-Hydroxytryptophan, vitamin B6 or B12, Multivitamin compounds; Homeopathy (47 %) with Silicea, Ignatia Amara, Pulsatilla, Aconitum, Nux Vomica, Calcarea phosphorica; physical treatment (45 %) such as Ayurvedic massage, shiatsu, osteopathy; yoga (33 %); acupuncture (11 %). CAM-often integrated with conventional care-was auto-prescribed in 30 % of the cases, suggested by non-physician in 22 %, by the General Practitioner in 24 % and by paediatrician in 24 %. Both general practitioners and neurologists were mostly unaware of their patients' CAM use. In conclusion, neurologists should inquire for CAM use and be prepared to learn about CAM therapies or to directly interact with CAM trained experts, in order to coordinate an integrative approach to health, as especially required in paediatric headache patients and their parents. Further studies are required to investigate safety and efficacy of CAM in pediatric headache, as a possible side-medicine to conventional pharmacological approach.

  18. The use of complementary and alternative medicine by patients with cancer: a cross-sectional survey in Saudi Arabia.

    PubMed

    Abuelgasim, Khadega A; Alsharhan, Yousef; Alenzi, Tariq; Alhazzani, Abdulaziz; Ali, Yosra Z; Jazieh, Abdul Rahman

    2018-03-12

    A significant proportion of cancer patients use complementary and alternative medicine (CAM) along with conventional therapies (CT), whereas a smaller proportion delay or defer CT in favor of CAM. Previous studies exploring CAM use among cancer patients in the Middle East region have shown discrepant results. This study investigates the prevalence and pattern of CAM use by Saudi cancer patients. It also discusses the possible benefits and harm related to CAM use by cancer patients, and it explores the beliefs patients hold and their transparency with health care providers regarding their CAM use. A cross-sectional study was conducted in oncology wards and outpatient clinics by using face-to-face interviews with the participants. A total of 156 patients with a median age of 50 years (18-84) participated in the study. The prevalence of CAM use was 69.9%; the most prominent types of CAM were those of a religious nature, such as supplication (95.4%), Quran recitation (88.1%), consuming Zamzam water (84.4%), and water upon which the Quran has been read (63.3%). Drinking camel milk was reported by 24.1% of CAM users, whereas camel urine was consumed by 15.7%. A variety of reasons were given for CAM use: 75% reported that they were using CAM to treat cancer, enhance mood (18.3%),control pain (11.9%), enhance the immune system (11%),increase physical fitness (6.4%), and improve appetite (4.6%). Thirty percent of CAM users had discussed the issue with their doctors; only 7.7% had done so with their nurses. The use of CAM, including camel products, is highly prevalent among cancer patients in the Middle East, but these patients do not necessarily divulge their CAM use to their treating physicians and nurses. Although CAM use can be beneficial, some can be very harmful, especially for cancer patients. Association is known between camel products and brucellosis and Middle East respiratory syndrome coronavirus (MERS-CoV). Both can lead to tremendous morbidity in immune-compromised patients. Doctor-patient communication regarding CAM use is of paramount importance in cancer care.

  19. Complementary and alternative medicine use amongst Malaysian orthopaedic oncology patients.

    PubMed

    Dhanoa, Amreeta; Yong, Tze Lek; Yeap, Stephanie Jin Leng; Lee, Isaac Shi Zhung; Singh, Vivek Ajit

    2014-10-17

    Although studies have shown that a large proportion of cancer patients use CAM, no study on CAM use amongst orthopaedic oncology patients has been published. Therefore, this study aims to determine the prevalence, characteristics and factors associated with CAM use amongst orthopaedic oncology patients. All consecutive consenting patients/parents who presented at the Orthopaedic Oncology Clinic, University Malaya Medical Centre (1st January to 31st December 2013) were interviewed using a structured questionnaire. Overall, one hundred sixty-eight of the 274 patients recruited (61.3%) had used CAM at some time during their current illness. The prevalence of CAM used was 68% (123/181) for patients with malignant tumours and 48.4% (45/93) for patients with benign tumours. The most popular CAMs were biological-based therapies (90.5%), followed by mind-body techniques (40.5%). The most frequently used biological therapies were mega/multivitamins (31%), snakehead (Chana striatus) (28%) and sea cucumber (Stichopus horrens) (18%); whereas prayers (31%) and holy water (13%) dominated the mind-body category. Common reasons for CAM use were to improve physical well-being (60.1%), try out everything that would help (59.5%) and to enhance wound-healing (39.3%). Independent predictors for CAM use in multivariate analysis were paediatric patients [OR 2.46; 95% CI 0.99-6.06; p = 0.05], malignant tumours [OR 1.90; 95% CI 1.12-3.25; p = 0.018] and patients who underwent surgery [OR 2.06; 95% CI 1.15-3.69; p = 0.015]. Majority patients started taking CAMs following suggestions from family members (53%) and friends (49%). Sixty-six percent of patients felt they actually benefitted from CAM and 83.3% were satisfied/very satisfied. Only 5 patients reported side-effects. Majority of CAM users planned to continue CAM use or recommend it to others. However, only 31.5% of patients disclosed their CAM usage to their doctors. This survey revealed a high prevalence of CAM usage amongst orthopaedic oncology patients, with majority patients expressing satisfaction towards CAM. Oncologists should proactively ask patients about CAM to prevent potential adverse effects, as most patients do not share this information with them.

  20. Development and classification of an operational definition of complementary and alternative medicine for the Cochrane Collaboration

    PubMed Central

    Wieland, L. Susan; Manheimer, Eric; Berman, Brian M.

    2011-01-01

    Over the past decade the Cochrane Collaboration has been an increasingly important source of information on complementary and alternative medicine (CAM) therapies. From 2007 to 2008 the Cochrane CAM Field developed a topics list that allowed us to categorize all 396 Cochrane reviews related to CAM (as of The Cochrane Library, Issue 4, 2009). This topics list is an advance in making Cochrane reviews on CAM topics accessible to the public. In this paper, we discuss challenges in developing the topics list, including developing an operational definition of CAM, deciding which reviews should be included within the CAM Field’s scope, developing the structured list of CAM Field-specific topics, and determining where in the topics list the reviews should be placed. Although aspects of our operational definition of CAM are open to revision, a standardized definition provides us with an objective, reproducible and systematic method for defining and classifying CAM therapies. PMID:21717826

  1. Use and interest in complementary and alternative medicine among college students seeking healthcare at a university campus student health center.

    PubMed

    Nguyen, Jannett; Liu, Michael A; Patel, Rohini J; Tahara, Keli; Nguyen, Annie L

    2016-08-01

    There is growing data on complementary and alternative medicine (CAM) preferences among college students. While several studies have focused on undergraduate students, there is limited data on graduate students. Cross sectional analysis of undergraduate and graduate students seeking medical care at the University of California Irvine's Student Health Center (SHC). The survey assessed previous CAM use and preferences for future CAM use and education. The majority (67.0%) had used CAM within the last year, 27.0% would use CAM for their current health condition, and 51.9% would consider CAM for their current health condition if they were more knowledgeable. Most respondents desired more CAM education and indicated that they would try CAM modalities if covered under insurance. Most college students requested more knowledge to assist in their decisions to use CAM. These findings provide insight for health centers on the preferences of college student patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cam-Operated Pitch-Change Apparatus

    NASA Technical Reports Server (NTRS)

    Barnes, P. E. (Inventor)

    1978-01-01

    A pitch-change apparatus for a ducted thrust fan having a plurality of variable pitch blades employs a camming ring mounted coaxially at the hub at an axially fixed station along the hub axis for rotation about the hub axis both with the blades and relative to the blades. The ring has a generally spherical outer periphery and a plurality of helical camming grooves extending in a generally spherical plane on the periphery. Each of the variable pitch blades is connected to a pitch-change horn having a cam follower mounted on its outer end, and the camming ring and the horns are so arranged about the hub axis that the plurality of followers on the horns engage respectively the plurality of helical camming grooves. Rotary drive means rotates the camming ring relative to the blades to cause blade pitch to be changed through the cooperative operation of the camming grooves on the ring and the cam followers on the pitch-change horns.

  3. Attitudes, Patterns of Recommendation, and Communication of Pediatric Providers About Complementary and Alternative Medicine in a Large Metropolitan Children’s Hospital

    PubMed Central

    Kundu, Anjana; Tassone, Rosalie F.; Jimenez, Nathalia; Seidel, Kristy; Valentine, Jessica K.; Pagel, Paul S.

    2014-01-01

    The authors conducted an Email survey of their medical staff to explore the attitudes, patterns of recommendation, and communication of pediatric providers about complementary and alternative medicine (CAM) in a large metropolitan children’s hospital. Two thirds of the respondents reported awareness about their patients’ CAM therapy use (65%) and recommended CAM therapy to their patients (67%). Providers who reported personal use of CAM (71%) were more likely to recommend CAM to their patients compared with those who do not (76% vs 45%; P < .05). One half of pediatric providers reported occasional consultation with their patient’s CAM provider, but bidirectional communication was rare (4%). Specific changes in care based on a CAM provider’s recommendations were also unusual (4%). Despite the positive attitudes about and willingness to recommend CAM by pediatric providers, communication between these clinicians and CAM providers may be less than ideal. PMID:21127080

  4. Complementary and Alternative Medicine Use in Infertility: Cultural and Religious Influences in a Multicultural Canadian Setting

    PubMed Central

    Read, Suzanne C.; Carrier, Marie-Eve; Whitley, Rob; Gold, Ian; Tulandi, Togas

    2014-01-01

    Abstract Objectives: To explore the use of complementary and alternative medicine (CAM) for infertility in a multicultural healthcare setting and to compare Western and non-Western infertility patients' reasons for using CAM and the meanings they attribute to CAM use. Design: Qualitative semi-structured interviews using thematic analysis. Settings/location: Two infertility clinics in Montreal, Quebec, Canada. Participants: An ethnoculturally varied sample of 32 heterosexual infertile couples. Results: CAM used included lifestyle changes (e.g., changing diet, exercise), alternative medicine (e.g., acupuncture, herbal medicines), and religious methods (e.g., prayers, religious talismans). Patients expressed three attitudes toward CAM: desperate hope, casual optimism, and amused skepticism. Participants' CAM use was consistent with cultural traditions of health and fertility: Westerners relied primarily on biomedicine and used CAM mainly for relaxation, whereas non-Westerners' CAM use was often influenced by culture-specific knowledge of health, illness and fertility. Conclusions: Understanding patients' CAM use may help clinicians provide culturally sensitive, patient-centered care. PMID:25127071

  5. Effect of gel formation on the dissolution behavior of clarithromycin tablets.

    PubMed

    Inukai, Koki; Takiyama, Kei; Noguchi, Shuji; Iwao, Yasunori; Itai, Shigeru

    2017-04-15

    Clarithromycin (CAM) is a macrolide antibiotic that is widely used at clinical sites. We found that release of CAM is suppressed when tablets of CAM were exposed to an external solvent containing carboxylate buffers such as citrate. The suppressed release of CAM can be attributed to the formation of gels on the tablet surfaces, which inhibits penetration of the solvent into the tablet and thus disintegration of the tablets. Delayed disintegration of the tablets was also observed for commercial tablets. This suggests that taking CAM and carboxylates at the same time might be avoided. The crystal structure of CAM citrate reveals that molecular chains of CAM are cross-linked by hydrogen bond between citrate groups in the crystal. The crystal structure indicates that cross-linked CAM chains of the three-dimensional mesh structure might also be formed in high concentration CAM solutions in the presence of carboxylates, resulting in gel formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prevalence and correlates of complementary and alternative medicine use among diabetic patients in Beirut, Lebanon: a cross-sectional study

    PubMed Central

    2014-01-01

    Background Patients with Type 2 Diabetes Mellitus (T2DM) are increasingly using complementary and alternative medicine (CAM) therapies due to difficulty in adhering to the therapeutic regimens and lifestyle changes necessary for disease management. Little is known about the prevalence and mode of CAM use among patients with T2DM in Lebanon. Objective To assess the prevalence and modes of CAM use among patients with T2DM residing in Beirut, Lebanon. Methods A cross-sectional survey of T2DM patients was conducted on patients recruited from two major referral centers in Beirut- a public hospital and a private academic medical center. In a face-to-face interview, participants completed a questionnaire comprised of three sections: socio-demographic, diabetes characteristics and types and modes of CAM use. Descriptive statistics, univariate and multivariate logistic regression analyses were utilized to assess the prevalence and correlates of CAM use, as well as whether the use was complementary or alternative to mainstream medicine. The main outcome in this study, CAM use, was defined as using CAM at least once since diagnosis with T2DM. Results A total of 333 T2DM patients completed the survey (response rate: 94.6%). Prevalence of CAM use since diagnosis with the disease was 38%. After adjustment, CAM use was significantly associated with a “married” status, a longer duration of T2DM, the presence of disease complications, and a positive family history of the disease. Folk foods and herbs were the most commonly used CAM followed by natural health products. One in five patients used CAM as alternative to conventional treatment. Only 7% of CAM users disclosed the CAM use to their treating physician. Health care practitioners were the least cited (7%) as influencing the choice of CAM among users. Conclusion The use of CAM therapies among T2DM patients in Lebanon is prevalent. Decision makers and care providers must fully understand the potential risks and benefits of CAM therapies to appropriately advise their patients. Attention must be dedicated to educating T2DM patients on the importance of disclosing CAM use to their physicians especially patients with a family history of diabetes, and those who have had the disease for a long time. PMID:24906634

  7. Prevalence, patterns, and perceived value of complementary and alternative medicine among cancer patients: a cross-sectional, descriptive study.

    PubMed

    Bahall, Mandreker

    2017-06-30

    Sophisticated conventional medicine (CM) has brought significant advances to cancer prevention, detection, and treatment. However, many cancer patients still turn to complementary and alternative medicine (CAM) treatment. This study explored the prevalence, patterns, and perceived value of CAM among cancer patients. This quantitative descriptive study was conducted between March 1, 2015, and July 31, 2015, among a cross-sectional, convenience sample of patients from the Oncology Department of San Fernando General Hospital in Trinidad and Tobago. Face-to-face interviews were conducted at the oncology clinic and treatment suite after obtaining informed consent. Data analysis included descriptive analysis, chi-square tests, and binary logistic regression analysis. The prevalence of CAM use among a sample of 350 cancer patients was 39.1% (39.6% for breast cancer, 44.4% for prostate cancer, 37% for ovarian cancer, and 38.7% for colon cancer patients). Herbs were the most common type of CAM used (93.4%), followed by spiritual therapy (73.7%). CAM use was more prevalent among females (68.6%), Indo-Trinidadians (63.5%), and patients aged 41-50 years (37.2%). The majority (70%-80%) rated CAM efficacy on perceived value. CAM was used mainly because of a desire to try anything that might help (67.6%), followed by it being congruent with the patients' beliefs (59.1%). Patients knew about CAM mainly through friends (69.3%) and family (69.3%). Most patients were generally satisfied (93.6%) and considered CAM helpful (89.8%), but the majority never informed their health care provider of CAM use (78.8%). Patients reported the simultaneous use of more than one type of CAM, without considering or knowing of possible side-effects. The perceived value of CAM included empowerment, control, cure, and improved quality of life. CAM use was associated with age, but no predictors of CAM use could be identified. Medicinal herbs and spiritual therapy are commonly used among cancer patients because of perceived benefits and satisfaction. CAM use is more prevalent among females, Indo-Trinidadians, and patients aged 41-50 years old. There are no useful predictors of CAM use. More than one type of CAM is commonly used simultaneously without disclosure to health care providers.

  8. Knowledge of, Attitudes Toward, and Experience of Complementary and Alternative Medicine in Western Medicine– and Oriental Medicine–Trained Physicians in Korea

    PubMed Central

    Lee, Sang-Il; Khang, Young-Ho; Lee, Moo-Song; Kang, Weechang

    2002-01-01

    Objectives. We compared knowledge of, attitudes toward, and experience with complementary and alternative medicine (CAM) among Western medicine–trained doctors (WMDs) and Oriental medicine–trained doctors (OMDs). Methods. In Korea, 502 WMDs and 500 OMDs were interviewed with a structured questionnaire. Results. OMDs held more favorable attitudes toward CAM than did WMDs. OMDs possessed a deeper understanding of and greater experience with CAM. OMDs more readily endorsed health beliefs congruent with CAM. Conclusions. In the future, CAM can be more readily used by OMDs than by WMDs. Because evidence for the effectiveness of CAM remains sparse, more research is needed for the prudent use of CAM in Korea. An education and training system for potential CAM providers remains to be developed. PMID:12453822

  9. Perspectives of complementary and alternative medicine (CAM) practitioners in the support and treatment of infertility.

    PubMed

    O'Reilly, Erin; Sevigny, Marika; Sabarre, Kelley-Anne; Phillips, Karen P

    2014-10-14

    Infertility patients are increasingly using complementary and alternative medicine (CAM) to supplement or replace conventional fertility treatments. The objective of this study was to determine the roles of CAM practitioners in the support and treatment of infertility. Ten semi-structured interviews were conducted in Ottawa, Canada in 2011 with CAM practitioners who specialized in naturopathy, acupuncture, traditional Chinese medicine, hypnotherapy and integrated medicine. CAM practitioners played an active role in both treatment and support of infertility, using a holistic, interdisciplinary and individualized approach. CAM practitioners recognized biological but also environmental and psychosomatic determinants of infertility. Participants were receptive to working with physicians, however little collaboration was described. Integrated infertility patient care through both collaboration with CAM practitioners and incorporation of CAM's holistic, individualized and interdisciplinary approaches would greatly benefit infertility patients.

  10. Complementary and Alternative Medicine Use and Adherence to Asthma Medications among Latino and Non-Latino White Families

    PubMed Central

    McQuaid, Elizabeth L.; Fedele, David A.; Adams, Sue K.; Koinis-Mitchell, Daphne; Mitchell, Jessica; Kopel, Sheryl J.; Seifer, Ronald; Jandasek, Barbara; Fritz, Gregory K.; Canino, Glorisa

    2013-01-01

    Objective The current study sought to evaluate patterns of complementary and alternative medicine (CAM) use in a sample of Latino and Non-Latino white (NLW) children with asthma, to determine whether parental beliefs about conventional medications and barriers to obtaining these medications were related to CAM use, and to assess whether CAM use was associated with decreased adherence to controller medications. Methods Participants included 574 families of children with asthma from Non-Latino White, Puerto Rican, and Dominican backgrounds from RI and from Island Puerto Rico. All parents completed a brief checklist of barriers to medication use and an assessment of CAM approaches. A subsample of 259 families had controller medication use monitored objectively for approximately one month by MDILog (fluticasone propionate), TrackCap (montelukast), or dosage counter (fluticasone/salmeterol combination). Results Prevalence of CAM use was high among Latino families. Perceived barriers to obtaining medication were related to increased CAM use in Puerto Rican families from RI. Elevated medication concerns were positively associated with CAM use among NLW and Island PR families. CAM use was positively related to objective adherence within NLW families, and unrelated in other groups. Conclusions CAM use is common among Latino families with asthma. Among some families, CAM use may be initiated as a way to cope with barriers to obtaining medication or when parents have concerns about conventional medications. Families who report CAM use do not appear to be substituting CAM for conventional asthma medication. PMID:24602583

  11. Family Medicine Residency Program Directors Attitudes and Knowledge of Family Medicine CAM Competencies

    PubMed Central

    Gardiner, Paula; Filippelli, Amanda C.; Lebensohn, Patricia; Bonakdar, Robert

    2013-01-01

    Context Little is known about the incorporation of integrative medicine (IM) and complementary and alternative medicine (CAM) into family medicine residency programs. Objective The Society for Teachers of Family Medicine (STFM) approved a set of CAM/IM competencies for family medicine residencies. We hope to evaluate with an online survey tool, whether residency programs are implementing such competencies into their curriculum. We also hope to assess the knowledge and attitudes of Residency Directors (RDs) on the CAM/IM competencies. Design A survey was distributed by the CAFM (Council of Academic Family Medicine) Educational Research Alliance to RDs via email. The survey was distributed to 431 RDs. Of those who received it, 212 responded for a response rate of 49.1%. Questions assessed the knowledge and attitudes of CAM/IM competencies and incorporation of CAM/IM into residency curriculum. Results Forty-five percent of RDs were aware of the competencies. In term of RD attitudes, 58% reported that CAM/IM is an important component of residents' curriculum yet, 60% report not having specific learning objectives for CAM/IM in their residency curriculum. Among all programs, barriers to CAM/IM implementation included: time in residents' schedules (77%); faculty training (75%); access to CAM experts (43%); lack of reimbursement (43%), and financial resources (29%). Conclusions While many RDs are aware of the STFM CAM/IM competencies and acknowledge their role in residence education, there are many barriers preventing residencies to implementing the STFM CAM/IM competencies. PMID:24021471

  12. Family medicine residency program directors attitudes and knowledge of family medicine CAM competencies.

    PubMed

    Gardiner, Paula; Filippelli, Amanda C; Lebensohn, Patricia; Bonakdar, Robert

    2013-01-01

    Little is known about the incorporation of integrative medicine (IM) and complementary and alternative medicine (CAM) into family medicine residency programs. The Society for Teachers of Family Medicine (STFM) approved a set of CAM/IM competencies for family medicine residencies. We hope to evaluate whether residency programs are implementing such competencies into their curriculum using an online survey tool. We also hope to assess the knowledge and attitudes of Residency Directors (RDs) on the CAM/IM competencies. A survey was distributed by the Council of Academic Family Medicine (CAFM) Educational Research Alliance to RDs via e-mail. The survey was distributed to 431 RDs. Of those who received it, 212 responded, giving a response rate of 49.1%. Questions assessed the knowledge and attitudes of CAM/IM competencies and incorporation of CAM/IM into the residency curriculum. Forty-five percent of RDs were aware of the competencies. In terms of RD attitudes, 58% reported that CAM/IM is an important component of residents' curriculum; yet, 60% report not having specific learning objectives for CAM/IM in their residency curriculum. Among all programs, barriers to CAM/IM implementation included time in residents' schedules (77%); faculty training (75%); access to CAM experts (43%); lack of reimbursement (43%); and financial resources (29%). While many RDs are aware of the STFM CAM/IM competencies and acknowledge their role in residence education, there are many barriers that prevent residencies from implementing the STFM CAM/IM competencies. © 2013 Elsevier Inc. All rights reserved.

  13. Comparative study of RetCamRetCam II vs. binocular ophthalmoscopy in a screening program for retinopathy of prematurity.

    PubMed

    Tejada-Palacios, P; Zarratea, L; Moral, M; de la Cruz-Bértolo, J

    2015-08-01

    To determine the performance of RetCam vs. binocular ophthalmoscopy (BIO) in a screening program for retinopathy of prematurity (ROP). Observational comparative study with prospective data collection. Examinations with RetCam (n=169) were performed on 83 infants included in a screening program for ROP and stored for analysis at a later stage. An experienced ophthalmologist examined the ocular fundus with binocular indirect ophthalmoscopy (BIO). The RetCam images were assessed for the presence of ROP, zone, grade, and presence of plus disease. RetCam and BIO data were compared by visually to estimate sensitivity, specificity, positive (VPP) and negative (VPN) predictive values. ROP disease was detected in 108 eyes with BIO, and in 74 with RetCam. Out of 306 eyes examined with RetCam, false negative results were found in 34 eyes, with no false positives. Sensitivity of RetCam exam vs. BIO was 0.68, and specificity was 0.99. Positive predictive value was 0.93 and negative predictive value was 0.85. All 34 ROP cases not detected with RetCam were in zone III or outer zone II. They were all mild and regressed spontaneously. No threshold ROP was missed with RetCam. Binocular indirect ophthalmoscopy is the reference method for the diagnosis of ROP. RetCam may be used as an alternative for ROP screening. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Attitudes of members of the German Society for Palliative Medicine toward complementary and alternative medicine for cancer patients.

    PubMed

    Conrad, A C; Muenstedt, K; Micke, O; Prott, F J; Muecke, R; Huebner, J

    2014-07-01

    A high proportion of cancer patients use complementary and alternative medicine (CAM). In oncology, risks of CAM are side effects and interactions. Our aim was to conduct a survey on professionals in palliative care regarding attitudes toward CAM. An internet-based survey with a standardized questionnaire was sent to all members of the German Society for Palliative Care. The questionnaire collected data on attitude toward CAM and experiences. Six hundred and ninety questionnaires (19 %) were returned (49 % physicians, 35 % nurses, 3 % psychologists). Acceptance of CAM is high (92 % for complementary and 54 % for alternative medicine). Most participants had already been asked on CAM by patients (95 %) and relatives (89 %). Forty-four percent already had used complementary methods and 5 % alternative methods. Only 21 % think themselves adequately informed. Seventy-four percent would use complementary methods in a patient with advanced tumor, and 62 % would use alternative therapy in patients if there was no other therapy. Even from those who are skeptical 45 % would treat a patient with alternative methods. In order to inform patients on CAM and to further patients' autonomy, evidence on benefits and harms of CAM must be provided. As awareness of risks from CAM is low and critical appraisal especially of alternative medicine missing, but interest on information on CAM is high, experts should provide evidence-based recommendations for CAM in palliative care to members of different professions. This could be done by a curriculum focusing on the most often used CAM methods.

  15. Laser Transformation Hardening of Firing Zone Cutout Cams.

    DTIC Science & Technology

    1981-06-01

    bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...salt bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...Patterns ........ ................ 8 9 Laser Beam Step Pattern ...... .................. .. 10 10 Hardness Profile, 4340 Steel

  16. Physician and patient attitudes towards complementary and alternative medicine in obstetrics and gynecology

    PubMed Central

    Furlow, Mandi L; Patel, Divya A; Sen, Ananda; Liu, J Rebecca

    2008-01-01

    Background In the U.S., complementary and alternative medicine (CAM) use is most prevalent among reproductive age, educated women. We sought to determine general attitudes and approaches to CAM among obstetric and gynecology patients and physicians. Methods Obstetrician-gynecologist members of the American Medical Association in the state of Michigan and obstetric-gynecology patients at the University of Michigan were surveyed. Physician and patient attitudes and practices regarding CAM were characterized. Results Surveys were obtained from 401 physicians and 483 patients. Physicians appeared to have a more positive attitude towards CAM as compared to patients, and most reported routinely endorsing, providing or referring patients for at least one CAM modality. The most commonly used CAM interventions by patients were divergent from those rated highest among physicians, and most patients did not consult with a health care provider prior to starting CAM. Conclusion Although obstetrics/gynecology physicians and patients have a positive attitude towards CAM, physician and patients' view of the most effective CAM therapies were incongruent. Obstetrician/gynecologists should routinely ask their patients about their use of CAM with the goal of providing responsible, evidence-based advice to optimize patient care. PMID:18582380

  17. AUTONOMOUS AND NONAUTONOMOUS REGULATION OF WNT-MEDIATED NEURONAL POLARITY BY THE C. ELEGANS ROR KINASE CAM-1

    PubMed Central

    Chien, Shih-Chieh Jason; Gurling, Mark; Kim, Changsung; Craft, Teresa; Forrester, Wayne; Garriga, Gian

    2015-01-01

    Wnts are a conserved family of secreted glycoproteins that regulate various developmental processes in metazoans. Three of the five C. elegans Wnts, CWN-1, CWN-2 and EGL-20, and the sole Wnt receptor of the Ror kinase family, CAM-1, are known to regulate the anterior polarization of the mechanosensory neuron ALM. Here we show that CAM-1 and the Frizzled receptor MOM-5 act in parallel pathways to control ALM polarity. We also show that CAM-1 has two functions in this process: an autonomous signaling function that promotes anterior polarization and a nonautonomous Wnt-antagonistic function that inhibits anterior polarization. These antagonistic activities can account for the weak ALM phenotypes displayed by cam-1 mutants. Our observations suggest that CAM-1 could function as a Wnt receptor in many developmental processes, but the analysis of cam-1 mutants may fail to reveal CAM-1’s role as a receptor in these processes because of its Wnt-antagonistic activity. In this model, loss of CAM-1 results in increased levels of Wnts that act through other Wnt receptors, masking CAM-1’s autonomous role as a Wnt receptor. PMID:25917219

  18. Integration of complementary and alternative medicine information and advice in chronic disease management guidelines.

    PubMed

    Team, Victoria; Canaway, Rachel; Manderson, Lenore

    2011-01-01

    The growing evidence on the benefits and risks of complementary and alternative medicine (CAM) and its high rate of use (69% of Australians) - particularly for chronic or recurrent conditions - means increasing attention on CAM. However, few people disclose CAM use to their GP, and health professionals tend to inadequately discuss CAM-related issues with their patients, partly due to insufficient knowledge. As clinical and non-clinical chronic condition management guidelines are a means to educate primary health care practitioners, we undertook a content analysis of guidelines relevant to two common chronic conditions - cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) - to assess their provision of CAM-related information. Ten current Australian guidelines were reviewed, revealing scant CAM content. When available, the CAM-relevant information was brief, in some cases unclear, inconclusive and lacking in direction to the GP or health care provider. Although we focus on CVD and T2DM, we argue the value of all chronic condition management guidelines integrating relevant evidence-informed information and advice on CAM risks, benefits and referrals, to increase GP awareness and knowledge of appropriate CAM therapies, and potentially to facilitate doctor-client discussion about CAM.

  19. Prevalence and parental perceptions of complementary and alternative medicine use by children with cancer in a multi-ethnic Southeast Asian population.

    PubMed

    Hamidah, Alias; Rustam, Zainudin A; Tamil, Azmi M; Zarina, Latiff A; Zulkifli, Zakaria S; Jamal, Rahman

    2009-01-01

    The purpose of the current study was to determine the prevalence of use of complementary and alternative medicine (CAM) by children with cancer and to compare the characteristics of CAM users and CAM nonusers. A cross-sectional study was performed at a pediatric oncology center in Kuala Lumpur, Malaysia. The parents of 97 children with cancer were interviewed using a structured questionnaire. Overall, 84.5% of the respondents had used CAM, and most of them believed that CAM provided a boost to the immune system, and used CAM with the intention to complement conventional treatment. The most frequently used CAM was water therapy (78%), followed by spirulina (33%), vitamin C (27%), multivitamin (23%), visit to traditional healers (22%), sea cucumber (Stichopus horrens) (15%), and Chinese traditional medicine (12%). The Malay (n = 67) were using more often (93%) CAM than non-Malay (n = 30, use 67%, P = 0.001). CAM use is common among Malaysian children with cancer. Understanding the sociocultural dimension of patients' health beliefs is important to a successful treatment, and pediatric oncologists should ask for the use of CAM.

  20. Differential expression and functional analysis of three calmodulin isoforms in germinating pea (Pisum sativum L.) seeds.

    PubMed

    Duval, Frédéric D; Renard, Michelle; Jaquinod, Michel; Biou, Valérie; Montrichard, Françoise; Macherel, David

    2002-11-01

    Implication of the ubiquitous, highly conserved, Ca2+ sensor calmodulin (CaM) in pea seed germination has been investigated. Mass spectrometry analysis of purified CaM revealed the coexistence in seeds of three protein isoforms, diverging from each other by single amino acid substitution in the N-terminal alpha-helix. CaM was shown to be encoded by a small multigenic family, and full-length cDNAs of the three isoforms (PsCaM1, 2 and 3) were isolated to allow the design of specific primers in more divergent 5' and 3' untranslated regions. Expression studies, performed by semiquantitative RT-PCR, demonstrated differential expression patterns of the three transcripts during germination. PsCaM1 and 2 were detected at different levels in dry axes and cotyledons, and they accumulated during imbibition and prior to radicle protrusion. In contrast, PsCaM3 appeared only upon radicle protrusion, then gradually increased in both tissues. To characterise the biochemical properties of the CaM isoforms, functional analyses were conducted in vitro using recombinant Strep-tagged proteins (CaM1-ST, CaM2-ST and CaM3-ST) expressed in Escherichia coli. Gel mobility shift assays revealed that CaM1-ST exhibited a stoichiometric binding of a synthetic amphiphilic CaM kinase II peptide while CaM2-ST and CaM3-ST affinities for the same peptide were reduced. Affinity differences were also observed for CaM isoform binding to Trp-3, an idealised helical CaM-binding peptide. However, the three proteins activated in the same way the CaM-dependent pea NAD kinase. Finally, the significance of the single substitutions upon CaM interaction with its targets is discussed in a structural context.

Top