The Cambrian Evolutionary Explosion: Novel Evidence from Fossils Studied by X-ray Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun-Yuan
The Cambrian explosion (from 542 million years to 488 million years ago) is one of the greatest mysteries in evolutionary biology. It wasn't until this period that complex organisms became common and diverse. the magnitude of the event can be understood based on the contrast between the biota and the degree of diversity of the fossils from both sides. great advances have been made in Cambrian palaeontology over the past century, especially the discovery of the well-preserved soft-bodied fauna from the Middle Cambrian Burgess Shale and the Lower Cambrian Maotianshan Shale deposits. The Cambrian side of the "Cambrian explosion" ismore » richly illustrated and contrasts greatly with the Precambrian side. The study of these extraordinarily preserved fossil biota is extremely difficult. A major challenge is 3-D reconstruction and determining the patter of the cell organization in Weng'an embryos and their buried structures in Maotianshan Shale fossils. This talk will show that two recent technological approaches, propagation phase contrast synchrotron x-ray microtomography and microtomography, provide unique analytical tools that permit the nondestructive computational examination and visualization of the internal and buried characters in virtual sections in any plane, and virtual 3-D depictions of internal structures.« less
Calibrating rates of early Cambrian evolution
NASA Technical Reports Server (NTRS)
Bowring, Samuel A.; Grotzinger, John P.; Isachsen, Clark E.; Knoll, Andrew H.; Pelechaty, Shane M.; Kolosov, Peter
1993-01-01
An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began about 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.
Calibrating rates of early Cambrian evolution.
Bowring, S A; Grotzinger, J P; Isachsen, C E; Knoll, A H; Pelechaty, S M; Kolosov, P
1993-09-03
An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began at approximately 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.
Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo.
Knoll, A H
1994-01-01
In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of "higher" eukaryotic phyla. Observed diversity levels for protistan microfossils increased significantly at this time, as did turnover rates. Coincident with the Cambrian radiation of marine invertebrates, protistan microfossils again doubled in diversity and rates of turnover increased by an order of magnitude. Evidently, the Cambrian diversification of animals strongly influenced evolutionary rates, within clades already present in marine communities, implying an important role for ecology in fueling a Cambrian explosion that extends across kingdoms. Images PMID:8041692
Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo
NASA Technical Reports Server (NTRS)
Knoll, A. H.
1994-01-01
In rocks of late Paleoproterozoic and Mesoproterozoic age (ca. 1700-1000 million years ago), probable eukaryotic microfossils are widespread and well preserved, but assemblage and global diversities are low and turnover is slow. Near the Mesoproterozoic-Neoproterozoic boundary (1000 million years ago), red, green, and chromophytic algae diversified; molecular phylogenies suggest that this was part of a broader radiation of "higher" eukaryotic phyla. Observed diversity levels for protistan microfossils increased significantly at this time, as did turnover rates. Coincident with the Cambrian radiation of marine invertebrates, protistan microfossils again doubled in diversity and rates of turnover increased by an order of magnitude. Evidently, the Cambrian diversification of animals strongly influenced evolutionary rates, within clades already present in marine communities, implying an important role for ecology in fueling a Cambrian explosion that extends across kingdoms.
Sophisticated digestive systems in early arthropods.
Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C
2014-05-02
Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.
NASA Astrophysics Data System (ADS)
Pagès, Anais; Schmid, Susanne; Edwards, Dianne; Barnes, Stephen; He, Nannan; Grice, Kliti
2016-08-01
The Cambrian period marks an important point in Earth's history with profound changes in the ocean's biogeochemistry and the occurrence of the most significant evolutionary event in the history of life, the Cambrian explosion. The Cambrian explosion is described as a succession of complex cycles of extinctions and radiations. This study integrates biomarkers and their compound-specific stable carbon isotopes to investigate the palaeoenvironmental depositional conditions in middle Cambrian (Series 3) sedimentary rocks (Thorntonia Limestone, Inca Formation and Currant Bush Limestone) from two drillholes in the Undilla Sub-basin in the eastern Georgina Basin, central Australia. The occurrence of photic zone euxinia (PZE) was detected throughout these three formations by the identification of green sulfur bacteria Chlorobiaceae-derived biomarkers, including a series of 2,3,6-aryl isoprenoids and the intact biomarker isorenieratane. Pulses of enhanced PZE conditions were detected in two core intervals (90-110 mKB, Currant Bush Limestone and 170-200 mKB, Inca Formation) by an increase in the 2,3,6-aryl isoprenoids and C19 biphenyl concentrations. These enhanced PZE conditions were followed by blooms of phytoplankton, as demonstrated by the increase in algal-derived biomarker (i.e. pristane, phytane and the C19n-alkane) concentrations and compound-specific isotopes. These observations confirm that palaeoenvironmental conditions were similar to those reported for the Permian/Triassic and Triassic/Jurassic mass extinction events. The sterane distributions varied across the three formations reflecting possible changes in the phytoplanktonic communities through time. Although a rise in atmospheric oxygen during the Cambrian has been previously associated with the rapid evolution of metazoans, the ecological challenges related to widespread anoxia must have had a major influence on the evolution of life in Cambrian oceans.
Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia
NASA Astrophysics Data System (ADS)
Lee, Michael S. Y.; Jago, James B.; García-Bellido, Diego C.; Edgecombe, Gregory D.; Gehling, James G.; Paterson, John R.
2011-06-01
Despite the status of the eye as an ``organ of extreme perfection'', theory suggests that complex eyes can evolve very rapidly. The fossil record has, until now, been inadequate in providing insight into the early evolution of eyes during the initial radiation of many animal groups known as the Cambrian explosion. This is surprising because Cambrian Burgess-Shale-type deposits are replete with exquisitely preserved animals, especially arthropods, that possess eyes. However, with the exception of biomineralized trilobite eyes, virtually nothing is known about the details of their optical design. Here we report exceptionally preserved fossil eyes from the Early Cambrian (~515 million years ago) Emu Bay Shale of South Australia, revealing that some of the earliest arthropods possessed highly advanced compound eyes, each with over 3,000 large ommatidial lenses and a specialized `bright zone'. These are the oldest non-biomineralized eyes known in such detail, with preservation quality exceeding that found in the Burgess Shale and Chengjiang deposits. Non-biomineralized eyes of similar complexity are otherwise unknown until about 85 million years later. The arrangement and size of the lenses indicate that these eyes belonged to an active predator that was capable of seeing in low light. The eyes are more complex than those known from contemporaneous trilobites and are as advanced as those of many living forms. They provide further evidence that the Cambrian explosion involved rapid innovation in fine-scale anatomy as well as gross morphology, and are consistent with the concept that the development of advanced vision helped to drive this great evolutionary event.
Mángano, M. Gabriela; Buatois, Luis A.
2014-01-01
The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran–Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran–Fortunian. PMID:24523279
Mángano, M Gabriela; Buatois, Luis A
2014-04-07
The rapid appearance of bilaterian clades at the beginning of the Phanerozoic is one of the most intriguing topics in macroevolution. However, the complex feedbacks between diversification and ecological interactions are still poorly understood. Here, we show that a systematic and comprehensive analysis of the trace-fossil record of the Ediacaran-Cambrian transition indicates that body-plan diversification and ecological structuring were decoupled. The appearance of a wide repertoire of behavioural strategies and body plans occurred by the Fortunian. However, a major shift in benthic ecological structure, recording the establishment of a suspension-feeder infauna, increased complexity of the trophic web, and coupling of benthos and plankton took place during Cambrian Stage 2. Both phases were accompanied by different styles of ecosystem engineering, but only the second one resulted in the establishment of the Phanerozoic-style ecology. In turn, the suspension-feeding infauna may have been the ecological drivers of a further diversification of deposit-feeding strategies by Cambrian Stage 3, favouring an ecological spillover scenario. Trace-fossil information strongly supports the Cambrian explosion, but allows for a short time of phylogenetic fuse during the terminal Ediacaran-Fortunian.
Fossils and the Evolution of the Arthropod Brain.
Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D
2016-10-24
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Early Cambrian oxygen minimum zone-like conditions at Chengjiang
NASA Astrophysics Data System (ADS)
Hammarlund, Emma U.; Gaines, Robert R.; Prokopenko, Maria G.; Qi, Changshi; Hou, Xian-Guang; Canfield, Donald E.
2017-10-01
The early Cambrian succession at Chengjiang contains the most diverse Cambrian fossil assemblage yet described, and contributes significantly to our understanding of the diversification of metazoans in the Cambrian ;explosion;. The Cambrian Period occupies a transitional episode of global ocean chemistry, following the oxygenation of the surface ocean and of shallow marine environments during the Ediacaran Period, but prior to the establishment of a predominantly oxygenated deep ocean in the mid-Paleozoic. Despite recent attention, a detailed understanding of the chemical conditions that prevailed in early Cambrian marine settings and the relationship of those conditions to early metazoan ecosystems is still emerging. Here, we report multi-proxy geochemical data from two drill cores through the early Cambrian (Series 2) Yu'anshan Formation of Yunnan, China. Results reveal dynamic water-column chemistry within the succession, which progressively shifted from euxinic to oxic conditions during deposition of the Yu'anshan Formation. The Chengjiang biota occurs in strata that appear to have been deposited under an oxygen-depleted water column that may have supported denitrification, as in modern oxygen-minimum zones. The oxygenated benthic environments in which the Chengjiang biota thrived were proximal to, but sharply separated from, the open ocean by a persistent anoxic water mass that occupied a portion of the outer shelf. Oxygen depletion in the lower water column developed dynamically in response to nutrient availability and possibly at lower thresholds of productivity due to lower atmospheric oxygen concentrations in Cambrian. These findings suggest that the frequent development of oxygen-limiting conditions in continental margin settings provided an environmental barrier that may have affected biogeographic, ecological and evolutionary development of early metazoan communities.
Runkel, Anthony C.; MacKey, T.J.; Cowan, Clinton A.; Fox, David L.
2010-01-01
Middle to late Cambrian time (ca. 513 to 488 Ma) is characterized by an unstable plateau in biodiversity, when depauperate shelf faunas suffered repeated extinctions. This poorly understood interval separates the Cambrian Explosion from the Great Ordovician Biodiversification Event and is generally regarded as a time of sustained greenhouse conditions. We present evidence that suggests a drastically different climate during this enigmatic interval: Features indicative of meteoric ice are well preserved in late Cambrian equatorial beach deposits that correspond to one of the shelf extinction events. Thus, the middle to late Cambrian Earth was at least episodically cold and might best be considered a muted analogue to the environmental extremes that characterized the Proterozoic, even though cooling in the two periods may have occurred in response to different triggers. Such later Cambrian conditions may have significantly impacted evolution preceding the Ordovician radiation.
Fossils, molecules and embryos: new perspectives on the Cambrian explosion
NASA Technical Reports Server (NTRS)
Valentine, J. W.; Jablonski, D.; Erwin, D. H.
1999-01-01
The Cambrian explosion is named for the geologically sudden appearance of numerous metazoan body plans (many of living phyla) between about 530 and 520 million years ago, only 1.7% of the duration of the fossil record of animals. Earlier indications of metazoans are found in the Neoproterozic; minute trails suggesting bilaterian activity date from about 600 million years ago. Larger and more elaborate fossil burrows appear near 543 million years ago, the beginning of the Cambrian Period. Evidence of metazoan activity in both trace and body fossils then increased during the 13 million years leading to the explosion. All living phyla may have originated by the end of the explosion. Molecular divergences among lineages leading to phyla record speciation events that have been earlier than the origins of the new body plans, which can arise many tens of millions of years after an initial branching. Various attempts to date those branchings by using molecular clocks have disagreed widely. While the timing of the evolution of the developmental systems of living metazoan body plans is still uncertain, the distribution of Hox and other developmental control genes among metazoans indicates that an extensive patterning system was in place prior to the Cambrian. However, it is likely that much genomic repatterning occurred during the Early Cambrian, involving both key control genes and regulators within their downstream cascades, as novel body plans evolved.
Cause of Cambrian Explosion - Terrestrial or Cosmic?
Steele, Edward J; Al-Mufti, Shirwan; Augustyn, Kenneth A; Chandrajith, Rohana; Coghlan, John P; Coulson, S G; Ghosh, Sudipto; Gillman, Mark; Gorczynski, Reginald M; Klyce, Brig; Louis, Godfrey; Mahanama, Kithsiri; Oliver, Keith R; Padron, Julio; Qu, Jiangwen; Schuster, John A; Smith, W E; Snyder, Duane P; Steele, Julian A; Stewart, Brent J; Temple, Robert; Tokoro, Gensuke; Tout, Christopher A; Unzicker, Alexander; Wainwright, Milton; Wallis, Jamie; Wallis, Daryl H; Wallis, Max K; Wetherall, John; Wickramasinghe, D T; Wickramasinghe, J T; Wickramasinghe, N Chandra; Liu, Yongsheng
2018-08-01
We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion - life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yang, Dong; Guo, Xuejun; Xie, Tian; Luo, Xiaoyan
2018-01-01
The Cambrian Explosion is one of the most significant events in the history of life; essentially all easily fossilizable animal body plans first evolved during this event. Although many theories have been proposed to explain this event, its cause remains unresolved. Here, we propose that the elevated level of oxygen, in combination with the increased mobility and food intake of metazoans, led to increased cellular levels of reactive oxygen species (ROS), which drove evolution by enhancing mutation rates and providing new regulatory mechanisms. Our hypothesis may provide a unified explanation for the Cambrian Explosion as it incorporates both environmental and developmental factors and is also consistent with ecological explanations for animal radiation. Future studies should focus on testing this hypothesis, and may lead to important insights into evolution. Copyright © 2017. Published by Elsevier B.V.
Development, triploblastism, physics of wetting and the Cambrian explosion.
Fleury, Vincent
2013-09-01
The Cambrian explosion is characterized by the sudden outburst of organized animal plans, which occurred circa 530 M years ago. Around that time, many forms of animal life appeared, including several which have since disappeared. There is no general consensus about "why" this happened, and why it had any form of suddenness. However, all organized animal plans share a common feature: they are triploblastic, i.e., composed of 3 layers of tissue, endoderm, ectoderm and mesoderm. I show here that, within simple hypotheses, the formation of the mesoderm has intrinsically a physical exponential dynamics, leading rapidly to triploblastism, and eventually, to animal formation. A novel physico-mathematical framework including epithelium-mesenchyme transition, visco-elastic constitutive equations, and conservation laws, is presented which allows one to describe gastrulation as a self-wetting phenomenon of a soft solid onto itself. This phenomenon couples differentiation and migration during gastrulation, and leads in a closed form to an exponential scaling law for the formation of the mesoderm. Therefore, the Cambrian explosion might have started, actually, by a true viscoelastic "explosion": the exponential run-away of mesenchymal cells.
LoDuca, S T; Bykova, N; Wu, M; Xiao, S; Zhao, Y
2017-07-01
Non-calcified marine macroalgae ("seaweeds") play a variety of key roles in the modern Earth system, and it is likely that they were also important players in the geological past, particularly during critical transitions such as the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE). To investigate the morphology and ecology of seaweeds spanning the time frame from the CE through the GOBE, a carefully vetted database was constructed that includes taxonomic and morphometric information for non-calcified macroalgae from 69 fossil deposits. Analysis of the database shows a pattern of seaweed history that can be explained in terms of two floras: the Cambrian Flora and the Ordovician Flora. The Cambrian Flora was dominated by rather simple morphogroups, whereas the Ordovician Flora, which replaced the Cambrian Flora in the Ordovician and extended through the Silurian, mainly comprised comparatively complex morphogroups. In addition to morphogroup representation, the two floras show marked differences in taxonomic composition, morphospace occupation, functional-form group representation, and life habit, thereby pointing to significant morphological and ecological changes for seaweeds roughly concomitant with the GOBE and the transition from the Cambrian to Paleozoic Evolutionary Faunas. Macroalgal changes of a similar nature and magnitude, however, are not evident in concert with the CE, as the Cambrian Flora consists largely of forms established during the Ediacaran. The cause of such a lag in macroalgal morphological diversification remains unclear, but an intriguing possibility is that it signals a previously unknown difference between the CE and GOBE with regard to the introduction of novel grazing pressures. The consequences of the establishment of the Ordovician Flora for shallow marine ecosystems and Earth system dynamics remain to be explored in detail but could have been multifaceted and potentially include impacts on the global carbon cycle. © 2017 John Wiley & Sons Ltd.
Martinez-Morales, Juan R
2016-07-01
Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Landing, Ed; Geyer, Gerd; Brasier, Martin D.; Bowring, Samuel A.
2013-08-01
Use of the first appearance datum (FAD) of a fossil to define a global chronostratigraphic unit's base can lead to intractable correlation and stability problems. FADs are diachronous—they reflect species' evolutionary history, dispersal, biofacies, preservation, collection, and taxonomy. The Cambrian Evolutionary Radiation is characterised by diachronous FADs, biofacies controls, and provincialism of taxa and ecological communities that confound a stable Lower Cambrian chronostratigraphy. Cambrian series and stage definitions require greater attention to assemblage zone successions and non-biostratigraphic, particularly carbon isotope, correlation techniques such as those that define the Ediacaran System base. A redefined, basal Cambrian Trichophycus pedum Assemblage Zone lies above the highest Ediacaran-type biotas (vendobionts, putative metazoans, and calcareous problematica such as Cloudina) and the basal Asteridium tornatum-Comasphaeridium velvetum Zone (acritarchs). This definition and the likely close correspondence of evolutionary origin and local FAD of T. pedum preserves the Fortune Head, Newfoundland, GSSP of the Cambrian base and allows the presence of sub-Cambrian, branched ichnofossils. The sub-Tommotian-equivalent base of Stage 2 (a suggested "Laolinian Stage") should be defined by the I'/L4/ZHUCE δ13C positive peak, bracketed by the lower ranges of Watsonella crosbyi and Aldanella attleborensis (molluscs) and the Skiagia ornata-Fimbrioglomerella membranacea Zone (acritarchs). The W. crosbyi and A. attleborensis FADs cannot define a Stage 2 base as they are diachronous even in the Newfoundland "type" W. crosbyi Zone. The Series 2 base cannot be based on a species' FAD owing to the provincialism of skeletalised metazoans in the Terreneuvian-Series 2 boundary interval and global heterochrony of the oldest trilobites. A Series 2 and Stage 3 (a suggested "Lenaldanian Series" and "Zhurinskyan Stage," new) GSSP base is proposed at the Siberian lower Atdabanian δ13C IV peak—which correlates into South China, Avalonia, and Morocco and assigns the oldest trilobites to the terminal Terreneuvian Series.
NASA Astrophysics Data System (ADS)
Jin, Chengsheng; Li, Chao; Algeo, Thomas J.; Planavsky, Noah J.; Cui, Hao; Yang, Xinglian; Zhao, Yuanlong; Zhang, Xingliang; Xie, Shucheng
2016-05-01
The ;Cambrian Explosion; is known for rapid increases in the morphological disparity and taxonomic diversity of metazoans. It has been widely proposed that this biological event was a consequence of oxygenation of the global ocean, but this hypothesis is still under debate. Here, we present high-resolution Fe-S-C-Al-trace element geochemical records from the Jinsha (outer shelf) and Weng'an (outer shelf) sections of the early Cambrian Yangtze Platform, integrating these results with previously published data from six correlative sections representing a range of water depths (Xiaotan, Shatan, Dingtai, Yangjiaping, Songtao, and Longbizui). The integrated iron chemistry and redox-sensitive trace element data suggest that euxinic mid-depth waters dynamically coexisted with oxic surface waters and ferruginous deep waters during the earliest Cambrian, but that stepwise expansion of oxic waters commenced during Cambrian Stage 3 (∼ 521- 514 Ma). Combined with data from lower Cambrian sections elsewhere, including Oman, Iran and Canada, we infer that the global ocean exhibited a high degree of redox heterogeneity during the early Cambrian, consistent with low atmospheric oxygen levels (∼ 10- 40% of present atmospheric level, or PAL). A large spatial gradient in pyrite sulfur isotopic compositions (δ34Spy), which vary from a mean of - 12.0 ‰ in nearshore areas to + 22.5 ‰ in distal deepwater sections in lower Cambrian marine units of South China imply low concentrations and spatial heterogeneity of seawater sulfate, which is consistent with a limited oceanic sulfate reservoir globally. By comparing our reconstructed redox chemistry with fossil records from the lower Cambrian of South China, we infer that a stepwise oxygenation of shelf and slope environments occurred concurrently with a gradual increase in ecosystem complexity. However, deep waters remained anoxic and ferruginous even as macrozooplankton and suspension-feeding mesozooplankton appeared during Cambrian Stage 3. These findings suggest that the ;Cambrian Explosion; in South China may have been primarily a consequence of locally improved oxygenation of the ocean-surface layer rather than of the full global ocean. Our observations are inconsistent with predicted changes in ocean chemistry driven by early Cambrian animals, suggesting that the influence of early Cambrian animals on contemporaneous ocean chemistry, as proposed in previous studies, may be overly exaggerated.
Relationship between the Neoproterozoic snowball Earth and Cambrian explosion
NASA Astrophysics Data System (ADS)
Maruyama, S.; Yoshihara, A.; Isozaki, Y.
2007-12-01
Origin of snowball Earth has been debated in terms of greenhouse gas (e.g., Hoffman and Schrag), obliqueness of Earth's rotation axis (Williams, 1975), true polar wander (Evans, 2003), Galactic cosmic ray radiation (Shaviv and Veizer, 2003; Svensmark, 2006), or weakened geomagnetism (Maruyama and Yoshihara, 2003). A major difficulty for the greenhouse gas hypothesis is the on-off switch causing decrease and increase of appropriate amounts of CO2 by plume- and plate tectonics, and also in available amount of CO2 in atmosphere to be consistent with the observations. In contrast, the cosmic ray radiation models due to the star burst peaked at 2.5- 2.1 Ga and 1.4-0.8 Ga can explain on-off switch more easily than the greenhouse gas model. Cosmic ray radiations, however, must be modified by the geomagnetic intensity, fluctuating 150"% to < 10"% of the present-day level through geologic time. Our compilation suggests the idea of extensive glaciation appeared when the intensity decreased below 50% of the present-day value, as typically seen in the Neoproterozoic time. This proposes the idea of extensive cloudiness by increased cosmic rays in the Neoproterozoic to cause the snowball Earth. Time difference between the Neoproterozoic snowball Earth and Cambrian explosion is as large as 250 millions years, and this refuses their direct close-relationship. Role of frequent mass extinctions, i.e., 8 times during 100 m.y. from 585 Ma to 488 Ma, during the Ediacaran and Cambrian, has been proposed (Zhu et al., 2007). This frequency is one order of magnitude higher compared to that in the post-Ordovician time. Yet, the Cambrian explosion cannot be explained by mass extinction which replaced the vacant niches shortly after the mass extinction and never created a new animal with a new body plan. A new model proposed herein is derived from weakened geomagnetism and resultant extensive cosmic radiation to alter gene and genome for a long period over advancement of low magnetic intensity and cosmic radiations (Svensmark, 2006) from 1.2-0.8Ga. As to the new body plans of animals, it took an appreciably long time to prepare all 34 genometypes before the apparent Cambrian explosion. Geochemically extreme conditions and widened shallow marine environment on continental shelf by the return-flow of sweater into mantle in the Late Neoptroterozoic were the associated critical conditions to alter genomes during 1.2-0.52 Ga appreciably before the final consequence called the Cambrian explosion.
Antarctica, supercontinents and the palaeogeography of the Cambrian 'explosion'
NASA Astrophysics Data System (ADS)
Dalziel, Ian
2014-05-01
Laurentia is bordered by latest Precambrian-Cambrian rifted margins and must therefore have been located within a Precambrian supercontinent. Geochronologic and geochemical evidence indicates that it was attached to parts of the East Antarctic craton within the Rodinian supercontinent in the late Mesoproterozoic. The Mawson craton of Antarctica rifted from the proto-Pacific margin of Laurentia during the Neooproterozoic, colliding with the present 'southern cone' of Laurentia at ~600 Ma along the Shackleton Range suture zone as Gondwana and Laurentia amalgamated to form the ephemeral Pannotia supercontinental assembly at the end of the Precambrian. The abrupt appearance of almost all animal phyla in the fossil record is often colloquially referred to as the Cambrian 'explosion' of life on Earth. It is also named 'Darwin's dilemma,' as he appreciated that this seemingly mysterious event posed a major problem for his theory of evolution by natural selection. It coincided with a time of major marine transgression over all the continents. Although the metazoan 'explosion' is now seen as more protracted than formerly recognized, it is still regarded one of the most critical events in the history of the biosphere. One of the most striking aspects of the earliest Cambrian fossils is geographic differentiation. In particular, the first benthic trilobite faunas on Laurentia, ancestral North America, and the newly amalgamated southern supercontinent of Gondwana are distinctly different. This has led to the suggestion of an unknown vicariant event intervening between an ancestral trilobite clade and higher members that are represented in the fossil record, possibly one related to the breakup of a supercontinent. Igneous rocks along the Panthalassic margin of Gondwana, including South America, southernmost Africa and the Ellsworth-Whitmore crustal block of Antarctica, and along the proto-Appalachian margin of Laurentia indicate that final separation of Laurentia from Antarctica occurred just prior to the first appearance of trilobites in the fossil record. This event would have separated the Olenellid trilobite fauna of Laurentia from the Redlichiid fauna of Gondwana by opening a major oceanic connection between the developing Iapetus and pre-existing Pacific ocean basins with profound global environmental effects at the time of the Cambrian 'explosion,' including expansion of continental shelves. The paleogeographic settings of the two great transgressions of the Phanerozoic, the Cambrian and Cretaceous, are remarkably similar. Both seem to have involved comparatively rapid increase in ridge crest length within the ocean basins.
Lower Cambrian polychaete from China sheds light on early annelid evolution
NASA Astrophysics Data System (ADS)
Liu, Jianni; Ou, Qiang; Han, Jian; Li, Jinshu; Wu, Yichen; Jiao, Guoxiang; He, Tongjiang
2015-06-01
We herein report a fossilized polychaete annelid, Guanshanchaeta felicia gen. et sp. nov., from the Lower Cambrian Guanshan Biota (Cambrian Series 2, stage 4). The new taxon has a generalized polychaete morphology, with biramous parapodia (most of which preserve the evidence of chaetae), an inferred prostomium bearing a pair of appendages, and a bifid pygidium. G. felicia is the first unequivocal annelid reported from the Lower Cambrian of China. It represents one of the oldest annelids among those from other early Paleozoic Lagerstätten including Sirius Passet from Greenland (Vinther et al., Nature 451: 185-188, 2008) and Emu Bay from Kangaroo island (Parry et al., Palaeontology 57: 1091-1103, 2014), and adds to our increasing roll of present-day animal phyla recognized in the early Cambrian Guanshan Biota. This finding expands the panorama of the Cambrian `explosion' exemplified by the Guanshan Biota, suggesting the presence of many more fossil annelids in the Chengjiang Lagerstätte and the Kaili Biota. In addition, this new taxon increases our knowledge of early polychaete morphology, which suggests that polychaete annelids considerably diversified in the Cambrian.
Early Cambrian sipunculan worms from southwest China.
Huang, Di-Ying; Chen, Jun-Yuan; Vannier, Jean; Saiz Salinas, J. I.
2004-01-01
We report the discovery of sipunculan worms from the Lower Cambrian Maotianshan Shale, near Kunming (southwest China). Their sipunculan identity is evidenced by the general morphology of the animals (sausage-shaped body with a slender retractable introvert and a wider trunk) and by other features, both external (e.g. perioral crown of tentacles, and hooks, papillae and wrinkle rings on the body surface) and internal (U-shaped gut, and the anus opening near the introvert-trunk junction). The three fossil forms (Archaeogolfingia caudata gen. et sp. nov., Cambrosipunculus tentaculatus gen. et sp. nov. and Cambrosipunculus sp.) have striking similarities to modern sipunculans, especially the Golfingiidae to which their evolutionary relationships are discussed. This study suggests that most typical features of extant sipunculans have undergone only limited changes since the Early Cambrian, thus indicating a possible evolutionary stasis over the past 520 Myr. PMID:15306286
Early Cambrian sipunculan worms from southwest China.
Huang, Di-Ying; Chen, Jun-Yuan; Vannier, Jean; Saiz Salinas, J I
2004-08-22
We report the discovery of sipunculan worms from the Lower Cambrian Maotianshan Shale, near Kunming (southwest China). Their sipunculan identity is evidenced by the general morphology of the animals (sausage-shaped body with a slender retractable introvert and a wider trunk) and by other features, both external (e.g. perioral crown of tentacles, and hooks, papillae and wrinkle rings on the body surface) and internal (U-shaped gut, and the anus opening near the introvert-trunk junction). The three fossil forms (Archaeogolfingia caudata gen. et sp. nov., Cambrosipunculus tentaculatus gen. et sp. nov. and Cambrosipunculus sp.) have striking similarities to modern sipunculans, especially the Golfingiidae to which their evolutionary relationships are discussed. This study suggests that most typical features of extant sipunculans have undergone only limited changes since the Early Cambrian, thus indicating a possible evolutionary stasis over the past 520 Myr.
Snowball Earth prevention by dissolved organic carbon remineralization.
Peltier, W Richard; Liu, Yonggang; Crowley, John W
2007-12-06
The 'snowball Earth' hypothesis posits the occurrence of a sequence of glaciations in the Earth's history sufficiently deep that photosynthetic activity was essentially arrested. Because the time interval during which these events are believed to have occurred immediately preceded the Cambrian explosion of life, the issue as to whether such snowball states actually developed has important implications for our understanding of evolutionary biology. Here we couple an explicit model of the Neoproterozoic carbon cycle to a model of the physical climate system. We show that the drawdown of atmospheric oxygen into the ocean, as surface temperatures decline, operates so as to increase the rate of remineralization of a massive pool of dissolved organic carbon. This leads directly to an increase of atmospheric carbon dioxide, enhanced greenhouse warming of the surface of the Earth, and the prevention of a snowball state.
NASA Astrophysics Data System (ADS)
Parker, Andrew R.
2011-03-01
The first optical devices in animals evolved in the Cambrian period. The first reflector known dates from around 508 million years ago (Ma); the first eyes with lenses evolved at around 521 Ma. Consideration of the introduction of vision leads to a hypothesis for the cause of evolution's Big Bang—the Cambrian explosion. Suddenly, and for no obvious reason, the range and variety of life-forms erupted somewhere between 520 and 515 Ma (as limited by of our dating techniques). At no other time in Earth's history there has been such a profusion, such an exuberance, and such an overwhelming diversity in so short time, within one million years. Prior to this Cambrian explosion event, all animals were soft-bodied and mainly worm-like, as they had been for millions of years before that. But during the Cambrian explosion many of the major animal groups on Earth today independently evolved their hard body parts for the first time. Following the appearance of the first trilobites, some animals evolved shells and spines, some with bright colours, to visually warn of their new armour. Others evolved streamlined appearances and swimming oars to advise trilobites that they could not be caught. The Light Switch Theory provides an explanation for what triggered this event—that it was the development of vision (in trilobites); the introduction of optics. Once visual capability arose, it allowed predators to identify prey, triggering an arms race. From here on, vision became a dominant force of evolution and resulted in the eyes and reflecting optics that we have in nature today. This paper provides a summary of the first optical devices to evolve in animals, along with the implications of these in their relevance to the Big Bang of evolution, written for the physical sciences.
Articulated Wiwaxia from the Cambrian Stage 3 Xiaoshiba lagerstätte.
Yang, Jie; Smith, Martin R; Lan, Tian; Hou, Jin-bo; Zhang, Xi-guang
2014-04-10
Wiwaxia is a bizarre metazoan that has been interpreted as a primitive mollusc and as a polychaete annelid worm. Extensive material from the Burgess Shale provides a detailed picture of its morphology and ontogeny, but the fossil record outside this lagerstätte is scarce, and complete wiwaxiids are particularly rare. Here we report small articulated specimens of Wiwaxia foliosa sp. nov. from the Xiaoshiba fauna (Cambrian Stage 3, Hongjingshao Formation, Kunming, south China). Although spines are absent, the fossils' sclerites - like those of W. corrugata - are symmetrically arranged in five distinct zones. They form rows across the body, and were individually added and shed throughout growth to retain an approximately symmetrical body shape. Their development pattern suggests a molluscan affinity. The basic body plan of wiwaxiids is fundamentally conserved across two continents through Cambrian Stages 3-5 - revealing morphological stasis in the wake of the Cambrian explosion.
The origin of the animals and a 'Savannah' hypothesis for early bilaterian evolution.
Budd, Graham E; Jensen, Sören
2017-02-01
The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the 'Cambrian explosion', is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so-called 'Ediacaran' taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total-group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran-Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat-dominated substrates that the enigmatic Ediacaran taxa were associated with, the so-called 'Cambrian substrate revolution', leading to the loss of almost all Ediacara-aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late-Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara-style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor. © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
Fernàndez-Busquets, Xavier; Körnig, André; Bucior, Iwona; Burger, Max M; Anselmetti, Dario
2009-11-01
The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 A/2.27 A). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self-/non-self-recognition and of a surge in seawater calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.
Briggs, Derek E G
2015-04-19
Harry Whittington's 1975 monograph on Opabinia was the first to highlight how some of the Burgess Shale animals differ markedly from those that populate today's oceans. Categorized by Stephen J. Gould as a 'weird wonder' (Wonderful life, 1989) Opabinia, together with other unusual Burgess Shale fossils, stimulated ongoing debates about the early evolution of the major animal groups and the nature of the Cambrian explosion. The subsequent discovery of a number of other exceptionally preserved fossil faunas of Cambrian and early Ordovician age has significantly augmented the information available on this critical interval in the history of life. Although Opabinia initially defied assignment to any group of modern animals, it is now interpreted as lying below anomalocaridids on the stem leading to the living arthropods. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Briggs, Derek E. G.
2015-01-01
Harry Whittington's 1975 monograph on Opabinia was the first to highlight how some of the Burgess Shale animals differ markedly from those that populate today's oceans. Categorized by Stephen J. Gould as a ‘weird wonder’ (Wonderful life, 1989) Opabinia, together with other unusual Burgess Shale fossils, stimulated ongoing debates about the early evolution of the major animal groups and the nature of the Cambrian explosion. The subsequent discovery of a number of other exceptionally preserved fossil faunas of Cambrian and early Ordovician age has significantly augmented the information available on this critical interval in the history of life. Although Opabinia initially defied assignment to any group of modern animals, it is now interpreted as lying below anomalocaridids on the stem leading to the living arthropods. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750235
Reconstruction of early Cambrian ocean chemistry from Mo isotopes
NASA Astrophysics Data System (ADS)
Wen, Hanjie; Fan, Haifeng; Zhang, Yuxu; Cloquet, Christophe; Carignan, Jean
2015-09-01
The Neoproterozoic-Cambrian transition was a key time interval in the history of the Earth, especially for variations in oceanic and atmospheric chemical composition. However, two conflicting views exist concerning the nature of ocean chemistry across the Precambrian-Cambrian boundary. Abundant geochemical evidence suggests that oceanic basins were fully oxygenated by the late Ediacaran, while other studies provide seemingly conflicting evidence for anoxic deep waters, with ferruginous conditions [Fe(II)-enriched] persisting into the Cambrian. Here, two early Cambrian sedimentary platform and shelf-slope sections in South China were investigated to trace early Cambrian ocean chemistry from Mo isotopes. The results reveal that early Cambrian sediments deposited under oxic to anoxic/euxinic conditions have δ98/95Mo values ranging from -0.28‰ to 2.29‰, which suggests that early Cambrian seawater may have had δ98/95Mo values of at least 2.29‰, similar to modern oceans. The heaviest and relatively homogeneous δ98/95Mo values were recorded in siltstone samples formed under completely oxic conditions, which is considered that Mn oxide-free shuttling was responsible for such heavy δ98/95Mo value. Further, combined with Fe species data and the accumulation extent of Mo and U, the variation of δ98/95Mo values in the two studied sections demonstrate a redox-stratified ocean with completely oxic shallow water and predominantly anoxic (even euxinic) deeper water having developed early on, which eventually became completely oxygenated. This suggests that oceanic circulation at the time became reorganized, and such changes in oceanic chemistry may have been responsible for triggering the "Cambrian Explosion" of biological diversity.
NASA Technical Reports Server (NTRS)
Bartley, J. K.; Pope, M.; Knoll, A. H.; Semikhatov, M. A.; Grotzinger, J. (Principal Investigator)
1998-01-01
Siberia contains several key reference sections for studies of biological and environmental evolution across the Proterozoic-Phanerozoic transition. The Platonovskaya Formation, exposed in the Turukhansk region of western Siberia, is an uppermost Proterozoic to Cambrian succession whose trace and body fossils place broad limits on the age of deposition, but do not permit detailed correlation with boundary successions elsewhere. In contrast, a striking negative carbon isotopic excursion in the lower part of the Platonovskaya Formation permits precise chemostratigraphic correlation with upper-most Yudomian successions in Siberia, and possibly worldwide. In addition to providing a tool for correlation, the isotopic excursion preserved in the Platonovskaya and contemporaneous successions documents a major biogeochemical event, likely involving the world ocean. The excursion coincides with the palaeontological breakpoint between Ediacaran- and Cambrian-style assemblages, suggesting a role for biogeochemical change in evolutionary events near the Proterozoic Cambrian boundary.
Darwin's dilemma: the realities of the Cambrian ‘explosion’
Conway Morris, Simon
2006-01-01
The Cambrian ‘explosion’ is widely regarded as one of the fulcrum points in the history of life, yet its origins and causes remain deeply controversial. New data from the fossil record, especially of Burgess Shale-type Lagerstätten, indicate, however, that the assembly of bodyplans is not only largely a Cambrian phenomenon, but can already be documented in fair detail. This speaks against a much more ancient origin of the metazoans, and current work is doing much to reconcile the apparent discrepancies between the fossil record, including the Ediacaran assemblages of latest Neoproterozoic age and molecular ‘clocks’. Hypotheses to explain the Cambrian ‘explosion’ continue to be generated, but the recurrent confusion of cause and effect suggests that the wrong sort of question is being asked. Here I propose that despite its step-like function this evolutionary event is the inevitable consequence of Earth and biospheric change. PMID:16754615
Bartley, J K; Pope, M; Knoll, A H; Semikhatov, M A; Petrov PYu
1998-07-01
Siberia contains several key reference sections for studies of biological and environmental evolution across the Proterozoic-Phanerozoic transition. The Platonovskaya Formation, exposed in the Turukhansk region of western Siberia, is an uppermost Proterozoic to Cambrian succession whose trace and body fossils place broad limits on the age of deposition, but do not permit detailed correlation with boundary successions elsewhere. In contrast, a striking negative carbon isotopic excursion in the lower part of the Platonovskaya Formation permits precise chemostratigraphic correlation with upper-most Yudomian successions in Siberia, and possibly worldwide. In addition to providing a tool for correlation, the isotopic excursion preserved in the Platonovskaya and contemporaneous successions documents a major biogeochemical event, likely involving the world ocean. The excursion coincides with the palaeontological breakpoint between Ediacaran- and Cambrian-style assemblages, suggesting a role for biogeochemical change in evolutionary events near the Proterozoic Cambrian boundary.
A suspension-feeding anomalocarid from the Early Cambrian.
Vinther, Jakob; Stein, Martin; Longrich, Nicholas R; Harper, David A T
2014-03-27
Large, actively swimming suspension feeders evolved several times in Earth's history, arising independently from groups as diverse as sharks, rays and stem teleost fishes, and in mysticete whales. However, animals occupying this niche have not been identified from the early Palaeozoic era. Anomalocarids, a group of stem arthropods that were the largest nektonic animals of the Cambrian and Ordovician periods, are generally thought to have been apex predators. Here we describe new material from Tamisiocaris borealis, an anomalocarid from the Early Cambrian (Series 2) Sirius Passet Fauna of North Greenland, and propose that its frontal appendage is specialized for suspension feeding. The appendage bears long, slender and equally spaced ventral spines furnished with dense rows of long and fine auxiliary spines. This suggests that T. borealis was a microphagous suspension feeder, using its appendages for sweep-net capture of food items down to 0.5 mm, within the size range of mesozooplankton such as copepods. Our observations demonstrate that large, nektonic suspension feeders first evolved during the Cambrian explosion, as part of an adaptive radiation of anomalocarids. The presence of nektonic suspension feeders in the Early Cambrian, together with evidence for a diverse pelagic community containing phytoplankton and mesozooplankton, indicate the existence of a complex pelagic ecosystem supported by high primary productivity and nutrient flux. Cambrian pelagic ecosystems seem to have been more modern than previously believed.
Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China
NASA Technical Reports Server (NTRS)
Chen, Jun-Yuan; Oliveri, Paola; Gao, Feng; Dornbos, Stephen Q.; Li, Chia-Wei; Bottjer, David J.; Davidson, Eric H.
2002-01-01
The evolutionary divergence of cnidarian and bilaterian lineages from their remote metazoan ancestor occurred at an unknown depth in time before the Cambrian, since crown group representatives of each are found in Lower Cambrian fossil assemblages. We report here a variety of putative embryonic, larval, and adult microfossils deriving from Precambrian phosphorite deposits of Southwest China, which may predate the Cambrian radiation by 25-45 million years. These are most probably of cnidarian affinity. Large numbers of fossilized early planula-like larvae were observed under the microscope in sections. Though several forms are represented, the majority display remarkable conformity, which is inconsistent with the alternative that they are artifactual mineral inclusions. Some of these fossils are preserved in such high resolution that individual cells can be discerned. We confirm in detail an earlier report of the presence in the same deposits of tabulates, an extinct crown group anthozoan form. Other sections reveal structures that most closely resemble sections of basal modern corals. A large number of fossils similar to modern hydrozoan gastrulae were also observed. These again displayed great morphological consistency. Though only a single example is available, a microscopic animal remarkably similar to a modern adult hydrozoan is also presented. Taken together, the new observations reported in this paper indicate the existence of a diverse and already differentiated cnidarian fauna, long before the Cambrian evolutionary event. It follows that at least stem group bilaterians must also have been present at this time.
Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.
Chen, Xi; Ling, Hong-Fei; Vance, Derek; Shields-Zhou, Graham A; Zhu, Maoyan; Poulton, Simon W; Och, Lawrence M; Jiang, Shao-Yong; Li, Da; Cremonese, Lorenzo; Archer, Corey
2015-05-18
The early diversification of animals (∼ 630 Ma), and their development into both motile and macroscopic forms (∼ 575-565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian 'explosion' (540-520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼ 521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the 'homeostasis' of marine redox conditions.
Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals
Chen, Xi; Ling, Hong-Fei; Vance, Derek; Shields-Zhou, Graham A.; Zhu, Maoyan; Poulton, Simon W.; Och, Lawrence M.; Jiang, Shao-Yong; Li, Da; Cremonese, Lorenzo; Archer, Corey
2015-01-01
The early diversification of animals (∼630 Ma), and their development into both motile and macroscopic forms (∼575–565 Ma), has been linked to stepwise increases in the oxygenation of Earth's surface environment. However, establishing such a linkage between oxygen and evolution for the later Cambrian ‘explosion' (540–520 Ma) of new, energy-sapping body plans and behaviours has proved more elusive. Here we present new molybdenum isotope data, which demonstrate that the areal extent of oxygenated bottom waters increased in step with the early Cambrian bioradiation of animals and eukaryotic phytoplankton. Modern-like oxygen levels characterized the ocean at ∼521 Ma for the first time in Earth history. This marks the first establishment of a key environmental factor in modern-like ecosystems, where animals benefit from, and also contribute to, the ‘homeostasis' of marine redox conditions. PMID:25980960
Arthropod colonization of land--linking molecules and fossils in oribatid mites (Acari, Oribatida).
Schaefer, Ina; Norton, Roy A; Scheu, Stefan; Maraun, Mark
2010-10-01
Terrestrial fossils that document the early colonization of land are scarce for >100 my after the Cambrian explosion. This raises the question whether life on land did not exist or just did not fossilize. With a molecular dating technique, we analyzed the origin of terrestrial chelicerate microarthropods (Acari, Oribatida) which have a fossil record since the Middle Devonian that is exceptional among soil animals. Our results suggest that oribatid mites originated in the Precambrian (571+/-37 mya) and that the radiation of basal groups coincides with the gap in the terrestrial fossil record between the Cambrian explosion and the earliest fossilized records of continental ecosystems. Further, they suggest that the colonization of land started via the interstitial, approximately 150 my earlier than the oldest fossils of terrestrial ecosystems. Overall, the results imply that omnivorous and detritivorous arthropods formed a major component in early terrestrial food webs, thereby facilitating the invasion of terrestrial habitats by later colonizers of higher trophic levels. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiang, Lei; Schoepfer, Shane D.; Shen, Shu-zhong; Cao, Chang-qun; Zhang, Hua
2017-04-01
The "Cambrian explosion" is one of the most fascinating episodes of diversification in the history of life; however, its relationship to the oxygenation of the oceans and atmosphere around the Ediacaran-Cambrian transition is not fully understood. Marine inventories of redox-sensitive trace elements reflect the relative balance of oxidative weathering on land and deposition in anoxic water masses, and can be used to explore the evolution of oceanic and atmospheric redox conditions. For this study, we conducted a series of geochemical analyses on the upper Lantian, Piyuancun, and Hetang formations in the Chunye-1 well, part of the lower Yangtze Block in western Zhejiang. Iron speciation results indicate that the entire studied interval was deposited under anoxic conditions, with three intervals of persistent euxinia occurring in the uppermost Lantian Fm., the lower Hetang Formation (Fm.), and the upper Hetang Fm. Molybdenum (Mo) and uranium (U) contents and Mo/TOC and U/TOC ratios from the anoxic/euxinic intervals of the Chunye-1 well, combined with published data from the sections in the middle and upper Yangtze Block, suggest that the oceanic Mo reservoir declined consistently from the Ediacaran to Cambrian Stage 3, while the size of the oceanic U reservoir remained relatively constant. Both metals were depleted in the ocean in lower Cambrian Stage 4, before increasing markedly at the end of Stage 4. The lack of an apparent increase in the size of the marine Mo and U reservoir from the upper Ediacaran to Cambrian Stage 3 suggests that oxic water masses did not expand until Cambrian Stage 4. The increase in marine Mo and U availability in the upper Hetang Fm. may have been due to the expansion of oxic water masses in the oceans, associated with oxygenation of the atmosphere during Cambrian Stage 4. This expansion of oxic waters in the global ocean postdates the main phase of Cambrian diversification, suggesting that pervasive oxygenation of the ocean on a large scale was not the primary control on animal diversity following the Ediacaran-Cambrian transition.
Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier.
Wolfe, Joanna M
2017-09-01
Macroevolutionary developmental biology employs fossilized ontogenetic data and phylogenetic comparative methods to probe the evolution of development at ancient nodes. Despite the prevalence of ecologically differentiated larval forms in marine invertebrates, it has been frequently presumed that the ancestors of arthropods were direct developers, and that metamorphosis may not have evolved until the Ordovician or later. Using fossils and new dated phylogenies, I infer that metamorphosis was likely ancestral for crown arthropods, contradicting this assumption. Based on a published morphological dataset encompassing 217 exceptionally preserved fossil and 96 extant taxa, fossils were directly incorporated into both the topology and age estimates, as in "tip dating" analyses. Using data from post-embryonic fossils representing 25 species throughout stem and crown arthropod lineages (as well as most of the 96 extant taxa), characters for metamorphosis were assigned based on inferred ecological changes in development (e.g., changes in habitat and adaptive landscape). Under all phylogenetic hypotheses, metamorphosis was supported as most likely ancestral to both ecdysozoans and euarthropods. Care must be taken to account for potential drastic post-embryonic morphological changes in evolutionary analyses. Many stem group euarthrpods may have had ecologically differentiated larval stages that did not preserve in the fossil record. Moreover, a complex life cycle and planktonic ecology may have evolved in the Ediacaran or earlier, and may have typified the pre-Cambrian explosion "wormworld" prior to the origin of crown group euarthropods. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Parry, Luke A; Boggiani, Paulo C; Condon, Daniel J; Garwood, Russell J; Leme, Juliana de M; McIlroy, Duncan; Brasier, Martin D; Trindade, Ricardo; Campanha, Ginaldo A C; Pacheco, Mírian L A F; Diniz, Cleber Q C; Liu, Alexander G
2017-10-01
The evolutionary events during the Ediacaran-Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran-Cambrian siltstones in Brazil, alongside U-Pb radioisotopic dates that constrain the age of the oldest specimens to 555-542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 μm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal-sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran.
Yang, Jie; Ortega-Hernández, Javier; Gerber, Sylvain; Butterfield, Nicholas J.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang
2015-01-01
We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion. PMID:26124122
Oxygen, ecology, and the Cambrian radiation of animals
NASA Astrophysics Data System (ADS)
Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.
2013-08-01
The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator-prey "arms races" can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation.
Dimensions of integration in interdisciplinary explanations of the origin of evolutionary novelty.
Love, Alan C; Lugar, Gary L
2013-12-01
Many philosophers of biology have embraced a version of pluralism in response to the failure of theory reduction but overlook how concepts, methods, and explanatory resources are in fact coordinated, such as in interdisciplinary research where the aim is to integrate different strands into an articulated whole. This is observable for the origin of evolutionary novelty-a complex problem that requires a synthesis of intellectual resources from different fields to arrive at robust answers to multiple allied questions. It is an apt locus for exploring new dimensions of explanatory integration because it necessitates coordination among historical and experimental disciplines (e.g., geology and molecular biology). These coordination issues are widespread for the origin of novel morphologies observed in the Cambrian Explosion. Despite an explicit commitment to an integrated, interdisciplinary explanation, some potential disciplinary contributors are excluded. Notable among these exclusions is the physics of ontogeny. We argue that two different dimensions of integration-data and standards-have been insufficiently distinguished. This distinction accounts for why physics-based explanatory contributions to the origin of novelty have been resisted: they do not integrate certain types of data and differ in how they conceptualize the standard of uniformitarianism in historical, causal explanations. Our analysis of these different dimensions of integration contributes to the development of more adequate and integrated explanatory frameworks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Preservation and phylogeny of Cambrian ecdysozoans tested by experimental decay of Priapulus
NASA Astrophysics Data System (ADS)
Sansom, Robert S.
2016-09-01
The exceptionally preserved Cambrian fossil record provides unique insight into the early evolutionary history of animals. Understanding of the mechanisms of exceptional soft tissue preservation frames all interpretations of the fauna and its evolutionary significance. This is especially true for recent interpretations of preserved nervous tissues in fossil ecdysozoans. However, models of soft tissue preservation lack empirical support from actualistic studies. Here experimental decay of the priapulid Priapulus reveal consistent bias towards rapid loss of internal non-cuticular anatomy compared with recalcitrant cuticular anatomy. This is consistent with models of Burgess Shale-type preservation and indicates that internal tissues are unlikely to be preserved with fidelity if organically preserved. This pattern, along with extreme body margin distortion, is consistent with onychophoran decay, and is therefore resolved as general for early ecdysozoans. Application of these patterns to phylogenetic data finds scalidophoran taxa to be very sensitive to taphonomically informed character coding, but not panarthropodan taxa. Priapulid decay also have unexpected relevance for interpretation of myomeres in fossil chordates. The decay data presented serve not only as a test of models of preservation but also a framework with which to interpret ecdysozoan fossil anatomies, and the subsequent evolutionary inferences drawn from them.
Preservation and phylogeny of Cambrian ecdysozoans tested by experimental decay of Priapulus
Sansom, Robert S.
2016-01-01
The exceptionally preserved Cambrian fossil record provides unique insight into the early evolutionary history of animals. Understanding of the mechanisms of exceptional soft tissue preservation frames all interpretations of the fauna and its evolutionary significance. This is especially true for recent interpretations of preserved nervous tissues in fossil ecdysozoans. However, models of soft tissue preservation lack empirical support from actualistic studies. Here experimental decay of the priapulid Priapulus reveal consistent bias towards rapid loss of internal non-cuticular anatomy compared with recalcitrant cuticular anatomy. This is consistent with models of Burgess Shale-type preservation and indicates that internal tissues are unlikely to be preserved with fidelity if organically preserved. This pattern, along with extreme body margin distortion, is consistent with onychophoran decay, and is therefore resolved as general for early ecdysozoans. Application of these patterns to phylogenetic data finds scalidophoran taxa to be very sensitive to taphonomically informed character coding, but not panarthropodan taxa. Priapulid decay also have unexpected relevance for interpretation of myomeres in fossil chordates. The decay data presented serve not only as a test of models of preservation but also a framework with which to interpret ecdysozoan fossil anatomies, and the subsequent evolutionary inferences drawn from them. PMID:27595908
Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem
Vannier, Jean
2012-01-01
Present-day ecosystems host a huge variety of organisms that interact and transfer mass and energy via a cascade of trophic levels. When and how this complex machinery was established remains largely unknown. Although exceptionally preserved biotas clearly show that Early Cambrian animals had already acquired functionalities that enabled them to exploit a wide range of food resources, there is scant direct evidence concerning their diet and exact trophic relationships. Here I describe the gut contents of Ottoia prolifica, an abundant priapulid worm from the middle Cambrian (Stage 5) Burgess Shale biota. I identify the undigested exoskeletal remains of a wide range of small invertebrates that lived at or near the water sediment interface such as hyolithids, brachiopods, different types of arthropods, polychaetes and wiwaxiids. This set of direct fossil evidence allows the first detailed reconstruction of the diet of a 505-million-year-old animal. Ottoia was a dietary generalist and had no strict feeding regime. It fed on both living individuals and decaying organic matter present in its habitat. The feeding behavior of Ottoia was remarkably simple, reduced to the transit of food through an eversible pharynx and a tubular gut with limited physical breakdown and no storage. The recognition of generalist feeding strategies, exemplified by Ottoia, reveals key-aspects of modern-style trophic complexity in the immediate aftermath of the Cambrian explosion. It also shows that the middle Cambrian ecosystem was already too complex to be understood in terms of simple linear dynamics and unique pathways. PMID:23300612
Oxygen, ecology, and the Cambrian radiation of animals
Sperling, Erik A.; Frieder, Christina A.; Raman, Akkur V.; Girguis, Peter R.; Levin, Lisa A.; Knoll, Andrew H.
2013-01-01
The Proterozoic-Cambrian transition records the appearance of essentially all animal body plans (phyla), yet to date no single hypothesis adequately explains both the timing of the event and the evident increase in diversity and disparity. Ecological triggers focused on escalatory predator–prey “arms races” can explain the evolutionary pattern but not its timing, whereas environmental triggers, particularly ocean/atmosphere oxygenation, do the reverse. Using modern oxygen minimum zones as an analog for Proterozoic oceans, we explore the effect of low oxygen levels on the feeding ecology of polychaetes, the dominant macrofaunal animals in deep-sea sediments. Here we show that low oxygen is clearly linked to low proportions of carnivores in a community and low diversity of carnivorous taxa, whereas higher oxygen levels support more complex food webs. The recognition of a physiological control on carnivory therefore links environmental triggers and ecological drivers, providing an integrated explanation for both the pattern and timing of Cambrian animal radiation. PMID:23898193
Evolution and physiology of neural oxygen sensing
Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.
2014-01-01
Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625
NASA Astrophysics Data System (ADS)
Bowring, S. A.; Grotzinger, J. P.; Amthor, J.; Martin, M. E.
2001-05-01
The precise, global correlation of Precambrian and Paleozoic sedimentary rocks can be achieved using temporally calibrated chemostratigraphic records. This approach is essential for determining rates and causes of environmental and faunal change, including mass extinctions. For example, The Neoproterozoic is marked by major environmental change, including periods of global glaciation, large fluctuations in the sequestration of carbon and major tectonic reorganization followed by the explosive diversification of animals in the earliest Cambrian. The extreme climatic change associated with these glaciations have been implicated as a possible trigger for the Cambrian explosion. The recognition of thin zircon-bearing air-fall ash in Neoproterozoic and Cambrian rocks has allowed the establishment of a high-precision temporal framework for animal evolution and is helping to untangle the history of glaciations. In some cases analytical uncertainties translate to age uncertainties of less than 1 Ma and when integrated with chemostratigraphy, the potential for global correlations at even higher resolution. Progress in the global correlation of Neoproterozoic strata has been achieved through the use of C and Sr isotope chemostratigraphy although it has been hampered by a lack of precise geochronological and faunal control. For example, the period from ca 800-580 Ma is characterized by at least two and perhaps as many as four glacial events that are interpreted by many to be global glaciations on a "Snowball Earth". A lack of precise chronological constraints on the number and duration of glaciations, multiple large excursions in the carbon isotopic record, and an absence of detailed biostratigraphy have complicated global correlation and hindered our understanding of this important period of Earth history. However, the ongoing integration of chemostratigraphic and geochronological data are improving temporal resolution and detailed correlations. These data are critical for understanding the causes and effects of Neoproterozoic glaciations. The Cambrian-Precambrian boundary is generally associated with a negative shift in carbon values although global isochroneity has not yet been demonstrated and unconformities mark the boundary in many places. New data suggest an age of 542 Ma for the excursion and boundary in Oman; results from Namibia, Oman, and Siberia are all consistent with this result. It has yet to be demonstrated that the paleontologically defined boundary coincides with the isotopic shift or is globally isochronous. The emerging geochronological framework, when combined with integrated paleontological, chemostratigraphic, and geological data will allow detailed global correlation and evaluation of models that invoke both intrinsic and extrinsic triggers for evolution.
Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution
NASA Technical Reports Server (NTRS)
Margulis, L.; Rambler, M.; Walker, J. C. G.
1976-01-01
It is argued that the transition to an oxidizing atmosphere preceded the origin of eukaryotic cells, which in turn must have preceded the origin of metazoa. Moreover, the number of methods by which organisms can protect themselves from harmful UV radiation is sufficiently large to suggest that solar UV, even when the atmosphere was anaerobic, was not such as to control the distribution and diversification of life. An alternative explanation for the late and sudden appearance of metazoa in lower Cambrian sediments is proposed, which is related to the mechanisms by which fully mature eukaryotic cells probably originated. There was probably a protracted evolution of modern genetic systems based on mitosis in cells which acquired organelles (e.g., plastids and mitochondria) by hereditary endosymbiosis. The origin of hard parts underlies the Cambrian explosion of metazoans.
Oxygen as a driver of early arthropod micro-benthos evolution.
Williams, Mark; Vannier, Jean; Corbari, Laure; Massabuau, Jean-Charles
2011-01-01
We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. The PO(2) of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2) of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2). Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2) levels. The PO(2) of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2). Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO(2) gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2). Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour.
Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution
Williams, Mark; Vannier, Jean; Corbari, Laure; Massabuau, Jean-Charles
2011-01-01
Background We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. Methodology/Principal Findings The PO2 of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O2 levels. The PO2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O2. Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic. Conclusions/Significance Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour. PMID:22164241
Park, Tae-yoon; Woo, Jusun; Lee, Dong-Jin; Lee, Dong-Chan; Lee, Seung-bae; Han, Zuozhen; Chough, Sung Kwun; Choi, Duck K
2011-08-23
Palaeontological data of extinct groups often sheds light on the evolutionary sequences leading to extant groups, but has failed to resolve the basal metazoan phylogeny including the origin of the Cnidaria. Here we report the occurrence of a stem-group cnidarian, Cambroctoconus orientalis gen. et sp. nov., from the mid-Cambrian of China, which is a colonial organism with calcareous octagonal conical cup-shaped skeletons. It bears cnidarian features including longitudinal septa arranged in octoradial symmetry and colonial occurrence, but lacks a jelly-like mesenchyme. Such morphological characteristics suggest that the colonial occurrence with polyps of octoradial symmetry is the plesiomorphic condition of the Cnidaria and appeared earlier than the jelly-like mesenchyme during the course of evolution. © 2011 Macmillan Publishers Limited. All rights reserved.
Park, Tae-yoon; Woo, Jusun; Lee, Dong-Jin; Lee, Dong-Chan; Lee, Seung-bae; Han, Zuozhen; Chough, Sung Kwun; Choi, Duck K.
2011-01-01
Palaeontological data of extinct groups often sheds light on the evolutionary sequences leading to extant groups, but has failed to resolve the basal metazoan phylogeny including the origin of the Cnidaria. Here we report the occurrence of a stem-group cnidarian, Cambroctoconus orientalis gen. et sp. nov., from the mid-Cambrian of China, which is a colonial organism with calcareous octagonal conical cup-shaped skeletons. It bears cnidarian features including longitudinal septa arranged in octoradial symmetry and colonial occurrence, but lacks a jelly-like mesenchyme. Such morphological characteristics suggest that the colonial occurrence with polyps of octoradial symmetry is the plesiomorphic condition of the Cnidaria and appeared earlier than the jelly-like mesenchyme during the course of evolution. PMID:21863009
Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?
NASA Astrophysics Data System (ADS)
Squire, Richard J.; Campbell, Ian H.; Allen, Charlotte M.; Wilson, Christopher J. L.
2006-10-01
The explosive radiation of animals on Earth during the late Early Cambrian period (˜ 530-510 Ma) coincides with the deposition of enormous volumes of continentally derived sedimentary rocks throughout Gondwana. We show here, that these quartz-rich sedimentary units, collected from five continents, display remarkably similar detrital-zircon U-Pb age-patterns and propose that they were sourced from either side of a > 8000-km-long and generally > 1000-km-wide mountain chain (the Transgondwanan Supermountain), which formed following oblique collision between East and West Gondwana, commencing at ˜ 650 Ma. The depositional system supplied by this mountain chain was > 100 km 3, which is equivalent to covering all 50 states of the USA with ˜ 10 km of sediment, and it lasted for at least 260 Myr. The enormous size of the vegetation-free mountain chain, its position close to the equator and the dramatic changes in global plate-motion in response to the cessation in continent-continent collision, together with the possible appearance of biota in the soils that promoted rapid chemical weathering, resulted in extreme erosion and sedimentation rates that are arguably the highest in the geological record. This led to an unprecedented flux of P, Fe, Sr, Ca and bicarbonate ions into the oceans. The addition of Sr was responsible for seawater 87Sr/ 86Sr building up to the highest levels in Earth's history, whereas the addition of P and Fe provided the essential nutrients that supported a bloom of primitive life that in turn provided abundant food to support the Cambrian explosion of life. The addition of Ca and bicarbonate ions increased CaCO 3 supersaturation in the oceans, which allowed species in numerous phyla to simultaneously develop skeletons.
Ozone control of biological activity during Earth's history, including the KT catastrophe
NASA Technical Reports Server (NTRS)
Sheldon, W. R.
1994-01-01
There have been brief periods since the beginning of the Cambrian some 600 m.y. ago when mass extinctions destroyed a significant fraction of living species. The most widely studied of these events is the catastrophe at the KT boundary that ended the long dominance of the dinosaurs. In addition to mass extinctions, there is another profound discontinuity in the history of Earth's biota, the explosion of life at the end of the Precambrian era which is an episode that is not explained well at all. For some 3 b.y. before the Cambrian, life had been present on Earth, but maintained a low level of activity which is an aspect of the biota that is puzzling, especially during the last two-thirds of that period. During the last 2 b.y. before the Cambrian, conditions at the Earth's surface were suitable for a burgeoning of the biota, according to most criteria: the oceans neither boiled nor were fozen solid during this time, and the atmosphere contained sufficient O for the development of animals. The purpose of this paper is to suggest that mass extinctions and the lackluster behavior of the Precambrian biota share a common cause: an inadequate amount of ozone in the atmosphere.
NASA Astrophysics Data System (ADS)
Yang, X.-L.; Zhao, Y.-L.; Babcock, L. E.; Peng, J.
2017-02-01
Fossils of the sponge Angulosuspongia sinensis from calcareous mudstones of the middle and upper part of the Kaili Formation (Cambrian Stage 5) in the Jianhe area of Guizhou province, South China, exhibit an apparently reticulate pattern, characteristic of the Vauxiidae. Energy Dispersive X-Ray Spectrometry (EDS) and Raman spectroscopy analysis indicate the presence of silica in the skeletal elements of these fossils, suggesting that this taxon possessed a skeleton comprised of spicules. This is the first confirmation of siliceous skeletal elements in fossils of the family Vauxiidae, and it lends support to the hypothesis that some early demosponges possessed biomineralized siliceous skeletons, which were subsequently lost and replaced by spongin later in the evolutionary history of this lineage. The new materials provide critical insight into the phylogeny and evolution of biomineralization in the Demosopongiae.
Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos.
Harvey, Thomas H P; Butterfield, Nicholas J
2017-01-30
Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.
Yang, X.-L.; Zhao, Y.-L.; Babcock, L. E.; Peng, J.
2017-01-01
Fossils of the sponge Angulosuspongia sinensis from calcareous mudstones of the middle and upper part of the Kaili Formation (Cambrian Stage 5) in the Jianhe area of Guizhou province, South China, exhibit an apparently reticulate pattern, characteristic of the Vauxiidae. Energy Dispersive X-Ray Spectrometry (EDS) and Raman spectroscopy analysis indicate the presence of silica in the skeletal elements of these fossils, suggesting that this taxon possessed a skeleton comprised of spicules. This is the first confirmation of siliceous skeletal elements in fossils of the family Vauxiidae, and it lends support to the hypothesis that some early demosponges possessed biomineralized siliceous skeletons, which were subsequently lost and replaced by spongin later in the evolutionary history of this lineage. The new materials provide critical insight into the phylogeny and evolution of biomineralization in the Demosopongiae. PMID:28220860
Oxygen and Early Animal Evolution
NASA Astrophysics Data System (ADS)
Xiao, S.
2012-12-01
It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.
Introduction to 'Homology and convergence in nervous system evolution'.
Strausfeld, Nicholas J; Hirth, Frank
2016-01-05
The origin of brains and central nervous systems (CNSs) is thought to have occurred before the Palaeozoic era 540 Ma. Yet in the absence of tangible evidence, there has been continued debate whether today's brains and nervous systems derive from one ancestral origin or whether similarities among them are due to convergent evolution. With the advent of molecular developmental genetics and genomics, it has become clear that homology is a concept that applies not only to morphologies, but also to genes, developmental processes, as well as to behaviours. Comparative studies in phyla ranging from annelids and arthropods to mammals are providing evidence that corresponding developmental genetic mechanisms act not only in dorso-ventral and anterior-posterior axis specification but also in segmentation, neurogenesis, axogenesis and eye/photoreceptor cell formation that appear to be conserved throughout the animal kingdom. These data are supported by recent studies which identified Mid-Cambrian fossils with preserved soft body parts that present segmental arrangements in brains typical of modern arthropods, and similarly organized brain centres and circuits across phyla that may reflect genealogical correspondence and control similar behavioural manifestations. Moreover, congruence between genetic and geological fossil records support the notion that by the 'Cambrian explosion' arthropods and chordates shared similarities in brain and nervous system organization. However, these similarities are strikingly absent in several sister- and outgroups of arthropods and chordates which raises several questions, foremost among them: what kind of natural laws and mechanisms underlie the convergent evolution of such similarities? And, vice versa: what are the selection pressures and genetic mechanisms underlying the possible loss or reduction of brains and CNSs in multiple lineages during the course of evolution? These questions were addressed at a Royal Society meeting to discuss homology and convergence in nervous system evolution. By integrating knowledge ranging from evolutionary theory and palaeontology to comparative developmental genetics and phylogenomics, the meeting covered disparities in nervous system origins as well as correspondences of neural circuit organization and behaviours, all of which allow evidence-based debates for and against the proposition that the nervous systems and brains of animals might derive from a common ancestor. © 2015 The Author(s).
Mechanism for Burgess Shale-type preservation
Gaines, Robert R.; Hammarlund, Emma U.; Hou, Xianguang; Qi, Changshi; Gabbott, Sarah E.; Zhao, Yuanlong; Peng, Jin; Canfield, Donald E.
2012-01-01
Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted soft-bodied fossil assemblages has remained enigmatic since Walcott’s initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits. Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier, provided by bed-capping cements that were emplaced at the seafloor, is a feature that is shared among Burgess Shale-type deposits, and resulted from the unusually high alkalinity of Cambrian oceans. Thus, Burgess Shale-type preservation of soft-bodied fossil assemblages worldwide was promoted by unique aspects of early Paleozoic seawater chemistry that strongly impacted sediment diagenesis, providing a fundamentally unique record of the immediate aftermath of the “Cambrian explosion.” PMID:22392974
NASA Astrophysics Data System (ADS)
Li, Jin; Tang, Shuheng; Zhang, Songhang; Xi, Zhaodong; Yang, Ning; Yang, Guoqiao; Li, Lei; Li, Yanpeng
2018-06-01
The Precambrian/Cambrian transition was a key time in Earth history, especially for marine biological evolution and oceanic chemistry. The redox-stratification with oxic shallow water and anoxic (even euxinic) deeper water in the Early Cambrian Yangtze Sea, which gradually became completely oxygenated, has been suggested as a possible trigger for the "Cambrian explosion" of biological diversity. However, for some areas in northern Guizhou where the exploration and research are lacking, identifying this pattern of redox-stratification by paleo-environmental analysis from borehole data is still in need. Here, we report a remarkable variation range in trace elements (Mo, V, U, Ni, Th, Co, Sc, Zn and Cu), molar Corg:P ratios and pyrite morphology from 27 core samples from one new drill hole (XY1, located in the Fenggang area, northern Guizhou) on the Yangtze Platform, South China. High levels of Ba (from 3242 ppm to 33,800 ppm) and total organic carbon (TOC; from 4% to 9.36%) in 15 core samples in the Lower Member (LM) of the Niutitang Formation indicated elevated primary productivity in the study area. Redox change was recorded based on enrichment factors (EFs) for RSTEs (Mo, U, and V), redox proxies (V/(V + Ni), Ni/Co, V/Sc and Th/U), Corg:P ratios and particle size of framboidal pyrite. These signatures demonstrate that the LM was deposited under anoxic conditions with sulfidic episodes, whereas the Upper Member (UM) of the Niutitang Formation was deposited under suboxic/oxic conditions with intermittently anoxic episodes. Mo/TOC ratios (from 3.72 to 39.86, mean 18.76) suggest weak-moderate water mass restriction. Mo-U covariation patterns (strong but variable enrichment of Mo and U; MoEF ranging from 31.45 to 257.97; UEF ranging from 4.68 to 39.07) in the LM show alternation of particulate shuttling and redox conditions occurred in the Early Cambrian Yangtze Sea, whereas Mo-U covariation patterns (moderate Mo enrichment but depletion or non-enrichment of U; mean MoEF: 7.29; mean UEF: 0.95) in the UM may indicate the combined influence of particulate shuttling and diagenetic diffusion of U via bioactivities, which result in low U values and an anoxic signature from frambiodal pyrite particle size (mean: 4.556 μm; median: 4.41 μm). Additionally, excess Ba (Baxs) concentration (33,800 ppm and 32,500 ppm) and association patterns of trace-metal enrichment in the LM indicate the existence of submarine hydrothermal events. In addition, during deposition of the UM, bioactivities indicated by Mo-U systematics and oxic conditions indicated by redox sensitive trace elements (RSTEs) and multiple-proxies, may be a cause of biological diversification recorded in the Early Cambrian. Finally, data in this record a progressive transition from anoxic bottom waters with euxinic episodes to overwhelming oxic conditions during Early Cambrian.
Chen, Feiyang; Hu, Shixue; Zhang, Zhifei
2017-01-01
The early Cambrian Guanshan biota of eastern Yunnan, China, contains exceptionally preserved animals and algae. Most diverse and abundant are the arthropods, of which there are at least 11 species of trilobites represented by numerous specimens. Many trilobite specimens show soft-body preservation via iron oxide pseudomorphs of pyrite replacement. Here we describe digestive structures from two species of trilobite, Palaeolenus lantenoisi and Redlichia mansuyi. Multiple specimens of both species contain the preserved remains of an expanded stomach region (a “crop”) under the glabella, a structure which has not been observed in trilobites this old, despite numerous examples of trilobite gut traces from other Cambrian Lagerstätten. In addition, at least one specimen of Palaeolenus lantenoisi shows the preservation of an unusual combination of digestive structures: a crop and paired digestive glands along the alimentary tract. This combination of digestive structures has also never been observed in trilobites this old, and is rare in general, with prior evidence of it from one juvenile trilobite specimen from the late Cambrian Orsten fauna of Sweden and possibly one adult trilobite specimen from the Early Ordovician Fezouata Lagerstätte. The variation in the fidelity of preservation of digestive structures within and across different Lagerstätten may be due to variation in the type, quality, and point of digestion of food among specimens in addition to differences in mode of preservation. The presence and combination of these digestive features in the Guanshan trilobites contradicts current models of how the trilobite digestive system was structured and evolved over time. Most notably, the crop is not a derived structure as previously proposed, although it is possible that the relative size of the crop increased over the evolutionary history of the clade. PMID:28934290
Hopkins, Melanie J; Chen, Feiyang; Hu, Shixue; Zhang, Zhifei
2017-01-01
The early Cambrian Guanshan biota of eastern Yunnan, China, contains exceptionally preserved animals and algae. Most diverse and abundant are the arthropods, of which there are at least 11 species of trilobites represented by numerous specimens. Many trilobite specimens show soft-body preservation via iron oxide pseudomorphs of pyrite replacement. Here we describe digestive structures from two species of trilobite, Palaeolenus lantenoisi and Redlichia mansuyi. Multiple specimens of both species contain the preserved remains of an expanded stomach region (a "crop") under the glabella, a structure which has not been observed in trilobites this old, despite numerous examples of trilobite gut traces from other Cambrian Lagerstätten. In addition, at least one specimen of Palaeolenus lantenoisi shows the preservation of an unusual combination of digestive structures: a crop and paired digestive glands along the alimentary tract. This combination of digestive structures has also never been observed in trilobites this old, and is rare in general, with prior evidence of it from one juvenile trilobite specimen from the late Cambrian Orsten fauna of Sweden and possibly one adult trilobite specimen from the Early Ordovician Fezouata Lagerstätte. The variation in the fidelity of preservation of digestive structures within and across different Lagerstätten may be due to variation in the type, quality, and point of digestion of food among specimens in addition to differences in mode of preservation. The presence and combination of these digestive features in the Guanshan trilobites contradicts current models of how the trilobite digestive system was structured and evolved over time. Most notably, the crop is not a derived structure as previously proposed, although it is possible that the relative size of the crop increased over the evolutionary history of the clade.
Kerner, Adeline; Debrenne, Françoise; Vignes-Lebbe, Régine
2011-01-01
Abstract Archaeocyatha represent the oldest calcified sponges and the first metazoans to build bioconstructions in association with calcimicrobes. They are a key group in biology, evolutionary studies, biostratigraphy, paleoecology and paleogeography of the early Cambrian times. The establishing of a new standardized terminology for archaeocyathans description has permitted the creation of the first knowledge base in English including descriptions of all archaeocyathan genera. This base, using the XPER² software package, is an integral part of the -Archaeocyatha- a knowledge base website, freely available at url http://www.infosyslab.fr/archaeocyatha. The website is composed of common information about Archaeocyatha, general remarks about the knowledge base, the description of the 307 genera recognized with images of type-specimens of type-species for each genus, as well as additional morphological data, an interactive free access key and its user guide. The automatic analysis and comparison of the digitized descriptions have identified some genera with highly similar morphology. These results are a great help for future taxonomic revisions and suggest a number of possible synonymies that require further study. PMID:22207818
Unraveling the redox evolution of the Yangtze Block across the Precambrian/Cambrian transition
NASA Astrophysics Data System (ADS)
Diamond, C. W.; Zhang, F.; Chen, Y.; Lyons, T. W.
2016-12-01
Rocks preserved on the South China Craton have played a critical role in refining our understanding of the co-evolution of life and Earth's surface environments in the Late Neoproterozoic and earliest Paleozoic. From the earliest metazoan embryos to the many examples of exceptional preservation throughout the Cambrian Explosion, South China has preserved an outstanding record of animal evolution across this critical transition. Similarly, rocks preserved in South China hold key insights into the changing ocean chemistry that accompanied this extraordinary time. Recent work form Sahoo and others (2016, Geobiology) used redox sensitive metal enrichments in the Ediacaran Doushantuo Formation to demonstrate that the redox state of the Latest Neoproterozoic oceans was highly dynamic, rather than stably oxygenated or anoxic as had both been suggested previously. In an attempt to follow on from this and other studies, we have examined samples from a drill core taken in eastern Guizhou capturing deep-water facies of the Liuchapo and Jiumenchong formations, which contain the Precambrian/Cambrian boundary. In addition to containing the boundary, the sampled interval contains an enigmatic, widespread horizon that is strongly enriched in Ni and Mo. We have taken a multi-proxy approach in our investigation of this layer, the possible implications it has for the strata above and below (i.e., how its presence affects their utility as archives of paleo-redox conditions), and what those strata can tell us about local and global redox conditions during this pivotal time in Earth's history. Our Fe speciation data indicate that conditions were sulfidic at this location throughout the majority of the sampled interval. While redox sensitive metal concentrations are dramatically enriched in the Ni/Mo interval, their concentrations return to modest enrichments above it and continue to decrease upward. This trend suggests that while the conditions that favored extreme enrichment during the deposition of the Ni/Mo layer may have continued to provide a source of metals above the layer itself, by the time this source was exhausted, the background reservoir of these metals was low, sufficient only to provide small enrichments - consistent with the notion that deep ocean anoxia was a regular, if not dominant, feature of the Cambrian world.
Samuel A. Cushman
2014-01-01
This is a time of explosive growth in the fields of evolutionary and population genetics, with whole genome sequencing and bioinformatics driving a transformative paradigm shift (Morozova and Marra, 2008). At the same time, advances in epigenetics are thoroughly transforming our understanding of evolutionary processes and their implications for populations, species and...
Giving the early fossil record of sponges a squeeze.
Antcliffe, Jonathan B; Callow, Richard H T; Brasier, Martin D
2014-11-01
Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re-analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian-Cambrian boundary, associated with the great radiation events of that interval. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Molluscan engrailed expression, serial organization, and shell evolution
NASA Technical Reports Server (NTRS)
Jacobs, D. K.; Wray, C. G.; Wedeen, C. J.; Kostriken, R.; DeSalle, R.; Staton, J. L.; Gates, R. D.; Lindberg, D. R.
2000-01-01
Whether the serial features found in some molluscs are ancestral or derived is considered controversial. Here, in situ hybridization and antibody studies show iterated engrailed-gene expression in transverse rows of ectodermal cells bounding plate field development and spicule formation in the chiton, Lepidochitona cavema, as well as in cells surrounding the valves and in the early development of the shell hinge in the clam, Transennella tantilla. Ectodermal expression of engrailed is associated with skeletogenesis across a range of bilaterian phyla, suggesting a single evolutionary origin of invertebrate skeletons. The shared ancestry of bilaterian-invertebrate skeletons may help explain the sudden appearance of shelly fossils in the Cambrian. Our interpretation departs from the consideration of canonical metameres or segments as units of evolutionary analysis. In this interpretation, the shared ancestry of engrailed-gene function in the terminal/posterior addition of serially repeated elements during development explains the iterative expression of engrailed genes in a range of metazoan body plans.
Landing, E.
1996-01-01
A west to east, marginal to inner Avalonian platform transition, comparable to that in southeast Newfoundland and southern Britain, is present in the Cambrian of southern New Brunswick. The Saint John - Caton's Island - Hanford Brook area lay on the marginal platform, and its thick, uppermost Precambrian - lower Lower Cambrian is unconformably overlain by trilobite-bearing, upper Lower Cambrian. An inner platform remnant is preserved in the Cradle Brook outlier 60 km northeast of Saint John. In contrast to the marginal platform sequences, the Cradle Brook outlier has a very thin lower Lower Cambrian and has middle Lower Cambrian strata (Bonavista Group) not present on the marginal platform. The Cradle Brook Lower Cambrian closely resembles inner platform successions in eastern Massachusetts and Trinity and Placentia bays, southeast Newfoundland. A limestone with Camenella baltica Zone fossils on Cradle Brook seems to be the peritidal limestone cap of the subtrilobitic Lower Cambrian known in Avalonian North America (Fosters Point Formation) and England (Home Farm Member).
NASA Astrophysics Data System (ADS)
Lee, C. T.
2016-12-01
Most of Earth's continents today are above sea level, but the presence of thick packages of ancient sediments on top of the stable cores of continents indicates that continents must have been submerged at least once in their past. Elevations of continents are controlled by the interplay between crustal thickness, mantle root thickness and the temperature of the ambient convecting mantle. The history of a continent begins with mountain building through magmatic or tectonic crustal thickening, during which exhumation of deep-seated igneous and metamorphic rocks are highest. Mountain building is followed by a long interval of subsidence as a result of continued, but decreasing erosion and thermal relaxation, the latter in the form of a growing thermal boundary layer. Subsidence is manifest first as a boring interval in which no sedimentary record is preserved, followed by continent-scale submergence wherein sediments are deposited directly on deep-seated igneous/metamorphic basement, generating a major disconformity. The terminal resting elevation of a mature continent, however, is defined by the temperature of the ambient convecting mantle: below sea level when the mantle is hot and above sea level when the mantle is cold. Using thermobarometric constraints on secular cooling of Earth's mantle, our results suggest that Earth, for most of its history, must have been a water world, with regions of land confined to narrow orogenic belts and oceans characterized by deep basins and shallow continental seas, the latter serving as repositories of sediments and key redox-sensitive biological nutrients, such as phosphorous. Cooling of the Earth led to the gradual and irreversible rise of the continents, culminating in rapid emergence, through fits and starts and possible instabilities in climate, between 500-1000 Ma. Such emergence fundamentally altered marine biogeochemical cycling, continental weathering and the global hydrologic cycle, defining the backdrop for the Cambrian explosion, the largest biological diversification event in Earth's history.
Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
NASA Astrophysics Data System (ADS)
Li, J.; Ding, W.; Dong, L.
2017-12-01
The black shale in the early Cambrian Yurtus Formation (>521 Ma) in the Tarim basin, northwestern China, is characterized by its high TOC value (up to 16%) andgreat lateral continuity. It has been proven to be high-quality hydrocarbon source rocks. Abundant phytoplanktons and small shelly fossils have been reported from the lower Yurtus chert. However, recent biomarker discovery of aryl isoprenoid hydrocarbons suggests the existence of green sulfur bacteria, which indicates that the water column was stratified and the photic zone was prevailingly euxinic. These seemingly contradictory observations hamper our further understanding of the paleoenvironment in which the Yurtus shale was deposited and its control on the accumulation of organic matter. In this study, we systematically collected samples from the Yurtus Formation at the Kungaikuotan Section, and measured the organic carbon and nitrogen isotopic compositions and the content of trace element Barium (Ba). The strong negative excursions of nitrogen isotope ( -13‰) in the lower and upper parts of the Yurtus Formation are likely attributed to the biological activity of green and purple sulfur bacteria, which is consistent with our organic carbon isotope data as well as previous biomarker discovery. As green sulfur bacteria can only live in euxinic photic zone, it may indicate that the water column above this euxinic zone contains prolific organic matters which consume all the dissolved oxidants in surface ocean. It is well accepted that Ba flux can be used as an indicator for surface ocean primary productivity. Significant increase of barium content (from <100 to 2000 ppm) is observed at the same horizon as where the negative excursion of δ15Norg occurs, suggesting the substantive organic matter in the early Cambrian surface ocean mainly result from extremely high primary productivity. The abundant phytoplankton fossil record from this time period also supports this interpretation. In summary, high TOC in the Yurtus shale may derive from the extremely high primary productivity of phytoplanktons. Organic matter consumes all the dissolved oxidants in the water and generates the euxinic zone, which facilitates the accumulation and preservation of the surplus organic matter. This study also shed light on the ecology of the surface ocean before Cambrian Explosion.
Evidence of constant diversification punctuated by a mass extinction in the African cycads
Yessoufou, Kowiyou; Bamigboye, Samuel O; Daru, Barnabas H; van der Bank, Michelle
2014-01-01
The recent evidence that extant cycads are not living fossils triggered a renewed search for a better understanding of their evolutionary history. In this study, we investigated the evolutionary diversification history of the genus Encephalartos, a monophyletic cycad endemic to Africa. We found an antisigmoidal pattern with a plateau and punctual explosive radiation. This pattern is typical of a constant radiation with mass extinction. The rate shift that we found may therefore be a result of a rapid recolonization of niches that have been emptied owing to mass extinction. Because the explosive radiation occurred during the transition Pliocene–Pleistocene, we argued that the processes might have been climatically mediated. PMID:24455160
New uppermost Cambrian U-Pb date from Avalonian Wales and age of the Cambrian-Ordovician boundary
Davidek, K.; Landing, E.; Bowring, S.A.; Westrop, S.R.; Rushton, A.W.A.; Fortey, R.A.; Adrain, J.M.
1998-01-01
A crystal-rich volcaniclastic sandatone in the lower Peltura scarabaeoides Zone at Ogof-odi near Criccieth, North Wales, yields a U-Pb zircon age of 491 ?? 1 Ma. This late Late Cambrian date indicates a remarkably young age for the Cambrian-Ordovician boundary whose age must be less than 491 Ma. Hence the revised duration of the post-Placentian (trilobite-bearing) Cambrian indicates that local trilobite zonations allow a biostratigraphic resolution comparble to that provided by Ordovician graptolites and Mesozoic ammonites.
A resonance based model of biological evolution
NASA Astrophysics Data System (ADS)
Damasco, Achille; Giuliani, Alessandro
2017-04-01
We propose a coarse grained physical model of evolution. The proposed model 'at least in principle' is amenable of an experimental verification even if this looks as a conundrum: evolution is a unique historical process and the tape cannot be reversed and played again. Nevertheless, we can imagine a phenomenological scenario tailored upon state transitions in physical chemistry in which different agents of evolution play the role of the elements of a state transition like thermal noise or resonance effects. The abstract model we propose can be of help for sketching hypotheses and getting rid of some well-known features of natural history like the so-called Cambrian explosion. The possibility of an experimental proof of the model is discussed as well.
Zaitlen, Noah A.; Ye, Chun Jimmie; Witte, John S.
2016-01-01
The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. PMID:27197206
Rosen, Gerald
2011-06-01
Recent observations and theoretical studies have shown that non-baryonic Cold Dark Matter (CDM), which constitutes about 84% of all matter in the Universe, may feature a complex-scalar-field that carries particles of mass ≅ 2.47 x 10(-3)eV with the associated Compton range m(-1) ≅8.02 x 10(-3) cm, a distance on the scale of extended bionucleic acids and living cells. Such a complex-scalar-field can enter a weak-isospin Lorentz-invariant interaction that generates the flow of right-handed electrons and induces a chirality-imbued quantum chemistry on the m (-1) scale. A phenomenological Volterra-type equation is proposed for the CDM-impacted time development of N, the number of base pairs in the most advanced organism at Earth-age t. The solution to this equation suggests that the boosts in N at t ≅ 1.1 Gyr (advent of the first living prokaryotic cells), at t ≅ 2.9 Gyr (advent of eukaryotic single-celled organisms) and finally at t ≅ 4.0 Gyr (the Cambrian explosion) may be associated with three multi-Myr-duration cosmic showers of the complex-scalar-field CDM particles. If so, the signature of the particles may be detectible in Cambrian rocks.
NASA Astrophysics Data System (ADS)
Wotte, T.
2012-12-01
Cambrian carbonate successions of Australia, W-Gondwana, Kazakhstan, Laurentia, and Siberia were investigated for their sulfur isotopic composition of carbonate-associated sulfate (CAS). For a secure CAS extraction a repeated leaching procedure with NaCl solution was applied as a standard protocol with supplementary analyses of pre-leach sulfate concentrations and δ34SNaCl, and chromium-reducible sulfur (CRS) concentrations and δ34SCRS as routine checks on possible contamination. Additionally, δ13Ccarb, δ18Ocarb, and elemental concentrations (Ca, Fe, Mg, Mn, Sr) of the carbonate host rock were analyzed in order to constrain diagenetic alteration of the measured δ34SCAS. About 200 δ34SCAS values were generated using this analytical procedure which allows the most precise state of the art methodology for CAS and CRS extraction. The most primary δ34SCAS values vary between 24‰ and 33‰ for successions of the transition from Cambrian Series 2 to Cambrian Series 3 (traditional Lower-Middle Cambrian boundary) and between 25‰ and 48‰ for the Cambrian Series 3-Furongian (Upper Cambrian) interval, respectively. These new δ34SCAS data are valuable proxies to verify paleoecological and paleoenvironmental information. They further close an obvious gap of the Cambrian δ34SCAS record, composed of δ34SCAS values, ranging from about 20‰ up to 70‰ (SPICE-event). However, the individual data sets of this Cambrian δ34SCAS pool were generated using various methods of CAS extraction, thus offering the potential of significant differences in the final δ34SCAS values which are consequently not per se comparable with each other. The new δ34SCAS data of worldwide Cambrian sections will be discussed in the context of this problematic.
The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus.
Huang, Shengfeng; Wang, Xin; Yan, Qingyu; Guo, Lei; Yuan, Shaochun; Huang, Guangrui; Huang, Huiqing; Li, Jun; Dong, Meiling; Chen, Shangwu; Xu, Anlong
2011-02-15
Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.
Dong, Yan; Sun, Hongying; Guo, Hua; Pan, Da; Qian, Changyuan; Hao, Sijing; Zhou, Kaiya
2012-08-15
Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Ueno, Y.; Komiya, T.; Shu, D.; Li, Y.; Yoshida, N.; Maruyama, S.
2009-04-01
The terminal Neoproterozoic and its transition into the Cambrian witnessed major evolutionary and geochemical changes (e.g. Knoll, 1994). Evolutionary features include extinction and subsequent radiation events (e.g. Brasier, 1994; Knoll, 1994; Knoll and Carroll, 1999; Shu 2008). Geochemical changes comprise secular variations of the global carbon cycle expressed as variations of the d13C isotope records. A representative d13C curve for inorganic carbon (d13Ccarb) across the Precambrian/Cambrian boundary (Pc/C boundary) shows the existence of large fluctuations (e.g. Kirschvink et al., 1991; Narbonne et al., 1994; Kaufman et al., 1995; Amthor et al., 2003; Maloof et al., 2005, Ishikawa et al., 2008). This indicates a significant change of the oceanic carbon cycle at that time. On the other hand, the d13C values for total organic carbon (d13Corg) have rarely been reported together with the d13Ccarb across the boundary. Therefore, the precise relation between the d13Ccarb and the d13Corg and the global carbon cycle at the Pc/C boundary are still ambiguous. This work presents a first high-resolution d13Corg chemostratigraphy of drill core samples across the Pc/C boundary in the Three Gorges area, South China. Based on the results, this work additionally proposes variations of the sizes of the oceanic carbon reservoirs by a calculation of the carbon cycle model at the Pc/C boundary. The Three Gorges section extends from the uppermost Ediacaran dolostone (Dengying Formation), through the lowermost Early Cambrian muddy limestone (Yanjiahe Formation) to the middle Early Cambrian calcareous black shale (Shuijingtuo Formation). The ^13Corg values exhibit relatively invariant values averaging at -31 permil. By comparison between the d13Ccarb and d13Corg, we recognize two different terms in this period. The first term from the Pc/C boundary to the early Nemakit-Daldynian (ND) is characterized by the decoupling of d13Corg and d13Ccarb, stable d13Corg and the significant negative excursion of d13Ccarb, which could be explained by the carbon cycle with two reactive pools of inorganic and organic carbon, distinguished in the Neoproterozoic (Rothman et al., 2003; Fike et al., 2006; McFadden et al., 2008). The second term from the middle ND to Atdabanian is distinctive in parallel variation between the d13Ccarb and d13Corg, consistent with the conventional, steady-state models of the carbon cycle. We consider that the d13Corg of the carbon in an unusually large oceanic reservoir of organic carbon would not be driven by the variation of input and output fluxes because the residence time of such a large DOC reservoir could be longer than that of the inorganic carbon reservoir. We calculated masses of two reactive carbon reservoirs in the ocean, when the d13Ccarb varies from the terminal Neoproterozoic to the early Cambrian. According to the calculation, we suggest the significant negative d13Ccarb anomaly across the Pc/C boundary results from the increased remineralization of a large reservoir of organic carbon. Also we propose the two step increase of d13Ccarb in the early ND is derived from the two step increase in the sinking rate of organic particles. We interpret the large reservoir of organic carbon had dramatically declined in the late period of ND. In addition, we have estimated the fraction of buried organic carbon in the middle ND to Atdabanian, and found that the organic carbon burial was enhanced in the late ND, and then it increased from Tommotian to Atdabanian after a temporal reduction in basal-Tommotian. Hence, it implies the lowering of pCO2 and the subsequent global cooling in the late ND. This possibly caused the global-scale regression in the basal-Tommotian (Ripperdan, 1994), and led to the low organic carbon burial in the early Tommotian.
Early animal evolution: emerging views from comparative biology and geology
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Carroll, S. B.
1999-01-01
The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.
Burgess Shale fossils illustrate the origin of the mandibulate body plan.
Aria, Cédric; Caron, Jean-Bernard
2017-05-04
Retracing the evolutionary history of arthropods has been one of the greatest challenges in biology. During the past decade, phylogenetic analyses of morphological and molecular data have coalesced towards the conclusion that Mandibulata, the most diverse and abundant group of animals, is a distinct clade from Chelicerata, in that its members possess post-oral head appendages specialized for food processing, notably the mandible. The origin of the mandibulate body plan, however, which encompasses myriapods, crustaceans and hexapods, has remained poorly documented. Here we show that Tokummia katalepsis gen. et sp. nov., a large bivalved arthropod from the 508 million-year-old Marble Canyon fossil deposit (Burgess Shale, British Columbia), has unequivocal mandibulate synapomorphies, including mandibles and maxillipeds, as well as characters typically found in crustaceans, such as enditic, subdivided basipods and ring-shaped trunk segments. Tokummia and its closest relative, Branchiocaris (in Protocarididae, emended), also have an anteriormost structure housing a probable bilobed organ, which could support the appendicular origin of the labrum. Protocaridids are retrieved with Canadaspis and Odaraia (in Hymenocarina, emended) as part of an expanded mandibulate clade, refuting the idea that these problematic bivalved taxa, as well as other related forms, are representatives of the basalmost euarthropods. Hymenocarines now illustrate that the subdivision of the basipod and the presence of proximal endites are likely to have been ancestral conditions critical for the evolution of coxal and pre-coxal features in mandibulates. The presence of crustaceomorph traits in the Cambrian larvae of various clades basal to Mandibulata is reinterpreted as evidence for the existence of distinct ontogenetic niches among stem arthropods. Larvae would therefore have constituted an important source of morphological novelty during the Cambrian period, and, through heterochronic processes, may have contributed to the rapid acquisition of crown-group characters and thus to greater evolutionary rates during the early radiation of euarthropods.
Feinberg, Todd E.; Mallatt, Jon
2013-01-01
Vertebrates evolved in the Cambrian Period before 520 million years ago, but we do not know when or how consciousness arose in the history of the vertebrate brain. Here we propose multiple levels of isomorphic or somatotopic neural representations as an objective marker for sensory consciousness. All extant vertebrates have these, so we deduce that consciousness extends back to the group's origin. The first conscious sense may have been vision. Then vision, coupled with additional sensory systems derived from ectodermal placodes and neural crest, transformed primitive reflexive systems into image forming brains that map and perceive the external world and the body's interior. We posit that the minimum requirement for sensory consciousness and qualia is a brain including a forebrain (but not necessarily a developed cerebral cortex/pallium), midbrain, and hindbrain. This brain must also have (1) hierarchical systems of intercommunicating, isomorphically organized, processing nuclei that extensively integrate the different senses into representations that emerge in upper levels of the neural hierarchy; and (2) a widespread reticular formation that integrates the sensory inputs and contributes to attention, awareness, and neural synchronization. We propose a two-step evolutionary history, in which the optic tectum was the original center of multi-sensory conscious perception (as in fish and amphibians: step 1), followed by a gradual shift of this center to the dorsal pallium or its cerebral cortex (in mammals, reptiles, birds: step 2). We address objections to the hypothesis and call for more studies of fish and amphibians. In our view, the lamprey has all the neural requisites and is likely the simplest extant vertebrate with sensory consciousness and qualia. Genes that pattern the proposed elements of consciousness (isomorphism, neural crest, placodes) have been identified in all vertebrates. Thus, consciousness is in the genes, some of which are already known. PMID:24109460
Feinberg, Todd E; Mallatt, Jon
2013-01-01
Vertebrates evolved in the Cambrian Period before 520 million years ago, but we do not know when or how consciousness arose in the history of the vertebrate brain. Here we propose multiple levels of isomorphic or somatotopic neural representations as an objective marker for sensory consciousness. All extant vertebrates have these, so we deduce that consciousness extends back to the group's origin. The first conscious sense may have been vision. Then vision, coupled with additional sensory systems derived from ectodermal placodes and neural crest, transformed primitive reflexive systems into image forming brains that map and perceive the external world and the body's interior. We posit that the minimum requirement for sensory consciousness and qualia is a brain including a forebrain (but not necessarily a developed cerebral cortex/pallium), midbrain, and hindbrain. This brain must also have (1) hierarchical systems of intercommunicating, isomorphically organized, processing nuclei that extensively integrate the different senses into representations that emerge in upper levels of the neural hierarchy; and (2) a widespread reticular formation that integrates the sensory inputs and contributes to attention, awareness, and neural synchronization. We propose a two-step evolutionary history, in which the optic tectum was the original center of multi-sensory conscious perception (as in fish and amphibians: step 1), followed by a gradual shift of this center to the dorsal pallium or its cerebral cortex (in mammals, reptiles, birds: step 2). We address objections to the hypothesis and call for more studies of fish and amphibians. In our view, the lamprey has all the neural requisites and is likely the simplest extant vertebrate with sensory consciousness and qualia. Genes that pattern the proposed elements of consciousness (isomorphism, neural crest, placodes) have been identified in all vertebrates. Thus, consciousness is in the genes, some of which are already known.
Uricchio, Lawrence H; Zaitlen, Noah A; Ye, Chun Jimmie; Witte, John S; Hernandez, Ryan D
2016-07-01
The role of rare alleles in complex phenotypes has been hotly debated, but most rare variant association tests (RVATs) do not account for the evolutionary forces that affect genetic architecture. Here, we use simulation and numerical algorithms to show that explosive population growth, as experienced by human populations, can dramatically increase the impact of very rare alleles on trait variance. We then assess the ability of RVATs to detect causal loci using simulations and human RNA-seq data. Surprisingly, we find that statistical performance is worst for phenotypes in which genetic variance is due mainly to rare alleles, and explosive population growth decreases power. Although many studies have attempted to identify causal rare variants, few have reported novel associations. This has sometimes been interpreted to mean that rare variants make negligible contributions to complex trait heritability. Our work shows that RVATs are not robust to realistic human evolutionary forces, so general conclusions about the impact of rare variants on complex traits may be premature. © 2016 Uricchio et al.; Published by Cold Spring Harbor Laboratory Press.
The fossil record of ecdysis, and trends in the moulting behaviour of trilobites.
Daley, Allison C; Drage, Harriet B
2016-03-01
Ecdysis, the process of moulting an exoskeleton, is one of the key characters uniting arthropods, nematodes and a number of smaller phyla into Ecdysozoa. The arthropod fossil record, particularly trilobites, eurypterids and decapod crustaceans, yields information on moulting, although the current focus is predominantly descriptive and lacks a broader evolutionary perspective. We here review literature on the fossil record of ecdysis, synthesising research on the behaviour, evolutionary trends, and phylogenetic significance of moulting throughout the Phanerozoic. Approaches vary widely between taxonomic groups, but an overall theme uniting these works suggests that identifying moults in the palaeontological record must take into account the morphology, taphonomy and depositional environment of fossils. We also quantitatively analyse trends in trilobite ecdysis based on a newly generated database of published incidences of moulting behaviour. This preliminary work reveals significant taxonomic and temporal signal in the trilobite moulting fossil record, with free cheek moulting being prevalent across all Orders and throughout the Phanerozoic, and peaks of cephalic moulting in Phacopida during the Ordovician and rostral plate moulting in Redlichiida during the Cambrian. This study and a review of the literature suggest that it is feasible to extract large-scale evolutionary information from the fossil record of moulting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Origin of marine planktonic cyanobacteria.
Sánchez-Baracaldo, Patricia
2015-12-01
Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600-2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500-542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600-1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000-542 Mya).
Origin of marine planktonic cyanobacteria
Sánchez-Baracaldo, Patricia
2015-01-01
Marine planktonic cyanobacteria contributed to the widespread oxygenation of the oceans towards the end of the Pre-Cambrian and their evolutionary origin represents a key transition in the geochemical evolution of the Earth surface. Little is known, however, about the evolutionary events that led to the appearance of marine planktonic cyanobacteria. I present here phylogenomic (135 proteins and two ribosomal RNAs), Bayesian relaxed molecular clock (18 proteins, SSU and LSU) and Bayesian stochastic character mapping analyses from 131 cyanobacteria genomes with the aim to unravel key evolutionary steps involved in the origin of marine planktonic cyanobacteria. While filamentous cell types evolved early on at around 2,600–2,300 Mya and likely dominated microbial mats in benthic environments for most of the Proterozoic (2,500–542 Mya), marine planktonic cyanobacteria evolved towards the end of the Proterozoic and early Phanerozoic. Crown groups of modern terrestrial and/or benthic coastal cyanobacteria appeared during the late Paleoproterozoic to early Mesoproterozoic. Decrease in cell diameter and loss of filamentous forms contributed to the evolution of unicellular planktonic lineages during the middle of the Mesoproterozoic (1,600–1,000 Mya) in freshwater environments. This study shows that marine planktonic cyanobacteria evolved from benthic marine and some diverged from freshwater ancestors during the Neoproterozoic (1,000–542 Mya). PMID:26621203
Bykova, N; Gill, B C; Grazhdankin, D; Rogov, V; Xiao, S
2017-07-01
The Ediacara biota features the rise of macroscopic complex life immediately before the Cambrian explosion. One of the most abundant and widely distributed elements of the Ediacara biota is the discoidal fossil Aspidella, which is interpreted as a subsurface holdfast possibly anchoring a frondose epibenthic organism. It is a morphologically simple fossil preserved mainly in siliciclastic rocks, which are unsuitable for comprehensive stable isotope geochemical analyses to decipher its taphonomy and paleoecology. In this regard, three-dimensionally preserved Aspidella fossils from upper Ediacaran limestones of the Khatyspyt Formation in the Olenek Uplift of northern Siberia offer a rare opportunity to leverage geochemistry for insights into their taphonomy and paleoecology. To take advantage of this opportunity, we analyzed δ 13 C carb , δ 18 O carb , δ 13 C org , δ 34 S pyr , and iron speciation of the Khatyspyt Aspidella fossils and surrounding sediment matrix in order to investigate whether they hosted microbial symbionts, how they were fossilized, and the redox conditions of their ecological environments. Aspidella holdfasts and surrounding sediment matrix show indistinguishable δ 13 C org values, suggesting they did not host and derive significant amount of nutrients from microbial symbionts such as methanogens, methylotrophs, or sulfide-oxidizing bacteria. δ 13 C carb , δ 18 O carb , and δ 34 S pyr data, along with petrographic observations, suggest that microbial sulfate reduction facilitated the preservation of Aspidella by promoting early authigenic calcite cementation in the holdfasts before matrix cementation and sediment compaction. Iron speciation data are equivocal, largely because of the low total iron concentrations. However, consideration of published sulfur isotope and biomarker data suggests that Aspidella likely lived in non-euxinic waters. It is possible that Aspidella was an opportunistic organism, colonizing the seafloor in large numbers when paleoenvironments were favorable. This study demonstrates that geochemical data of Ediacaran fossils preserved in limestones can offer important insights into the taphonomy and paleoecology of these enigmatic organisms living on the eve of the Cambrian explosion. © 2017 John Wiley & Sons Ltd.
Early Cambrian origin of modern food webs: evidence from predator arrow worms.
Vannier, J; Steiner, M; Renvoisé, E; Hu, S-X; Casanova, J-P
2007-03-07
Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540-520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey-predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian-Cambrian transition, thus laying the foundations of present-day marine food chains.
Early Cambrian origin of modern food webs: evidence from predator arrow worms
Vannier, J; Steiner, M; Renvoisé, E; Hu, S.-X; Casanova, J.-P
2006-01-01
Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540–520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey–predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian–Cambrian transition, thus laying the foundations of present-day marine food chains. PMID:17254986
Body Size Evolution in Conodonts from the Cambrian through the Triassic
NASA Astrophysics Data System (ADS)
Schaal, E. K.; Morgan, D. J.; Payne, J.
2013-12-01
The size of an organism exercises tremendous control over its physiology, life history, and ecology, yet the factors that influence body size evolution remain poorly understood. One major limitation is the lack of appropriate datasets spanning long intervals of evolutionary time. Here, we document size trends in conodonts (tooth-like microfossils from marine chordates) because they evolved rapidly and are known to change size during intervals of environmental change. By measuring photographs from the Catalogue of Conodonts (Ziegler 1982), we compiled a database of conodont P1 element measurements for 575 species and subspecies from the Cambrian through Triassic periods. Because tooth size correlates with body size in conodont animals and their extant relatives, conodont element length can serve as a proxy for the size of the conodont animal. We find that mean and maximum size across species increased during the early Paleozoic, peaked during the Devonian-Mississippian, and then generally decreased until conodonts went extinct at the end of the Triassic. We used regression analyses to compare conodont mean size trends to potential environmental predictors, such as changing atmospheric pO2, atmospheric pCO2, and sea level. Conodont size exhibited poor correlation with these environmental factors, suggesting that conodont evolution may have been more strongly influenced by other environmental covariates or ecological variables such as predation and competition.
Fractal branching organizations of Ediacaran rangeomorph fronds reveal a lost Proterozoic body plan.
Hoyal Cuthill, Jennifer F; Conway Morris, Simon
2014-09-09
The branching morphology of Ediacaran rangeomorph fronds has no exact counterpart in other complex macroorganisms. As such, these fossils pose major questions as to growth patterns, functional morphology, modes of feeding, and adaptive optimality. Here, using parametric Lindenmayer systems, a formal model of rangeomorph morphologies reveals a fractal body plan characterized by self-similar, axial, apical, alternate branching. Consequent morphological reconstruction for 11 taxa demonstrates an adaptive radiation based on 3D space-filling strategies. The fractal body plan of rangeomorphs is shown to maximize surface area, consistent with diffusive nutrient uptake from the water column (osmotrophy). The enigmas of rangeomorph morphology, evolution, and extinction are resolved by the realization that they were adaptively optimized for unique ecological and geochemical conditions in the late Proterozoic. Changes in ocean conditions associated with the Cambrian explosion sealed their fate.
NASA Astrophysics Data System (ADS)
Mathieu, Jordan; Turner, Elizabeth C.; Rainbird, Robert H.
2017-04-01
Paleokarst is most commonly expressed as subtle stratigraphic surfaces rather than large void systems penetrating deeply into the paleo-subsurface. In contrast, a regional Precambrian-Cambrian unconformity on Victoria Island (NWT, Canada), is associated with exceptional exposure of large, intact Cambrian paleocaverns (100 m diameter; tens of m high). The paleocaves are distributed along a paleo-horizontal plane, and an associated gryke network is present in the 30-60 m of Neoproterozoic dolostone between cave rooves and the base of overlying Cambrian sandstone; both are filled by Cambrian sandstone. The formation and preservation of such karst features require aggressive dissolution along a stable paleo-water-table shortly before transgression and deposition of shallow-marine sand over the dolostone. During the transgression, the karst network acted as a conduit for flowing groundwater that was discharged through overlying, unconsolidated Cambrian shallow-marine sand, producing water-escape structures (sand volcanoes and their conduits). The conduits are preserved as cylindrical remnants of the sand volcanoes' feeder pipes. Sediment fluidisation was probably caused by variations in the hydraulic-head gradient in a meteoric lens near the Cambrian coastline under a tropical climate with abundant, probably seasonally variable rainfall that caused pulses in subsurface fluid flow. Spatial distribution of the paleocaves and sand volcanoes suggests their formation on the southeast side of a recently faulted horst of Proterozoic carbonate bedrock that formed a nearshore island during early Cambrian sea-level rise. Fluidisation structures such as those reported here have generally been difficult to interpret owing to a lack of data on the fluid hydraulics of the underlying aquifer. This is the first report linking the hydraulics of a well-characterised paleokarst to development of fluid-escape structures. Such structures are widely known from sandstones overlying the sub-Cambrian unconformity around the circumference of Laurentia.
The quest for blue supergiants : The evolution of the progenitor of SN 1987A
NASA Astrophysics Data System (ADS)
Menon, Athira; Heger, Alexander
2015-08-01
SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.
Du, Yajun; Luo, Kunli; Ni, Runxiang; Hussain, Rahib
2018-03-01
The natural selenium poisoning due to toxic Se levels in food chain had been observed in humans and animals in Lower Cambrian outcrop areas in Southern Shaanxi, China. To find out the distribution pattern of selenium and other hazardous elements in the plant, soil and water of Lower Cambrian in Southern Shaanxi, China, and their possible potential health risk, a total of 30 elements were analyzed and the health risk assessment of 18 elements was calculated. Results showed that the soil, plant and natural water of Lower Cambrian all had relatively high Se levels. In Lower Cambrian, the soil was enriched with Se, As, Ba, Cu, Mo, Ni, Zn, Ga, Cd and Cr (1.68 < I geo < 4.48, I geo ; geo-accumulation index). In same plants, the contents of Se, Cd and Zn (except Cd in corn and rice, Zn in potato and corn) of Lower Cambrian were higher than that of the other strata. Ba and Ga in natural water were higher than that of the other strata, while K and Cs were opposite. The health risk assessment results showed that the people living in outcrop areas of Lower Cambrian had both high total non-carcinogenic risk of 18 elements (HI = 16.12, acceptable range: < 1) and carcinogenic risk of As (3.98E-04, acceptable range: 10 -6 -10 -4 ). High contents of Se, As, Mo and Tl of Lower Cambrian may pose a health risk to local people, and food intake was the major pathway. For minimizing potential health risk, the local inhabitants should use the mix-imported food with local growing foods.
Upper Lower Cambrian depositional sequence in Avalonian New Brunswick
Landing, E.; Westrop, S.R.
1996-01-01
The Hanford Brook Formation (emended) is a thin (up to 42+ m), upper Lower Cambrian depositional sequence that is unconformably bounded by the lower Lower Cambrian (Random Formation) and the middle Middle Cambrian (Fossil Brook Member of the Chamberlain's Brook Formation). These stratigraphic relationships of the trilobite-bearing Hanford Brook Formation indicate deposition on the Avalonian marginal platform in the Saint John, New Brunswick, region and provide more evidence for a uniform, latest Precambrian-Cambrian epeirogenic history and cover sequence in Avalon. The Hanford Brook Formation is a deepening - shoaling sequence with (i) lower, transgressive sandstone deposited in episodically high-energy environments (St. Martins Member, new); (ii) highstand-regressive, dysaerobic mudstone - fine-grained sandstone with volcanic ashes (Somerset Street Member, new); and (iii) upper, regressive, planar and hummocky cross-stratified sandstone (Long Island Member, new). Trilobites are common in the distal Somerset Street Member, and ostracodes and brachiopods dominate the St. Martins and Long Island members. Condensation of the St. Martins Member and absence of the Long Island Member where the Random Formation and Fossil Brook Member are thinnest suggest onlap of the Hanford Brook and pronounced, sub-Middle Cambrian erosion across epeirogenically active blocks in southern New Brunswick.
NASA Astrophysics Data System (ADS)
Pouclet, André; El Hadi, Hassan; Álvaro, J. Javier; Bardintzeff, Jacques-Marie; Benharref, Mohammed; Fekkak, Abdelilah
2018-03-01
Volcanic activities related to the opening of a Cambrian rift in Morocco were widespread from the Fortunian to the Cambrian Epoch 3. Numerous data are available from northwestern volcanic sites, particularly in the western High Atlas, but they are scarce from the southeastern sites. New data are documented here from the volcanic formations exposed in the Jbel Tazoult n'Ouzina of the Tafilalt Province, eastern Anti-Atlas and dated to Cambrian Epoch 2-3. The Cambrian volcanic activities recorded in the High Atlas, Anti-Atlas, and Coastal Meseta are synthesized to refine their stratigraphic setting and to characterize their magmatic affinities and fingerprints. Six volcanic pulses are determined as tholeiitic, transitional, and alkaline suites. The tholeiitic and transitional magmas originated from primitive mantle and E-MORB-type sources with a spinel- and garnet-bearing lherzolite composition. Some of them were modified by assimilation-fractional crystallisation processes during crust-mantle interactions. The alkaline magmas fit with an OIB-type and a garnet-bearing lherzolite source. The palaeogeographic distribution of the magmatic suites was controlled by the lithospheric thinning of the Cambrian Atlas Rift and lithospheric constraints of the Pan-African metacraton and West African craton.
Performance comparison of some evolutionary algorithms on job shop scheduling problems
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Rao, C. S. P.
2016-09-01
Job Shop Scheduling as a state space search problem belonging to NP-hard category due to its complexity and combinational explosion of states. Several naturally inspire evolutionary methods have been developed to solve Job Shop Scheduling Problems. In this paper the evolutionary methods namely Particles Swarm Optimization, Artificial Intelligence, Invasive Weed Optimization, Bacterial Foraging Optimization, Music Based Harmony Search Algorithms are applied and find tuned to model and solve Job Shop Scheduling Problems. To compare about 250 Bench Mark instances have been used to evaluate the performance of these algorithms. The capabilities of each these algorithms in solving Job Shop Scheduling Problems are outlined.
Recognition of Macluritella ( Gastropoda) from the Upper Cambrian of Missouri and Nevada ( USA).
Yochelson, E.L.; Stinchcomb, B.L.
1987-01-01
Open-coiled euomphalacean gastropods have been identified for the first time in the Upper Cambrian Eminence Dolomite of Missouri. These gastropods have a triangular whorl profile and are conspecific with Hyolithes walcotti described from the Upper Cambrian of Nevada. That species is questionably reassigned to the gastropod genus Macluritella, hitherto known only from the Lower Ordovician of Colorado. -Authors Ordovician Colorado
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities
Muscente, A. D.; Prabhu, Anirudh; Zhong, Hao; Eleish, Ahmed; Meyer, Michael B.; Fox, Peter; Hazen, Robert M.; Knoll, Andrew H.
2018-01-01
Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski’s Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian–Triassic, Cretaceous–Paleogene, Devonian, and Triassic–Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations. PMID:29686079
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.
Muscente, A D; Prabhu, Anirudh; Zhong, Hao; Eleish, Ahmed; Meyer, Michael B; Fox, Peter; Hazen, Robert M; Knoll, Andrew H
2018-05-15
Mass extinctions documented by the fossil record provide critical benchmarks for assessing changes through time in biodiversity and ecology. Efforts to compare biotic crises of the past and present, however, encounter difficulty because taxonomic and ecological changes are decoupled, and although various metrics exist for describing taxonomic turnover, no methods have yet been proposed to quantify the ecological impacts of extinction events. To address this issue, we apply a network-based approach to exploring the evolution of marine animal communities over the Phanerozoic Eon. Network analysis of fossil co-occurrence data enables us to identify nonrandom associations of interrelated paleocommunities. These associations, or evolutionary paleocommunities, dominated total diversity during successive intervals of relative community stasis. Community turnover occurred largely during mass extinctions and radiations, when ecological reorganization resulted in the decline of one association and the rise of another. Altogether, we identify five evolutionary paleocommunities at the generic and familial levels in addition to three ordinal associations that correspond to Sepkoski's Cambrian, Paleozoic, and Modern evolutionary faunas. In this context, we quantify magnitudes of ecological change by measuring shifts in the representation of evolutionary paleocommunities over geologic time. Our work shows that the Great Ordovician Biodiversification Event had the largest effect on ecology, followed in descending order by the Permian-Triassic, Cretaceous-Paleogene, Devonian, and Triassic-Jurassic mass extinctions. Despite its taxonomic severity, the Ordovician extinction did not strongly affect co-occurrences of taxa, affirming its limited ecological impact. Network paleoecology offers promising approaches to exploring ecological consequences of extinctions and radiations. Copyright © 2018 the Author(s). Published by PNAS.
Arsenic stress after the Proterozoic glaciations
NASA Astrophysics Data System (ADS)
Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin
2015-12-01
Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.
Arsenic stress after the Proterozoic glaciations.
Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin
2015-12-04
Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.
Diversity partitioning during the Cambrian radiation
Na, Lin; Kiessling, Wolfgang
2015-01-01
The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia. PMID:25825755
Gravitational Wave Detection in the Introductory Lab
NASA Astrophysics Data System (ADS)
Burko, Lior M.
2017-05-01
A long time ago in a galaxy far, far away, two black holes, one of mass 36 solar masses and the other of mass 29 solar masses, were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of 410 Mpc. When the waves were emitted, the most complex life forms on Earth were eukaryotes. As the gravitational waves propagated toward Earth, it changed much. Five hundred million years after the waves were emitted, or 800 million years ago, the first multicellular life forms emerged on Earth. Earth saw the Cambrian explosion 500 million years ago. Sixty-six million years ago the Cretaceous-Paleogene extinction event caused the disappearance of the dinosaurs. The first modern humans appeared 250,000 years ago.
The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins.
Dehal, Paramvir; Satou, Yutaka; Campbell, Robert K; Chapman, Jarrod; Degnan, Bernard; De Tomaso, Anthony; Davidson, Brad; Di Gregorio, Anna; Gelpke, Maarten; Goodstein, David M; Harafuji, Naoe; Hastings, Kenneth E M; Ho, Isaac; Hotta, Kohji; Huang, Wayne; Kawashima, Takeshi; Lemaire, Patrick; Martinez, Diego; Meinertzhagen, Ian A; Necula, Simona; Nonaka, Masaru; Putnam, Nik; Rash, Sam; Saiga, Hidetoshi; Satake, Masanobu; Terry, Astrid; Yamada, Lixy; Wang, Hong-Gang; Awazu, Satoko; Azumi, Kaoru; Boore, Jeffrey; Branno, Margherita; Chin-Bow, Stephen; DeSantis, Rosaria; Doyle, Sharon; Francino, Pilar; Keys, David N; Haga, Shinobu; Hayashi, Hiroko; Hino, Kyosuke; Imai, Kaoru S; Inaba, Kazuo; Kano, Shungo; Kobayashi, Kenji; Kobayashi, Mari; Lee, Byung-In; Makabe, Kazuhiro W; Manohar, Chitra; Matassi, Giorgio; Medina, Monica; Mochizuki, Yasuaki; Mount, Steve; Morishita, Tomomi; Miura, Sachiko; Nakayama, Akie; Nishizaka, Satoko; Nomoto, Hisayo; Ohta, Fumiko; Oishi, Kazuko; Rigoutsos, Isidore; Sano, Masako; Sasaki, Akane; Sasakura, Yasunori; Shoguchi, Eiichi; Shin-i, Tadasu; Spagnuolo, Antoinetta; Stainier, Didier; Suzuki, Miho M; Tassy, Olivier; Takatori, Naohito; Tokuoka, Miki; Yagi, Kasumi; Yoshizaki, Fumiko; Wada, Shuichi; Zhang, Cindy; Hyatt, P Douglas; Larimer, Frank; Detter, Chris; Doggett, Norman; Glavina, Tijana; Hawkins, Trevor; Richardson, Paul; Lucas, Susan; Kohara, Yuji; Levine, Michael; Satoh, Nori; Rokhsar, Daniel S
2002-12-13
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
New Ediacara fossils preserved in marine limestone and their ecological implications
Chen, Zhe; Zhou, Chuanming; Xiao, Shuhai; Wang, Wei; Guan, Chengguo; Hua, Hong; Yuan, Xunlai
2014-01-01
Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551–541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation. PMID:24566959
New Ediacara fossils preserved in marine limestone and their ecological implications.
Chen, Zhe; Zhou, Chuanming; Xiao, Shuhai; Wang, Wei; Guan, Chengguo; Hua, Hong; Yuan, Xunlai
2014-02-25
Ediacara fossils are central to our understanding of animal evolution on the eve of the Cambrian explosion, because some of them likely represent stem-group marine animals. However, some of the iconic Ediacara fossils have also been interpreted as terrestrial lichens or microbial colonies. Our ability to test these hypotheses is limited by a taphonomic bias that most Ediacara fossils are preserved in sandstones and siltstones. Here we report several iconic Ediacara fossils and an annulated tubular fossil (reconstructed as an erect epibenthic organism with uniserial arranged modular units), from marine limestone of the 551-541 Ma Dengying Formation in South China. These fossils significantly expand the ecological ranges of several key Ediacara taxa and support that they are marine organisms rather than terrestrial lichens or microbial colonies. Their close association with abundant bilaterian burrows also indicates that they could tolerate and may have survived moderate levels of bioturbation.
NASA Astrophysics Data System (ADS)
Vince, Gaia
2016-04-01
There is growing evidence that we are now entering a new geological age defined by human influence on the planet, the Anthropocene. Millions of years from now, a stripe in the accumulated layers of rock on Earth's surface will reveal our human fingerprint just as we can see evidence of dinosaurs in rocks of the Jurassic, or the explosion of life that marks the Cambrian. There is now no part of the planet untouched by human influence. The realisation that we wield such planetary power requires a quite extraordinary shift in perception, fundamentally toppling the scientific, cultural and religious philosophies that define our place in the world. This session explores these issues and examines our new relationship with nature now that we so strongly influence the biosphere. And this session will look at what the impacts of our planetary changes mean for us, and how we might deal with the consequences of the Anthropocene we have created.
Li, Meijun; Wang, T.-G.; Lillis, Paul G.; Wang, Chunjiang; Shi, Shengbao
2012-01-01
Two oil families in Ordovician reservoirs from the cratonic region of the Tarim Basin are distinguished by the distribution of regular steranes, triaromatic steroids, norcholestanes and dinosteroids. Oils with relatively lower contents of C28 regular steranes, C26 20S, C26 20R + C27 20S and C27 20R regular triaromatic steroids, dinosteranes, 24-norcholestanes and triaromatic dinosteroids originated from Middle–Upper Ordovician source rocks. In contrast, oils with abnormally high abundances of the above compounds are derived from Cambrian and Lower Ordovician source rocks. Only a few oils have previously been reported to be of Cambrian and Lower Ordovician origin, especially in the east region of the Tarim Basin. This study further reports the discovery of oil accumulations of Cambrian and Lower Ordovician origin in the Tabei and Tazhong Uplifts, which indicates a potential for further discoveries involving Cambrian and Lower Ordovician sourced oils in the Tarim Basin. Dinosteroids in petroleum and ancient sediments are generally thought to be biomarkers for dinoflagellates and 24-norcholestanes for dinoflagellates and diatoms. Therefore, the abnormally high abundance of these compounds in extracts from the organic-rich sediments in the Cambrian and Lower Ordovician and related oils in the cratonic region of the Tarim Basin suggests that phytoplankton algae related to dinoflagellates have appeared and might have flourished in the Tarim Basin during the Cambrian Period. Steroids with less common structural configurations are underutilized and can expand understanding of the early development history of organisms, as well as define petroleum systems.
The Middle Cambrian fossil Pikaia and the evolution of chordate swimming.
Lacalli, Thurston
2012-07-06
Conway Morris and Caron (2012) have recently published an account of virtually all the available information on Pikaia gracilens, a well-known Cambrian fossil and supposed basal chordate, and propose on this basis some new ideas about Pikaia's anatomy and evolutionary significance. Chief among its chordate-like features are the putative myomeres, a regular series of vertical bands that extends the length of the body. These differ from the myomeres of living chordates in that boundaries between them (the myosepta) are gently curved, with minimal overlap, whereas amphioxus and vertebrates have strongly overlapping V- and W-shaped myomeres. The implication, on biomechanical grounds, is that myomeres in Pikaia exerted much less tension on the myosepta, so the animal would have been incapable of swimming as rapidly as living chordates operating in the fast-twitch mode used for escape and attack. Pikaia either lacked the fast-twitch fibers necessary for such speeds, having instead only slow-twitch fibers, or it had an ancestral fiber type with functional capabilities more like modern slow fibers than fast ones. The first option is supported by the sequence of development in zebrafish, where both myoseptum formation and fast fiber deployment show a dependence on slow fibers, which develop first. For Pikaia, the absence of fast fibers has both behavioral and anatomical implications, which are discussed. Among the latter is the possibility that a notochord may not have been needed as a primary stiffening device if other structures (for example, the dorsal organ) could perform that role.
NASA Astrophysics Data System (ADS)
Purnell, Mark; Gabbott, Sarah; Murdock, Duncan; Cong, Peiyun
2016-04-01
The oldest fossil vertebrates are from the Lower Cambrian Chengjiang biota of China, which contains four genera of fish-like, primitive vertebrates: Haikouichthys, Myllokunmingia, Zhongjianichthys and Zhongxiniscus. These fossils play key roles in calibrating molecular clocks and informing our view of the anatomy of animals close to the origin of vertebrates, potentially including transitional forms between vertebrates and their nearest relatives. Despite the evident importance of these fossils, the degree to which taphonomic processes have affected their anatomical completeness has not been investigated. For example, some or all might have been affected by stemward slippage - the pattern observed in experimental decay of non-biomineralised chordates in which preferential decay of synapomorphies and retention of plesiomorphic characters would cause fossil taxa to erroneously occupy more basal positions than they should. This hypothesis is based on experimental data derived from decay of non-biomineralised chordates under laboratory conditions. We have expanded this analysis to include a broader range of potentially significant environmental variables; we have also compared and combined the results of experiments from several taxa to identify general patterns of chordate decay. Examination of the Chengjiang vertebrates in the light of these results demonstrates that, contrary to some assertions, experimentally derived models of phylogenetic bias are applicable to fossils. Anatomical and phylogenetic interpretations of early vertebrates that do not take taphonomic biases into account risk overestimating diversity and the evolutionary significance of differences between fossil specimens.
Oceanic oxygenation events in the anoxic Ediacaran ocean.
Sahoo, S K; Planavsky, N J; Jiang, G; Kendall, B; Owens, J D; Wang, X; Shi, X; Anbar, A D; Lyons, T W
2016-09-01
The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tsukui, K.; Ramezani, J.; Zhu, M.; Maloof, A. C.; Porter, S.; Moore, J.; Eddy, M. P.; Bowring, S. A.
2016-12-01
The Terreneuvian Epoch of the early Cambrian marks the global diversification of early animal life, as well as major perturbations to Earth's geochemical cycles. Understanding possible links between biotic evolution (e.g., emergence of skeletal animals) and the recognized changes in ocean chemistry requires a high fidelity chronostratigraphic framework for the early Cambrian records. One such chronostratigraphy was built by mapping local early Cambrian carbon isotope profiles onto a U-Pb age-calibrated marine carbonate δ13C record from Morocco, assuming global synchroneity of the observed δ13C trends. Here we present a direct test of this assumption using high-precision U-Pb geochronology (CA-ID-TIMS method) of ash beds from key lower Cambrian horizons throughout eastern Yunnan Province in South China. Preliminary age results from ash beds near the top of the Dengying Formation (Fm.) and the basal Daibu Member (Mb.) of the Zhujiaqing Fm. in multiple sections place the basal Cambrian negative δ13C excursion (BACE) in China at ca. 540.7-539.6 Ma. Our new U-Pb dates from the overlying Zhongyicun Mb. at the Meishucun and nearby sections improve significantly upon previous in situ U-Pb geochronology and constrain the onset of high-frequency δ13C oscillations in some sections to between 533.5 and 532.9 Ma. Most importantly, a new U-Pb date of ca. 526 Ma from the basal Shiyantou Fm. in the Xiaotan Section marks the termination of a >1 million year-long period of consistently positive (≥+4‰) δ13C values (ZHUCE) that is characteristic of many early Cambrian records worldwide. This date establishes a robust time correlation between ZHUCE in South China and its equivalent 5p excursion in Morocco and Siberia, and constrains the timing and duration of the largest positive δ13C anomalies in the Cambrian.
NASA Astrophysics Data System (ADS)
Jiao, Wen-Jun; Li, Yong-Xiang; Yang, Zhen-Yu
2018-04-01
The Cambrian true polar wander (TPW) hypothesis remains controversial largely because of the uncertainties in the quality and/or fidelity of the paleomagnetic data as well as their chronological control. Testing the TPW hypothesis requires high-quality paleomagnetic data of sufficient spatial and temporal resolutions. Here, we present paleomagnetic results of a continuous Cambrian shallow marine succession from South China where available detailed biostratigraphy provides exceptional chronological constraints. Forty-three sites of paleomagnetic samples were collected from this limestone-dominated succession. Stepwise thermal demagnetization generally reveals three-component magnetizations. Low- and intermediate-temperature components can be cleaned by ∼330 °C, and the high-temperature component (HTC) was isolated typically from ∼350 to ∼450 °C. A positive fold test and the presence of reversed polarity in the strata, together with rock magnetic data as well as the scanning electron microscopic (SEM) and transmission electron microscopic (TEM) results, collectively suggest that the HTCs are likely primary. A directional shift of the HTCs occurs between the lower-middle Cambrian and the upper Cambrian strata in the succession and is tentatively interpreted to indicate a ∼57° polar wander from ∼500.5 to 494 Ma. Because the rate of polar wander is too fast to be a tectonic origin, this polar wander is interpreted to represent a Late Cambrian TPW. This TPW appears coeval with the Steptoean positive carbon isotope excursion (SPICE) and the major trilobite mass extinctions, suggesting a potential link between the TPW and the Late Cambrian biotic and climatic changes. Because the proposed TPW event is exceptionally well-dated, it should be testable through examination of other worldwide sections.
Alvaro, Jose Javier; Benziane, Fouad; Thomas, Robert; Walsh, Gregory J.; Yazidi, Abdelaziz
2014-01-01
In the last two decades, great progress has been made in the geochronological, chrono- and chemostratigraphic control of the Neoproterozoic and Cambrian from the Anti-Atlas Ranges and the Ouzellagh promontory (High Atlas). As a result, the Neoproterozoic is lithostratigraphically subdivided into: (i) the Lkest-Taghdout Group (broadly interpreted at c. 800–690 Ma) representative of rift-to-passive margin conditions on the northern West African craton; (ii) the Iriri (c. 760–740 Ma), Bou Azzer (c. 762–697 Ma) and Saghro (c. 760?–610 Ma) groups, the overlying Anezi, Bou Salda, Dadès and Tiddiline formations localized in fault-grabens, and the Ouarzazate Supergroup (c. 615–548 Ma), which form a succession of volcanosedimentary complexes recording the onset of the Pan-African orogeny and its aftermath; and (iii) the Taroudant (the Ediacaran–Cambrian boundary lying in the Tifnout Member of the Adoudou Formation), Tata, Feijas Internes and Tabanite groups that have recorded development of the late Ediacaran–Cambrian Atlas Rift. Recent discussions of Moroccan strata to select new global GSSPs by the International Subcommissions on Ediacaran and Cambrian Stratigraphy have raised the stratigraphic interest in this region. A revised and updated stratigraphic framework is proposed here to assist the tasks of both subcommissions and to fuel future discussions focused on different geological aspects of the Neoproterozoic–Cambrian time span.
An early Cambrian greenhouse climate.
Hearing, Thomas W; Harvey, Thomas H P; Williams, Mark; Leng, Melanie J; Lamb, Angela L; Wilby, Philip R; Gabbott, Sarah E; Pohl, Alexandre; Donnadieu, Yannick
2018-05-01
The oceans of the early Cambrian (~541 to 509 million years ago) were the setting for a marked diversification of animal life. However, sea temperatures-a key component of the early Cambrian marine environment-remain unconstrained, in part because of a substantial time gap in the stable oxygen isotope (δ 18 O) record before the evolution of euconodonts. We show that previously overlooked sources of fossil biogenic phosphate have the potential to fill this gap. Pristine phosphatic microfossils from the Comley Limestones, UK, yield a robust δ 18 O signature, suggesting sea surface temperatures of 20° to 25°C at high southern paleolatitudes (~65°S to 70°S) between ~514 and 509 million years ago. These sea temperatures are consistent with the distribution of coeval evaporite and calcrete deposits, peak continental weathering rates, and also our climate model simulations for this interval. Our results support an early Cambrian greenhouse climate comparable to those of the late Mesozoic and early Cenozoic, offering a framework for exploring the interplay between biotic and environmental controls on Cambrian animal diversification.
Early and middle(?) Cambrian metazoan and protistan fossils from West Africa
Culver, S.J.; Repetski, J.E.; Pojeta, J.; Hunt, D.
1996-01-01
Supposed Upper Proterozoic strata in the southwest Taoudeni Basin, Guinea and Senegal, and from the Mauritanide fold belt, Mauritania, have yielded mostly poorly preserved small skeletal fossils of metazoan and protistan origin. Problematic, but possible echinoderm material and spicules of the heteractinid sponge Eiffelia dominate the Taoudeni Basin assemblage. The age of the material is not certain but the paleontologic data suggest an Early Cambrian age for the stratigraphically lowest faunas, and a Middle Cambrian age is possible for the stratigraphically highest collections.
Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.
Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles
2017-02-01
In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.
Wood, R; Curtis, A
2015-03-01
We describe new, ecologically complex reef types from the Ediacaran Nama Group, Namibia, dated at ~548 million years ago (Ma), where the earliest known skeletal metazoans, Cloudina riemkeae and Namacalathus, formed extensive reefs up to 20 m in height and width. C. riemkeae formed densely aggregating assemblages associated with microbialite and thrombolite, each from 30 to 100 mm high, which successively colonised former generations to create stacked laminar or columnar reef frameworks. C. riemkeae individuals show budding, multiple, radiating attachment sites and cementation between individuals. Isolated Namacalathus either intergrew with C. riemkeae or formed dense, monospecific aggregations succeeding C. riemkeae frameworks, providing a potential example of environmentally mediated ecological succession. Cloudina and Namacalathus also grow cryptically, either as pendent aggregations from laminar crypt ceilings in microbial framework reefs or as clusters associated with thrombolite attached to neptunian dyke walls. These reefs are notable for their size, exceeding that of the succeeding Lower Cambrian archaeocyath-microbial communities. The repeated colonisation shown by C. riemkeae of former assemblages implies philopatric larval aggregation to colonise limited favourable substrates. As such, not only were skeletal metazoans more important contributors to reef building in the Ediacaran, but there were also more variable reef types with more complex ecologies, than previously thought. Such an abundance of inferred suspension feeders with biomineralised skeletons indicates the efficient exploitation of new resources, more active carbon removal with a strengthened energy flow between planktic and benthic realms, and the rise of biological control over benthic carbonate production. These mark the prelude to the Cambrian Explosion and the modernisation of the global carbon cycle. © 2014 John Wiley & Sons Ltd.
Tectonic history of the Illinois basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolata, D.R.; Nelson, J.W.
1990-05-01
The Illinois basin began as a failed rift that developed during breakup of a supercontinent approximately 550 Ma. A rift basin in the southernmost part of the present Illinois basin subsided rapidly and filled with about 3,000 m of probable Early and Middle Cambrian sediments. By the Late Cambrian, the rift-bounding faults became inactive and a broad relatively slowly subsiding embayment, extending well beyond the rift and open to the Iapetus Ocean, persisted through most of the Paleozoic Era. Widespread deformation swept through the proto-Illinois basin beginning in the latest Mississippian, continuing to the end of the Paleozoic Era. Upliftmore » of basement fault blocks resulted in the formation of many major folds and faults. The timing of deformation and location of these structures in the forelands of the Ouachita and Alleghanian orogenic belts suggest that much of the deformation resulted from continental collision between North America and Gondwana. The associated compressional stress reactivated the ancient rift-bounding faults, upthrusting the northern edge of a crustal block approximately 1,000 m within the rift. Concurrently, dikes (radiometrically dated as Early Permian), sills, and explosion breccias formed in or adjacent to the reactivated rift. Subsequent extensional stress, probably associated with breakup of Pangea, caused the crustal block within the rift to sink back to near its original position. High-angle, northeast- to east-west-trending normal faults, with as much as 1,000 m of displacement, formed in the southern part of the basin. These faults displace some of the northwest trending Early Permian dikes. Structural closure of the southern end of the Illinois basin was caused by uplift of the Pascola arch sometime between the Late Pennsylvanian and Late Cretaceous.« less
Carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania
Meisler, Harold; Becher, Albert E.
1968-01-01
Detailed mapping has shown that the carbonate rocks of Cambrian and Ordovician age in the Lancaster quadrangle, Pennsylvania, can be divided into 14 rock-stratigraphic units. These units are defined primarily by their relative proportions of limestone and dolomite. The oldest units, the Vintage, Kinzers, and Ledger Formations of Cambrian age, and the Conestoga Limestone of Ordovician age are retained in this report. The Zooks Corner Formation, of Cambrian age, a dolomite unit overlying the Ledger Dolomite, is named here for exposures along Conestoga Creek near the village of Zooks Corner. The Conococheague (Cambrian) and Beekmantown (Ordovician) Limestones, as mapped by earlier workers, have been elevated to group rank and subdivided into formations that are correlated with and named for geologic units in Lebanon and Berks Counties, Pa. These formations, from oldest to youngest, are the Buffalo Springs, Snitz Creek, Millbach, and Richland Formations of the Conococheague Group, and the Stonehenge, Bpler, and Ontelaunee Formations of the Beekmantown Group. The Annville and Myerstown Limestones, which are named for lithologically similar units in Dauphin and Lebanon Counties, Pa., overlie the Beekmantown Group in one small area in the quadrangle.
Pikaia gracilens Walcott: stem chordate, or already specialized in the Cambrian?
Mallatt, Jon; Holland, Nicholas
2013-06-01
For the past 35 years, the Cambrian fossil Pikaia gracilens was widely interpreted as a typical basal chordate based on short descriptions by Conway Morris. Recently, Conway Morris and Caron (CMC) (2012, Biol Rev 87:480-512) described Pikaia extensively, as a basis for new ideas about deuterostome evolution. This new Pikaia has characters with no clear homologues in other animals, so they could be phylogenetically uninformative autapomorphies. These characters include a dorsal organ, posterior ventral area, posterior fusiform structure, and anterior dorsal unit. Yet CMC interpret most of the unusual characters as primitive for chordates, thereby interpreting Pikaia as an even more convincing stem chordate than before. Moreover, they claim that segment (myomere) shape is a reliable guide for defining a chordate and even for assigning animals to their correct place in deuterostome phylogeny. By defining sigmoidal segments as a basal chordate character, they situate Pikaia at the base of the chordates and banish fossil yunnanozoans (which have straight segments) to a position deep within the deuterostomes. In addition, they consider amphioxus, with its conspicuously chevron-shaped segments, to be so highly derived that it is of little use for reconstructing the first chordates. We question their overemphasis on the phylogenetic value of segment shape and their marginalizing of amphioxus. We deduce that Pikaia, not amphioxus, is specialized. We performed a cladistic analysis that showed the character interpretations of CMC are consistent with their wide-ranging evolutionary scenario, but that these interpretations leave unresolved the position of Pikaia within chordates. Copyright © 2013 Wiley Periodicals, Inc.
Yasui, Kinya; Reimer, James D; Liu, Yunhuan; Yao, Xiaoyong; Kubo, Daisuke; Shu, Degan; Li, Yong
2013-01-01
Microfossils of the genus Punctatus include developmental stages such as blastula, gastrula, and hatchlings, and represent the most complete developmental sequence of animals available from the earliest Cambrian. Despite the extremely well-preserved specimens, the evolutionary position of Punctatus has relied only on their conical remains and they have been tentatively assigned to cnidarians. We present a new interpretation of the Punctatus body plan based on the developmental reconstruction aided by recent advances in developmental biology. Punctatus developed from a rather large egg, gastrulated in a mode of invagination from a coeloblastura, and then formed a mouth directly from the blastopore. Spiny benthic hatchlings were distinguishable from swimming or crawling ciliate larvae found in cnidarians and sponges. A mouth appeared at the perihatching embryonic stage and was renewed periodically during growth, and old mouths transformed into the body wall, thus elongating the body. Growing animals retained a small blind gut in a large body cavity without partitioning by septa and did not form tentacles, pedal discs or holdfasts externally. A growth center at the oral pole was sufficient for body patterning throughout life, and the body patterning did not show any bias from radial symmetry. Contrary to proposed cnidarian affinity, the Punctatus body plan has basic differences from that of cnidarians, especially concerning a spacious body cavity separating ectoderm from endoderm. The lack of many basic cnidarian characters in the body patterning of Punctatus leads us to consider its own taxonomic group, potentially outside of Cnidaria.
Yasui, Kinya; Reimer, James D.; Liu, Yunhuan; Yao, Xiaoyong; Kubo, Daisuke; Shu, Degan; Li, Yong
2013-01-01
Background Microfossils of the genus Punctatus include developmental stages such as blastula, gastrula, and hatchlings, and represent the most complete developmental sequence of animals available from the earliest Cambrian. Despite the extremely well-preserved specimens, the evolutionary position of Punctatus has relied only on their conical remains and they have been tentatively assigned to cnidarians. We present a new interpretation of the Punctatus body plan based on the developmental reconstruction aided by recent advances in developmental biology. Results Punctatus developed from a rather large egg, gastrulated in a mode of invagination from a coeloblastura, and then formed a mouth directly from the blastopore. Spiny benthic hatchlings were distinguishable from swimming or crawling ciliate larvae found in cnidarians and sponges. A mouth appeared at the perihatching embryonic stage and was renewed periodically during growth, and old mouths transformed into the body wall, thus elongating the body. Growing animals retained a small blind gut in a large body cavity without partitioning by septa and did not form tentacles, pedal discs or holdfasts externally. A growth center at the oral pole was sufficient for body patterning throughout life, and the body patterning did not show any bias from radial symmetry. Conclusions Contrary to proposed cnidarian affinity, the Punctatus body plan has basic differences from that of cnidarians, especially concerning a spacious body cavity separating ectoderm from endoderm. The lack of many basic cnidarian characters in the body patterning of Punctatus leads us to consider its own taxonomic group, potentially outside of Cnidaria. PMID:23840375
The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling
NASA Astrophysics Data System (ADS)
Och, Lawrence M.; Shields-Zhou, Graham A.
2012-01-01
The oxygen content of the Earth's surface environment is thought to have increased in two broad steps: the Great Oxygenation Event (GOE) around the Archean-Proterozoic boundary and the Neoproterozoic Oxygenation Event (NOE), during which oxygen possibly accumulated to the levels required to support animal life and ventilate the deep oceans. Although the concept of the GOE is widely accepted, the NOE is less well constrained and its timing and extent remain the subjects of debate. We review available evidence for the NOE against the background of major climatic perturbations, tectonic upheaval related to the break-up of the supercontinent Rodinia and reassembly into Gondwana, and, most importantly, major biological innovations exemplified by the Ediacarian Biota and the Cambrian 'Explosion'. Geochemical lines of evidence for the NOE include perturbations to the biogeochemical cycling of carbon. Generally high δ 13C values are possibly indicative of increased organic carbon burial and the release of oxidative power to the Earth's surface environment after c. 800 Ma. A demonstrably global and primary record of extremely negative δ 13C values after about 580 Ma strongly suggests the oxidation of a large dissolved organic carbon pool (DOC), the culmination of which around c. 550 Ma coincided with an abrupt diversification of Ediacaran macrobiota. Increasing 87Sr/ 86Sr ratios toward the Neoproterozoic-Cambrian transition indicates enhanced continental weathering which may have fuelled higher organic production and burial during the later Neoproterozoic. Evidence for enhanced oxidative recycling is given by the increase in sulfur isotope fractionation between sulfide and sulfate, exceeding the range usually attained by sulfate reduction alone, reflecting an increasing importance of the oxidative part in the sulfur cycle. S/C ratios attained a maximum during the Precambrian-Cambrian transition, further indicating higher sulfate concentrations in the ocean and a transition from dominantly pyrite burial to sulfate burial after the Neoproterozoic. Strong evidence for the oxygenation of the deep marine environment has emerged through elemental approaches over the past few years which were able to show significant increases in redox-sensitive trace-metal (notably Mo) enrichment in marine sediments not only during the GOE but even more pronounced during the inferred NOE. In addition to past studies involving Mo enrichment, which has been extended and further substantiated in the current review, we present new compilations of V and U concentrations in black shales throughout Earth history that confirm such a rise and further support the NOE. With regard to ocean ventilation, we also review other sedimentary redox indicators, such as iron speciation, molybdenum isotopes and the more ambiguous REE patterns. Although the timing and extent of the NOE remain the subjects of debate and speculation, we consider the record of redox-sensitive trace-metals and C and S contents in black shales to indicate delayed ocean ventilation later in the Cambrian on a global scale with regard to rising oxygen levels in the atmosphere which likely rose during the Late Neoproterozoic.
Compilation and network analyses of cambrian food webs.
Dunne, Jennifer A; Williams, Richard J; Martinez, Neo D; Wood, Rachel A; Erwin, Douglas H
2008-04-29
A rich body of empirically grounded theory has developed about food webs--the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple "niche model," which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences.
EXPLOSIVE RADIATION OF A BACTERIAL SPECIES GROUP
Morlon, Hélène; Kemps, Brian D.; Plotkin, Joshua B.; Brisson, Dustin
2013-01-01
The current diversity of life on earth is the product of macroevolutionary processes that have shaped the dynamics of diversification. Although the tempo of diversification has been studied extensively in macroorganisms, much less is known about the rates of diversification in the exceedingly diverse and species-rich microbiota. Decreases in diversification rates over time, a signature of explosive radiations, are commonly observed in plant and animal lineages. However, the few existing analyses of microbial lineages suggest that the tempo of diversification in prokaryotes may be fundamentally different. Here, we use multilocus and genomic sequence data to test hypotheses about the rate of diversification in a well-studied pathogenic bacterial lineage, Borrelia burgdorferi sensu lato (sl). Our analyses support the hypothesis that an explosive radiation of lineages occurred near the origin of the clade, followed by a sharp decay in diversification rates. These results suggest that explosive radiations may be a general feature of evolutionary history across the tree of life. PMID:22834754
The Cambrian Ross Orogeny in northern Victoria Land (Antarctica) and New Zealand: A synthesis
Federico, L.; Capponi, G.; Crispini, L.; Bradshaw, J.D.
2007-01-01
In the Cambrian, the paleo-Pacific margin of the Gondwana supercontinent included East Antarctica, Australia, Tasmania and New Zealand and was affected by themajor Ross-Delamerian Orogeny. In Antarctica, evidence suggests that this resulted from oblique subduction and that in northern Victoria Land it was accompanied by the opening and subsequent closure of a back-arc basin. Comparison of the type and timing of sedimentary, magmatic and metamorphic events in areas noted above shows strong similarities between northern Victoria Land and New Zealand. In both regions Middle Cambrian volcanites are interpreted as arc/back-arc assemblages produced by west-directed subduction; sediments interbedded with the volcanites show provenance both from the arc and from the Gondwana margin and therefore place the basin close to the continent. Back-arc closure in the Late Cambrian was likely accomplished through a second subduction system
Zhu, Shixing; Zhu, Maoyan; Knoll, Andrew H.; Yin, Zongjun; Zhao, Fangchen; Sun, Shufen; Qu, Yuangao; Shi, Min; Liu, Huan
2016-01-01
Fossils of macroscopic eukaryotes are rarely older than the Ediacaran Period (635–541 million years (Myr)), and their interpretation remains controversial. Here, we report the discovery of macroscopic fossils from the 1,560-Myr-old Gaoyuzhuang Formation, Yanshan area, North China, that exhibit both large size and regular morphology. Preserved as carbonaceous compressions, the Gaoyuzhuang fossils have statistically regular linear to lanceolate shapes up to 30 cm long and nearly 8 cm wide, suggesting that the Gaoyuzhuang fossils record benthic multicellular eukaryotes of unprecedentedly large size. Syngenetic fragments showing closely packed ∼10 μm cells arranged in a thick sheet further reinforce the interpretation. Comparisons with living thalloid organisms suggest that these organisms were photosynthetic, although their phylogenetic placement within the Eukarya remains uncertain. The new fossils provide the strongest evidence yet that multicellular eukaryotes with decimetric dimensions and a regular developmental program populated the marine biosphere at least a billion years before the Cambrian Explosion. PMID:27186667
Turbulent combustion in aluminum-air clouds for different scale explosion fields
NASA Astrophysics Data System (ADS)
Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.
2017-01-01
This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.
Simionato, Elena; Ledent, Valérie; Richards, Gemma; Thomas-Chollier, Morgane; Kerner, Pierre; Coornaert, David; Degnan, Bernard M; Vervoort, Michel
2007-01-01
Background Molecular and genetic analyses conducted in model organisms such as Drosophila and vertebrates, have provided a wealth of information about how networks of transcription factors control the proper development of these species. Much less is known, however, about the evolutionary origin of these elaborated networks and their large-scale evolution. Here we report the first evolutionary analysis of a whole superfamily of transcription factors, the basic helix-loop-helix (bHLH) proteins, at the scale of the whole metazoan kingdom. Results We identified in silico the putative full complement of bHLH genes in the sequenced genomes of 12 different species representative of the main metazoan lineages, including three non-bilaterian metazoans, the cnidarians Nematostella vectensis and Hydra magnipapillata and the demosponge Amphimedon queenslandica. We have performed extensive phylogenetic analyses of the 695 identified bHLHs, which has allowed us to allocate most of these bHLHs to defined evolutionary conserved groups of orthology. Conclusion Three main features in the history of the bHLH gene superfamily can be inferred from these analyses: (i) an initial diversification of the bHLHs has occurred in the pre-Cambrian, prior to metazoan cladogenesis; (ii) a second expansion of the bHLH superfamily occurred early in metazoan evolution before bilaterians and cnidarians diverged; and (iii) the bHLH complement during the evolution of the bilaterians has been remarkably stable. We suggest that these features may be extended to other developmental gene families and reflect a general trend in the evolution of the developmental gene repertoires of metazoans. PMID:17335570
Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna
Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles
2017-01-01
In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643
Bradshaw, J.D.
2007-01-01
Correlation of the Cambrian Delamerian Orogen of Australia and Ross Orogen of the Transantarctic Mountains widely accepted but the extension of the adjacent Lachlan Orogen into Antarctica is controversial. Outside the main Ross-Delamerian belt, evidence of this orogeny is preserved at Mt Murphy in Marie Byrd Land and the in Takaka Terrane of New Zealand. In all pre-break- configurations of the SW Pacific, these two areas are far removed from the Ross-Delamerian belt. Evidence from conglomerates in the Takaka Terrane, however, shows that in Late Cambrian times it was adjacent to the Ross Orogen. This indicates major tectonic displacements within Gondwana after the Cambrian and before break-up. The Lachlan Orogen formed in an extensional belt in a supra-subduction zone setting and the Cambrian rocks of Marie Byrd Land and New Zealand are interpreted as parts of a rifted continental ribbon on the outboard side of the Lachlan belt.
Small bilaterian fossils from 40 to 55 million years before the cambrian.
Chen, Jun-Yuan; Bottjer, David J; Oliveri, Paola; Dornbos, Stephen Q; Gao, Feng; Ruffins, Seth; Chi, Huimei; Li, Chia-Wei; Davidson, Eric H
2004-07-09
Ten phosphatized specimens of a small (<180 micrometers) animal displaying clear bilaterian features have been recovered from the Doushantuo Formation, China, dating from 40 to 55 million years before the Cambrian. Seen in sections, this animal (Vernanimalcula guizhouena gen. et sp. nov.) had paired coeloms extending the length of the gut; paired external pits that could be sense organs; bilateral, anterior-posterior organization; a ventrally directed anterior mouth with thick walled pharynx; and a triploblastic structure. The structural complexity is that of an adult rather than a larval form. These fossils provide the first evidence confirming the phylogenetic inference that Bilateria arose well before the Cambrian.
Schoenemann, Brigitte; Castellani, Christopher; Clarkson, Euan N. K.; Haug, Joachim T.; Maas, Andreas; Haug, Carolin; Waloszek, Dieter
2012-01-01
Fossilized compound eyes from the Cambrian, isolated and three-dimensionally preserved, provide remarkable insights into the lifestyle and habitat of their owners. The tiny stalked compound eyes described here probably possessed too few facets to form a proper image, but they represent a sophisticated system for detecting moving objects. The eyes are preserved as almost solid, mace-shaped blocks of phosphate, in which the original positions of the rhabdoms in one specimen are retained as deep cavities. Analysis of the optical axes reveals four visual areas, each with different properties in acuity of vision. They are surveyed by lenses directed forwards, laterally, backwards and inwards, respectively. The most intriguing of these is the putatively inwardly orientated zone, where the optical axes, like those orientated to the front, interfere with axes of the other eye of the contralateral side. The result is a three-dimensional visual net that covers not only the front, but extends also far laterally to either side. Thus, a moving object could be perceived by a two-dimensional coordinate (which is formed by two axes of those facets, one of the left and one of the right eye, which are orientated towards the moving object) in a wide three-dimensional space. This compound eye system enables small arthropods equipped with an eye of low acuity to estimate velocity, size or distance of possible food items efficiently. The eyes are interpreted as having been derived from individuals of the early crustacean Henningsmoenicaris scutula pointing to the existence of highly efficiently developed eyes in the early evolutionary lineage leading towards the modern Crustacea. PMID:22048954
NASA Astrophysics Data System (ADS)
Benssaou, M.; Hamoumi, N.
2001-04-01
L'étude lithostratigraphique en sédimentologique des formations du Cambrien inférieur de l'Anti-Atlas occidental (Maroc) a permis de mettre en évidence la diversité extrême des faciès allant des faciès continentaux jusqu'au faciès franchement marins. La répartition verticale de ces faciès ainsi que leurs associations ont permis de (i) proposer un nouveau découpage de la succession en formations lithostratigraphiques, (ii) reconstituer les milieux de dépôt (système fluviatile, lacs, fan-deltas, milieu littoral, plate-forme dominée par des constructions stromatolitiques et récifales et plate-forme dominée par les tempêtes) et (iii) établir des modèles paléogéographiques retraçant les différentes étapes d'évolution de ce bassin qui fait partie de la plate-forme nord-gondwanienne au Cambrien inférieur. Lithostratigraphical and sedimentological studies of the Early Cambrian formations in the western Anti-Atlas (Morocco) evidence their large diversity of facies ranging from continental to clearly marine. Vertical distribution and associations of facies afford opportunities to (i) suggest a new classification of the sedimentary sequence in terms of lithostratigraphic formations, (ii) restore the depositional environments (fluvial system, lake, delta fan, coast, stromatolite and reef-dominated platform, tempest-dominated platform), and (iii) establish palæogeographic models displaying the different evolutionary stages of this basin that constituted a part of the Lower Cambrian north-Gondwanian platform.
Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective.
Ortega-Hernández, Javier; Janssen, Ralf; Budd, Graham E
2017-05-01
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modern freshwater microbialite analogues for ancient dendritic reef structures
NASA Technical Reports Server (NTRS)
Laval, B.; Cady, S. L.; Pollack, J. C.; McKay, C. P.; Bird, J. S.; Grotzinger, J. P.; Ford, D. C.; Bohm, H. R.
2000-01-01
Microbialites are organosedimentary structures that can be constructed by a variety of metabolically distinct taxa. Consequently, microbialite structures abound in the fossil record, although the exact nature of the biogeochemical processes that produced them is often unknown. One such class of ancient calcareous structures, Epiphyton and Girvanella, appear in great abundance during the Early Cambrian. Together with Archeocyathids, stromatolites and thrombolites, they formed major Cambrian reef belts. To a large extent, Middle to Late Cambrian reefs are similar to Precambrian reefs, with the exception that the latter, including terminal Proterozoic reefs, do not contain Epiphyton or Girvanella. Here we report the discovery in Pavilion Lake, British Columbia, Canada, of a distinctive assemblage of freshwater calcite microbialites, some of which display microstructures similar to the fabrics displayed by Epiphyton and Girvanella. The morphologies of the modern microbialites vary with depth, and dendritic microstructures of the deep water (> 30 m) mounds indicate that they may be modern analogues for the ancient calcareous structures. These microbialites thus provide an opportunity to study the biogeochemical interactions that produce fabrics similar to those of some enigmatic Early Cambrian reef structures.
Life cycle and morphology of a cambrian stem-lineage loriciferan.
Peel, John S; Stein, Martin; Kristensen, Reinhardt Møbjerg
2013-01-01
Cycloneuralians form a rich and diverse element within Cambrian assemblages of exceptionally preserved fossils. Most resemble priapulid worms whereas other Cycloneuralia (Nematoda, Nematomorpha, Kinorhyncha, Loricifera), well known at the present day, have little or no fossil record. First reports of Sirilorica Peel, 2010 from the lower Cambrian Sirius Passet fauna of North Greenland described a tubular lorica covering the abdomen and part of a well developed introvert with a circlet of 6 grasping denticles near the lorica. The introvert is now known to terminate in a narrow mouth tube, while a conical anal field is also developed. Broad muscular bands between the plates in the lorica indicate that it was capable of movement by rhythmic expansion and contraction of the lorica. Sirilorica is regarded as a macrobenthic member of the stem-lineage of the miniaturised, interstitial, present day Loricifera. Like loriciferans, Sirilorica is now known to have grown by moulting. Evidence of the life cycle of Sirilorica is described, including a large post-larval stage and probably an initial larva similar to that of the middle Cambrian fossil Orstenoloricusshergoldii.
Life Cycle and Morphology of a Cambrian Stem-Lineage Loriciferan
Peel, John S.; Stein, Martin; Kristensen, Reinhardt Møbjerg
2013-01-01
Cycloneuralians form a rich and diverse element within Cambrian assemblages of exceptionally preserved fossils. Most resemble priapulid worms whereas other Cycloneuralia (Nematoda, Nematomorpha, Kinorhyncha, Loricifera), well known at the present day, have little or no fossil record. First reports of Sirilorica Peel, 2010 from the lower Cambrian Sirius Passet fauna of North Greenland described a tubular lorica covering the abdomen and part of a well developed introvert with a circlet of 6 grasping denticles near the lorica. The introvert is now known to terminate in a narrow mouth tube, while a conical anal field is also developed. Broad muscular bands between the plates in the lorica indicate that it was capable of movement by rhythmic expansion and contraction of the lorica. Sirilorica is regarded as a macrobenthic member of the stem-lineage of the miniaturised, interstitial, present day Loricifera. Like loriciferans, Sirilorica is now known to have grown by moulting. Evidence of the life cycle of Sirilorica is described, including a large post-larval stage and probably an initial larva similar to that of the middle Cambrian fossil Orstenoloricusshergoldii . PMID:23991198
Armored kinorhynch-like scalidophoran animals from the early Cambrian.
Zhang, Huaqiao; Xiao, Shuhai; Liu, Yunhuan; Yuan, Xunlai; Wan, Bin; Muscente, A D; Shao, Tiequan; Gong, Hao; Cao, Guohua
2015-11-26
Morphology-based phylogenetic analyses support the monophyly of the Scalidophora (Kinorhyncha, Loricifera, Priapulida) and Nematoida (Nematoda, Nematomorpha), together constituting the monophyletic Cycloneuralia that is the sister group of the Panarthropoda. Kinorhynchs are unique among living cycloneuralians in having a segmented body with repeated cuticular plates, longitudinal muscles, dorsoventral muscles, and ganglia. Molecular clock estimates suggest that kinorhynchs may have diverged in the Ediacaran Period. Remarkably, no kinorhynch fossils have been discovered, in sharp contrast to priapulids and loriciferans that are represented by numerous Cambrian fossils. Here we describe several early Cambrian (~535 million years old) kinorhynch-like fossils, including the new species Eokinorhynchus rarus and two unnamed but related forms. E. rarus has characteristic scalidophoran features, including an introvert with pentaradially arranged hollow scalids. Its trunk bears at least 20 annuli each consisting of numerous small rectangular plates, and is armored with five pairs of large and bilaterally placed sclerites. Its trunk annuli are reminiscent of the epidermis segments of kinorhynchs. A phylogenetic analysis resolves E. rarus as a stem-group kinorhynch. Thus, the fossil record confirms that all three scalidophoran phyla diverged no later than the Cambrian Period.
NASA Astrophysics Data System (ADS)
Santos, Hudson P.; Mángano, M. Gabriela; Soares, Joelson L.; Nogueira, Afonso C. R.; Bandeira, José; Rudnitzki, Isaac D.
2017-07-01
Colonization of the infaunal ecospace by burrowing bilaterians is one of the most important behavioral innovations during the Ediacaran-Cambrian transition. The establishment of vertical burrows by suspension feeders in high-energy nearshore settings during Cambrian Age 2 is reflected by the appearance of the Skolithos Ichnofacies. For the first time, unquestionable vertical burrows typical of the Skolithos Ichnofacies, such as Skolithos linearis, Diplocraterion parallelum and Arenicolites isp., are recorded from nearshore siliciclastic deposits of the Raizama Formation, southeastern Amazon Craton, Brazil. Integration of ichnologic and sedimentologic datasets suggests that these trace fossils record colonization of high-energy and well-oxygenated nearshore sandy environments. Chronostratigraphically, the presence of these vertical burrows indicates an age not older than early Cambrian for the Raizama Formation, which traditionally has been regarded as Ediacaran. Therefore, the Raizama ichnofauna illustrates the advent of modern Phanerozoic ecology marked by the Agronomic Revolution. The discovery of the Skolithos Ichnofacies in these shallow-marine strata suggests possible connections between some central Western Gondwana basins.
NASA Astrophysics Data System (ADS)
Oukassou, Mostafa; Lagnaoui, Abdelouahed; Raji, Mohammed; Michard, André; Saddiqi, Omar
2017-05-01
The present research provides the first evidence of invertebrate activity assigned to the ichnogenus Selenichnites occurring together with moderately diverse ichnofossils from the middle to late Cambrian of the Moroccan Meseta. The invertebrate traces occur in sandstone strata of the El Hank Formation within the Imfout Syncline, in the northern part of the Rehamna Massif (Coastal Block, western Moroccan Meseta). Bedding surfaces from the top of the El Hank Formation near the Imfout Dam show diverse forms of current ripples and distincts crescentic ichnofossils in concave epirelief scattered on the surface. In this section, the traces provide evidence of the ethology of an organism inhabiting the relatively shallow waters of the area during this time. Selenichnites co-occurs with the ichnogenera Arenicolites, Diplocraterion, Lingulichnus, Monocraterion, Skolithos and unidentified burrows, and the ichnoassemblage is referred to the Skolithos ichnofacies. These traces can be referred to arthropods (e.g. polychaete worms and amphipod crustaceans), lingulid brachiopods, annelids and/or phoronids. The Imfout Selenichnites represents the first occurrence of this ichnogenus from the Cambrian of the Moroccan Meseta, and the second from the Cambrian deposits of Morocco. The potential tracemakers are still questionable, but were most likely xiphosurans, trilobites, euthycarcinoids or crustaceans. If so, the Imfout traces could be among the oldest pieces of evidence for the presence of horseshoe crabs during the Cambrian. The combination of sedimentological and ichnological data indicates that the El Hank Formation was deposited in a sublittoral soft ground environment next to a sandy shore. It was originally part of an early Palaeozoic shallow marine epicontinental platform in west-central Morocco. In addition to the equivalent Cambrian deposits from the Anti-Atlas, the El Hank Formation constituted a part of the northern Gondwana platform domain during the transgression coming from the Rheic Ocean onto the West African Craton margin.
NASA Astrophysics Data System (ADS)
Mackey, J. E.; Stewart, B. W.
2016-12-01
A Late Cambrian global positive carbon isotope excursion, known as the SPICE event [1,2] is linked to possible widespread ocean anoxia and enhanced carbon burial [3,4]. We report data from the central Appalachian Conasauga Group from the upper portion of the Middle Cambrian Maryville limestone, through the Late Cambrian Nolichucky shale and Maynardville limestone members. A geochemical, macro-, and micro-scale analyses of core material from southeastern Ohio was carried out to further constrain the timing of oceanic anoxia and trace element geochemistry relative to sediment fluxes occurring at the transition of the Middle to Late Cambrian. The section represents condensed, passive margin shale deposition and carbonate ramp development on the continental shelf of Laurentia. Carbonate sediments (primarily diagenetic dolomite) record a positive δ13C (relative to V-PDB) excursion starting in the upper Nolichucky shale member, reaching its peak (+4.0) in the overlying Maynardville limestone. At this location, there is an offset between the onlap Nolichucky shale deposition and start of the C isotope excursion; this was reported as well in a carbonate section further south of this location [2], on the other side of an extensional feature (Rome Trough) that formed a deep marine basin during Cambrian time. The condensed shale package and relatively low TOC content in our samples is likely due to the combination of a shallow, upslope basin location and isostatic influence on passive margin sedimentation. However, within the Rome Trough, the Nolichucky shale is rich in organic carbon and a recent target of hydrocarbon exploration. The data suggest a possible link between deposition of this shale and the global SPICE event. The robustness of the Late Cambrian δ13C excursion in diagenetically altered sediments and association with hydrocarbon bearing units indicates its utility as a stratigraphic indicator and as a target for exploration. Ongoing geochemical work will focus on trace element and isotopic signatures preserved in the carbonate portion of sediments spanning the C isotope excursion. Refs: [1] Saltzman et al., 1998, Geol. Soc. Am. Bull. 110, 285-297; [2] Glumac and Walker, 1998, J. Sed. Res. 68, 1212-1222; [3] Hurtgen et al., 2009, Earth Planet. Sci. Lett. 281, 288-297; [4] Gill et al., 2011, Nature 469, 80-83.
NASA Technical Reports Server (NTRS)
Liou, J. C.
2012-01-01
Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)
Synthetic consciousness: the distributed adaptive control perspective
2016-01-01
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431526
Synthetic consciousness: the distributed adaptive control perspective.
Verschure, Paul F M J
2016-08-19
Understanding the nature of consciousness is one of the grand outstanding scientific challenges. The fundamental methodological problem is how phenomenal first person experience can be accounted for in a third person verifiable form, while the conceptual challenge is to both define its function and physical realization. The distributed adaptive control theory of consciousness (DACtoc) proposes answers to these three challenges. The methodological challenge is answered relative to the hard problem and DACtoc proposes that it can be addressed using a convergent synthetic methodology using the analysis of synthetic biologically grounded agents, or quale parsing. DACtoc hypothesizes that consciousness in both its primary and secondary forms serves the ability to deal with the hidden states of the world and emerged during the Cambrian period, affording stable multi-agent environments to emerge. The process of consciousness is an autonomous virtualization memory, which serializes and unifies the parallel and subconscious simulations of the hidden states of the world that are largely due to other agents and the self with the objective to extract norms. These norms are in turn projected as value onto the parallel simulation and control systems that are driving action. This functional hypothesis is mapped onto the brainstem, midbrain and the thalamo-cortical and cortico-cortical systems and analysed with respect to our understanding of deficits of consciousness. Subsequently, some of the implications and predictions of DACtoc are outlined, in particular, the prediction that normative bootstrapping of conscious agents is predicated on an intentionality prior. In the view advanced here, human consciousness constitutes the ultimate evolutionary transition by allowing agents to become autonomous with respect to their evolutionary priors leading to a post-biological Anthropocene.This article is part of the themed issue 'The major synthetic evolutionary transitions'. © 2016 The Author(s).
Evolutionary biology of harvestmen (Arachnida, Opiliones).
Giribet, Gonzalo; Sharma, Prashant P
2015-01-07
Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.
NASA Astrophysics Data System (ADS)
Soulaimani, Abderrahmane; Essaifi, Abderrahim; Youbi, Nassrddine; Hafid, Ahmid
2004-12-01
During the Late Precambrian-Early Cambrian times, the borders of the Kerdous inlier were affected by normal faults where thick conglomerates (Ouarzazate Group: PIII), grading progressively upwards into Cambrian marine sediments, were accumulated along their hanging walls. This tectonic activity persisted during the Early Cambrian and was accompanied by a magmatic activity resulting mainly in the emplacement of continental tholeiitic basalts. These tectono-sedimentary and magmatic events are related to the crustal extensional episode that affected the northwestern Gondwana margin during the opening of the Iapetus Ocean during Late Proterozoic times. To cite this article: A. Soulaimani et al., C. R. Geoscience 336 (2004).
NASA Astrophysics Data System (ADS)
Zieger, J.; Linnemann, U.; Hofmann, M.; Gärtner, A.; Marko, L.; Gerdes, A.
2018-04-01
The basement of the Saxo-Thuringian Zone consists of Upper Neoproterozoic (c. 650-570 Ma) Cadomian arc sediments (Lusatian greywackes) and voluminous intrusions of Early Cambrian granitoids with ages of c. 540 Ma (Lausitz Block and Karkonosze-Izera Massif). The latter basement complexes comprise several c. 505 Ma granites, granodiorites, and gneisses emplaced during the change from a collisional tectonic setting to rift-related geotectonics. We present a new age for the Rumburk granite of 504 ± 3 Ma linking Late Cambrian plutonism at the northern margin of Gondwana with the initial phase of a Cambro-Ordovician rift event. Trace element analysis points to a linkage of the Rumburk granite with other Late Cambrian aged rocks of the Karkonosze-Izera Massif. Furthermore, geochemical data also provide evidence of a melting and recycling of Lusatian greywackes by the intrusion of the Rumburk granite. The youngest age peak of the Rumburk granite at c. 504 Ma is considered to be the age of emplacement. Older inherited age populations at c. 540 and c. 610 Ma are present and likely the result of a melting and recycling of Lusatian granitoids and greywackes. The appearance of Neoproterozoic inheritance and Lu-Hf similarities with the Rumburk granite strongly suggest the Lusatian greywackes as source rocks. There is a significant age gap of c. 35 Ma between Cambrian plutonic and volcanic rocks in Saxo-Thuringia. Hence, we consider two distinct pulses of magmatic activity during the transition from the Cadomian orogeny to the opening of the Rheic Ocean.
Continental faunal exchange and the asymmetrical radiation of carnivores.
Pires, Mathias M; Silvestro, Daniele; Quental, Tiago B
2015-10-22
Lineages arriving on islands may undergo explosive evolutionary radiations owing to the wealth of ecological opportunities. Although studies on insular taxa have improved our understanding of macroevolutionary phenomena, we know little about the macroevolutionary dynamics of continental exchanges. Here we study the evolution of eight Carnivora families that have migrated across the Northern Hemisphere to investigate if continental invasions also result in explosive diversification dynamics. We used a Bayesian approach to estimate speciation and extinction rates from a substantial dataset of fossil occurrences while accounting for the incompleteness of the fossil record. Our analyses revealed a strongly asymmetrical pattern in which North American lineages invading Eurasia underwent explosive radiations, whereas lineages invading North America maintained uniform diversification dynamics. These invasions into Eurasia were characterized by high rates of speciation and extinction. The radiation of the arriving lineages in Eurasia coincide with the decline of established lineages or phases of climate change, suggesting differences in the ecological settings between the continents may be responsible for the disparity in diversification dynamics. These results reveal long-term outcomes of biological invasions and show that the importance of explosive radiations in shaping diversity extends beyond insular systems and have significant impact at continental scales. © 2015 The Author(s).
Continental faunal exchange and the asymmetrical radiation of carnivores
Pires, Mathias M.; Silvestro, Daniele; Quental, Tiago B.
2015-01-01
Lineages arriving on islands may undergo explosive evolutionary radiations owing to the wealth of ecological opportunities. Although studies on insular taxa have improved our understanding of macroevolutionary phenomena, we know little about the macroevolutionary dynamics of continental exchanges. Here we study the evolution of eight Carnivora families that have migrated across the Northern Hemisphere to investigate if continental invasions also result in explosive diversification dynamics. We used a Bayesian approach to estimate speciation and extinction rates from a substantial dataset of fossil occurrences while accounting for the incompleteness of the fossil record. Our analyses revealed a strongly asymmetrical pattern in which North American lineages invading Eurasia underwent explosive radiations, whereas lineages invading North America maintained uniform diversification dynamics. These invasions into Eurasia were characterized by high rates of speciation and extinction. The radiation of the arriving lineages in Eurasia coincide with the decline of established lineages or phases of climate change, suggesting differences in the ecological settings between the continents may be responsible for the disparity in diversification dynamics. These results reveal long-term outcomes of biological invasions and show that the importance of explosive radiations in shaping diversity extends beyond insular systems and have significant impact at continental scales. PMID:26490792
Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda
Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J.; Liu, Yu; Boyan, George S.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang
2016-01-01
Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda. PMID:26933218
Hallucigenia's head and the pharyngeal armature of early ecdysozoans.
Smith, Martin R; Caron, Jean-Bernard
2015-07-02
The molecularly defined clade Ecdysozoa comprises the panarthropods (Euarthropoda, Onychophora and Tardigrada) and the cycloneuralian worms (Nematoda, Nematomorpha, Priapulida, Loricifera and Kinorhyncha). These disparate phyla are united by their means of moulting, but otherwise share few morphological characters--none of which has a meaningful fossilization potential. As such, the early evolutionary history of the group as a whole is largely uncharted. Here we redescribe the 508-million-year-old stem-group onychophoran Hallucigenia sparsa from the mid-Cambrian Burgess Shale. We document an elongate head with a pair of simple eyes, a terminal buccal chamber containing a radial array of sclerotized elements, and a differentiated foregut that is lined with acicular teeth. The radial elements and pharyngeal teeth resemble the sclerotized circumoral elements and pharyngeal teeth expressed in tardigrades, stem-group euarthropods and cycloneuralian worms. Phylogenetic results indicate that equivalent structures characterized the ancestral panarthropod and, seemingly, the ancestral ecdysozoan, demonstrating the deep homology of panarthropod and cycloneuralian mouthparts, and providing an anatomical synapomorphy for the ecdysozoan supergroup.
Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.
Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang
2016-03-15
Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.
Groundwater quality in the Cambrian-Ordovician aquifer system, midwestern United States
Stackelberg, Paul E.
2017-12-07
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Cambrian-Ordovician aquifer system constitutes one of the important areas being evaluated.
NASA Astrophysics Data System (ADS)
Zhang, Yuying; He, Zhiliang; Jiang, Shu; Gao, Bo; Liu, Zhongbao; Han, Bo; Wang, Hu
2017-06-01
High resolution geochemical data from nine sections representing shelf to basinal environments in the Yangtze Platform were analyzed to reconstruct the marine redox environment during early Cambrian. Based on Fe species and Mo/TOC ratios, we have supplemented marine redox stratification during Stage 4 (late Canglangpuian-Longwangmiaoan, ˜514-509 Ma) on basis of the previously studied Stage 2-Stage 3 (Meishucunian-Qiongzhusian, ˜529-514 Ma). A new proposed marine stratified redox model indicates that the middepth "euxinic wedge" developed at the base of slope during ˜514-509 Ma in contrast to that the "euxinic wedge" prevailed at the shelf margin during ˜529-514 Ma, even though these middepth euxinic waters both occurred between the oxic surface waters and ferruginous deep waters. This marine redox stratification resulted in high production and good preservation of organic matter during early Cambrian. TOC values in euxinic waters in the middle are generally higher than in ferruginous waters due to upwelling in slope. Therefore, the lower Cambrian organic-rich shales in the Yangtze Platform are inferred to be deposited under the anoxic-ferruginous and euxinic bottom waters with moderate-strong restriction.
NASA Astrophysics Data System (ADS)
Trindade, R. I. F.; Macouin, M.; Poitou, C.; Chauvin, A.; Hill, M.
2012-04-01
Thellier's paleointensity and microwave paleointensity experiments were carried out in Early Cambrian dykes from Itabaiana (NE Brazil) dated at 525 ±5 Ma. A previous paleomagnetic study on these dykes reveals a very stable characteristic component, whose thermoremanent nature is confirmed by positive baked contact tests performed in three different dykes. The main magnetic carrier is Ti-poor to pure magnetite in the PSD to SD domain state. Hysteresis parameters and first-order reversal curve (FORC) diagrams will be presented in order to apprehend the two different behaviors that characterize the samples during paleointensity experiments. From the 96 samples (from 13 dykes) analyzed in two laboratories using slightly different Thellier's experimental protocols, we have retained 12 samples (3 dykes) for paleointensity estimates. Paleointensity values range from 18.1 up to 40 μΤ. This corresponds to equivalent VDMs of 4.3 ± 0.5, 4.4 ± 1.4 and 5.3 ± 0.9 x 1022 Am2, for the three dykes respectively. These results, the first obtained for rapidly cooled Cambrian rocks, document a moderate Earth field in the Precambrian-Cambrian transition.
Cambrian stem-group annelids and a metameric origin of the annelid head.
Parry, Luke; Vinther, Jakob; Edgecombe, Gregory D
2015-10-01
The oldest fossil annelids come from the Early Cambrian Sirius Passet and Guanshan biotas and Middle Cambrian Burgess Shale. While these are among the best preserved polychaete fossils, their relationship to living taxa is contentious, having been interpreted either as members of extant clades or as a grade outside the crown group. New morphological observations from five Cambrian species include the oldest polychaete with head appendages, a new specimen of Pygocirrus from Sirius Passet, and an undescribed form from the Burgess Shale. We propose that the palps of Canadia are on an anterior segment bearing neuropodia and that the head of Phragmochaeta is formed of a segment bearing biramous parapodia and chaetae. The unusual anatomy of these taxa suggests that the head is not differentiated into a prostomium and peristomium, that palps are derived from a modified parapodium and that the annelid head was originally a parapodium-bearing segment. Canadia, Phragmochaeta and the Marble Canyon annelid share the presence of protective notochaetae, interpreted as a primitive character state subsequently lost in Pygocirrus and Burgessochaeta, in which the head is clearly differentiated from the trunk. © 2015 The Authors.
Ryder, Robert T.; Crangle, Robert D.; Repetski, John E.; Harris, Anita G.
2008-01-01
Cross section H-H' is the seventh in a series of restored cross sections constructed by the lead author to show the stratigraphic framework of Cambrian and Ordovician rocks in the Appalachian basin from Pennsylvania to Tennessee. The sections show complexly intertongued carbonate and siliciclastic lithofacies, marked thickness variations, key marker horizons, unconformities, stratigraphic nomenclature of the Cambrian and Ordovician sequence, and major faults that offset Proterozoic basement and overlying lower Paleozoic rocks. Several of the drill holes along the cross section have yielded a variety of whole and (or) fragmented conodont elements. The identifiable conodonts are used to differentiate strata of Late Cambrian, Early Ordovician, and Middle Ordovician age, and their conodont color alteration index (CAI) values are used to establish the thermal maturity of the sequence. Previous cross sections in this series are G-G', F-F', E-E', D-D', C-C', and B-B'. Many of these cross sections (B-B', C-C', D-D', and G-G') have been improved with the addition of gamma-ray log traces, converted to digital images, and made accessible on the Web.
Armored kinorhynch-like scalidophoran animals from the early Cambrian
Zhang, Huaqiao; Xiao, Shuhai; Liu, Yunhuan; Yuan, Xunlai; Wan, Bin; Muscente, A. D.; Shao, Tiequan; Gong, Hao; Cao, Guohua
2015-01-01
Morphology-based phylogenetic analyses support the monophyly of the Scalidophora (Kinorhyncha, Loricifera, Priapulida) and Nematoida (Nematoda, Nematomorpha), together constituting the monophyletic Cycloneuralia that is the sister group of the Panarthropoda. Kinorhynchs are unique among living cycloneuralians in having a segmented body with repeated cuticular plates, longitudinal muscles, dorsoventral muscles, and ganglia. Molecular clock estimates suggest that kinorhynchs may have diverged in the Ediacaran Period. Remarkably, no kinorhynch fossils have been discovered, in sharp contrast to priapulids and loriciferans that are represented by numerous Cambrian fossils. Here we describe several early Cambrian (~535 million years old) kinorhynch-like fossils, including the new species Eokinorhynchus rarus and two unnamed but related forms. E. rarus has characteristic scalidophoran features, including an introvert with pentaradially arranged hollow scalids. Its trunk bears at least 20 annuli each consisting of numerous small rectangular plates, and is armored with five pairs of large and bilaterally placed sclerites. Its trunk annuli are reminiscent of the epidermis segments of kinorhynchs. A phylogenetic analysis resolves E. rarus as a stem-group kinorhynch. Thus, the fossil record confirms that all three scalidophoran phyla diverged no later than the Cambrian Period. PMID:26610151
Unlocking the early fossil record of the arthropod central nervous system
Edgecombe, Gregory D.; Ma, Xiaoya; Strausfeld, Nicholas J.
2015-01-01
Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits. PMID:26554038
Archeological insights into hominin cognitive evolution.
Wynn, Thomas; Coolidge, Frederick L
2016-07-01
How did the human mind evolve? How and when did we come to think in the ways we do? The last thirty years have seen an explosion in research related to the brain and cognition. This research has encompassed a range of biological and social sciences, from epigenetics and cognitive neuroscience to social and developmental psychology. Following naturally on this efflorescence has been a heightened interest in the evolution of the brain and cognition. Evolutionary scholars, including paleoanthropologists, have deployed the standard array of evolutionary methods. Ethological and experimental evidence has added significantly to our understanding of nonhuman brains and cognition, especially those of nonhuman primates. Studies of fossil brains through endocasts and sophisticated imaging techniques have revealed evolutionary changes in gross neural anatomy. Psychologists have also gotten into the game through application of reverse engineering to experimentally based descriptions of cognitive functions. For hominin evolution, there is another rich source of evidence of cognition, the archeological record. Using the methods of Paleolithic archeology and the theories and models of cognitive science, evolutionary cognitive archeology documents developments in the hominin mind that would otherwise be inaccessible. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Benssaou, Mohammed; Hamoumi, Naima
2004-02-01
Three microbialite forms are recognized in the Lower-Cambrian succession of Irherm area in the western Anti-Atlas (Morocco). Stromatolites, which correspond to non-calcified shallow marine laminated microbialites, are well developed in the basal Lower-Cambrian succession. Occurrence of calcified microbial thrombolites, in the middle part of this succession, reflects an increasing sea level from the peritidal zone to the subtidal environment. In the upper part of this succession, a second increasing water depth event and the development of branching archaeocyathan reefal framework lead to dendritic microbialite emergence. To cite this article: M. Benssaou, N. Hamoumi, C. R. Geoscience 336 (2004).
NASA Astrophysics Data System (ADS)
Ouali, Houssa; Briand, Bernard; Bouchardon, Jean-Luc; Capiez, Paul
2003-05-01
In southeastern Central Morocco, the Bou-Acila volcanic complex is considered of Cambrian age. In spite of low-grade metamorphic effect, initial volcanic texture and mineralogy can be recognized and volcanic rocks are dominated by dolerites and porphyric dolerites. The initial mineralogy is composed of plagioclases, pyroxenes and dark minerals. A secondary mineral assemblage is composed of albite, epidote, chlorite and calcite. According to their immobile elements compositions, the southeastern central Morocco metavolcanites are of within-plate continental tholeiites. This volcanism and those recognized in many other areas in Morocco confirm a Cambrian extensive episode within the Gondwana supercontinent. To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).To cite this article: H. Ouali et al., C. R. Geoscience 335 (2003).
Craddock, J.P.; McGillion, M.S.; Webers, G.F.
2007-01-01
Cambrian carbonates in the Heritage Range of the Ellsworth Mountains, West Antarctica host a series of carbonate-rich breccia bodies that formed contemporaneously with the Permian Gondwanide orogen. The breccia bodies had a three-stage genesis, with the older breccias containing Cambrian limestone (and marble) clasts supported by calcite, whereas the younger breccias are nearly clast-free and composed entirely of matrix calcite. Breccia clasts, calcite matrix and detrital matrix samples were analyzed using x-ray fluorescence (major and trace elements), x-ray diffraction, and stable isotopes (C, O) and suggest that the breccias formed as part of a closed geochemical system, at considerable depth, within the Cambrian limestone host as the Ellsworth Mountains deformed into a fold-and-thrust belt along the margin of Gondwana
Accelerating Neoproterozoic Research through Scientific Drilling
NASA Astrophysics Data System (ADS)
Condon, Daniel; Prave, Anthony; Boggiani, Paulo; Fike, David; Halverson, Galen; Kasemann, Simone; Knoll, Andrew; Zhu, Maoyan
2014-05-01
The Neoproterozoic Era (1.0 to 0.541 Ga) and earliest Cambrian (541 to ca. 520 Ma) records geologic changes unlike any other in Earth history: supercontinental tectonics of Rodinia followed by its breakup and dispersal into fragments that form the core of today's continents; a rise in oxygen that, perhaps for the first time in Earth history, resulted in the deep oceans becoming oxic; snowball Earth, which envisages a blanketing of global ice cover for millions of years; and, at the zenith of these combined biogeochemical changes, the evolutionary leap from eukaryotes to animals. Such a concentration of hallmark events in the evolution of our planet is unparalleled and many questions regarding Earth System evolution during times of profound climatic and geological changes remain to be answered. Neoproterozoic successions also offer insight into the genesis of a number of natural resources. These include banded-iron formation, organic-rich shale intervals (with demonstrated hydrocarbon source rocks already economically viable in some countries), base and precious metal ore deposits and REE occurrences, as well as industrial minerals and dimension stone. Developing our understanding of the Neoproterozoic Earth-system, combined with regional geology has the potential to impact the viability of these resources. Our understanding of the Neoproterozoic and early Cambrian, though, is overwhelmingly dependent on outcrop-based studies, which suffer from lack of continuity of outcrop and, in many instances, deep weathering profiles. A limited number of research projects study Precambrian strata have demonstrated the potential impact of scientific drilling to augment and complement ongoing outcrop based studies and advancing research. An ICDP and ECORD sponsored workshop, to be held in March 2014, has been convened to discuss the utility of scientific drilling for accelerating research of the Neoproterozoic through early Cambrian (ca. 0.9 to 0.52 Ga) rock record. The aim is to discuss the potential for establishing a collaborative, integrated, worldwide drilling programme to obtain the pristine samples and continuous sections needed to refine Neoproterozoic Earth history, inform assessment of resource potential, and address the major questions noted above. Such an initiative would be a platform to define complementary research and discovery between cutting-edge interdisciplinary scientific studies and synergistic collaborations with national agencies (Geological Surveys) and industry partners. A number of potential sites have been identified and discussed, along with identifying the mechanisms by which the Neoproterozoic research community can development data archives, open access data, sample archiving, and the approaches to multi-national funding. We will, amongst other things, present a summary of the workshop discussions. For more information visit: https://sites.google.com/site/drillingtheneoproterozoic/
Cambrian-lower Middle Ordovician passive carbonate margin, southern Appalachians: Chapter 14
Read, J. Fred; Repetski, John E.
2012-01-01
The southern Appalachian part of the Cambrian–Ordovician passive margin succession of the great American carbonate bank extends from the Lower Cambrian to the lower Middle Ordovician, is as much as 3.5 km (2.2 mi) thick, and has long-term subsidence rates exceeding 5 cm (2 in.)/k.y. Subsiding depocenters separated by arches controlled sediment thickness. The succession consists of five supersequences, each of which contains several third-order sequences, and numerous meter-scale parasequences. Siliciclastic-prone supersequence 1 (Lower Cambrian Chilhowee Group fluvial rift clastics grading up into shelf siliciclastics) underlies the passive margin carbonates. Supersequence 2 consists of the Lower Cambrian Shady Dolomite–Rome-Waynesboro Formations. This is a shallowing-upward ramp succession of thinly bedded to nodular lime mudstones up into carbonate mud-mound facies, overlain by lowstand quartzose carbonates, and then a rimmed shelf succession capped by highly cyclic regressive carbonates and red beds (Rome-Waynesboro Formations). Foreslope facies include megabreccias, grainstone, and thin-bedded carbonate turbidites and deep-water rhythmites. Supersequence 3 rests on a major unconformity and consists of a Middle Cambrian differentiated rimmed shelf carbonate with highly cyclic facies (Elbrook Formation) extending in from the rim and passing via an oolitic ramp into a large structurally controlled intrashelf basin (Conasauga Shale). Filling of the intrashelf basin caused widespread deposition of thin quartz sandstones at the base of supersequence 4, overlain by widespread cyclic carbonates (Upper Cambrian lower Knox Group Copper Ridge Dolomite in the south; Conococheague Formation in the north). Supersequence 5 (Lower Ordovician upper Knox in the south; Lower to Middle Ordovician Beekmantown Group in the north) has a basal quartz sandstone-prone unit, overlain by cyclic ramp carbonates, that grade downdip into thrombolite grainstone and then storm-deposited deep-ramp carbonates. Passive margin deposition was terminated by arc-continent collision when the shelf was uplifted over a peripheral bulge while global sea levels were falling, resulting in the major 0- to 10-m.y. Knox–Beekmantown unconformity. The supersequences and sequences appear to relate to regionally traceable eustatic sea level cycles on which were superimposed high-frequency Milankovitch sea level cycles that formed the parasequences under global greenhouse conditions.
Biologic History and the Cardinal Rule of Life
NASA Astrophysics Data System (ADS)
Schopf, J. W.
2004-12-01
In broad perspective, the history of life is remarkably static -- once set, a system that has changed little over all of geological time. The basic chemistry of living systems (CHONSP, and the monomers and polymers they compose), the genetics and cellular structure of life, even the ecologic division of the biologic world into "eaters" (heterotrophs) and "eatees" (autotrophs), are innovations all dating from the Archean that have carried over to the present. Throughout Earth history, biology has followed the Cardinal Rule of Life -- avoid change, never evolve at all! Biology maintains the status quo, opportunistically responding only if conditions change. Life's credo might well be "if it ain't broken, don't fix it." Of course, biomolecules do get "broken," by mutations, but living systems have many biochemical repair mechanisms. Evolution is a result of small changes that slip through unfixed. We see the results of evolution in the fossil record only because of the vastness, the true enormity, of geological time. What events punctuated this static underpinning to produce the modern living world? Only three, each in its own way shaping the course of life's history. The earliest, photosynthesis, freed life from dependence on foodstuffs made by nonbiologic processes. The advent of the advanced form of this process, oxygenic ("green plant") photosynthesis -- also an Archean innovation -- pumped oxygen into the environment (markedly increasing energy yields), "rusted the Earth" (evidenced by banded iron-formations), and, by ˜2,300 Ma ago, led to establishment of an aerobic-anaerobic ecosystem like that today. Not surprisingly, given the Cardinal Rule of Life, the inventors of this innovation, microbial cyanobacteria, evolved little over billions of years. The second major innovation was sex. In the modern world, this reproductive process is exhibited only by nucleated (eukaryotic) cells, derived from non-sexual eukaryotic ancestors. Although eukaryotes date from ˜2,000 Ma ago, they first evolved slowly -- following the Cardinal Rule of Life -- until ˜1,000 Ma ago when sexual reproduction took over. This development markedly speeded the development of new species that could compete, and eventually dominate, in habitats previously owned by their non-sexual prokaryotic ancestors, as evidenced both in the fossil record and by molecular biology-based rRNA phylogenetic trees. The third innovation was cellular differentiation and multicelluarity. Although the "Cambrian Explosion" -- the great radiation of animal life during the Cambrian Period beginning ˜550 Ma ago -- is commonly viewed as reflecting this event, it seems more a continuum than a step-function change. Evolution speeded in the half-billion years between 1,000 Ma ago and the beginning of the Cambrian: phytoplankton gave rise to multicellular seaweeds by ˜850 Ma; and primitive protozoans, present as early as ˜950 Ma, had by ˜600 Ma given rise to soft-bodied multicelled animals. Soon thereafter, animals developed shelly protective armor -- marking the beginning of the Cambrian Period, and thus of the Phanerozoic Eon. The Phanerozoic history of life is familiar to all, from spore-producing to seed-producing to flowering plants, from animals without backbones to fish, land-dwelling vertebrates, then birds and mammals. Plants ("eatees") and animals ("eaters") co-evolved in sequence. Again, life followed the Cardinal Rule, changing little, then evolving rapidly, as new ecologic opportunities became available.
Gas potential of the Rome Trough in Kentucky: Results of recent Cambrian exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D.C.; Drahovzal, J.A.
1996-09-01
A recent gas discovery in the Rome Trough suggests the need to re-evaluate the deep Cambrian potential of eastern Kentucky. A new phase of Cambrian exploration began in mid-1994 with a new pool discovery by the Carson Associates No. 1 Kazee well in Elliott County, Ky. This well blew out and initially flowed 11 MMcfd of gas from the upper Conasauga Group/Rome Formation at 6,258 to 6,270 feet. After this discovery, a second exploratory well (the Blue Ridge No. 1Greene) was drilled on a separate structure in Elliott County in late 1995. The Blue Ridge well was temporarily abandoned, butmore » had shows of gas and condensate. In early 1996, Carson Associates offset their initial discovery well with the No. 33 Lawson Heirs well. This activity follows a frustrating exploration history in the Rome Trough that is marked by numerous gas and oil shows, but rare commercial production. Only three single-well pools have produced commercial gas from the trough, including the recent Kazee well. Stratigraphic units below the Cambrian-Ordovician Knox Group in the Rome Trough are dramatically thicker than their equivalents on the shelf to the north. The interval in the trough is thought to include rocks as old as Early Cambrian, consisting of a basal sandstone, equivalents of the Shady/Tomstown Dolomite, the Rome Formation, and the Conasauga Formation. Sandstones and fractured shales have been responsible for most of the production to date, but dolostone intervals may also have potential. Limited seismic data indicate possible fan-delta and basin-floor fan deposits that may have reservoir potential.« less
Cambrian Series 3 carbonate platform of Korea dominated by microbial-sponge reefs
NASA Astrophysics Data System (ADS)
Hong, Jongsun; Lee, Jeong-Hyun; Choh, Suk-Joo; Lee, Dong-Jin
2016-07-01
Metazoans have been considered as negligible components of Cambrian Series 3 and Furongian microbial-dominated reefs, in contrast to their presence in earlier Terreneuvian-Cambrian Series 2 microbial-archaeocyath reefs. However, recent discoveries of sponges in Cambrian Series 3-Furongian reefs of Australia, China, Iran, USA, and Korea have raised question regarding their contribution in terms of carbonate platform development, which have never been assessed. This study examines Cambrian Series 3 deposits of the Daegi Formation, Korea to elucidate this question. The 100-m-thick middle part of the Daegi Formation is dominated by boundstone facies, which occupies 45% of the study interval, as well as bioclastic wackestone to packstone, bioclastic grainstone, and ooid packstone to grainstone facies. The Daegi reefs are primarily thrombolitic in composition, with 90% (n = 26/29) of the reefs containing an average of 9% sponges in aerial percentage calculated from thin sections. Lithistid sponges composed of peloidal fabrics, some desma spicules, and spicule networks commonly occupy the interstitial space in microbial clusters, are encrusted by mesoclots and Epiphyton, and are surrounded by micrite. Subordinate non-lithistid demosponges occur within clusters of microbial elements. The middle Daegi Formation can be largely subdivided into shoal environment dominated by grainstone to packstone facies and shallow subtidal platform interior environment located behind shoal with wackestone to packstone facies. The microbial-sponge reefs mainly developed around platform interior as patch reefs. The current study indicates that metazoans in the form of lithistid and non-lithistid demosponges are nearly ubiquitously incorporated in Daegi reefs and contributed greatly to the formation of microbial-sponge reefs as well as carbonate platform during the time. Study of these microbial-sponge reefs and their distribution within the carbonate platform may help us to understand how carbonate sedimentary environments responded to the extinction of archaeocyaths.
NASA Astrophysics Data System (ADS)
Abubaker, Atnisha; Hofmann, Mandy; Gärtner, Andreas; Linnemann, Ulf; Elicki, Olaf
2017-10-01
LA-ICP-MS U-Pb data from detrital zircons of the Ediacaran to Cambrian siliciclastic sequence of the Torgau-Doberlug Syncline (TDS, Saxo-Thuringia, Germany) are reported for the first time. The majority of 203 analysed zircon grains is Proterozoic with minor amount of Archean and Palaeozoic grains. The U-Pb ages fall into three groups: 2.8-2.4 Ga (3%), Neoarchean to earliest Palaeoproterozoic; 2.3-1.6 Ga (46%), early to late Palaeoproterozoic; 1.0-0.5 Ga (47%), Neoproterozoic to Cambrian. This age distribution is typical for the West African Craton as the source area and for Cadomian orogenic events in northwestern Gondwana. The samples show an age gap between 1.6 and 1.0 Ga, which is characteristic for West African provenance and diagnostic in distinguishing this unit from East Avalonia and Baltica. The dataset shows clusters of Palaeoproterozoic ages at 2.2-1.7 Ga, that is typical for western Gondwana, which was affected by abundant magmatic intrusions (ca. 2.2-1.8 Ga) during the Eburnean orogeny (West African craton). Neoarchean zircon ages (3%) point to recycling of magmatic rocks formed during the Liberian and Leonian orogenies. Ediacaran to earliest Cambrian rocks of the TDS originated in an active margin regime of the Gondwanan shelf. The following early Palaeozoic overstep sequence was deposited within rift settings that reflects instability of the West-Gondwanan shelf and the separation of terranes from Ordovician onward. The results of this study demonstrate distinct northwestern African provenance of the Cambrian siliciclastics of the TDS. Due to Th-U ratios from concordant zircon analysis, igneous origin from felsic melts is concluded as the source of these grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweetkind, D.S.; White, D.K.
Late Proterozoic through Lower Cambrian rocks in the southern Great Basin form a westward-thickening wedge of predominantly clastic deposits that record deposition on the early western shelf edge of western North America (Stewart and Poole, 1974; Poole and others, 1992). Regional analyses of geologic controls on ground-water flow in the southern Great Basin typically combined lithostratigraphic units into more general hydrogeologic units that have considerable lateral extent and distinct hydrologic properties. The Late Proterozoic through Lower Cambrian rocks have been treated as a single hydrogeologic unit, named the lower clastic aquitard (Winograd and Thordarson, 1975) or the quartzite confining unitmore » (Laczniak and others, 1996), that serves as the hydrologic basement to the flow system. Although accurate in a general sense, this classification ignores well-established facies relations within these rocks that might increase bedrock permeability and locally influence ground-water flow . This report presents a facies analysis of Late Proterozoic through Lower Cambrian rocks (hereafter called the study interval) in the Death Valley regional ground-water flow system - that portion of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain (fig. 1). The region discussed in this report, hereafter called the study area, covers approximately 100,000 km2 (lat 35 degrees-38 degrees 15'N., long 115 degrees-118 degrees W.). The purpose of this analysis is to provide a general documentation of facies transitions within the Late Proterozoic through Lower Cambrian rocks in order to provide an estimate of material properties (via rock type, grain size, and bedding characteristics) for specific hydrogeologic units to be included in a regional ground-water flow model.« less
Magnetic reversal frequency in the Lower Cambrian Niutitang Formation, Hunan Province, South China
NASA Astrophysics Data System (ADS)
Duan, Zongqi; Liu, Qingsong; Ren, Shoumai; Li, Lihui; Deng, Xiaolong; Liu, Jianxing
2018-05-01
The reversal frequency of the paleomagnetic field bears great information of evolution of the Earth's deep interior. However, there are still debates on the frequency pattern during the older periods of the Phanerozoic. This study investigated the Niutitang Formation (Lower Cambrian) of the Ciye 1 Hole from south China. Rock magnetic results indicate that the dominant magnetic carrier is magnetite. Characteristic remanence magnetizations have been successfully isolated for the weakly-magnetized shale rocks through stepwise alternated field demagnetization using the 2 G Enterprises Rapid System Magnetometer with a low-noise thin-walled quartz-glass sample holder. Constrained by radiometric ages, our paleomagnetic results indicated frequent polarity reversals during the period of ˜524-514 Ma, which backs up the speculation about the episode of the Ediacaran-Cambrian (˜550-500 Ma) with a character of reversal hyperactivity.
Gibb, Gillian C; Kardailsky, Olga; Kimball, Rebecca T; Braun, Edward L; Penny, David
2007-01-01
We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids.
Observational properties of SNe Ia progenitors close to the explosion
NASA Astrophysics Data System (ADS)
Tornambé, A.; Piersanti, L.; Raimondo, G.; Delgrande, R.
2018-04-01
We determine the expected signal in various observational bands of supernovae Ia progenitors just before the explosion by assuming the rotating double-degenerate scenario. Our results are valid also for all the evolutionary scenarios invoking rotation as the driving mechanism of the accretion process as well as the evolution up to the explosion. We find that the observational properties depend mainly on the mass of the exploding object, even if the angular momentum evolution after the end of the mass accretion phase and before the onset of C-burning plays a non-negligible role. Just before the explosion, the magnitude MV ranges between 9 and 11 mag, while the colour (F225W - F555W) is about -1.64 mag. The photometric properties remain constant for a few decades before the explosion. During the last few months, the luminosity decreases very rapidly. The corresponding decline in the optical bands varies from a few hundredths up to one magnitude, the exact value depending on both the white dwarf total mass and the braking efficiency at the end of the mass transfer. This feature is related to the exponentially increasing energy production, which drives the formation of a convective core rapidly extending over a large part of the exploding object. Also, a drop in the angular velocity occurs. We find that observations in the soft X band (0.5-2 keV) may be used to check if the evolution of the SNe Ia progenitors up to the explosion is driven by rotation and, hence, to discriminate among different progenitor scenarios.
Supercontinents, True Polar Wander, and Paleogeography of the Slave Craton
NASA Astrophysics Data System (ADS)
Mitchell, Ross Nelson
The supercontinent cycle, which may have been operational throughout most of Earth history, describes not only the kinematics associated with the suturing and rifting of continents via plate tectonics but also the wholesale organization of mantle convection patterns, which has consequences for long-term geodynamics and true polar wander (TPW). Based on both newly acquired paleomagnetic data and regional or global syntheses, this thesis generates paleogeographic maps spanning 2 billion years and evaluates how such empirical constraints inform plate kinematics and TPW. Prior to Pangea, the latest supercontinent, paleomagnetism is the only quantitative method for reconstructing continents. Comparing high-quality data from continents considered central to Nuna, possibly Earth's first supercontinent, reconstructs the core of the hypothesized Paleo-Mesoproterozoic supercontinent for the first time. A global paleomagnetic synthesis spanning the past three supercontinents yields evidence for periods of oscillatory TPW following each supercontinent that can be used to infer a geometric pattern to supercontinent cycles and constrain absolute paleolongitude. Relative to post-Pangea oscillations, large-amplitude TPW is implied for older events if evidence for early TPW is to be believed. Possibly the last large (˜60°) TPW event occurred during the Cambrian explosion of animal life. A new detailed Early Cambrian magnetostratigraphy from the Amadeus Basin of Australia indicates a rapid Early Cambrian rotation of Gondwana, still permitting the possibility that at least one large-amplitude TPW event occurred in Phanerozoic time. Investigating earlier and even larger possible TPW episodes, several cases are identified where interpreting large paleomagnetic oscillations as TPW permits regional geologic interpretations to be honored. Allowing for only minor tectonic motion of Laurentia and large-scale TPW, large amounts of paleomagnetic motion observed can be reconciled with evidence in support of a long-lived, Ediacaran-aged hotspot. The consistency of paleocurrent directions derived from the Great Slave Supergroup argues against significant regional vertical-axis rotations and for large and rapid TPW to explain discordant paleomagnetic directions observed within section. The last frontier for paleomagnetic constraints on supercontinents, TPW, and the antiquity of plate tectonics is earliest Proterozoic time. Laurentia, one of Earth's oldest continents that formed at the core supercontinent Nuna, contains several cratons that have adequate paleomagnetic and geochronologic data with which to test for evidence of early TPW and relative plate motion, the hallmark of tectonics. Although past comparisons have been made between the Slave and Superior cratons at each "bookend" of Laurentia, new paleomagnetic data supported by baked contact tests allow for conclusive early Proterozoic reconstructions. Similar to periods following Proterozoic supercontinents Nuna and Rodinia, early Proterozoic time is characterized by large TPW oscillations and large-scale plate reorganizations prior to amalgamation, possibly indicating the presence of `Kenorland', an Archean supercontinent.
Caron, Jean-Bernard; Conway Morris, Simon; Shu, Degan
2010-03-08
Molecular and morphological evidence unite the hemichordates and echinoderms as the Ambulacraria, but their earliest history remains almost entirely conjectural. This is on account of the morphological disparity of the ambulacrarians and a paucity of obvious stem-groups. We describe here a new taxon Herpetogaster collinsi gen. et sp. nov. from the Burgess Shale (Middle Cambrian) Lagerstätte. This soft-bodied vermiform animal has a pair of elongate dendritic oral tentacles, a flexible stolon with an attachment disc, and a re-curved trunk with at least 13 segments that is directed dextrally. A differentiated but un-looped gut is enclosed in a sac suspended by mesenteries. It consists of a short pharynx, a conspicuous lenticular stomach, followed by a narrow intestine sub-equal in length. This new taxon, together with the Lower Cambrian Phlogites and more intriguingly the hitherto enigmatic discoidal eldoniids (Cambrian-Devonian), form a distinctive clade (herein the cambroernids). Although one hypothesis of their relationships would look to the lophotrochozoans (specifically the entoprocts), we suggest that the evidence is more consistent with their being primitive deuterostomes, with specific comparisons being made to the pterobranch hemichordates and pre-radial echinoderms. On this basis some of the earliest ambulacrarians are interpreted as soft-bodied animals with a muscular stalk, and possessing prominent tentacles.
Zhang, Li-Jun; Qi, Yong-An; Buatois, Luis A.; Mángano, M. Gabriela; Meng, Yao; Li, Da
2017-01-01
Bioturbation plays a substantial role in sediment oxygen concentration, chemical cycling, regeneration of nutrients, microbial activity, and the rate of organic matter decomposition in modern oceans. In addition, bioturbators are ecosystem engineers which promote the presence of some organisms, while precluding others. However, the impact of bioturbation in deep time remains controversial and limited sediment mixing has been indicated for early Paleozoic seas. Our understanding of the actual impact of bioturbation early in the Phanerozoic has been hampered by the lack of detailed analysis of the functional significance of specific burrow architectures. Integration of ichnologic and sedimentologic evidence from North China shows that deep-tier Thalassinoides mazes occur in lower Cambrian nearshore carbonate sediments, leading to intense disruption of the primary fabric. Comparison with modern studies suggest that some of the effects of this style of Cambrian bioturbation may have included promotion of nitrogen and ammonium fluxes across the sediment-water interface, average deepening of the redox discontinuity surface, expansion of aerobic bacteria, and increase in the rate of organic matter decomposition and the regeneration of nutrients. Our study suggests that early Cambrian sediment mixing in carbonate settings may have been more significant than assumed in previous models. PMID:28374857
The origin of crustaceans: new evidence from the Early Cambrian of China.
Chen, J. Y.; Vannier, J.; Huang, D. Y.
2001-01-01
One of the smallest arthropods recently discovered in the Early Cambrian Maotianshan Shale Lagerstätte is described. Ercaia gen. nov. has an untagmatized trunk bearing serially repeated biramous appendages (long and segmented endopods and flap-like exopods), a head with an acron bearing stalked lateral eyes and a sclerite and two pairs of antennae. The position of this 520 million-year-old tiny arthropod within the Crustacea is supported by several anatomical features: (i) a head with five pairs of appendages including two pairs of antennae, (ii) highly specialized antennae (large setose fans with a possible function in feeding), and (iii) specialized last trunk appendages (segmented pediform structures fringed with setae). The segmentation pattern of Ercaia (5 head and 13 trunk) is close to that of Maxillopoda but lacks the trunk tagmosis of modern representatives of the group. Ercaia is interpreted as a possible derivative of the stem group Crustacea. Ercaia is likely to have occupied an ecological niche similar to those of some Recent meiobenthic organisms (e.g. copepods living in association with sediment). This new fossil evidence supports the remote ancestry of crustaceans well before the Late Cambrian and shows, along with other fossil data (mainly Early Cambrian in China), that a variety of body plans already coexisted among the primitive crustacean stock. PMID:11674864
Minerals in the gut: scoping a Cambrian digestive system
NASA Astrophysics Data System (ADS)
Strang, K. M.; Armstrong, H. A.; Harper, D. A. T.
2016-11-01
The Sirius Passet Lagerstätte of North Greenland contains the first exceptionally preserved mat-ground community of the Cambrian, dominated, in terms of abundance, by trilobites but particularly characterized by iconic arthropods and lobopods, some also occurring in the Burgess shale. High-resolution photography, scanning electron imaging and elemental mapping have been carried out on a variety of specimens of the non-mineralized arthropod Campanamuta mantonae (Budd 2011 J. Syst. Palaeontol. 9, 217-260 (doi:10.1080/14772019.2010.492644)) which has three-dimensional gut and muscle preservation. Results show that the guts contain a high concentration of calcium phosphate (approximating to the mineral francolite), whereas the adjacent muscles are silicified. This indicates a unique, tissue-specific taphonomy for this Cambrian taxon. We hypothesize that the precipitation of calcium phosphate in the guts occurs rapidly after death by `crystal seed' processes in suboxic, slightly acidic conditions; critically, the gut wall remained intact during precipitation. We postulate that the calcium phosphate was derived from ingested cellular material. Silicification of the muscles followed as the localized water chemistry became saturated in silica, high in Fe2+, and low in oxygen and sulfate. We document here the unique occurrence of two distinct but mechanistically similar taphonomic pathways within a diverse suite of possibilities in an Early Cambrian Lagerstätte.
Developmental gene regulatory network architecture across 500 million years of echinoderm evolution
NASA Technical Reports Server (NTRS)
Hinman, Veronica F.; Nguyen, Albert T.; Cameron, R. Andrew; Davidson, Eric H.
2003-01-01
Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.
Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†
Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe
2007-01-01
Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669
Givnish, Thomas J
2015-07-01
Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.
Ou, Qiang; Shu, Degan; Mayer, Georg
2012-01-01
Cambrian lobopodians are important for understanding the evolution of arthropods, but despite their soft-bodied preservation, the organization of the cephalic region remains obscure. Here we describe new material of the early Cambrian lobopodian Onychodictyon ferox from southern China, which reveals hitherto unknown head structures. These include a proboscis with a terminal mouth, an anterior arcuate sclerite, a pair of ocellus-like eyes and branched, antenniform appendages associated with this ocular segment. These findings, combined with a comparison with other lobopodians, suggest that the head of the last common ancestor of fossil lobopodians and extant panarthropods comprized a single ocular segment with a proboscis and terminal mouth. The lack of specialized mouthparts in O. ferox and the involvement of non-homologous mouthparts in onychophorans, tardigrades and arthropods argue against a common origin of definitive mouth openings among panarthropods, whereas the embryonic stomodaeum might well be homologous at least in Onychophora and Arthropoda. PMID:23232391
NASA Astrophysics Data System (ADS)
Yang, C.; Wang, T.; Chen, Z.
2016-12-01
Separate interpretation of the evidence on tectonic, sedimentology or climate is insufficient to reappear the dynamic process of the evolution of the Earth surface, thus, tectonic, sedimentology and climate should be considered as a coupled system. Thick carbonate succession is overlaying on the paleo-uplift which is divided into two parts by a fluted belt in the center of Sichuan Basin. Sinian carbonate rocks is commonly composed by algae dolomite, while at the top of the Sinian succession the rocks had experienced meteoric karstification. Grain dolostones, fine-grained siliciclastic sandstones with mudstone appeare as the regional sediment of Cambrian. However, extraordinary thick mudstone had settled in the fluted belt, and the succession could be divided in to siliciclastic mud of the lower and clay-carbonate mud of the upper. The geochemistry and well log synthesized profile of Z4 well indicate that the chemical condition of siliciclastic mud and clay-carbonate mud had changed from oxidation to reduction, however the siliciclastic mud only appeared within the fluted belt. The fluted belt does not exist on the map of the gravity anomaly, but it had been convinced by the seismic data. The precursor of the fluted belt might be a sag within the platform basement, while with the sea level gradually raising up, the growth of algal mound exacerbated the geomorphology difference. Then a regression had happened at the end of the Sinian, starved all the algae and caused weather crust. Meanwhile, the fluted belt became a closed lagoon, received the sediment including algal mound fragment and biosilic crystals. Afterwards, rapidly increasing of the sea level deposited thick cay-carbonate mud that could be recognized as the sediment of maximum flooding surface. Then with the sea level decreasing, siliciclastic sandstones and inorganic grain carbonate became the main petrology of the Cambrian strata. Fine-grained eolian siliciclastic sandstones within the Cambrian carbonate indicate the influence of the continent, but this terrigenous clastics not exist in Sinian carbonate because the location of the platform moved closer to the continent in Cambrian. Meanwhile, there is no algal within Cambrian carbonate, it means the platform might drift to inhospitable place for the algal during the period.
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Dickerson, P. W.; Stockli, D. F.
2017-12-01
The Devils River Uplift (DRU) in SW Texas records the evolution of the southern Laurentian margin from Grenvillian orogenesis and assembly of Rodinia, to its fragmentation by rifting, and to the amalgamation of Pangaea. It was cored by a well (Shell No. 1 Stewart), penetrating Precambrian gneisses and Cambrian metasediments and sandstones. New zircon LA-ICP-MS data from a total of 10 samples elucidate the crystallization and depositional ages, as well as the detrital provenance, of Precambrian and Cambrian rocks from the DRU. Zircons from five Precambrian crystalline basement samples (6000-9693') yield uniform U-Pb crystallization ages of 1230 Ma that are similar to ages for young gneisses of the Valley Spring Domain (Llano uplift) in central Texas, where they mark the cessation of arc magmatism within the Grenville orogenic belt. The 1230 Ma igneous basement is overlain by L.-M. Cambrian metasedimentary rocks ( 4000-6000') with maximum depositional ages of 533-545 Ma. Detrital zircons from Cambrian strata are dominated by a 1070-1080 Ma population, likely derived from basement units exposed in Texas (Llano uplift, Franklin Mts.), with minor contributions from local 1230 Ma Precambrian basement and the 1380-1500 Ma Granite Rhyolite Province. The L.-M. Cambrian interval is dominated (>80%) by Neoproterozoic detrital magmatic zircons with two major distinct age clusters at 570-700 Ma and 780-820 Ma, supporting a two-stage Rodinia rift model and providing strong evidence for major Cryogenian-Eocambrian intraplate magmatism along the southern margin of Rodinia. Moreover, detrital zircon signatures for L.-M. and U. Cambrian strata strongly correlate with those from the Cuyania terrane of W. Argentina - notably the W. Sierras Pampeanas (Sa. Pie de Palo, Sa. de Maz): 1230 Ma from metasandstones (PdP); 1081-1038 Ma from metasiliciclastics (PdP, SdM); Cryogenian-Eocambrian [774 & 570 Ma] plutons (SdM, PdP). In summary, these new zircon U-Pb data from DRU in SW Texas show that it is part of the Grenville orogenic belt, characterized by 1230 Ma magmatism, and that it experienced Cryogenian-Eocambrian intraplate magmatism as well. Significant correlations between DRU and the Cuyania terrane imply that both participated in Rodinia rifting and creation of the southern Laurentian margin.
Crawford, Michael A; Broadhurst, C Leigh
2012-01-01
Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this hypothesis from fossil evidence of human evolution taking advantage of the marine food web. Lipids are still modifying the present evolutionary phase of our species; their signature is evident in the changing panorama of non-communicable diseases. The most worrying change in disease pattern is the sharp rise in brain disorders, which, in the European Union, has overtaken the cost of all other burdens of ill health at €386 billion for the 25 member states at 2004 prices. In 2007, the UK cost was estimated at £77 billion and confirmed in 2010 at £105 billion - greater than heart disease and cancer combined. The rise in mental ill health is now being globalised. The solution to the rising vascular disorders in the last century and now brain disorders in this century lies in a radical reappraisal of the food system, which last century was focussed on protein and calories, with little attention paid to the requirements of the brain - the very organ that was the determinant of human evolution. With the marine fish catch having plateaued 20 years ago and its sustainability now under threat, a critical aspect of this revision is the development of marine agriculture from estuarine, coastal and oceanic resources. Such action is likely to play a key role in future health and intelligence.
Caron, Jean-Bernard; Conway Morris, Simon; Shu, Degan
2010-01-01
Molecular and morphological evidence unite the hemichordates and echinoderms as the Ambulacraria, but their earliest history remains almost entirely conjectural. This is on account of the morphological disparity of the ambulacrarians and a paucity of obvious stem-groups. We describe here a new taxon Herpetogaster collinsi gen. et sp. nov. from the Burgess Shale (Middle Cambrian) Lagerstätte. This soft-bodied vermiform animal has a pair of elongate dendritic oral tentacles, a flexible stolon with an attachment disc, and a re-curved trunk with at least 13 segments that is directed dextrally. A differentiated but un-looped gut is enclosed in a sac suspended by mesenteries. It consists of a short pharynx, a conspicuous lenticular stomach, followed by a narrow intestine sub-equal in length. This new taxon, together with the Lower Cambrian Phlogites and more intriguingly the hitherto enigmatic discoidal eldoniids (Cambrian-Devonian), form a distinctive clade (herein the cambroernids). Although one hypothesis of their relationships would look to the lophotrochozoans (specifically the entoprocts), we suggest that the evidence is more consistent with their being primitive deuterostomes, with specific comparisons being made to the pterobranch hemichordates and pre-radial echinoderms. On this basis some of the earliest ambulacrarians are interpreted as soft-bodied animals with a muscular stalk, and possessing prominent tentacles. PMID:20221405
The controversial "Cambrian" fossils of the Vindhyan are real but more than a billion years older.
Bengtson, Stefan; Belivanova, Veneta; Rasmussen, Birger; Whitehouse, Martin
2009-05-12
The age of the Vindhyan sedimentary basin in central India is controversial, because geochronology indicating early Proterozoic ages clashes with reports of Cambrian fossils. We present here an integrated paleontologic-geochronologic investigation to resolve this conundrum. New sampling of Lower Vindhyan phosphoritic stromatolitic dolomites from the northern flank of the Vindhyans confirms the presence of fossils most closely resembling those found elsewhere in Cambrian deposits: annulated tubes, embryo-like globules with polygonal surface pattern, and filamentous and coccoidal microbial fabrics similar to Girvanella and Renalcis. None of the fossils, however, can be ascribed to uniquely Cambrian or Ediacaran taxa. Indeed, the embryo-like globules are not interpreted as fossils at all but as former gas bubbles trapped in mucus-rich cyanobacterial mats. Direct dating of the same fossiliferous phosphorite yielded a Pb-Pb isochron of 1,650 +/- 89 (2sigma) million years ago, confirming the Paleoproterozoic age of the fossils. New U-Pb geochronology of zircons from tuffaceous mudrocks in the Lower Vindhyan Porcellanite Formation on the southern flank of the Vindhyans give comparable ages. The Vindhyan phosphorites provide a window of 3-dimensionally preserved Paleoproterozoic fossils resembling filamentous and coccoidal cyanobacteria and filamentous eukaryotic algae, as well as problematic forms. Like Neoproterozoic phosphorites a billion years later, the Vindhyan deposits offer important new insights into the nature and diversity of life, and in particular, the early evolution of multicellular eukaryotes.
Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton
NASA Astrophysics Data System (ADS)
Woo, J.; Chough, S. K.
2010-07-01
Microbes started constructing shallow marine stromatolitic bioherms in the Archean, but they transferred their role as a major buildup maker to metazoans in Phanerozoic. Microbial buildups often recovered their predominance in the carbonate platform when reefal metazoan communities collapsed. Epiphyton, an extinct taxon of calcified microbe that possessed branching filamentous trichomes, was an important reef builder in the shallow marine carbonate platform during Middle Cambrian, aftermath of an extinction of archaeocyath sponges which were major reef-building sessile organisms in the Early Cambrian. Here we present direct evidence of phototropism of Epiphyton, found from fossilized behavior in micro- and macro-structures of meter-scale microbial bioherms of the Zhangxia Formation (Middle Cambrian), North China Platform, Shandong Province, China. The bioherms consist of stacked growth layers with the inner and outer divisions divided by distinct boundary. The inner division of growth layers of the Epiphyton bioherm is dominated by dense uniform bush-shaped Epiphyton thalli, whereas the curved outer division has layered texture normal to the surface, comprised of elongated and chambered thalli. It suggests that photosynthetic Epiphyton reacted actively to the spatial changes in intensity of sunlight, controlled by angle of illumination on the curved growth surface of the bioherm. The inner and the outer divisions comprise different morpho-types of Epiphyton. The spatial distributions of different morpho-types in variously illuminated divisions of Epiphyton might have caused further speciation of Epiphyton.
NASA Astrophysics Data System (ADS)
Gordienko, I. V.; Metelkin, D. V.; Vetluzhskikh, L. I.; Mikhaltsov, N. E.; Kulakov, E. V.
2018-06-01
In this study, we present new palaeomagnetic and geological data obtained from Ediacaran and Cambrian sedimentary rocks of Argun terrane, which is traditionally considered a key element of the hypothetical Amuria composite continent. Since 1990, when Amuria was first proposed in palaeogeographic reconstructions, it became one of the principle members in the global palaeotectonic schemes. A scenario when collision of Amuria with Siberian margin resulted in formation of the Mongol-Okhotsk Ocean is universally accepted and supported by majority of researchers. However, time of Amuria's final assembly and relative position of the blocks within Amuria before the collision with Siberia is still a topic of debate. Questions about principal allocation of Argun terrane and its relation to Amuria during the late Neoroterozoic-Cambrian are addressed in this study. Palaeomagnetic poles for the Ediacaran-early Cambrian rocks of Argun terrane differ within an error from coeval poles from Siberia indicating that Argun terrane could have been located similar to its present-day position with respect to Siberia already at 560-525 Ma. This observation calls into question association of Argun terrane with Amuria, which in classic reconstructions is usually placed close to the North China Craton. It also questions our current understanding of the Amuria palaeocontinent and consequently, accuracy of global palaeogeographic reconstructions for the late Neoproterozoic-Cambrian in general, and those of the eastern part of the Central Asia in particular.
Ni, Runxiang; Luo, Kunli; Tian, Xinglei; Yan, Songgui; Zhong, Jitai; Liu, Maoqiu
2016-06-01
The selenium (Se) distribution and geological sources in Taoyuan County, China, were determined by using hydride generation atomic fluorescence spectrometry on rock, soil, and food crop samples collected from various geological regions within the county. The results show Se contents of 0.02-223.85, 0.18-7.05, and 0.006-5.374 mg/kg in the rock, soil, and food crops in Taoyuan County, respectively. The region showing the highest Se content is western Taoyuan County amid the Lower Cambrian and Ediacaran black rock series outcrop, which has banding distributed west to east. A relatively high-Se environment is found in the central and southern areas of Taoyuan County, where Quaternary Limnetic sedimentary facies and Neoproterozoic metamorphic volcanic rocks outcrop, respectively. A relatively low-Se environment includes the central and northern areas of Taoyuan County, where Middle and Upper Cambrian and Ordovician carbonate rocks and Cretaceous sandstones and conglomerates outcrop. These results indicate that Se distribution in Taoyuan County varies markedly and is controlled by the Se content of the bedrock. The Se-enriched Lower Cambrian and Ediacaran black rock series is the primary source of the seleniferous environment observed in Taoyuan County. Potential seleniferous environments are likely to be found near outcrops of the Lower Cambrian and Ediacaran black rock series in southern China.
An Independent Constraint on Marine Sulfate Levels at the Ediacaran-Cambrian Transition
NASA Astrophysics Data System (ADS)
Blättler, C. L.; Bergmann, K.; Higgins, J. A.
2016-12-01
Sediments from the Ediacaran-Cambrian transition in Oman record major excursions in the isotopic systems of carbon (δ13C) and sulfur (δ34S). The significance of these geochemical signals has been the subject of much debate, focusing on their association with biotic innovations and extinctions, oxygenation of the atmosphere and oceans, and changes in seawater chemistry. The concentration of marine sulfate during this time interval remains particularly uncertain, despite being a critical variable for several hypotheses related to these excursions. We present an independent constraint on relative sulfate concentrations based on calcium-isotope data from the Ara Group evaporites (547-540 Ma) of the South Oman Salt Basin. Anhydrite samples from five boreholes span the A1 through A5 carbonate-evaporite sequences, lying on both sides of the Precambrian-Cambrian boundary. The approach developed by Blättler and Higgins (2014) is used to quantify the degree of isotopic distillation of calcium by sulfate mineral precipitation. The absence of significant distillation (expressed by δ44/40Ca variability in the anhydrite) suggests that Ca/SO4 ratios in the latest Ediacaran and earliest Cambrian were greater than during the Neogene or Permian. These results, together with previously published analyses of halite fluid inclusions and models of sulfur cycling, give a clearer estimate of how marine sulfate levels may have evolved during this dynamic period in Earth history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejcha, Ondřej; Thompson, Todd A., E-mail: pejcha@astro.princeton.edu, E-mail: thompson@astronomy.ohio-state.edu
2015-03-10
If the neutrino luminosity from the proto-neutron star formed during a massive star core collapse exceeds a critical threshold, a supernova (SN) results. Using spherical quasi-static evolutionary sequences for hundreds of progenitors over a range of metallicities, we study how the explosion threshold maps onto observables, including the fraction of successful explosions, the neutron star (NS) and black hole (BH) mass functions, the explosion energies (E {sub SN}) and nickel yields (M {sub Ni}), and their mutual correlations. Successful explosions are intertwined with failures in a complex pattern that is not simply related to initial progenitor mass or compactness. Wemore » predict that progenitors with initial masses of 15 ± 1, 19 ± 1, and ∼21-26 M {sub ☉} are most likely to form BHs, that the BH formation probability is non-zero at solar-metallicity and increases significantly at low metallicity, and that low luminosity, low Ni-yield SNe come from progenitors close to success/failure interfaces. We qualitatively reproduce the observed E {sub SN}-M {sub Ni} correlation, we predict a correlation between the mean and width of the NS mass and E {sub SN} distributions, and that the means of the NS and BH mass distributions are correlated. We show that the observed mean NS mass of ≅ 1.33 M {sub ☉} implies that the successful explosion fraction is higher than 0.35. Overall, we show that the neutrino mechanism can in principle explain the observed properties of SNe and their compact objects. We argue that the rugged landscape of progenitors and outcomes mandates that SN theory should focus on reproducing the wide ranging distributions of observed SN properties.« less
Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic
NASA Astrophysics Data System (ADS)
Cocks, L. Robin M.; Torsvik, Trond H.
2007-05-01
The old terrane of Siberia occupied a very substantial area in the centre of today's political Siberia and also adjacent areas of Mongolia, eastern Kazakhstan, and northwestern China. Siberia's location within the Early Neoproterozoic Rodinia Superterrane is contentious (since few if any reliable palaeomagnetic data exist between about 1.0 Ga and 540 Ma), but Siberia probably became independent during the breakup of Rodinia soon after 800 Ma and continued to be so until very near the end of the Palaeozoic, when it became an integral part of the Pangea Supercontinent. The boundaries of the cratonic core of the Siberian Terrane (including the Patom area) are briefly described, together with summaries of some of the geologically complex surrounding areas, and it is concluded that all of the Palaeozoic underlying the West Siberian Basin (including the Ob-Saisan Surgut area), Tomsk Terrane, Altai-Sayan Terranes (including Salair, Kuznetsk Alatau, Batenov, Kobdin and West Sayan), Ertix Terrane, Barguzin Terrane, Tuva-Mongol Terrane, Central Mongolia Terrane Assemblage, Gobi Altai and Mandalovoo Terranes, Okhotsk Terrane and much of the Verkhoyansk-Kolyma region all formed parts of peri-Siberia, and thus rotated with the main Siberian Craton as those areas were progressively accreted to the main Siberian Terrane at various times during the latest Neoproterozoic and Palaeozoic. The Ertix Terrane is a new term combining what has been termed the "Altay Terrane" or "NE Xinjiang" area of China, and the Baytag, Baaran and Bidz terranes of Mongolia. The Silurian Tuvaella brachiopod fauna is restricted only to today's southern parts of peri-Siberia. Thus, allowing for subsequent rotation, the fauna occurs only in the N of the Siberian Terrane, and, as well as being a helpful indicator of what marginal terranes made up peri-Siberia, is distinctive as being the only Silurian fauna known from northern higher latitudes globally. In contrast, the other terranes adjacent to peri-Siberia, the North China Terrane, the Manchurides terranes (including the Khingan-Bureya Massif area), the Gurvanshayan Terrane, the Ala Shan Terrane, the Qaidam-Qilian Terrane, the Tarim Terrane, the Junggar Terrane, the Tien Shan terranes and the various Kazakh terranes, did not become part of the Siberian Terrane assemblage until they accreted to it in the Upper Palaeozoic or later during the formation of Pangea. The Farewell Terrane of Alaska includes typical Lower and Middle Palaeozoic Siberian endemic faunas, but its Palaeozoic position is unknown. Cambrian to Early Silurian palaeomagnetic poles from the southern and northern parts of the Siberian Craton differ, but can be matched with an Euler pole of 60°N, 120°E and a rotation angle of 13°. We link this observation with Devonian rifting in the Viljuy Basin near the centre of the craton and also postulate that this rifting rejuvenated an older Precambrian rift zone, since 1-1.1 Ga poles from southern and northern Siberia differ as much as 23° around the same Euler pole. A revised Palaeozoic apparent polar wander (APW) path is presented for the Siberian Craton in which pre-Devonian poles are corrected for Viljuy Basin rifting. There is also much Late Devonian tectonic activity in the Altai-Sayan area, which may be linked. The APW path implies that Siberia was located at low southerly latitudes at the dawn of the Palaeozoic and slowly drifted northward (< 4 cm/yr.). A velocity burst is noted near the Ordovician-Silurian boundary (ca. 13 cm/yr between 450 and 440 Ma), whilst the Mid-Silurian and younger history is characterized by steady clockwise rotation (totalling about 75°) until the Late Permian. The Late Palaeozoic convergence history between Siberia and Baltica (Pangea) is hard to quantify from palaeomagnetic data because there are only two reliable poles (at 360 and 275 Ma) between the Early Silurian and the Permo-Triassic boundary. The Mid and Late Palaeozoic APW path for Siberia is therefore strongly interpolated and we discuss two different APW path alternatives that result in two very different convergence scenarios between Siberia and Baltica/Kazakh terranes. There are a newly-constructed succession of palaeogeographic maps of Siberia and its nearby areas at various times from the Cambrian to the Permian as, firstly, the peri-Siberian terranes and, secondly, the remainder of the Central Asian terranes accreted to it. Prior to the Early Ordovician, Siberia was in the southern hemisphere, but after that it drifted northwards and for most of the Phanerozoic it has been one of the few larger terranes in the northern hemisphere. The Cambrian and Ordovician maps are provisional for the Altai-Sayan and Mongolian areas, whose geology is highly complex and whose detailed palaeogeography is unresolved. The terms "Altaids" and "Paleo-Asian Ocean" have been used in so many different ways by so many different authors over so many geological periods that we reject their use. Wider issues considered include the possible links between the Cambrian Radiation (often wrongly termed "Explosion"), when metazoan animals first gained hard parts, and True Polar Wander (TPW). New Early Cambrian palaeomagnetic data from Siberia do not show rapid APW (< 10 cm/yr.) or dramatic velocity changes (< 4 cm/yr). It is concluded that the Cambrian Radiation occurred over a period approaching 20 Myr, and that rapid and large-scale TPW did not take place in the Cambrian. In addition, there are no traces of glaciogenic deposits in the very large area of Siberia during the Neoproterozoic, casting some doubt on the "Snowball Earth" hypothesis.
Gehrels, G.E.; Stewart, John H.
1998-01-01
One hundred and eighty two individual detrital zircon grains from Cambrian through Permian miogeoclinal strata, Ordovician eugeoclinal rocks, and Triassic post-orogenic sediments in northwestern Sonora have been analyzed. During Cambrian, Devonian, Permian, and Triassic time, most zircons accumulating along this part of the Cordilleran margin were shed from 1.40-1.45 and 1.62-1.78 Ga igneous rocks that are widespread in the southwestern United States and northwestern Mexico. Zircons with ages of approximately 1.11 Ga are common in Cambrian strata and were apparently shed from granite bodies near the sample site. The sources of 225-280 Ma zircons in our Triassic sample are more problematic, as few igneous rocks of these ages are recognized in northwestern Mexico. Such sources may be present but unrecognized, or the grains could have been derived from igneous rocks of the appropriate ages to the northwest in the Mojave Desert region, to the east in Chihuahua and Coahuila, or to the south in accreted(?) arc-type terranes. Because the zircon grains in our Cambrian and Devonian to Triassic samples could have accumulated in proximity to basement rocks near their present position or in the Death Valley region of southern California, our data do not support or refute the existence of the Mojave-Sonora megashear. Ordovician strata of both miogeoclinal and eugeoclinal affinity are dominated by >1.77 Ga detrital zircons, which are considerably older than most basement rocks in the region. Zircon grains in the miogeoclinal sample were apparently derived from the Peace River arch area of northwestern Canada and transported southward by longshore currents. The eugeoclinal grains may also have come from the Peace River arch region, with southward transport by either sedimentary or tectonic processes, or they may have been shed from off-shelf slivers of continents (perhaps Antarctica?) removed from the Cordilleran margin during Neoproterozoic rifting. It is also possible that the Ordovician eugeoclinal strata are far traveled and exotic to North America.
Early Cambrian Pentamerous Cubozoan Embryos from South China
Han, Jian; Kubota, Shin; Li, Guoxiang; Yao, Xiaoyong; Yang, Xiaoguang; Shu, Degan; Li, Yong; Kinoshita, Shunichi; Sasaki, Osamu; Komiya, Tsuyoshi; Yan, Gang
2013-01-01
Background Extant cubozoans are voracious predators characterized by their square shape, four evenly spaced outstretched tentacles and well-developed eyes. A few cubozoan fossils are known from the Middle Cambrian Marjum Formation of Utah and the well-known Carboniferous Mazon Creek Formation of Illinois. Undisputed cubozoan fossils were previously unknown from the early Cambrian; by that time probably all representatives of the living marine phyla, especially those of basal animals, should have evolved. Methods Microscopic fossils were recovered from a phosphatic limestone in the Lower Cambrian Kuanchuanpu Formation of South China using traditional acetic-acid maceration. Seven of the pre-hatched pentamerous cubozoan embryos, each of which bears five pairs of subumbrellar tentacle buds, were analyzed in detail through computed microtomography (Micro-CT) and scanning electron microscopy (SEM) without coating. Results The figured microscopic fossils are unequivocal pre-hatching embryos based on their spherical fertilization envelope and the enclosed soft-tissue that has preserved key anatomical features arranged in perfect pentaradial symmetry, allowing detailed comparison with modern cnidarians, especially medusozoans. A combination of features, such as the claustrum, gonad-lamella, suspensorium and velarium suspended by the frenula, occur exclusively in the gastrovascular system of extant cubozoans, indicating a cubozoan affinity for these fossils. Additionally, the interior anatomy of these embryonic cubozoan fossils unprecedentedly exhibits the development of many new septum-derived lamellae and well-partitioned gastric pockets unknown in living cubozoans, implying that ancestral cubozoans had already evolved highly specialized structures displaying unexpected complexity at the dawn of the Cambrian. The well-developed endodermic lamellae and gastric pockets developed in the late embryonic stages of these cubozoan fossils are comparable with extant pelagic juvenile cubomedusae rather than sessile cubopolyps, whcih indicates a direct development in these fossil taxa, lacking characteristic stages of a typical cnidarian metagenesis such as planktonic planula and sessile polyps. PMID:23950993
Upper Cambrian chitons (Mollusca, polyplacophora) from Missouri, USA
Pojeta, J.; Vendrasco, M.J.; Darrough, G.
2010-01-01
Numerous new specimens reveal a greater presence of chitons in Upper Cambrian rocks than previously suspected. Evidence is presented showing that the chiton esthete sensory system is present in all chiton species in this study at the very beginning of the known polyplacophoran fossil record. The stratigraphic occurrences and paleobiogeography of Late Cambrian chitons are documented. The 14 previously-named families of Cambrian and Ordovician chitons are reviewed and analyzed. Aulochitonidae n. fam. is defined, based on Aulochiton n. gen.; A. sannerae n. sp. is also defined. The long misunderstood family Preacanthochitonidae and its type genus Preacanthochiton Bergenhayn, 1960, are placed in synonymy with Mattheviidae and Chelodes Davidson & King, 1874, respectively; Eochelodes Marek, 1962, also is placed in synonymy with Chelodes, and Elongata Stinchcomb & Darrough, 1995, is placed in synonymy with Hemithecella Ulrich & Bridge, 1941. At the species level, H. elongata Stinchcomb & Darrough, 1995, and Elongata perplexa Stinchcomb & Darrough, 1995, are placed in synonymy with H. eminensis Stinchcomb & Darrough, 1995. The Ordovician species H. abrupta Stinchcomb & Darrough, 1995, is transferred to the genus Chelodes as C. abrupta (Stinchcomb & Darrough, 1995). The Ordovician species Preacanthochiton baueri Hoare & Pojeta, 2006, is transferred to the genus Helminthochiton as H. ? baueri (Hoare & Pojeta, 2006). The Ordovician species H. marginatus Hoare & Pojeta, 2006, is transferred to the genus Litochiton as L. marginatus (Hoare & Pojeta, 2006). Matthevia walcotti Runnegar, Pojeta, Taylor, & Collins, 1979, is treated as a synonym of Hemithecella expansa Ulrich & Bridge, 1941. In addition, other multivalved Cambrian mollusks are discussed; within this group, Dycheiidae n. fam. is defined, as well as Paradycheia dorisae n. gen. and n. sp. Cladistic analysis indicates a close relationship among the genera here assigned to the Mattheviidae, and between Echinochiton Pojeta, Eernisse, Hoare, & Henderson, 2003, and mattheviids. The results suggest treating these taxa as stem-lineage chitons, and do not support the hypothesis that they are aplacophorans.
Climate effects caused by land plant invasion in the Devonian
NASA Astrophysics Data System (ADS)
Hir guillaume, Le; yannick, Donnadieu; yves, Goddéris; brigitte, Meyer-Berthaud; gilles, Ramstein
2017-04-01
Land plants invaded continents during the Mid-Paleozoic. Their spreading and diversification have been compared to the Cambrian explosion in terms of intensity and impact on the diversification of life on Earth. Whereas prior studies were focused on the evolution of the root system and its weathering contribution, here we investigated the biophysical impacts of plant colonization on the surface climate through changes in continental albedo, roughness, thermal properties, and potential evaporation using a 3D-climate model coupled to a global biogeochemical cycles associated to a simple model for vegetation dynamics adapted to Devonian conditions. From the Early to the Late Devonian, we show that continental surface changes induced by land plants and tectonic drift have produced a large CO2 drawdown without being associated to a global cooling, because the cooling trend is counteracted by a warming trend resulting from the surface albedo reduction. If CO2 is consensually assumed as the main driver of the Phanerozoic climate, during land-plant invasion, the modifications of soil properties could have played in the opposite direction of the carbon dioxide fall, hence maintaining warm temperatures during part of the Devonian.
Oxygenation as a driver of the Great Ordovician Biodiversification Event
NASA Astrophysics Data System (ADS)
Edwards, Cole T.; Saltzman, Matthew R.; Royer, Dana L.; Fike, David A.
2017-12-01
The largest radiation of Phanerozoic marine animal life quadrupled genus-level diversity towards the end of the Ordovician Period about 450 million years ago. A leading hypothesis for this Great Ordovician Biodiversification Event is that cooling of the Ordovician climate lowered sea surface temperatures into the thermal tolerance window of many animal groups, such as corals. A complementary role for oxygenation of subsurface environments has been inferred based on the increasing abundance of skeletal carbonate, but direct constraints on atmospheric O2 levels remain elusive. Here, we use high-resolution paired bulk carbonate and organic carbon isotope records to determine the changes in isotopic fractionation between these phases throughout the Ordovician radiation. These results can be used to reconstruct atmospheric O2 levels based on the O2-dependent fractionation of carbon isotopes by photosynthesis. We find a strong temporal link between the Great Ordovician Biodiversification Event and rising O2 concentrations, a pattern that is corroborated by O2 models that use traditional carbon-sulfur mass balance. We conclude that that oxygen levels probably played an important role in regulating early Palaeozoic biodiversity levels, even after the Cambrian Explosion.
The origin of animals: Can molecular clocks and the fossil record be reconciled?
Cunningham, John A; Liu, Alexander G; Bengtson, Stefan; Donoghue, Philip C J
2017-01-01
The evolutionary emergence of animals is one of the most significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that animals originated and began diversifying over 100 million years before the first definitive metazoan fossil evidence in the Cambrian. However, closer inspection reveals that clock estimates and the fossil record are less divergent than is often claimed. Modern clock analyses do not predict the presence of the crown-representatives of most animal phyla in the Neoproterozoic. Furthermore, despite challenges provided by incomplete preservation, a paucity of phylogenetically informative characters, and uncertain expectations of the anatomy of early animals, a number of Neoproterozoic fossils can reasonably be interpreted as metazoans. A considerable discrepancy remains, but much of this can be explained by the limited preservation potential of early metazoans and the difficulties associated with their identification in the fossil record. Critical assessment of both records may permit better resolution of the tempo and mode of early animal evolution. © 2016 The Authors BioEssays Published by WILEY Periodicals, Inc.
Potter, C.J.; Drahovzal, James A.; Sargent, M.L.; McBride, J.H.
1997-01-01
Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some faults in the Wabash Valley Fault System produce discrete offset in Ordovician and younger strata only; one of the Wabash Valley faults cuts the top of the Precambrian on this seismic profile. 7. The data show clear evidence of late Paleozoic reverse faulting along both boundaries of the Rough Creek Graben in western Kentucky, although significant unreactivated Cambrian rift-bounding faults are also preserved. 8. Chaotic reflection patterns in the lower and middle Paleozoic strata near Hicks Dome, southern Illinois, are related to a combination of intrusive brecciation, intense faulting, and alteration of carbonate strata by acidic mineralizing fluids, all of which occurred in the Permian. 9. Late Paleozoic(?) reverse faulting is interpreted on one flank of the Rock Creek Graben, southern Illinois. 10. Permian and Mesozoic(?) extensional faulting is clearly imaged in the Fluorspar Area Fault Complex; neotectonic studies suggest that these structures were reactivated in the Quaternary.
Ulmishek, Gregory F.
2001-01-01
Three structural provinces of this report, the Nepa-Botuoba High, the Angara-Lena Terrace, and the Cis-Patom Foredeep, occupy the southeastern part of the Siberian craton northwest of the Baikal-Patom folded region (fig. 1). The provinces are similar in many aspects of their history of development, stratigraphic composition, and petroleum geology characteristics. The sedimentary cover of the provinces overlies the Archean?Lower Proterozoic basement of the Siberian craton. Over most of the area of the provinces, the basement is covered by Vendian (uppermost Proterozoic, 650?570 Ma) clastic and carbonate rocks. Unlike the case in the more northwestern areas of the craton, older Riphean sedimentary rocks here are largely absent and they appear in the stratigraphic sequence only in parts of the Cis-Patom Foredeep province. Most of the overlying sedimentary section consists of Cambrian and Ordovician carbonate and clastic rocks, and it includes a thick Lower Cambrian salt-bearing formation. Younger rocks are thin and are present only in marginal areas. 1 A single total petroleum system (TPS) embraces all three provinces. The TPS is unique in two aspects: (1) its rich hydro-carbon reserves are derived from Precambrian source rocks and (2) preservation of oil and gas fields is extremely long owing to the presence of the Lower Cambrian undeformed salt seal. Discovered reserves of the TPS are about 2 billion barrels of oil and more than 30 trillion cubic feet of gas. The stratigraphic distribution of oil and gas reserves is narrow; all fields are in Vendian to lowermost Cambrian clastic and carbonate reservoirs that occur below Lower Cambrian salt. Both structural and stratigraphic traps are known. Source rocks are absent in the sedimentary cover of the provinces, with the possible exception of a narrow zone on the margin of the Cis-Patom Foredeep province. Source rocks are interpreted here to be Riphean and Vendian organic-rich shales of the Baikal-Patom folded region. These rocks presently are deformed and metamorphosed, but they generated oil and gas before the deformation occurred in Late Silurian and Devonian time. Generated hydrocarbons migrated updip onto the craton margin. The time of migration and formation of fields is constrained by the deposition of Lower Cambrian salt and by the Late Silurian or Devonian metamorphism of source rocks. This time frame indicates that the TPS is one of the oldest petroleum systems in the world. All three provinces are exploration frontiers, and available geologic data are limited; therefore, only one assessment unit has been identified. The largest undiscovered hydrocarbon resources are expected to be in Vendian clastic reservoirs in both structural and stratigraphic traps of the Nepa-Botuoba High province. The petroleum potential of Vendian?lowermost Cambrian carbonate reservoirs is smaller. Nevertheless, these reservoirs may contain significant resources. Gas is expected to dominate over oil in the resource base.
The deprivation syndrome is the driving force of phylogeny, ontogeny and oncogeny.
Heininger, K
2001-01-01
Energy is the motor of life. Energy ensures the organism's survival and competitive advantage for reproductive success. For almost 3 billion years, unicellular organisms were the only life form on earth. Competition for limited energy resources and raw materials exerted an incessant selective pressure on organisms. In the adverse environment and due to their 'feast and famine' life style, hardiness to a variety of stressors, particularly to nutrient deprivation, was the selection principle. Both resistance and mutagenic adaptation to stressors were established as survival strategies by means of context-specific processes creating stability or variability of DNA sequence. The conservation of transduction pathways and functional homology of effector molecules clearly bear witness that the principles of life established during prokaryotic and eukaryotic unicellular evolution, although later diversified, have been unshakably cast to persist during metazoan phylogenesis. A wealth of evidence suggests that unicellular organisms evolved the phenomena of differentiation and apoptosis, sexual reproduction, and even aging, as responses to environmental challenges. These evolutionary accomplishments were elaborated from the dichotomous resistance/mutagenesis response and sophisticated the capacity of cells to tune their genetic information to changing environmental conditions. Notably, the social deprivation responses, differentiation and apoptosis, evolved as intercellularly coordinated events: a multitude of differentiation processes were elaborated from sporulation, the prototypic stress resistance response, while apoptosis, contrary to current concepts, is no altruistic cell suicide but was programmed as a mutagenic survival response; this response, however, is socially thwarted leading into mutagenic error catastrophe. In the hybrid differentiation-apoptosis process, cytocide and cannibalism of apoptotic cells thus serve the purpose of fueling the survival of the selfish genes in the differentiating cells. However, successful mutagenesis, although repressed, persisted in the asocial stress response of carcinogenesis as a regression to primitive unicellular behavior following failure of intercellular communication. While somatic mutagenesis was largely prevented, Metazoa elaborated germ cell mutagenesis as an evolutionary vehicle. Genetic competence, a primitive, stress-induced mating behavior, evolved into sexual reproduction which harnessed mutagenesis by subjecting highly mutable germ cells to a rigid viability selection. These processes were programmatically fixed as life- and cell-cycle events but retained their deprivation response phenotypes. Thus, the differentiation-apoptosis tandem evolved as the 'clay' to mold the specialized structures and functions of a multicellular organism while sexual reproduction elaborated the principle of quality-checked mutagenesis to create the immense diversity of Metazoa following the Cambrian explosion. Throughout these events, reactive oxygen and nitrogen species, which are regulated by energy homeostasis, shape the genetic information in a regulated but random, uncoded process providing the fitness-related feedback of phenotype to genotype. The interplay of genes and environment establishes a dynamic stimulus-response feedback cycle which, in animate nature, may be the organizing principle to contrive the reciprocal duality of energy and matter.
Schiffbauer, James D.; Huntley, John Warren; Fike, David A.; Jeffrey, Matthew Jarrell; Gregg, Jay M.; Shelton, Kevin L.
2017-01-01
Several positive carbon isotope excursions in Lower Paleozoic rocks, including the prominent Upper Cambrian Steptoean Positive Carbon Isotope Excursion (SPICE), are thought to reflect intermittent perturbations in the hydrosphere-biosphere system. Models explaining these secular changes are abundant, but the synchronicity and regional variation of the isotope signals are not well understood. Examination of cores across a paleodepth gradient in the Upper Cambrian central Missouri intrashelf basin (United States) reveals a time-transgressive, facies-dependent nature of the SPICE. Although the SPICE event may be a global signal, the manner in which it is recorded in rocks should and does vary as a function of facies and carbonate platform geometry. We call for a paradigm shift to better constrain facies, stratigraphic, and biostratigraphic architecture and to apply these observations to the variability in magnitude, stratigraphic extent, and timing of the SPICE signal, as well as other biogeochemical perturbations, to elucidate the complex processes driving the ocean-carbonate system. PMID:28275734
NASA Astrophysics Data System (ADS)
Liu, Yu; Melzer, Roland R.; Haug, Joachim T.; Haug, Carolin; Briggs, Derek E. G.; Hörnig, Marie K.; He, Yu-yang; Hou, Xian-guang
2016-05-01
A three-dimensionally preserved 2-mm-long larva of the arthropod Leanchoilia illecebrosa from the 520-million-year-old early Cambrian Chengjiang biota of China represents the first evidence, to our knowledge, of such an early developmental stage in a short-great-appendage (SGA) arthropod. The larva possesses a pair of three-fingered great appendages, a hypostome, and four pairs of well-developed biramous appendages. More posteriorly, a series of rudimentary limb Anlagen revealed by X-ray microcomputed tomography shows a gradient of decreasing differentiation toward the rear. This, and postembryonic segment addition at the putative growth zone, are features of late-stage metanauplii of eucrustaceans. L. illecebrosa and other SGA arthropods, however, are considered representative of early chelicerates or part of the stem lineage of all euarthropods. The larva of an early Cambrian SGA arthropod with a small number of anterior segments and their respective appendages suggests that posthatching segment addition occurred in the ancestor of Euarthropoda.
Structure and function of a compound eye, more than half a billion years old.
Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K
2017-12-19
Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.
Carbon isotopic evidence for photosynthesis in Early Cambrian oceans
NASA Astrophysics Data System (ADS)
Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.
1997-06-01
Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.
NASA Astrophysics Data System (ADS)
Vozárová, Anna; Rodionov, Nickolay; Šarinová, Katarína; Presnyakov, Sergey
2017-09-01
The Southern Gemericum basement in the Inner Western Carpathians, composed of low-grade volcano-sedimentary rock complexes, constitutes a record of the polyphase Cambrian-Ordovician continental volcanic arc volcanism. These metavolcanic rocks are characterized by the enrichment in K, Rb, Ba, Th and Ce and Sm relative to Ta, Nb, Hf, Zr, Y and Yb that are the characteristic features for volcanic arc magmatites. The new SHRIMP U-Pb zircon data and compilation of previously published and re-evaluated zircon ages, contribute to a new constrain of the timing of the Cambrian-Ordovician volcanism that occurred between 496 and 447 Ma. The following peaks of the volcanic activity of the Southern Gemericum basement have been recognized: (a) mid-late Furongian at 492 Ma; (b) Tremadocian at 481 Ma; (c) Darriwilian at 464 Ma prolonged to 453 Ma within the early Upper Ordovician. The metavolcanic rocks are characterized by a high zircon inheritance, composed of Ediacaran (650-550 Ma), Tonian-Stenian (1.1-0.9 Ma), and, to a lesser extent, Mesoproterozoic (1.3 Ga), Paleoproterozoic (1.9 Ga) and Archaean assemblages (2.6 Ga). Based on the acquired zircon populations, it could be deduced that Cambrian-Ordovician arc crust was generated by a partial melting of Ediacaran basement in the subduction-related setting, into which old crustal fragments were incorporated. The ascertained zircon inheritances with Meso-, Paleoproterozoic and Archaean cores indicate the similarities with the Saharan Metacraton provenance.
NASA Astrophysics Data System (ADS)
Nelson, D. R.; Crawford, A. J.; McCulloch, M. T.
1984-11-01
Rocks with boninitic affinities have been recognised in a number of “ophiolites”, including the Cambrian Heathcote and Mt Wellington Greenstone Belts of Victoria. Boninites and high-Mg andesites from the Heathcote Greenstone Belt show a restricted range of initial ɛ Nd values of between +3.3 to +5.8. Extremely refractory boninites from the Mt Wellington Greenstone Belt have ɛ Nd ranging from +1.3 to -9. Ti/Zr is positively correlated with Sm/Nd with the Heathcote lavas generally possessing greater depletion of Ti and enrichment of Zr relative to the middle and heavy REE with increasing LREE/HREE. These data are consistent with the generation of boninites by partial melting of refractory peridotite following invasion by LREE- and Zr-enriched, low ɛ Nd fluids. Tholeiites overlying the boninites in both greenstone belts have flat REE patterns and ɛ Nd˜+5, lower than that anticipated for lavas derived from depleted MORB source reservoirs in the Cambrian, suggesting that their source was also contaminated by a LREE-enriched, low ɛ Nd component similar to that involved in the generation of the Howqua boninites. The added components have characteristics compatible with their derivation from subducted altered oceanic crust and/or from wet subducted sediments. The identification of boninites and other low-Ti lavas in the Victorian greenstone belts is strong evidence for island arc development in southeastern Australia during the Lower Cambrian and provides further support for a subduction-related origin for many ophiolites.
Cosmic rays from supernovae and comments on the Vela X pre-supernova
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1971-01-01
A possible history of the production of elements in the galaxy is presented, based on assumptions about the end points of stellar evolution and of the general evolution of the galaxy. A wide range of quantities involving the relative abundances of nucleosynthesis products observed in the solar system, and various galactic quantities such as the current rate of supernova production and the present gas content of the galaxy, were considered. These assumptions were utilized in a computer program in which the gas content of the galaxy is gradually turned into stars. The stars are continually enriched in the products of nucleosynthesis as they approach the ends of their evolutionary lifetimes. It is suggested that supernova explosions are associated with the mass range of about 4-8 solar masses. Possible theories on the type of stellar explosive event represented by the Vela supernova are discussed.
Red supergiants as supernova progenitors
NASA Astrophysics Data System (ADS)
Davies, Ben
2017-09-01
It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.
Red supergiants as supernova progenitors.
Davies, Ben
2017-10-28
It is now well-established from pre-explosion imaging that red supergiants (RSGs) are the direct progenitors of Type-IIP supernovae. These images have been used to infer the physical properties of the exploding stars, yielding some surprising results. In particular, the differences between the observed and predicted mass spectrum has provided a challenge to our view of stellar evolutionary theory. However, turning what is typically a small number of pre-explosion photometric points into the physical quantities of stellar luminosity and mass requires a number of assumptions about the spectral appearance of RSGs, as well as their evolution in the last few years of life. Here I will review what we know about RSGs, with a few recent updates on how they look and how their appearance changes as they approach supernova.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
NASA Technical Reports Server (NTRS)
Wheeler, J. Craig
1992-01-01
Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.
Delayed signatures of underground nuclear explosions
Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.
2016-01-01
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates. PMID:26979288
Delayed signatures of underground nuclear explosions
NASA Astrophysics Data System (ADS)
Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.
2016-03-01
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.
Delayed signatures of underground nuclear explosions.
Carrigan, Charles R; Sun, Yunwei; Hunter, Steven L; Ruddle, David G; Wagoner, Jeffrey L; Myers, Katherine B L; Emer, Dudley F; Drellack, Sigmund L; Chipman, Veraun D
2016-03-16
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People's Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.
HERCULES GLADES WILDERNESS, MISSOURI.
Miller, Mary H.; Ryan, George S.
1984-01-01
Based on geologic, geochemical, geophysical, and mine and claim surveys, Hercules Glades Wilderness, Missouri has little promise for the occurrence of metallic-mineral or energy resources in formations exposed at and near the surface. Upper Cambrian formations, known to contain major deposits of lead, zinc, silver, copper, nickel, and cobalt in the Viburnum Trend and Southeast Missouri mining districts, occur in the subsurface within the wilderness. Deep drilling to test the buried Cambrian formations for lithologic character and trace metals would be needed in order to permit apprasial of the potential of these formations for base-metal deposits.
Uranium in the Upper Cambrian black shale of Sweden
McKelvey, Vincent Ellis
1955-01-01
The Peltura zone of the Upper Cambrian black shales of Sweden contains about 0.02 percent uranium. Maximum amounts are present in rocks deposited in an embayment in the sea and in rocks in or closely adjacent to that part of the vertical sequence that contains maximum amounts of distillable oil, total organic matter, pyrite, and a black highly uraniferous kerogen called "kolm". Available data suggest that the precipitation of uranium is favored by a low redox potential and that the uranium in the shale matrix may be in fine-grained kolm.
Relations between extensional tectonics and magmatism within the Southern Oklahoma aulacogen
NASA Technical Reports Server (NTRS)
Mcconnell, D. A.; Gilbert, M. C.
1985-01-01
Variations in the geometry, distribution and thickness of Cambrian igneous and sedimentary units within southwest Oklahoma are related to a late Proterozoic - early Paleozoic rifting event which formed the Southern Oklahoma aulacogen. These rock units are exposed in the Wichita Mountains, southwest Olkahoma, located on the northern margin of a Proterozoic basin, identified in the subsurface by COCORP reflection data. Overprinting of the Cambrian extensional event by Pennyslvanian tectonism obsured the influence of pre-existing basement structures and contrasting basement lithologies upon the initial development of the aulacogen.
Ryder, Robert T.; Harris, Anita G.; Repetski, John E.; revised and digitized by Crangle, Robert D.
2003-01-01
A 275-mi-long restored stratigraphic cross section from Medina County, Ohio, through southwestern and south-central Pennsylvania to Hampshire County, W. Va., provides new details on Cambrian and Ordovician stratigraphy in the central Appalachian basin and the structure of underlying Precambrian basement rocks. From west to east, the major structural elements of the block-faulted basement in this section are (1) the relatively stable, slightly extended craton, which includes the Wooster arch, (2) the fault-controlled Ohio-West Virginia hinge zone, which separates the craton from the adjoining Rome trough, (3) the Rome trough, which consists of an east-facing asymmetric graben and an overlying sag basin, and (4) a positive fault block, named here the South-central Pennsylvania arch, which borders the eastern margin of the graben part of the Rome trough. Pre-Middle Ordovician structural relief on Precambrian basement rocks across the down-to-the-west normal fault that separates the Rome trough and the adjoining South-central Pennsylvania arch amounted to between 6,000 and 7,000 ft. The restored cross section shows eastward thickening of the Cambrian and Ordovician sequence from about 3,000 ft near the crest of the Wooster arch at the western end of the section to about 5,150 ft at the Ohio-West Virginia hinge zone adjoining the western margin of the Rome trough to about 19,800 ft near the depositional axis of the Rome trough. East of the Rome trough, at the adjoining western edge of the South-central Pennsylvania arch, the Cambrian and Ordovician sequence thins abruptly to about 13,500 ft and then thins gradually eastward across the arch to about 12,700 ft near the Allegheny structural front and to about 10,150 ft at the eastern end of the restored section. In general, the Cambrian and Ordovician sequence along this section consists of four major lithofacies that are predominantly shallow marine to peritidal in origin. In ascending stratigraphic order, the lithofacies are identified by the following descriptive names: (1) sandstone, shale, limestone, and dolomite unit, (2) dolomite and sandstone unit, (3) limestone and black shale unit, and (4) shale and sandstone unit. Each of these units and their associated subunits thicken from west to east across the restored section to a maximum near the depositional axis of the Rome trough and then thin eastward to the end of the section. The sandstone, shale, limestone, and dolomite unit is largely confined to the asymmetric graben that marks the initial phase of the Rome trough. This unit is Early and Middle Cambrian in age and consists, in ascending order, of a basal sandstone unit (undrilled but probably present), the Tomstown Dolomite (undrilled but probably present), the Waynesboro Formation, and the Pleasant Hill Limestone and its equivalent lower one-third of the Elbrook Formation at the eastern end of the section. The dolomite and sandstone unit forms the core of the Cambrian and Ordovician sequence. In the Rome trough and on the adjoining South-central Pennsylvania arch, this unit consists, in ascending order, of the Middle and Upper Cambrian Warrior Formation and the equivalent upper two-thirds of the Elbrook Formation at the eastern end of the section, the Upper Cambrian Gatesburg Formation, and the Lower Ordovician and Middle Ordovician (Whiterockian and Chazyan) Beekmantown Group. West of the Ohio-West Virginia hinge zone, the dolomite and sandstone unit consists, in ascending order, of the Conasauga Formation of Janssens (1973), the Krysik sandstone of driller's usage, the B zone of Calvert (1964), the Knox Dolomite and the associated Rose Run Sandstone Member, and the Wells Creek Formation. The widespread Knox unconformity is located at the base of the Wells Creek Formation and at or near the top of the adjoining Beekmantown Group, except near the depositional axis of the Rome trough, where the unconformity seems to be absent. The limestone and black shale unit i
NASA Astrophysics Data System (ADS)
Erlström, M.; Sivhed, U.
2012-04-01
In the Baltic region the Cambrian sandstone is considered to have great economic value concerning its aquifer and reservoir properties. Its potential as petroleum reservoir is well known, especially from the Polish, Lithuanian and Russian sectors of the Baltic Sea where oil and gas has been found in anticline traps in the sandstone sequence. Offshore exploration in the Swedish sector has so far not encountered any significant findings of oil and gas. However, the extensive exploration has generated data, which is now being used for assessing the overall properties regarding suitability for storage of CO2. The Swedish primary industry has a great interest in finding potential sites for storage of CO2. A suitable site in the Baltic Sea would be a most favourable alternative in comparison to more remote alternatives such as deep saline aquifers in the North Sea. The Lower Cambrian is in the Swedish sector of the Baltic Sea composed of three main sandstone units varying in thickness between 5 and 50 m occurring within an up to 250 m thick Cambrian sequence dominated by fine-grained terriclastic sediments. The limit of Lower Palaeozoic sequence in the Baltic area is today defined by erosional truncation because of the gently dipping Lower Palaeozoic sequence. To the north and northwest, the limit is found in the Pre-Quaternary, whereas the erosional limit is deeply buried beneath Permian and Mesozoic sediments to the south. Here the Lower Palaeozoic limit is buried to depths reaching more than 2 km. The Cambrian sequence in the distal parts of the Swedish sector occurs at depths of c. 1300 m while it constitutes the bedrock surface in a narrow zone trending from Öland to the north of of Gotland. Sandstone beds constitute 40-60% of the total Cambrian sequence. The main sandstone units have a regional distribution of several thousands of square kilometres. The up to 50 m thick Faludden sandstone member exhibits the best reservoir properties including porosities in the range of 10-16% and permeabilities of 200-400 mD. Wire line logs indicate uniform physical properties of the member. The Faludden sandstone is in addition interpreted as a closed aquifer since it wedges out updip and is overlain by alum shale and several hundred metres of Ordovician-Silurian argillaceous limestone with bentonite clays acting as a significant seal. The regional distribution in combination with the satisfactory physical properties makes it an interesting candidate for CO2 storage. Investigations of the hydraulic properties of the aquifer as well as properties of the seal, in combination with numeric modelling have to be performed as to achieve a reliable assessment of the storage capacity. Research projects regarding this are now being launched by the Geological Survey of Sweden, Uppsala University, Lund University and the industry. Existing data regarding the Lower Cambrian sandstone in the Baltic Sea will also be included in the Nordic CCS GIS Atlas and data base within the recently launched Nordiccs-project.
NASA Astrophysics Data System (ADS)
Kruk, Nikolai N.; Kuibida, Yana V.; Shokalsky, Sergey P.; Kiselev, Vladimir I.; Gusev, Nikolay I.
2018-06-01
The Cambrian-Ordovician transition was the time of several key events in the history of Central Asia. They were the accretion of Mariana-type island arc systems to the Siberian continent, the related large-scale orogeny and intrusions of basaltic and granitic magma and the formation of a huge turbidite basin commensurate with the Bengal Gulf basin in the western part of the Central Asian orogenic belt (CAOB). The structure of the basin, as well as the sources and environments of deposition remain open to discussion. This paper presents new major- and trace-element data on Late-Cambrian-Early Ordovician turbidites from different parts of the Russian Altai and a synthesis of Nd isotope composition and ages of detrital zircons. The turbidites share chemical similarity with material shed from weathered continental arcs. Broad variations of CIA (39-73) and ICV (0.63-1.66) signatures in sandstones suggest origin from diverse sources and absence of significant sorting. Trace elements vary considerably and have generally similar patterns in rocks from different terranes. On the other hand, there are at least two provinces according to Nd isotope composition and age of detrital zircons. Samples from eastern Russian Altai contain only Phanerozoic zircons and have Nd isotope ratios similar to those in Early Cambrian island arcs (εNdt + 4.4… + 5.4; TNd(DM)-2-st = 0.8-0.9 Ga). Samples from central, western, and southern parts of Russian Altai contain Precambrian zircons (some as old as Late Archean) and have a less radiogenic Nd composition (εNdt up to -3.6; TNd(DM)-2-st up to 1.5 Ga). The chemical signatures of Late Cambrian to Early Ordovician turbidites indicate a provenance chemically more mature than the island arc rocks, and the presence of zircons with 510-490 Ma ages disproves their genetic relation with island arcs. The turbidite basin formed simultaneously with peaks of granitic and alkali-basaltic magmatism in the western Central Asian orogen and resulted from interplay of plate tectonic and plume tectonic processes.
NASA Astrophysics Data System (ADS)
Reesink, A. J. H.; Best, J.; Freiburg, J. T.; Nathan, W.
2016-12-01
Rivers that existed before land plants colonized the Earth are commonly considered to be unaffected by microbial activity on their floodplains, because the limited cementation produced by microbial activity is insufficient to stabilize the river banks. Although this assumption is likely correct, such emphasis on channel dynamics ignores the potential role of floodplain dynamics as an integral component of the river system. Detailed analysis of cores from the Cambrian Mount Simon Sandstone, Illinois, suggests that a significant proportion of the terrestrial sequence is composed of flat-bedded `crinkly' structures that provide evidence of cementation by soil crusts and microbial biofilms, and that promoted the adhesion of sediment to sticky surfaces. Wind ripples and local desert pavements were abundant. These findings highlight that sediment deposition on Cambrian floodplains was often dominated by wind in locations where the ground water table reached the surface, and was thus likely independent of sediment transport within the river channel. Erosion by wind would thus have been hindered by surface cementation and the formation of desert pavements. Such ground water control on deposition, and resistance to erosion by floodplain surface hardening, appear to have been the primary controls on Cambrian floodplain topography. Because floodplain topography poses a key control on channel and floodplain flow, these processes may have affected patterns of erosion and deposition, as well as reach-scale dynamics such as channel avulsions. The autonomous operation of wind-and-groundwater controlled floodplains makes pre-vegetated river systems more sensitive to climatic conditions such as precipitation and evaporation, and strikingly different from those that occurred after the development of land plants.
Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny
Ketner, Keith B.
2013-01-01
Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, G.M.; Boudette, E.L.
1985-01-01
The Hurricane Mountain Formation (HMF) melange and associated ophiolitic and volcanogenic formations of Cambrian and lowermost Ordovician age bound the SE margin of the Precambrian Y (Helikian) Chain Lakes Massif in western Maine. HMF melange matrix, though weakly metamorphosed, contains a wide variety of exotic greenschist to amphibolite facies blocks as components of its polymictic assemblage, but blocks of high-grade cratonal rocks such as those of Chain Lakes or Grenville affinity are lacking. Formations of melange exposed in structural culminations of Cambrian and Ordovician rocks NE of the HMF in Maine and in the Fournier Group in New Brunswick aremore » lithologically similar and probably tectonically correlative with the HMF; taken together, they may delineate a common pre-Middle Ordovician tectonic boundary. The authors infer that the Hurricane Mountain and St. Daniel melange belts define the SE and NW margins of the Boundary Mountains accreted terrane (BMT), which may consist of cratonal basement of Chain Lakes affinity extending from eastern Gaspe (deBroucker and St. Julien, 1985) to north-central New Hampshire. The Laurentian continental margin, underlain by Grenville basement, underplated the NW margin of this terrane, marked by the SDF suture zone, in late Cambrian to early Ordovician time, while terranes marked by Cambrian to Tremadocian (.) lithologies dissimilar to the Boundary Mountains terrane were accreted to its outboard margin penecontemporaneously. The docking of the Boundary Mountains terrane and the initiation of its peripheral melanges are equated to the Penobscottian disturbance.« less
Kurkewicz, Richard; Shinogle, Heather; Kimmig, Julien; MacGabhann, Breandán Anraoi
2017-01-01
The morphology and affinities of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian (Series 2: Stage 4, Dyeran) Carrara Formation are discussed. These specimens show some similarity to the Ordovician Discophyllum Hall, 1847; traditionally this taxon had been treated as a fossil porpitid. However, recently it has instead been referred to as another clade, the eldonids, which includes the enigmatic Eldonia Walcott, 1911 that was originally described from the Cambrian Burgess Shale. The status of various Proterozoic and Phanerozoic taxa previously referred to porpitids and eldonids is also briefly considered. To help ascertain that the specimens were not dubio- or pseudofossils, elemental mapping using energy dispersive X-ray spectroscopy (EDS) was conducted. This, in conjunction with the morphology of the specimens, indicated that the fossils were not hematite, iron sulfide, pyrolusite, or other abiologic mineral precipitates. Instead, their status as biologic structures and thus actual fossils is supported. Enrichment in the element carbon, and also possibly to some extent the elements magnesium and iron, seems to be playing some role in the preservation process. PMID:28603667
Lieberman, Bruce S; Kurkewicz, Richard; Shinogle, Heather; Kimmig, Julien; MacGabhann, Breandán Anraoi
2017-01-01
The morphology and affinities of newly discovered disc-shaped, soft-bodied fossils from the early Cambrian (Series 2: Stage 4, Dyeran) Carrara Formation are discussed. These specimens show some similarity to the Ordovician Discophyllum Hall, 1847; traditionally this taxon had been treated as a fossil porpitid. However, recently it has instead been referred to as another clade, the eldonids, which includes the enigmatic Eldonia Walcott, 1911 that was originally described from the Cambrian Burgess Shale. The status of various Proterozoic and Phanerozoic taxa previously referred to porpitids and eldonids is also briefly considered. To help ascertain that the specimens were not dubio- or pseudofossils, elemental mapping using energy dispersive X-ray spectroscopy (EDS) was conducted. This, in conjunction with the morphology of the specimens, indicated that the fossils were not hematite, iron sulfide, pyrolusite, or other abiologic mineral precipitates. Instead, their status as biologic structures and thus actual fossils is supported. Enrichment in the element carbon, and also possibly to some extent the elements magnesium and iron, seems to be playing some role in the preservation process.
NASA Astrophysics Data System (ADS)
Pavlov, V.; Shatsillo, A.; Kouznetsov, N.; Gazieva, E.
2017-12-01
There is a range of evidence, mainly from sedimentary and volcanic rocks of the Laurentia and Baltica cratons, that argue for the anomalous character of the Ediacaran-Early Cambrian paleomagnetic record. This feature could be linked either to some peculiarities of the paleomagnetic record itself or to some unusual geophysical event that would have taken place around the Proterozoic-Phanerozoic boundary (e.g., true polar wander or nonuniformitarian geomagnetic field behavior). In the latter case, the traces of this event should be observed in Ediacaran-Early Cambrian rocks anywhere there is a possibility to observe a primary paleomagnetic signal. In previous work, we reported results that suggested an anomalous paleomagnetic record in Siberian Ediacaran-Lower Cambrian rocks. Here we present new Siberian data that indicate a very high geomagnetic reversal frequency during this period and the coexistence of two very different paleomagnetic directions. We speculate that these features could be due either to a near-equatorial geomagnetic dipole during the polarity transitions or to alternation between axial and near equatorial dipoles not directly linked with polarity reversals.
Identifying hazards associated with lava deltas
Poland, Michael P.; Orr, Tim R.
2014-01-01
Lava deltas, formed where lava enters the ocean and builds a shelf of new land extending from the coastline, represent a significant local hazard, especially on populated ocean island volcanoes. Such structures are unstable and prone to collapse—events that are often accompanied by small explosions that can deposit boulders and cobbles hundreds of meters inland. Explosions that coincide with collapses of the East Lae ‘Apuki lava delta at Kīlauea Volcano, Hawai‘i, during 2005–2007 followed an evolutionary progression mirroring that of the delta itself. A collapse that occurred when the lava–ocean entry was active was associated with a blast of lithic blocks and dispersal of spatter and fine, glassy tephra. Shortly after delta growth ceased, a collapse exposed hot rock to cold ocean water, resulting in an explosion composed entirely of lithic blocks and lapilli. Further collapse of the delta after several months of inactivity, by which time it had cooled significantly, resulted in no recognizable explosion deposit. Seaward displacement and subsidence of the coastline immediately inland of the delta was measured by both satellite and ground-based sensors and occurred at rates of several centimeters per month even after the lava–ocean entry had ceased. The anomalous deformation ended only after complete collapse of the delta. Monitoring of ground deformation may therefore provide an indication of the potential for delta collapse, while the hazard associated with collapse can be inferred from the level of activity, or the time since the last activity, on the delta.
NASA Astrophysics Data System (ADS)
Sorokin, A. A.; Smirnov, Yu. V.; Smirnova, Yu. N.; Kudryashov, N. M.
2011-07-01
The U-Pb geochronological studies showed that metarhyolites from the Turan Group of the Bureya (Turan) Terrane to the east of the Central Asian Foldbelt are Middle Cambrian (504 ± 8 Ma), not Neoproterozoic in age, as was suggested before. Metarhyolites are younger than the Early Cambrian terrigenous-carbonate sediments from this terrane characterized by the Atdabanian archaeochyatid. Considering that volcanic rocks have features of intraplate origin, it may be assumed that their formation corresponds to the breakup of the Early Paleozoic passive continental margin.
New evidence on the anatomy and phylogeny of the earliest vertebrates.
Xian-guang, Hou; Aldridge, Richard J; Siveter, David J; Siveter, Derek J; Xiang-hong, Feng
2002-01-01
We report the discovery of a new agnathan specimen from the Lower Cambrian Chengjiang Lagerstätte of China and thereby provide new evidence on the myomeres (V-shaped), the branchial apparatus (gill filaments and arches), the dorsal fin and the gonads (24-26) of the earliest vertebrates. The new specimen and the co-occurring Myllokunmingia fengjiaoa and Haikouichthys ercaicunensis represent a single species, which is a primitive member of the crown group craniates (vertebrates) and post-dates the origin of the myxinoids (hagfish). The origin of the vertebrate clade is at least as old as Early Cambrian. PMID:12350247
Rising levels of atmospheric oxygen and evolution of Nrf2.
Gacesa, Ranko; Dunlap, Walter C; Barlow, David J; Laskowski, Roman A; Long, Paul F
2016-06-14
In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the 'Great Oxygenation Event'. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0-1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O2 levels then rose in the mid Paleozoic (359-252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health.
NASA Astrophysics Data System (ADS)
Chen, Ming; Sun, Min
2017-04-01
The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of intermediate-felsic igneous rocks, highlighting both crustal growth and recycling. Importantly, a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sedimentary sequence of the GA. These detrital zircons possibly have the same source as their counterpart from the AM. This implies that the two terranes with countrary evolutionary history, i.e. the GA and AM, amalgamated before the early Devonian. To summary, the AM and GA represented two separated subduction-accretion systems in the early Paleozoic and subsequently amalgamated prior to the early Devonian, documenting complicated accretionary orogenesis and significant lateral crustal growth in the CAOB. Acknowledgement This study is financially supported by the Major Research Project of the Ministry of Science and Technology of China (2014CB44801 and 2014CB448000), Hong Kong Research Grant Council (HKU705313P and HKU17303415), National Science Foundation of China (41273048) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132731).
NASA Astrophysics Data System (ADS)
Vermeesch, P.; Avigad, D.
2009-04-01
Following the Neoproterozoic Pan-African orogeny, the Arabian-Nubian Shield (ANS) of North Africa and Arabia was eroded and then covered by Cambrian sandstones that record the onset of platform sedimentation. We applied K-feldspar 40Ar/39Ar, zircon and apatite fission track and apatite (U-Th)/He thermochronology to detritus from Cambrian sandstones of southern Israel deposited at about 500 Ma. U-Pb detrital zircon ages from these sandstones predate deposition and record the earlier Neoproterozoic crustal evolution of the Pan-African orogens. 40Ar/39Ar ages from 50 single grains of K-feldspar yield a Cambrian mean of approximately 535 Ma. The 40Ar/39Ar age spectrum of a multi-grain K-feldspar aliquot displays diffusion behaviour compatible with >560 Ma cooling later affected by a heating event. Assuming that the high temperature domains of the K-feldspars have not been affected by subsequent (hydro)thermal events, and taking previously published K-Ar and Rb-Sr ages from other parts of the East African Orogen at face value, these ages apparently record Pan-African thermal resetting below a thick volcano-sedimentary pile similar to the Saramuj conglomerate in Jordan and/or the Hammamat in Egypt. Detrital zircon fission track (ZFT) ages cluster around 380 Ma, consistent with previous ZFT results from Neoproterozoic basement and sediments of the region, revealing that the Cambrian platform sequence experienced a middle Devonian thermal event and low-grade metamorphism. Regional correlation indicates that during Devonian time the sedimentary cover atop the Cambrian in Israel was never in excess of 2.5 km, requiring an abnormally steep geothermal gradient to explain the complete ZFT annealing. A basal Carboniferous unconformity can be traced from Syria to southern Saudi Arabia, suggesting that the observed Devonian ZFT ages represent a regional tectonothermal event. Similar Devonian ZFT ages were reported from ANS basement outcrops in the Eastern Desert, 500 km south of Eilat. The detrital apatites we studied all have extremely rounded cores suggestive of a distant provenance, but some grains also feature distinct euhedral U-rich apatite overgrowth rims. Authigenic apatite may have grown during the late Devonian thermal event we dated by ZFT, coinciding with existing Rb-Sr ages from authigenic clays in the same deposits and leading to the conclusion that the Devonian event was probably hydrothermal. Like the ZFT ages, the detrital apatite fission track (AFT) ages were also completely reset after deposition. Sixty single grain detrital apatite fission track (AFT) ages group at ~270 Ma with significant dispersion. Inverse modeling of the AFT data indicate extended and/or repeated residence in the AFT partial annealing zone, in turn suggesting an episodic burial-erosion history during the Mesozoic caused by low-amplitude vertical motions. Seven detrital apatite (U-Th)/He ages scatter between 33 and 77 Ma, possibly resulting from extreme compositional zonation associated with the authigenic U-rich overgrowths. The ~70 Ma (U-Th)/He ages are more likely to be accurate, setting 1-2 km as an upper limit (depending on the geothermal gradient) on the post-Cretaceous exhumation of the Cambrian sandstone and showing no evidence for substantial denudation related to Tertiary rifting of the Red Sea.
Early evolution of multifocal optics for well-focused colour vision in vertebrates.
Gustafsson, O S E; Collin, S P; Kröger, R H H
2008-05-01
Jawless fishes (Agnatha; lampreys and hagfishes) most closely resemble the earliest stage in vertebrate evolution and lamprey-like animals already existed in the Lower Cambrian [about 540 million years ago (MYA)]. Agnathans are thought to have separated from the main vertebrate lineage at least 500 MYA. Hagfishes have primitive eyes, but the eyes of adult lampreys are well-developed. The southern hemisphere lamprey, Geotria australis, possesses five types of opsin genes, three of which are clearly orthologous to the opsin genes of jawed vertebrates. This suggests that the last common ancestor of all vertebrate lineages possessed a complex colour vision system. In the eyes of many bony fishes and tetrapods, well-focused colour images are created by multifocal crystalline lenses that compensate for longitudinal chromatic aberration. To trace the evolutionary origins of multifocal lenses, we studied the optical properties of the lenses in four species of lamprey (Geotria australis, Mordacia praecox, Lampetra fluviatilis and Petromyzon marinus), with representatives from all three of the extant lamprey families. Multifocal lenses are present in all lampreys studied. This suggests that the ability to create well-focused colour images with multifocal optical systems also evolved very early.
Fossil preservation and the stratigraphic ranges of taxa
NASA Technical Reports Server (NTRS)
Foote, M.; Raup, D. M.
1996-01-01
The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy. Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased.(3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of fossiliferous rock more than failure of species to enter the fossil record in the first place.
Lerosey-Aubril, Rudy; Hegna, Thomas A.; Kier, Carlo; Bonino, Enrico; Habersetzer, Jörg; Carré, Matthieu
2012-01-01
Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods – typically the most diverse fossilised organisms in Cambrian ecosystems – where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace. PMID:22431989
Ore Deposits of the Jerome and Bradshaw Mountains Quadrangles, Arizona
Lindgren, Waldemar; Heikes, V.C.
1926-01-01
In the summer of 1922, at the request of the Director of the United States Geological Survey, I undertook an examination of the ore deposits in the Jerome and Bradshaw Mountains quadrangles, Ariz. (See fig. 1.) The object of this work was not a detailed investigation of each deposit but rather a coordination and classification of the occurrences and an attempt to ascertain their origin and economic importance. Almost all the deposits occur in pre-Cambrian rocks or in rocks that are not readily differentiated from the pre-Cambrian. In the northern part of the Jerome quadrangle there are large areas of almost horizontal Paleozoic beds, and in both quadrangles there are also large areas of lava flows of Tertiary age. Finally there are wide spaces occupied by Tertiary tuff and limestone, or by Tertiary and Quaternary wash filling the valleys between the mountain ranges. But all these rocks except the pre-Cambrian are practically barren of ore deposits, and the problem therefore narrowed itself to an examination of the pre-Cambrian areas. This task was greatly facilitated by the careful work of Jaggar and Palache, set forth in the Bradshaw Mountains folio,l in which the southern quadrangle of the two under present consideration is mapped geologically and described, and which also includes a comprehensive though brief discussion of the mineral deposits. There is no published geologic map of the Jerome quadrangle, but I had the opportunity through the courtesy of Dr. G. M. Butler, Director of the Arizona Bureau of Mines, to use a manuscript map of this area prepared for the State by Mr. L. E. Reber, jr., and Mr. Olaf Jenkins.
NASA Astrophysics Data System (ADS)
Lu, C.
2017-12-01
This study utilized field outcrops, thin sections, geochemical data, and GR logging curves to investigate the development model of paleokarst within the Longwangmiao Formation in the Lower Cambrian, western Central Yangtze Block, SW China. The Longwangmiao Formation, which belongs to a third-order sequence, consists of four forth-order sequences and is located in the uppermost part of the Lower Cambrian. The vertical variations of the δ13C and δ18O values indicate the existence of multi-stage eogenetic karst events. The eogenetic karst event in the uppermost part of the Longwangmiao Formation is recognized by the dripstones developed within paleocaves, vertical paleoweathering crust with four zones (bedrock, a weak weathering zone, an intense weathering zone and a solution collapsed zone), two generations of calcsparite cement showing bright luminescence and a zonation from nonluminescent to bright to nonluminescent, two types breccias (matrix-rich clast-supported chaotic breccia and matrix-supported chaotic breccia) and rundkarren. The episodic variations of stratiform dissolution vugs and breccias in vertical, and facies-controlled dissolution and filling features indicated the development of multi-stages eogenetic karst. The development of the paleokarst model is controlled by multi-level sea-level changes. The long eccentricity cycle dictates the fluctuations of the forth-order sea-level, generating multi-stage eogenetic karst events. The paleokarst model is an important step towards better understanding the link between the probably orbitally forced sea-level oscillations and eogenetic karst in the Lower Cambrian. According to this paleokarst model, hydrocarbon exploration should focus on both the karst highlands and the karst transitional zone.
Liu, Yunhuan; Xiao, Shuhai; Shao, Tiequan; Broce, Jesse; Zhang, Huaqiao
2014-05-01
Morphological phylogenetic analyses suggest that scalidophorans (priapulids, loriciferans, and kinorhynchs) and nematoids (nematodes and nematomorphs) form the ecdysozoan clade Cycloneuralia, which is a sister group to panarthropods. It has been proposed that extant priapulids and Cambrian priapulid-like scalidophorans, because of their conserved evolution, have the potential to illuminate the ancestral morphology, ecology, and developmental biology of highly derived ecdysozoans such as nematods and arthropods. As such, Cambrian fossils, particularly Markuelia and possibly olivooids, can inform the early evolution of scalidophorans, cycloneuralians, and ecdysozoans. However, the scalidophoran Markuelia is known exclusively as embryo fossils, and the olivooids have been alternatively interpreted as cnidarians or cycloneuralians. Here, we describe a post-embryonic scalidophoran fossil Eopriapulites sphinx new genus and species, which represents the oldest known scalidophoran, from the early Cambrian Period (∼535 Ma) in South China. E. sphinx is similar to modern scalidophorans in having an introvert armed with hollow scalids, a collar with coronal scalids, and a pharynx with pharyngeal teeth, but its scalids and pharyngeal teeth are arranged in a hexaradial pattern. Phylogenetically resolved as a stem-group scalidophoran, E. sphinx shares a hexaradial pattern with the hexaradial arrangement of certain anatomical structures in kinorhynchs, loriciferans, nematoids, and Cambrian fossils such as Eolympia pediculata, which could also be a scalidophoran. Thus, the bodyplan of ancestral cycloneuralians may have had a component of hexaradial symmetry (i.e., some but not necessarily all anatomical parts are hexaradially arranged). If panarthropods are nested within paraphyletic cycloneuralians, as several molecular phylogenetic analyses suggest, the ancestral ecdysozoans may have been a legless worm possibly with a component of hexaradial symmetry. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Trindade, Ricardo I. F.; D'Agrella-Filho, Manoel S.; Epof, Igor; Brito Neves, Benjamim B.
2006-04-01
Paleomagnetic analysis on 15 early Cambrian mafic dikes from Itabaiana (Paraíba State) yielded a southern (northwestern) direction with steep upward (downward) inclination ( Dm = 167.5°, Im = - 63.7°, α95 = 7.3°). AF and Thermal demagnetization, thermomagnetic curves, and hysteresis results suggest that this component is dominantly carried by fine-grained SD magnetite. The high stability of this component and positive baked contact tests on three dikes indicate it represents a primary thermoremanent magnetization. Ar-Ar analysis on whole-rock samples from two sites provides a strong constraint on the age of the Itabaiana paleomagnetic pole (134.6° E, 34.9° S; A95 = 7.3, K = 28) defined by plateau ages of 525 ± 5 and 526 ± 4 Ma. This pole completely satisfies six out of the seven quality criteria proposed by Van der Voo [R. Van der Voo, The reliability of paleomagnetic data, Tectonophysics 184 (1990) 1-9.] and permits a tight constraint on the Early Cambrian sector of the Gondwana apparent polar wander path. Paleogeographic reconstructions consistent with the available paleomagnetic and geological record show that Gondwana was sutured along three major orogenies, the Mozambique (Brasilano/Pan-African) Orogeny (800-650 Ma), the Kuunga Orogeny (570-530 Ma) and the Pampean-Araguaia Orogeny (540-520 Ma). We suggest that after rifting away from Laurentia at the end of the Neoproterozoic, opening the Iapetus ocean, the Amazonian craton and minor adjoining blocks, such as Rio Apa and Pampia, collided with the proto-Gondwana by Cambrian times at ca. 530-520 Ma. Unless for small adjustments, Gondwana was completely formed by 525 Ma whose paleogeography is defined by the Itabaiana pole.
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, G.; Dong, D.; Wang, Y.
2016-12-01
In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V+Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.
3D-Mapping of Dolomitized Structures in Lower Cambrian Phosphorites
NASA Astrophysics Data System (ADS)
Hippler, Dorothee; Stammeier, Jessica A.; Brunner, Roland; Rosc, Jördis; Franz, Gerhard; Dietzel, Martin
2016-04-01
Dolomitization is a widespread phenomenon in ancient sedimentary rocks, particularly close to the Precambrian-Cambrian boundary. Dolomite can form in synsedimentary or hydrothermal environments, preferentially via the replacement of solid carbonate precursor phases. Synsedimentary dolomite formation is often associated with microbial activity, such as bacterial sulfate reduction or methanogenesis. In this study, we investigate dolomitic phosphorites from the Lowermost Cambrian Tal Group, Mussoori Syncline, Lesser Himalaya, India, using micro-CT 3D-mapping, in order to unravel the complex diagenetic history of the rocks. The selected sample shows alternating layering of phosphatic mudstones and sparitic dolostone, in which brecciated layers of phosphorite or phosphatic mudstones are immersed in a dolomite-rich matrix. Lamination occurs on a sub-millimetre scale, with lamination sometimes wavy to crinkly. This fabric is interpreted as former microbial mats, providing the environment for early diagenetic phosphatization. Preliminary electron backscatter imaging with scanning microscopy revealed that dolomite crystals often occur in spherical to ellipsoidal structures, typically with a high porosity. This dolomite is associated with botryoidal apatite, organic matter and small amounts of calcite. Micro-CT 3D-mappings reveal that dolomite structures are cigar-shaped, elongated and up to 600 μm long. They are further arranged in a Mikado-like oriented framework spanning a layer thickness of a few millimetres. Analyses of ambient pore space, with similar elongated outlines and filled with organic matter, suggest a potential coherence of ambient pore space and shape of the dolomite structures. Allowing for other associated mineral phases, such as pyrite and silicates, and their spatial distribution, the present approach can be used to unravel distinct diagenetic reaction pathways, and might thus constrain the proxy potential of these Lower Cambrian dolomitic phosphorites to reconstruct ambient environmental at the time of deposition.
NASA Astrophysics Data System (ADS)
Ramacciotti, Carlos D.; Casquet, César; Baldo, Edgardo G.; Galindo, Carmen; Pankhurst, Robert J.; Verdecchia, Sebastián O.; Rapela, Carlos W.; Fanning, Mark
2018-05-01
The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to the early Paleozoic tectonic evolution of SW Gondwana. Two well-known orogenies took place at the proto-Andean margin of Gondwana in the Cambrian and the Ordovician, i.e., the Pampean (545-520 Ma) and Famatinian (490-440 Ma) orogenies, respectively. Between them, an extensive continental platform was developed, where mixed carbonate-siliciclastic sedimentation occurred. This platform was later involved in the Famatinian orogeny when it underwent penetrative deformation and metamorphism. The platform apparently extended from Patagonia to northwestern Argentina and the Eastern Sierras Pampeanas, and has probable equivalents in SW Africa, Peru, and Bolivia. The WSP record the outer (deepest) part of the platform, where carbonates were deposited in addition to siliciclastic sediments. Detrital zircon U-Pb SHRIMP ages from clastic metasedimentary successions and Sr-isotope compositions of marbles from the WSP suggest depositional ages between ca. 525 and 490 Ma. The detrital zircon age patterns further suggest that clastic sedimentation took place in two stages. The first was sourced mainly from re-working of the underlying Neoproterozoic metasedimentary rocks and the uplifted core of the early Cambrian Pampean orogen, without input from the Paleoproterozoic Río de la Plata craton. Sediments of the second stage resulted from the erosion of the still emerged Pampean belt and the Neoproterozoic Brasiliano orogen in the NE with some contribution from the Río de la Plata craton. An important conclusion is that the WSP basement was already part of SW Gondwana in the early Cambrian, and not part of the exotic Precordillera/Cuyania terrane, as was previously thought.
NASA Astrophysics Data System (ADS)
Smith, E. F.; Macdonald, F. A.; Schrag, D. P.; Laakso, T.
2014-12-01
The GSSP Precambrian-Cambrian boundary in Newfoundland is defined by the first appearance datum (FAD) of Treptichnus pedum, which is considered to be roughly coincident with the FAD of small shelly fossils (SSFs) and a large negative carbon isotope excursion. An association between the FAD of T. pedum and a negative carbon isotope excursion has previously been documented in Northwest Canada (Narbonne et al., 1994) and Death Valley (Corsetti and Hagadorn, 2000), and since then has been used as an chronostratigraphic marker of the boundary, particularly in siliciclastic poor sections that do not preserve T. pedum. Here we present new high-resolution carbon isotope (δ13C ) chemostratigraphy from multiple sections in western Mongolia and the western United States that span the Ediacaran-Cambrian transition. High-resolution sampling (0.2-1 m) reveals that instead of one large negative excursion, there are multiple, high-frequency negative excursions with an overall negative trend during the latest Ediacaran. These data help to more precisely calibrate changes in the carbon cycle across the boundary as well as to highlight the potential problem of identifying the boundary with just a few negative δ13C values. We then use a simple carbon isotope box model to explore relationships between phosphorous delivery to the ocean, oxygenation, alkalinity, and turnovers in carbonate secreting organisms. Corsetti, F.A., and Hagadorn, J.W., 2000, Precambrian-Cambrian transition: Death Valley, United States: Geology, v. 28, no. 4, p. 299-302. Narbonne, G.M., Kaufman, A.J., and Knoll, A.H., 1994, Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals: Geological Society of America Bulletin, v. 106, no. 10, p. 1281-1292.
Delayed signatures of underground nuclear explosions
Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; ...
2016-03-16
Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. Here, we observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be anmore » indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). In conclusion, our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.« less
NASA Astrophysics Data System (ADS)
Benssaou, Mohammed; Hamoumi, Naı̈ma
2003-03-01
In the Moroccan western Anti-Atlas, the combined extensive tectonic events with a long-term sea-level rise is the main factor on building vertical stacking transgressive-regressive sequences. In the Ait Abdallah-Boussafene axis, the subsidence processes, relayed by a brutal platform tilting generated an elongated NE-SW graben. This is an evidence of the persistence of the Anti-Atlasic rifting process during the last part of the Lower-Cambrian succession.
Hou, Xianguang; Williams, Mark; Siveter, David J.; Siveter, Derek J.; Aldridge, Richard J.; Sansom, Robert S.
2010-01-01
Bradoriids are small bivalved marine arthropods that are widespread in rocks of Cambrian to Early Ordovician age. They comprise seven families and about 70 genera based on shield (‘carapace’) morphology. New bradoriid specimens with preserved soft-part anatomy of Kunmingella douvillei (Kunmingellidae) are reported from the Early Cambrian Chengjiang Lagerstätte of China together with, for the first time to our knowledge, a second bradoriid species with preserved soft parts, Kunyangella cheni (Comptalutidae). Kunmingella douvillei has a 10-segmented limb-bearing body with uniramous ninth and tenth appendages and a series of homogeneous, apparently (proximal parts not preserved) unspecialized post-antennal biramous limbs with setose leaf-shaped exopods. Each endopod consists of five podomeres. A presumed penultimate instar of Ky. cheni preserves remnants of three head and two trunk appendages, and the adult is reconstructed as having four head appendages. This material allows testing of the affinity of the Bradoriida. Kunmingella is identified as a stem crustacean in character-based analyses, through both morphological comparisons and cladistic reconstructions. Global parsimony analysis recovers a monophyletic Bradoriida as the sister group to crown crustaceans. PMID:20181565
Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China).
Han, Jian; Morris, Simon Conway; Ou, Qiang; Shu, Degan; Huang, Hai
2017-02-09
Deuterostomes include the group we belong to (vertebrates) as well as an array of disparate forms that include echinoderms, hemichordates and more problematic groups such as vetulicolians and vetulocystids. The Cambrian fossil record is well-populated with representative examples, but possible intermediates are controversial and the nature of the original deuterostome remains idealized. Here we report millimetric fossils, Saccorhytus coronarius nov. gen., nov. sp., from an Orsten-like Lagerstätte from the earliest Cambrian period of South China, which stratigraphically are amongst the earliest of deuterostomes. The bag-like body bears a prominent mouth and associated folds, and behind them up to four conical openings on either side of the body as well as possible sensory structures. An anus may have been absent, and correspondingly the lateral openings probably served to expel water and waste material. This new form has similarities to both the vetulicolians and vetulocystids and collectively these findings suggest that a key step in deuterostome evolution was the development of lateral openings that subsequently were co-opted as pharyngeal gills. Depending on its exact phylogenetic position, the meiofaunal habit of Saccorhytus may help to explain the major gap between divergence times seen in the fossil record and estimates based on molecular clocks.
Fossil embryos from the Middle and Late Cambrian period of Hunan, south China.
Dong, Xi-Ping; Donoghue, Philip C J; Cheng, Hong; Liu, Jian-Bo
2004-01-15
Comparative embryology is integral to uncovering the pattern and process of metazoan phylogeny, but it relies on the assumption that life histories of living taxa are representative of their antecedents. Fossil embryos provide a crucial test of this assumption and, potentially, insight into the evolution of development, but because discoveries so far lack phylogenetic constraint, their significance is moot. Here we describe a collection of embryos from the Middle and Late Cambrian period (500 million years ago) of Hunan, south China, that preserves stages of development from cleavage to the pre-hatching embryo of a direct-developing animal comparable to living Scalidophora (phyla Priapulida, Kinorhyncha, Loricifera). The latest-stage embryos show affinity to the Lower Cambrian embryo Markuelia, whose life-history strategy contrasts both with the primitive condition inferred for metazoan phyla and with many proposed hypotheses of affinity, all of which prescribe indirect development. Phylogenetic tests based on these embryological data suggest a stem Scalidophora affinity. These discoveries corroborate, rather than contradict, the predictions of comparative embryology, providing direct historical support for the view that the life-history strategies of living taxa are representative of their stem lineages.
NASA Astrophysics Data System (ADS)
Patočka, F.; Pruner, P.; Štorch, P.
The Barrandian area (the Teplá-Barrandian unit, Bohemian Massif) provided palaeomagnetic results on Early Palaeozoic rocks and chemical data on siliciclastic sediments of both Middle Cambrian and Early Ordovician to Middle Devonian sedimentary sequences; an outcoming interpretation defined source areas of clastic material and palaeotectonic settings of the siliciclastic rock deposition. The siliciclastic rocks of the earliest Palaeozoic sedimentation cycle, deposited in the Cambrian Příbram-Jince Basin of the Barrandian, were derived from an early Cadomian volcanic island arc developed on Neoproterozoic oceanic lithosphere and accreted to a Cadomian active margin of northwestern Gondwana. Inversion of relief terminated the Cambrian sedimentation, and a successory Prague Basin subsided nearby since Tremadocian. Source area of the Ordovician and Early Silurian shallow-marine siliciclastic sediments corresponded to progressively dissected crust of continental arc/active continental margin type of Cadomian age. Since Late Ordovician onwards both synsedimentary within-plate basic volcanics and older sediments had been contributing in recognizable proportions to the siliciclastic rocks. The siliciclastic sedimentation was replaced by deposition of carbonate rocks throughout late Early Silurian to Early Devonian period of withdrawal of the Cadomian clastic material source. Above the carbonates an early Givetian flysch-like siliciclastic suite completed sedimentation in the Barrandian. In times between Middle Cambrian and Early/Middle Devonian boundary interval an extensional tectonic setting prevailed in the Teplá-Barrandian unit. The extensional regime was related to Early Palaeozoic large-scale fragmentation of the Cadomian belt of northwestern Gondwana and origin of Armorican microcontinent assemblage. The Teplá-Barrandian unit was also engaged in a peri-equatorially oriented drift of Armorican microcontinent assemblage throughout the Early Palaeozoic: respective palaeolatitudes of 58°S (Middle Cambrian) and 17°S (Middle Devonian) were inferred for the Barrandian rocks. The Middle Devonian flysch-like siliciclastics of the Prague Basin suggest a reappearance of the deeply dissected Cadomian source area in a proximity of the Barrandian due to early Variscan convergences and collisions of the Armorican microcontinents. Significant palaeotectonic rotations are palaeomagnetically evidenced to take place during oblique convergence and final docking of the Teplá-Barrandian microplate within the Variscan terrane mosaic of the Bohemian Massif.
Tape, C.H.; Cowan, Clinton A.; Runkel, Anthony C.
2003-01-01
This study documents for the first time tidal bundling in a lower Paleozoic sheet sandstone from the cratonic interior of North America, providing insights into the hydrodynamics of ancient epicontinental seas. The Jordan Sandstone (Upper Cambrian) in the Upper Mississippi Valley contains large-scale planar tabular cross-sets with tidal-bundle sequences, which were analyzed in detail at an exceptional exposure. Tidal-bundle sequences (neap-spring-neap cycles) were delineated by foreset thickening-thinning patterns and composite shale drapes, the latter of which represent accumulations of mud during the neap tides of neap-spring-neap tidal cycles. Fourier analysis of the bundle thickness data from the 26 measurable bundle sequences revealed cycles ranging from 15 to 34 bundles per sequence, which suggests a semidiurnal or mixed tidal system along this part of the Late Cambrian shoreline. We extend the tidal interpretation to widespread occurrences of the same facies in outcrops of lesser quality, where the facies is recognizable but too few bundles are exposed for tidal cycles to be measured. By doing so, this study shows that tidally generated deposits have a significant geographic and temporal extent in Upper Cambrian strata of central mid-continent North America. The deposition and preservation of tidal facies was related to the intermittent development of shoreline embayments during transgressions. The tidally dominated deposits filled ravined topographies that were repeatedly developed on the updip parts of the shoreface. Resulting coastal geomorphologies, accompanied perhaps by larger-scale changes in basinal conditions and/or configuration, led to changes in depositional conditions from wave-dominated to tide-dominated. Outcrops of the Jordan Sandstone tidal facies in the Upper Mississippi Valley represent the farthest inboard recorded transmission of ocean-generated tides in the Laurentian epicontinental seas, demonstrating that tidal currents were significant agents in the transport of sand along the far cratonic interior shorelines of Cambrian North America. The results of this study improve the facies-level understanding of the genesis of sheet sandstones. Furthermore, tidalites documented here occur in a specific position within a sequence stratigraphic architecture for the Jordan Sandstone. This provides a framework to compare these ancient deposits and processes to younger (e.g., Carboniferous) epicontinental systems where stratal and sediment dynamics are better documented. ?? 2003, SEPM (Society for Sedimentary Geology).
Petroleum geology and resources of the Baykit High province, East Siberia, Russia
Ulmishek, Gregory F.
2001-01-01
The Baykit High province consists of two principal structural units?the Baykit regional high in the west, which occupies most of the province, and the Katanga structural saddle in the east. The province is on the western margin of the Siberian craton east of theYenisey Ridge foldbelt. The province is an exploration frontier and only a few prospects have been drilled. The oldest sedimentary rocks of the province, Riphean carbonate and clastic strata of Late Proterozoic age (1,650?650 million years old) that were deposited on the passive margin, cover the Archean?Lower Proterozoic basement. Basal Vendian (uppermost Proterozoic, 650?570 million years old) clastic rocks unconformably overlie various units of the Riphean and locally lie directly on the basement. Younger Vendian and lowermost Cambrian rocks are primarily dolomites. The Vendian/Cambrian boundary is con-formable, and its exact stratigraphic position has not been identified with certainty. The Lower Cambrian section is thick, and it consists of alternating beds of dolomite and evaporites (mostly salt). Middle and Upper Cambrian strata are composed of shale and dolomite. Ordovician-Silurian and upper Paleozoic rocks are thin, and they are present only in the northern areas of the province. Structural pattern of Riphean rocks differs substantially from that of Vendian-Cambrian rocks. A single total petroleum system (TPS) was identified in the Baykit High province. Discovered oil of the system is chiefly concentrated in Riphean carbonate reservoirs of the Yurubchen-Tokhom zone that is currently being explored and that has the Abstract 1 potential to become a giant field (or group of fields). The TPS also contains about 5 trillion cubic feet of discovered recover-able gas in clastic reservoir rocks at the base of the Vendian section. Petroleum source rocks are absent in the stratigraphic succession over most of the TPS area. Riphean organic-rich shales and carbonates that crop out in the Yenisey Ridge foldbelt west of the Baykit high are probable source rocks. Their areal distribution extends from the foldbelt into the foredeep along the province?s western margin. Potential source rocks also are present in platform depressions in eastern areas of the province. Hydrocarbon generation and migration west of the province started as early as Riphean time, before the beginning of the deformation in the Yenisey Ridge foldbelt that occurred about 820?850 million years ago. However, the presently known oil and gas accumulations were formed after deposition of the Lower Cambrian salt seal. Available data allow identification of only one assessment unit, and it covers the entire TPS area. Undiscovered oil and gas resources are moderate, primarily due to the poor quality of reservoir rocks. However, the reserve growth in the Yurubchen-Tokhom zone may be large and may exceed the volume of undiscovered resources in the rest of the province. Most oil and gas resourcesareexpectedtobeinstructuralandstratigraphictrapsin Riphean carbonate reservoirs. Vendian clastic reservoirs are probably gas-prone.
Breeding biology and the evolution of dynamic sexual dichromatism in frogs.
Bell, R C; Webster, G N; Whiting, M J
2017-12-01
Dynamic sexual dichromatism is a temporary colour change between the sexes and has evolved independently in a wide range of anurans, many of which are explosive breeders wherein males physically compete for access to females. Behavioural studies in a few species indicate that dynamic dichromatism functions as a visual signal in large breeding aggregations; however, the prevalence of this trait and the social and environmental factors underlying its expression are poorly understood. We compiled a database of 178 anurans with dynamic dichromatism that include representatives from 15 families and subfamilies. Dynamic dichromatism is common in two of the three subfamilies of hylid treefrogs. Phylogenetic comparative analyses of 355 hylid species (of which 95 display dynamic dichromatism) reveal high transition rates between dynamic dichromatism, ontogenetic (permanent) dichromatism and monochromatism reflecting the high evolutionary lability of this trait. Correlated evolution in hylids between dynamic dichromatism and forming large breeding aggregations indicates that the evolution of large breeding aggregations precedes the evolution of dynamic dichromatism. Multivariate phylogenetic logistic regression recovers the interaction between biogeographic distribution and forming breeding aggregations as a significant predictor of dynamic dichromatism in hylids. Accounting for macroecological differences between temperate and tropical regions, such as seasonality and the availability of breeding sites, may improve our understanding of ecological contexts in which dynamic dichromatism is likely to arise in tropical lineages and why it is retained in some temperate species and lost in others. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
The evolution of diversity in ancient ecosystems: a review
Morris, S. Conway
1998-01-01
On a perfect planet, such as might be acceptable to a physicist, one might predict that from its origin the diversity of life would grow exponentially until the carrying capacity, however defined, was reached. The fossil record of the Earth, however, tells a very different story. One of the most striking aspects of this record is the apparent evolutionary longueur, marked by the Precambrian record of prokaryotes and primitive eukaryotes, although our estimates of microbial diversity may be seriously incomplete. Subsequently there were various dramatic increases in diversity, including the Cambrian 'explosion' and the radiation of Palaeozoic-style faunas in the Ordovician. The causes of these events are far from resolved. It has also long been appreciated that the history of diversity has been punctuated by important extinctions. The subtleties and nuances of extinction as well as the survival of particular clades have to date, however, received rather too little attention, and there is still a tendency towards blanket assertions rather than a dissection of these extraordinary events. In addition, some but perhaps not all mass extinctions are characterized by long lag-times of recovery, which may reflect the slowing waning of extrinsic forcing factors or alternatively the incoherence associated with biological reassembly of stable ecosystems. The intervening periods between the identified mass extinctions may be less stable and benign than popularly thought, and in particular the frequency of extraterrestrial impacts leads to predictions of recurrent disturbance on timescales significantly shorter than the intervals separating the largest extinction events. Even at times of quietude it is far from clear whether biological communities enjoy stability and interlocked stasis or are dynamically reconstituted at regular intervals. Finally, can we yet rely on the present depictions of the rise and falls in the levels of ancient diversity? Existing data is almost entirely based on Linnean taxa, and the application of phylogenetic systematics to this problem is still in its infancy. Not only that, but even more intriguingly the pronounced divergence in estimates of origination times of groups as diverse as angiosperms, diatoms and mammals in terms of the fossil record as against molecular data point to the possibilities of protracted intervals of geological time with a cryptic diversity. If this is correct, and there are alternative explanations, then some of the mystery of adaptive radiations may be dispelled, in as much as the assembly of key features in the stem groups could be placed in a gradualistic framework of local adaptive response punctuated by intervals of opportunity.
NASA Astrophysics Data System (ADS)
El Hadi, Hassan; Tahiri, Abdelfatah; Simancas Cabrera, Fernando; González Lodeiro, Francisco; Azor Pérez, Antonio; Jesús Martínez Poyatos, David
2006-03-01
The Middle Cambrian calc-alkaline Oued Rhebar volcanic complex (western Meseta, Morocco) compares with rocks originated in orogenic contexts. The La/Nb ratios are relatively high (5.2), suggesting a lithospheric mantle origin. The La/Ta ratios, higher than 26, and the negative Nb anomaly indicate a lithospheric source contaminated by the continental crust. These rocks were generated in the Mesetian Mid-Cambrian rift and would have inherited their orogenic signature from the partial melting of a previously metasomatized mantle. To cite this article: H. El Hadi et al., C. R. Geoscience 338 (2006).
Mineral resource potential map of the Gee Creek Wilderness, Polk and Monroe counties, Tennessee
Epstein, Jack B.; Gazdik, Gertrude C.; Behum, Paul T.
1983-01-01
The major rock types in the wilderness area consist of sandstone, shale, and conglomerate of the Chilhowee Group of Cambrian and Cambrian(?) age. Faulting appears to have controlled the location of minor subeconomic iron deposits, but no potential mineral resources were detected by the present survey. Shales, useful for brick or lightweight aggregate, and sandstone, useful for crushed stone or sand, have little economic interest because these rock types are common throughout the region and are found closer to potential markets. The possibility of natural gas occurring in untested rocks structurally beneath the Chilhowee strata cannot be discounted. No potential was found for any other mineral resource.
Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Moore, Jason; McClelland, Matthew; Tarver, Craig; Hsu, Peter; Springer, H. Keo
2017-06-01
We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNL's multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC.
A novel metaheuristic for continuous optimization problems: Virus optimization algorithm
NASA Astrophysics Data System (ADS)
Liang, Yun-Chia; Rodolfo Cuevas Juarez, Josue
2016-01-01
A novel metaheuristic for continuous optimization problems, named the virus optimization algorithm (VOA), is introduced and investigated. VOA is an iteratively population-based method that imitates the behaviour of viruses attacking a living cell. The number of viruses grows at each replication and is controlled by an immune system (a so-called 'antivirus') to prevent the explosive growth of the virus population. The viruses are divided into two classes (strong and common) to balance the exploitation and exploration effects. The performance of the VOA is validated through a set of eight benchmark functions, which are also subject to rotation and shifting effects to test its robustness. Extensive comparisons were conducted with over 40 well-known metaheuristic algorithms and their variations, such as artificial bee colony, artificial immune system, differential evolution, evolutionary programming, evolutionary strategy, genetic algorithm, harmony search, invasive weed optimization, memetic algorithm, particle swarm optimization and simulated annealing. The results showed that the VOA is a viable solution for continuous optimization.
NASA Astrophysics Data System (ADS)
Sobeck, Jennifer; Den Hartog, B.; Lawler, J.; Sneden, C.
2010-01-01
Several prior investigations have repeatedly found that Manganese is under-abundant with respect to solar in metal-deficient stars. However a recent study, which employed a non-LTE approach/methodology, found that the [Mn/Fe] abundance ratio remains solar in the range -2.5 < [Fe/H] < 0 (results which stand in direct contrast to previous data). We will re-determine the [Mn/Fe] ratio over a large range of metallicity in a statistically significant sample consisting of stars from three evolutionary classes (dwarf, turnoff, and giant). We will employ new laboratory work (reported also at this meeting) to analyze the transitions of *both* the neutral (Mn I) and the first-ionized species (Mn II) in stellar spectra. We intend to determine the ionization equilibrium within each star and identify departures from LTE in each stellar group. We will explore the Mn abundance trend with metallicity and provide insight into its astrophysical origin (with special emphasis on the explosive nucleosynthetic contribution).
Biological Databases for Human Research
Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang
2015-01-01
The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation. PMID:25712261
NASA Astrophysics Data System (ADS)
Lipunov, V. M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Shumkov, V.; Vladimirov, V.; Gress, O.; Budnev, N. M.; Ivanov, K.; Tlatov, A.; Gabovich, A.; Yurkov, V.; Sergienko, Yu.; Zalozhnykh, I.
2017-09-01
We report the discovery and multicolour (VRIW) photometry of the rare explosive star MASTER OT J004207.99+405501.1 - a luminous red nova - in the Andromeda galaxy M31N2015-01a. We use our original light curve acquired with identical MASTER Global Robotic Net telescopes in one photometric system: VRI during the first 30 d and W (unfiltered) during 70 d. Also, we added published multicolour photometry data to estimate the mass and energy of the ejected shell and we discuss the likely formation scenarios of outbursts of this type. We propose an interpretation of the explosion that is consistent with an evolutionary scenario where the merging of stellar components or the disruption of the common envelope of a close binary can explain some luminous red novae. Radiative hydrodynamic simulations of a luminous red nova were carried out in extended parameter space to fit its light curves. We find that the multicolour passband light curves of the luminous red nova are consistent with an initial common envelope radius of 10 R⊙, a merger mass of 3 M⊙ and an explosion energy of 3 × 1048 erg. As a result, the phenomenon of novae consists of two classes: classical nuclear novae and more rare events (red novae) connected with the loss of compact common envelopes.
Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia
NASA Astrophysics Data System (ADS)
Duhig, Nathan C.; Davidson, Garry J.; Stolz, Joe
1992-06-01
The Cambrian-Ordovician Mount Windsor volcanic belt in northern Australia is host to stratiform lenses of massive ferruginous chert that are spatially associated with volcanogenic massive sulfide occurrences, in particular the Thalanga zinc-lead-copper-silver deposit. The rocks are composed principally of Fe2O3 and SiO2, with very low concentrations of alkalic elements, and lithogenous elements such as Al, Zr, and Ti; they are interpreted as nearly pure chemical sediments. Textural evidence is documented of the integral role of filamentous bacteria (and/or fungi) in depositing iron from hydrothermal fluids, and of the inorganic precipitation of silica-iron-oxyhydroxide gels that subsequently matured to subcrystalline and crystalline silica forms. At least three distinct iron-accumulating microbial forms are distinguished: networks of septate filaments, nonseptate filament networks, and extremely coarse branching filaments that do not reconnect. Values for δ34S in disseminated pyrite are up to 50‰ lighter than those of contemporaneous Cambrian seawater, suggesting postdepositional colonization of some ironstones by sulfur-reducing bacteria. The site not only preserves the textural interplay of biological and inorganic depositional processes in exhalites, but also extends the oldest known instance of microbial mediation in vent-proximal hydrothermal iron precipitation to at least 500 Ma.
NASA Astrophysics Data System (ADS)
Randall, Darren E.; Mac Niocaill, Conall
2004-04-01
The Ellsworth-Whitmore Mountains (EWM) are one of five terranes that form West Antarctica. Constraining the positions of these terranes in pre-break up Gondwana is crucial to understanding the history of the palaeo-Pacific Gondwana margin. We report the results of a detailed palaeomagnetic investigation of the EWM, which comprises some 150 sites in six formations, ranging in age from Cambrian to Permian. Five of the studied units yield only viscous remnant magnetizations of recent age, or unstable natural remanent magnetizations. The remaining unit, the mid-late Cambrian Frazier Ridge Formation, yielded stable magnetizations at 16 of 35 sites. This component passes a fold test at the 95 per cent confidence level, indicating that it pre-dates Permian deformation, and we argue that it is of primary origin. The resulting palaeopole (9°N 293°E A95= 5.1°) is in good agreement with two previously published palaeopoles from similarly aged rocks in the EWM. Collectively these data indicate that the EWM were located in the Natal Embayment prior to Gondwana break-up, and underwent 90° of anticlockwise rotation during break-up. All three studies, however, yield inclinations that are slightly too shallow when compared with coeval Gondwana reference poles.
Manganese deposits in the Drum Mountains, Juab and Millard Counties, Utah
Crittenden, Max D.; Straczek, John A.; Roberts, Ralph Jackson
1961-01-01
The Drum Mountains are in west-central Utah 30 miles northwest of Delta, between the Sevier Desert on the east and Whirlwind Valley on the west. It is a typically barren desert range comprising a westward-tilted structural unit in which is exposed as much as 9,000 feet of quartzite (Cambrian and Precambrian?) and 3,000 feet of carbonate rocks of Cambrian age. These beds, which strike northward and dip west, are cut by myriad east- to northeast-trending faults with displacements of a few feet to a few thousand feet. Quartz monzonite dikes, pebble dikes, and vein deposits are present locally along the faults. The Cambrian rocks are overlain unconformably by volcanic rocks of probable Tertiary age. Bodies of manganese carbonate ore were formed by replacement of two 20-foot beds of impure dolomite at the base of the sequence of carbonate rocks, along their intersection with certain preore faults. The feeding fissures locally contain veins in which rhodochrosite is associated with base metal sulfides. Downward- moving meteoric water has oxidized the ore bodies to a depth of 100 to 200 feet except where they are sealed off by structural or stratigraphic traps.From 1925 to 1953, 72,462 long tons of manganese ore with an average grade of about 25 percent Mn were shipped.
Egenhoff, Sven; Fishman, Neil; Ahlberg, Per; Maletz, Jorg; Jackson, Allison; Kolte, Ketki; Lowers, Heather; Mackie, James; Newby, Warren; Petrowsky, Matthew
2015-01-01
The Cambrian Alum Shale Formation in the Andrarum-3 core from Scania, southern Sweden, consists of black siliciclastic mudstone with minor carbonate intercalations. Four facies comprise three siliciclastic mudstones and one fine-grained carbonate. The facies reflect deposition along a transect from deep ramp to basin on a Cambrian shelf. The three mudstone facies contain abundant clay clasts and laterally variable siltstone laminae. Bed-load transport processes seem to have dominated deposition on this deep shelf. These sedimentary rocks record mainly event deposition, and only relatively few, thin laminae probably resulted from suspension settling. The Alum Shale Formation deep shelf did not show a bioturbation gradient, but fecal strings are common and Planolites burrows are rare in all mudstone facies. Evidence for biotic colonization indicates that this mudstone environment was not persistently anoxic, but rather was most likely intermittently dysoxic. The Alum Shale Formation in the Andrarum-3 core shows an overall decrease of grain size, preserved energy indicators, and carbonate content upsection interpreted to reflect a deepening upward. The succession can also be divided into four small-scale fining-upward cycles that represent deepening, and four overlying coarsening-upward cycles that represent upward shallowing.
Uranophane at Silver Cliff mine, Lusk, Wyoming
Wilmarth, Verl R.; Johnson, D.H.
1954-01-01
The uranium deposit at the Silver Cliff mine near Lusk, Wyo., consists primarily of uranophane which occurs as fracture fillings and small replacement pockets in faulted and fractured calcareous sandstone of Cambrian (?) age. The country rock in the vicinity of the mine is schist of pre-Cambrian age intruded by pegmatite dikes and is unconformably overlain by almost horizontal sandstone of Cambrian(?) age. The mine is on the southern end of the Lusk Dome, a local structure probably related to the Hartville uplift. In the immediate vicinity of the mine, the dome is cut by the Silver Cliff fault, a north-trending high-angle reverse fault about 1,200 feet in length with a stratigraphic throw of 70 feet. Uranophane, metatorbernite, pitchblende, calcite, native silver, native copper, chalcocite, azurite, malachite, chrysocolla, and cuprite have been deposited in fractured sandstone. The fault was probably mineralized throughout its length, but because of erosion, the mineralized zone is discontinuous. The principal ore body is about 800 feet long. The width and depth of the mineralized zone are not accurately known but are at least 20 feet and 60 feet respectively. The uranium content of material sampled in the mine ranges from 0.001 to 0.23 percent uranium, whereas dump samples range from 0.076 to 3.39 percent uranium.
NASA Astrophysics Data System (ADS)
Valladares, M. I.; Barba, P.; Ugidos, J. M.; Colmenero, J. R.; Armenteros, I.
The Upper Neoproterozoic-Lower Cambrian sedimentary succession in the central areas of the Central Iberian Zone has been subdivided into 12 mostly siliciclastic lithostratigraphic units, ranging in thickness between 1800 and 3900m. The lithology and facies of each unit are described and the facies associations are interpreted. The facies resulted mainly from turbidity currents and debris flows and, to a lesser extent, from submarine slides and traction flows. The facies associations suggest that sedimentation took place in slope and base-of-slope environments. Two depositional sequences are recognized, separated by a type-1 unconformity. The lower sequence is of Late Neoproterozoic age (units I-IV) and exhibits lowstand, transgressive, and highstand systems tracts. Most of the upper sequence is probably of Early Cambrian age (units V-XII). It begins at the base of unit V and possibly ends with the Tamames Limestone Formation. The upper sequence records a lowstand systems tract and minor-order sea-level oscillations. In the Cambrian units there are higher amounts of feldspar and smaller quantities of intrabasinal clasts than in the Neoproterozoic units. The modal data plot close to the Q-L and Qm-Lt sides of Q-F-L and Qm-F-Lt triangular diagrams, suggesting a provenance from a recycled orogen evolving into a provenance from a craton interior towards the top of the succession. The chemical results, based mainly on Al2O3, TiO2, Zr, and Nb abundances in shales from all the units, strongly suggest a gradual compositional change within this sedimentary succession. Together with the petrological data, the chemical results do not reveal any obvious coeval volcanic contribution to the sediments. On the basis of the chemical data, a comparison is made with other European zones containing detrital sediments composed of reworked crustal components.
NASA Astrophysics Data System (ADS)
Xiaopeng, D.
2016-12-01
The tectonic relationship between the Alxa Block and the North China Craton has long been controversial. The Helanshan area lies at the western margin of the Ordos Block and east of the Alxa Block (Fig.a), and it contains rocks of the lower Zhengmuguan and upper Tuerkeng formations that belong to the Ediacaran system. The Zhengmuguan Formation is made up of abyssal facies rocks including dolomite and glacial conglomerate with dropstones, and the Tuerkeng Formation consists of silty slate of the neritic facies. A discontinuity marks the boundary between the Tuerkeng Formation and the Early Cambrian Suyukou Formation, which is composed mainly of pebbly sandstone towards the base and sandstone towards the top, representing a change in sedimentary facies from terrestrial to littoral.The Neoproterozoic U-Pb ages of zircons from the Ediacaran and Early Cambrian sediments peak at 818 ± 4 Ma (n = 88) and 905 ± 8 Ma (n = 20), consistent with the Neoproterozoic age peaks found in the Precambrian basement of the Alxa Block(Fig.b). There are few Neoproterozoic zircons in the Neoproterozoic strata of the Langshan area, and there are no reports of Neoproterozoic zircons in the Zhuozishan area, northwest of Helanshan, or in the western margin of the neighboring Ordos Basin. A number of Neoproterozoic zircons are found in the Middle Cambrian to Middle Ordovician strata of the Niushoushan area. And while Niushoushan is part of the Hexi Corridor, it did not amalgamate with the NCC before the Early-Middle Cambrian. Therefore, the Neoproterozoic and Early Cambrian sediments in Helanshan record information about Neoproterozoic magmatic events in the Alxa Block, and indicate an Alxa Block provenance(Fig.c).The Hf isotopic characteristics of the Neoproterozoic zircons from the Ediacaran Zhengmuguan Formation in the Helanshan area (eHf(t) = -7.812 to 3.274, TDMC = 2211-1578 Ma, n = 10) are similar to those Neoproterozoic igneous zircons from the Langshan area (eHf(t) = -1.105 to 5.928, TDMC = 1.75-1.38 Ga, n = 23) and Bayinnuoergong area in the Alxa Block(Fig.d). The parental magmas had a long residency time in the crust. It seems, therefore, that in the late Neoproterozoic the provenance of rocks in the Helanshan area was the Alxa Block, and that the Alxa Block was already part of the North China Craton by the late Neoproterozoic.
NASA Astrophysics Data System (ADS)
Cooper, David J. W.; Ali, Mohammed Y.; Searle, Michael P.
2018-04-01
The Oman Mountains comprise a series of thrust sheets of Neo-Tethyan oceanic rocks that were emplaced onto the Arabian continental margin during obduction of the Semail Ophiolite during the Late Cretaceous. Three separate groups of anomalous gypsiferous bodies intrude the allochthonous units along faults over a distance of about 150 km in the Hawasina Window, Jabal Qumayrah and Jabal Sumeini. The bodies at Jabal Sumeini form a band about 4 km long and up to 100 m wide along a late-stage thrust that restacks the allochthon over a post-emplacement Maastrichtian-Palaeogene sedimentary succession. The gypsum shows evidence of flow-folding and contains numerous clasts and rafts of a range of quartzose sandstones, but with only a minor component from carbonates from the Neo-Tethyan Sumeini Group in the hanging-wall. Palaeogene limestones from the footwall succession are essentially absent. Strontium isotope ratios are high and intersect with the open ocean-water reference curve for the Late Cambrian-Ordovician and Late Miocene-Pliocene. They are also noticeably higher than the ratios from the two other gypsiferous outcrop areas in the Oman Mountains and from outcrops of Ediacaran-Early Cambrian salt domes in central Oman. However, the regional stratigraphy points towards a source of the gypsum from either an Ediacaran-Early Cambrian Ara Group salt basin or from the Lower Fars Formation (Early-Middle Miocene), and derivation of the sandstone clasts and rafts from thick Lower Palaeozoic clastic sequences. The discrepancy with the ages inferred from the strontium isotope data can be attributed to deposition of the gypsum in restricted conditions not in equilibrium with the prevailing ocean water. Two models are presented, for an Ediacaran-Early Cambrian and an Early-Middle Miocene source. While the latter cannot be wholly discounted, the stratigraphic and structural context point more strongly towards an Ediacaran-Early Cambrian Ara Group source of the gypsum. This was extruded along deep-rooted Late Cretaceous thrust faults that were reactivated during a period of Cenozoic compression, incorporating Lower Palaeozoic sandstone clasts from adjacent strata during extrusion, or during an earlier phase of possible halokinesis. This is consistent with existing models for the emplacement of the other two identified groups of gypsiferous bodies in the Oman Mountains and provides further evidence for the presence of smaller evaporite basins between the major Hormuz and central/ southern Oman salt basins.
Nagy, László G; Házi, Judit; Szappanos, Balázs; Kocsubé, Sándor; Bálint, Balázs; Rákhely, Gábor; Vágvölgyi, Csaba; Papp, Tamás
2012-07-01
Bursts of diversification are known to have contributed significantly to the extant morphological and species diversity, but evidence for many of the theoretical predictions about adaptive radiations have remained contentious. Despite their tremendous diversity, patterns of evolutionary diversification and the contribution of explosive episodes in fungi are largely unknown. Here, using the genus Coprinellus (Psathyrellaceae, Agaricales) as a model, we report the first explosive fungal radiation and infer that the onset of the radiation correlates with a change from a multilayered to a much simpler defense structure on the fruiting bodies. We hypothesize that this change constitutes a key innovation, probably relaxing constraints on diversification imposed by nutritional investment into the development of protective tissues of fruiting bodies. Fossil calibration suggests that Coprinellus mushrooms radiated during the Miocene coinciding with global radiation of large grazing mammals following expansion of dry open grasslands. In addition to diversification rate-based methods, we test the hard polytomy hypothesis, by analyzing the resolvability of internal nodes of the backbone of the putative radiation using Reversible-Jump MCMC. We discuss potential applications and pitfalls of this approach as well as how biologically meaningful polytomies can be distinguished from alignment shortcomings. Our data provide insights into the nature of adaptive radiations in general by revealing a deceleration of morphological diversification through time. The dynamics of morphological diversification was approximated by obtaining the temporal distribution of state changes in discrete traits along the trees and comparing it with the tempo of lineage accumulation. We found that the number of state changes correlate with the number of lineages, even in parts of the tree with short internal branches, and peaks around the onset of the explosive radiation followed by a slowdown, most likely because of the decrease in available niches.
The initial masses of the red supergiant progenitors to Type II supernovae
NASA Astrophysics Data System (ADS)
Davies, Ben; Beasor, Emma R.
2018-02-01
There are a growing number of nearby supernovae (SNe) for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitor's brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L SNe have red supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to ≲ 17 M⊙. This is in contrast with the cut-off of 25-30 M⊙ predicted by evolutionary models, a result that is termed the `red supergiant problem'. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, which of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a star's luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cut-off of Mhi = 19.0^{+2.5}_{-1.3} M⊙, with a 95 per cent upper confidence limit of <27 M⊙. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cut-off to Mhi = 25 M⊙ (<33 M⊙, 95 per cent confidence). We therefore conclude that there is currently no strong evidence for `missing' high-mass progenitors to core-collapse SNe.
NASA Astrophysics Data System (ADS)
Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas
2013-03-01
We present a detailed theoretical analysis of the gravitational wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: a quasi-periodic modulation by prompt post-shock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic effects in combination with detailed neutrino transport are shown to be essential for quantitative predictions of the GW frequency evolution and energy spectrum, because they determine the structure of the PNS surface layer and its characteristic g-mode frequency. Burst-like high-frequency activity phases, correlated with sudden luminosity increase and spectral hardening of electron (anti-)neutrino emission for some 10 ms, are discovered as new features after the onset of the explosion. They correspond to intermittent episodes of anisotropic accretion by the PNS in the case of fallback SNe. We find stronger signals for more massive progenitors with large accretion rates. The typical frequencies are higher for massive PNSs, though the time-integrated spectrum also strongly depends on the model dynamics.
Bedrock Geology and Asbestos Deposits of the Upper Missisquoi Valley and Vicinity, Vermont
Cady, Wallace Martin; Albee, Arden Leroy; Chidester, A.H.
1963-01-01
The upper Missisquoi Valley and vicinity as described in this report covers an area of about 250 square miles at the headwaters of the Missisquoi River in north-central Vermont. About 90 percent of the area is forested and the remainder is chiefly farm land. The topography reflects the geologic structure and varied resistance of the bedrock to erosion. Most of the area is on the east limb of the Green Mountain anticlinorium, which is the principal structural feature of Vermont. The bedrock is predominantly sedimentary and volcanic rock that has been regionally metamorphosed. It was intruded before metamorphism by mafic and ultramafic igneous rocks, and after metamorphism by felsic and mafic igneous rocks. The metamorphosed sedimentary and volcanic rocks range in age from Cambrian(?) to Middle Silurian, the intrusive igneous rocks from probably Late Ordovician to probably late Permian. Metamorphism and principal folding in the region occurred in Middle Devonian time. The metamorphosed sedimentary and volcanic rocks make up a section at least 25,000 feet thick and can be divided into nine formations. The Hazens Notch formation of Cambrian(?) and Early Cambrian age is characterized by carbonaceous schist. It is succeeded in western parts of the area by the Jay Peak formation of Early Cambrian age, which is chiefly a schist that is distinguished by the general absence of carbonaceous zones; in central parts of the area the Hazens Notch formation is followed by the Belvidere Mountain amphibolite, probably the youngest of the formations of Early Cambrian age. The Ottauquechee formation, composed of carbonaceous phyllite and quartzite, and phyllitic graywacke, is of Middle Cambrian age. The Stowe formation of Late Cambrian(?) and Early(?) Ordovician age overlies the Ottauquechee and is predominantly noncarbonaceous schist, though it also contains greenstone and carbonaceous schist and phyllite. The Umbrella Hill formation of Middle Ordovician age is characteristically a conglomerate in which the mineral chloritoid is common. The overlying Moretown formation, also of Middle Ordovician age, contains granulite and slate, also greenstone and amphibolite of the Coburn Hill volcanic member. The Shaw Mountain formation, made up of conglomerate, phyllite, and limestone, is the oldest Silurian unit. The Shaw Mountain formation is succeeded by the Northfield slate of Middle Silurian age. The igneous rocks of the region include various ultramafic plutonic rocks, such as dunite, peridotite, and serpentinite, probably of Late Ordovician age; sills and nearly concordant dikes of metagabbro of Late Ordovician age; biotite granite plutons or Middle or Late Devonian age, most notably on Eltey Mountain; and hypabyssallamprophyre, probably of late Permian age. Metamorphic zoning is shown by the distribution of rocks of the epidote-amphibolite facies and the greenschist facies in and near the Green Mountains, and near Coburn Hill and Eltey Mountain. Metasomatism related to regional metamorphism has produced porphyroblasts and quartz segregations in the sedimentary and volcanic rocks, and steatitization and carbonatization of serpentinite. Contact metamorphism has formed rocks of the epidote-amphibolite facies near granite plutons, and probably calc-silicate rock at the contacts of ultramafic plutons. The axial anticline of the Green Mountain anticlinorium and other anticlines and synclines to the east are the major longitudinal structural features of the area. These structures are complicated by transverse folds, particularly a syncline in the vicinity of Tillotson Peak. Early minor cross folds that are best developed in the Hazens Notch formation are believed to be genetically related to the transverse folds. The axial planes of the cross folds are folded about the axes of the later longitudinal folds of the Green Mountain anticlinorium. The longitudinal and transverse fold systems probably formed in the same episode of defor
The geology of the northern tip of the Arabian-Nubian Shield
NASA Astrophysics Data System (ADS)
Beyth, M.; Eyal, Y.; Garfunkel, Z.
2014-11-01
Recently, a detailed (1:50,000) geological map of the Elat area, southern Israel was published. Attached to this map is a stratigraphic table of the Neoproterozoic metamorphic-magmatic complex of the study area. The Neoproterozoic basement in the Elat area encapsulates the Arabian Nubian Shield (ANS) geologic evolution. Uranium-Lead and Lead-Lead zircon ages, included in previous studies and referred to in this paper, reveal that these rocks were formed during more than 300 million years of Neoproterozoic time. The major process controlling the formation of the ANS as part of the East African Orogen is the closure of the Mozambique Ocean. The first orogenic phase in the Elat area, represented by the metamorphic rocks, includes the development of an island arc, erosion of the islands and deposition, and metamorphism. This event took place between ∼950 Ma and 780-790 Ma. Elat Schist, the oldest metamorphic rock in the area, was deformed and then intruded by quartz dioritic and granitic plutons that were later deformed and metamorphosed. The amphibolite metamorphic rock facies indicate metamorphic conditions of up to 650 °C and between 4 and 5 kbar. The peak of the metamorphic event was most probably before 750 Ma. A gradual change from compressional to extensional stress regime is evidenced by emplacement andesitic magnesium-rich dykes dated to 705 Ma that were later metamorphosed to schistose dykes at a greenschist metamorphic facies. The second orogenic phase (terrane amalgamation, main shaping of crust) was associated with the emplacement of large volumes (>50% of area) of calc-alkaline intrusions in a post-collision setting. These very last stages of metamorphism and deformation are characterized by intrusion of ∼630 Ma granitoids exhibiting some foliation. Pluton emplacement continued also after the end of deformation. Exhumation and transition to an extensional regime is recorded by the intrusion of shallow alkaline granites in ∼608 Ma which were accompanied in ∼609 Ma by rhyolite, andesite and composite dykes. The last magmatic event in the Elat area is represented by the volcano-conglomeratic series comprising rhyolites, basalts, andesites, hypabyssal intrusions of monzonite and syenite and conglomerates. The conglomerates, dated to about 590 Ma, are the products of a major erosion phase in which about 12,000 m of the section were removed. These conglomerates were intruded by 585 Ma rhyolite, andesite and composite dykes. The Neoproterozoic basement is truncated by a peneplain whose age, post 532 Ma, is constrained by the age of the youngest eroded dolerite dykes. This Early Cambrian peneplain was associated with erosion of 2000 m of the section and by chemical weathering. Three major breaks in Neoproterozoic magmatic activity are recognized: the first, occurred in Cryogenian time, lasted ∼60 million years after the amphibolite facies metamorphism and before emplacement of the calc alkaline plutons, separating the first and the second orogenic phases; the second break between the orogenic and the extensional phases occurred in early Ediacaran time, encompassed ∼20 million years between the emplacement of the calc-alkaline and alkaline plutonic rocks and rhyolite, andesite and the composite dykes; and the third, ∼50 Ma break, occurred between the emplacement of the last felsic intrusions at ∼585 Ma and intrusion of the dolerite dykes in 532 Ma, before the Early Cambrian peneplain developed. The great lateral extension of the Cambrian to Eocene sedimentary rocks and their slow facies and thickness changes suggest a stable flat platform area at the northern tip of the ANS. Early Cambrian sedimentation began with fluviatile subarkoses of the Amudei Shlomo Formation. It was overlain by an Early to Middle Cambrian transgressive-regressive lagoonal cycle of dolostones, sandstones, and siltstones of the Timna Formation. Then Middle Cambrian subarkoses and siltstones of the Shehoret Formation and the quartz arenite of the Netafim Formation were deposited in a coastal, intertidal environment representing the southern transgression of a Cambrian ocean.
NASA Astrophysics Data System (ADS)
Aka, Festus Tongwa; Hasegawa, Takeshi; Nche, Linus Anye; Asaah, Asobo Nkengmatia Elvis; Mimba, Mumbfu Ernestine; Teitchou, Isidore; Ngwa, Caroline; Miyabuchi, Yasuo; Kobayashi, Tetsuo; Kankeu, Boniface; Yokoyama, Tetsuya; Tanyileke, Gregory; Ohba, Takeshi; Hell, Joseph Victor; Kusakabe, Minoru
2018-05-01
The hydrodynamic fragmentation that formed Lake Nyos in northwest Cameroon did not only make it the most unpopular lake in the world from a gas disaster perspective, it also opened a rare and formidable window through which much of the geology of Cameroon can be studied in a single locality. The Cambrian quartz monzonite cliff excavated by the maar-forming explosion and exposed in its northeastern shore is intruded by mafic dykes, two of which we dated. Even though close to one another, the dykes are different in composition. The alkaline dyke yields a slightly older (Carnian) K-Ar fedspar age of 231.1 ± 4.8 Ma, while the sub alkaline dyke yields an age of 224.8 ± 4.7 Ma (Norian). Based on radioisotopic age data available over the last 48 years (347 data) for the Cameroon Line magmatism comprising eruptives and volcano-plutonic complexes, the Nyos dykes are way older than the Cameroon Line, and even pre-date the Lower Cretaceous initiation of west Gondwana fragmentation in Equatorial Atlantic domain. They would therefore not have been directly linked to the formation of the Cameroon Line. Alternatively, they might be associated with the development of intra-continental rift systems in West Central Africa that pre-dated west Gondwana breakup to form the Atlantic Ocean.
Rising levels of atmospheric oxygen and evolution of Nrf2
Gacesa, Ranko; Dunlap, Walter C.; Barlow, David J.; Laskowski, Roman A.; Long, Paul F.
2016-01-01
In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the ‘Great Oxygenation Event’. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0–1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O2 levels then rose in the mid Paleozoic (359–252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health. PMID:27297177
Diversionary device history and revolutionary advancements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Paul W.; Grubelich, Mark Charles
Diversionary devices also known as flash bangs or stun grenades were first employed about three decades ago. These devices produce a loud bang accompanied by a brilliant flash of light and are employed to temporarily distract or disorient an adversary by overwhelming their visual and auditory senses in order to gain a tactical advantage. Early devices that where employed had numerous shortcomings. Over time, many of these deficiencies were identified and corrected. This evolutionary process led to today's modern diversionary devices. These present-day conventional diversionary devices have undergone evolutionary changes but operate in the same manner as their predecessors. Inmore » order to produce the loud bang and brilliant flash of light, a flash powder mixture, usually a combination of potassium perchlorate and aluminum powder is ignited to produce an explosion. In essence these diversionary devices are small pyrotechnic bombs that produce a high point-source pressure in order to achieve the desired far-field effect. This high point-source pressure can make these devices a hazard to the operator, adversaries and hostages even though they are intended for 'less than lethal' roles. A revolutionary diversionary device has been developed that eliminates this high point-source pressure problem and eliminates the need for the hazardous pyrotechnic flash powder composition. This new diversionary device employs a fuel charge that is expelled and ignited in the atmosphere. This process is similar to a fuel air or thermobaric explosion, except that it is a deflagration, not a detonation, thereby reducing the overpressure hazard. This technology reduces the hazard associated with diversionary devices to all involved with their manufacture, transport and use. An overview of the history of diversionary device development and developments at Sandia National Laboratories will be presented.« less
[Earlier steps of the soil ecosystem evolution].
Ponomarenko, A G
2013-01-01
Fossil soils are known since early Praecambrian, long before the occurrence of higher terrestrial plants on the Earth. Primeval biocoenoses on the land and in continental water bodies were floating and bottom prokaryotic mats and films which produced the majority of biomass and with regard to specific productivity were not inferior to any other photosynthetics. Before the occurrence of higher plants, erosion was very strong, resulting in flat relief, absence of permanent streams, domination of wandering rivers and surface runoff; all water bodies were muddy. When floods occurred, which was quite so often, clay particles of muddy water streams isolated bottom-mats from the light and then their considerable part perished. The result was not soil as a uniform bioinert body but rather a "puff pie" consisted of layers of unoxidized charred organic matter and clay prolayers. The burial of unoxidized organic matter contributed to enrichment of the atmosphere with oxygen. Worms and arthropods, which came out to the land and continental water bodies during Cambrian period, mixed up the organic matter with mineral components strengthening the process of soil forming considerably. Soils of the modern type appeared after higher plants expanded in Devonian and displaced bottom-mats in shallow waters. The soil fauna that existed at this time was not so different from the modern one with regard to its evolutionary level.
Ryder, Robert T.; Harris, David C.; Gerome, Paul; Hainsworth, Timothy J.; Burruss, Robert A.; Lillis, Paul G.; Jarvie, Daniel M.; Pawlewicz, Mark J.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The bitumen extract from the Rogersville Shale compares very closely with oils or condensates from Cambrian reservoirs in the Carson Associates No. 1 Kazee well, Homer gas field, Elliott County, Ky.; the Inland No. 529 White well, Boyd County, Ky.; and the Miller No. 1 well, Wolfe County, Ky. These favorable oil-source rock correlations suggest a new petroleum system in the Appalachian basin that is characterized by a Conasauga Group source rock and Rome Formation and Conasauga Group reservoirs. This petroleum system probably extends along the Rome trough from eastern Kentucky to at least central West Virginia.
NASA Astrophysics Data System (ADS)
Nomoto, Ken&'Ichi; Tolstov, Alexey; Sorokina, Elena; Blinnikov, Sergei; Bersten, Melina; Suzuki, Tomoharu
2017-11-01
The physical origin of Type-I (hydrogen-less) superluminous supernovae (SLSNe-I), whose luminosities are 10 to 500 times higher than normal core-collapse supernovae, remains still unknown. Thanks to their brightness, SLSNe-I would be useful probes of distant Universe. For the power source of the light curves of SLSNe-I, radioactive-decays, magnetars, and circumstellar interactions have been proposed, although no definitive conclusions have been reached yet. Since most of light curve studies have been based on simplified semi-analytic models, we have constructed multi-color light curve models by means of detailed radiation hydrodynamical calculations for various mass of stars including very massive ones and large amount of mass loss. We compare the rising time, peak luminosity, width, and decline rate of the model light curves with observations of SLSNe-I and obtain constraints on their progenitors and explosion mechanisms. We particularly pay attention to the recently reported double peaks of the light curves. We discuss how to discriminate three models, relevant models parameters, their evolutionary origins, and implications for the early evolution of the Universe.
NASA Astrophysics Data System (ADS)
Vecoli, Marco; Le Hérissé, Alain
2004-10-01
Acritarchs, the fossilizable, resting cysts of phytoplanktonic algal protists, are the dominant component of marine organic-walled microfossils in the Palaeozoic. The majority of acritarchs show strong similarities with dinoflagellate cysts in morphological and biogeochemical features, as well as distributional patterns in the sediments. The production of these organic-walled microfossils and their distribution and survivorship in the sediments were controlled by differences in ecological tolerances and life cycle (autecology) of the planktonic parent organisms. Calculation of evolutionary rates and development of a detailed diversity curve at specific level, form the basis for discussing the influence of global palaeoenvironmental perturbations on the evolution of organic-walled microphytoplankton in northern Gondwana during latest Cambrian through Ordovician times. The potential of acritarchs for biostratigraphic correlation at the regional scale (northern Gondwana domain) is much improved by our detailed revision of distributional patterns of 245 acritarch taxa. The most important Cambro-Ordovician acritarch bio-events are short periods of diversification, which also correspond to introduction of morphological innovations, observed in latest Cambrian and earliest Tremadoc, late Tremadoc, early Arenig, basal Llanvirn, and latest Ashgill, and an important extinction phase in the early Caradoc. Overall, acritarch diversity increased from the basal Ordovician up to the middle Llanvirn, then declined in the early and middle Caradoc. During Ashgill times, the assemblages are poorly diversified at the generic level as a result of a combined effect of sea level drawdown and onset of glacial conditions, but no major extinction event is observed in connection with the end-Ordovician biotic crisis. The peak in acritarch diversity during Middle Ordovician times appears to be correlated to maximum spread of palaeogeographical assembly. Acritarch dynamics appear largely uncorrelated to second order sea-level oscillations; the primary abiotic controls on acritarch evolution were palaeogeographical and the associated palaeoceanographic changes (especially during Middle Ordovician), and the end-Ordovician palaeoclimatic shift. The acritarch fossil record provides important information on the evolution of oceanic primary producers, however, the relationships between acritarch diversity, oceanic productivity, and evolution of invertebrate animals are proving much more complex than previously thought. In particular, the hypothesis of a causal relationship between changes in acritarch diversity and metazoan evolution in the Palaeozoic is not supported by our data.
Art as an Evolutionary Adaptation: Inspiration from the Visible Supernovae of AD 1054 and AD 3054
NASA Astrophysics Data System (ADS)
Corbally, C. J.; Rappaport, M. B.
2016-01-01
The authors, an astronomer/priest and an anthropologist/biologist, describe their use of the dramatic arts at the INSAP VIII meeting in their performance of two short skits on the sighting of a supernova in AD 1054 (creating the beautiful Crab Nebula) and a future “Rho Cas” stellar explosion in the constellation Cassiopeia, in AD 3054. They speculate on the emergence of science, religion, and art as bona fide adaptations, responding to natural selection, which served early hominins well in their struggle for existence. They draw parallels to the continued functions of science, religion, and art in modern society.
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Grotzinger, J. P.; Kaufman, A. J.; Kolosov, P.
1995-01-01
In the Olenek Uplift of northeastern Siberia, the Khorbusuonka Group and overlying Kessyusa and Erkeket formations preserve a significant record of terminal Proterozoic and basal Cambrian Earth history. A composite section more than 350 m thick is reconstructed from numerous exposures along the Khorbusuonka River. The Khorbusuonka Group comprises three principal sedimentary sequences: peritidal dolomites of the Mastakh Formation, which are bounded above and below by red beds; the Khatyspyt and most of the overlying Turkut formations, which shallow upward from relatively deep-water carbonaceous micrites to cross-bedded dolomitic grainstones and stromatolites; and a thin upper Turkut sequence bounded by karst surfaces. The overlying Kessyusa Formation is bounded above and below by erosional surfaces and contains additional parasequence boundaries internally. Ediacaran metazoans, simple trace fossils, and vendotaenids occur in the Khatyspyt Formation; small shelly fossils, more complex trace fossils, and acritarchs all appear near the base of the Kessyusa Formation and diversify upward. The carbon-isotopic composition of carbonates varies stratigraphically in a pattern comparable to that determined for other terminal Proterozoic and basal Cambrian successions. In concert, litho-, bio-, and chemostratigraphic data indicate the importance of the Khorbusuonka Group in the global correlation of terminal Proterozoic sedimentary rocks. Stratigraphic data and a recently determined radiometric date on basal Kessyusa volcanic breccias further underscore the significance of the Olenek region in investigations of the Proterozoic-cambrian boundary.
Knoll, A H; Grotzinger, J P; Kaufman, A J; Kolosov, P
1995-01-01
In the Olenek Uplift of northeastern Siberia, the Khorbusuonka Group and overlying Kessyusa and Erkeket formations preserve a significant record of terminal Proterozoic and basal Cambrian Earth history. A composite section more than 350 m thick is reconstructed from numerous exposures along the Khorbusuonka River. The Khorbusuonka Group comprises three principal sedimentary sequences: peritidal dolomites of the Mastakh Formation, which are bounded above and below by red beds; the Khatyspyt and most of the overlying Turkut formations, which shallow upward from relatively deep-water carbonaceous micrites to cross-bedded dolomitic grainstones and stromatolites; and a thin upper Turkut sequence bounded by karst surfaces. The overlying Kessyusa Formation is bounded above and below by erosional surfaces and contains additional parasequence boundaries internally. Ediacaran metazoans, simple trace fossils, and vendotaenids occur in the Khatyspyt Formation; small shelly fossils, more complex trace fossils, and acritarchs all appear near the base of the Kessyusa Formation and diversify upward. The carbon-isotopic composition of carbonates varies stratigraphically in a pattern comparable to that determined for other terminal Proterozoic and basal Cambrian successions. In concert, litho-, bio-, and chemostratigraphic data indicate the importance of the Khorbusuonka Group in the global correlation of terminal Proterozoic sedimentary rocks. Stratigraphic data and a recently determined radiometric date on basal Kessyusa volcanic breccias further underscore the significance of the Olenek region in investigations of the Proterozoic-cambrian boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjerstedt, T.W.; Erickson, J.M.
The Cambrian-Ordovician Potsdam Sandstone, Theresa Formation, and Canadian correlatives in the St. Lawrence Lowlands preserve tide-dominated facies during the basal Cambrian transgression. Low intertidal sand flats in the upper Potsdam contain a Skolithos Ichnofacies dominated by Diplocraterion parallelum in clean, herringbone cross-bedded sandstones indicative of high tidal current energy. Wind-wave-driven longshore and tidal currents along a macrotidal coastline were funneled northeast-southwest by Precambrian topographic relief of up to 65 m. This relief is now expressed as the Thousand Islands of New York and Canada. The conformably overlying Theresa Formation preserves a shoaling-upward sequence of mixed clastic-carbonate facies. Shallow subtidal andmore » peritidal facies contain a mixed Skolithos-Cruziana Ichnofacies in sharply alternating lithofacies consisting of gray, intensely bioturbated, poorly sorted calcareous sandstone, and meter-thick, white cross-bedded sandstone. The parallelism between ichnofacies and lithofacies indicates that environmental energy level and persistence rather than water depth controlled trace fossil distribution. Bioturbated sandstones contain a Cruziana ichnofacies of abundant deposit feeders including: Fustiglyphus , Gyrochorte , Neonereites uniserialis , Phycodes flabellum, Planolites beverlyensis, Rosselia socialis, and Teichichnus. Suspension feeders are represented by D. habichi, D. parallelum, Skolithos, Monocraterion, and possibly Palaeophycus tubularis. Scavenging or deposit-feeding arthropods are represented by rare Cruziana furrows. Cross-bedded sandstones contain a Skolithos Ichnofacies of shallow Skolithos and Monocraterion burrows, and an undescribed large epistratal eurypterid( ) trail.« less
Early Cambrian wave-formed shoreline deposits: the Hardeberga Formation, Bornholm, Denmark
NASA Astrophysics Data System (ADS)
Clemmensen, Lars B.; Glad, Aslaug C.; Pedersen, Gunver K.
2017-09-01
During the early Cambrian, the Danish island Bornholm was situated on the northern edge of the continent Baltica with palaeolatitudes of about 35°S. An early Cambrian (Terreneuvian) transgression inundated large areas of Baltica including Bornholm creating shallow marine and coastline environments. During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well-preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal structures (medusoids) are present in the quarry, but due to the relative poor preservation of their fine-scale structures it is difficult to determine if the discoids represent true medusae imprints or inorganic structures. The preservation of the shallow-water bedforms as well as the possible medusae imprints is related to either the formation of thin mud layers, formed during a period of calm water when winds blew offshore for a longer period, or to the growth of bacterial mats. The orientation of the wave-formed bedforms indicates a local palaeoshoreline trending NE-SW and facing a large ocean to the north.
Miller, J.F.; Ethington, Raymond L.; Evans, K.R.; Holmer, L.E.; Loch, James D.; Popov, L.E.; Repetski, J.E.; Ripperdan, R.L.; Taylor, John F.
2006-01-01
We propose a candidate for the Global Standard Stratotype-section and Point (GSSP) for the base of the highest stage of the Furongian Series of the Cambrian System. The section is at Lawson Cove in the Ibex area of Millard County, Utah, USA. The marker horizon is the first appearance datum (FAD) of the conodont Cordylodus andresi Viira et Sergeyeva in Kaljo et al. [Kaljo, D., Borovko, N., Heinsalu, H., Khazanovich, K., Mens, K., Popov, L., Sergeyeva, S., Sobolevskaya, R., Viira, V., 1986. The Cambrian-Ordovician boundary in the Baltic-Ladoga clint area (North Estonia and Leningrad Region, USSR). Eesti NSV Teaduste Akadeemia Toimetised. Geologia 35, 97-108]. At this section and elsewhere this horizon also is the FAD of the trilobite Eurekia apopsis (Winston et Nicholls, 1967). This conodont characterizes the base of the Cordylodus proavus Zone, which has been recognized in many parts of the world. This trilobite characterizes the base of the Eurekia apopsis Zone, which has been recognized in many parts of North America. The proposed boundary is 46.7 m above the base of the Lava Dam Member of the Notch Peak Formation at the Lawson Cove section. Brachiopods, sequence stratigraphy, and carbon-isotope geochemistry are other tools that characterize this horizon and allow it to be recognized in other areas. ?? 2006 Nanjing Institute of Geology and Palaeontology, CAS.
Towards unbiased benchmarking of evolutionary and hybrid algorithms for real-valued optimisation
NASA Astrophysics Data System (ADS)
MacNish, Cara
2007-12-01
Randomised population-based algorithms, such as evolutionary, genetic and swarm-based algorithms, and their hybrids with traditional search techniques, have proven successful and robust on many difficult real-valued optimisation problems. This success, along with the readily applicable nature of these techniques, has led to an explosion in the number of algorithms and variants proposed. In order for the field to advance it is necessary to carry out effective comparative evaluations of these algorithms, and thereby better identify and understand those properties that lead to better performance. This paper discusses the difficulties of providing benchmarking of evolutionary and allied algorithms that is both meaningful and logistically viable. To be meaningful the benchmarking test must give a fair comparison that is free, as far as possible, from biases that favour one style of algorithm over another. To be logistically viable it must overcome the need for pairwise comparison between all the proposed algorithms. To address the first problem, we begin by attempting to identify the biases that are inherent in commonly used benchmarking functions. We then describe a suite of test problems, generated recursively as self-similar or fractal landscapes, designed to overcome these biases. For the second, we describe a server that uses web services to allow researchers to 'plug in' their algorithms, running on their local machines, to a central benchmarking repository.
Consensus in a Precambrian garden
NASA Astrophysics Data System (ADS)
Maggs, William Ward
At the Precambrian-Cambrian boundary, the course of life on Earth underwent a dramatic change that culminated in the rise of predators and other complex animals, a group of paleontologists agreed at a conferece last week.Just prior to 590 million years ago, the ecology of life in the oceans was very simple; soft-shelled multicellular animals called Ediacara lived in apparent harmony with vast mats o f bacteria and algae that covered the seafloor, dependent on the photosynthesis or chemosynthesis of their one-celled hosts for their existence. According to the consensus reached by the scientists, this symbiotic and apparently global “Garden of Ediacara” fell early in the Cambrian Period, as the mats declined and food chains multiplied with new animals that, for the first time in Earth's history, preyed on other living things.
Wolf, R.J.; Hansen, C.V.; McGovern, H.E.; Spinazola, J.M.
1990-01-01
This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of (1) the physical frameworks and (2) the geohydrology of the principal aquifers and confining systems in Kansas. The report is the result of an investigation that has been made as part of the Central Midwest Regional Aquifer System Analysis (CMRASA), one of several major investigations by the U.S. Geological Survey to define regional aquifer systems. These regional analyses are designed to increase knowledge of major flow regimes and provide data for assessing, developing, and managing water supplies. The CMRASA is an investigation of water in Upper Cambrian through Lower Cretaceous rocks in parts of 10 Central Midwestern States, as shown by the map on the envelope cover.
NASA Astrophysics Data System (ADS)
Pound, K. S.
2013-12-01
Re-evaluation of field and lab data indicates that the Cambrian portion of the Takaka Terrane in the Cobb Valley area of NW Nelson, New Zealand preserves the remnants of an accretionary prism complex, across which the Lockett Conglomerate fan-delta was deposited as a consequence of extension. Previous work has recognized that the structurally disrupted lower Takaka Terrane rocks present an amalgam of sedimentary and igneous rocks generated prior to convergence (Junction Formation) or during convergence (Devil River Volcanics Group, Haupiri Group), including arc-related and MORB components. Portions of the sequence have in the past been loosely described as an accretionary prism. Reevaluation of the detailed mapping, sedimentological and provenance studies shows that remnants of a stratigraphic sequence (Junction Formation, Devil River Volcanics Group, Haupiri Group) can be traced through 10 fault-bounded slices, which include a mélange-dominated slice (Balloon Mélange). These slices are the remnants of the accretionary prism; the stratigraphy within each slice generally youngs to the east, and the overall pattern of aging (based on relative age from provenance studies, sparse fossils, stratigraphic relations, and limited isotopic data) indicates that the older rocks generally dominate fault slices to the east, and younger rocks dominate fault slices to the west, delineating imbricate slices within an eastward-dipping subduction zone, in which the faults record a complex history of multi-phase reactivation. The Lockett Conglomerate is a ~500-m thick fan-delta conglomerate that is the preserved within one of the fault slices, where it is stratigraphically and structurally highest unit in the lower Takaka Terrane; it is also present as blocks within the Balloon Melange. The Lockett Conglomerate is marine at its base and transitions upwards to fluvial facies. The Lockett Conglomerate has previously been interpreted to result from erosion consequent on continued convergence, but is reinterpreted here as a ';true' fan-delta deposit, sedimentologically similar to deposits associated with extension. Textural and compositional data for the Lockett Conglomerate indicates rapid supply of new material (including quartzite, granite, gabbro, and amphibolitic metavolcanics). The Lockett Conglomerate is proposed here to record the initiation of extension, during which basement faults in the hinterland exposed previously buried source rocks. This new interpretation of the Lockett Conglomerate places that initiation of extension and subsequent passive margin sedimentation (Mt. Ellis and Mt. Arthur Groups) earlier (late Middle Cambrian) than previous work has suggested (Late Cambrian or Early Ordovician). These new interpretations provide input useful for correlations and interpretations of the complex mosaic that preserves a record of tectonic activity and processes at the Antarctic, Tasmanian and SE Australian portions of the Cambrian Gondwana margin.
NASA Astrophysics Data System (ADS)
Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio
2010-05-01
Pre-Cambrian and unconformable earliest Cambrian rocks from the Sierra de la Demanda (N Spain) exhibit field and microstructural relationships that attest to orogenic events recorded by concealed basement rocks. Neoproterozoic foliated slates ("Anguiano Schists") crop out under up to 300 m thick, unfoliated quartz-rich conglomerates ("Anguiano Conglomerates") and quartzites which are stratigraphically ca. 600 m below the oldest, paleontologically dated, pre-trilobitic Cambrian layers (likely older than 520 Ma). The Anguiano Conglomerates contain mm to cm grainsized well-rounded pebbles of various types including monocrystalline quartz, detrital zircon and tourmaline-bearing sandstones, black cherts and metamorphic poly-crystalline quartz aggregates. The undeformed matrix is made of much smaller (diagenetically overgrown) monocrystaline quartz grains and minor amounts of accesory zircon, tourmaline and mica. Black chert pebbles exhibit microstructural evidence of brittle deformation (microfaults and thin veins of syntaxial fibrous quartz). These and the fine-grained sandstone pebbles can also exhibit ductile deformations (microfolds with thickened hinges and axial planar continuous foliations), too. Polycrystalline quartz pebbles exhibit a variety of microstructures that resulted from syn-metamorphic ductile deformations. These are recognisable under the petrographic microscope and include continuous foliations, quartz shape fabrics, various types of subgrain or recrystallized new grain microtextures, and lattice preferred orientations (LPOs). Conventional characterization of quartz fabrics (after oriented structural sections) is challenged in conglomerate pebble thin sections by the difficulty of unraveling in them the complete structural reference framework provided by foliation (whose trace can be unraveled) and lineation orientation (which cannot be directly identified). Quartz in various metamorphic polycrystalline pebbles was studied with the Electron Back-Scatter Diffraction (EBSD) technique. The identification of quartz c-axis point maxima or girdles and their geometrical relationships with respect to -axis arrangements and pebble foliation traces enabled us to identify the operation of basal and prism- and occasionally prism-[c] intracrystalline slip systems. This points to upper-greenschists and amphibolite facies syn-metamorphic deformations. By contrast, black chert and sandstone pebbles and matrix quartz aggregates lack any LPO. The source area of the conglomerates was likely a pre-Cambrian basement that contained penetratively deformed low- to medium-grade metamorphic rocks. Radiometric dating of this metamorphism has not been accomplished so far though it is known that inherited Precambrian sources in the Iberian Peninsula relate notably to Neoproterozoic (Pan-African and Cadomian) orogens, and to a lesser extent to Paleoproterozoic (1.8-2.1 Ga) or Neoarchean (2.4-2.8 Ga) ones. Neoproterozoic (Cadomian) metamorphism of this grade has only been recognized in SW Iberia. If the fabrics here studied were Cadomian, they might be related to the arc-related igneous suites that have been detected or inferred in other realms of the northern Iberian Massif.
Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.
Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang
2016-03-01
Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant evolution of sessile eyes equipped with optics typical of extant xiphosurans. Observations of fossil material, including that of trilobites and eurypterids, support the proposition that the ancestral compound eye was the apposition type. Cambrian arthropods include possible precursors of mandibulate eyes. The latter are the modified compound eyes, now sessile, and their underlying optic lobes exemplified by scutigeromorph chilopods, and the mobile stalked compound eyes and more elaborate optic lobes typifying Pancrustacea. Radical divergence from an ancestral apposition type is demonstrated by the evolution of chelicerate eyes, from doublet sessile-eyed stem-group taxa to special apposition eyes of xiphosurans, the compound eyes of eurypterids, and single-lens eyes of arachnids. Different eye types are discussed with respect to possible modes of life of the extinct species that possessed them, comparing these to extant counterparts and the types of visual centers the eyes might have served. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hurtgen, M. T.; Pruss, S.; Knoll, A. H.
2006-12-01
The biogeochemical cycles of carbon and sulfur are intimately linked through a variety of feedbacks that operate on timescales of days to millions of years. For example, under anaerobic conditions, some bacteria respire organic matter by sulfate reduction, reducing sulfate to sulfide, which then reacts with iron to form iron sulfide (preserved as pyrite). On much longer timescales, increases in the fraction of total carbon buried as organic carbon can drive increases in atmospheric oxygen concentrations which then facilitate an increase in the extent to which sulfides on land are oxidatively weathered and ultimately delivered to the oceans as sulfate via rivers. Interestingly, these two processes impose very different isotope relationships between the C isotope composition of marine dissolved inorganic carbon (DIC) and the S isotope composition of seawater sulfate. The former leads to a positive correlation between δ13Ccarbonate and δ34Ssulfate whereas the latter prescribes a long-term negative correlation. Of course, the recognition of either a positive or negative correlation between δ13Ccarbonate and δ34Ssulfate depends strongly on the relative sizes of the DIC and seawater sulfate reservoirs-- neither of which is well constrained for the Cambrian Period. Here, we present a high-resolution δ34S (sulfate and pyrite) and δ13Ccarbonate record from the mixed carbonate-siliciclastic Middle-Upper Cambrian Port au Port Group in western Newfoundland, Canada. The δ34Ssulfate profile displays systematic shifts of >15‰ over relatively short stratigraphic distances (10 m, likely to represent < 1 Myr). C isotope values shift sympathetically throughout much of the composite section; however, important deviations from this relationship exist. First, in the Middle Cambrian March Point Formation, a 15‰- δ34Ssulfate decrease precedes a 3‰-δ13Ccarbonate fall suggesting that the sulfur cycle recorded the perturbation to the system before the carbon cycle did. Secondly, further up in the section, the Upper Cambrian Man O' War Member exhibits a ~6‰ positive C isotope excursion (SPICE Event) with almost no change in S isotope values. In combination, these data suggest that seawater sulfate concentrations were much lower than modern values, at least in this basin, resulting in a sulfate reservoir that was more susceptible to isotopic variation. Moreover, differences in the relationship between C and S isotopes indicate that the relative sizes of the marine DIC and sulfate reservoir changed through this interval and/or that the various perturbations recorded in the lower and upper parts of this succession affected the carbon and sulfur cycles in different ways.
Modes of Brachiopod Body Size Evolution throughout the Phanerozoic Eon
NASA Astrophysics Data System (ADS)
Zhang, Z.; Payne, J.
2012-12-01
Body size correlates with numerous physiological and behavioral traits and is therefore one of the most important influences on the survival prospects of individuals and species. Patterns of body size evolution across taxa can therefore complement taxonomic diversity and geochemical proxy data in quantifying controls on long-term trends in the history of life. In contrast to widely available and synoptic taxonomic diversity data for fossil animal families and genera, however, no comprehensive size dataset exists, even for a single fossil animal phylum. For this study, we compiled a comprehensive, genus-level dataset of body sizes spanning the entire Phanerozoic for the phylum Brachiopoda. We use this dataset to examine statistical support for several possible modes of size evolution, in addition to environmental covariates: CO2, O2, and sea level. Brachiopod body size in the Phanerozoic followed two evolutionary modes: directional trend in the Early Paleozoic (Cambrian - Mississippian), and unbiased random walk from the Mississippian to the modern. We find no convincing correlation between trends in any single environmental parameter and brachiopod body size over time. The Paleozoic size increase follows Cope's Rule, and has been documented in many other marine invertebrates, while the Mesozoic size plateau has not been. This interval of size stability correlates with increased competition for resources from bivalves beginning during the Mesozoic Marine Revolution, and may be causally linked. The Late Mesozoic decline in size is an artifact of the improved sampling of smaller genera, many of which are less abundant than their Paleozoic ancestors. The Cenozoic brachiopod dataset is similarly incomplete. Biodiversity is decoupled from size dynamics even within the Paleozoic when brachiopods are on average becoming larger and more abundant, suggesting the presence of different controls. Our findings reveal that the dynamics of body size evolution changed over time in brachiopods, indicating that no single, simple model is likely to capture the true complexity of their evolutionary dynamics.
Cultural Evolutionary Tipping Points in the Storage and Transmission of Information
Bentley, R. Alexander; O’Brien, Michael J.
2012-01-01
Human culture has evolved through a series of major tipping points in information storage and communication. The first was the appearance of language, which enabled communication between brains and allowed humans to specialize in what they do and to participate in complex mating games. The second was information storage outside the brain, most obviously expressed in the “Upper Paleolithic Revolution” – the sudden proliferation of cave art, personal adornment, and ritual in Europe some 35,000–45,000 years ago. More recently, this storage has taken the form of writing, mass media, and now the Internet, which is arguably overwhelming humans’ ability to discern relevant information. The third tipping point was the appearance of technology capable of accumulating and manipulating vast amounts of information outside humans, thus removing them as bottlenecks to a seemingly self-perpetuating process of knowledge explosion. Important components of any discussion of cultural evolutionary tipping points are tempo and mode, given that the rate of change, as well as the kind of change, in information storage and transmission has not been constant over the previous million years. PMID:23267338
Cultural evolutionary tipping points in the storage and transmission of information.
Bentley, R Alexander; O'Brien, Michael J
2012-01-01
Human culture has evolved through a series of major tipping points in information storage and communication. The first was the appearance of language, which enabled communication between brains and allowed humans to specialize in what they do and to participate in complex mating games. The second was information storage outside the brain, most obviously expressed in the "Upper Paleolithic Revolution" - the sudden proliferation of cave art, personal adornment, and ritual in Europe some 35,000-45,000 years ago. More recently, this storage has taken the form of writing, mass media, and now the Internet, which is arguably overwhelming humans' ability to discern relevant information. The third tipping point was the appearance of technology capable of accumulating and manipulating vast amounts of information outside humans, thus removing them as bottlenecks to a seemingly self-perpetuating process of knowledge explosion. Important components of any discussion of cultural evolutionary tipping points are tempo and mode, given that the rate of change, as well as the kind of change, in information storage and transmission has not been constant over the previous million years.
NASA Astrophysics Data System (ADS)
Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh
2016-09-01
The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates that the 250,000 km3 of early Cambrian mafic to silicic igneous rocks in the SOA were emplaced in a rifting event. This event is suggested to result from the break-up of Pannotia and the formation of the failed arm of a three-armed radial rift system.
A Lithospheric Origin for the Elk Creek Carbonatite Complex, SE Nebraska?
NASA Astrophysics Data System (ADS)
Farmer, G. L.
2015-12-01
The Elk Creek carbonatite complex in southeastern Nebraska is part of a widespread Cambrian-Ordovician alkali igneous event that affected much of North America during and after the break-up of the Rodinian supercontinent. We conducted whole rock and mineral Nd, Sr, Pb and Hf isotopic analyses of drill cores obtained from this complex in order to assess the source regions of the parental carbonatite magma. Low precision laser ablation U-Pb age determinations from individual zircon grains separated from carbonate-rich "syenites" range from 480 +/- 20 Ma to 540+/- 14 Ma. Whole rock Nd, Sr and Pb isotopic compositions all plot on Cambrian (~550 Ma) isochrons, implying that the carbonatites crystallized from melts with homogeneous radiogenic isotopic compositions. Initial ɛNd and ɛHf are well defined at ~+2 and ~0, respectively, while initial 87Sr/86Sr values are more variable and range from 0.7028 to 0.7058. The contemporaneously emplaced State Line kimberlites in the Front Range of north central Colorado share the same Nd and Sr isotopic compositions imply that sources of these rocks were similar and geographically widespread. Overall, the isotopic compositions are those expected from "Group 1" alkaline igneous rocks, usually interpreted as derivates from the sublithospheric mantle. Cretaceous-Tertiary alkaline rocks in North America generally belong to "Group 1" and may have originated in this fashion (Genet et al., 2014, Earth Planet. Sci. Lett.). An alternative possibility is that the Cambrian-Ordovician carbonatites and kimberlites were derived from underlying, carbonated portions of the lithospheric mantle that formed after the original stabilization of the latter in the Paleoproterozoic. Nd and Hf depleted mantle model ages for the Elk Creek and State Line alkaline rocks range from ~0.8 Ga to ~1.1 Ga and allow the possibility that both sets of intrusive rocks represent melting of mantle metasomatized either during or after the assembly of Rodinia. Widespread thinning and heating of the metasomatized mantle during the subsequent breakup of Rodinia could have led to the widespread kimberlite and carbonatite magmatism observed in North America during the Cambrian.
Hydrology of area 38, Western Region, Interior Coal Province, Iowa and Missouri
Detroy, M.G.; Skelton, John
1983-01-01
In Area 38 dissolved-solids concentrations in water from the Cambrian-Ordovician aquifer range from 300 to 15,000 milligrams per liter; in southcentral Iowa and where the aquifer underlies the Missouri River alluvium, as in Boone County, Missouri, dissolved-solids concentrations are less than 1,000 milligrams per liter. In these areas the Cambrian-Ordovician aquifer is suitable for domestic and other uses. Chemical quality of water from Quaternary aquifers generally is suitable for domestic uses and other uses, dissolved-solids concentrations averaged less than 1,000 milligrams per liter. Iron, manganese and nitrate are excessive in some instances. Chemical quality of water from Mississippian and Pennsylvanian aquifers is unsuitable for domestic use and may be unsuitable for other uses. The Pennsylvanian and Misissippian aquifers have average sulfate concentrations in excess of 1,000 milligrams per liter.
Cambrian Sauk transgression in the Grand Canyon region redefined by detrital zircons
NASA Astrophysics Data System (ADS)
Karlstrom, Karl; Hagadorn, James; Gehrels, George; Matthews, William; Schmitz, Mark; Madronich, Lauren; Mulder, Jacob; Pecha, Mark; Giesler, Dominique; Crossey, Laura
2018-06-01
The Sauk transgression was one of the most dramatic global marine transgressions in Earth history. It is recorded by deposition of predominantly Cambrian non-marine to shallow marine sheet sandstones unconformably above basement rocks far into the interiors of many continents. Here we use dating of detrital zircons sampled from above and below the Great Unconformity in the Grand Canyon region to bracket the timing of the Sauk transgression at this classic location. We find that the Sixtymile Formation, long considered a Precambrian unit beneath the Great Unconformity, has maximum depositional ages that get younger up-section from 527 to 509 million years old. The unit contains angular unconformities and soft-sediment deformation that record a previously unknown period of intracratonic faulting and epeirogeny spanning four Cambrian stages. The overlying Tapeats Sandstone has youngest detrital zircon ages of 505 to 501 million years old. When linked to calibrated trilobite zone ages of greater than 500 million years old, these age constraints show that the marine transgression across a greater than 300-km-wide cratonic region took place during an interval 505 to 500 million years ago—more recently and more rapidly than previously thought. We redefine this onlap as the main Sauk transgression in the region. Mechanisms for this rapid flooding of the continent include thermal subsidence following the final breakup of Rodinia, combined with abrupt global eustatic changes driven by climate and/or mantle buoyancy modifications.
Inferring Arthropod Phylogeny: Fossils and their Interaction with Other Data Sources.
Edgecombe, Gregory D
2017-09-01
The past five years have witnessed a renewed interest in discrete morphological characters as a source of phylogenetic data, after a decade or more of their dismissal in favor of molecules-only approaches. This has stemmed in large part from refinements in total evidence dating, which requires morphological character matrices for extinct and extant taxa as well as temporal data from fossils. The unique contribution of palaeontology is stem groups, revealing the sequence of character acquisition in long-branch terminals and otherwise unknown character combinations and/or character states in extinct phenotypes. The origin of mandibles exemplifies an integrative approach to analyzing the origin of a complex phenotypic feature using molecular, anatomical, and palaeontological data: (1) transcriptomics defends a single origin of mandibles in the clade Mandibulata; (2) Cambrian fossils inform on morphological changes in the gnathal appendages in the mandibulate stem group; (3) molecular dating, calibrated by fossils in novel modes of exceptional preservation, draws the mandibulate crown group into the early Cambrian and constrains the timing of character evolution; and (4) functional studies in extant taxa identify genes that specify mandibular identity from a maxilla and, ultimately, a trunk limb-like precursor, as predicted by the serial similarity of these appendages in Cambrian stem-group fossils. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Biogenic magnetite as a primary remanence carrier in limestone deposits
NASA Astrophysics Data System (ADS)
Chang, Shih-Bin R.; Kirschvink, Joseph L.; Stolz, John F.
1987-06-01
Studies on the microbial communities and magnetic phases of samples collected from carbonate oozes at Sugarloaf Key, FL, U.S.A. and calcareous laminated sediments from Laguna Figueroa, Baja California, Mexico have revealed the existence of magnetotactic bacteria and ultrafine-grained single domain magnetite in both environments. Magnetotactic bacteria were identified by light and electron microscopy. The single domain magnetite was detected by coercivity spectra analysis with a SQUID magnetometer and examined under the transmission electron microscope. The similarity, in terms of size and shape, between the single domain magnetite found in these sediments and the magnetite observed in the bacterial magnetosome from enriched cultures indicates the ultrafine-grained magnetite in these two marine environments was biologically formed. These results, combined with the common occurrences of ultrafine-grained magnetite in limestone deposits detected rock magnetically, suggest biogenic magnetite may be present and contribute to the magnetic remanence in these rocks. Several Cambrian limestone samples, separately collected from Siberia, China, and Kazakhstan, were examined for the presence of bacterial magnetite. Samples from the Lower Cambrian Sinskian Formation at Siberia Platform were found to contain both a large amount of apparently bacterial magnetite particles and a very stable primary magnetic component. Post-Cambrian diagenesis does not seem to affect the microgranulometry of these apparently bacterial magnetite crystals or the magnetic remanence carried by them. Assessing the potential role of biogenic magnetite as a primary remanence carrier in other Phanerozoic limestone deposits ought to be further pursued.
The controversial “Cambrian” fossils of the Vindhyan are real but more than a billion years older
Bengtson, Stefan; Belivanova, Veneta; Rasmussen, Birger; Whitehouse, Martin
2009-01-01
The age of the Vindhyan sedimentary basin in central India is controversial, because geochronology indicating early Proterozoic ages clashes with reports of Cambrian fossils. We present here an integrated paleontologic–geochronologic investigation to resolve this conundrum. New sampling of Lower Vindhyan phosphoritic stromatolitic dolomites from the northern flank of the Vindhyans confirms the presence of fossils most closely resembling those found elsewhere in Cambrian deposits: annulated tubes, embryo-like globules with polygonal surface pattern, and filamentous and coccoidal microbial fabrics similar to Girvanella and Renalcis. None of the fossils, however, can be ascribed to uniquely Cambrian or Ediacaran taxa. Indeed, the embryo-like globules are not interpreted as fossils at all but as former gas bubbles trapped in mucus-rich cyanobacterial mats. Direct dating of the same fossiliferous phosphorite yielded a Pb–Pb isochron of 1,650 ± 89 (2σ) million years ago, confirming the Paleoproterozoic age of the fossils. New U–Pb geochronology of zircons from tuffaceous mudrocks in the Lower Vindhyan Porcellanite Formation on the southern flank of the Vindhyans give comparable ages. The Vindhyan phosphorites provide a window of 3-dimensionally preserved Paleoproterozoic fossils resembling filamentous and coccoidal cyanobacteria and filamentous eukaryotic algae, as well as problematic forms. Like Neoproterozoic phosphorites a billion years later, the Vindhyan deposits offer important new insights into the nature and diversity of life, and in particular, the early evolution of multicellular eukaryotes. PMID:19416859
NASA Astrophysics Data System (ADS)
Shi, Yuruo; Zhang, Wei; Kröner, Alfred; Li, Linlin; Jian, Ping
2018-03-01
We present zircon ages and geochemical data for Cambrian ophiolite complexes exposed in the Beishan area at the southern margin of the Central Asian Orogenic Belt (CAOB). The complexes consist of the Xichangjing-Xiaohuangshan and Hongliuhe-Yushishan ophiolites, which both exhibit complete ophiolite stratigraphy: chert, basalt, sheeted dikes, gabbro, mafic and ultramafic cumulates and serpentinized mantle peridotites. Zircon grains of gabbro samples yielded 206Pb/238U ages of 516 ± 8, 521 ± 4, 528 ± 3 and 535 ± 6 Ma that reflect the timing of gabbro emplacement. The geochemical data of the basaltic rocks show enrichment in large-ion lithophile elements and depletion in the high field strength elements relative to normal mid-oceanic ridge basalt (NMORB) in response to aqueous fluids or melts expelled from the subducting slab. The gabbro samples have higher whole-rock initial 87Sr/86Sr ratios and lower positive εNd(t) values than NMORB. These geochemical signatures resulted from processes or conditions that are unique to subduction zones, and the ophiolites are therefore likely to have formed within a supra-subduction zone (SSZ) environment. We suggest that the Cambrian ophiolite complexes in the Beishan area formed within a SSZ setting, reflecting an early Paleozoic subduction of components of the Paleo-Central Asian Ocean and recording an early Paleozoic southward subduction event in the southern CAOB along the northern margin of the Tarim and North China Cratons.
Barth, A.P.; Wooden, J.L.; Coleman, D.S.; Vogel, M.B.
2009-01-01
The Mojave province in southern California preserves a comparatively complete record of assembly, postorogenic sedimentation, and rifting along the southwestern North American continental margin. The oldest exposed rocks are metasedimentary gneisses and amphibolite, enclosing intrusive suites that range from tonalite and quartz mon-zodiorite to granite with minor trondhjemite. Discrete magmatic episodes occurred at approximately 1790-1730 and 1690-1640 Ma. Evidence from detrital and premagmatic zircons indicates that recycling of 1900-1790 Ma Paleopro-terozoic crust formed the unique isotopic character of the Mojave province. Peak metamorphic conditions in the Mojave province reached middle amphibolite to granulite facies; metamorphism occurred locally from 1795 to 1640 Ma, with widespread evidence for metamorphism at 1711-1689 and 1670-1650 Ma. Structures record early, tight to isoclinal folding and penetrative west-vergent shear during the final metamorphic event in the west Mojave province. Proterozoic basement rocks are overlain by siliciclastic-carbonate sequences of Mesoproterozoic, Neoproterozoic, and Cambrian age, recording environmental change over the course of the transition from stable Mojave crust to the rifted Cordilleran margin. Neoproterozoic quartzites have diverse zircon populations inconsistent with a southwest North American source, which we infer were derived from the western conjugate rift pair within Rodinia, before establishment of the miogeocline. Neoproterozoic-Cambrian miogeoclinal clastic rocks record an end to rifting and establishment of the Cordilleran miogeocline in southern California by latest Neoproterozoic to Early Cambrian time. ?? 2009 by The University of Chicago.
Gross, E.L.; Stewart, John H.; Gehreis, G.E.
2000-01-01
Eighty-five detrital zircon grains from Mesoproterozoic and/or Neoproterozoic to Middle Cambrian sedimentary strata in northwest Sonora, Mexico, have been analyzed to determine source terranes and provide limiting depositional ages of the units. The zircon suites from the Mesoproterozoic and/or Neoproterozoic El Alamo Formation and El Aguila unit yield ages between 1.06 Ga and 2.67 Ga, with predominant ages of 1.1 to 1.2 Ga. Zircons from the Lower? and Middle Cambrian Bolsa Quartzite show age groups from 525 Ma to 1.63 Ga, with a dominant population of 1.1 to 1.2 Ga grains. Grains older than 1.2 Ga in the samples were most likely derived from basement terranes and ???1.4 Ga granitic bodies of the southwest U.S. and northwest Mexico. It is also possible that the sediments were transported from the south, although source rocks of the appropriate age are not presently exposed south of the study area in northern Mexico. Three possibilities for the dominant 1.1 to 1.2 Ga grains include derivation from: (I) exposures of the Grenville belt in southern North America, (2) local 1.1-1.2 Ga granite bodies, or (3) a southern source, such as the Oaxaca terrane, that was subsequently rifted away. Sampling of additional units in the western U.S. and northern Mexico may help resolve the ambiguity surrounding the source of the 1.1 to 1.2 Ga grains.
Trait-based diversification shifts reflect differential extinction among fossil taxa.
Wagner, Peter J; Estabrook, George F
2014-11-18
Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models.
NASA Astrophysics Data System (ADS)
Chafetz, Henry S.
2007-06-01
Deposition of the Morgan Creek Limestone, a member of the Cambrian Wilberns Formation, began a few meters above a disconformable surface and displays abundant indicators of accumulation in shallow marine to tidal flat environments. These indicators include: intercalation of a lithologic variety of thin beds (e.g. biosparites, biomicrites, oosparites, intrasparites), which display rapid vertical and lateral lithologic changes, numerous stromatolitic horizons, channels filled with graded oosparites and intrasparites that cut through micrite accumulations, and finely laminated (non-burrowed) siltstones. Glauconite is a ubiquitous minor constituent throughout in the form of pellets, replaced skeletal material and mica books, and, most informatively, as an authigenic precipitate in the form of fibroradiating rims on carbonate allochems and siliciclastic grains. Fibroradiating glauconite rims were disrupted and pushed away from the pelmatozoan nuclei on which they precipitated. Combined sedimentological and paragenetic constraints indicate that the glauconite was the earliest diagenetic event to affect these sediments and occurred essentially at the sediment-water interface within these relatively high-energy, shallow marine deposits. Precipitation of glauconite was closely followed by precipitation of carbonate cement as well as dissolution of aragonitic constituents. Later diagenetic processes included selective dolomitization and silicification. In modern seas glauconite is reported to form at and below mid-shelf water depths. Thus, the constraints pertaining to the origin of modern glauconite are not valid for Late Cambrian deposits and probably are also not applicable for Late Cretaceous through Early Paleogene glauconites.
Late Precambrian-Cambrian sediments of Huqf group, Sultanate of Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorin, G.E.; Racz, L.G.; Walter, M.R.
1982-12-01
The Huqf Group is the oldest known sedimentary sequence overlying crystalline basement in the Sultanate of Oman. It crops out on a broad regional high, the Huqf Axis, which forms a dominating structural element on the southeastern edge of the Arabian peninsula. Subsurface and outcrop evidence within and outside of Oman suggests that the sediments of the Huqf Group lie within the age span of late Precambrian to Early-Middle Cambrian. The Huqf Group is subdivided into five formations corresponding to an alternation of clastics (Abu Mahara and Shuram Formations) and carbonates (Khufai and Buah Formations) deposited in essentially shallow marinemore » to supratidal (or fluviatile) conditions and terminated by an evaporitic sequence (Ara Formation). Evaporites are absent on the Huqf Axis, but they are thickly developed to the west over a large part of southern and central Oman, where they acted as the major structure former of most of Oman's fields, and even locally pierced up to the surface. Regional correlations suggest that the predominantly carbonate-evaporitic facies of the Huqf Group was widely distributed in late Precambrian-Early Cambrian time: the Huqf basin is tentatively considered part of a belt of evaporitic basins and intervening carbonate platforms, which stretched across the Pangea landmass from the Indian subcontinent (Salt Range of Pakistan) through South Yemen, Oman, and Saudi Arabia into the gulf states and Iran (Hormuz Series and carbonate platform north of the Zagros).« less
NASA Astrophysics Data System (ADS)
Gabrielsen, R. H.; Faleide, J. I.; Jarsve, E. M.
2012-04-01
The structuring, uplift and subsidence of the passive margin and shelf of Norway and its adjacent mainland were affected by several profound geological processes, including inherited basement structural grain related to the Proterozoic and Caledonian orogens and also including the extensional collapse of the Caledonides (Gabrielsen et al. 2000). This has been followed by several stages of late Palaoezoic - Cenozoic rifting and associated thermotectonic activity, Cenozoic accelerated uplift of uncertain origin of the hinterland, creating an irregular pattern of upheaval and, finally Pleistocene - Holocene glacial loading and unloading (Gabrielsen et al. 2010). These processes have strongly influenced the topography of the hinterland, thus causing and acting in concert with climate fluctuations (Nielsen et al. 2009). The correlation of erosional surfaces of regional significance on the shelf and on the mainland is a key to the evaluating the total topography of the margin. Because of the lack of datable surfaces on the mainland, this is problematic. The so-called Paleic surface has been used in this context, but its age and nature is not well constrained and the absence of post-Caledonian rocks in the western and central mainland of southern Norway adds to this complexity. In contrast, the sub-Cambrian peneplain, which is found in larger parts of Scandinavia, is well established when it comes to dating and development (e.g. Strøm 1948). It is generally accepted that this surface had only a minor topography, if any, throughout Scandinavia at the earliest Cambrian. Hence, its present relief is the result of the accumulated vertical displacements from the Caledonian to the Present. Still, even though it was well established through regional mapping already in the late 19th century, much remains in the detailed documentation of this important surface. To improve the topographic accuracy in its characterization, fieldwork has been initiated to establish a detailed WNW-ESE-trending profile across south Norway. Simultaneously a detailed mapping to establish a full map of the sub-Cambrian peneplain for southern Norway has been initiated, using automatic correlation techniques based on digital topographic data. A WNW-ESE-oriented profile across southern Norway displays a pronounced asymmetry with an eastern flank dipping moderately to the ESE, a strikingly flat to slightly undulating central part with a minor ESE-erly dip and a steepened westerly crest, and a faulted, steep WNW-flank. The fault throw along the western flank of the Hardangervidda Plateau is in the excess of one kilometer. This fault system is associated with the collapse of the Caledonides, but bear the signs of multiple stages of rejuvenation. Even farther to the west, the sub-Cambrian peneplain is broken by the Mesozoic external fault systems of the Jurassic-Cretaceous offshore graben systems, which also offsets the peneplain (down-to-east extension) by several kilometres. Also this system bears indications of reactivation. The sub-Cambrian peneplain itself displays a variety of configurations, including an undisturbed basal conglomerate, a weathered and mineralized, undulating surface with small pockets of alun shale or siltstone, a tectonically disturbed primary contact with parauthochtonous black shale or black sandstone and a more strongly tectonized contact with mylonite and rejuvenated basement lenses. The present analysis utilized the sub-Cambrian peneplain as a reference surface, because its present topography resulted from several elements of deformation accumulated throughout the Caledonian to the Present. Hence, it can be used as a reference surface for younger erosional surfaces onland Norway, whether this are of regional or local origin. In section of southern Norway including the (present) inner shelf and the hinterland, several morphological elements can be identified, from west to east: 1) The eastern, stable platform of the Mesozoic Viking Graben, 2) the external fault complex of the graben system, 3) the strandflat, 4) the western mainland slope between the two master fault systems, the mountain platform of Hardangervidda 5) the eastern slope. Although this scheme seems to be generally valid for large parts of the western margin of Scandinavia, large elevation fluctuations are evident along the margin, having wavelengths in the order of 100 - 500 km and amplitudes in the order of 1 km.
Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir
NASA Astrophysics Data System (ADS)
Husson, Jon M.; Peters, Shanan E.
2017-02-01
Atmospheric oxygen concentration has increased over Earth history, from ∼0 before 2.5 billion years ago to its present-day concentration of 21%. The initial rise in pO2 approximately 2.3 billion years ago required oxygenic photosynthesis, but the evolution of this key metabolic pathway was not sufficient to propel atmospheric oxygen to modern levels, which were not sustained until approximately two billion years later. The protracted lag between the origin of oxygenic photosynthesis and abundant O2 in the surface environment has many implications for the evolution of animals, but the reasons for the delay remain unknown. Here we show that the history of sediment accumulation on continental crust covaries with the history of atmospheric oxygen concentration. A forward model based on the empirical record of net organic carbon burial and oxidative weathering of the crust predicts two significant rises in pO2 separated by three comparatively stable plateaus, a pattern that reproduces major biological transitions and proxy-based pO2 records. These results suggest that the two-phased oxygenation of Earth's surface environment, and the long delays between the origin of life, the evolution of metazoans, and their subsequent diversification during the Cambrian Explosion, was caused by step-wise shifts in the ability of the continents to accumulate and store sedimentary organic carbon. The geodynamic mechanisms that promote and inhibit sediment accumulation on continental crust have, therefore, exerted a first-order control on the evolution of Earth's life and environment.
Cavalier-Smith, Thomas
2017-01-01
Evolving multicellularity is easy, especially in phototrophs and osmotrophs whose multicells feed like unicells. Evolving animals was much harder and unique; probably only one pathway via benthic ‘zoophytes’ with pelagic ciliated larvae allowed trophic continuity from phagocytic protozoa to gut-endowed animals. Choanoflagellate protozoa produced sponges. Converting sponge flask cells mediating larval settling to synaptically controlled nematocysts arguably made Cnidaria. I replace Haeckel's gastraea theory by a sponge/coelenterate/bilaterian pathway: Placozoa, hydrozoan diploblasty and ctenophores were secondary; stem anthozoan developmental mutations arguably independently generated coelomate bilateria and ctenophores. I emphasize animal origin's conceptual aspects (selective, developmental) related to feeding modes, cell structure, phylogeny of related protozoa, sequence evidence, ecology and palaeontology. Epithelia and connective tissue could evolve only by compensating for dramatically lower feeding efficiency that differentiation into non-choanocytes entails. Consequentially, larger bodies enabled filtering more water for bacterial food and harbouring photosynthetic bacteria, together adding more food than cell differentiation sacrificed. A hypothetical presponge of sessile triploblastic sheets (connective tissue sandwiched between two choanocyte epithelia) evolved oogamy through selection for larger dispersive ciliated larvae to accelerate benthic trophic competence and overgrowing protozoan competitors. Extinct Vendozoa might be elaborations of this organismal grade with choanocyte-bearing epithelia, before poriferan water channels and cnidarian gut/nematocysts/synapses evolved. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994119
Supervised Machine Learning for Population Genetics: A New Paradigm
Schrider, Daniel R.; Kern, Andrew D.
2018-01-01
As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics. PMID:29331490
Marie, Benjamin; Jackson, Daniel J; Ramos-Silva, Paula; Zanella-Cléon, Isabelle; Guichard, Nathalie; Marin, Frédéric
2013-01-01
Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3) deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we present an analysis of SMPs isolated form the CaCO(3) shell of the limpet Lottia gigantea, a gastropod that constructs an aragonitic cross-lamellar shell. We identified 39 SMPs by combining proteomic analysis with genomic and transcriptomic database interrogations. Among these proteins are various low-complexity domain-containing proteins, enzymes such as peroxidases, carbonic anhydrases and chitinases, acidic calcium-binding proteins and protease inhibitors. This list is likely to contain the most abundant SMPs of the shell matrix. It reveals the presence of both highly conserved and lineage-specific biomineralizing proteins. This mosaic evolutionary pattern suggests that there may be an ancestral molluscan SMP set upon which different conchiferan lineages have elaborated to produce the diversity of shell microstructures we observe nowadays. © 2012 The Authors Journal compilation © 2012 FEBS.
Eye evolution and its functional basis.
Nilsson, Dan-E
2013-03-01
Eye evolution is driven by the evolution of visually guided behavior. Accumulation of gradually more demanding behaviors have continuously increased the performance requirements on the photoreceptor organs. Starting with nondirectional photoreception, I argue for an evolutionary sequence continuing with directional photoreception, low-resolution vision, and finally, high-resolution vision. Calculations of the physical requirements for these four sensory tasks show that they correlate with major innovations in eye evolution and thus work as a relevant classification for a functional analysis of eye evolution. Together with existing molecular and morphological data, the functional analysis suggests that urbilateria had a simple set of rhabdomeric and ciliary receptors used for directional photoreception, and that organ duplications, positional shifts and functional shifts account for the diverse patterns of eyes and photoreceptors seen in extant animals. The analysis also suggests that directional photoreception evolved independently at least twice before the last common ancestor of bilateria and proceeded several times independently to true vision in different bilaterian and cnidarian groups. This scenario is compatible with Pax-gene expression in eye development in the different animal groups. The whole process from the first opsin to high-resolution vision took about 170 million years and was largely completed by the onset of the Cambrian, about 530 million years ago. Evolution from shadow detectors to multiple directional photoreceptors has further led to secondary cases of eye evolution in bivalves, fan worms, and chitons.
Ghisalberti, Marco; Gold, David A.; Laflamme, Marc; Clapham, Matthew E.; Narbonne, Guy M.; Summons, Roger E.; Johnston, David T.; Jacobs, David K.
2015-01-01
Summary At Mistaken Point, Newfoundland, Canada, rangeomorph “fronds” dominate the earliest (579–565 million years ago) fossil communities of large (0.1 to 2 m height) multicellular benthic eukaryotes. They lived in low-flow environments, fueled by uptake [1–3] of dissolved reactants (osmotrophy). However, prokaryotes are effective osmotrophs, and the advantage of taller eukaryotic osmotrophs in this deepwater community context has not been addressed. We reconstructed flow-velocity profiles and vertical mixing using canopy flow models appropriate to the densities of the observed communities. Further modeling of processes at organismal surfaces documents increasing uptake with height in the community as a function of thinning of the diffusive boundary layer with increased velocity. The velocity profile, produced by canopy flow in the community, generates this advantage of upward growth. Alternative models of upward growth advantage based on redox/resource gradients fail, given the efficiency of vertical mixing. In benthic communities of osmotrophs of sufficient density, access to flow in low-flow settings provides an advantage to taller architecture, providing a selectional driver for communities of tall eukaryotes in contexts where phototropism cannot contribute to upward growth. These Ediacaran deep-sea fossils were preserved during the increasing oxygenation prior to the Cambrian radiation of animals and likely represent an important phase in the ecological and evolutionary transition to more complex eukaryotic forms. PMID:24462003
Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana).
Rubinstein, C V; Gerrienne, P; de la Puente, G S; Astini, R A; Steemans, P
2010-10-01
• The advent of embryophytes (land plants) is among the most important evolutionary breakthroughs in Earth history. It irreversibly changed climates and biogeochemical processes on a global scale; it allowed all eukaryotic terrestrial life to evolve and to invade nearly all continental environments. Before this work, the earliest unequivocal embryophyte traces were late Darriwilian (late Middle Ordovician; c. 463-461 million yr ago (Ma)) cryptospores from Saudi Arabia and from the Czech Republic (western Gondwana). • Here, we processed Dapingian (early Middle Ordovician, c. 473-471 Ma) palynological samples from Argentina (eastern Gondwana). • We discovered a diverse cryptospore assemblage, including naked and envelope-enclosed monads and tetrads, representing five genera. • Our discovery reinforces the earlier suggestion that embryophytes first evolved in Gondwana. It indicates that the terrestrialization of plants might have begun in the eastern part of Gondwana. The diversity of the Dapingian assemblage implies an earlier, Early Ordovician or even Cambrian, origin of embryophytes. Dapingian to Aeronian (Early Silurian) cryptospore assemblages are similar, suggesting that the rate of embryophyte evolution was extremely slow during the first c. 35-45 million yr of their diversification. The Argentinean cryptospores predate other cryptospore occurrences by c. 8-12 million yr, and are currently the earliest evidence of plants on land. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).
Publications - RI 97-14B | Alaska Division of Geological & Geophysical
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in , State of; Alluvial Deposits; Avalanche; Cambrian; Carboniferous; Cenozoic; Coastal and River; Coastal
The Emergence of Life as a First-Order Phase Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathis, Cole; Bhattacharya, Tanmoy; Walker, Sara Imari
It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here in this paper we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase ismore » distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.« less
The Emergence of Life as a First-Order Phase Transition
Mathis, Cole; Bhattacharya, Tanmoy; Walker, Sara Imari
2017-03-01
It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here in this paper we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase ismore » distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.« less
The Emergence of Life as a First-Order Phase Transition
NASA Astrophysics Data System (ADS)
Mathis, Cole; Bhattacharya, Tanmoy; Imari Walker, Sara
2017-03-01
It is well known that life on Earth alters its environment over evolutionary and geological timescales. An important open question is whether this is a result of evolutionary optimization or a universal feature of life. In the latter case, the origin of life would be coincident with a shift in environmental conditions. Here we present a model for the emergence of life in which replicators are explicitly coupled to their environment through the recycling of a finite supply of resources. The model exhibits a dynamic, first-order phase transition from nonlife to life, where the life phase is distinguished by selection on replicators. We show that environmental coupling plays an important role in the dynamics of the transition. The transition corresponds to a redistribution of matter in replicators and their environment, driven by selection on replicators, exhibiting an explosive growth in diversity as replicators are selected. The transition is accurately tracked by the mutual information shared between replicators and their environment. In the absence of successfully repartitioning system resources, the transition fails to complete, leading to the possibility of many frustrated trials before life first emerges. Often, the replicators that initiate the transition are not those that are ultimately selected. The results are consistent with the view that life's propensity to shape its environment is indeed a universal feature of replicators, characteristic of the transition from nonlife to life. We discuss the implications of these results for understanding life's emergence and evolutionary transitions more broadly.
Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework.
Maeso, Ignacio; Tena, Juan J
2016-09-01
Cis-regulatory changes are arguably the primary evolutionary source of animal morphological diversity. With the recent explosion of genome-wide comparisons of the cis-regulatory content in different animal species is now possible to infer general principles underlying enhancer evolution. However, these studies have also revealed numerous discrepancies and paradoxes, suggesting that the mechanistic causes and modes of cis-regulatory evolution are still not well understood and are probably much more complex than generally appreciated. Here, we argue that the mutational mechanisms and genomic regions generating new regulatory activities must comply with the constraints imposed by the molecular properties of cis-regulatory elements (CREs) and the organizational features of long-range chromatin interactions. Accordingly, we propose a new integrative evolutionary framework for cis-regulatory evolution based on two major premises for the origin of novel enhancer activity: (i) an accessible chromatin environment and (ii) compatibility with the 3D structure and interactions of pre-existing CREs. Mechanisms and DNA sequences not fulfilling these premises, will be less likely to have a measurable impact on gene expression and as such, will have a minor contribution to the evolution of gene regulation. Finally, we discuss current comparative cis-regulatory data under the light of this new evolutionary model, and propose that the two most prominent mechanisms for the evolution of cis-regulatory changes are the overprinting of ancestral CREs and the exaptation of transposable elements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tempo and mode of genomic mutations unveil human evolutionary history.
Hara, Yuichiro
2015-01-01
Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.
NASA Astrophysics Data System (ADS)
Howard, Amanda L.; Farmer, G. Lang; Amato, Jeffrey M.; Fedo, Christopher M.
2015-12-01
Combined U-Pb ages and Hf isotopic data from 1.0 Ga to 1.3 Ga (Grenvillian) detrital zircon in Neoproterozoic and Cambrian siliciclastic sedimentary rocks in southwest North America, and from igneous zircon in potential Mesoproterozoic source rocks, are used to better assess the provenance of detrital zircon potentially transported across Laurentia in major river systems originating in the Grenville orogenic highlands. High-precision hafnium isotopic analyses of individual ∼1.1 Ga detrital zircon from Neoproterozoic siliciclastic sedimentary rocks in Sonora, northern Mexico, reveal that these zircons have low εHf (0) (-22 to -26) and were most likely derived from ∼1.1 Ga granitic rocks embedded in local Mojave Province Paleoproterozoic crust. In contrast, Grenvillian detrital zircons in Cambrian sedimentary rocks in Sonora, the Great Basin, and the Mojave Desert, have generally higher εHf (0) (-15 to -21) as demonstrated both by high precision solution-based, and by lower precision laser ablation, ICPMS data and were likely derived from more distal sources further to the east/southeast in Laurentia. Comparison to new and existing zircon U-Pb geochronology and Hf isotopic data from Grenvillian crystalline rocks from the Appalachian Mountains, central and west Texas, and from Paleoproterozoic terranes throughout southwest North America reveals that zircon in Cambrian sandstones need not entirely represent detritus transported across the continent from Grenville province rocks in the vicinity of the present-day southern Appalachian Mountains. Instead, these zircons could have been derived from more proximal, high εHf (0), ∼1.1 Ga, crystalline rocks such as those exposed today in the Llano Uplift in central Texas and in the Franklin Mountains of west Texas. Regardless of the exact source(s) of the Grenvillian detrital zircon, new and existing whole-rock Nd isotopic data from Neoproterozoic to Cambrian siliciclastic sedimentary rocks in the Mojave Desert demonstrate that the occurrences of higher εHf (0), Grenvillian detrital zircons are decoupled from the sources of the bulk of the sedimentary detritus in which the zircons are entrained. The Cambrian Wood Canyon Formation and the underlying ;off craton; Neoproterozoic Johnnie Formation and Stirling Quartzite all contain higher εHf (0), Grenvillian detrital zircon, in some cases as the dominant detrital zircon population. However, only portions of the Wood Canyon Formation have whole rock Nd isotopic compositions consistent with a bulk sediment source in ∼1.1 Ga sources rocks. Whole rock Nd isotopic compositions of the remaining portions of this unit, and all of the Johnnie Formation and Stirling Quartzite, require bulk sediment sources principally in Paleoproterozoic continental crust. We consider the observed decoupling in the sources of Grenvillian detrital zircon and bulk sediment in the Wood Canyon Formation and underlying siliciclastic sediments as a demonstration that detrital zircon U-Pb and Hf isotopic data alone can provide an incomplete picture of the source of sediments that comprise a given siliciclastic stratigraphic unit.
Droser, Mary L.; Jensen, Sören; Gehling, James G.
2002-01-01
The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at ≈555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sediments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. PMID:12271130
Phosphate Biomineralization of Cambrian Microorganisms
NASA Technical Reports Server (NTRS)
McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances
1998-01-01
As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.
Cambrian nepheline syenite complex at Jabal Sawda, Midyan region, Kingdom of Saudi Arabia
Liddicoat, W.K.; Ramsay, C.R.; Hedge, C.E.
1986-01-01
The only nepheline syenite complex presently known in the Arabian Shield is at Jabal Sawda, about 30 km S of Haql in the extreme NW of Saudi Arabia. It is a post-tectonic, composite intrusion with a crudely concentric structure. A core of leuco-nepheline syenite, a partial ring of mela-nepheline syenite, and an almost complete outer ring of alkali-feldspar syenite are the main rock units. Several mega-inclusions of porphyritic nepheline syenite, nepheline monzosyenite, malignite and ijolite are present in the leuco-nepheline syenite. The chemical composition is notable for very high values of Al2O3, Na2O, Ba, La, Nb, Sr and Zr. U{single bond}Pb isotope dating indicates an emplacement age of 553 ?? 4 Ma, one of an increasing number of reliable Cambrian isotope dates in the northern Red Sea region. ?? 1986.
Cambrian nepheline syenite complex at Jabal Sawda, Midyan region, Kingdom of Saudi Arabia
NASA Astrophysics Data System (ADS)
Liddicoat, W. K.; Ramsay, C. R.; Hedge, C. E.
The only nepheline syenite complex presently known in the Arabian Shield is at Jabal Sawda, about 30 km S of Haql in the extreme NW of Saudi Arabia. It is a post-tectonic, composite intrusion with a crudely concentric structure. A core of leuco-nepheline syenite, a partial ring of mela-nepheline syenite, and an almost complete outer ring of alkali-feldspar syenite are the main rock units. Several mega-inclusions of porphyritic nepheline syenite, nepheline monzosyenite, malignite and ijolite are present in the leuco-nepheline syenite. The chemical composition is notable for very high values of Al 2O 3, Na 2O, Ba, La, Nb, Sr and Zr. U sbnd Pb isotope dating indicates an emplacement age of 553 ± 4 Ma, one of an increasing number of reliable Cambrian isotope dates in the northern Red Sea region.
NASA Astrophysics Data System (ADS)
Kalogera, Vassiliki; Webbink, Ronald F.
1998-01-01
We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible, since they strongly depend on the observationally indeterminate frequency of primordial binaries with extreme mass ratios in long-period orbits.
Elrick, M.; Rieboldt, S.; Saltzman, M.; McKay, R.M.
2011-01-01
The globally recognized Late Cambrian Steptoean positive C-isotope excursion (SPICE) is characterized by a 3???-5??? positive ??13C shift spanning <4 m.y. Existing hypotheses suggest that the SPICE represents a widespread ocean anoxic event leading to enhanced burial/preservation of organic matter (Corg) and pyrite. We analyzed ??18O values of apatitic inarticulate brachiopods from three Upper Cambrian successions across Laurentia to evaluate paleotemperatures during the SPICE. ??18O values range from ~12.5??? to 16.5???. Estimated seawater temperatures associated with the SPICE are unreasonably warm, suggesting that the brachiopod ??18O values were altered during early diagenesis. Despite this, all three localities show similar trends with respect to the SPICE ??13C curve, suggesting that the brachiopod apatite preserves a record of relative ??18O and temperature changes. The trends include relatively high ??18O values at the onset of the SPICE, decreasing and lowest values during the main event, and an increase in values at the end of the event. The higher ??18O values during the global extinction at the onset of the SPICE suggests seawater cooling and supports earlier hypotheses of upwelling of cool waters onto the shallow shelf. Decreasing and low ??18O values coincident with the rising limb of the SPICE support the hypothesis that seawater warming and associated reduced thermohaline circulation rates contributed to decreased dissolved O2 concentrations, which enhanced the preservation/burial of Corg causing the positive ??13C shift. ?? 2011 Geological Society of America.
Fossilized embryos are widespread but the record is temporally and taxonomically biased
Donoghue, P.C.J.; Kouchinsky, A.; Waloszek, Dieter; Bengtson, S.; Dong, X.-P.; Val'Kov, A.K.; Cunningham, J.A.; Repetski, J.E.
2006-01-01
We report new discoveries of embryos and egg capsules from the Lower Cambrian of Siberia, Middle Cambrian of Australia and Lower Ordovician of North America. Together with existing records, embryos have now been recorded from four of the seven continents. However, the new discoveries highlight secular and systematic biases in the fossil record of embryonic stages. The temporal window within which the embryos and egg capsules are found is of relatively short duration; it ends in the Early Ordovician and is roughly coincident with that of typical "Orsten"-type faunas. The reduced occurrence of such fossils has been attributed to reducing levels of phosphate in marine waters during the early Paleozoic, but may also be owing to the increasing depth of sediment mixing by infaunal metazoans. Furthermore, most records younger than the earliest Cambrian are of a single kind - large eggs and embryos of the priapulid-like scalidophoran Markuelia. We explore alternative explanations for the low taxonomic diversity of embryos recovered thus far, including sampling, size, anatomy, ecology, and environment, concluding that the preponderance of Markuelia embryos is due to its precocious development of cuticle at an embryonic stage, predisposing it to preservation through action as a substrate on which microbially mediated precipitation of authigenic calcium phosphate may occur. The fossil record of embryos may be limited to a late Neoproterozoic to early Ordovician snapshot that is subject to dramatic systematic bias. Together, these biases must be considered seriously in attempts to use the fossil record to arbitrate between hypotheses of developmental and life history evolution implicated in the origin of metazoan clades. ?? 2006 Blackwell Publishing Ltd.
Alvaro, J J; Clausen, S
2010-03-01
The lower Cambrian grainy phosphorites of the northern Montagne Noire occur interbedded with grey to black, laminated to massive shales and limestones deposited along the edge of a continental shelf, associated with slope-related facies and unstable substrates. The concentration of phosphate took place by repeated alternations of low sedimentation rates and condensation (hardgrounds), in situ early-diagenetic precipitation of fluorapatite, winnowing and polyphase reworking of previously phosphatized skeletons and hardground-derived clasts. The succession of repeated cycles of sedimentation, phosphate concentration, and reworking led to multi-event phosphate deposits rich in allochthonous particles. Phosphogenesis was primarily mediated by microbial activity, which is evidenced by the abundance of phosphatized putative microbial remains. These occur as smooth and segmented filaments, sheaths, and ovoid-shaped coccoids. These simple morphologies commonly form composite frameworks as a result of their aggregation and entanglement, leading to the record of biofilms, microbial mats, and complex networks. These infested the calcitic skeletonized microfossils that littered the substrate. Microbial activity evidences epilithic (anisotropic coatings on skeletons), euendolithic (perforating skeletal walls), and cryptoendolithic (lining inter- and intraparticulate pores) strategies, the latter dominated by bundles of filaments and globular clusters that grew along the cavities of helcionellids and hyoliths. According to their epilithic versus cryptic strategies, microbial populations that penetrated and dwelled inside hard skeletal substrates show different network and colonial morphologies. These early Cambrian shell concentrations were the loci of a stepwise colonization made by saprophytic to mutualistic, cyanobacterial-fungal consortia. Their euendolithic and cryptoendolithic ecological niches provided microbial refugia to manage the grazing impact mainly led by metazoans.
Trait-based diversification shifts reflect differential extinction among fossil taxa
Wagner, Peter J.; Estabrook, George F.
2014-01-01
Evolution provides many cases of apparent shifts in diversification associated with particular anatomical traits. Three general models connect these patterns to anatomical evolution: (i) elevated net extinction of taxa bearing particular traits, (ii) elevated net speciation of taxa bearing particular traits, and (iii) elevated evolvability expanding the range of anatomies available to some species. Trait-based diversification shifts predict elevated hierarchical stratigraphic compatibility (i.e., primitive→derived→highly derived sequences) among pairs of anatomical characters. The three specific models further predict (i) early loss of diversity for taxa retaining primitive conditions (elevated net extinction), (ii) increased diversification among later members of a clade (elevated net speciation), and (iii) increased disparity among later members in a clade (elevated evolvability). Analyses of 319 anatomical and stratigraphic datasets for fossil species and genera show that hierarchical stratigraphic compatibility exceeds the expectations of trait-independent diversification in the vast majority of cases, which was expected if trait-dependent diversification shifts are common. Excess hierarchical stratigraphic compatibility correlates with early loss of diversity for groups retaining primitive conditions rather than delayed bursts of diversity or disparity across entire clades. Cambrian clades (predominantly trilobites) alone fit null expectations well. However, it is not clear whether evolution was unusual among Cambrian taxa or only early trilobites. At least among post-Cambrian taxa, these results implicate models, such as competition and extinction selectivity/resistance, as major drivers of trait-based diversification shifts at the species and genus levels while contradicting the predictions of elevated net speciation and elevated evolvability models. PMID:25331898
NASA Astrophysics Data System (ADS)
Myrow, P.; Chen, J.
2013-12-01
A wide variety of unusual penecontemporaneous deformation structures exist in grainstone and flat-pebble conglomerate beds of the Upper Cambrian strata, western Colorado, including slide scarps, thrusted beds, irregular blocks and internally deformed beds. Slide scarps are characterized by concave-up, sharp surfaces that truncate one or more underlying beds. Thrusted beds record movement of a part of a bed onto itself along a moderate to steeply inclined (generally 25°-40°) ramp. The hanging wall lenses in cases show fault-bend geometries, with either intact or mildly deformed bedding. Irregular bedded to internally deformed blocks isolated on generally flat upper bedding surfaces are similar in composition to the underlying beds. These features represent parts of beds that were detached, moved up onto, and some distances across, the laterally adjacent undisturbed bed surfaces. The blocks moved either at the sediment-water interface or intrastratally at shallow depths within overlying muddy deposits. Finally, internally deformed beds have large blocks, fitted fabrics of highly irregular fragments, and contorted lamination, which represent heterogeneous deformation, such as brecciation and liquefaction. The various deformation structures were most probably triggered by earthquakes, considering the nature of deformation (regional distribution of liquefaction structures, and the brittle segmentation and subsequent transportation of semi-consolidated beds) and the reactivation of Mesoproterozoic, crustal-scale shear zones in the central Rockies during the Late Cambrian. Features produced by initial brittle deformation are unusual relative to most reported seismites, and may represent poorly recognized to unrecognized seismogenic structures in the rock record.
NASA Astrophysics Data System (ADS)
Martin, Ronald E.
1995-06-01
The stratigraphic occurrence and mineralogy of major protistan microfossil taxa tend to reflect evolutionary innovation in response to ocean chemistry and fertility. In foraminefera, the characteristic test composition—and, in some cases, ultrastructure—of each suborder is indicative of the degree of surface ocean CaCO 3 saturation, which varied in a cyclic manner through the Phanerozoic, at the time of origin of the suborder. High dissolved phosphate and low CaCO 3 saturation in late Precambrian-Early Cambrian surface waters may have prevented calcification in primitive non-calcareous (organic, agglutinated) foraminiferal stocks. Scattered reports of coccolithophorid-like microfossils from the Paleozoic are indicative of a secular trend in rising nutrient levels and marine productivity that controlled the initiation of calcareous oozes. Based on acritarch, carbon isotope, and phosphorite records, extremely low nutrient levels ("superligotrophic" conditions) in Cambrian-to-Devonian seas typically limited population densities of calcareous nannoplankton and prevented the formation of calcareous oozes. The overall "superoligotrophic" surface conditions of the Paleozoic were punctuated, though, by episodes of "catastrophic" eutrophication in the Late Ordovician, Late Devonia, and Late Carboniferous (Worsley et al., 1986). Following each episode, CaCO 3 rain rates were presumably enhanced because Marine C:P (MCP) burial ratios increased permanently above previous levels (Worsley et al., 1986). Nevertheless, it was not until the Carboniferous that the CCD had deepened sufficiently (via erosion of cratonic limestones) to allow pelagic calcareous oozes to begin to accumulate. Prior to this time, surface waters appear to have been sufficiently corrosive (high atmospheric pCO 2 and low CaCO 3 saturation), and the CCD sufficiently shallow, to dissolve virtually all incipient calcareous nannofossils. Following Late Permian extinctions, plankton re-expanded in response to both eustatic sea level rise (increased habitat availability) and increased nutrient levels ("mesotrophic" conditions). As organic matter (C org) and CaCO 3 rain rates increased, bioturbation rates also increased, thereby recycling nutrients back to the surface and accentuating productivity and calcareous ooze formation. MCP episodes further accelerated nutrient cycling and productivity in the Neogene, as indicated by the expansion of diatoms, which prefer nutrient-rich ("eutrophic") conditions. Ironically, while permanently increasing C:P burial ratios and productivity through the Phanerozoic, catastrophic fluctuations in nutrient levels may have also exacerbated mass extinctions via shortening of pelagic food chains. Nevertheless, re-expansion of the marine biosphere following each extinction episode resulted in a secular trend of increasing biomass and biotic diversity that may have contributed to the decline in background extinction rates through the Phanerozoic.
A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs.
Pol, Diego; Rauhut, Oliver W M
2012-08-22
Abelisaurids are a clade of large, bizarre predatory dinosaurs, most notable for their high, short skulls and extremely reduced forelimbs. They were common in Gondwana during the Cretaceous, but exceedingly rare in the Northern Hemisphere. The oldest definitive abelisaurids so far come from the late Early Cretaceous of South America and Africa, and the early evolutionary history of the clade is still poorly known. Here, we report a new abelisaurid from the Middle Jurassic of Patagonia, Eoabelisaurus mefi gen. et sp. nov., which predates the so far oldest known secure member of this lineage by more than 40 Myr. The almost complete skeleton reveals the earliest evolutionary stages of the distinctive features of abelisaurids, such as the modification of the forelimb, which started with a reduction of the distal elements. The find underlines the explosive radiation of theropod dinosaurs in the Middle Jurassic and indicates an unexpected diversity of ceratosaurs at that time. The apparent endemism of abelisauroids to southern Gondwana during Pangean times might be due to the presence of a large, central Gondwanan desert. This indicates that, apart from continent-scale geography, aspects such as regional geography and climate are important to reconstruct the biogeographical history of Mesozoic vertebrates.
Evolution of Lyman-α Emitters, Lyman-break Galaxies and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Mori, M.; Umemura, M.
2008-10-01
High redshift Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) possibly provide a significant key for the embryology of galaxies. LBGs have been argued as candidate progenitors of present-day elliptical galaxies in terms of their observed properties. But, what evolutionary stages LBGs correspond to and how they are related to LAEs are still under debate. Here, we present an ultra-high-resolution hydrodynamic simulation of galaxy formation. We show that, at the earliest stages of less than 3×10^8 years, continual supernova explosions produce multitudinous hot bubbles and cooled HI shells in between. The HI shells radiate intense Lyman-α emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyman-α surface brightness distribution of the extended LAEs. After 10^9 years, the galaxy emission is dominated by stellar continuum, exhibiting an LBG-like spectrum. Also, we find that, as a result of purely dynamical evolution over 13 billion years, the properties of this galaxy match those of present-day elliptical galaxies well. It is implied that the major episode of star formation and chemical enrichment in elliptical galaxies is almost completed in the evolutionary path from LAEs to LBGs.
Torrens, Francisco; Castellano, Gloria
2014-06-05
Pesticide residues in wine were analyzed by liquid chromatography-tandem mass spectrometry. Retentions are modelled by structure-property relationships. Bioplastic evolution is an evolutionary perspective conjugating effect of acquired characters and evolutionary indeterminacy-morphological determination-natural selection principles; its application to design co-ordination index barely improves correlations. Fractal dimensions and partition coefficient differentiate pesticides. Classification algorithms are based on information entropy and its production. Pesticides allow a structural classification by nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours depend on number of cycles. The novelty of the approach is that the structural parameters are related to retentions. Classification algorithms are based on information entropy. When applying procedures to moderate-sized sets, excessive results appear compatible with data suffering a combinatorial explosion. However, equipartition conjecture selects criterion resulting from classification between hierarchical trees. Information entropy permits classifying compounds agreeing with principal component analyses. Periodic classification shows that pesticides in the same group present similar properties; those also in equal period, maximum resemblance. The advantage of the classification is to predict the retentions for molecules not included in the categorization. Classification extends to phenyl/sulphonylureas and the application will be to predict their retentions.
NASA Astrophysics Data System (ADS)
Wang, Zhi-wei; Xu, Wen-liang; Pei, Fu-ping; Wang, Feng; Guo, Peng
2016-09-01
This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China, in order to constrain the early Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt (CAOB). Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern Songnen-Zhangguangcai Range Massif (SZM) can be subdivided into four stages: Middle Cambrian ( 505 Ma), Late Cambrian ( 490 Ma), Early-Middle Ordovician ( 470 Ma), and Late Ordovician (460-450 Ma). The Middle Cambrian monzogranites are K-rich, weakly to strongly peraluminous, and characterized by pronounced heavy rare earth element (HREE) depletions, high Sr/Y ratios, low Y concentrations, low primary zircon εHf(t) values (- 6.79 to - 1.09), and ancient two-stage model (TDM2) ages (1901-1534 Ma). These results indicate derivation from partial melting of thickened ancient crustal materials that formed during the amalgamation of the northern SZM and the northern Jiamusi Massif (JM). The Late Cambrian monzonite, quartz monzonite, and monzogranite units are chemically similar to A-type granites, and contain zircons with εHf(t) values of - 2.59 to + 1.78 and TDM2 ages of 1625-1348 Ma. We infer that these rocks formed from primary magmas generated by partial melting of Mesoproterozoic accreted lower crustal materials in a post-collisional extensional environment. The Early-Middle Ordovician quartz monzodiorite, quartz monzonite, monzogranite, and rhyolite units are calc-alkaline, relatively enriched in light REEs (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), depleted in HREEs and high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and contain zircons with εHf(t) values of - 7.33 to + 4.98, indicative of formation in an active continental margin setting. The Late Ordovician alkali-feldspar granite and rhyolite units have A-type granite affinities that suggest they formed in an extensional environment. A comparison of early Paleozoic magmatic events and Hf isotopic model ages between the northern SZM and the JM indicates that these two massifs have similar histories of Mesoproterozoic and early Paleozoic crustal accretion and reworking, although the SZM contains much older crustal materials than the JM.
Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China
NASA Astrophysics Data System (ADS)
Cheng, Meng; Li, Chao; Zhou, Lian; Feng, LianJun; Algeo, Thomas J.; Zhang, FeiFei; Romaniello, Stephen; Jin, ChengSheng; Ling, HongFei; Jiang, ShaoYong
2017-08-01
Many late Neoproterozoic to early Cambrian fossils of multicellular eukaryotes, including those of benthic animals, are found preserved under anoxic and even euxinic bottom-water conditions, which is contradictory to the consensus that oxygen is essential to eukaryotes. To investigate this conundrum, we conducted an integrated study of iron speciation, redox-sensitive trace elements, and Mo isotopes (δ98Mo) on the black shale interval of the lower Cambrian Hetang Formation (∼535-521 Ma) at Lantian, South China, in which benthic sponge fossils are abundant in the lower member (LM) but absent in the upper member (UM). Iron speciation data point to uniformly anoxic-ferruginous conditions in the LM and euxinic conditions in the UM, whereas the trace-element and δ98Mo data show greater secular variation in redox conditions. The LM shows higher mean trace element concentrations (Mo: 108 ppm, U: 36 ppm, V: 791 ppm) and lower and more variable δ98Mo (+0.13 to +1.76‰) relative to the UM (Mo: 45 ppm, U: 18 ppm, V: 265 ppm, δ98Mo: +1.59 to +1.67‰), and ratios of redox-sensitive trace element concentrations to total organic carbon are significantly more variable and higher on average in the LM relative to the UM. The appearance of sponge fossils and lower δ98Mo values correlate strongly with gray (i.e., lighter-colored) layers in the LM. These patterns can best be interpreted as recording mainly euxinic conditions throughout deposition of the study units, with more intense background euxinia in the LM relative to the UM, but also with frequent transient oxygenation events in the LM that do not appear in the UM. The transient oxygenation events of the LM led to the initial colonization of the deep Nanhua Basin by sponges, and the termination of these events in the UM caused sponge faunas to disappear until a general rise in O2 levels later in the Cambrian permitted their return to deeper-water habitats. Our study also illustrates that multiple geochemical and paleobiological proxies exhibit different responses in 'poikiloredox' environments (i.e., characterized by small-scale spatial and high-frequency temporal variations), which can lead to apparent contradictions between metazoan fossil occurrences and their inferred watermass redox conditions.
Creasey, Saville Cyrus
1951-01-01
The Humboldt region is in central Yavapai County, Arizona. The intersection of the 112? 15' meridian and the 34? 30' N parallel is in the approximate geographical center of the region, and the Iron King mine is about 2000 feet west-northwest of the intersection. Pre-Cambrian rocks form the bedrock in the Humboldt region. Late Cenozoic unconsolidated river wash and valley fill, including some interbedded basalt, locally mantle the pre-Cambrian rocks, especially in the north-central part of the region (Lonesome Valley). The pre-Cambrian rocks consist of five newly defined metavolcanic formations derived from flows and tuff s, and of six intrusive units ranging in composition from granite to gabbro or perhaps more mafic types. Relic bedding-and pillow structures are locally prominent in the metavolcanics; geopetal structures are uncommon, but where present, generally indicate that the top is toward the west, though the evidence is too meager to be conclusive. Low-grade dynamothermal metamorphism altered the metavolcanics and to a lesser extent the intrusive rocks, forming textures, structures, and mineral assemblages characteristic of low temperature and moderate stress. The Texas Gulch formation, which is the easternmost metavolcanic formation, consists of five lithologic units. Arranged in the general order of their appearance from east to west they are meta-andesite breccia, purple slate, metarhyolite tuff, meta-andesite, and green slate. The boundary between the Texas Gulch formation and the Iron King meta-andesite is apparently gradational. The Iron King meta-andesite consists of three meta-andesite tuff units, two meta-andesite flow units and one metarhyolite tuff and conglomerate unit. The assemblage chlorite-albite-epitode with or without quartz is dominant in the meta-andesites. Mafic intrusive rocks, which may be approximately contemporaneous with metamorphism, may explain the presence of actinolitic hornblende in the central part of the formation. Toward the west the Iron King meta-andesite appears to grade into the Spud Mountain metabreccia through a zone containing beds characteristic of either one formation or the other. The Spud Mountain metabreccia consists of interbedded metabreccia and metatuff beds. The metatuffs are largely andesitic in composition, but a few thin beds of metarhyolite tuff occur. The fragments in the metabreccia beds consist chiefly or porphyritic meta-andesites and the matrix is meta-andesite tuff. Pre-Cambrian faults now marked by dikes separate the Chaparral Gulch metavolcanics, which lie west of the Spud Mountain metabreccia, from underlying and overlying formations. The Chaparral Gulch metavolcanics contain metarhyolite tuff, metarhyolite flow, and meta-andesite tuff that locally was contaminated by rhyolitic detritus. The Indian Hills metavolcanics, which are northeast of the Chaparral Gulch metavolcanics, consist of two broad units, one composed of metarhyolites and the other of meta-andesites. Metamorphosed tuffs and flows are believed to be represented in both units and flow breccia in the meta-andesites. Granite and alaskite; granodiorite and quartz diorite; diorite, mafic quartz diorite, gabbro and diabase; metarhyolite (?); and quartz porphyry comprise the pre-Cambrian intrusive units mapped. They include both deep-seated and hypabyssal types. Dynamothermal metamorphism has foliated the smaller bodies and the margins of the larger masses and partly converted them into mineral assemblages stable under low-grade metamorphic conditions. Planar structures (chiefly foliation) are omnipresent and linear structures are common in the pre-Cambrian meta-volcanic rocks. North-trending planar structures dominate in the Indian Hills metavolcanics, and in the Spud Mountain metabreccia, whereas northeast-trending planar structures are dominant in the Texas Gulch formation, Iron King meta-andesite, and Chaparral Gulch metavolcanics. To a lesser extent northeast-trending st
Geologic setting of the Mountain Pass rare earth deposits, San Bernardino County, California
Olson, Jerry Chipman
1952-01-01
The Mountain Pass district is in a block of pre-Cambrian metamorphic rocks bounded on the east and south by the alluvium of Ivanpah Valley. This block is separated from Paleozoic and Mesozoic sedimentary and volcanic rocks on the west by the Clark Mountain normal fault, and the northern boundary of the district is a prominent transverse fault. The pre-Cambrian metamorphic complex comprises a great variety of lithologic types including garnetiferous mica gneisses and schists; biotite-garnet-sillimenite gneiss; hornblende gneiss, schist, and amphibolite; biotite gneiss and schist; granitic gneisses and migmatites; pegmatites; and minor amounts of foliated mafic rocks. The rare earth-bearing carbonate rocks are related to potash-rich igneous rocks, of uncertain age, that cut the metamorphic complex. The larger potash-rich intrusive masses, 300 or more feet wide, comprise one granite, two syenite, and four composite shonkinite-syenite bodies. One of the shonkinite-syenite stocks is more than a mile long. Several hundred relatively thin dikes of these potash-rich rocks range in composition, and generally decreasing age, from biotite shonkinite through syenite to granite. A few thin fine-grained shonkinite dikes cut the granite. These potash-rich rocks are cut by east-trending andesitic dikes and by faults. Veins of carbonate rock are most abundant in and near the southwest side of the largest shonkinite-syenite body. Although most veins are less than 6 feet thick, one mass of carbonate rock near the Sulphide Queen min4e is 600 feet in maximum width and 2,400 feet long. About 200 veins have been mapped in the district; their aggregate surface area is probably less than one-tenth that of the large carbonate mass. The carbonate materials, which make up about 60 percent of the veins and the large carbonite body, are chiefly calcite, dolomite, ankerite, and siderite. The other constituents are barite, bastnaesite and perisite, quartz, and variable small quantities of crocidolite, biotite, phlogopite, chlorite, muscovite, apatite, iron oxides, fluorite, monazite, galena, allanite, sphene, pyrite, chalcopyrite, tetrahedrite, malachite, azurite, corussite, wulfenite, aragonite, and thorite. The rare earth oxide content in most of the carbonate rock is less than 13 percent, but in some local concentrations of bastnaesite the content is as high as 40 percent. The origin of the carbonate rocks and related potash-rich igneous rocks is considered in the light of similar associations of carbonate and alkalinic rocks in Sweden, Norway, Russia, South Africa, and the United States. The carbonate rock may have originated (1) as a pre-Cambrian limestone or evaporate sequence in the gneisses; (2) by reaction between magma and the Paleozoic dolomite and limestone overlying the pre-Cambrian complex; (3) by alteration of pre-Cambrian gneisses by emanations from an unknown deep-seated source; or (4) by differentiation of an alkaline magma from shonkinite to syenite to granite, leading to a final carbonate-rich fraction, containing the rare elements, which was emplaced either as a concentrated or a dilute solution. The fourth hypothesis is considered the most plausible.
NASA Astrophysics Data System (ADS)
Li, Z. X.; Powell, C. McA.
2001-04-01
In the last 1000 million years, Australia has been part of two supercontinents: Palaeozoic Gondwanaland and Neoproterozoic Rodinia. Neoproterozoic Australia was covered by shallow epicontinental seas, and, in the late Neoproterozoic, by low-latitude glaciers. The breakup of Rodinia along the Tasman Line occurred at the end of the Sturtian glaciation (760 Ma) giving rise to the Palaeo-Pacific Ocean. Gondwanaland formed in the Early Cambrian, at the same time as the Tarim block broke away from northwestern Australia. Westward subduction of the Palaeo-Pacific Ocean along the eastern margin of Australia-Antarctica commenced during the Early Cambrian in northern Victoria Land and in the Middle Cambrian in South Australia, and culminated to the Late Cambrian-Early Ordovician Ross-Delamerian Mountains. In the Ordovician, the magmatic arc retreated from Australia's then-eastern continental margin, forming a marginal sea and offshore island arc. A shallow seaway across Australia in the Late Cambrian and Ordovician gradually gave way to desert-like conditions in Central Australia and the adjacent Canning Basin by Silurian time. The Silurian to mid-Devonian was an interval of rapidly changing palaeogeography in eastern Australia with deep volcanogenic troughs formed in a dextral transtensional tectonic setting. Widespread deformation in the Tasman orogenic zone in the Middle Devonian to Early Carboniferous, was accompanied by the development of an Andean-style magmatic arc along the Pacific continental margin of Australia. The most widespread Phanerozoic mountain-building stage in Central Australia occurred in the Late Devonian to mid-Carboniferous, as part of a world-wide Variscan orogenic episode associated with the collision of Gondwanaland with Laurussia to form Pangea. In the late Visean, Australia drifted rapidly southward from previous low latitudes to a near-polar position. Glacial conditions dominated the Late Carboniferous and earliest Permian. Transtensional basins associated with dextral oroclinal shear along the Panthalassan eastern margin of Australia developed in the Late Carboniferous and persisted until the Late Permian, when an Andean-style magmatic arc was re-established. Large foreland basins inboard of the Late Permian to Early Triassic magmatic arc accumulated major coal deposits during Late Permian volcanic phases, but drastic climatic changes at the end of the Permian, possibly caused by global greenhouse conditions, led to red-bed deposition in the Early Triassic. Pangea began to rift in the mid-Triassic, and by the Late Triassic, the Cimmerian blocks, which lay off northwestern Australia throughout the Palaeozoic, had departed the northern margin of Gondwanaland. A new Andean-style continental magmatic arc became established along the Pacific Ocean margin of Australia. Breakup between Australia-Antarctica and the northern part of Greater India commenced ca. 130 Ma, and between Australia and Antarctica around 96 Ma. At the beginning of the Palaeogene, Australia commenced its northward drift towards its present position. Seafloor spreading between Australia and Antarctica was at first slow, but increased to ca. 5 cm per year around 45 Ma. By 35 Ma, the circum-Antarctic current became established, thereby triggering glaciation in Antarctica. Northern Australia reached the tropics by the beginning of the Miocene, and Australia has progressively moved northwards at 7 to 8 cm per year since.
Late-time Dust Emission from the Type IIn Supernova 1995N
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler D.
2013-05-01
Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly massive stars, either while in an extreme red supergiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG -02-38-017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer in 2010 (~15.6-16.0 yr after explosion) reveal a luminous (~2 × 107 L ⊙) source detected from 3.4 to 24 μm. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05-0.12 M ⊙ of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust.
The Contribution of Stellar Winds to Cosmic Ray Production
NASA Astrophysics Data System (ADS)
Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu
2018-04-01
Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.
Nali, Renato C; Zamudio, Kelly R; Haddad, Célio F B; Prado, Cynthia P A
2014-12-01
Sexual size dimorphism (SSD) varies in animals from male biased to female biased. The evolution of SSD is potentially influenced by a number of factors, such as territoriality, fecundity, and temporal breeding patterns (explosive vs. prolonged). In general, frogs show female-biased SSD with broad variance among species. Using comparative methods, we examine how different selective forces affect male and female sizes, and we test hypotheses about size-dependent mechanisms shaping SSD in frogs. Male size was weakly associated with SSD in all size classes, and we found no significant association among SSD, male size, temporal breeding pattern, and male territoriality. In contrast, female size best explained SSD variation across all size classes but especially for small-bodied species. We found a stronger evolutionary association between female body size and fecundity, and this fecundity advantage was highest in explosively breeding species. Our data indicate that the fecundity advantage associated with female body size may not be linear, such that intermediate and large females benefit less with body size increases. Therefore, size-dependent selection in females associated with fecundity and breeding patterns is an important mechanism driving SSD evolution in frogs. Our study underscores the fact that lineage-specific ecology and behavior should be incorporated in comparative analyses of animal SSD.
Zeng, Liping; Zhang, Ning; Zhang, Qiang; Endress, Peter K; Huang, Jie; Ma, Hong
2017-05-01
Explosive diversification is widespread in eukaryotes, making it difficult to resolve phylogenetic relationships. Eudicots contain c. 75% of extant flowering plants, are important for human livelihood and terrestrial ecosystems, and have probably experienced explosive diversifications. The eudicot phylogenetic relationships, especially among those of the Pentapetalae, remain unresolved. Here, we present a highly supported eudicot phylogeny and diversification rate shifts using 31 newly generated transcriptomes and 88 other datasets covering 70% of eudicot orders. A highly supported eudicot phylogeny divided Pentapetalae into two groups: one with rosids, Saxifragales, Vitales and Santalales; the other containing asterids, Caryophyllales and Dilleniaceae, with uncertainty for Berberidopsidales. Molecular clock analysis estimated that crown eudicots originated c. 146 Ma, considerably earlier than earliest tricolpate pollen fossils and most other molecular clock estimates, and Pentapetalae sequentially diverged into eight major lineages within c. 15 Myr. Two identified increases of diversification rate are located in the stems leading to Pentapetalae and asterids, and lagged behind the gamma hexaploidization. The nuclear genes from newly generated transcriptomes revealed a well-resolved eudicot phylogeny, sequential separation of major core eudicot lineages and temporal mode of diversifications, providing new insights into the evolutionary trend of morphologies and contributions to the diversification of eudicots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
An Analysis of Recent Major Breakups in he Low Earth Orbit Region
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Anz-Meador, P. D.
2010-01-01
Of the 190 known satellite breakups between 1961 and 2006, only one generated more than 500 cataloged fragments. The event was the explosion of the Pegasus Hydrazine Auxiliary Propulsion System in 1996, adding 713 fragments to the U.S. Satellite Catalog. Since the beginning of 2007; however, the near-Earth environment has been subjected to several major breakups, including the Fengyun-1C anti-satellite test and the explosion of Briz-M in 2007, the unusual breakup of Cosmos 2421 in 2008, and the collision between Iridium 33 and Cosmos 2251 in 2009. Combined, these events added more than 5000 large (> or equal 10 cm) fragments to the environment. Detailed analysis of the radar cross section measurements and orbit histories of the fragments from these major events reveals several unusual characteristics in their size and area-to-mass ratio distributions. The characteristics could be related to the material composition of the parent vehicles, the nature of the breakup, and the composition and physical property of the fragments. In addition, the majority of these fragments are expected to remain in orbit for at least decades. Their long-term impact to the environment is analyzed using the NASA orbital debris evolutionary model, LEGEND. Descriptions of these analyses and a summary are included in this paper.
Sterol and genomic analyses validate the sponge biomarker hypothesis.
Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E
2016-03-08
Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago.
Sterol and genomic analyses validate the sponge biomarker hypothesis
Gold, David A.; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki
2016-01-01
Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650–540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629
NASA Astrophysics Data System (ADS)
Svensen, H.; Planke, S.; Polozov, A.; Schmidbauer, N.
2006-12-01
Life on Earth was severely affected during the Permo-Triasic mass extinction. A 5-10º C global warming and oceanic anoxia accompanied the mass extinction. There is a consensus that massive volcanic eruptions from the Siberian Traps Large igneous province 251 million years ago played a key role in the environmental catastrophe. However, the actual mechanisms are strongly debated. We present new field, geochemical and experimental data that links both the mass extinction and the global warming to processes in the Tunguska Basin in Siberia. The basin is composed of dominantly Cambrian evaporates and Ordovician to Permian marine to terrestrial carbonates, sandstones, shales and coals. During the formation of the Siberian Traps, these sediments were intruded by magmatic sills and dykes. The emplacement resulted in heating of the sedimentary host rocks, gas generation and formation of hundreds of explosion pipes. The pipes are rooted in a 1-2 km thick evaporate sequence (halite, anhydrate, dolostone) and contain brecciated and altered sedimentary and magmatic rocks. Borehole data show intense alteration in the contact aureoles around sill intrusions and around the pipes. Heating experiments of hydrocarbon-bearing evaporates show that gases generated during metamorphism include CO2, SO2 and a range of halocarbons and sulfur-bearing hydrocarbon gases. Furthermore, chloride isotope data from the contact aureoles support a removal of Cl during metamorphism. Our results demonstrate that metamorphism and degassing from the Tunguska Basin provided the necessary components to cause an environmental disaster, including destruction of the Late Permian ozone layer.
NASA Astrophysics Data System (ADS)
Jiang, Y. D.; Schulmann, K.; Kröner, A.; Sun, M.; Lexa, O.; Janoušek, V.; Buriánek, D.; Yuan, C.; Hanžl, P.
2017-11-01
Neoproterozoic to early Paleozoic accretionary processes of the Central Asian Orogenic Belt have been evaluated so far mainly using the geology of ophiolites and/or magmatic arcs. Thus, the knowledge of the nature and evolution of associated sedimentary prisms remains fragmentary. We carried out an integrated geological, geochemical, and zircon U-Pb geochronological study on a giant Ordovician metasedimentary succession of the Mongolian Altai Mountains. This succession is characterized by dominant terrigenous components mixed with volcanogenic material. It is chemically immature, compositionally analogous to graywacke, and marked by significant input of felsic to intermediate arc components, pointing to an active continental margin depositional setting. Detrital zircon U-Pb ages suggest a source dominated by products of early Paleozoic magmatism prevailing during the Cambrian-Ordovician and culminating at circa 500 Ma. We propose that the Ordovician succession forms an "Altai sedimentary wedge," the evolution of which can be linked to the geodynamics of the margins of the Mongolian Precambrian Zavhan-Baydrag blocks. This involved subduction reversal from southward subduction of a passive continental margin (Early Cambrian) to the development of the "Ikh-Mongol Magmatic Arc System" and the giant Altai sedimentary wedge above a north dipping subduction zone (Late Cambrian-Ordovician). Such a dynamic process resembles the tectonic evolution of the peri-Pacific accretionary Terra Australis Orogen. A new model reconciling the Baikalian metamorphic belt along the southern Siberian Craton with peri-Pacific Altai accretionary systems fringing the Mongolian microcontinents is proposed to explain the Cambro-Ordovician geodynamic evolution of the Mongolian collage system.
Gravity and magnetic data in the vicinity of Virgin Valley, southern Nevada
Morin, Robert L.
2006-01-01
This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional ground-water flow systems, Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical ground-water model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting ground water from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards.
NASA Astrophysics Data System (ADS)
Wotte, Thomas; Strauss, Harald; Fugmann, Artur; Garbe-Schönberg, Dieter
2012-05-01
In this study, we present the first high-resolution data from coupled δ34S analyses of carbonate-associated sulfate (CAS) and chromium-reducible sulfur (CRS) from three Lower-Middle Cambrian sections in western Gondwana. CAS and CRS were extracted and analyzed from marine dolostone, limestone, and nodular limestone from Spanish and French successions. In parallel, carbonate samples were also analyzed for δ13Ccarb, δ18Ocarb, and major/trace element concentrations (Ca, Fe, Mg, Mn, Sr). δ34SCAS values vary between 17.6‰ and 33.2‰, with a maximum CAS concentration of ca. 900 ppm. δ34SCRS data show a similar broad range between -5.1‰ and 29.7‰, with maximal CRS contents up to ca. 3700 ppm. Notably, there is little stratigraphic variation in the δ34SCAS data in each of the sections confounding inter-basinal chemostratigraphic correlations. Nonetheless, the absolute differences in δ34SCAS between sections as well as variations in CAS and CRS concentrations are attributed to paleoenvironmental differences between proximal and distal parts of the carbonate ramp, as well as effects of subaerial exposure and riverine input. Thus, the generated δ34SCAS data deliver not only valuable paleoecological and paleoenvironmental information, they also illustrate a heterogeneity in the seawater sulfate sulfur isotopic composition of the western Gondwanan ocean. Consequently, the lack of correlation between our Gondwanan δ34SCAS data and time equivalent sections of Laurentia and Siberia is probably not only caused by the absence of an internationally accepted biostratigraphic correlation, but rather supports the view that sulfate was non-conservative anion in seawater during the Cambrian Period.
NASA Astrophysics Data System (ADS)
Cuen-Romero, F. J.; Valdez-Holguín, J. E.; Buitrón-Sánchez, B. E.; Monreal, R.; Enríquez-Ocaña, L. F.; Aguirre-Hinojosa, E.; Ochoa-Granillo, J. A.; Palafox-Reyes, J. J.
2018-04-01
A biostratigraphic analysis based on trilobites of the main Cambrian outcrops from Sonora, Mexico is performed. The data are based on a combination of field work and published sources, including four previously studied locations from northern and eastern Sonora (Caborca, Cananea, Mazatán, and Arivechi) as well as a new location in the central part of the state of Sonora (San José de Gracia). Chronostratigraphic positions are assigned to the Cambrian outcrops according to Peng et al., 2012 and Cohen et al., 2017. In the Caborca area, the Puerto Blanco, Proveedora, Buelna, Cerro Prieto, Arrojos and El Tren formations comprise a wide range of biozones, which starts from the Fritzaspis Zone until the Glossopleura walcotti Zone (Begadean-Lincolnian Series, global Stage 3-Stage 5, Series 2-Series 3). The Bolsa Quartzite and the Abrigo Limestone exposed in Cananea area are assigned to the Cedaria/Cedarina dakotaensis Zone until the Crepicephalus Zone (Lincolnian Series-Marjuman Stage, global Series 3-Guzhangian). In the San José de Gracia area, The Proveedora, Buelna, Cerro Prieto and El Gavilán formations range from the ?Bristolia mohavensis or ?Bristolia insolens zones until the upper part of Mexicella mexicana Zone, Albertella highlandensis Subzone (Series 2-Series 3, Stage 4-Stage 5). In the Arivechi area, the La Sata, El Mogallón, La Huerta and the Milpillas formations range from Poliella denticulata Zone to the Elvinia Zone (Lincolnian-Millardan, Delamaran-Steptoean, global Series 3-Furongian, Stage 5-Paibian). Paleozoic marine fauna distribution in northwest Mexico and the southwest United States of America, suggest that during this time an extensive faunal province existed, containing a great variety of marine invertebrates with notorious intraspecific affinity. The biotic association includes poriferans, archaeocyathids, brachiopods, mollusks, arthropods and echinoderms as predominant elements.
NASA Astrophysics Data System (ADS)
Gorter, John D.
The depositional history of 6 sequences encompassing 18 parasequence of the Late Cambrian to Early Ordovician age in the Amadeus Basin is presented in a seried of generalized paleogeographic maps. As some of the parasequence sets are known to host large deposits of oil and gas, a thorough understanding of the potential reservoir-source rock combinations in the Amadeus Basin is essential for the discovery of further oil and gas reserves in this vast, under-explored basin. The best reservoir rocks in the Pacoota Sandstone are concentrated above the major sequence boundary between the Wallaby and Tempe Vale sequences on the Central Ridge. Poorer reservoirs occur within other sequences (e.g., parasequence set 3 and 13). Parasequence set 3 reservoirs, localized on the Central Ridge, are generally poor but owe their reservoir character to weathering at the pre-Tempe Vale sequence unconformity. Parasequence set 13 reservoirs are also concenterated along the Central Ridge, where small-scale shoaling clastic cycles are better developed. Basal Stairway Sandstone reservoirs in the Mereenie area on the Central Ridge are generally very poor, due to the cementation of the clean sandstone, but should improve to the southwest due to lesser burial-induced silicification. The source potential of the major Arenig organic-rich sediments is concentrated in the transitional zone between parasequence sets 15 and 16. East of West Waterhouse 1 well, these parasequence sets have been eroded and there is no remaining source potential. The transitional source-rich zone is better developed on the Central Ridge than in the Missionary Plain Trough. The Central Ridge is therefore of prime importance in the localization of both reservoir and source rocks in the Late Cambrian and Early Ordovician section of the Amadeus Basin.
Detrital Record of Phanerozoic Tectonics in Iran: Evidence From U-Pb Zircon Geochronology
NASA Astrophysics Data System (ADS)
Horton, B. K.; Gillis, R. J.; Stockli, D. F.; Hassanzadeh, J.; Axen, G. J.; Grove, M.
2004-12-01
Ion-microprobe U-Pb ages of 91 detrital zircon grains supplement ongoing investigations of the tectonic history of Iran, a critical region bridging the gap between the Alpine and Himalayan orogenic belts. These data improve understanding of the distribution of continental blocks during a complex history of Late Proterozoic (Pan-African) crustal growth, Paleozoic passive-margin sedimentation, early Mesozoic collision with Eurasia, and Cenozoic collision with Arabia. U-Pb analyses of detrital zircon grains from four sandstone samples (two Lower Cambrian, one uppermost Triassic-Lower Jurassic, one Neogene) collected from the Alborz mountains of northern Iran reveal a spectrum of ages ranging from 50 to 2900 Ma. Most analyses yield concordant to moderately discordant ages. The Lower Cambrian Lalun and Barut sandstones yield age distribution peaks at approximately 550-650, 1000, and 2500 Ma, consistent with a Gondwanan source area presently to the south and west in parts of Iran and the Arabian-Nubian shield (Saudi Arabia and northwestern Africa). The uppermost Triassic-Lower Jurassic Shemshak Formation exhibits a broad range of U-Pb ages, including peaks of approximately 200-260, 330, 430, 600, and 1900 Ma, requiring a Eurasian source area presently to the north and east in the Turan plate (Turkmenistan and southwestern Asia). Neogene strata display both the youngest and oldest ages (approximately 50 and 2900 Ma) of any samples, a result of substantial sedimentary recycling of older Phanerozoic cover rocks. Because the youngest zircon ages for three of the four samples are indistinguishable from their stratigraphic (depositional) ages, these data suggest rapid exhumation and help constrain the termination age of Late Proterozoic-Early Cambrian (Pan-African) orogenesis and the timing of the Iran-Eurasia collision.
Kolodner, K.; Avigad, D.; McWilliams, M.; Wooden, J.L.; Weissbrod, T.; Feinstein, S.
2006-01-01
A vast sequence of quartz-rich sandstone was deposited over North Africa and Arabia during Early Palaeozoic times, in the aftermath of Neoproterozoic Pan-African orogeny and the amalgamation of Gondwana. This rock sequence forms a relatively thin sheet (1-3 km thick) that was transported over a very gentle slope and deposited over a huge area. The sense of transport indicates unroofing of Gondwana terranes but the exact provenance of the siliciclastic deposit remains unclear. Detrital zircons from Cambrian arkoses that immediately overlie the Neoproterozoic Arabian-Nubian Shield in Israel and Jordan yielded Neoproterozoic U-Pb ages (900-530 Ma), suggesting derivation from a proximal source such as the Arabian-Nubian Shield. A minor fraction of earliest Neoproterozoic and older age zircons was also detected. Upward in the section, the proportion of old zircons increases and reaches a maximum (40%) in the Ordovician strata of Jordan. The major earliest Neoproterozoic and older age groups detected are 0.95-1.1, 1.8-1.9 and 2.65-2.7 Ga, among which the 0.95-1.1 Ga group is ubiquitous and makes up as much as 27% in the Ordovician of Jordan, indicating it is a prominent component of the detrital zircon age spectra of northeast Gondwana. The pattern of zircon ages obtained in the present work reflects progressive blanketing of the northern Arabian-Nubian Shield by Cambrian-Ordovician sediments and an increasing contribution from a more distal source, possibly south of the Arabian-Nubian Shield. The significant changes in the zircon age signal reflect many hundreds of kilometres of southward migration of the provenance. ?? 2006 Cambridge University Press.
Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating
Avigad, D.; Kolodner, K.; McWilliams, M.; Persing, H.; Weissbrod, T.
2003-01-01
Voluminous Paleozoic sandstone sequences were deposited in northern Africa and Arabia following an extended Neoproterozoic orogenic cycle that culminated in the assembly of Gondwana. We measured sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages of detrital zircons separated from several Cambrian units in the Elat area of southern Israel in order to unravel their provenance. This sandstone forms the base of the widespread siliciclastic section now exposed on the periphery of the Arabian-Nubian shield in northeastern Africa and Arabia. Most of the detrital zircons we analyzed yielded Neoproterozoic concordant ages with a marked concentration at 0.55–0.65 Ga. The most likely provenance of the Neoproterozoic detritus is the Arabian-Nubian shield; 0.55–0.65 Ga was a time of posttectonic igneous activity, rift-related volcanism, and strike-slip faulting there. Of the zircons, 30% yielded pre-Neoproterozoic ages grouped at 0.9–1.1 Ga (Kibaran), 1.65–1.85 Ga, and 2.45–2.7 Ga. The majority of the pre-Neoproterozoic zircons underwent Pb loss, possibly as a consequence of the Pan-African orogeny resetting their provenance. Rocks of the Saharan metacraton and the southern Afif terrane in Saudi Arabia (∼1000 km south of Elat) are plausible sources of these zircons. Kibaran basement rocks are currently exposed more than 3000 km south of Elat (flanking the Mozambique belt), but the shape of the detrital zircons of that age and the presence of feldspar in the host sandstone are not fully consistent with such a long-distance transport. Reworking of Neoproteorozoic glacial detritus may explain the presence of Kibaran detrital zircons in the Cambrian of Elat, but the possibility that the Arabian-Nubian shield contains Kibaran rocks (hitherto not recognized) should also be explored.
Application of gamma spectrometry in the Kola peninsula (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovin, I.V.; Kolesnik, N.I.; Antipov, V.S.
1973-01-01
The methodology used and results obtained in gamma spectrometric studies of pre-Cambrian formations of some nickel-bearing regions of the Kola Penlnsula are described. The radioactive element contents of typical metamorphic and magmatic complexes and sulfide ores are presented. (au-trans)
Publications - PIR 2004-3 | Alaska Division of Geological & Geophysical
) Keywords Alaska, State of; Alluvial Deposits; Amy Creek Assemblage; Amy Dolomite; Ar-Ar; Bison Fossils ; Cambrian; Caribou Fossils; Cascaden Ridge Unit; Cenozoic; Colluvial Deposits; Cretaceous; Devonian ; Engineering Geology; Eolian; Fox Fossils; Geochemistry; Geochronology; Geologic Hazards; Geologic Materials
Geologic and anthropogenic factors influencing karst development in the Frederick region of Maryland
Brezinski, D.K.
2007-01-01
Karst features pervade the outcrop belts of Triassic, Ordovician, and Cambrian rocks in the Frederick Valley region of Maryland's western Piedmont. Detailed stratigraphic analysis and geologic and karst mapping demonstrate that individual stratigraphic units have differing susceptibilities of karst feature creation. Although the Triassic Leesburg Member of the Bull Run Formation and Rocky Springs Station Member of the Cambrian Frederick Formation have many surface depressions within their outcrop belts, the Lime Kiln Member of the Frederick Formation and the Ceresville, Fountain Rock, and Woodsboro members of the Ordovician Grove Formation have the greatest potential for development of catastrophic collapse sinkholes. Although these four members have the highest relative susceptibility, human activity can increase the potential for sinkhole activation in all units. Rerouting of surface drainage patterns, unlined drainage, and storm-water management areas and removal of significant overburden deposits significantly increase sinkhole development, but mainly, these units are inherently more susceptible to begin with. Copyright ?? 2007. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.
Eukaryotic organisms in Proterozoic oceans
Knoll, A.H; Javaux, E.J; Hewitt, D; Cohen, P
2006-01-01
The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800–1300 Myr old rocks. 1300–720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran–Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms. PMID:16754612
Dong, X.-P.; Bengtson, S.; Gostling, N.J.; Cunningham, J.A.; Harvey, T.H.P.; Kouchinsky, A.; Val'Kov, A.K.; Repetski, J.E.; Stampanoni, M.; Marone, F.; Donoghue, P.C.J.
2010-01-01
Markuelia is a vermiform, annulated introvertan animal known as embryonic fossils from the Lower Cambrian to Lower Ordovician. Analysis of an expanded and revised dataset for Introverta shows that the precise position of Markuelia within this clade is dependent on the taxa included. As a result, Markuelia is assigned to the scalidophoran total group to reflect uncertainty as to whether it is a stem-scalidophoran or a stem-priapulid. The taxonomy of the genus is revised to provide an improved taxonomic framework for material assigned to Markuelia. Five species are recognized: M. secunda Val'kov, M. hunanensis Dong and Donoghue, M. lauriei Haug et al., M. spinulifera sp. nov. and M. waloszeki sp. nov. Finally, the preservation of Markuelia is evaluated in the light of both the taphonomy of the fossil embryos themselves and the experimental taphonomy of the priapulid Priapulus caudatus, which has been proposed as both a close relative and an anatomical analogue of Markuelia. ?? The Palaeontological Association.
Ancient Lavas in Shenandoah National Park near Luray, Virginia
Reed, John Calvin
1969-01-01
In the Blue Ridge Province of northern Virginia, Maryland, and southern Pennsylvania, Lower Cambrian beds are underlain by a thick sequence of greenstone and interbedded sedimentary rocks known as the Catoctin Formation. An area near Luray, Va., was studied to determine the thickness of the formation, its relationship to overlying and underlying rocks, and the original nature of the lavas from which the Catoctin greenstone was derived. There the Catoctin Formation lies unconformably on granitic rocks. Its basal sedimentary layer ranges from a few inches to 150 feet in thickness and contains pebbles of underlying basement rocks. The erosion surface beneath the Catoctin is irregular, and in several places, hills as much as 1,000 feet high were buried beneath the Catoctin lavas. No important time break is indicated between the deposition of the Catoctin Formation and the overlying Cambrian sediments. The original Catoctin lavas were basaltic and were probably normal plateau basalts. Columnar joints, amygdules, sedimentary dikes, flow breccias low-dipping primary joints, and other primary structures are well preserved.
Kimberlite Wall Rock Fragmentation: Venetia K08 Pipe Development
NASA Astrophysics Data System (ADS)
Barnett, W.; Kurszlaukis, S.; Tait, M.; Dirks, P.
2009-05-01
Volcanic systems impose powerful disrupting forces on the country rock into which they intrude. The nature of the induced brittle deformation or fragmentation can be characteristic of the volcanic processes ongoing within the volcanic system, but are most typically partially removed or obscured by repeated, overprinting volcanic activity in mature pipes. Incompletely evolved pipes may therefore provide important evidence for the types and stages of wall rock fragmentation, and mechanical processes responsible for the fragmentation. Evidence for preserved stages of fragmentation is presented from a detailed study of the K08 pipe within the Cambrian Venetia kimberlite cluster, South Africa. This paper investigates the growth history of the K08 pipe and the mechanics of pipe development based on observations in the pit, drill core and thin sections, from geochemical analyses, particle size distribution analyses, and 3D modeling. Present open pit exposures of the K08 pipe comprise greater than 90% mega-breccia of country rock clasts (gneiss and schist) with <10% intruding, coherent kimberlite. Drill core shows that below about 225 m the CRB includes increasing quantities of kimberlite. The breccia clasts are angular, clast-supported with void or carbonate cement between the clasts. Average clast sizes define sub-horizontal layers tens of metres thick across the pipe. Structural and textural observations indicate the presence of zones of re-fragmentation or zones of brittle shearing. Breccia textural studies and fractal statistics on particle size distributions (PSD) is used to quantify sheared and non- sheared breccia zones. The calculated energy required to form the non-sheared breccia PSD implies an explosive early stage of fragmentation that pre-conditions the rock mass. The pre-conditioning would have been caused by explosions that are either phreatic or phreatomagmatic in nature. The explosions are likely to have been centered on a dyke, or pulses of preceding volatile-fluid phases, which have encountered a local hydrologically active fault. The explosions were inadequate in mechanical energy release (72% of a mine production blast) to eject material from the pipe, and the pipe may not have breached surface. The next stage of fragmentation is interpreted to have been an upward-moving collapse of the pre-conditioned hanging wall of a subterranean volcanic excavation. This would explain the mega-scale layering across the width of the breccia pipe. It must be questioned whether the preserved K08 architecture represents early pipe development in general, or is a special case of a late pipe geometry modification process. Previous literature describes sidewall and hanging wall caving processes elsewhere in the Venetia cluster and other kimberlites world wide. A requirement for emplacement models that include upward pipe growth processes is the availability of space (mass deficit at depth) into which the caving and/or dilating breccia can expand. It is possible that K08 might be connected to adjacent K02 at a depth somewhere below 400m, which would explain the presence of volcaniclastic kimberlite at depth within the K08 pipe. K08 is likely an incomplete ancillary sideward development to K02. The latest stage of brecciation is quantified through an observed evolution in the fractal dimension of the PSD. It is interpreted to be due to complex adjustments in volume in the pipe causing shearing and re-fragmentation of the breccia.
The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains.
Hughes, Colin E; Atchison, Guy W
2015-07-01
Alpine plant radiations are compared across the world's major mountain ranges and shown to be overwhelmingly young and fast, largely confined to the Pliocene and Pleistocene, and some of them apparently in the early explosive phase of radiation. Accelerated diversification triggered by island-like ecological opportunities following the final phases of mountain uplift, and in many cases enabled by the key adaptation of perennial habit, provides a general model for alpine plant radiations. Accelerated growth form evolution facilitated by perenniality provides compelling evidence of ecological release and suggests striking parallels between island-like alpine, and especially tropicalpine radiations, and island radiations more generally. These parallels suggest that the world's mountains offer an excellent comparative system for explaining evolutionary radiation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Publications - PIR 2004-3A | Alaska Division of Geological & Geophysical
; Bedrock; Bedrock Geology; Cambrian; Caribou Fossils; Cascaden Ridge Unit; Cenozoic; Colluvial Deposits ; Cretaceous; Devonian; Eolian; Fox Fossils; Generalized; Geochemistry; Geochronology; Geologic Map; Geology ; Holocene; Horse Fossils; Igneous Rocks; K-Ar; Livengood Bench; Livengood Dome Chert; Lost Creek Unit
Building Global Learning Communities through the Internet.
ERIC Educational Resources Information Center
Mende, Richard
From Spring 1995 to Spring 1996, Cambrian College, in Ontario (Canada), undertook a project to develop Canada's first full program using Internet technology. The major challenges accomplished included the selection of the program; adaptation of materials for digital delivery; selection of a delivery technology; faculty training; and program…
Saltzman, Matthew R.; Cowan, Clinton A.; Runkel, Anthony C.; Runnegar, Bruce; Stewart, Michael C.; Palmer, Allison R.
2004-01-01
Carbon isotope data from Upper Cambrian sections in three Laurentian basins in northern Utah, central Iowa, and western Newfoundland record a large positive ??13C excursion (SPICE event) of up to + 5???. Peak ??13C ratios are well dated by trilobite collections to the middle of the Steptoean Stage (Dunderbergia Zone) and occur during maximum regression associated with formation of the Sauk II-Sauk III subsequence boundary on the North American craton. Maximum regression was marked by an influx of quartz sand into carbonate-platform settings in all three widely separated basins. In northern Utah, this quartz sand formed a thick sequence known as the Worm Creek Quartzite, which marks a conspicuous interruption of carbonate deposition during the Middle to Late Cambrian in the region. In western Newfoundland, the thickness of the quartz sand unit is much reduced but still marks a brief shutdown of the carbonate factory that is unique to the Cambrian shelf succession of the area. In the central Iowa area of the cratonic interior, an upward-shallowing carbonate succession culminates in cross-stratified trilobite grainstones at the peak of the SPICE in Dunderbergia Zone time, and the lowest point on the relative-sea-level curve is associated with the occurrence of coarse quartz sand derived from the encroaching shoreface. Although it is difficult to determine precisely the departure from baseline ??13C that marks the beginning of the SPICE excursion in the stratigraphic successions analyzed, our results are consistent with a rise and subsequent fall in ??13C tracking a major regressive-transgressive event recorded across northern Laurentia. The correlation of a major ??13C excursion with regression is similar to that described for the Late Ordovician, for which the pattern has been attributed to either increased carbonate relative to terrigenous weathering rates as ice sheets covered up organic-matter-containing silicates at high latitudes or high productivity and organic-carbon burial driven by oceanic overturn. The lack of known Steptoean-age ice sheets that could have affected the ratio of carbonate to silicate weathering rates suggests that organic-carbon burial was the likely cause of the SPICE event. We suggest that increased weathering and erosion rates during relative sea-level fall (Sauk II-III) increased the burial fraction of organic carbon in an expanded region of fine-grained siliciclastic deposits in shelf and upper slope environments during the Steptoean. ?? 2004, SEPM (Society for Sedimentary Geology).
Dust formation at low metallicity
NASA Astrophysics Data System (ADS)
Ferrarotti, A. S.; Gail, H.-P.
Stars between 3Modot and 25Modot reach their final stages of stellar evolution either as AGB (asymptotic giant branch) stars and finally become white dwarfs, or end in a supernova explosion. The last evolutionary stages, shortly before the final state, are regularly accompanied by stellar winds which lead to substantial mass loss and develop optically very thick dust shells. Mass loss for smaller and medium sized stars higher up on the AGB depends predominantly on the metallicity of the star. For Pop I metallicity, the mass loss is caused by dust condensation. This process is not possible for stars of small Z. Thus, their final evolution strongly depends on the possibility of dust formation. Our research focuses on the dependence of dust formation of the first stellar generation on Z and on the initial mass of the star. Furthermore, we investigate when dust formation becomes possible in stellar winds and the effects this process has on the evolution of the star at the final evolutionary stages. With synthetic AGB evolution models some important issues in stellar evolution can tried to be answered: (1) mass loss on the AGB, (2) the shift of the limit (γ>1) for the onset of dust driven winds with Z and (3) the critical Z when dust formation becomes possible.
WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility
2017-01-01
Diverse eukaryotic cells crawl through complex environments using distinct modes of migration. To understand the underlying mechanisms and their evolutionary relationships, we must define each mode and identify its phenotypic and molecular markers. In this study, we focus on a widely dispersed migration mode characterized by dynamic actin-filled pseudopods that we call “α-motility.” Mining genomic data reveals a clear trend: only organisms with both WASP and SCAR/WAVE—activators of branched actin assembly—make actin-filled pseudopods. Although SCAR has been shown to drive pseudopod formation, WASP’s role in this process is controversial. We hypothesize that these genes collectively represent a genetic signature of α-motility because both are used for pseudopod formation. WASP depletion from human neutrophils confirms that both proteins are involved in explosive actin polymerization, pseudopod formation, and cell migration. WASP and WAVE also colocalize to dynamic signaling structures. Moreover, retention of WASP together with SCAR correctly predicts α-motility in disease-causing chytrid fungi, which we show crawl at >30 µm/min with actin-filled pseudopods. By focusing on one migration mode in many eukaryotes, we identify a genetic marker of pseudopod formation, the morphological feature of α-motility, providing evidence for a widely distributed mode of cell crawling with a single evolutionary origin. PMID:28473602
Missing link in the evolution of Hox clusters.
Ogishima, Soichi; Tanaka, Hiroshi
2007-01-31
Hox cluster has key roles in regulating the patterning of the antero-posterior axis in a metazoan embryo. It consists of the anterior, central and posterior genes; the central genes have been identified only in bilaterians, but not in cnidarians, and are responsible for archiving morphological complexity in bilaterian development. However, their evolutionary history has not been revealed, that is, there has been a "missing link". Here we show the evolutionary history of Hox clusters of 18 bilaterians and 2 cnidarians by using a new method, "motif-based reconstruction", examining the gain/loss processes of evolutionarily conserved sequences, "motifs", outside the homeodomain. We successfully identified the missing link in the evolution of Hox clusters between the cnidarian-bilaterian ancestor and the bilaterians as the ancestor of the central genes, which we call the proto-central gene. Exploring the correspondent gene with the proto-central gene, we found that one of the acoela Hox genes has the same motif repertory as that of the proto-central gene. This interesting finding suggests that the acoela Hox cluster corresponds with the missing link in the evolution of the Hox cluster between the cnidarian-bilaterian ancestor and the bilaterians. Our findings suggested that motif gains/diversifications led to the explosive diversity of the bilaterian body plan.
Pollination syndromes in African Marantaceae.
Ley, Alexandra C; Classen-Bockhoff, Regine
2009-07-01
The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The 'small (horizontal)' flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the 'large (horizontal)' and 'medium-sized (horizontal)' flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the 'locked (horizontal)' flowers by large bees (Xylocopa nigrita, X. varipes) and the '(large) vertical' flowers by sunbirds. The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints.
A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs
Pol, Diego; Rauhut, Oliver W. M.
2012-01-01
Abelisaurids are a clade of large, bizarre predatory dinosaurs, most notable for their high, short skulls and extremely reduced forelimbs. They were common in Gondwana during the Cretaceous, but exceedingly rare in the Northern Hemisphere. The oldest definitive abelisaurids so far come from the late Early Cretaceous of South America and Africa, and the early evolutionary history of the clade is still poorly known. Here, we report a new abelisaurid from the Middle Jurassic of Patagonia, Eoabelisaurus mefi gen. et sp. nov., which predates the so far oldest known secure member of this lineage by more than 40 Myr. The almost complete skeleton reveals the earliest evolutionary stages of the distinctive features of abelisaurids, such as the modification of the forelimb, which started with a reduction of the distal elements. The find underlines the explosive radiation of theropod dinosaurs in the Middle Jurassic and indicates an unexpected diversity of ceratosaurs at that time. The apparent endemism of abelisauroids to southern Gondwana during Pangean times might be due to the presence of a large, central Gondwanan desert. This indicates that, apart from continent-scale geography, aspects such as regional geography and climate are important to reconstruct the biogeographical history of Mesozoic vertebrates. PMID:22628475
Pollen--tiny and ephemeral but not forgotten: New ideas on their ecology and evolution.
Williams, Joseph H; Mazer, Susan J
2016-03-01
Ecologists and evolutionary biologists have been interested in the functional biology of pollen since the discovery in the 1800s that pollen grains encompass tiny plants (male gametophytes) that develop and produce sperm cells. After the discovery of double fertilization in flowering plants, botanists in the early 1900s were quick to explore the effects of temperature and maternal nutrients on pollen performance, while evolutionary biologists began studying the nature of haploid selection and pollen competition. A series of technical and theoretic developments have subsequently, but usually separately, expanded our knowledge of the nature of pollen performance and how it evolves. Today, there is a tremendous diversity of interests that touch on pollen performance, ranging from the ecological setting on the stigma, structural and physiological aspects of pollen germination and tube growth, the form of pollen competition and its role in sexual selection in plants, virus transmission, mating system evolution, and inbreeding depression. Given the explosion of technical knowledge of pollen cell biology, computer modeling, and new methods to deal with diversity in a phylogenetic context, we are now more than ever poised for a new era of research that includes complex functional traits that limit or enhance the evolution of these deceptively simple organisms. © 2016 Botanical Society of America.
Redescription of Spirodentalium Walcott ( Gastropoda: Late Cambrian) from Wisconsin ( USA).
Yochelson, E.L.
1987-01-01
Spirodentalium Walcott, 1890, was originally described as a scaphopod. A reinterpretation of the type lot suggests that its overall shape is that of an open-coiled gastropod. If so, this is probably the earliest known open-coiled form and it is sinistral in coiling direction. -Author
Cranberry magnetite deposits Avery County, N.C., and Carter County, Tenn.
Kline, M.H.; Ballard, T.J.
1948-01-01
The Cranberry magnetite deposits occur in pre-Cambrian granite-gneiss in a belt extending from 3 miles southeast of Cranberry, N.C., to about 6 miles southwest of Magnetic City, Tenn. The belt forms a curve, elongated to the north, approximately 26 miles in length.
Uniqueness Of docosahexaenoic acid: A master Of DNA and A Quantum gate
USDA-ARS?s Scientific Manuscript database
The fossil record displays the sudden appearance of intracellular detail and the 32 phyla in what is known as the “Cambrian Explosion” at about 600 million years ago. The intracellular structures were made with membrane lipids which provided for organisation and specialisation. Oxidative metabolism...
Ryder, R.T.; Burruss, R.C.; Hatch, J.R.
1998-01-01
Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician blcak shale (Utica and Antes shales) in the Appalachian basin. Moroever, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in the same source rocks. Oils from the Cambrian and Ordovician reservoirs have similar saturated hydrocarbon compositions, biomarker distributions, and carbon isotope signatures. Regional variations in the oils are attributed to differences in thermal maturation rather than to differences in source. Total organic carbon content, genetic potential, regional extent, and bitument extract geochemistry identify the balck shale of the Utica and Antes shales as the most plausible source of the oils. Other Cambrian and Ordovician shale and carbonate units, such as the Wells Creek formation, which rests on the Knox unconformity, and the Rome Formation and Conasauga Group in the Rome trough, are considered to be only local petroleum sources. Tmax, CAI, and pyrolysis yields from drill-hole cuttings and core indicate that the Utica Shale in eastern and central Ohio is mature with respect to oil generation. Burial, thermal, and hydrocarbon-generation history models suggest that much of the oil was generated from the Utica-Antes source in the late Paleozoic during the Alleghanian orogeny. A pervasive fracture network controlled by basement tectonics aided in the distribution of oil from the source to the trap. This fracture network permitted oil to move laterally and stratigraphically downsection through eastward-dipping, impermeable carbonate sequences to carrier zones such as the Middle Ordovician Knox unconformity, and to reservoirs such as porous dolomite in the Middle Ordovician Trenton Limestone in the Lima-Indiana field. Some of the oil and gas from the Utica-Antes source escaped vertically through a partially fractured, leaky Upper Ordovician shale seal into widespread Lower Silurian sandstone reservoirs.Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician black shale (Utica and Antes shales) in the Appalachian basin. Moreover, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in these same source rocks.
Volcanology of Tuzo pipe (Gahcho Kué cluster) — Root-diatreme processes re-interpreted
NASA Astrophysics Data System (ADS)
Seghedi, I.; Maicher, D.; Kurszlaukis, S.
2009-11-01
The Middle Cambrian (~ 540 Ma) Gahcho Kué Kimberlite Field is situated about 275 km ENE of Yellowknife, NWT, Canada. The kimberlites were emplaced into 2.6 Ga Archean granitic rocks of the Yellowknife Supergroup. Four larger kimberlite bodies (5034, Tesla, Tuzo, and Hearne) as well as a number of smaller pipes and associated sheets occur in the field. In plan view, the Tuzo pipe has a circular outline at the surface, and it widens towards deeper levels. The pipe infill consists of several types of coherent and fragmental kimberlite facies. Coherent or apparent coherent (possibly welded) kimberlite facies dominate at depth, but also occur at shallow levels, as dikes intruded late in the eruptive sequence or individual coherent kimberlite clasts. The central and shallower portions of the pipe consist of several fragmental kimberlite varieties that are texturally classified as Tuffisitic Kimberlites. The definition, geometry and extent of the geological units are complex and zones controlled by vertical elements are most significant. The fluidal outlines of some of the coherent kimberlite clasts suggest that at least some are the product of disruption of magma that was in a semi-plastic state or even of welded material. Ragged clasts at low levels are inferred to form part of a complex peperite-like system that intrudes the base of the root zone. A variable, often high abundance of local wall-rock xenoliths between and within the kimberlite phases is observed, varying in size from sub-millimeter to several tens of meters. Wall-rock fragments are common at all locations within the pipe but are especially frequent in a domain with a belt-like geometry between 120 and 200 m depth in the pipe. Steeply outward-dipping bedded deposits made up of wall-rock fragments occur in deep levels of the pipe and are especially common under the downward-widening roof segments. The gradational contact relationships of these deposits with the surrounding kimberlite-bearing rocks as well as their location suggest that they formed more-or-less in situ. Different breccia facies inside the pipe suggest an origin by slumping, grain flows, rock fall or pyroclastic deposition. The shape and facies architecture of the Tuzo pipe suggests that the studied section of the pipe lies at a root zone-diatreme transitional structural level. Composite coherent kimberlite clasts imply that recycling processes were active over time, while reworked wall-rock rich deposits and ductily-deformed clasts of welded kimberlite point to the presence of temporary cavities in the root zone. The emplacement of the Tuzo pipe did not occur in a single, violent explosion, but involved repetitive volcanic explosions alternating with periods of relative quiescence. The observed features are typical of phreatomagmatic processes, which may include phases of less-explosive magmatic activity.
Olesen, Jørgen; Haug, Joachim T; Maas, Andreas; Waloszek, Dieter
2011-09-01
The species-poor meiofaunal Cephalocarida have played an important role in discussions of the phylogeny and evolution of Crustacea since their discovery in 1955. One reason may be that the morphology of cephalocarids includes some aspects of putatively ancient appearance, such as the simple roof-shaped head shield, the anterior three head appendages resembling those of a nauplius larva, or the trunk-limb-like second maxilla. Cephalocarida have even been suggested to represent the sister taxon to all other Eucrustacea. Presence of possibly plesiomorphic characters, however, does not necessarily point to a basal position in the system. Growing evidence demonstrates that the modification of the fourth post-antennular cephalic appendage, the 'maxilla', into a "mouth part" may have occurred independently in the different eucrustacean lineages, so a trunk-limb-like maxilla is an ancient feature that does not hold only for cephalocarids. Retention of its plesiomorphic shape and function in the Cephalocarida remains, however, noteworthy. Cephalocarids are still little studied and incompletely known, especially their external morphology. By examining several adults and one young specimen of Lightiella monniotae Cals and Delamare Deboutteville, 1970 from New Caledonia, we aimed to a) document as many details as possible, and b) compare these data with other species of Cephalocarida. We also aimed to reconstruct aspects of the ground pattern of Cephalocarida, which is a pre-requisite for any comparisons in a broader perspective of crustacean phylogeny. Among the new findings or conclusions are: (1) Lightiella is in need of a revision since several assumed differences between the species are questionable or subject to intra-specific variability; (2) the cuticle of the trunk-limb basipod is sub-divided into a number of smaller sclerotized areas as in various exceptionally 3D preserved fossil crustaceans from Cambrian 'Orsten' faunal assemblages; (3) a small transitional portion on the post-maxillulary limbs in the area where the endopod and basipod connect is discussed as either a reduced, proximal endopod segment or as an evolutionary new joint of the basipod to enhance its flexibility; (4) the so-called pseud-epipod is interpreted as an outer branch of the exopod; (5) compared to 'Orsten' crustaceans many characters of the Cephalocarida are more modified than previously assumed, including the morphology of the trunk-limb basipod, and the unique, ring-shaped appearance of the abdominal segments. Also the development is not as plesiomorphic as sometimes assumed, at least not compared to that of the strictly anamorphic series of the 'Orsten' eucrustacean Rehbachiella kinnekullensis. The application of SEM techniques has again proved to be especially appropriate because of the small size of these animals, and because it permits direct comparisons with other similarly small crustaceans and the 'Orsten' crustaceans and their larvae. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Williams, George E.
2008-03-01
Sedimentological observations and palaeomagnetic data for Cryogenian glacial deposits present the climatic paradox of grounded glaciers and in situ cold climate near sea-level, glaciomarine deposition, and accompanying large (up to 40 °C) seasonal changes of temperature, all in low to near-equatorial (< 10°) palaeolatitudes (equated with geographic latitudes). Neither the "snowball Earth" nor the "slushball Earth" hypothesis can account for such strong seasonality near the palaeoequator, which together with findings from sedimentology, chemostratigraphy, biogeochemistry, micropalaeontology, geochronology and climate modelling argue against those scenarios. An alternative explanation of glaciation and strong seasonality in low palaeolatitudes is offered by a high (> 54°) obliquity of the ecliptic, which would render the equator cooler than the poles, on average, and amplify global seasonality. A high obliquity per se would not have been a primary trigger for glaciation, but would have strongly influenced the latitudinal distribution of glaciers. The principle of low-latitude glaciation on a terrestrial planet with high obliquity is validated by theoretical studies and observations of Mars. A high obliquity for the early Earth is a likely outcome of a single giant impact at 4.5 Ga, the widely favoured mechanism for lunar origin. This implies that a high obliquity could have prevailed during most of the Precambrian, controlling the low palaeolatitude of glaciations in the early and late Palaeoproterozoic and Cryogenian. It is postulated that the obliquity changed to < 54° between the termination of the last Cryogenian low-palaeolatitude glaciation at ≤ 635 Ma and the initiation of Late Ordovician-Early Silurian circum-polar glaciation at 445 Ma. The High Obliquity, Low-latitude Ice, STrong seasonality (HOLIST) hypothesis for pre-Ediacaran glaciation emerges favourably from numerous glacial and non-glacial tests. The hypothesis is in accord with such established or implied features of Cryogenian glaciogenic successions as extensive and long-lived open seas, an active hydrological cycle, aridity and palaeowesterly (reversed zonal) winds in low palaeolatitudes, and the apparent diachronism or non-correlation of some low-palaeolatitude glaciations. A pre-Ediacaran high obliquity also offers a viable solution of the faint young Sun paradox of a warm Archaean Earth. Furthermore, reduction of obliquity during the Ediacaran-early Palaeozoic would have yielded a more habitable globe with much reduced seasonal stresses and may have been an important factor influencing the unique evolutionary events of the Ediacaran and Cambrian. The palaeolatitudinal distribution of evaporites cannot discriminate unambiguously between high- and low-obliquity states for the pre-Ediacaran Earth. Intervals of true polar wander such as postulated by others for the Ediacaran and Early Cambrian imply major mass-redistributions within the Earth at those times, which may provide a potential mechanism for reducing the obliquity during the Ediacaran-early Palaeozoic.
Star formation in shells of colliding multi-SNe bubbles
NASA Astrophysics Data System (ADS)
Vasiliev, Evgenii O.; Shchekinov, Yuri A.
2017-12-01
It is believed that when bubbles formed by multiple supernovae explosions interact with one another, they stimulate star formation in overlapping shells. We consider the evolution of a shocked layer formed by the collision of two identical bubbles each of which originated from OB clusters of ˜ 50 members and ˜ 50 pc. The clusters are separated by 200-400 pc.We found that depending on evolutionary status of colliding bubbles the shocked layer can either be destroyed into diffuse lumps, or be fragmented into dense clumps: the former occurs in collisions of young bubbles with continuing supernovae explosions, and the latter occurs in older bubble interactions.We argue that fragmentation efficiency in shells depends on external heating: for a heating rate <˜ 1.7×10-24 erg s-1 the number of fragments formed in a collision of two old bubbles reaches several tens at t ˜ 4 Myr, while a heating rate >˜ 7 × 10-24 erg s-1 prevents fragmentation. The clumps formed in freely expanding parts of bubbles are gradually destroyed and disappear on t <˜ 1 Myr,whereas those formed in the overlapping shells survive much longer. Because of this the number of fragments in an isolated bubble begins to decrease after reaching a maximum, while in collision of two old bubbles it fluctuates around 60-70 until longer than t ˜ 5 Myr.
NASA Astrophysics Data System (ADS)
Gordadze, G. N.; Kerimov, V. Yu.; Gaiduk, A. V.; Giruts, M. V.; Lobusev, M. A.; Serov, S. G.; Kuznetsov, N. B.; Romanyuk, T. V.
2018-02-01
The results of geochemical study of samples from Riphean-Lower Paleozoic rocks enriched in organic matter (the rocks most likely parental for oil) from the southern part of the Siberian Platform are reported.
At Stake: 500,000,000 Years of Life
ERIC Educational Resources Information Center
Asimov, Isaac
1972-01-01
Traces the history of life on earth from the Cambrian period to present. Stresses the importance of inter-dependence of individual and species and the dependence of life upon non-life. Discusses the speed at which man has altered nature's balance and the question of how an ecological balance is to be maintained. (LK)
ERIC Educational Resources Information Center
Blow, Deborah; McConnell, Sandy
2012-01-01
At Cambrian School District, educators are trying a new approach as they investigate new technologies. Rather than roll out a one-size-fits-all mandate that one will use this new "box," which may also sit gathering dust, they have implemented a new model. Early in the last school year they announced the Digital Media Academy, and in…
ATLAS of Microorganisms from Ancient Phosphorites of Khubsugul (Mongolia)
NASA Technical Reports Server (NTRS)
Zhengallo, Elena A.; Rozanov, Alexei Yu.; Ushatinskaya, Galina T.; Hoover, Richard B.; Gerasimenko, Ludmila M.; Ragozina, Alla L.
2000-01-01
A photographic atlas of scanning electron microscope (SEM) images of Cambrian (Tommotian) microfossils from the phosphorites of Khubsugul Mongolia is presented. SEM images of modern cyanobacteria and bacteria are provided for comparison. The importance of bacterial fossils and morphological biomarkers to astrobiology and the understanding of the origin of phosphorites is considered.
Hayes, Timothy S.; Palmer, James R.; Pratt, Walden P.; Krizanich, Gary; Whitfield, John W.; Seeger, Cheryl M.
1997-01-01
These cross sections are the fifth publication in a folio of maps of the Harrison 1° x 2° quadrangle, Missouri and Arkansas, prepared under the Conterminous United States Mineral Assessment Program (CUSMAP). Previously published maps in this folio relate to the geochemistry of the subsurface carbonate rocks (Erickson and others, 1989), the geophysics of the basement terranes (McCafferty and others, 1989), the sedimentary rocks and mineralization of the Caulfield district (Hayes and others, 1992), the mineral resource potential of the quadrangle (Pratt and others, 1993), and the bedrock geology of the quadrangle (Middendorf and others, 1994 and in press). A final set of maps showing locations of known Mississippi Valley-type deposits and occurrences relative to Late Cambrian shaly lithofacies and other shales in the Harrison and adjoining quadrangle is in preparation (Palmer and Hayes, in press).
Brezinski, David K.; Taylor, John F.; Repetski, John E.; Loch, James D.
2015-01-01
deposited within the Pennsylvania and Maryland portion of the Great American Carbonate Bank. From the Early Cambrian (Dyeran) through Late Ordovician (Turinan), the Laurentian paleocontinent was rimmed by an extensive carbonate platform. During this protracted period of time, a succession of carbonate rock, more than two miles thick, was deposited in Maryland and Pennsylvania. These strata are now exposed in the Nittany arch of central Pennsylvania; the Great Valley of Pennsylvania, Maryland, and Virginia; and the Conestoga and Frederick Valleys of eastern Pennsylvania and Maryland. This fi eld trip will visit key outcrops that illustrate the varied depositional styles and environmental settings that prevailed at different times within the Pennsylvania reentrant portion of the Great American Carbonate Bank. In particular, we will contrast the timing and pattern of sedimentation in off-shelf (Frederick Valley), outer-shelf (Great Valley), and inner-shelf (Nittany arch) deposits. The deposition was controlled primarily by eustasy through the Cambrian and Early Ordovician (within the Sauk megasequence), but was strongly infl uenced later by the onset of Taconic orogenesis during deposition of the Tippecanoe megasequence.
Eoff, Jennifer D.
2014-01-01
The Furongian (Upper Cambrian; Jiangshanian and Sunwaptan) Tunnel City Group (Lone Rock Formation and Mazomanie Formation), exposed in Wisconsin and Minnesota, represents a shallow-marine clastic environment during a time of exceptionally high sea level. Lithofacies from shoreface to transitional-offshore settings document deposition in a wave- and storm-dominated sea. Flooding of the cratonic interior was associated with formation of a condensed section and the extensive development of microbial mats. Biolamination, mat fragments, wrinkle structures, and syneresis cracks are preserved in various sandstone facies of the Lone Rock Formation, as is evidence for the cohesive behavior of sand. These microbial-induced sedimentary structures (MISS) provide unique signals of biological–physical processes that physical structures alone cannot mimic. The MISS are associated with a trilobite extinction event in the Steptoean–Sunwaptan boundary interval. This may support recent claims that Phanerozoic microbial mats were opportunistic disaster forms that flourished during periods of faunal turnover. Further investigation of stratigraphic, taphonomic, and other potential biases, however, is needed to fully test this hypothesis.
Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.
Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J
2006-01-01
Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.
Indigenous Precambrian petroleum revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, G.E.; Kaczor, M.J.; McArthur, R.E.
1980-10-01
Irrefutable evidence of fossil remains from Precambrian sediments and proved petroleum reserves in upper Proterozoic (Riphean-Vendian) strata of the Irkutsk basin, USSR, suggest that unmetamorphosed Precambrian sedimentary rocks should be a focus for hydrocarbon exploration. Since 1965, a dramatic increase in publications which document worldwide occurrences of Precambrian life forms discloses that, by the end of the Proterozoic, organic evolution had produced diversified assemblages of relatively highly developed macroorganisms and microorganisms. Some of these organisms have generated crude oil in the Nonesuch Shale of northern Michigan and kerogen in stromatolitic carbonate rocks in Africa Kerogen has been extracted from approx.more » 2300-m.y. old Transvaal (Africa) stromatolitic limestone containing coccoid and complex filamentous cyanophytes. Also, aromatic and aliphatic hydrocarbons have been obtained from the approx. 2800-m.y. old Bulawayan stromatolitic limestone of Rhodesia. Additional evidence indicates that commercial reserves of petroleum from Precambrian strata are possible. An oil discovery in Lower Cambrian rocks in 1962, at Markovo in the Irkutsk basin of the Siberian platform area, led to four noncommercial and eight commercial fields producing from Lower Cambrian and Upper Proterozoic strata.« less
Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome
Rahman, Imran A.; Zamora, Samuel; Falkingham, Peter L.; Phillips, Jeremy C.
2015-01-01
Reconstructing the feeding mode of the latest common ancestor of deuterostomes is key to elucidating the early evolution of feeding in chordates and allied phyla; however, it is debated whether the ancestral deuterostome was a tentaculate feeder or a pharyngeal filter feeder. To address this, we evaluated the hydrodynamics of feeding in a group of fossil stem-group echinoderms (cinctans) using computational fluid dynamics. We simulated water flow past three-dimensional digital models of a Cambrian fossil cinctan in a range of possible life positions, adopting both passive tentacular feeding and active pharyngeal filter feeding. The results demonstrate that an orientation with the mouth facing downstream of the current was optimal for drag and lift reduction. Moreover, they show that there was almost no flow to the mouth and associated marginal groove under simulations of passive feeding, whereas considerable flow towards the animal was observed for active feeding, which would have enhanced the transport of suspended particles to the mouth. This strongly suggests that cinctans were active pharyngeal filter feeders, like modern enteropneust hemichordates and urochordates, indicating that the ancestral deuterostome employed a similar feeding strategy. PMID:26511049
Cambrian-Ordovician Knox production in Ohio: Three case studies of structural-stratigraphic traps
Riley, R.A.; Wicks, J.; Thomas, Joan
2002-01-01
The Knox Dolomite (Cambrian-Ordovician) in Ohio consists of a mixed carbonate-siliciclastic sequence deposited in a tidal-flat to shallow-marine environment along a broad continental shelf. Knox hydrocarbon production occurs in porous sandstone and dolomite reservoirs in the Copper Ridge dolomite, Rose Run sandstone, and Beekmantown dolomite. In Ohio, historical Knox exploration and development have been focused on paleogeomorphic traps within the prolific Morrow Consolidated field, and more recently, within and adjacent to the Rose Run subcrop. Although these paleogeomorphic traps have yielded significant Knox production, structural and stratigraphic traps are being largely ignored. Three Knox-producing pools demonstrate structural and stratigraphic traps: the Birmingham-Erie pool in southern Erie and southwestern Lorain counties, the South Canaan pool in northern Wayne County, and the East Randolph pool in south-central Portage County. Enhanced porosity and permeability from fractures, as evident in the East Randolph pool, are also an underexplored mechanism for Knox hydrocarbon accumulation. An estimated 800 bcf of gas from undiscovered Knox resources makes the Knox one of the most attractive plays in the Appalachian basin.
A molecular palaeobiological exploration of arthropod terrestrialization
Carton, Robert; Edgecombe, Gregory D.
2016-01-01
Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830
Darwin and the origin of life: public versus private science.
Strick, James E
2009-12-01
In the first twenty years after the publication of Darwin's On the Origin of Species, an intense debate took place within the ranks of Darwin's supporters over exactly what his theory implied about the means by which the original living organism formed on Earth. Many supporters of evolutionary science also supported the doctrine of spontaneous generation: life forming from nonliving material not just once but many times up to the present day. Darwin was ambivalent on this topic. He feared its explosive potential to drive away liberal-minded Christians who might otherwise be supporters. His ambivalent wording created still more confusion, both among friends and foes, about what Darwin actually believed about the origin of life. A famous lecture by Thomas H. Huxley in 1870 set forth what later became the 'party line' Darwinian position on the subject.
The impact of supernova fragments on the evolution of multisupernova remnants
NASA Technical Reports Server (NTRS)
Franco, J.; Ferrara, A.; Rozyczka, M.; Tenorio-Tgale, G.; Cox, D. P.
1993-01-01
Analytical approximations and 2D hydrodynamical simulations are used to examine the interaction of supernova fragments with the internal structure of large multisupernova remnants (MSRs). The fragments are thermalized by reverse shocks generated in the interaction with the MSR interior, which is assumed to be hot and rarefied. The evolution is divided into two stages: before and after reaching a reference distance, R(E), from the explosion site. As the density of the expanding fragment drops, the reverse shock accelerates, and, when the distance R(E) is reached, it begins to effectively erode the fragment. At some selected evolutionary times, the X-ray emission from the shocked fragment is also calculated. The direct bombardment of the MRS shell by the shocked fragment has a series of important consequences: it excites, punctures, and deforms the expanding shell.
Computational Architecture of the Granular Layer of Cerebellum-Like Structures.
Bratby, Peter; Sneyd, James; Montgomery, John
2017-02-01
In the adaptive filter model of the cerebellum, the granular layer performs a recoding which expands incoming mossy fibre signals into a temporally diverse set of basis signals. The underlying neural mechanism is not well understood, although various mechanisms have been proposed, including delay lines, spectral timing and echo state networks. Here, we develop a computational simulation based on a network of leaky integrator neurons, and an adaptive filter performance measure, which allows candidate mechanisms to be compared. We demonstrate that increasing the circuit complexity improves adaptive filter performance, and relate this to evolutionary innovations in the cerebellum and cerebellum-like structures in sharks and electric fish. We show how recurrence enables an increase in basis signal duration, which suggest a possible explanation for the explosion in granule cell numbers in the mammalian cerebellum.
Chen, Xiaoli; Zhou, Ye; Roy, Vellaisamy A L; Han, Su-Ting
2018-01-01
Because of current fabrication limitations, miniaturizing nonvolatile memory devices for managing the explosive increase in big data is challenging. Molecular memories constitute a promising candidate for next-generation memories because their properties can be readily modulated through chemical synthesis. Moreover, these memories can be fabricated through mild solution processing, which can be easily scaled up. Among the various materials, polyoxometalate (POM) molecules have attracted considerable attention for use as novel data-storage nodes for nonvolatile memories. Here, an overview of recent advances in the development of POMs for nonvolatile memories is presented. The general background knowledge of the structure and property diversity of POMs is also summarized. Finally, the challenges and perspectives in the application of POMs in memories are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Newman, Stuart A.; Bhat, Ramray
2008-03-01
The shapes and forms of multicellular organisms arise by the generation of new cell states and types and changes in the numbers and rearrangements of the various kinds of cells. While morphogenesis and pattern formation in all animal species are widely recognized to be mediated by the gene products of an evolutionarily conserved 'developmental-genetic toolkit', the link between these molecular players and the physics underlying these processes has been generally ignored. This paper introduces the concept of 'dynamical patterning modules' (DPMs), units consisting of one or more products of the 'toolkit' genes that mobilize physical processes characteristic of chemically and mechanically excitable meso- to macroscopic systems such as cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on lateral inhibition and multistable and oscillatory dynamics. We suggest that ancient toolkit gene products, most predating the emergence of multicellularity, assumed novel morphogenetic functions due to change in the scale and context inherent to multicellularity. We show that DPMs, acting individually and in concert with each other, constitute a 'pattern language' capable of generating all metazoan body plans and organ forms. The physical dimension of developmental causation implies that multicellular forms during the explosive radiation of animal body plans in the middle Cambrian, approximately 530 million years ago, could have explored an extensive morphospace without concomitant genotypic change or selection for adaptation. The morphologically plastic body plans and organ forms generated by DPMs, and their ontogenetic trajectories, would subsequently have been stabilized and consolidated by natural selection and genetic drift. This perspective also solves the apparent 'molecular homology-analogy paradox', whereby widely divergent modern animal types utilize the same molecular toolkit during development by proposing, in contrast to the Neo-Darwinian principle, that phenotypic disparity early in evolution occurred in advance of, rather than closely tracked, genotypic change.
NASA Astrophysics Data System (ADS)
Bath Enright, Orla; Minter, Nicholas; Sumner, Esther; Mángano, Gabriela; Buatois, Luis
2016-04-01
Annular flume tank experiments offer unique opportunities to be able to investigate the effect of transport on a range of organisms; being able to create slow to fast sediment-laden flows that can be laminar to fully turbulent, and lasting over durations of minutes to hours. Understanding the effects of transport on the preservation potential of different organisms is fundamental to the study of palaeoecology. Despite this, the sedimentological processes leading up to fossil entombment remain largely overlooked. This is especially significant for fossil lagerstätte such as the Burgess Shale, whose exquisite fossil preservation has enabled insights into the anatomy of early soft-bodied organisms and their evolution during the Cambrian explosion. However there is still a fundamental debate with regards to the transport these organisms have undergone. Namely, whether they were living within or close to the environment of deposition, or could they have been transported from one environment to another? As such, does the Burgess Shale biota represent a palaeocommunity or not? To explore the limits of the effect of transport, initial experiments have been designed using an annular flume tank in order to test the influence of fully turbulent sandy suspensions (75-250μm) on organism preservation. This is a three factorial design where the three independent variables are transport duration, sediment concentration and grain angularity. In all experiments, flow velocity was kept constant along with controls on pH and salinity. The dependent variable, an index of "increasing state of damage" has been devised to classify the amount of destruction each organism exhibits after the experimental procedure. Results are presented here. From observations such as these, we can begin to set constraints on the amount of transport, if any, that these fossil organisms could have endured.
Rebscher, Nicole; Deichmann, Christina; Sudhop, Stefanie; Fritzenwanker, Jens Holger; Green, Stephen; Hassel, Monika
2009-10-01
We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.
Driese, S.G.; Medaris, L.G.; Ren, M.; Runkel, Anthony C.; Langford, R.P.
2007-01-01
Unconformable surfaces separating Precambrian crystalline basement and overlying Proterozoic to Cambrian sedimentary rocks provide an exceptional opportunity to examine the role of primitive soil ecosystems in weathering and resultant formation of saprolite (weathered rock retaining rock structure) and regolith (weathered rock without rock structure), but many appear to have been affected by burial diagenesis and hydrothermal fluid flow, leading some researchers to discount their suitability for such studies. We examine one modern weathering profile (Cecil series), four Cambrian paleoweathering profiles from the North American craton (Squaw Creek, Franklin Mountains, Core SQ-8, and Core 4), one Neoproterozoic profile (Sheigra), and one late Paleoproterozoic profile (Baraboo), to test the hypothesis that these paleoweathering profiles do provide evidence of primitive terrestrial weathering despite their diagenetic and hydrothermal overprinting, especially additions of potassium. We employ an integrated approach using (1) detailed thin-section investigations to identify characteristic pedogenic features associated with saprolitization and formation of well-drained regoliths, (2) electron microprobe analysis to identify specific weathered and new mineral phases, and (3) geochemical mass balance techniques to characterize volume changes during weathering and elemental gains and losses of major and minor elements relative to the inferred parent materials. There is strong pedogenic evidence of paleoweathering, such as clay illuviation, sepic-plasmic fabrics, redoximorphic features, and dissolution and alteration of feldspars and mafic minerals to kaolinite, gibbsite, and Fe oxides, as well as geochemical evidence, such as whole-rock losses of Na, Ca, Mg, Si, Sr, Fe, and Mn greater than in modern profiles. Evidence of diagenesis includes net additions of K, Ba, and Rb determined through geochemical mass balance, K-feldspar overgrowths in overlying sandstone sections, and K-feldspars with reaction rims in weathered basement. The sub-Cambrian paleoweathering profiles formed on granite are remarkably similar to modern weathering profiles formed on granite, in spite of overprinting by potassium diagenesis. ?? 2007 by The University of Chicago. All rights reserved.
NASA Astrophysics Data System (ADS)
McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.
2015-12-01
Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the Chilenia terrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aylor, J.G. Jr.; Tull, J.F.
1993-03-01
The Lower Cambrian Chilhowee Group (CG) along the Blue Ridge (BR) foreland boundary may also be represented in more internal parts of the orogen. The relative palinspastic positions of these more internal CG( ) sequences are poorly constrained, but they are believed to represent more outboard facies than those along the frontal BR. Although correlation with CG rocks of the frontal BR is indefinite due to metamorphism and polydeformation, correlative sequences may include the cover of the Corbin and Salem Church gneisses (Pinelog Fm.), Grandfather Mountain window, Murphy belt (MB) (Hiwassee River Group), Tallulah and Toxaway domes (TTD) (quartzite-schist membermore » of the Tallulah Falls Fm.), Pine Mountain window (Hollis Quartzite), and Sauratown Mountains window (Hogan Creek and Sauratown Fms.). The CG is generally bounded on the west by the Great Smoky fault. Siliciclastics of the CG represent stacked, coarsening upward sequences, separated by transgressive facies, and capped by a highstand of the Shady Dolomite or its equivalents. CG correlations in the Kahatchee Mountain Group of the Talladega belt and the siliciclastics in the Hiwassee River Group of the MB are supported by fossil constraints. Other units are correlated with CG based upon intimate associations with marble believed to be equivalent to the overlying Lower Cambrian Shady Dolomite, or upon presumed uncomformable relationships above Grenville basement. The CG averages about 1,260 meters thickness at the frontal BR, whereas lower siliciclastics in the MB average 1,830 meters. The Pinelog Fm. is up to 600 meters thick. The Hollis Quartzite is approximately 325 meters thick, and the estimated thickness of the quartz-schist member at Tallulah Falls is up to 900 meters. More distal siliciclastics of the central BR in the MB and distal siliciclastics overlying basement were deposited farther out on the shelf as stratigraphic, litho-facies equivalents of shallower marine and continental deposits of the CG.« less
Gallagher, M; Turner, E C; Kamber, B S
2015-07-01
Pre-Cambrian atmospheric and oceanic redox evolutions are expressed in the inventory of redox-sensitive trace metals in marine sedimentary rocks. Most of the currently available information was derived from deep-water sedimentary rocks (black shale/banded iron formation). Many of the studied trace metals (e.g. Mo, U, Ni and Co) are sensitive to the composition of the exposed land surface and prevailing weathering style, and their oceanic inventory ultimately depends on the terrestrial flux. The validity of claims for increased/decreased terrestrial fluxes has remained untested as far as the shallow-marine environment is concerned. Here, the first systematic study of trace metal inventories of the shallow-marine environment by analysis of microbial carbonate-hosted pyrite, from ca. 2.65-0.52 Ga, is presented. A petrographic survey revealed a first-order difference in preservation of early diagenetic pyrite. Microbial carbonates formed before the 2.4 Ga great oxygenation event (GOE) are much richer in pyrite and contain pyrite grains of greater morphological variability but lesser chemical substitution than samples deposited after the GOE. This disparity in pyrite abundance and morphology is mirrored by the qualitative degree of preservation of organic matter (largely as kerogen). Thus, it seems that in microbial carbonates, pyrite formation and preservation were related to presence and preservation of organic C. Several redox-sensitive trace metals show interpretable temporal trends supporting earlier proposals derived from deep-water sedimentary rocks. Most notably, the shallow-water pyrite confirms a rise in the oceanic Mo inventory across the pre-Cambrian-Cambrian boundary, implying the establishment of efficient deep-ocean ventilation. The carbonate-hosted pyrite also confirms the Neoarchaean and early Palaeoproterozoic ocean had higher Ni concentration, which can now more firmly be attributed to a greater proportion of magnesian volcanic rock on land rather than a stronger hydrothermal flux of Ni. Additionally, systematic trends are reported for Co, As, and Zn, relating to terrestrial flux and oceanic productivity. © 2015 John Wiley & Sons Ltd.
A New Stalked Filter-Feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada
O'Brien, Lorna J.; Caron, Jean-Bernard
2012-01-01
Burgess Shale-type deposits provide invaluable insights into the early evolution of body plans and the ecological structure of Cambrian communities, but a number of species, continue to defy phylogenetic interpretations. Here we extend this list to include a new soft-bodied animal, Siphusauctum gregarium n. gen. and n. sp., from the Tulip Beds (Campsite Cliff Shale Member, Burgess Shale Formation) of Mount Stephen (Yoho National Park, British Columbia). With 1,133 specimens collected, S. gregarium is clearly the most abundant animal from this locality. This stalked animal (reaching at least 20 cm in length), has a large ovoid calyx connected to a narrow bilayered stem and a small flattened or bulb-like holdfast. The calyx is enclosed by a flexible sheath with six small openings at the base, and a central terminal anus near the top encircled by indistinct openings. A prominent organ, represented by six radially symmetrical segments with comb-like elements, surrounds an internal body cavity with a large stomach, conical median gut and straight intestine. Siphusauctum gregarium was probably an active filter-feeder, with water passing through the calyx openings, capturing food particles with its comb-like elements. It often occurs in large assemblages on single bedding planes suggesting a gregarious lifestyle, with the animal living in high tier clusters. These were probably buried en masse more or less in-situ by rapid mud flow events. Siphusauctum gregarium resembles Dinomischus, another Cambrian enigmatic stalked animal. Principal points of comparison include a long stem with a calyx containing a visceral mass and bract-like elements, and a similar lifestyle albeit occupying different tiering levels. The presence in both animals of a digestive tract with a potential stomach and anus suggest a grade of organization within bilaterians, but relationships with extant phyla are not straightforward. Thus, the broader affinities of S. gregarium remain largely unconstrained. PMID:22279532
Coking-coal deposits of the western United States
Berryhill, Louise R.; Averitt, Paul
1951-01-01
Geohydrologic systems in the Anadarko basin in the central United States are controlled by topography, climate, geologic structures, and aquifer hydraulic properties, all of which are the result of past geologic and hydrologic processes, including tectonics and diagenesis. From Late Cambrian through Middle Ordovician time, a generally transgressive but cyclic sea covered the area. The first deposits were permeable sand, followed by calcareous mud. During periods of sea transgression, burial diagenesis decreased porosity and permeability. During Pennsylvanian time, rapid sedimentation accompanied rapid subsidence in the Anadarko basin. A geopressure zone probably resulted when sediments with little permeability trapped depositional water in Lower Pennsylvanian sands. Burial diagenesis included compaction and thermal alteration of deeply buried organic material, which released carbon dioxide, water, and hydrocarbons. By Middle Pennsylvanian time, the sea had submerged most of the central United States, including the Ozarks, as tectonic activity reached its maximum. During Late Pennsylvanian and Early Permian time, the Ouachita uplift had been formed and was higher than the Ozarks. Uplift was accompanied by a regional upward tilt toward the Ouachita-Ozarks area; the sea receded westward, depositing large quantities of calcareous mud and clay, and precipitating evaporitic material in the restricted-circulation environment. By the end of Permian time, > 20,000 ft of Pennsylvanian and Permian sediments had been deposited in the Anadarko basin. These thick sediments caused rapid and extreme burial diagensis, including alteration of organic material During Permian time in the Ozarks area, development of the Ozark Plateau aquifer system commenced in the permeable Cambrian-Mississippian rocks near the St. Francois Mountains as the Pennsylvanian confining material was removed. Since Permian time, uplift diagenesis has been more active than burial diagenesis in the Anadarko basin. Synopsis of paleohydrologic interpretation indicates that Cambrian-Mississippian rocks in the Anadarko basin should be relatively impermeable, except for local secondary permeability, because rocks in the basin have undergone little uplift diagenesis. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Bicca, Marcos Müller; Chemale, Farid; Jelinek, Andrea Ritter; de Oliveira, Christie Helouise Engelmann; Guadagnin, Felipe; Armstrong, Richard
2013-12-01
Cu- and Pb-Zn-hosting sedimentary units of the upper part of the Camaquã Basin (Ediacaran-Lower Ordovician) in the Dom Feliciano Belt of southernmost Brazil were formed during the late stages of the West Gondwana amalgamation and were controlled by large left-handed strike-slip shear zones. Integration of structural geology, stratigraphy and thermochronology allow recognition of five structural events (D1, Ediacaran-Lower Cambrian, through D5, Cretaceous). D1 structures are related to a N30E-trending, sinistral strike-slip shear zone that controlled the deposition of the mineralized sedimentary unit and its overlying units, the Santa Barbara and Guaritas Groups, respectively, in a transtensional setting. Based on U-Pb in situ methods, it is possible (a) to establish a maximum depositional age of 566 ± 6.9 Ma for the basal section of the Santa Barbara Group and, therefore, a minimum age of ca. 566 Ma for D1, and (b) to recognize two main zircon populations, Neoproterozoic and Paleoproterozoic, with sources from the eastern and southern parts of the Dom Feliciano Belt and reworking of older units of the Camaquã Basin. The D2 structures are mainly N-trending shear zones that developed after the deposition of the Guaritas Group during the Cambrian. During the Phanerozoic (post-Cambrian), the recognized structures were connected to compressional and extensional events that affected West Gondwana and the South America Platform. Thermochronological fission track analyses on apatite revealed four main age populations. The first three are interpreted to have formed during tectonic processes at the Gondwana Margin, namely the Famatinian and Gondwanides orogenies, and can be related to the D3 and D4 tectonic events in the basin. The last age population formed from thermal heating by the Upper Cretaceous continental flood basalts, which are represented in the area by volcanic intrusions, that were related to the separation of Africa and South America.
NASA Astrophysics Data System (ADS)
Ahmed, Nisar; Khalid, Perveiz; Shafi, Hafiz Muhammad Bilal; Connolly, Patrick
2017-10-01
The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli ( K sat and K sat- μ), lambda-mu-rho method ( λρ and μρ), P-to-S-wave velocity ratio ( V P/ V S), and Poisson's ratio ( σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K sat- μ, EEI, V P/ V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.
Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.
2005-01-01
Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.
Balding, G.O.
1991-01-01
During the past few decades, several municipalities in northeastern Illinois have noted increases in the salinity of water from wells that tap aquifers in rocks of Cambrian and Ordovician age. The municipalities have discontinued the use of, or sealed-off sections of, those wells. The aquifers involved include the Ancell, the Ironton-Galesville, and the Elmhurst-Mt. Simon. To define the location, magnitude, and possible causes for the salinity increases in the six northeastern counties of Illinois, 17 municipal wells and 1 deep test well were selected on the basis of their proximity to major pumping centers, the availability of water-quality data, and their documented maintenance history. Well depths ranged from about 960 to 3,475 feet. One well was finished in the middle confining unit, 2 wells were finished in the Ironton-Galesville aquifer, 4 wells were finished in the Eau Claire confining unit, and 10 wells were finished in the Elmhurst-Mt. Simon aquifer. The deep test well was finished below the Elmhurst-Mt. Simon aquifer in Precambrian-age rock. Chloride concentrations in the municipal wells ranged from less than 5 to greater than 600 milligrams per liter; in the deep test well, they ranged from 13 t o 37,000 milligrams per liter. Some changes in the chloride concentration in water from the studied municipal wells can be related to physical changes to the wells, including the partial filling in of a well, bridging within a well, the cleaning out of a well, or the deepening of a well. Some changes in chloride concentration are not related to physical changes but may be caused by increased pumpage; changes in pumping rate, frequency, or duration; cessation of pumping; improper abandonment of wells; and the upconing of highly mineralized water. The data base was inadequate for a quantitative study of the changes in chloride concentration in water from individual aquifers in rocks of Cambrian and Ordovician age.
Lenticular stretch structures in eastern Nevada - possible trapping mechanism in supposed graben
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, C.T.; Dennis, J.G.; Lumsden, W.W.
Eastern Nevada is widely recognized as a region of tectonic extension. The dominant structures are generally agreed to be low-dipping, younger over older faults and steeper listric faults that are responsible for the basins (grabens) and ranges (horsts). In the Schell Creek-Duck Creek Range, east of Ely, and in the White Pine Range, southwest of Ely, small lenticular structures bounded by tectonic discontinuities can be clearly seen in the field. These lenticular units, or stretch structures, range in length from a few meters to more than 200 m. All lenticular stretch structures that can be clearly seen in the fieldmore » are stratigraphically restricted; the stretched formations are the Eureka Quartzite, the Pilot Shale, the Joana Limestone, and the Chainman Shale. Still larger stretch structures, which may include several formations, are inferred, and the authors suggest that extension has created lenticular structures at all scales. The Duck Creek and Schell Creek Ranges east of Ely consist mostly of Devonian and older rocks. They are separated by a topographically lower area containing mostly Mississippian and Pennsylvanian rocks. This structure, which separates the ranges, has been referred to as a graben, but field evidence suggests that it is a large-scale lenticular stretch structure. Unlike a true graben, the structure does not extend downward. For example, in several places within the supposed graben, Cambrian and Ordovician rocks project through a cover of Carboniferous Chainman Shale and Ely Limestone, suggesting the Chainman-Ely is a thin sheet underlain by Cambrian-Ordovician rocks. Accordingly, they suggest that extension in the Duck Creek-Schell Creek Ranges stretched the formations into lenticular bodies. Between the Duck Creek and Schell Creek Ranges, the Cambrian-Ordovician is attenuated, and the resulting tectonic depression is occupied by a lenticular mass of Carboniferous rocks.« less
Clades reach highest morphological disparity early in their evolution
Hughes, Martin; Gerber, Sylvain; Wills, Matthew Albion
2013-01-01
There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the “big five” mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing. PMID:23884651
On the Hydrodynamics of Anomalocaris Tail Fins.
Sheppard, K A; Rival, D E; Caron, J-B
2018-04-25
Anomalocaris canadensis, a soft-bodied stem-group arthropod from the Burgess Shale, is considered the largest predator of the Cambrian period. Thanks to a series of lateral flexible lobes along its dorso-ventrally compressed body, it is generally regarded as an efficient swimmer, well-adapted to its predatory lifestyle. Previous theoretical hydrodynamic simulations have suggested a possible optimum in swimming performance when the lateral lobes performed as a single undulatory lateral fin, comparable to the pectoral fins in skates and rays. However, the role of the unusual fan-like tail of Anomalocaris has not been previously explored. Swimming efficiency and maneuverability deduced from direct hydrodynamic analysis are here studied in a towing tank facility using a three-vane physical model designed as an abstraction of the tail fin. Through direct force measurements, it was found that the model exhibited a region of steady-state lift and drag enhancement at angles of attack greater than 25° when compared to a triangular-shaped reference model. This would suggest that the resultant normal force on the tail fin of Anomalocaris made it well-suited for turning maneuvers, giving it the ability to turn quickly and through small radii of curvature. These results are consistent with an active predatory lifestyle, although detailed kinematic studies integrating the full organism, including the lateral lobes, would be required to test the effect of the tail fin on overall swimming performance. This study also highlights a possible example of evolutionary convergence between the tails of Anomalocaris and birds, which, in both cases, are well-adapted to efficient turning maneuvers.
Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales
dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng
2015-01-01
Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774
A model of onshore-offshore change in faunal diversity
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1991-01-01
Onshore-offshore patterns of faunal change occurred at many taxonomic scales during the Paleozoic Era, ranging from replacement of the Cambrian evolutionary fauna by the Paleozoic fauna to the environmental expansion of many orders and classes. A simple mathematical model is constructed to investigate such change. The environmental gradient across the marine shelf-slope is treated as a linear array of discrete habitats, each of which holds a set number of species, as observed in the fossil record. During any interval of time, some portion of the species in each habitat becomes extinct by background processes, with rates of extinction varying among both clades and habitats, as also observed in the record. After extinction, species are replaced from within the habitat and from immediately adjacent habitats, with proportions dependent on surviving species. This model leads to the prediction that extinction-resistant clades will always diversify at the expense of extinction-prone clades. But if extinction intensity is highest in nearshore habitats, extinction-resistant clades will expand preferentially in the onshore direction, build up diversity there, and then diversify outward toward the offshore. Thus, onshore-offshore patterns of diversification may be the expectation for faunal change quite independently of whether or not clades originate onshore. When the model is parameterized for Paleozoic trilobites and brachiopods, numerical solutions exhibit both a pattern of faunal change and a time span for diversification similar to that seen in the fossil record. They also generate structure similar to that seen in global diversification, including logistic patterns of growth, declining origination but constant extinction within clades through time, and declining overall extinction across clades through time.
NASA Astrophysics Data System (ADS)
Piercey, Stephen J.; Squires, Gerry; Brace, Terry
2018-02-01
Pyrite- and pyrrhotite-rich mudstones are spatially associated with Cambrian ( 512-509 Ma) volcanogenic massive sulfide (VMS) deposits throughout the Tally Pond group, central Newfoundland, Canada. At the Duck Pond mine, sulfide-rich mudstones are hosted within a weakly mineralized upper block that structurally overlies the deposit but is older ( 513 versus 509 Ma). The mudstones are laminated, 10-30-cm thick, and pyrite- and pyrrhotite-rich and occur along pillow lava selvages, or in between pillow lavas, rhyolite flows, and volcaniclastic rocks. The mudstones are laterally extensive and proximal to the mudstone host rocks are hydrothermally altered to epidote-quartz-chlorite (basalt host) and sericite-quartz (rhyolite host). Lithogeochemical data for the sulfide-rich mudstones reflect the varying contributions of elements from sedimentary detritus, hydrothermal discharge, and hydrogenous scavenging from middle Cambrian seawater. The mudstones have minor detrital element abundances and significant hydrothermal element enrichments (i.e., elevated Fe2O3, S, Pb, Zn, Cu, and Ba concentrations, high Fe/Al ratios). The hydrothermal mudstones are also enriched in oxyanions (i.e., P2O5, U, V, Cr, Ni, Co, and Hg), interpreted to have been enriched via oxidative scavenging from seawater by Fe-oxide/oxyhydroxide particles. The mudstones also have REE-Y signatures similar to modern oxygenated seawater with high Y/Ho and negative Ce anomalies (Ce/Ce* = 0.40-0.86; average = 0.58), which correlate with adsorbed oxyanion concentrations. The low Eu/Eu* (1.02-1.86; average = 1.22) in the mudstones suggest that they were deposited from low-temperature (< 250 °C), Fe-rich hydrothermal fluids that likely formed a buoyant plume into an oxygenated water column. The REE-Y-oxyanion signatures suggest that the particles within the hydrothermal plume had sufficient residence time to scavenge oxyanions from seawater and inherit a middle Cambrian seawater signature. The predominant seawater REE-Y-oxyanion signature in the Duck Pond upper block sulfide-rich mudstones suggests that they are distal hydrothermal sedimentary rocks that could have formed up to 10 km from their original vent sources. Correspondingly, to utilize hydrothermal mudstones as vectors to mineralization in the Tally Pond belt, and similar belts globally, it is critical to identify vent-proximal samples that have hydrothermal signatures (i.e., high Fe/Al, base metals, Ba, S), with subdued seawater and adsorption signatures (i.e., chondritic Y/Ho, low P2O5, Ni, U, Co, Cr, V, and Hg), indicating minimal residence time in the water column and deposition proximal to the vent.
Evolutionary Potential of an RNA Virus
Makeyev, Eugene V.; Bamford, Dennis H.
2004-01-01
RNA viruses are remarkably adaptable to changing environments. This is medically important because it enables pathogenic viruses to escape the immune response and chemotherapy and is of considerable theoretical interest since it allows the investigation of evolutionary processes within convenient time scales. A number of earlier studies have addressed the dynamics of adapting RNA virus populations. However, it has been difficult to monitor the trajectory of molecular changes in RNA genomes in response to selective pressures. To address the problem, we developed a novel in vitro evolution system based on a recombinant double-stranded RNA bacteriophage, φ6, containing a β-lactamase (bla) gene marker. Carrier-state bacterial cells are resistant to ampicillin, and after several passages, they become resistant to high concentrations of another β-lactam antibiotic, cefotaxime, due to mutations in the virus-borne bla gene. We monitored the changes in bla cDNAs induced by cefotaxime selection and observed an initial explosion in sequence variants with multiple mutations throughout the gene. After four passages, a stable, homogeneous population of bla sequences containing three specific nonsynonymous mutations was established. Of these, two mutations (E104K and G238S) have been previously reported for β-lactamases from cefotaxime-resistant bacterial isolates. These results extend our understanding of the molecular mechanisms of viral adaptation and also demonstrate the possibility of using an RNA virus as a vehicle for directed evolution of heterologous proteins. PMID:14747576
Evolutionary potential of an RNA virus.
Makeyev, Eugene V; Bamford, Dennis H
2004-02-01
RNA viruses are remarkably adaptable to changing environments. This is medically important because it enables pathogenic viruses to escape the immune response and chemotherapy and is of considerable theoretical interest since it allows the investigation of evolutionary processes within convenient time scales. A number of earlier studies have addressed the dynamics of adapting RNA virus populations. However, it has been difficult to monitor the trajectory of molecular changes in RNA genomes in response to selective pressures. To address the problem, we developed a novel in vitro evolution system based on a recombinant double-stranded RNA bacteriophage, phi 6, containing a beta-lactamase (bla) gene marker. Carrier-state bacterial cells are resistant to ampicillin, and after several passages, they become resistant to high concentrations of another beta-lactam antibiotic, cefotaxime, due to mutations in the virus-borne bla gene. We monitored the changes in bla cDNAs induced by cefotaxime selection and observed an initial explosion in sequence variants with multiple mutations throughout the gene. After four passages, a stable, homogeneous population of bla sequences containing three specific nonsynonymous mutations was established. Of these, two mutations (E104K and G238S) have been previously reported for beta-lactamases from cefotaxime-resistant bacterial isolates. These results extend our understanding of the molecular mechanisms of viral adaptation and also demonstrate the possibility of using an RNA virus as a vehicle for directed evolution of heterologous proteins.
Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu
2017-06-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).
Mandle, R.J.; Kontis, A.L.
1992-01-01
Results of variable-density simulations indicate that the rate of ground-water movement is small in areas where ground water is highly mineralized. The rates and directions are controlled by the intrinsic permeability of the rock, freshwater head gradients, and gravitational force.
Students Explore Fossil Creatures of the Cambrian Period Burgess Shale through Model-Making
ERIC Educational Resources Information Center
Anderson, Andrea E.; Zhbanova, Ksenia; Gray, Phyllis; Teske, Jolene K.; Rule, Audrey C.
2016-01-01
This practical article features an arts-integrated science unit on fossils of the Burgess Shale for fourteen elementary/middle school students at a weeklong summer day camp. The day camp had a theme of recycling, reduction and reuse; all of the fossil models had substantial recycled components to support this theme. Next Generation Science…
ERIC Educational Resources Information Center
Seitov, Nassipkali; Tulegenova, Gulmira P.
2016-01-01
This article addresses the problems of tectonic zoning and determination of geodynamical nature of the formation of jointed tectonic structures within the North Caspian oil and gas basin, represented by Caspian Depression of Russian platform of East European Pre-Cambrian Craton and plate ancient Precambrian Platform stabilization and Turan…
Stratigraphy and Structure of the Subsurface Cambrian and Ordovician Carbonates of New York.
ERIC Educational Resources Information Center
Rickard, Lawrence V.
This publication presents a description of 137 wells in New York State and adjacent parts of Pennsylvania. Correlations with surface exposures are established. Maps and cross sections display the thickness, structure, and stratigraphic relationships of the carbonates described. A paleogeologic map of New York State at the end of the Early…
Planetary biology and microbial ecology. Biochemistry of carbon and early life
NASA Technical Reports Server (NTRS)
Margulis, L. (Editor); Nealson, K. H. (Editor); Taylor, I. (Editor)
1983-01-01
Experiments made with cyanobacteria, phototrophic bacteria, and methanogenic bacteria are detailed. Significant carbon isotope fractionation data is included. Taken from well documented extant microbial communities, this data provides a basis of comparison for isotope fractionation values measured in Archean and Proterozoic (preCambrian) rocks. Media, methods, and techniques used to acquire data are also described.
Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy
NASA Astrophysics Data System (ADS)
Kuncarayakti, H.; Anderson, J. P.; Galbany, L.; Maeda, K.; Hamuy, M.; Aldering, G.; Arimoto, N.; Doi, M.; Morokuma, T.; Usuda, T.
2018-05-01
Context. Observationally, supernovae (SNe) are divided into subclasses according to their distinct characteristics. This diversity naturally reflects the diversity in the progenitor stars. It is not entirely clear, however, how different evolutionary paths leading massive stars to become an SN are governed by fundamental parameters such as progenitor initial mass and metallicity. Aims: This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses through a study of the parent stellar populations at the explosion sites. Methods: Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. Results: No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN type Ic, followed by type Ib, then types IIb and II. Type IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimates lower than 25 M⊙ are found; they are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channels only, and both single and binary channels are at play in the production of core-collapse SNe. Near-infrared IFS suggests that multiple stellar populations with different ages may be present in some of the SN sites. As a consequence, there could be a non-negligible amount of contamination from old populations, and therefore the individual age estimates are effectively lower limits. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 089.D-0367, 091.D-0482, 093.D-0318, 094.D-0290, and 095.D-0172
The quest for a unified view of bacterial land colonization
Wu, Hao; Fang, Yongjun; Yu, Jun; Zhang, Zhang
2014-01-01
Exploring molecular mechanisms underlying bacterial water-to-land transition represents a critical start toward a better understanding of the functioning and stability of the terrestrial ecosystems. Here, we perform comprehensive analyses based on a large variety of bacteria by integrating taxonomic, phylogenetic and metagenomic data, in the quest for a unified view that elucidates genomic, evolutionary and ecological dynamics of the marine progenitors in adapting to nonaquatic environments. We hypothesize that bacterial land colonization is dominated by a single-gene sweep, that is, the emergence of dnaE2 derived from an early duplication event of the primordial dnaE, followed by a series of niche-specific genomic adaptations, including GC content increase, intensive horizontal gene transfer and constant genome expansion. In addition, early bacterial radiation may be stimulated by an explosion of land-borne hosts (for example, plants and animals) after initial land colonization events. PMID:24451209
Grose, Julianne H; Casjens, Sherwood R
2014-11-01
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.
Grose, Julianne H.; Casjens, Sherwood R.
2014-01-01
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328
49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3...
49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3...
Impact of Stellar Convection Criteria on the Nucleosynthetic Yields of Population III Supernovae.
NASA Astrophysics Data System (ADS)
Teffs, Jacob; Young, Tim; Lawlor, Tim
2018-01-01
A grid of 15-80 solar mass Z=0 stellar models are evolved to pre-core collapse using the stellar evolution code BRAHAMA. Each initial zero-age main sequence mass model star is evolved with two different convection criteria, Ledoux and Schwarzchild. The choice of convection produces significant changes in the evolutionary model tracks on the HR diagram, mass loss, and interior core and envelope structures. At onset of core collapse, a SNe explosion is initiated using a one-dimensional radiation-hydrodynamics code and followed for 400 days. The explosion energy is varied between 1-10 foes depending on the model as there are no observationally determined energies for population III supernovae. Due to structure differences, the Schwarzchild models resemble Type II-P SNe in their lightcurve while the Ledoux models resemble SN1987a, a Type IIpec. The nucleosynthesis is calculated using TORCH, a 3,208 isotope network, in a post process method using the hydrodynamic history. The Ledoux models have, on average, higher yields for elements above Fe compared to the Schwarzchild. Using a Salpeter IMF and other recently published population III IMF’s, the net integrated yields per solar mass are calculated and compared to published theoretical results and to published observations of extremely metal poor halo stars of [Fe/H] < -3. Preliminary results show the lower mass models of both criteria show similar trends to the extremely metal poor halo stars but more work and analysis is required.
Saline-water resources of Texas
Winslow, Allen George; Kister, Lester Ray
1956-01-01
Most of the aquifers in Texas contain saline water in some parts, and a few are capable of producing large quantities of saline water. Of the early Paleozoic formations, the Hickory sandstone member of the Riley formation of Cambrian age and the Ellenburger group of Ordovician age are potential sources of small to moderate supplies of saline water in parts of central and west-central Texas.
Yue, Jia-Xing; Yu, Jr-Kai; Putnam, Nicholas H.; Holland, Linda Z.
2014-01-01
Cephalochordates, the sister group of tunicates plus vertebrates, have been called “living fossils” due to their resemblance to fossil chordates from Cambrian strata. The genome of the cephalochordate Branchiostoma floridae shares remarkable synteny with vertebrates and is free from whole-genome duplication. We performed RNA sequencing from larvae and adults of Asymmetron lucayanum, a cephalochordate distantly related to B. floridae. Comparisons of about 430 orthologous gene groups among both cephalochordates and 10 vertebrates using an echinoderm, a hemichordate, and a mollusk as outgroups showed that cephalochordates are evolving more slowly than the slowest evolving vertebrate known (the elephant shark), with A. lucayanum evolving even more slowly than B. floridae. Against this background of slow evolution, some genes, notably several involved in innate immunity, stand out as evolving relatively quickly. This may be due to the lack of an adaptive immune system and the relatively high levels of bacteria in the inshore waters cephalochordates inhabit. Molecular dating analysis including several time constraints revealed a divergence time of ∼120 Ma for A. lucayanum and B. floridae. The divisions between cephalochordates and vertebrates, and that between chordates and the hemichordate plus echinoderm clade likely occurred before the Cambrian. PMID:25240057
Structural evolution and petroleum productivity of the Baltic basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulmishek, G.F.
The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of amore » thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.« less
Geologic Map of the Gold Creek Gold District, Elko County, Nevada
Ketner, Keith B.
2007-01-01
The Gold Creek, Nev. area displays important stratigraphic and structural relationships between Paleozoic and early Tertiary sedimentary strata in an area dominated by large intrusive bodies of Mesozoic age and extensive volcanic fields of middle to late Tertiary age. An autochthonous sequence includes the Cambrian and Proterozoic(?) Prospect Mountain Quartzite and the overlying Cambrian and Ordovician Tennessee Mountain Formation. This autochthon is overlain by three allochthonous plates each composed of a distinctive sequence of strata and having a distinctive internal structure. The structurally lowest plate is composed of the Havallah sequence, locally of Mississippian and Pennsylvanian age, which is folded on north-south trending axes. The next higher plate is composed of somewhat younger Pennsylvanian and Permian strata cut by east-west trending low-angle faults. The highest plate is composed of early Tertiary non-marine sedimentary and igneous rocks folded on varied but mainly north-south trending axes. The question of whether the allochthonous plates were emplaced by contractional or extensional forces is indeterminate from the local evidence. Mineral deposits include gold placers of moderate size and small pockets of base metals, none of which is currently being exploited.
Carr, T.R.; Merriam, D.F.; Bartley, J.D.
2005-01-01
Large-scale relational databases and geographic information system tools are used to integrate temperature, pressure, and water geo-chemistry data from numerous wells to better understand regional-scale geothermal and hydrogeological regimes of the lower Paleozoic aquifer systems in the mid-continent and to evaluate their potential for geologic CO2 sequestration. The lower Paleozoic (Cambrian to Mississippian) aquifer systems in Kansas, Missouri, and Oklahoma comprise one of the largest regional-scale saline aquifer systems in North America. Understanding hydrologic conditions and processes of these regional-scale aquifer systems provides insight to the evolution of the various sedimentary basins, migration of hydrocarbons out of the Anadarko and Arkoma basins, and the distribution of Arbuckle petroleum reservoirs across Kansas and provides a basis to evaluate CO2 sequestration potential. The Cambrian and Ordovician stratigraphic units form a saline aquifer that is in hydrologic continuity with the freshwater recharge from the Ozark plateau and along the Nemaha anticline. The hydrologic continuity with areas of freshwater recharge provides an explanation for the apparent underpressure in the Arbuckle Group. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.
Preliminary evaluation of the basal sandstone in Tennessee for receiving injected wastes
Mulderink, Dolores; Bradley, M.W.
1986-01-01
The EPA is authorized, under the Safe Drinking Water Act, to administer the Underground Injection Control program. This program allows for the regulation of deep-well disposal of wastes and establishes criteria to protect underground sources of drinking water from contamination. The basal sandstone in Tennessee occurs west of the Valley and Ridge province at depths of 5,000 to 9,000 ft below land surface. The basal sandstone consists of about 30 to 750 ft of Cambrian sandstone overlying the crystalline basement complex. The basal sandstone is overlain and confined by shale and carbonate rocks of the Middle and Upper Cambrian Conasauga Group. Hydrologic data for the basal sandstone, available from only three sites (four wells) in Tennessee, indicate that the basal sandstone generally has low porosity and permeability with a few zones having enough permeability to accept injected fluids. Limited water quality data indicate the basal sandstone contains water with dissolved solids concentrations exceeding 10,000 mg/L. Since the dissolved-solids concentrations exceed 10,000 mg/L, the basal sandstone is not classified as an underground source of drinking water according to EPA regulations. (Author 's abstract)
NASA Technical Reports Server (NTRS)
Grotzinger, John P.
2002-01-01
Work this past year has focused on the globally significant events of faunal turnover, tectonic reorganization, and biogeochemical change that closely coincided with the Precambrian-Cambrian boundary in the Sultanate oilman. Higher temporal and chronostratigraphic resolution are required in order to answer this question. Stratigraphic sections must contain fossils, volcanic rocks, and abundant carbonates with little or no diagenetic overprint. The Ara Group of the South Oman Salt Basin presents such a succession - with carbonate rocks tightly enclosed in a protective envelope of impermeable halite, these rocks have likely never exchanged with younger fluids. Our work has had two thrusts. The first pertains to the geochemistry of the Athel Formation, a deep water deposit formed at the Precambrian-Cambrian boundary which contains unique records of ocean anoxia for that time interval. This unit is important because it will enable tighter focus on the links which existed between global biogeochemical events and episodes of faunal extinction and radiation. The second direction involves a comparison of terminal Proterozoic thrombolites between Oman (subsurface) and Namibia (outcrop). These thrombolites are important not only as significant deposits of ancient microbial communities, but because they formed the key substrate for growth of the oldest calcified metazoans - Cloudina and Namacalathus.
Oji, Tatsuo; Dornbos, Stephen Q; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the 'agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum . These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-01-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the ‘agronomic revolution’. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered. PMID:29515908
NASA Astrophysics Data System (ADS)
Oji, Tatsuo; Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the `agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation
NASA Astrophysics Data System (ADS)
Harvey, Thomas H. P.; Vélez, Maria I.; Butterfield, Nicholas J.
2012-01-01
The early history of crustaceans is obscured by strong biases in fossil preservation, but a previously overlooked taphonomic mode yields important complementary insights. Here we describe diverse crustacean appendages of Middle and Late Cambrian age from shallow-marine mudstones of the Deadwood Formation in western Canada. The fossils occur as flattened and fragmentary carbonaceous cuticles but provide a suite of phylogenetic and ecological data by virtue of their detailed preservation. In addition to an unprecedented range of complex, largely articulated filtering limbs, we identify at least four distinct types of mandible. Together, these fossils provide the earliest evidence for crown-group branchiopods and total-group copepods and ostracods, extending the respective ranges of these clades back from the Devonian, Pennsylvanian, and Ordovician. Detailed similarities with living forms demonstrate the early origins and subsequent conservation of various complex food-handling adaptations, including a directional mandibular asymmetry that has persisted through half a billion years of evolution. At the same time, the Deadwood fossils indicate profound secular changes in crustacean ecology in terms of body size and environmental distribution. The earliest radiation of crustaceans is largely cryptic in the fossil record, but "small carbonaceous fossils" reveal organisms of surprisingly modern aspect operating in an unfamiliar biosphere.
Eriksson, Mats E.; Terfelt, Fredrik
2012-01-01
The Cambrian ‘Orsten’ fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish ‘Orsten’ fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the ‘Orsten’ fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome. PMID:22558180
Eriksson, Mats E; Terfelt, Fredrik
2012-01-01
The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.
Zoophycos macroevolution since 541 Ma.
Zhang, Li-Jun; Fan, Ruo-Ying; Gong, Yi-Ming
2015-10-09
Zoophycos is one of the most complex and enigmatic trace fossils recorded in marine strata from Cambrian to Quaternary worldwide, which is invaluable for the study of Phanerozoic development of organism-environment interactions. Here we address and demonstrate the macroevolution of Phanerozoic Zoophycos by assembling 448 points in constructing the Phanerozoic Zoophycos database based on 291 papers from 1821 to 2015 and 180 specimens from Cambrian to Palaeogene. The comprehensive dataset reveals, for the first time, five peaks and six depressions in Phanerozoic Zoophycos occurrence frequency. Secondly, the palaeogeographical distribution of Zoophycos is closely associated with the supercontinent Pangaea shifting, independent of the latitude. Our data also attest that the bathymetrical shift of Zoophycos from the littoral-neritic to bathyal environments is synchronized with the tiering shift from shallow to deep. By detailed comparison with body fossils, geochemical and palaeogeographical records, we conclude that the macroevolution of Phanerozoic Zoophycos is multi-affected by the global biodiversity expansion, benthic nutrient enhancement, and the biotic macroevolution of the Zoophycos-producers. The macroevolution of development evidenced by the morphological changes of Zoophycos and other trace fossils, may have great implications on the behavioural and physiological adaptation of ancient animals to the environments.
Zoophycos macroevolution since 541 Ma
Zhang, Li-Jun; Fan, Ruo-Ying; Gong, Yi-Ming
2015-01-01
Zoophycos is one of the most complex and enigmatic trace fossils recorded in marine strata from Cambrian to Quaternary worldwide, which is invaluable for the study of Phanerozoic development of organism–environment interactions. Here we address and demonstrate the macroevolution of Phanerozoic Zoophycos by assembling 448 points in constructing the Phanerozoic Zoophycos database based on 291 papers from 1821 to 2015 and 180 specimens from Cambrian to Palaeogene. The comprehensive dataset reveals, for the first time, five peaks and six depressions in Phanerozoic Zoophycos occurrence frequency. Secondly, the palaeogeographical distribution of Zoophycos is closely associated with the supercontinent Pangaea shifting, independent of the latitude. Our data also attest that the bathymetrical shift of Zoophycos from the littoral–neritic to bathyal environments is synchronized with the tiering shift from shallow to deep. By detailed comparison with body fossils, geochemical and palaeogeographical records, we conclude that the macroevolution of Phanerozoic Zoophycos is multi-affected by the global biodiversity expansion, benthic nutrient enhancement, and the biotic macroevolution of the Zoophycos-producers. The macroevolution of development evidenced by the morphological changes of Zoophycos and other trace fossils, may have great implications on the behavioural and physiological adaptation of ancient animals to the environments. PMID:26449543
Zoophycos macroevolution since 541 Ma
NASA Astrophysics Data System (ADS)
Zhang, Li-Jun; Fan, Ruo-Ying; Gong, Yi-Ming
2015-10-01
Zoophycos is one of the most complex and enigmatic trace fossils recorded in marine strata from Cambrian to Quaternary worldwide, which is invaluable for the study of Phanerozoic development of organism-environment interactions. Here we address and demonstrate the macroevolution of Phanerozoic Zoophycos by assembling 448 points in constructing the Phanerozoic Zoophycos database based on 291 papers from 1821 to 2015 and 180 specimens from Cambrian to Palaeogene. The comprehensive dataset reveals, for the first time, five peaks and six depressions in Phanerozoic Zoophycos occurrence frequency. Secondly, the palaeogeographical distribution of Zoophycos is closely associated with the supercontinent Pangaea shifting, independent of the latitude. Our data also attest that the bathymetrical shift of Zoophycos from the littoral-neritic to bathyal environments is synchronized with the tiering shift from shallow to deep. By detailed comparison with body fossils, geochemical and palaeogeographical records, we conclude that the macroevolution of Phanerozoic Zoophycos is multi-affected by the global biodiversity expansion, benthic nutrient enhancement, and the biotic macroevolution of the Zoophycos-producers. The macroevolution of development evidenced by the morphological changes of Zoophycos and other trace fossils, may have great implications on the behavioural and physiological adaptation of ancient animals to the environments.
Petroleum developments in North Africa in 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicod, M.A.
In the 6 countries covered by this report, the extent of valid petroleum rights, seismic work, and drilling was nearly the same as in 1978. The success rate of wildcat drilling decreased slightly, to 28% (33% in 1978), with 26 oil or gas discoveries. In southwestern Tunisia, the Amoco Sabrina Nord 1 tested 930 bbl of 39/sup 0/ APl oil from Cambrian-Ordovician sandstones - the first oil to come from lower Paleozoic rocks in Tunisia. First commercial oil from Cambrian-Ordovician rocks in western Libya was discovered by Agip A1-NC40 which flowed 1,400 b/d. Highlight of the year in North Africamore » was in the interior basin of Sudan where the Chevron Abu Gabra 1 tested 900 BOPD of 40/sup 0/ APl oil from Cretaceous rocks; 2 other wells, spudded in late 1979 in the same area, have tested 3,200 and 7,300 b/d, respectively, in early 1980. Discovery well of the interior basin was Chevron Unity 1 which tested small amounts of oil in 1978. Oil production in North Africa in 1979 averaged 3,939,500 b/d compared with 3,802,800 b/d in 1978, an increase of 3.6%.« less
Morshedian, Ala; Toomery, Matthew B.; Pollock, Gabriel E.; Frederiksen, Rikard; Enright, Jennifer; McCormick, Stephen; Cornwall, M. Carter; Fain, Gordon L.; Corbo, Joseph C.
2017-01-01
The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.
NASA Astrophysics Data System (ADS)
Padel, Maxime; Álvaro, J. Javier; Casas, Josep Maria; Clausen, Sébastien; Poujol, Marc; Sánchez-García, Teresa
2017-11-01
The volcanism hosted by the Ediacaran-Terreneuvian Canaveilles Group of the Eastern Pyrenees displays two distinct geochemical affinities: (1) metabasites of the Nyer and Olette formations reflect the emplacement of a tholeiitic magmatism linked to extensional conditions, whereas (2) subsequent felsic and calc-alkaline magmatic rocks marking the top of the Olette Formation and forming the overlying Fabert and Finestrelles members represent Cadomian magmatic events. Based on U-Pb zircon dating constraints, palaeotopographic relationships linked to onlap geometries and distance from vent sources, three volcanosedimentary edifices can be distinguished, the so-called Tregurà (ca. 565-552 Ma), Cap de Creus (ca. 558 Ma) and Coll d'Ares (ca. 542-532 Ma) edifices. The top of their palaeoreliefs recorded locally the nucleation of centres of microbial carbonate productivity (Puig Sec Member) linked to synsedimentary tilting and karstification. Throughout West Gondwana, the presence of carbonate production across the Ediacaran-Cambrian transition is exclusively located in back-arc settings (Central-Iberian Zone) and areas far from the Cadomian subduction trench and devoid of significant terrigenous input, such as those reported in the Eastern Pyrenees and the neighbouring Montagne Noire.
NASA Technical Reports Server (NTRS)
Bond, Gerard C.; Beavan, John; Kominz, Michelle A.; Devlin, William
1992-01-01
Spectral analyses of two sequences of shallow marine sedimentary cycles that were deposited between 510 and 530 million years ago were completed. One sequence is from Middle Cambrian rocks in southern Utah and the other is from Upper Cambrian rocks in the southern Canadian Rockies. In spite of the antiquity of these strata, and even though there are differences in the age, location, and cycle facies between the two sequences, both records have distinct spectral peaks with surprisingly similar periodicities. A null model constructed to test for significance of the spectral peaks and circulatory in the methodology indicates that all but one of the spectral peaks are significant at the 90 percent confidence level. When the ratios between the statistically significant peaks are measured, we find a consistent relation to orbital forcing; specifically, the spectral peak ratios in both the Utah and Canadian examples imply that a significant amount of the variance in the cyclic records is driven by the short eccentricity (approximately 109 ky) and by the precessional (approximately 21 ky) components of the Earth's orbital variations. Neither section contains a significant component of variance at the period of the obliquity cycle, however.
NASA Astrophysics Data System (ADS)
Linnemann, Ulf; Ouzegane, Khadidja; Drareni, Amar; Hofmann, Mandy; Becker, Sindy; Gärtner, Andreas; Sagawe, Anja
2011-04-01
Enormous masses of highly mature quartz sands were deposited in Western Gondwana during the Cambrian-Ordovician time, and provide a wide range of information concerning magmatic events through time, provenance, paleoclimate, and basin history. We present a provenance study based on 630 U-Pb (LA-ICP-MS) ages of detrital zircon from the latest Cambrian to Ordovician siliciclastic rocks of the Tassili Ouan Ahaggar basin situated in the Algerian Sahara. Most authors suggest local sources only for the sandstones. Instead, we demonstrate that the detritus is derived from different cratons and terranes which contributed to the deposition of a Cambrian-Ordovician overstep sequence covering western and northern Africa. Most zircon ages (61.0%) fall in the range of ~ 540 to 740 Ma and are interpreted to have been derived from Pan-African orogenic belts such as the Trans-Saharan Belt of NW Africa and previously from the Brazila belt of South America. Other potential sources for this zircon population are terranes of Cadomian affinity situated marginal to West Africa. The second-largest zircon population (20.2%) is 2.0 to 2.2 Ga, and is attributed to sources in the West African craton, such as the Birimian basement and the Eburnean orogenic belt, with possible partial input from the Amazonian craton. A zircon population of 7.1% yields Mesoproterozoic and early Paleoproterozoic ages in the range of ~ 1.3 to ~ 1.8 Ga and was probably derived from source rocks outside of the West African basement, the Tuareg shield and other adjoining areas. The Amazonian craton is a potential source region. A population of 6.7% of all zircon ages scatter from ~ 750 Ma to ~ 980 Ma and may reflect input from latest stages of the formation of Rodinia and its subsequent dispersal. A smaller population (3.2%) of zircon ages lie between ~ 2.3 and 2.65 Ga, and may be derived from late Paleoproterozoic to early Archaean rocks from the West African craton and possibly from Amazonia. Less than 1% of all zircons are Meso- to Paleoarchaean ones and provide evidence for the input of very old cratonic basement, most likely from cratonic inliers of the West African craton (Leonian, Liberian). Because of the potential input of detrital zircon from the Amazonian craton, which is reflected in the Mesoproterozoic and late Paleoproterozoic grains, we speculate that some of the Paleoproterozoic to Neoarchean (2.0 Ga to 2.6 Ga) zircons were also derived from Amazonia. Due to the total lack of 1.0-1.2 Ga old zircon, our data set excludes all crustal domains situated in the Arabian-Nubian shield and the East African belt, as well as the Sunsás belt of Amazonia ("Sunsás-Grenvillian") as potential sediment sources. Sedimentation in the Tassili Ouan Ahaggar basin started in uppermost Cambrian to Ordovician time due to the opening of the Rheic Ocean. This event led to subsidence related to the rift and drift of Avalonia and related terranes from the northwestern Gondwanan margin. The basal Early Tassili quartzite has detrital zircon populations that suggest a local provenance either from West African or from a related terrane in the Tuareg shield. A dramatic change occurs in the deltaic to shallow marine strata of the Lower Ordovician Ajjers Formation and in the overlying marine sandstones of the Middle Ordovician d'In Azaoua Formation. Our data for both formations indicate the Pan-African orogen, and very likely Cadomian terranes as the main source for the detritus. During this time, the region was affected by rift tectonics due to the opening of the Rheic Ocean and therefore amenable to erosion at rift shoulders and escarpments. Our data also indicate that glacial erosion in Upper Ordovician (Hirnantian) time must have affected larger areas of old cratonic surfaces as the populations of Paleoproterozoic to Archaean zircons are significantly higher than in other age clusters. Large parts of highly mature sands of the Cambro-Ordovician section in the Tassili Ouan Ahaggar basin were derived from a peneplain in the interior of Gondwana, that formed during Cambrian times. This peneplain was formed under warm-humid climate on a vegetation-free land surface and in an extreme corrosive environment that was influenced by high atmospheric pCO 2 caused by Pan-African and Avalonian-Cadomian volcanism, volcanic activity related to the opening of the Iapetus, and Late Cambrian-Early Ordovician rift volcanism as well.
Preliminary report of investigations of springs in the Mogollon Rim region Arizona
Feth, J.H.
1954-01-01
The Geological Survey has made a reconnaissance of springs in the Mogollon Rim region in central Arizona. This region is the source of much of the water in the Gila, Salt, and Verde Rivers. The region has not previously been systematically studied with respect to the occurrence of ground water. The Mogollon Rim is an escarpment that extends about 200 miles in a northwest direction from near Clifton and Morenci in southeastern Arizona and gradually disappears north of Prescott. Lumbering, ranching, and in local areas copper mining are the principal industries. Main lines of drainage extend north on the plateau, north of the rim, and south or southwest below the rim. For convenience in discussion and because of structural differences, the region has been separated into western, central, and eastern divisions. Pre-Cambrian to Recent rocks crop out. Pre-Cambrian formations and those of Paleozoic age constitute the thickest sections. Recent basalt flows cap the plateau portion, except in the central part of the region. Large areas in valleys below the rim are occupied by lake-bed deposits. The valleys are aligned northwest, suggesting the possibility that a structural trough extends almost the full length of the rim southwest of the scarp. In some areas, erosion has caused recession of the escarpment for distances of a few miles to 10 or 15 miles from the major rim faults. The origin of late deposits of sodium Sulfate in the Verde basin has not been adequately, explained. As the salts are concentrated near mineralized districts on the southwest side of the basin, a possible genetic relationship between the two should be considered. Pre-Cambrian granite and basalt of probable Tertiary and Quaternary age are the igneous rocks most widely exposed in the region. Diabase dikes and sills are prominent in some areas; they were intruded probably during Late Cambrian time. A thickness of 2,000 feet of volcanic rocks of probable Cretaceous and Tertiary age is exposed in one area along the rim, but these rocks as yet have not been studied in detail. A hypothetical relationship is advanced to explain the coincidence in estimated volumes of rock erupted in the San Franciscan volcanic field and the volumes displaced by subsidence of the Verde basin. Fold structures are relatively uncommon in the region and are of small extent except the Holbrook dome northwest of Snowflake. High-angle faults, for the most part normal, are the most prominent structures identified. Faults parallel to the rim have been mapped in several areas. The inferred relations are shown on three diagrammatic sections. These faults are thought to account for the presence of two rims in the eastern division, and perhaps as many as three near Payson. Major orogeny in the region is believed to have occurred four times, as follows: (1) In the pre-Cambrian; (2) in Miocene(?) time southwest of the Mogollon escarpment; (3) in Pliocene (?) time at least in the Flagstaff area, and; (4) at or near the beginning of Quaternary time. The Laramide structures, prominent elsewhere on the plateau, are reflected only weakly in the rim region, so far as is known. Studies of perennial base flow of major streams draining southward from the rim indicate a sustained yield of about 175 cfs (cubic feet per second) measured at existing gaging stations. Runoff records and partial seepage runs show a loss of water between the upper reaches of the streams and the storage reservoirs. There is a general tendency for the water to become progressively more highly mineralized with increasing distance from headwater springs. Natural lakes, ponds, swamps, and cienagas are common in the eastern and western divisions of the rim. They lose considerable water, and some are fully desiccated each summer. They are of little use in their present condition, but might be developed as natural water catches from which recharge co
Geldon, Arthur L.
2003-01-01
The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.
Field trip guidebook for the post-meeting field trip: The Central Appalachians
Taylor, John F.; Loch, James D.; Ganis, G. Robert; Repetski, John E.; Mitchell, Charles E.; Blackmer, Gale C.; Brezinski, David K.; Goldman, Daniel; Orndorff, Randall C.; Sell, Bryan K.
2015-01-01
The lower Paleozoic rocks to be examined on this trip through the central Appalachians represent an extreme range of depositional environments. The lithofacies we will examine range from pelagic radiolarian chert and interbedded mudstone that originated on the deep floor of the Iapetus Ocean, through mud cracked supratidal dolomitic laminites that formed during episodes of emergence of the long-lived Laurentian carbonate platform, to meandering fluvial conglomerate and interstratified overbank mudstone packages deposited in the latest stages of infilling of the Taconic foredeep. In many ways this field trip is about contrasts. The Upper Cambrian (Furongian) and Lower Ordovician deposits of the Sauk megasequence record deposition controlled primarily by eustatic sea level sea level fluctuations that influenced deposition along the passive, southern (Appalachian) margin of the paleocontinent of Laurentia. The only tectonic influence apparent in these passive margin deposits is the expected thickening of the carbonate stack toward the platform margin as compared to the thinner (and typically shallower) facies that formed farther in toward the paleoshoreline. Carbonates overwhelmingly dominate the passive margin succession. Clastic influx was minimal and consisted largely of eastward transport of clean cratonic sands across the platform from the adjacent inner detrital belt to the west during higher order (2nd and 3rd order) regressions.In contrast, Middle and Upper Ordovician deposits of the Tippecanoe megasequence record the strong influence of tectonics, specifically Iapetus closure. The first signal of this tectonic transformation was the arrival of arc-related ash beds that abound in the active margin carbonates. Subsequent intensification of Taconic orogenesis resulted in the foundering of the carbonate platform under the onslaught of fine siliciclastics arriving from offshore tectonic sources to the east, creating a deep marine flysch basin where graptolitic shale and sandstone turbidites accumulated. The foreland basin thus created would fill with progressively coarser and more shallow/proximal clastic facies through the Upper Ordovician, culminating in deposition of fluvial redbeds that cap the Taconic clastic wedge. Arguably the most controversial rocks within the Tippecanoe Sequence in this area are unusual, Lower Ordovician deep marine facies that are associated with the much younger flysch of the Martinsburg Formation in the Great Valley of eastern Pennsylvania. Long considered the erosional remnants of a Taconic-style thrust sheet, and referred to as the Hamburg Klippe, these deep marine deposits have recently been reinterpreted as olistostromal deposits that were introduced by gravity sliding into the flysch basin contemporaneous with Martinsburg deposition.Besides their constituent lithofacies, rocks of the Sauk and Tippecanoe megasequences also present a stark contrast in faunas. Cambrian and Lower Ordovician faunas predate the Great Ordovician Biodiversification Event (GOBE), a global event that saw unprecedented diversification within many major invertebrate groups (mollusks, corals, and bryozoans to name a few) that previously were only minor components of the marine fauna. Unfortunately, the much higher diversity of Middle and Upper Ordovician faunas wrought by the GOBE is somewhat muted in this region by the stresses introduced by conversion of the Appalachian shelf into a flysch basin. Another noteworthy difference between the Cambrian and Ordovician biota related to the paleogeographic setting of the rocks to be examined on this trip derives from their evolution in the shallow marine environments of Laurentia. Several shelf-wide extinctions decimated the shallow marine faunas of the Laurentian shelf through the late Cambrian producing stage-level biostratigraphic units known as biomeres. The biomere phenomenon is discussed in this guidebook and a few stops to examine Cambrian faunas and one biomere boundary extinction are included to provide contrast with stage boundary extinctions that occurred later, in the Ordovician, that lack the defining attributes of the biomere boundary extinctions. Again, it’s all about contrast.
Code of Federal Regulations, 2013 CFR
2013-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...
Code of Federal Regulations, 2014 CFR
2014-04-01
... testing of new or modified explosive materials; (2) Training in explosives detection or development or testing of explosives detection equipment; or (3) Forensic science purposes; or (b) Was plastic explosive... EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Marking of Plastic Explosives § 555.182...
Kodádková, Alena; Bartošová-Sojková, Pavla; Holzer, Astrid S; Fiala, Ivan
2015-03-01
Myxosporea (Myxozoa), a group of parasitic Cnidaria, use mostly bony fishes (Teleostei) as intermediate hosts; however, they can also parasitize other vertebrates such as cartilaginous fish (Chondrichthyes). Molecular data of myxosporeans from sharks and rays (Elasmobranchii) revealed these parasites to be one of the most basal representatives in the myxosporean phylogenetic tree, suggesting their ancient evolutionary history. A new myxosporean species, Bipteria vetusta n. sp., was found in the gall bladder of rabbit fish, Chimaera monstrosa (Holocephali; Chondrichthyes), and ssrDNA-based phylogeny revealed its basal position within the marine myxosporean lineage. Molecular dating based on ssrDNA analysis suggested the origin of a stem lineage leading to the marine myxosporean lineage at the time of the origin of Chondrichthyes in the Silurian era. The two common lineages of Myxozoa, Myxosporea and Malacosporea, were estimated to have split from their common ancestor in the Cambrian era. Tracing the history of evolution of the "vertebrate host type" character in the context of molecular dating showed that cartilaginous fish represented an ancestral state for all myxosporeans. Teleosts were very likely subsequently parasitized by myxozoans four times, independently. Myxosporean radiation and diversification appear to correlate with intermediate host evolution. The first intermediate hosts of myxosporeans were cartilaginous fish. When bony fish evolved and radiated, myxosporeans switched and adapted to bony fish, and subsequently greatly diversified in this new host niche. We believe that the present study is the first attempt at molecular dating of myxozoan evolution based on an old myxosporean species – a living myxosporean fossil. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
A Phylogenomic Solution to the Origin of Insects by Resolving Crustacean-Hexapod Relationships.
Schwentner, Martin; Combosch, David J; Pakes Nelson, Joey; Giribet, Gonzalo
2017-06-19
Insects, the most diverse group of organisms, are nested within crustaceans, arguably the most abundant group of marine animals. However, to date, no consensus has been reached as to which crustacean taxon is the closest relative of hexapods. A majority of studies have proposed that Branchiopoda (e.g., fairy shrimps) is the sister group of Hexapoda [1-7]. However, these investigations largely excluded two equally important taxa, Remipedia and Cephalocarida. Other studies suggested Remipedia [8-11] or Remipedia + Cephalocarida [12, 13] as potential sister groups of hexapods, but they either did not include Cephalocarida or used only Sanger sequence data and morphology [9, 12]. Here we present the first phylogenomic study specifically addressing the origins of hexapods, including transcriptomes for two species each of Cephalocarida and Remipedia. Phylogenetic analyses of selected matrices, ranging from 81 to 1,675 orthogroups and up to 510,982 amino acid positions, clearly reject a sister-group relationship between Hexapoda and Branchiopoda [1-7]. Nonetheless, support for a hexapod sister-group relationship to Remipedia or to Cephalocarida-Remipedia was highly dependent on the employed analytical methodology. Further analyses assessing the effects of gene evolutionary rate and targeted taxon exclusion support Remipedia as the sole sister taxon of Hexapoda and suggest that the prior grouping of Remipedia + Cephalocarida is an artifact, possibly due to long branch attraction and compositional heterogeneity. We further conclude that terrestrialization of Hexapoda probably occurred in the late Cambrian to early Ordovician, an estimate that is independent of their proposed sister group [4, 8, 12, 14]. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan
2016-04-01
On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.
Cambrian potential indicated in Kentucky Rome trough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, D.C.; Drahovzal, J.A.
1996-02-19
This paper reviews recent gas discoveries in the Kentucky Rome trough and the implications for future developments. It reviews the geology and stratigraphy of this structure and identifies the potential zones of production and trapping mechanisms. It provides results from geologic logs and seismic data to provide cross sectional and structural interpretations. Finally it discusses the gas composition of natural gas recovered from the basin.
NASA Astrophysics Data System (ADS)
Greco, Gerson A.; González, Pablo D.; González, Santiago N.; Sato, Ana M.; Basei, Miguel A. S.; Tassinari, Colombo C. G.; Sato, Kei; Varela, Ricardo; Llambías, Eduardo J.
2015-10-01
The low-grade Nahuel Niyeu Formation in the Aguada Cecilio area (40°50‧S-65°53‧W) shows ultramafic to felsic metaigneous rocks forming a sill swarm intercalated in the metasedimentary sequence and a polyphase deformation which permit an integrated study of the magmatic and tectonometamorphic evolution of this geological unit. In this paper we present a geological characterization of the Nahuel Niyeu Formation in the Aguada Cecilio area combining mapping, structural and metamorphic analysis with a SHRIMP U-Pb age and geochemical data from the metaigneous rocks. The metasedimentary sequence consists of alternating metagreywackes and phyllites, and minor metasandstones and granule metaconglomerates. The sills are pre-kinematic intrusions and yielded one SHRIMP U-Pb, zircon crystallization age of 513.6 ± 3.3 Ma. Their injection occurred after consolidation of the sedimentary sequence. A syn-sedimentary volcanic activity is interpreted by a metaandesite lava flow interlayered in the metasedimentary sequence. Sedimentary and igneous protoliths of the Nahuel Niyeu Formation would have been formed in a continental margin basin associated with active magmatic arc during the Cambrian Epoch 2. Two main low-grade tectonometamorphic events affected the Nahuel Niyeu Formation, one during the Cambrian Epoch 2-Early Ordovician and the other probably in the late Permian at ˜260 Ma. Local late folds could belong to the final stages of the late Permian deformation or be even younger. In a regional context, the Nahuel Niyeu and El Jagüelito formations and Mina Gonzalito Complex show a comparable Cambrian-Ordovician evolution related to the Terra Australis Orogen in the south Gondwana margin. This evolution is also coeval with the late and early stages of the Pampean and Famatinian orogenies of Central Argentina, respectively. The late Permian event recorded in the Nahuel Niyeu Formation in Aguada Cecilio area is identified by comparable structures affecting the Mina Gonzalito Complex and El Jagüelito Formation and resetting ages from granitoids. This event represents the Gondwanide Orogeny within the same Terra Australis Orogen.
Wilson, John T.
2012-01-01
This report provides a regional assessment of groundwater quality of the Cambrian-Ordovician aquifer system, based primarily on raw water samples collected by the NAWQA Program during 1995 through 2007. The NAWQA Program has published findings in local study-unit reports encompassing parts of the Cambrian-Ordovician aquifer system. Data collected from the aquifer system were used in national synthesis reports on selected topics such as specific water-quality constituent classes, well type, or aquifer material; however, a synthesis of groundwater quality at the principal aquifer scale has not been completed and is therefore the major purpose of this report. Water samples collected by the NAWQA Program were analyzed for various classes of characteristics including physical properties, major ions, trace elements, nutrients and dissolved organic carbon, radionuclides (tritium, radon, and radium), pesticides, and volatile organic compounds. Subsequent sections of this report provide discussions on these classes of characteristics. The assessment objectives of this report are to (1) summarize constituent concentrations and compare them to human-health benchmarks and non-health guidelines; (2) determine the geographic distribution of constituent concentrations and relate them to various factors such as confining conditions, well type, land use, and groundwater age; and (3) evaluate near-decadal-scale changes in nitrate concentrations and pesticide detections. The most recent sample collected from each well by the NAWQA Program was used for most analyses. Near-decadal-scale changes in nitrate concentrations and pesticide detections were evaluated for selected well networks by using the most recent sample from each well and comparing it to the results from a sample collected 7 or 11 years earlier. Because some of the NAWQA well networks provide a limited areal coverage of the aquifer system, data for raw water samples from other USGS sources and state agencies were included to expand the data coverage into areas between the NAWQA well networks and into northeastern Missouri. Many of the maps in this report that show concentrations of selected constituents include data from other sources to expand on the geographic area covered by the NAWQA data.
NASA Astrophysics Data System (ADS)
Jiang, Ganqing; Wang, Xinqiang; Shi, Xiaoying; Xiao, Shuhai; Zhang, Shihong; Dong, Jin
2012-02-01
The early Cambrian (ca. 542-520 Ma) strata in South China record two prominent negative carbonate carbon isotope (δ13Ccarb) excursions of early Nemakit-Daldynian (N-D) and early Tommotian ages. Across each of these excursions, carbonate and organic carbon isotopes (δ13Ccarb and δ13Corg) are strongly decoupled. Regional correlation across a shelf-to-basin transect shows lateral heterogeneity of δ13Corg during the early-middle N-D but more homogenized δ13Corg values across the basin during the late N-D and Tommotian. The temporal and lateral variations in δ13Corg suggest that decoupled δ13Ccarb and δ13Corg across the N-D δ13Ccarb excursion were possibly caused by diagenetic alteration of organic matter and/or amplification of detrital organic carbon isotope signature in low-TOC carbonates. In contrast, decoupled δ13Ccarb and δ13Corg of the upper N-D and Tommotian were likely resulted from chemoautotrophic-methanotrophic biomass contribution to TOC in organic-rich black shale and carbonates. The decoupled δ13Ccarb-δ13Corg pattern from the lower N-D strata (ca. 542 Ma) shows striking similarities with those from the basal (ca. 635 Ma) and upper (ca. 551 Ma) Doushantuo Formation. In all three cases, decoupled δ13Ccarb-δ13Corg are seen in organic-poor carbonates (TOC ≤ 0.1‰) and coupled δ13Ccarb-δ13Corg occur in organic-rich black shale and carbonates at the end of the negative δ13Ccarb excursion. These similarities suggest that the shift from decoupled to coupled δ13Ccarb-δ13Corg has no causal link with the terminal oxidation of a large oceanic DOC reservoir. Given the pervasive anoxia/euxinia in Ediacaran-early Cambrian oceans, local DOC-rich environments may have been common, but a large oceanic DOC reservoir capable of buffering the δ13C of marine organic matter requires independent evidence.
NASA Astrophysics Data System (ADS)
Armadillo, E.; Ferraccioli, F.; Balbi, P.; Bozzo, E.
2013-12-01
Terrane bounding and intra-terrane faults of the Ross Orogen in East Antarctica are linked to several phases of Cambrian to Ordovician age subduction and accretion along the active paleo-Pacific margin of Gondwana. Here we compile and analyse new enhanced aeromagnetic anomaly images over the Northern Victoria Land (NVL) segment of the Ross Orogen and the eastern margin of the Wilkes Subglacial Basin (WSB) that help constrain the extent and structural architecture of these fault systems and enable us re-assess their tectonic evolution. Long-wavelength magnetic lows and residual Bouguer gravity highs are modelled as several-km thick inverted sedimentary basins of early Cambrian(?) age. Tectonic inversion occurred along major thrust faults during the late stages of the Ross Orogen, forming a major high-grade pop-up structure within the central Wilson Terrane, flanked by lower grade rocks. The Prince Albert Fault System can now be recongnised as being located to the west of the Exiles Thrust fault system rather than representing its southern continuation. Relatively thin sheets of mylonitic sheared granitoids and possible ultramafic lenses are associated with the late-Ross (ca 480 Ma) Exiles Thrust fault system, while significantly larger and thicker batholiths were emplaced along the Prince Albert Fault System. Recent zircon U-Pb dating over small exposures of gabbro-diorites within the Prince Albert Mountains to the south lead us to propose that this part of the magmatic arc was emplaced during an earlier phase of subduction (~520 Ma or older?), compared to the late-Ross intrusions to the east. Whether the Prince Albert Fault System was indeed a major cryptic suture in early Cambrian times (Ferraccioli et al., 2002, GRL) remains speculative, but possible. Our aeromagnetic interpretation leads us to conclude that these inherited terrane bounding and intra-terrane fault systems of the Ross Orogen exerted a key influence on Cenozoic tectonic blocks and faults of the Transantarctic Mountains, and that the eastern margin of the WSB adjacent to NVL was also strongly controlled by a complex array of major intraplate strike-slip fault systems.
NASA Astrophysics Data System (ADS)
Wang, Z.; Liu, H.; Dong, L.
2017-12-01
The early Cambrian Yurtus Formation in the Aksu area (Tarim block, northwestern China) consists of two lithostratigraphic units, lower black shale with interbedded chert unit and upper siltstone/carbonate unit. This time period represents the most important Proterozoic- Phanerozoic transition in earth's history. In recent years, the black shale has been confirmed to have high hydrocarbon generation potential. However, the depositional environment of the Yurtus Formation remains controversial and the biostratigraphic constrains are rather poor. The chert that is interbedded with black shale in the Yurtus Formation provides an exceptional taphonomic window to capture the diversity of the early Cambrian microfossils. Meanwhile, the origin of the bedded chert would give us some insight into the environmental background when the source rock was deposited. Therefore, in this research, we focus on the chert in the lower Yurtus formation and our purpose is to establish high resolution biostratigraphic framework and to better understand the depositional environment of the source rock. We investigated 4 sections in the Tarim basin: Kungaikuotan, Sugaite, Kule, and Yurtus VI. Abundant acritarch fossils have been identified, including Heliosphaeridium ampliatum, Yurtusia uniformis, and Comasphaeridium annulare. The tubular fossil Megathrix longus is also very common in this formation. In addition, two new types of specimens have been discovered, sheet-like encrolled fossils ( 0.5 mm in size) and regular spindle-like double layered microfossils ( 10μm in diameter). All of these fossils have constant occurrences in the studied sections, and can be well correlated with those yielded from the equivalent interval in South China. The biostratigraphic work suggests the source rock in the lower unit of the Yurtus Formation could be correlated with the Meishucunian small shelly fossil assemblage I and II. The Gemenium/Silicon ratio of the Yurtus chert is less than 1μmol/mol, suggesting the primary Si source is from normal sea water instead of hydrothermal fluids. The sea water origin and petrological evidence also indicate that the chert is unlikely mainly from the replacement of carbonate. This recognition fundamentally challenges the previous interpretation of the depositional environment.
Mzighani, Semvua I; Nikaido, Masato; Takeda, Miyuki; Seehausen, Ole; Budeba, Yohana L; Ngatunga, Benjamin P; Katunzi, Egid F B; Aibara, Mitsuto; Mizoiri, Shinji; Sato, Tetsu; Tachida, Hidenori; Okada, Norihiro
2010-01-15
More than 500 endemic haplochromine cichlid species inhabit Lake Victoria. This striking species diversity is a classical example of recent explosive adaptive radiation thought to have happened within the last approximately 15,000 years. In this study, we examined the population structure and historical demography of 3 pelagic haplochromine cichlid species that resemble in morphology and have similar niche, Haplochromis (Yssichromis) laparogramma, Haplochromis (Y.) pyrrhocephalus, and Haplochromis (Y.) sp. "glaucocephalus". We investigated the sequences of the mitochondrial DNA control region and the insertion patterns of short interspersed elements (SINEs) of 759 individuals. We show that sympatric forms are genetically differentiated in 4 of 6 cases, but we also found apparent weakening of the genetic differentiation in areas with turbid water. We estimated the timings of population expansion and species divergence to coincide with the refilling of the lake at the Pleistocene/Holocene boundary. We also found that estimates can be altered significantly by the choice of the shape of the molecular clock. If we employ the nonlinear clock model of evolutionary rates in which the rates are higher towards the recent, the population expansion was dated at around the event of desiccation of the lake ca. 17,000 YBP. Thus, we succeeded in clarifying the species and population structure of closely related Lake Victoria cichlids and in showing the importance of applying appropriate clock calibrations in elucidating recent evolutionary events.
Pollination syndromes in African Marantaceae
Ley, Alexandra C.; Claßen-Bockhoff, Regine
2009-01-01
Background and Aims The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. Methods During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Key Results Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The ‘small (horizontal)’ flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the ‘large (horizontal)’ and ‘medium-sized (horizontal)’ flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the ‘locked (horizontal)’ flowers by large bees (Xylocopa nigrita, X. varipes) and the ‘(large) vertical’ flowers by sunbirds. Conclusions The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints. PMID:19443460
Vitales, Daniel; García-Fernández, Alfredo; Pellicer, Jaume; Vallès, Joan; Santos-Guerra, Arnoldo; Cowan, Robyn S; Fay, Michael F; Hidalgo, Oriane; Garnatje, Teresa
2014-01-01
The radiation of the genus Cheirolophus (Asteraceae) in Macaronesia constitutes a spectacular case of rapid diversification on oceanic islands. Twenty species - nine of them included in the IUCN Red List of Threatened Species - have been described to date inhabiting the Madeiran and Canarian archipelagos. A previous phylogenetic study revealed that the diversification of Cheirolophus in Macaronesia started less than 2 Ma. As a result of such an explosive speciation process, limited phylogenetic resolution was reported, mainly due to the low variability of the employed molecular markers. In the present study, we used highly polymorphic AFLP markers to i) evaluate species' boundaries, ii) infer their evolutionary relationships and iii) investigate the patterns of genetic diversity in relation to the potential processes likely involved in the radiation of Cheirolophus. One hundred and seventy-two individuals representing all Macaronesian Cheirolophus species were analysed using 249 AFLP loci. Our results suggest that geographic isolation played an important role in this radiation process. This was likely driven by the combination of poor gene flow capacity and a good ability for sporadic long-distance colonisations. In addition, we also found some traces of introgression and incipient ecological adaptation, which could have further enhanced the extraordinary diversification of Cheirolophus in Macaronesia. Last, we hypothesize that current threat categories assigned to Macaronesian Cheirolophus species do not reflect their respective evolutionary relevance, so future evaluations of their conservation status should take into account the results presented here.
Vitales, Daniel; García-Fernández, Alfredo; Pellicer, Jaume; Vallès, Joan; Santos-Guerra, Arnoldo; Cowan, Robyn S.; Fay, Michael F.; Hidalgo, Oriane; Garnatje, Teresa
2014-01-01
The radiation of the genus Cheirolophus (Asteraceae) in Macaronesia constitutes a spectacular case of rapid diversification on oceanic islands. Twenty species – nine of them included in the IUCN Red List of Threatened Species – have been described to date inhabiting the Madeiran and Canarian archipelagos. A previous phylogenetic study revealed that the diversification of Cheirolophus in Macaronesia started less than 2 Ma. As a result of such an explosive speciation process, limited phylogenetic resolution was reported, mainly due to the low variability of the employed molecular markers. In the present study, we used highly polymorphic AFLP markers to i) evaluate species' boundaries, ii) infer their evolutionary relationships and iii) investigate the patterns of genetic diversity in relation to the potential processes likely involved in the radiation of Cheirolophus. One hundred and seventy-two individuals representing all Macaronesian Cheirolophus species were analysed using 249 AFLP loci. Our results suggest that geographic isolation played an important role in this radiation process. This was likely driven by the combination of poor gene flow capacity and a good ability for sporadic long-distance colonisations. In addition, we also found some traces of introgression and incipient ecological adaptation, which could have further enhanced the extraordinary diversification of Cheirolophus in Macaronesia. Last, we hypothesize that current threat categories assigned to Macaronesian Cheirolophus species do not reflect their respective evolutionary relevance, so future evaluations of their conservation status should take into account the results presented here. PMID:25412495
Cankorur-Cetinkaya, Ayca; Dias, Joao M. L.; Kludas, Jana; Slater, Nigel K. H.; Rousu, Juho; Dikicioglu, Duygu
2017-01-01
Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple‐to‐use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257). PMID:28635591
"Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.
Kranz, William D; Strange, Nicholas A; Goodpaster, John V
2014-12-01
Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.
NASA Astrophysics Data System (ADS)
Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi
2018-03-01
To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.
Computer simulation of explosion crater in dams with different buried depths of explosive
NASA Astrophysics Data System (ADS)
Zhang, Zhichao; Ye, Longzhen
2018-04-01
Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.
Environmental Assessment: Installation Development at Vance Air Force Base, Oklahoma
2007-04-01
intensity, frequency, and duration. Sound is created by acoustic energy, which produces minute pressure waves that travel through a medium, like...acoustic energy increases, the intensity or amplitude of these pressure waves increase, and the ear senses louder noise. The unit used to measure the...shale, siltstone, sandstone, limestone, and dolomite ranging in age from Cambrian-Ordovician through Permian. These sedimentary units rest upon the Pre
Verification Study - Wah Wah Valley, Utah. Volume I. Synthesis.
1981-03-24
Paleozoic limestone and dolomite , with lesser amounts of Precambrian and Cambrian quartzites and phyllites. Tertiary volcanic rocks, consisting of...of fracture along which there has been gdisplacement. FAULT BLOCK MOUNTAINS - Mountains that are formed by normal faulting in which the surface crust...sample (ASTM D 2850-70). To conduct the test, a cylindrical specimen of soil is surrounded by a fluid in a pressure chamber and subjected to an
NASA Astrophysics Data System (ADS)
Hovey, Luke
2016-05-01
Supernova remnants are the lasting interactions of shock waves that develop in the wake of supernovae. These remnants, especially those in our galaxy and our companion galaxies, allow us to study supernovae for thousands of years after the initial stellar explosions. Remnants that are formed from Ia supernovae, which are the explosions and complete annihilation of white dwarf stars, are of particular interest due to the explosions' value as standard candles in cosmological studies. The shock waves in these young supernova remnants offer an unparalleled look into the physical processes that take place there, especially since these shocks are often simpler to study than shocks with strong radiative components that are present in remnants that are formed from the core-collapse supernovae of massive stars. I will detail the work of my kinematic study of the second youngest remnant in the Large Magellanic Cloud, 0509--67.5, which has been confirmed to be the result of a Ia supernova. Chapter 2 details the proper motion measurements made on the forward shock of this remnant, which has led to many key results. I was able to use the results of ii the global shock speed in the remnant to measure the density of neutral hydrogen in the ambient medium into which these shocks expand. In addition, I use the measurements of the shock speed for select portions of the forward shock to search for signatures of efficient cosmic-ray acceleration. Hydrodynamic simulations are then employed to constrain the age and ambient medium density of 0509--67.5, as well as to place limits on the compression factor at the immediate location of the blast wave. Chapter 3 uses the proper motion results from chapter 2 to determine possible asymmetries in the expansion of the remnant for the eastern and western limbs. These measurements are then used as constraints in hydrodynamic simulations to assess the possible dynamical offset of the explosion site compared to the geometric center of 0509?67.5 that we observe today. I find a continuum of possible offsets, which are sensitive to assumptions that are made about the evolutionary history of the remnant, and use the uncertainties in these calculations to determine the area in which to search for a leftover progenitor companion star in the event that the explosion resulted from a single-degenerate system. The stars within this search area are explored with a multi-band photometric study, wherein we determine the mass ranges for these candidates. Chapter four concludes this thesis, recapping the main results from chapters 2 and 3, and highlights the future projects I will carry out that are motivated by my findings in this comprehensive study of the supernova remnant 0509--67.5.
NASA Astrophysics Data System (ADS)
Lytwyn, Jennifer; Burke, Kevin; Culver, Stephen
2006-12-01
The boundaries of the West African Craton mark the location of a continuous suture zone that records Neoproterozoic to Early Cambrian oceanic closure. The western part of the circum-West African suture zone extends through the line of outcrop of the Mauritanide, Bassaride and Rokelide mountain belts. Our geochemical analyses are consistent with the idea that igneous and metamorphic rocks of the Rokelide and Southern Mauritanide mountain belts of West Africa occupy a suture zone that records the closing of a Neoproterozoic to Early Cambrian ocean basin during the Pan-African orogeny and final assembly of Gondwana. The closing of that basin was marked by the collision between Archean rocks of the Leo massif of the West African Craton and reactivated Archean and Paleoproterozoic rocks that now outcrop nearer to the coast of Africa in Sierra Leone and Liberia. Within the Rokelides, the geochemistry of the Kasewe Hills volcanic rocks and Marampa amphibolite indicate that remnants of an arc system are caught up in the suture zone. The geochemistry of Guingan schists that outcrop along strike of the Rokelides is compatible with the idea that the metamorphosed equivalents of the Marampa and Kasewe Hills arc volcanic rocks extend through the Bassarides and into the Southern Mauritanides.
Leventhal, J.S.
1991-01-01
In most black shales, such as the Chattanooga Shale and related shales of the eastern interior United States, increased metal and metalloid contents are generally related to increased organic carbon content, decreased sedimentation rate, organic matter type, or position in the basin. In areas where the stratigraphic equivalents of the Chattanooga Shale are deeply buried and and the organic material is thermally mature, metal contents are essentially the same as in unheated areas and correlate with organic C or S contents. This paradigm does not hold for the Cambrian Alum Shale Formation of Sweden where increased metal content does not necessarily correlate with organic matter content nor is metal enrichment necessarily related to land derived humic material because this organic matter is all of marine source. In southcentral Sweden the elements U, Mo, V, Ni, Zn, Cd and Pb are all enriched relative to average black shales but only U and Mo correlate to organic matter content. Tectonically disturbed and metamorphosed allochthonous samples of Alum Shale on the Caledonian front in western Sweden have even higher amounts for some metals (V, Ni, Zn and Ba) relative to the autochthonous shales in this area and those in southern Sweden. ?? 1991 Springer-Verlag.
Folding associated with extensional faulting: Sheep Range detachment, southern Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guth, P.L.
1985-01-01
The Sheep Range detachment is a major Miocene extensional fault system of the Great Basin. Its major faults have a scoop shape, with straight, N-S traces extending 15-30 km and then abruptly turning to strike E-W. Tertiary deformation involved simultaneous normal faulting, sedimentation, landsliding, and strike-slip faulting. Folds occur in two settings: landslide blocks and drag along major faults. Folds occur in landslide blocks and beneath them. Most folds within landslide blocks are tight anticlines, with limbs dipping 40-60 degrees. Brecciation of the folds and landslide blocks suggests brittle deformation. Near Quijinump Canyon in the Sheep Range, at least threemore » landslide blocks (up to 500 by 1500 m) slid into a small Tertiary basin. Tertiary limestone beneath the Paleozoic blocks was isoclinally folded. Westward dips reveal drag folds along major normal faults, as regional dips are consistently to the east. The Chowderhead anticline is the largest drag fold, along an extensional fault that offsets Ordovician units 8 km. East-dipping Ordovician and Silurian rocks in the Desert Range form the hanging wall. East-dipping Cambrian and Ordovician units in the East Desert Range form the foot wall and east limb of the anticline. Caught along the fault plane, the anticline's west-dipping west limb contains mostly Cambrian units.« less
Eoff, Jennifer D.
2014-01-01
New data from detailed measured sections permit comprehensive analysis of the sequence framework of the Furongian (Upper Cambrian; Jiangshanian and Sunwaptan stages) Tunnel City Group (Lone Rock Formation and Mazomanie Formation) of Wisconsin and Minnesota. The sequence-stratigraphic architecture of the lower part of the Sunwaptan Stage at the base of the Tunnel City Group, at the contact between the Wonewoc Formation and Lone Rock Formation, records the first part of complex polyphase flooding (Sauk III) of the Laurentian craton, at a scale smaller than most events recorded by global sea-level curves. Flat-pebble conglomerate and glauconite document transgressive ravinement and development of a condensed section when creation of accommodation exceeded its consumption by sedimentation. Thinly-bedded, fossiliferous sandstone represents the most distal setting during earliest highstand. Subsequent deposition of sandstone characterized by hummocky or trough cross-stratification records progradational pulses of shallower, storm- and wave-dominated environments across the craton before final flooding of Sauk III commenced with carbonate deposition during the middle part of the Sunwaptan Stage. Comparison of early Sunwaptan flooding of the inner Laurentian craton to published interpretations from other parts of North America suggests that Sauk III was not a single, long-term accommodation event as previously proposed.
Stöger, I.; Sigwart, J. D.; Kano, Y.; Knebelsberger, T.; Marshall, B. A.; Schwabe, E.; Schrödl, M.
2013-01-01
Molluscs are a diverse animal phylum with a formidable fossil record. Although there is little doubt about the monophyly of the eight extant classes, relationships between these groups are controversial. We analysed a comprehensive multilocus molecular data set for molluscs, the first to include multiple species from all classes, including five monoplacophorans in both extant families. Our analyses of five markers resolve two major clades: the first includes gastropods and bivalves sister to Serialia (monoplacophorans and chitons), and the second comprises scaphopods sister to aplacophorans and cephalopods. Traditional groupings such as Testaria, Aculifera, and Conchifera are rejected by our data with significant Approximately Unbiased (AU) test values. A new molecular clock indicates that molluscs had a terminal Precambrian origin with rapid divergence of all eight extant classes in the Cambrian. The recovery of Serialia as a derived, Late Cambrian clade is potentially in line with the stratigraphic chronology of morphologically heterogeneous early mollusc fossils. Serialia is in conflict with traditional molluscan classifications and recent phylogenomic data. Yet our hypothesis, as others from molecular data, implies frequent molluscan shell and body transformations by heterochronic shifts in development and multiple convergent adaptations, leading to the variable shells and body plans in extant lineages. PMID:24350268
Terminal Proterozoic reorganization of biogeochemical cycles
NASA Technical Reports Server (NTRS)
Logan, G. A.; Hayes, J. M.; Hieshima, G. B.; Summons, R. E.
1995-01-01
The Proterozoic aeon (2,500-540 million years ago) saw episodic increases in atmospheric oxygen content, the evolution of multicellular life and, at its close, an enormous radiation of animal diversity. These profound biological and environmental changes must have been linked, but the underlying mechanisms have been obscure. Here we show that hydrocarbons extracted from Proterozoic sediments in several locations worldwide are derived mainly from bacteria or other heterotrophs rather than from photosynthetic organisms. Biodegradation of algal products in sedimenting matter was therefore unusually complete, indicating that organic material was extensively reworked as it sank slowly through the water column. We propose that a significant proportion of this reworking will have been mediated by sulphate-reducing bacteria, forming sulphide. The production of sulphide and consumption of oxygen near the ocean surface will have inhibited transport of O2 to the deep ocean. We find that preservation of algal-lipid skeletons improves at the beginning of the Cambrian, reflecting the increase in transport by rapidly sinking faecal pellets. We suggest that this rapid removal of organic matter will have increased oxygenation of surface waters, leading to a descent of the O2-sulphide interface to the sea floor and to marked changes in the marine environment, ultimately contributing to the Cambrian radiation.