Sample records for camellia camellia japonica

  1. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica

    PubMed Central

    Li, Qingyuan; Lei, Sheng; Du, Kebing; Li, Lizhi; Pang, Xufeng; Wang, Zhanchang; Wei, Ming; Fu, Shao; Hu, Limin; Xu, Lin

    2016-01-01

    Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of ‘Jiangxue’, a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants. PMID:27819341

  2. Responsive Surface Methodology Optimizes Extraction Conditions of Industrial by-products, Camellia japonica Seed Cake

    PubMed Central

    Kim, Jae Kyeom; Lim, Ho-Jeong; Kim, Mi-So; Choi, Soo Jung; Kim, Mi-Jeong; Kim, Cho Rong; Shin, Dong-Hoon; Shin, Eui-Cheol

    2016-01-01

    Background: The central nervous system is easily damaged by oxidative stress due to high oxygen consumption and poor defensive capacity. Hence, multiple studies have demonstrated that inhibiting oxidative stress-induced damage, through an antioxidant-rich diet, might be a reasonable approach to prevent neurodegenerative disease. Objective: In the present study, response surface methodology was utilized to optimize the extraction for neuro-protective constituents of Camellia japonica byproducts. Materials and Methods: Rat pheochromocytoma cells were used to evaluate protective potential of Camellia japonica byproducts. Results: Optimum conditions were 33.84 min, 75.24%, and 75.82°C for time, ethanol concentration and temperature. Further, we demonstrated that major organic acid contents were significantly impacted by the extraction conditions, which may explain varying magnitude of protective potential between fractions. Conclusions: Given the paucity of information in regards to defatted C. japonica seed cake and their health promoting potential, our results herein provide interesting preliminary data for utilization of this byproduct from oil processing in both academic and industrial applications. SUMMARY Neuro-protective potential of C. japonica seed cake on cell viability was affected by extraction conditionsExtraction conditions effectively influenced on active constituents of C. japonica seed cakeBiological activity of C. japonica seed cake was optimized by the responsive surface methodology. Abbreviations used: GC-MS: Gas chromatography-mass spectrometer, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, PC12 cells: Pheochromocytoma, RSM: Response surface methodology. PMID:27601847

  3. Fluoride bioaccumulation by hydroponic cultures of camellia (Camellia japonica spp.) and sugar cane (Saccharum officinarum spp.).

    PubMed

    Camarena-Rangel, Nancy; Rojas Velázquez, Angel Natanael; Santos-Díaz, María del Socorro

    2015-10-01

    The ability of hydroponic cultures of camellia and sugar cane adult plants to remove fluoride was investigated. Plants were grown in a 50% Steiner nutrient solution. After an adaptation period to hydroponic conditions, plants were exposed to different fluoride concentrations (0, 2.5, 5 and 10 mg L(-1)). Fluoride concentration in the culture medium and in tissues was measured. In sugar cane, fluoride was mainly located in roots, with 86% of it absorbed and 14% adsorbed. Sugar cane plants removed 1000-1200 mg fluoride kg(-1) dry weight. In camellia plants the highest fluoride concentration was found in leaf. Roots accumulated fluoride mainly through absorption, which was 2-5 times higher than adsorption. At the end of the experiment, fluoride accumulation in camellia plants was 1000-1400 mgk g(-1) dry weight. Estimated concentration factors revealed that fluoride bioaccumulation is 74-221-fold in camellia plants and 100-500-fold in sugar cane plants. Thus, the latter appear as a suitable candidate for removing fluoride from water due to their bioaccumulation capacity and vigorous growth rate; therefore, sugar cane might be used for phytoremediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars.

    PubMed

    Hattan, Jun-ichiro; Shindo, Kazutoshi; Ito, Tomoko; Shibuya, Yurica; Watanabe, Arisa; Tagaki, Chie; Ohno, Fumina; Sasaki, Tetsuya; Ishii, Jun; Kondo, Akihiko; Misawa, Norihiko

    2016-04-01

    A novel terpene synthase (Tps) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are very popular because they bloom in winter when other plants seldom flower. Many ornamental cultivars of Camellia have been bred mainly in Japan, although the fragrance of their flowers has not been studied extensively. We analyzed floral scents of several Camellia cultivars by gas chromatography-mass spectrometry (GC-MS) and found that Camellia brevistyla produced various sesquiterpenes in addition to monoterpenes, whereas Camellia japonica and its cross-lines produced only monoterpenes, including linalool as the main product. From a flower of C. brevistyla, we isolated one cDNA encoding a terpene synthase (TPS) comprised of 554 amino acids, which was phylogenetically positioned to a sole gene clade. The cDNA, designated CbTps1, was expressed in mevalonate-pathway-engineered Escherichia coli, which carried the Streptomyces mevalonate-pathway gene cluster in addition to the acetoacetate-CoA ligase gene. A terpene product was purified from recombinant E. coli cultured with lithium acetoacetate, and analyzed by (1)H-nulcear magnetic resonance spectroscopy ((1)H-NMR) and GC-MS. It was shown that a sesquiterpene hedycaryol was produced, because (1)H-NMR signals of the purified product were very broad, and elemol, a thermal rearrangement product from hedycaryol, was identified by GC-MS analysis. Spectroscopic data of elemol were also determined. These results indicated that the CbTps1 gene encodes hedycaryol synthase. Expression analysis of CbTps1 showed that it was expressed specifically in flowers, and hedycaryol is likely to be one of the terpenes that attract insects for pollination of C. brevistyla. A linalool synthase gene, which was isolated from a flower of Camellia saluenensis, is also described.

  5. The external morphology of the mouthparts, and observations on feeding and behavior of Tuckerella japonica on Camellia sinensis in the continental United States

    USDA-ARS?s Scientific Manuscript database

    Tuckerella japonica Ehara (Acari: Tetranychoidea: Tuckerellidae) is found where longitudinal splitting occurs on exposed green periderm tissue of shoots on certain varieties or seedling plants of Camellia sinensis (L.) O. Kuntze (Theales: Theaceae) in the continental United States. The mite is able ...

  6. Resilient plant-bird interactions in a volcanic island ecosystem: pollination of Japanese Camellia mediated by the Japanese White-eye.

    PubMed

    Abe, Harue; Ueno, Saneyoshi; Takahashi, Toshimori; Tsumura, Yoshihiko; Hasegawa, Masami

    2013-01-01

    Observations of interspecies interactions during volcanic activity provide important opportunities to study how organisms respond to environmental devastation. Japanese camellia (Camellia japonica L.) and its main avian pollinator, the Japanese White-eye (Zosterops japonica), offer an excellent example of such an interaction as key members of the biotic community on Miyake-jima, which erupted in 2000 and continues to emit volcanic gases. Both species exhibit higher resistance to volcanic damage than other species. We examined the effects of volcanic activity on this plant-pollinator system by estimating pollen flow and the genetic diversity of the next generation. The results showed that despite a decrease in Camellia flowers, the partitioning of allelic richness among mother-tree pollen pools and seeds decreased while the migration rate of pollen from outside the study plot and the pollen donor diversity within a fruit increased as the index of volcanic damage increased. In areas with low food (flower) density due to volcanic damage, Z. japonica ranged over larger areas to satisfy its energy needs rather than moving to areas with higher food density. Consequently, the genetic diversity of the seeds (the next plant generation) increased with the index of volcanic damage. The results were consistent with previously published data on the movement of Z. japonica based on radio tracking and the genetic diversity of Camellia pollen adhering to pollinators. Overall, our results indicated that compensation mechanisms ensured better pollination after volcanic disturbance.

  7. Arms race between weevil rostrum length and camellia pericarp thickness: Geographical cline and theory.

    PubMed

    Iseki, Naoyuki; Sasaki, Akira; Toju, Hirokazu

    2011-09-21

    The geographical cline of the coevolving traits of weevil rostrum (mouthpart) length and camellia pericarp (fruit coat) thickness provides an opportunity to test the arms race theory of defense (pericarp thickness) and countermeasure (rostrum length) between antagonistically interacting species. By extending the previous model for the coevolution of quantitative traits to introduce nonlinear costs for exaggerated traits, the generation overlap, and density-dependent regulation in the host, we studied the evolutionarily stable (ES) pericarp thickness in the Japanese camellia (Camellia japonica) and the ES rostrum length in the camellia-weevil (Curculio camelliae). The joint monomorphic ES system has a robust outcome with nonlinear costs, and we analyzed how the traits of both species at evolutionary equilibrium depend on demographic parameters. If camellia demographic parameters vary latitudinally, data collected over the geographical scale of rostrum length and pericarp thickness should lie on an approximately linear curve with the slope less than that of the equiprobability line A/B of boring success, where A and B are coefficients for the logistic regression of boring success to pericarp thickness and rostrum length, respectively. This is a robust prediction as long as the cost of rostrum length is nonlinear (accelerating). As a result, boring success should be lower in populations with longer rostrum length, as reported in the weevil-camellia system (Toju, H., and Sota, T., 2006a. Imbalance of predator and prey armament: Geographic clines in phenotypic interface and natural selection. American Naturalist 167, 105-117). The nonlinearity (exponent) for the cost of rostrum length estimated from the geographical cline data for the weevil-camellia system was 2.2, suggesting nonlinearity between quadratic and cubic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Medicinal flowers. XXXVI.1) Acylated oleanane-type triterpene saponins with inhibitory effects on melanogenesis from the flower buds of Chinese Camellia japonica.

    PubMed

    Nakamura, Seikou; Fujimoto, Katsuyoshi; Nakashima, Souichi; Matsumoto, Takahiro; Miura, Tomoko; Uno, Kaoru; Matsuda, Hisashi; Yoshikawa, Masayuki

    2012-01-01

    Four acylated oleanane-type triterpene oligoglycosides, sanchakasaponins E-H, were isolated from the flower buds of Camellia japonica cultivated in Yunnan province, China, together with four known triterpene oligoglycosides. The chemical structures of the new triterpene oligoglycosides were elucidated on the basis of chemical and physicochemical evidence. The inhibitory effects of the triterpene oligoglycoside constituents on melanogenesis in theophylline-stimulated B16 melanoma 4A5 cells were investigated.

  9. Evaluation of Camellias for zone 6b

    USDA-ARS?s Scientific Manuscript database

    Recent hybridization of camellias has yielded several selections recognized as cold hardy to USDA Hardiness Zone 6. Several of the cold hardy camellias, in an established camellia evaluation since 2004, were damaged with foliar bronzing and stem dieback after a severe freeze in November 2013 in McMi...

  10. Protective Effect of Camellia Oil (Camellia oleifera Abel.) against Ethanol-Induced Acute Oxidative Injury of the Gastric Mucosa in Mice.

    PubMed

    Tu, Pang-Shuo; Tung, Yu-Tang; Lee, Wei-Ting; Yen, Gow-Chin

    2017-06-21

    Camellia oil, a common edible oil in Taiwan and China, has health effects for the gastrointestinal tract in folk medicine, and it contains abundant unsaturated fatty acids and phytochemicals. However, the preventive effect of camellia oil on ethanol-induced gastric ulcers remains unclear. This study was aimed to evaluate the preventive effect of camellia oil on ethanol-induced gastric injury in vitro and in vivo as well as its mechanisms of action. In an in vitro study, our results showed that pretreatment of RGM-1 cells with camellia oil enhanced the migration ability as well as increased heat shock protein expression and reduced apoptotic protein expression. In animal experiments, mice pretreated with camellia oil effectively showed improved ethanol-induced acute injury of the gastric muscosa and oxidative damage through the enhancement of antioxidant enzyme activities and heat shock protein and PGE 2 production, as well as the suppression of lipid peroxidation, apoptosis-related proteins, pro-inflammatory cytokines, and NO production. Histological injury score and hemorrhage score in ethanol-induced gastric mucosal damage dramatically elevated from the control group (0.00 ± 0.0) to 3.40 ± 0.7 and 2.60 ± 0.5, respectively. However, treatments with camellia oil or olive oil (2 mL/kg bw) and lansoprazole (30 mg/kg bw) showed significant decreases in elevation of injury score and hemorrhage score (p < 0.05). Therefore, camellia oil has the potential to ameliorate ethanol-induced acute gastric mucosal injury through the inhibition of inflammation and oxidative stress.

  11. Anti-inflammatory and antioxidative effects of Camellia oleifera Abel components.

    PubMed

    Xiao, Xiaomei; He, Liangmei; Chen, Yayun; Wu, Longhuo; Wang, Lin; Liu, Zhiping

    2017-11-01

    Camellia oleifera Abel is a member of Camellia, and its seeds are used to extract Camellia oil, which is generally used as cooking oil in the south of China. Camellia oil consists of unsaturated fatty acids, tea polyphenol, squalene, saponin, carrot element and vitamins, etc. The seed remains after oil extraction of C. oleifera Abel are by-products of oil production, named as Camellia oil cake. Its extracts contain bioactive compounds including sasanquasaponin, flavonoid and tannin. Major components from Camellia oil and its cake have been shown to have anti-inflammatory, antioxidative, antimicrobial and antitumor activities. In this review, we will summarize the latest advance in the studies on anti-inflammatory or antioxidative effects of C. oleifera products, thus providing valuable reference for the future research and development of C. oleifera Abel.

  12. Camellia v1.0 Manual: Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Nathan V.

    2016-09-28

    Camellia began as an effort to simplify implementation of efficient solvers for the discontinuous Petrov-Galerkin (DPG) finite element methodology of Demkowicz and Gopalakrishnan. Since then, the feature set has expanded, to allow implementation of traditional continuous Galerkin methods, as well as discontinuous Galerkin (DG) methods, hybridizable DG (HDG) methods, first-order-system least squares (FOSLS), and the primal DPG method. This manual serves as an introduction to using Camellia. We begin, in Section 1.1, by describing some of the core features of Camellia. In Section 1.2 we provide an outline of the manual as a whole.

  13. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation.

    PubMed

    Chen, Jiaming; Yang, Xiaoqiang; Huang, Xiaomao; Duan, Shihua; Long, Chuan; Chen, Jiakuan; Rong, Jun

    2017-02-28

    Cold tolerance is a key determinant of the geographical distribution range of a plant species and crop production. Cold acclimation can enhance freezing-tolerance of plant species through a period of exposure to low nonfreezing temperatures. As a subtropical evergreen broadleaf plant, oil-tea camellia demonstrates a relatively strong tolerance to freezing temperatures. Moreover, wild oil-tea camellia is an essential genetic resource for the breeding of cultivated oil-tea camellia, one of the four major woody oil crops in the world. The aims of our study are to identify variations in transcriptomes of wild oil-tea camellia from different latitudes and elevations, and discover candidate genes for cold acclimation. Leaf transcriptomes were obtained of wild oil-tea camellia from different elevations in Lu and Jinggang Mountains, China. Huge amounts of simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) were identified. Based on SNPs, phylogenetic analysis was performed to detect genetic structure. Wild oil-tea camellia samples were genetically differentiated mainly between latitudes (between Lu and Jinggang Mountains) and then among elevations (within Lu or Jinggang Mountain). Gene expression patterns of wild oil-tea camellia samples were compared among different air temperatures, and differentially expressed genes (DEGs) were discovered. When air temperatures were below 10 °C, gene expression patterns changed dramatically and majority of the DEGs were up-regulated at low temperatures. More DEGs concerned with cold acclimation were detected at 2 °C than at 5 °C, and a putative C-repeat binding factor (CBF) gene was significantly up-regulated only at 2 °C, suggesting a stronger cold stress at 2 °C. We developed a new method for identifying significant functional groups of DEGs. Among the DEGs, transmembrane transporter genes were found to be predominant and many of them encoded transmembrane sugar

  14. Impact of traditional culture on Camellia reticulata in Yunnan, China.

    PubMed

    Xin, Tong; de Riek, Jan; Guo, Huijun; Jarvis, Devra; Ma, Lijuan; Long, Chunlin

    2015-10-22

    Cha-hua (Camellia reticulata) is one of China's traditional ornamental flowers developed by the local people of Yunnan Province. Today, more than 500 cultivars and hybrids are recognized. Many ancient camellia trees still survive and are managed by local peopl. A few records on cha-hua culture exist, but no studies expound the interaction between C. reticulata and traditional culture of ethnic groups. The contribution of traditional culture of different nationalities and regions to the diversity of Camellia reticulate is discussed. Ethnobotanical surveys were conducted throughout Central and Western Yunnan to investigate and document the traditional culture related to Camellia reticulata. Five sites were selected to carry out the field investigation. Information was collected using participatory observation, semi-structured interviews, key informant interviews, focus group discussions, and participatory rural appraisal (PRA). Most of the ancient camellia trees were preserved or saved in the courtyards of old buildings and cultural or religious sites. Religion-associated culture plays an important role in C. reticulata protection. In every site we investigated, we found extensive traditional culture on C. reticulata and its management. These traditional cultures have not only protected the germplasm resources of C. reticulata, but also improved the diversity of Camellia cultivars. There are abundant and diverse genetic resources of cha-hua, Camellia reticulata in Yunnan. Cha-hua is not only an ornamental flower but also has been endowed with rich spiritual connotation. The influence of traditional culture had improved the introduction and domestication of wild plants, breeding and selection of different varieties, and the propagation and dissemination of the tree in Yunnan. However, either some ancient cha-hua trees or their associated traditional culture are facing various threats. The old cha-hua trees and the ethnic camellia culture should be respected and

  15. Anti-Inflammatory Properties of Flavone di-C-Glycosides as Active Principles of Camellia Mistletoe, Korthalsella japonica

    PubMed Central

    Kim, Min Kyoung; Yun, Kwang Jun; Lim, Da Hae; Kim, Jinju; Jang, Young Pyo

    2016-01-01

    The chemical components and biological activity of Camellia mistletoe, Korthalsella japonica (Loranthaceae) are relatively unknown compared to other mistletoe species. Therefore, we investigated the phytochemical properties and biological activity of this parasitic plant to provide essential preliminary scientific evidence to support and encourage its further pharmaceutical research and development. The major plant components were chromatographically isolated using high-performance liquid chromatography and their structures were elucidated using tandem mass spectrometry and nuclear magnetic resonance anlysis. Furthermore, the anti-inflammatory activity of the 70% ethanol extract of K. japonica (KJ) and its isolated components was evaluated using a nitric oxide (NO) assay and western blot analysis for inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Three flavone di-C-glycosides, lucenin-2, vicenin-2, and stellarin-2 were identified as major components of KJ, for the first time. KJ significantly inhibited NO production and reduced iNOS and COX-2 expression in lipopolysaccharide-stimulated RAW 264.7 cells at 100 μg/mL while similar activity were observed with isolated flavone C-glycosides. In conclusion, KJ has a simple secondary metabolite profiles including flavone di-C-glycosides as major components and has a strong potential for further research and development as a source of therapeutic anti-inflammatory agents. PMID:27302962

  16. Profiling the Fatty Acids Content of Ornamental Camellia Seeds Cultivated in Galicia by an Optimized Matrix Solid-Phase Dispersion Extraction

    PubMed Central

    Garcia-Jares, Carmen; Sanchez-Nande, Marta; Lamas, Juan Pablo; Lores, Marta

    2017-01-01

    Camellia (genus of flowering plants of fam. Theaceae) is one of the main crops in Asia, where tea and oil from leaves and seeds have been utilized for thousands of years. This plant is excellently adapted to the climate and soil of Galicia (northwestern Spain) and northern Portugal where it is grown not only as an ornamental plant, but to be evaluated as a source of bioactive compounds. In this work, the main fatty acids were extracted from Camellia seeds of four varieties of Camellia: sasanqua, reticulata, japonica and sinensis, by means of matrix-solid phase dispersion (MSPD), and analyzed by gas chromatography (GC) with MS detection of the corresponding methyl esters. MSPD constitutes an efficient and greener alternative to conventional extraction techniques, moreover if it is combined with the use of green solvents such as limonene. The optimization of the MSPD extraction procedure has been conducted using a multivariate approach based on strategies of experimental design, which enabled the simultaneous evaluation of the factors influencing the extraction efficiency as well as interactions between factors. The optimized method was applied to characterize the fatty acids profiles of four Camellia varieties seeds, allowing us to compare their fatty acid composition. PMID:29039745

  17. Research and development of Camellia oleifera fruit sheller and sorting machine

    NASA Astrophysics Data System (ADS)

    Kang, Di; Wang, Yong; Fan, Youhua; Chen, Zejun

    2018-01-01

    Camellia oleifera fruit sheller in this paper was designed by the principle of kneading and extruding. This machine adopted the rolling classification sieve to screen camellia oleifera fruit with different sizes into the husking device, and camellia oleifera fruit was shelled in the mutually co-operative action of transport belt and flexible rubbing washboard. After research, in the condition that the moisture content of camellia oleifera fruit was below 55%, the vibration of the motor frequency was 50 Hz and the horizontal angle of sorting belt was 50 degrees∼55 degrees, the processing capacity was more than 900 kg/h, the threshing ratio was more than 97%, the seed broken ratio was less than 5%, the loss ratio was less than 1%. The machine is of great value in actual production, and should be widely spread and applied.

  18. Enhancement of antioxidative activity and cardiovascular protection in hamsters by camellia oil and soybean-camellia blended oil.

    PubMed

    Chou, Ting-Yi; Lu, Yi-Fa; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2018-02-07

    The aim of this study was to examine the effects of several vegetable oils and blended oil composed of soybean and camellia oils on blood lipid reduction and antioxidative activity. Forty male hamsters were fed an AIN-93 G diet for 1 wk, followed by dividing into five groups: control group-1 was fed a low-fat diet containing 5% oil for 6 wk, and the other four groups were fed high-fat diets with group-2 containing 14% palm oil, group-3 containing 14% camellia oil, group-4 containing 14% soybean oil, and group-5 containing 14% blended oil (8.4% soybean oil and 5.6% camellia oil) along with 0.2% cholesterol and 0.1% bile acid. High-fat diets raised serum triacylglycerol, total cholesterol, and aspartate aminotransferase in hamsters without affecting alanine aminotransferase. Compared with palm oil-containing diet, the other three high-fat diets reduced serum total cholesterol, low-density lipoprotein cholesterol, and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol with an opposite trend for liver total cholesterol. However, compared with the control group, the serum high-density lipoprotein cholesterol level was raised for all four high-fat diets. The higher the degree of oil unsaturation, the higher the serum thiobarbituric acid reactive substances and the lower the liver triacylglycerol level and activities of fatty acid synthase, glucose 6-phosphate dehydrogenase, and malic enzymes. Both soybean and blended oils lowered the antioxidative activity of liver. Camellia and blended oils were more efficient than soybean oil in elevating serum high-density lipoprotein cholesterol and decreasing the ratio of low-density lipoprotein to high-density lipoprotein cholesterol in hamsters. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Saponins from seeds of Genus Camellia: Phytochemistry and bioactivity.

    PubMed

    Guo, Na; Tong, Tuantuan; Ren, Ning; Tu, Youying; Li, Bo

    2018-05-01

    Camellia seeds have been traditionally used as oil raw materials in Asia, and are known for a wide spectrum of applications. Oleanane-type triterpene saponins are the major specialised metabolites in Camellia seeds, and more than seventy saponins have been isolated and characterized. These natural compounds have caught much attention due to their various biological and pharmacological activities, including modulation of gastrointestinal system, anti-cancer, anti-inflammation, anti-microorganism, antioxidation, neuroprotection, hypolipidemic effects, foaming and detergence, as well as helping the accumulation of pollutants by plants. These compounds have a promising application in medicine, agriculture, industry and environmental protection. The present paper summarized the information from current publications on Camellia seed saponins, with a focus on the advances made in chemical structures, determination methods, bioactivities and toxicity. We hope this article will stimulate further investigations on these compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.

    PubMed

    Dou, Xinjing; Mao, Jin; Zhang, Liangxiao; Xie, Huali; Chen, Lin; Yu, Li; Ma, Fei; Wang, Xiupin; Zhang, Qi; Li, Peiwu

    2018-01-25

    Adulteration of edible oils has attracted attention from more researchers and consumers in recent years. Complex multispecies adulteration is a commonly used strategy to mask the traditional adulteration detection methods. Most of the researchers were only concerned about single targeted adulterants, however, it was difficult to identify complex multispecies adulteration or untargeted adulterants. To detect adulteration of edible oil, identification of characteristic markers of adulterants was proposed to be an effective method, which could provide a solution for multispecies adulteration detection. In this study, a simple method of multispecies adulteration detection for camellia oil (adulterated with soybean oil, peanut oil, rapeseed oil) was developed by quantifying chemical markers including four isoflavones, trans-resveratrol and sinapic acid, which used liquid chromatography tandem mass spectrometry (LC-MS/MS) combined with solid phase extraction (SPE). In commercial camellia oil, only two of them were detected of daidzin with the average content of 0.06 ng/g while other markers were absent. The developed method was highly sensitive as the limits of detection (LODs) ranged from 0.02 ng/mL to 0.16 ng/mL and the mean recoveries ranged from 79.7% to 113.5%, indicating that this method was reliable to detect potential characteristic markers in edible oils. Six target compounds for pure camellia oils, soybean oils, peanut oils and rapeseed oils had been analyzed to get the results. The validation results indicated that this simple and rapid method was successfully employed to determine multispecies adulteration of camellia oil adulterated with soybean, peanut and rapeseed oils.

  1. Spontaneously Assembled Nano-aggregates in Clear Green Tea Infusions from Camellia ptilophylla and Camellia sinensis.

    PubMed

    Lin, Xiaorong; Gao, Xiong; Chen, Zhongzheng; Zhang, Yuanyuan; Luo, Wei; Li, Xiaofei; Li, Bin

    2017-05-10

    Tea nano-aggregates spontaneously assembled in clear tea infusions are considered as the precursors of tea cream, although their molecular basis remains obscure. Here, we characterized nano-aggregates in green tea infusions from Camellia ptilophylla, a peculiar tea variety with 6.0% of theobromine, and Camellia sinensis as the control for comparative purpose. Numerous negatively charged spherical colloidal particles of 50-100 nm in diameter were primarily found in both green tea infusions. Catechins, proteins, and carbohydrates were confirmed as the dominant components in green tea nano-aggregates. In addition, iron, copper, nickel, proteins, and gallated catechins exhibited higher aggregating affinity than other components, whereas methylxanthines and calcium contributed to the transformation of nano-aggregates into tea cream. Green tea nano-aggregates were partly destroyed by simulated gastrointestinal digestion, and removing theses peculiar particles dramatically attenuated the bioaccessibility of methylxanthines, theanine, and some catechin monomers in green tea infusions. This study enhanced our knowledge of molecular interactions in the formation of green tea cream and provided insight into physicochemical profiles, phytochemical nature, and functional effects of green tea nano-aggregates.

  2. Research on pyrolysis behavior of Camellia sinensis branches via the Discrete Distributed Activation Energy Model.

    PubMed

    Zhou, Bingliang; Zhou, Jianbin; Zhang, Qisheng

    2017-10-01

    This study aims at investigating the pyrolysis behavior of Camellia sinensis branches by the Discrete Distributed Activation Energy Model (DAEM) and thermogravimetric experiments. Then the Discrete DAEM method is used to describe pyrolysis process of Camellia sinensis branches dominated by 12 characterized reactions. The decomposition mechanism of Camellia sinensis branches and interaction with components are observed. And the reaction at 350.77°C is a significant boundary of the first and second reaction range. The pyrolysis process of Camellia sinensis branches at the heating rate of 10,000°C/min is predicted and provides valuable references for gasification or combustion. The relationship and function between four typical indexes and heating rates from 10 to 10,000°C/min are revealed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea.

    PubMed

    Bi, Wu; He, Chunnian; Ma, Yunyun; Shen, Jie; Zhang, Linghua Harris; Peng, Yong; Xiao, Peigen

    2016-03-01

    To find novel functional beverages from folk teas, 33 species of frequently used non-Camellia tea (plants other than Camellia) were collected and compared with Camellia tea (green tea, pu-erh tea and black tea) for the first time. Data are reported here on the quantities of 20 free amino acids (FAAs) and three purine alkaloids (measured by UHPLC), total polyphenols (measured by Folin-Ciocalteu assay), and antioxidant activity (DPPH). The total amounts of FAAs in non-Camellia tea (0.62-18.99 mg/g) are generally less than that of Camellia tea (16.55-24.99 mg/g). However, for certain FAAs, the quantities were much higher in some non-Camellia teas, such as γ-aminobutyric acid in teas from Ampelopsis grossedentata, Isodon serra and Hibiscus sabdariffa. Interestingly, theanine was detected in tea from Potentilla fruticosa (1.16±0.81 mg/g). Furthermore, the content of polyphenols in teas from A. grossedentata, Acer tataricum subsp. ginnala are significantly higher than those from Camellia tea; teas from I. serra, Pistacia chinensis and A. tataricum subsp. ginnala have remarkable antioxidant activities similar to the activities from green tea (44.23 μg/mL). Purine alkaloids (caffeine, theobromine and theophylline) were not detected in non-Camellia teas. The investigation suggest some non-Camellia teas may be great functional natural products with potential for prevention of chronic diseases and aging, by providing with abundant polyphenols, antioxidants and specific FAAs.

  4. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.

    PubMed

    Zhang, Luxin; He, Yunfei; Zhu, Yujie; Liu, Yuting; Wang, Xiaochang

    2018-02-01

    This paper focuses on the high-value transformation of camellia oleifera shell, which is an agricultural waste enriched in hemicellulose. An efficient catalytic route employing sulfonated swelling mesoporous polydivinylbenzene (PDVB-SO 3 H) as catalyst in monophasic or biphasic solvents was developed for the conversion of raw camellia oleifera shell into furfural. The reaction parameters were evaluated and optimized for improving the furfural yield. It was found that the solvent greatly influenced the hydrolysis of camellia oleifera shells, and the highest furfural yield of 61.3% was obtained in "γ-butyrolactone + water" system when the feedstock-to-catalyst ratio was 2 for 30 min at 443 K. Camellia oleifera shell exhibited a high potential as feedstock to produce furfural in high yields. The outcome of this study provides an attractive utilization option to camellia oleifera shell, which is currently burned or discarded for producing a bio-based chemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    PubMed

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g -1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. The protective ability of Camellia meal extract on the silk protein

    NASA Astrophysics Data System (ADS)

    Weng, JZ; Cai, C.; Zhang, DY; Dai, BK

    2018-02-01

    With the enhancement of living standards, people pay more and more attention to the health. The edible oil become more and more popular, but also produced a large amount of Camellia meal which can not fully put into utilization. In this study, the extracting liquid of Camellia meal was used on the process of silk degumming. Firstly, tussah silk was treated by degumming in the Na2CO3 solution, and the preliminary condition of tussah silk degumming was obtained by orthogonal experiment: the concentration Na2CO3 was 0.1%, the degumming time was 1 hour, and the ratio of silk/water was 40:1. Then the extract of Camellia meal (GCJSY) was added before the bleaching process of tussah silk to investigate the protective ability of GCJSY on the silk protein basry on the residual ratio of the silk. While the concentration of GYJSY was 0.08%, the residual ratio of silk after degumming in the Na2CO3 solution and bleaching in the 2% H2O2 solution was 87.2%.

  7. Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii).

    PubMed

    Sun, Shi-Guo; Huang, Zhi-Huan; Chen, Zhi-Bao; Huang, Shuang-Quan

    2017-03-01

    Properties of floral nectar have been used to predict if a plant species is pollinated by birds. To see whether winter-flowering plants evolve nectar properties corresponding to bird pollinators, nectar properties of several Camellia species (including the golden-flowered tea), as well as the role of floral visitors as effective pollinators, were examined. Potential pollinators of Camellia petelotii were identified at different times of day and under various weather conditions. A bird exclusion experiment was used to compare the pollination effectiveness of birds and insects. Nectar sugar components (fructose, glucose, and sucrose) from C. petelotii growing wild and another seven Camellia species and 22 additional cultivars (all in cultivation) were examined by high-performance liquid chromatography (HPLC). The sunbird Aethopyga siparaja and honeybees were the most frequent floral visitors to C. petelotii . Honeybee visits were significantly reduced in cloudy/rainy weather. The fruit and seed set of flowers with birds excluded were reduced by 64%, indicating that bird pollination is significant. For the wild populations of C. petelotii , a bagged flower could secrete 157 μL nectar; this nectar has a low sugar concentration (19%) and is sucrose-dominant (87%). The eight Camellia species and 22 cultivars had an average sugar concentration of around 30% and a sucrose concentration of 80%, demonstrating sucrose-dominant nectar in Camellia species. The nectar sugar composition of Camellia species was characterized by sucrose dominance. In addition, the large reduction in seed set when birds are excluded in the golden-flowered tea also supports the suggestion that these winter-flowering plants may have evolved with birds as significant pollinators. © 2017 Botanical Society of America.

  8. The Effect of Camellia sinensis on Wound Healing Potential in an Animal Model

    PubMed Central

    Kanthimathi, M. S.; Sanusi, Junedah

    2013-01-01

    Camellia sinensis (tea) is reported to have health benefits, including the building of healthy skin. This study evaluated the effects of topical application of Camellia sinensis extract on the rate of wound closure and the histology of wound area. A uniform area of 2.00 cm in diameter was excised from the neck of adult male Sprague Dawley rats. The animals were topically treated with 0.2 mL of vehicle (CMC), Intrasite gel (positive control), or 200 and 400 mg/mL of extract. Wounds dressed with the extract and Intrasite gel healed significantly earlier than those with vehicle. Histological analysis of the wound area after 10 days showed that wounds dressed with the extract had less scar width when compared to the control. The tissue contained less inflammatory cells and more collagen and angiogenesis, compared to wounds dressed with vehicle. In this study, Camellia sinensis showed high potential in wound healing activity. PMID:23864889

  9. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China.

    PubMed

    Wang, Yu-Chun; Hao, Xin-Yuan; Wang, Lu; Bin Xiao; Wang, Xin-Chao; Yang, Ya-Jun

    2016-10-26

    Anthracnose caused by Colletotrichum is one of the most severe diseases that can afflict Camellia sinensis. However, research on the diversity and geographical distribution of Colletotrichum in China remain limited. In this study, 106 Colletotrichum isolates were collected from diseased leaves of Ca. sinensis cultivated in the 15 main tea production provinces in China. Multi-locus phylogenetic analysis coupled with morphological identification showed that the collected isolates belonged to 11 species, including 6 known species (C. camelliae, C. cliviae, C. fioriniae, C. fructicola, C. karstii, and C. siamense), 3 new record species (C. aenigma, C. endophytica, and C. truncatum), 1 novel species (C. wuxiense), and 1 indistinguishable strain, herein described as Colletotrichum sp. Of these species, C. camelliae and C. fructicola were the dominant species causing anthracnose in Ca. sinensis. In addition, our study provided further evidence that phylogenetic analysis using a combination of ApMat and GS sequences can be used to effectively resolve the taxonomic relationships within the C. gloeosporioides species complex. Finally, pathogenicity tests suggested that C. camelliae, C. aenigma, and C. endophytica are more invasive than other species after the inoculation of the leaves of Ca. sinensis.

  10. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China

    PubMed Central

    Wang, Yu-Chun; Hao, Xin-Yuan; Wang, Lu; Bin Xiao; Wang, Xin-Chao; Yang, Ya-Jun

    2016-01-01

    Anthracnose caused by Colletotrichum is one of the most severe diseases that can afflict Camellia sinensis. However, research on the diversity and geographical distribution of Colletotrichum in China remain limited. In this study, 106 Colletotrichum isolates were collected from diseased leaves of Ca. sinensis cultivated in the 15 main tea production provinces in China. Multi-locus phylogenetic analysis coupled with morphological identification showed that the collected isolates belonged to 11 species, including 6 known species (C. camelliae, C. cliviae, C. fioriniae, C. fructicola, C. karstii, and C. siamense), 3 new record species (C. aenigma, C. endophytica, and C. truncatum), 1 novel species (C. wuxiense), and 1 indistinguishable strain, herein described as Colletotrichum sp. Of these species, C. camelliae and C. fructicola were the dominant species causing anthracnose in Ca. sinensis. In addition, our study provided further evidence that phylogenetic analysis using a combination of ApMat and GS sequences can be used to effectively resolve the taxonomic relationships within the C. gloeosporioides species complex. Finally, pathogenicity tests suggested that C. camelliae, C. aenigma, and C. endophytica are more invasive than other species after the inoculation of the leaves of Ca. sinensis. PMID:27782129

  11. Hypotriacylglycerolemic and antiobesity properties of a new fermented tea product obtained by tea-rolling processing of third-crop green tea (Camellia sinensis) leaves and loquat (Eriobotrya japonica) leaves.

    PubMed

    Tanaka, Kazunari; Tamaru, Shizuka; Nishizono, Shoko; Miyata, Yuji; Tamaya, Kei; Matsui, Toshiro; Tanaka, Takashi; Echizen, Yoshie; Ikeda, Ikuo

    2010-01-01

    We manufactured a new fermented tea by tea-rolling processing of third-crop green tea (Camellia sinensis) leaves and loquat (Eriobotrya japonica) leaves. The mixed fermented tea extract inhibited pancreatic lipase activity in vitro, and effectively suppressed postprandial hypertriacylglycerolemia in rats. Rats fed a diet containing 1% freeze-dried fermented tea extract for 4 weeks had a significantly lower liver triacylglycerol concentration and white adipose tissue weight than those fed the control diet lacking fermented tea extract. The activity of fatty acid synthase in hepatic cytosol markedly decreased in the fermented tea extract group as compared to the control group. The serum and liver triacylglycerol- and body fat-lowering effects of the mixed fermented tea extract were strong relative to the level of dietary supplementation. These results suggest that the new fermented tea product exhibited hypotriacylglycerolemic and antiobesity properties through suppression of both liver fatty acid synthesis and postprandial hypertriacylglycerolemia by inhibition of pancreatic lipase.

  12. [Fast Detection of Camellia Sinensis Growth Process and Tea Quality Informations with Spectral Technology: A Review].

    PubMed

    Peng, Ji-yu; Song, Xing-lin; Liu, Fei; Bao, Yi-dan; He, Yong

    2016-03-01

    The research achievements and trends of spectral technology in fast detection of Camellia sinensis growth process information and tea quality information were being reviewed. Spectral technology is a kind of fast, nondestructive, efficient detection technology, which mainly contains infrared spectroscopy, fluorescence spectroscopy, Raman spectroscopy and mass spectroscopy. The rapid detection of Camellia sinensis growth process information and tea quality is helpful to realize the informatization and automation of tea production and ensure the tea quality and safety. This paper provides a review on its applications containing the detection of tea (Camellia sinensis) growing status(nitrogen, chlorophyll, diseases and insect pest), the discrimination of tea varieties, the grade discrimination of tea, the detection of tea internal quality (catechins, total polyphenols, caffeine, amino acid, pesticide residual and so on), the quality evaluation of tea beverage and tea by-product, the machinery of tea quality determination and discrimination. This paper briefly introduces the trends of the technology of the determination of tea growth process information, sensor and industrial application. In conclusion, spectral technology showed high potential to detect Camellia sinensis growth process information, to predict tea internal quality and to classify tea varieties and grades. Suitable chemometrics and preprocessing methods is helpful to improve the performance of the model and get rid of redundancy, which provides the possibility to develop the portable machinery. Future work is to develop the portable machinery and on-line detection system is recommended to improve the further application. The application and research achievement of spectral technology concerning about tea were outlined in this paper for the first time, which contained Camellia sinensis growth, tea production, the quality and safety of tea and by-produce and so on, as well as some problems to be solved

  13. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.

    PubMed

    Dong, Bin; Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang

    2017-01-01

    The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI 'nr' (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant.

  14. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes

    PubMed Central

    Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang

    2017-01-01

    Background The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. Results In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI ‘nr’ (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. Conclusions In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant. PMID:28759610

  15. Phenolic Antioxidants from the Leaves of Camellia pachyandra Hu.

    PubMed

    Gao, Da-Fang; Xu, Min; Yang, Chong-Ren; Xu, Mei; Zhang, Ying-Jun

    2010-08-11

    Camellia pachyandra Hu. is a species in Camellia sect. Heterogenea (Theaceae), whose leaves have been used for making tea and consumed by the local people living in Yunnan province, China. This is the first investigation of the chemical constituents in the leaves of C. pachyandra, from which 22 phenolic compounds including nine hydrolyzable tannins (1-9), 11 flavonol glycosides (10-20), and two simple phenolics (21, 22) were isolated. It was noted that the leaves of the title plant contained no caffeine and no catechin, whereas hydrolyzable tannins were found to be the major constituents, of which the content of ellagitannin 5 reached to 3.7%. All the isolates were evaluated for their antioxidant activities by DPPH radical scavenging and tyrosinase inhibitory assays. Though the secondary metabolites without caffeine and catechins are different from the commonly consumed tea plants, the results suggested that the leaves of C. pachyandra, rich in hydrolyzable tannins as potent antioxidants, could be developed as an ideal resource for a natural beverage without caffeine.

  16. Optimization of the degumming process for camellia oil by the use of phospholipase C in pilot-scale system.

    PubMed

    Jiang, Xiaofei; Chang, Ming; Jin, Qingzhe; Wang, Xingguo

    2015-06-01

    In present study, phospholipase C (PLC) was applied in camellia oil degumming and the response surface method (RSM) was used to determine the optimum degumming conditions (reaction time, reaction temperature and enzyme dosage) for this enzyme. The optimum conditions for the minimum residual phosphorus content (15.14 mg/kg) and maximum yield of camellia oil (98.2 %) were obtained at reaction temperature 53 ºC, reaction time 2.2 h, PLC dosage 400 mg/kg and pH 5.4. The application of phospholipase A (PLA) - assisted degumming process could further reduce the residual phosphorus content of camellia oil (6.84 mg/kg) to make the oil suitable for physical refining while maintaining the maximal oil yield (98.2 %). These results indicate that PLC degumming process in combination with PLA treatment can be a commercially viable alternative for traditional degumming process. Study on the quality changes of degummed oils showed that the oxidative stability of camellia oil was slightly deceased after the enzymatic treatment, thus more attention should be paid to the oxidative stability in the further application.

  17. The Nematicidal Effect of Camellia Seed Cake on Root-Knot Nematode Meloidogyne javanica of Banana

    PubMed Central

    Yang, Xiujuan; Wang, Xuan; Wang, Kang; Su, Lanxi; Li, Hongmei; Li, Rong; Shen, Qirong

    2015-01-01

    Suppression of root-knot nematodes is crucially important for maintaining the worldwide development of the banana industry. Growing concerns about human and environmental safety have led to the withdrawal of commonly used nematicides and soil fumigants, thus motivating the development of alternative nematode management strategies. In this study, Meloidogyne javanica was isolated, and the nematicidal effect of Camellia seed cake on this pest was investigated. The results showed that in dish experiments, Camellia seed cake extracts under low concentration (2 g/L) showed a strong nematicidal effect. After treatment for 72 h, the eggs of M. javanica were gradually dissolved, and the intestine of the juveniles gradually became indistinct. Nematicidal compounds, including saponins identified by HPLC-ESI-MS and 8 types of volatile compounds identified by GC-MS, exhibited effective nematicidal activities, especially 4-methylphenol. The pot experiments demonstrated that the application of Camellia seed cake suppressed M. javanica, and promoted the banana plant growth. This study explored an effective nematicidal agent for application in soil and revealed its potential mechanism of nematode suppression. PMID:25849382

  18. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria.

    PubMed

    Chiou, Shu-Yuan; Ha, Choi-Lan; Wu, Pei-Shan; Yeh, Chiu-Ling; Su, Ying-Shan; Li, Man-Po; Wu, Ming-Jiuan

    2015-12-10

    Camellia tenuifloria is an indigenous Camellia species used for the production of camellia oil in Taiwan. This study investigated for the first time the potential antioxidant, anti-tyrosinase and anti-inflammatory activities of oil production byproducts, specifically those of the fruit shell, seed shell, and seed pomace from C. tenuifloria. It was found that the crude ethanol extract of the seed shell had the strongest DPPH scavenging and mushroom tyrosinase inhibitory activities, followed by the fruit shell, while seed pomace was the weakest. The IC50 values of crude extracts and fractions on monophenolase were smaller than diphenolase. The phenolic-rich methanol fraction of seed shell (SM) reduced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. It also repressed the expression of IL-1β, and secretion of prostaglandin E₂ (PGE₂) and IL-6 in response to LPS. SM strongly stimulated heme oxygenase 1 (HO-1) expression and addition of zinc protoporphyrin (ZnPP), a HO-1 competitive inhibitor, reversed the inhibition of NO production, indicating the involvement of HO-1 in its anti-inflammatory activity. The effects observed in this study provide evidence for the reuse of residues from C. tenuifloria in the food additive, medicine and cosmetic industries.

  19. The water-water cycle is a major electron sink in Camellia species when CO2 assimilation is restricted.

    PubMed

    Cai, Yan-Fei; Yang, Qiu-Yun; Li, Shu-Fa; Wang, Ji-Hua; Huang, Wei

    2017-03-01

    The water-water cycle (WWC) is thought to dissipate excess excitation energy and balance the ATP/NADPH energy budget under some conditions. However, the importance of the WWC in photosynthetic regulation remains controversy. We observed that three Camellia cultivars exhibited high rates of photosynthetic electron flow under high light when photosynthesis was restricted. We thus tested the hypothesis that the WWC is a major electron sink in the three Camellia cultivars when CO 2 assimilation is restricted. Light response curves indicated that the WWC was strongly increased with photorespiration and was positively correlated with extra ATP supplied from other flexible mechanisms excluding linear electron flow, implying that the WWC is an important alternative electron sink to balance ATP/NADPH energy demand for sustaining photorespiration in Camellia cultivars. Interestingly, when photosynthesis was depressed by the decreases in stomatal and mesophyll conductance, the rates of photosynthetic electron flow through photosystem II declined slightly and the rates of WWC was enhanced. Furthermore, the increased electron flow of WWC was positively correlated with the ratio of Rubisco oxygenation to carboxylation, supporting the involvement of alternative electron flow in balancing the ATP/NADPH energy budget. We propose that the WWC is a crucial electron sink to regulate ATP/NADPH energy budget and dissipate excess energy excitation in Camellia species when CO 2 assimilation is restricted. Copyright © 2017. Published by Elsevier B.V.

  20. Pestalotiopsis and allied genera from Camellia, with description of 11 new species from China.

    PubMed

    Liu, Fang; Hou, Lingwei; Raza, Mubashar; Cai, Lei

    2017-04-13

    A total of 124 Pestalotiopsis-like isolates associated with symptomatic and asymptomatic tissues of Camellia sinensis and other Camellia spp. from eight provinces in China were investigated. Based on single- and multi-locus (ITS, TEF, TUB2) phylogenies, as well as morphological characters, host associations and geographical distributions, they were classified into at least 19 species in three genera, i.e. Neopestalotiopsis, Pestalotiopsis and Pseudopestalotiopsis. Eight novel species in Pestalotiopsis and three novel species in Pseudopestalotiopsis were described. Our data suggested that the currently widely used loci in Pestalotiopsis-like genera do not consistently provide stable and sufficient resolution tree topologies, especially for Neopestalotiopsis. Moreover, the number, branch pattern and length of the conidial basal appendages were revealed to be phylogenetically informative characters in Pestalotiopsis.

  1. Functional analyses of a flavonol synthase-like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation.

    PubMed

    Zhou, Xing-Wen; Fan, Zheng-Qi; Chen, Yue; Zhu, Yu-Lin; Li, Ji-Yuan; Yin, Heng-Fu

    2013-09-01

    The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow flower of Camellia nitidissima Chi. is a unique feature within the genus Camellia, which makes it a precious resource for breeding yellow camellia varieties. In this work, we characterized the secondary metabolites of pigments during floral development of C. nitidissima and revealed that accumulation of flavonols correlates with floral coloration. We first isolated CnFLS1 and showed that it is a FLS of C. nitidissima by gene family analysis. Second, expression analysis during floral development and different floral organs indicated that the expression level of CnFLS1 was regulated by developmental cues, which was in agreement with the accumulating pattern of flavonols. Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a key point of genetic engineering toward colour modification in Camellia.

  2. A comparative analysis of chemical compositions in Camellia sinensis var. puanensis Kurihara, a novel Chinese tea, by HPLC and UFLC-Q-TOF-MS/MS.

    PubMed

    Li, Yi-Fang; Ouyang, Shu-Hua; Chang, Yi-Qun; Wang, Ting-Mei; Li, Wei-Xi; Tian, Hai-Yan; Cao, Hong; Kurihara, Hiroshi; He, Rong-Rong

    2017-02-01

    Camellia sinensis var. puanensis Kurihara (Puan tea) is a kind of ancient tea plant newly found in Jiangxipo and the surrounding areas of Puan County (Guizhou, China). People there always believe that drinking Puan tea is beneficial to the promotion of health and prevention of diseases. However, detailed information on its compositions has not been reported. Therefore, in this study, the varieties and contents of purine alkaloids and polyphenols in Puan tea were identified and determined by HPLC and UFLC-Q-TOF-MS/MS. Our results showed that theacrine, but not caffeine, was the dominated purine alkaloid detected in Puan tea. Meanwhile, Puan tea contained B-type procyanidin dimer, trimer and dimer monogallate, which were not detected in Camellia sinensis, Camellia ptilophylla and Camellia assamica var. kucha. The obtained results could support the local uses of Puan tea in health and nutrition and contribute to the research of tea variety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Phenolic antioxidants from green tea produced from Camellia crassicolumna Var. multiplex.

    PubMed

    Liu, Qing; Zhang, Ying-Jun; Yang, Chong-Ren; Xu, Mei

    2009-01-28

    Camellia crassicolumna var. multiplex (Chang et Tan) Ming belonging to Camellia sect. Thea (Theaceae), is endemic to the southeastern area of Yunnan province, China, where the leaves have been commonly used for making tea and beverages consumed widely. HPLC analysis showed that there was no caffeine or theophylline contained in the leaves; however, thin layer chromatography (TLC) analysis suggested the abundant existence of phenolic compounds. Further detailed chemical investigation of the green tea produced from the leaves of the plant led to the identification of 18 phenolic compounds, including four flavan-3-ols (1-4), six flavonol glycosides (5-10), three hydrolyzable tannins (11-13), two chlorogenic acid derivatives (14, 15), and three simple phenolic compounds (16-18). The isolated compounds were evaluated for their antioxidant activities by 1,1'-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and tyrosinase inhibitory assays. Most of them exhibited significant DPPH radical scavenging activities, whereas flavan-3-ols and hydrolyzable tannins showed stronger inhibitory activities on tyrosinase. The results suggest that C. crassicolumna could be an ideal plant resource for a noncaffeine beverage.

  4. Effect of green tea (Camellia sinensis) extract and pre-freezing equilibration time on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender.

    PubMed

    Mehdipour, Mahdieh; Daghigh Kia, Hossein; Najafi, Abouzar; Vaseghi Dodaran, Hossein; García-Álvarez, Olga

    2016-12-01

    The aim of this study was to determine the effect of Camellia sinensis extract as antioxidant supplement and pre-freezing equilibration times in a soybean lecithin extender for freezing ram semen. In this study, a total of 20 ejaculates were collected from four Ghezel rams and diluted with extenders (1.5% soybean lecithin, 7% glycerol) containing no supplements (control) and Camellia sinensis extract (5, 10, and 15 mg/L) and cryopreserved, immediately after thermal equilibrium was reached at 5 °C (0 h), or 4 h after equilibration. Sperm motility characteristics, membrane integrity, abnormal morphology, mitochondria activity, apoptotic status, MDA and antioxidant activities (GPx, SOD and total antioxidant capacity (TAC)) were evaluated following freeze-thawing. Camellia sinensis extract at level 10 mg/L led to the highest total and progressive motilities percentages, in comparison to other treatments (P < 0.05). Our results showed that Camellia sinensis extract at level of 5 and 10 mg/L led to higher plasma membrane integrity, mitochondria activity and Total antioxidant capacity (TAC) in comparison to the level of 15 mg/L and control group (P < 0.05). Camellia sinensis extract at 10 mg/L level produced the highest percentage of live spermatozoa and the lowest apoptotic spermatozoa in comparison to all treatments (P < 0.05). In addition, level of MDA formation significantly decreased at this concentration, 10 mg/L, compared to all treatments (P < 0.05). No differences (P > 0.05) were observed between equilibration times (0 h vs. 4 h) for sperm samples incubated with or without different concentrations of Camellia sinensis extract. In conclusion, addition of Camellia sinensis extract at level of 10 mg/L can improve post-thawing quality of ram semen cryopreserved in a soybean lecithin extender. However, further research is needed to standardize the process of Camellia sinensis extraction and specially for identifying which compounds are

  5. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    PubMed

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Histopathological Changes in Tissues of Bithynia siamensis goniomphalos Incubated in Crude Extracts of Camellia Seed and Mangosteen Pericarp

    PubMed Central

    Aukkanimart, Ratchadawan; Pinlaor, Somchai; Tesana, Smarn; Aunpromma, Surasit; Booyarat, Chantana; Sriraj, Pranee; Laummaunwai, Porntip; Punjaruk, Wiyada

    2013-01-01

    The present study was performed to observe histopathological changes in tissues of Bithynia siamensis goniomphalos (Gastropoda, Bithyniidae) incubated in crude extract solutions of camellia (Camellia oleifera) seed and mangosteen (Garcinia mangostana) pericarp, and furthermore to estimate the molluscicidal effects of 2 plant substances. Substantial numbers of bithyniid snails were incubated in various concentrations of 2 plant solution for 24 hr. As the positive control, snails incubated in various concentrations of niclosamide, a chemical molluscicide, were used. The histopathological findings were observed in sectioned snail specimens of each experimental and control groups. The results showed that both camellia and mangosteen extracts had molluscicidal effects at 24 hr with 50% lethal concentration (LC50) at concentrations of 0.003 and 0.002 g/ml, respectively, while niclosamide had LC50 at concentrations 0.599 ppm. B. siamensis goniomphalos snail tissues (foot, gill, and digestive system) showed disruption of columnar muscle fibers of the foot, reduction of the length and number of gill cilia, numerous mucous vacuoles, and irregularly shaped of epithelial cells. Irregular apical and calciferous cells, dilatation of the digestive gland tubule, and large hemolymphatic spaces, and irregular apical surfaces, detachment of cilia, and enlargement of lysosomal vacuoles of epidermis were also shown in all groups. By the present study, it is confirmed that 2 plants, camellia and mangosteen, are keeping some substance having molluscicidal effects, and histopathological findings obtained in this study will provide some clues in further studies on their action mechanisms to use them as natural molluscicides. PMID:24327779

  7. The proposed biosynthesis of procyanidins by the comparative chemical analysis of five Camellia species using LC-MS

    PubMed Central

    Zhang, Liang; Tai, Yuling; Wang, Yijun; Meng, Qilu; Yang, Yunqiu; Zhang, Shihua; Yang, Hua; Zhang, Zhengzhu; Li, Daxiang; Wan, Xiaochun

    2017-01-01

    The genus Camellia (C.) contains many species, including C. sinensis, C. assamica, and C. taliensis, C. gymnogyna and C. tachangensis. The polyphenols of C. sinensis and C. assamica are flavan-3-ols monomers and their dimers and trimmers. However, the biosynthesis of procyanidins in Camellia genus remains unclear. In the present study, a comparative chemical analysis of flavan-3-ols, flavan-3-ols glycoside and procyanidins was conducted by high performance liquid chromatography (HPLC) and liquid chromatography diode array detection coupled with triple-quadrupole mass-spectrometry (LC-DAD-QQQ-MS). The results showed that C. tachangensis had a significant higher contents of (-)-epicatechin (EC) and (-)-epigallocatechin (EGC) compared with C. sinensis (p < 0.001). By contrast, higher levels of galloylated catechins were detected in C. sinensis. LC-DAD-MS/MS indicated that the main secondary metabolites of C. tachangensis were non-galloylated catechins, procyanidin dimers and trimers. Furthermore, (-)-epicatechin glucose (EC-glucose) and (-)-epigallocatechin glucose (EGC-glucose) were also abundant in C. tachangensis. A correlation analysis of EC-glucose and procyanidins dimers was conducted in five Camellia species. The levels of EC-glucose were closely related to the procyanidin dimers content. Thus, it was suggested that EC-glucose might be an important substrate for the biosynthesis of procyanidins. PMID:28383067

  8. Genetic Divergence between Camellia sinensis and Its Wild Relatives Revealed via Genome-Wide SNPs from RAD Sequencing.

    PubMed

    Yang, Hua; Wei, Chao-Ling; Liu, Hong-Wei; Wu, Jun-Lan; Li, Zheng-Guo; Zhang, Liang; Jian, Jian-Bo; Li, Ye-Yun; Tai, Yu-Ling; Zhang, Jing; Zhang, Zheng-Zhu; Jiang, Chang-Jun; Xia, Tao; Wan, Xiao-Chun

    2016-01-01

    Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a glimpse into the artificial selection of tea plants at a genome-wide level by analyzing 15,444 genomic SNPs that were identified from 18 cultivated and wild tea accessions using a high-throughput genome-wide restriction site-associated DNA sequencing (RAD-Seq) approach. Six distinct clusters were detected by phylogeny inferrence and principal component and genetic structural analyses, and these clusters corresponded to six Camellia species/varieties. Genetic divergence apparently indicated that C. taliensis var. bangwei is a semi-wild or transient landrace occupying a phylogenetic position between those wild and cultivated tea plants. Cultivated accessions exhibited greater heterozygosity than wild accessions, with the exception of C. taliensis var. bangwei. Thirteen genes with non-synonymous SNPs exhibited strong selective signals that were suggestive of putative artificial selective footprints for tea plants during domestication. The genome-wide SNPs provide a fundamental data resource for assessing genetic relationships, characterizing complex traits, comparing heterozygosity and analyzing putatitve artificial selection in tea plants.

  9. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    USDA-ARS?s Scientific Manuscript database

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant unde...

  10. SOME ENGINEERING PROPERTIES OF SHELLED AND KERNEL TEA (Camellia sinensis) SEEDS.

    PubMed

    Altuntas, Ebubekir; Yildiz, Merve

    2017-01-01

    Camellia sinensis is the source of tea leaves and it is an economic crop now grown around the World. Tea seed oil has been used for cooking in China and other Asian countries for more than a thousand years. Tea is the most widely consumed beverages after water in the world. It is mainly produced in Asia, central Africa, and exported throughout the World. Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture force of shelled and kernel tea ( Camellia sinensis ) seeds were determined in this study. This research was carried out for shelled and kernel tea seeds. The shelled tea seeds used in this study were obtained from East-Black Sea Tea Cooperative Institution in Rize city of Turkey. Shelled and kernel tea seeds were characterized as large and small sizes. The average geometric mean diameter and seed mass of the shelled tea seeds were 15.8 mm, 10.7 mm (large size); 1.47 g, 0.49 g (small size); while the average geometric mean diameter and seed mass of the kernel tea seeds were 11.8 mm, 8 mm for large size; 0.97 g, 0.31 g for small size, respectively. The sphericity, surface area and volume values were found to be higher in a larger size than small size for the shelled and kernel tea samples. The shelled tea seed's colour intensity (Chroma) were found between 59.31 and 64.22 for large size, while the kernel tea seed's chroma values were found between 56.04 68.34 for large size, respectively. The rupture force values of kernel tea seeds were higher than shelled tea seeds for the large size along X axis; whereas, the rupture force values of along X axis were higher than Y axis for large size of shelled tea seeds. The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces. Some engineering properties, such as geometric mean diameter, sphericity, volume, bulk

  11. Effects of the medicinal plants Curcuma zedoaria and Camellia sinensis on halitosis control.

    PubMed

    Farina, Vitor Hugo; Lima, Ana Paula de; Balducci, Ivan; Brandão, Adriana Aigotti Haberbeck

    2012-01-01

    Volatile sulphur compounds (VSC) are the gases mainly responsible for halitosis (bad breath). The aim of this research was to evaluate the effects of medicinal plants on halitosis control. Two commonly used plants were tested: Curcuma zedoaria and Camellia sinensis (green tea). These plants were prepared as an aqueous solution and used as mouthwashes, compared with a standard mouthwash of 0.12% chlorhexidine gluconate and a placebo (water). The experiment was conducted with 30 volunteers from the School of Dentistry of São Jose dos Campos, Univ. Estadual Paulista - UNESP, SP, Brazil. Each volunteer tested the four mouthwashes. The Cysteine Challenge Method, modified for this study, was used for initial breath standardization. Four breath assessments were conducted after volunteers rinsed orally with acetylcysteine: one before the test mouthwash was used; the second, one minute after its use; a third 90 minutes later; and the last 180 minutes later. The results showed that chlorhexidine gluconate lowered VSC production immediately, and that this effect lasted up to 3 hours, while the tested plants had immediate inhibitory effects but no residual inhibitory effects on VSC. We concluded that Curcuma zedoaria and Camellia sinensis, prepared as infusions and used as mouthwashes, did not have a residual neutralizing effect on VSC.

  12. [Analysis of Camellia rosthorniana populations fecundity].

    PubMed

    Cao, Guoxing; Zhong, Zhangcheng; Xie, Deti; Liu, Yun

    2004-03-01

    With the method of space substituting time, the structure of Camellia rosthorniana populations in three forest communities, i.e., Jiant bamboo forest, coniferous and broad-leaved mixed forest, and evergreen broad-leaved forest in Mt. Jinyun was investigated, and based on static life-tables, the fecundity tables and reproductive value tables of C. rosthorniana populations were constructed. Each reproductive parameter and its relation to bionomic strategies of C. rosthorniana populations were also analyzed. The results indicated that in evergreen broad-leaved forest, C. rosthorniana population had the longest life span and the greatest fitness. The stage of maximum reproductive value increased with increasing stability of the community. The sum of each population's reproductive value, residual reproductive value and total reproductive value for the whole life-history of C. rosthorniana also increased with increasing maturity of the community, showing their inherent relationships with reproductive fitness. As regards to bionomic strategy, C. rosthorniana showed mainly the characteristics of a k-strategies, but in less stable community, the reproductive parameters were greatly changed, showing some characteristics of a r-strategies.

  13. Seasonal symptom expression, laboratory detection success, and sporulation potential of Phytophthora ramorum on rhododendron and camellia

    Treesearch

    Steve A. Tjosvold; David L. Chambers; Cheryl L. Blomquist

    2008-01-01

    Camellias and rhododendrons are important nursery and landscape plants and are known to be highly susceptible hosts of the quarantined plant pathogen, Phytophthora ramorum Werres, de Cock & Man In?t Veld. Nursery inspection can not always occur during optimal conditions for the disease and its detection. The goals of this research were to (1)...

  14. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis.

    PubMed

    Wang, Zhong-Wei; Jiang, Cong; Wen, Qiang; Wang, Na; Tao, Yuan-Yuan; Xu, Li-An

    2014-03-15

    Camellia chekiangoleosa is an important species of genus Camellia. It provides high-quality edible oil and has great ornamental value. The flowers are big and red which bloom between February and March. Flower pigmentation is closely related to the accumulation of anthocyanin. Although anthocyanin biosynthesis has been studied extensively in herbaceous plants, little molecular information on the anthocyanin biosynthesis pathway of C. chekiangoleosa is yet known. In the present study, a cDNA library was constructed to obtain detailed and general data from the flowers of C. chekiangoleosa. To explore the transcriptome of C. chekiangoleosa and investigate genes involved in anthocyanin biosynthesis, a 454 GS FLX Titanium platform was used to generate an EST dataset. About 46,279 sequences were obtained, and 24,593 (53.1%) were annotated. Using Blast search against the AGRIS, 1740 unigenes were found homologous to 599 Arabidopsis transcription factor genes. Based on the transcriptome dataset, nine anthocyanin biosynthesis pathway genes (PAL, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. The spatio-temporal expression patterns of these genes were also analyzed using quantitative real-time polymerase chain reaction. The study results not only enrich the gene resource but also provide valuable information for further studies concerning anthocyanin biosynthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Genetic diversity, population structure, and traditional culture of Camellia reticulata.

    PubMed

    Xin, Tong; Huang, Weijuan; De Riek, Jan; Zhang, Shuang; Ahmed, Selena; Van Huylenbroeck, Johan; Long, Chunlin

    2017-11-01

    Camellia reticulata is an arbor tree that has been cultivated in southwestern China by various sociolinguistic groups for esthetic purposes as well as to derive an edible seed oil. This study examined the influence of management, socio-economic factors, and religion on the genetic diversity patterns of Camellia reticulata utilizing a combination of ethnobotanical and molecular genetic approaches. Semi-structured interviews and key informant interviews were carried out with local communities in China's Yunnan Province. We collected plant material ( n  = 190 individuals) from five populations at study sites using single-dose AFLP markers in order to access the genetic diversity within and between populations. A total of 387 DNA fragments were produced by four AFLP primer sets. All DNA fragments were found to be polymorphic (100%). A relatively high level of genetic diversity was revealed in C. reticulata samples at both the species ( H sp  = 0.3397, I sp  = 0.5236) and population (percentage of polymorphic loci = 85.63%, H pop  = 0.2937, I pop  = 0.4421) levels. Findings further revealed a relatively high degree of genetic diversity within C. reticulata populations (Analysis of Molecular Variance = 96.31%). The higher genetic diversity within populations than among populations of C. reticulata from different geographies is likely due to the cultural and social influences associated with its long cultivation history for esthetic and culinary purposes by diverse sociolinguistic groups. This study highlights the influence of human management, socio-economic factors, and other cultural variables on the genetic and morphological diversity of C. reticulata at a regional level. Findings emphasize the important role of traditional culture on the conservation and utilization of plant genetic diversity.

  16. Separation and purification of both tea seed polysaccharide and saponin from camellia cake extract using macroporous resin.

    PubMed

    Yang, Pengjie; Zhou, Mingda; Zhou, Chengyun; Wang, Qian; Zhang, Fangfang; Chen, Jian

    2015-02-01

    A novel method to separate and purify tea seed polysaccharide and tea seed saponin from camellia cake extract by macroporous resin was developed. Among four kinds of resins (AB-8, NKA-9, XDA-6, and D4020) tested, AB-8 macroporous resin possessed optimal separating capacity for the two substances and thus was selected for the separation, in which deionized water was used to elute tea seed polysaccharide, 0.25% NaOH solution to remove the undesired pigments, and 90% ethanol to elute tea seed saponin. Further dynamic adsorption/desorption experiments on AB-8 resin-based column chromatography were conducted to obtain the optimal parameters. Under optimal dynamic adsorption and desorption conditions, 18.7 and 11.8% yield of tea seed polysaccharide and tea seed saponin were obtained with purities of 89.2 and 96.0%, respectively. The developed method provides a potential approach for the large-scale production of tea seed polysaccharide and tea seed saponin from camellia cake. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of environmental conditions and lesion age on sporulation of Phytophthora ramorum on California bay laurel, rhododendron, and camellia

    Treesearch

    Steve Tjosvold; David Chambers; Sylvia Mori

    2013-01-01

    The objective of our research was to determine the environmental conditions and lesion age favorable for Phytophthora ramorum sporulation under field conditions. For 2 years, new camellia, rhododendron, and California bay laurel (Umbellaria californica (Hook. & Arn.) Nutt.) nursery stock were seasonally inoculated (every 3 months) on foliage....

  18. Fluorine in food with special reference to tea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, P.W.; Hitchcock, A.E.; Gwirtsman, J.

    A review of the literature showed that in 1932 commercial tea, Camellia sinensis Kuntze (Thea sinensis L., Camellia thea Link.), was known to contain fluorine (F). Since ornamental camellias (C. japonica L.) and tea are members of the Theaceae family, comparisons were made of the F in leaves of the two species. The dry leaves of various domestic brands of tea, composed mostly of young leaves, contained 72 to 115 parts per million (p.p.m.) F and Chinese tea 131 to 178 p.p.m. F on a dry weight basis. One sample of fresh leaves of greenhouse grown tea plants contained 1530more » p.p.m. F on a dry weight basis and the older leaves of ornamental camellias up to 3062 p.p.m. F. One sample of young leaves of C. japonica contained 67 p.p.m. F. Thus both species of Camellia have the capacity to accumulate relatively large amounts of F, especially in the older leaves. The infusion (beverage) from one tea bag in 4.5 fluid oz. of water contained 0.8 to 1.7 p.p.m. F after 3 minutes steeping and 1.0 to 2.0 p.p.m. F after 3 minutes boiling.« less

  19. Population Genetic Structure and Phylogeography of Camellia flavida (Theaceae) Based on Chloroplast and Nuclear DNA Sequences

    PubMed Central

    Wei, Su-Juan; Lu, Yong-Bin; Ye, Quan-Qing; Tang, Shao-Qing

    2017-01-01

    Camellia flavida is an endangered species of yellow camellia growing in limestone mountains in southwest China. The current classification of C. flavida into two varieties, var. flavida and var. patens, is controversial. We conducted a genetic analysis of C. flavida to determine its taxonomic structure. A total of 188 individual plants from 20 populations across the entire distribution range in southwest China were analyzed using two DNA fragments: a chloroplast DNA fragment from the small single copy region and a single-copy nuclear gene called phenylalanine ammonia-lyase (PAL). Sequences from both chloroplast and nuclear DNA were highly diverse; with high levels of genetic differentiation and restricted gene flow. This result can be attributed to the high habitat heterogeneity in limestone karst, which isolates C. flavida populations from each other. Our nuclear DNA results demonstrate that there are three differentiated groups within C. flavida: var. flavida 1, var. flavida 2, and var. patens. These genetic groupings are consistent with the morphological characteristics of the plants. We suggest that the samples included in this study constitute three taxa and the var. flavida 2 group is the genuine C. flavida. The three groups should be recognized as three management units for conservation concerns. PMID:28579991

  20. Green tea (Camellia sinensis) catechins and vascular function.

    PubMed

    Moore, Rosalind J; Jackson, Kim G; Minihane, Anne M

    2009-12-01

    The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.

  1. New flavan-3-ol dimer from green tea produced from Camellia taliensis in the Ai-Lao mountains of Southwest China.

    PubMed

    Zhu, Li-Fang; Xu, Min; Zhu, Hong-Tao; Wang, Dong; Yang, Shi-Xiong; Yang, Chong-Ren; Zhang, Ying-Jun

    2012-12-12

    Camellia taliensis (W. W. Smith) Melchior, belonging to the genus Camellia sect. Thea (Theaceae), is an endemic species distributed from the west and southwest of Yunnan province, China, to the north of Myanmar. Known as a wild tea tree, its leaves have been used commonly for producing tea beverages by the local people of its growing area. One new flavan-3-ol dimer, talienbisflavan A (1), was isolated from green tea prepared from the leaves of C. taliensis collected from the east side of the Ai-Lao mountains, Yuanjiang county of Yunnan province, China. In addition, five hydrolyzable tannins (2-6), five flavonols and flavonol glycosides (9-13), three flavan-3-ols (14-16), nine simple phenolic compounds and glycosides (7, 8, and 17-23), and caffeine (24) were identified. Their structures were determined by detailed spectroscopic analysis. All of the isolated phenolic compounds were tested for their antioxidant activities by DPPH and ABTS(+) radical scavenging assays. The contents of its main chemical compositions were also compared with those collected from the Lincang area of Yunnan province by high-performance liquid chromatography analysis.

  2. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars.

    PubMed

    Faria, Raquel Lourdes; Cardoso, Lincoln Marcelo Lourenço; Akisue, Gokithi; Pereira, Cristiane Aparecida; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso; Santos Júnior, Paulo Villela

    2011-10-01

    The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group). After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group). For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL). The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. Calendula officinalis L. and Camellia sinensis (L.) Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate.

  3. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars

    PubMed Central

    FARIA, Raquel Lourdes; CARDOSO, Lincoln Marcelo Lourenço; AKISUE, Gokithi; PEREIRA, Cristiane Aparecida; JUNQUEIRA, Juliana Campos; JORGE, Antonio Olavo Cardoso; SANTOS JÚNIOR, Paulo Villela

    2011-01-01

    Objective The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L.) Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. Material and Methods Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash). First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group). After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group). For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL). Results The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. Conclusions Calendula officinalis L. and Camellia sinensis (L.) Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate. PMID:21986652

  4. Regulation of hazardous exposure by protective exposure: modulation of phase II detoxification and lipid peroxidation by Camellia sinensis and Swertia chirata.

    PubMed

    Saha, Prosenjit; Das, Sukta

    2003-01-01

    Many natural compounds are now known to have a modulatory role on physiological functions and biotransformation reactions involved in the detoxification process, thereby affording protection from cytotoxic, genotoxic, and metabolic actions of environmental toxicants. As part of a programme on evaluation of food, beverage, and traditional medicinal plants for their anticarcinogenic activity, their effects on detoxification enzymes were also studied. The present report deals with Camellia sinensis and Swertia chirata. The effect of water infusions as well as crude and purified components of these plants on glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) was analyzed in mice that were exposed to the chemical carcinogen DMBA. All the four enzymes were found to be activated in different degrees following treatment. The effect of Theaflavin, a component of black tea, was highly significant. The activation of the enzymes was accompanied by significant reduction in lipid peroxidation. The observation suggest the chemopreventive potential of both Camellia sinensis and Swertia chirata. Copyright 2003 Wiley-Liss, Inc.

  5. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Phenolic antioxidants from green tea produced from Camellia taliensis.

    PubMed

    Gao, Da-Fang; Zhang, Ying-Jun; Yang, Chong-Ren; Chen, Ke-Ke; Jiang, Hong-Jian

    2008-08-27

    The chemical constituents of green tea prepared from the leaves of Camellia taliensis (W. W. Smith) Melchior (Theaceae) were investigated for the first time. Of these, 19 phenolic compounds including 8 hydrolyzable tannins (1-8), 6 catechin derivatives (9-14), 3 quinic acid aromatic esters (15-17), and 2 simple phenolics (18, 19) were identified, along with caffeine (20). Their antioxidant activities were evaluated by DPPH radical scavenging and tyrosinase inhibitory assays. Moreover, the chemical composition was compared with that in the cultivated tea plant, C. sinensis var. assamica, by HPLC analysis. It was noted that C. taliensis has similar chemical features with the cultivated tea plant; that is, both of them contain rich flavan-3-ols and caffeine. In addition, there are abundant hydrolyzable tannins as specific characteristic constituents contained in the leaves of C. taliensis. Therein, 1,2-di-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucopyranose (8), as a major compound in C. taliensis, showed remarkable antioxidant activity. The results suggested that C. taliensis could be a valuable plant resource for the production of tea.

  7. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera).

    PubMed

    Zeng, Yanling; Tan, Xiaofeng; Zhang, Lin; Jiang, Nan; Cao, Heping

    2014-01-01

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investigate the relationship between FBA gene expression and oil content in developing seeds of tea oil tree. In this paper, four developmentally up-regulated CoFBA genes were identified in Camellia oleifera seeds based on the transcriptome from two seed developmental stages corresponding to the initiation and peak stages of lipid biosynthesis. The expression of CoFBA genes, along with three key oil biosynthesis genes CoACP, CoFAD2 and CoSAD were analyzed in seeds from eight developmental stages by real-time quantitative PCR. The oil content and fatty acid composition were also analyzed. The results showed that CoFBA and CoSAD mRNA levels were well-correlated with oil content whereas CoFAD2 gene expression levels were correlated with fatty acid composition in Camellia seeds. We propose that CoFBA and CoSAD are two important factors for determining tea oil yield because CoFBA gene controls the flux of key intermediates for oil biosynthesis and CoSAD gene controls the synthesis of oleic acid, which accounts for 80% of fatty acids in tea oil. These findings suggest that tea oil yield could be improved by enhanced expression of CoFBA and CoSAD genes in transgenic plants.

  8. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera)

    USDA-ARS?s Scientific Manuscript database

    Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metab...

  9. Inhibition of α-glucosidase by polysaccharides from the fruit hull of Camellia oleifera Abel.

    PubMed

    Zhang, Sheng; Li, Xiang-Zhou

    2015-01-22

    We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1-5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Theacrine (1,3,7,9-tetramethyluric acid) synthesis in leaves of a Chinese tea, kucha (Camellia assamica var. kucha).

    PubMed

    Zheng, Xin-Qiang; Ye, Chuang-Xing; Kato, Misako; Crozier, Alan; Ashihara, Hiroshi

    2002-05-01

    Theacrine (1,3,7,9-tetramethyluric acid) and caffeine were the major purine alkaloids in the leaves of an unusual Chinese tea known as kucha (Camellia assamica var. kucha). Endogenous levels of theacrine and caffeine in expanding buds and young leaves were ca. 2.8 and 0.6-2.7% of the dry wt, respectively, but the concentrations were lower in the mature leaves. Radioactivity from S-adenosyl-L-[methyl-14C]methionine was incorporated into theacrine as well as theobromine and caffeine by leaf disks of kucha, indicating that S-adenosyl-L-methionine acts as the methyl donor not only for caffeine biosynthesis but also for theacrine production. [8-14C]Caffeine was converted to theacrine by kucha leaves with highest incorporation occurring in expanding buds. When [8-14C]adenosine, the most effective purine precursor for caffeine biosynthesis in tea (Camellia sinensis), was incubated with young kucha leaves for 24 h, up to 1% of total radioactivity was recovered in theacrine. However, pulse-chase experiments with [8-14C]adenosine demonstrated much more extensive incorporation of label into caffeine than theacrine, possibly because of dilution of [14C]caffeine produced by the large endogenous caffeine pool. These results indicate that in kucha leaves theacrine is synthesized from caffeine in what is probably a three-step pathway with 1,3,7-methyluric acid acting an intermediate. This is a first demonstration that theacrine is synthesized from adenosine via caffeine.

  11. Anatomical structure of Camellia oleifera shell.

    PubMed

    Hu, Jinbo; Shi, Yang; Liu, Yuan; Chang, Shanshan

    2018-06-04

    The main product of Camellia oleifera is edible oil made from the seeds, but huge quantities of agro-waste are produced in the form of shells. The primary components of C. oleifera fruit shell are cellulose, hemicellulose, and lignin, which probably make it a good eco-friendly non-wood material. Understanding the structure of the shell is however a prerequisite to making full use of it. The anatomical structure of C. oleifera fruit shells was investigated from macroscopic to ultrastructural scale by stereoscopic, optical, and scanning electron microscopy. The main cell morphology in the different parts of the shell was observed and measured using the tissue segregation method. The density of the cross section of the shell was also obtained using an X-ray CT scanner to check the change in texture. The C. oleifera fruit pericarp was made up of exocarp, mesocarp, and endocarp. The main types of exocarp cells were stone cells, spiral vessels, and parenchyma cells. The mesocarp accounted for most of the shell and consisted of parenchyma, tracheids, and some stone cells. The endocarp was basically made up of cells with a thickened cell wall that were modified tracheid or parenchyma cells with secondary wall thickening. The most important ultrastructure in these cells was the pits in the cell wall of stone and vessel cells that give the shell a conducting, mechanical, and protective role. The density of the shell gradually decreased from exocarp to endocarp. Tracheid cells are one of the main cell types in the shell, but their low slenderness (length to width) ratio makes them unsuitable for the manufacture of paper. Further research should be conducted on composite shell-plastic panels (or other reinforced materials) to make better use of this agro-waste.

  12. Contents and compositions of policosanols in green tea (Camellia sinensis) leaves.

    PubMed

    Choi, Sol Ji; Park, Su Yeon; Park, Ji Su; Park, Sang-Kyu; Jung, Mun Yhung

    2016-08-01

    Policosanol (PC) is a mixture of health promoting bioactive long-chain aliphatic alcohols. Here, we report that green tea (Camellia sinensis) leaves are the exceptionally rich plant-sources of PC. Young and tender leaves and old and turf leaves of C. sinensis were hand-picked in spring and autumn. The total contents of PC in the leaves were in the range of 726.2-1363.6mg/kg as determined by a GC-MS/MS. The compositions of PC in the leaves were different with harvest season and types. The total contents of PC in commercial green tea leaves were found to be in the range of 856.7-1435.1mg/kg. Interestingly, the infused green tea leaves contained the higher PC than the non-infused green tea product, reaching to 1629.4mg/kg. This represents the first report on the contents and compositions of PC in green tea leaves, showing unambiguous evidence of their potential as rich sources of PC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enterococcus camelliae sp. nov., isolated from fermented tea leaves in Thailand.

    PubMed

    Sukontasing, Sirapan; Tanasupawat, Somboon; Moonmangmee, Somporn; Lee, Jung-Sook; Suzuki, Ken-Ichiro

    2007-09-01

    A Gram-positive and catalase-negative coccus that formed chains, strain FP15-1(T), isolated from fermented tea leaves ('miang'), was studied systematically. The strain was facultatively anaerobic and produced l-lactic acid from glucose. Demethylmenaquinone (DMK-7) was the major menaquinone. Straight-chain unsaturated fatty acids C(16 : 1) and C(18 : 1) were the dominant components. The DNA G+C content was 37.8 mol%. On the basis of 16S rRNA and RNA polymerase alpha subunit (rpoA) gene sequence analysis, strain FP15-1(T) was closely related to Enterococcus italicus KCTC 5373(T), with 99.2 and 93.8 % similarity, respectively. The strain could be clearly distinguished from E. italicus ATCC 5373(T) by low DNA-DNA relatedness (< or =33.8 %) and phenotypic characteristics. Therefore, this strain represent a novel species of the genus Enterococcus, for which the name Enterococcus camelliae sp. nov. is proposed. The type strain is FP15-1(T) (=KCTC 13133(T) =NBRC 101868(T) =NRIC 0105(T) =TISTR 932(T) =PCU 277(T)).

  14. [The content of mineral elements in Camellia olei fera ovary at pollination and fertilization stages determined by auto discrete analyzers and atomic absorption spectrophotometer].

    PubMed

    Zou, Feng; Yuan, De-Yi; Gao, Chao; Liao, Ting; Chen, Wen-Tao; Han, Zhi-Qiang; Zhang, Lin

    2014-04-01

    In order to elucidate the nutrition of Camellia olei fera at pollination and fertilization stages, the contents of mineral elements were determined by auto discrete analyzers and atomic absorption spectrophotometer, and the change in the contents of mineral elements was studied and analysed under the condition of self- and cross-pollination. The results are showed that nine kinds of mineral elements contents were of "S" or "W" type curve changes at the pollination and fertilization stages of Camellia olei fera. N, K, Zn, Cu, Ca, Mn element content changes showed "S" curve under the self- and out-crossing, the content of N reaching the highest was 3.445 8 mg x g(-1) in self-pollination of 20 d; K content reaching the highest at the cross-pollination 20 d was 6.275 5 mg x g(-1); Zn content in self-pollination of 10 d reaching the highest was 0.070 5 mg x g(-1); Cu content in the cross-pollination of 5 d up to the highest was 0.061 0 mg x g(-1); Ca content in the cross-pollination of 15 d up to the highest was 3.714 5 mg x g(-1); the content of Mn reaching the highest in self-pollination 30 d was 2. 161 5 mg x g(-1). Fe, P, Mg element content changes was of "S" type curve in selfing and was of "W" type curve in outcrossing, Fe content in the self-pollination 10 d up to the highest was 0.453 0 mg x g(-1); P content in self-pollination of 20 d reaching the highest was 6.731 8 mg x g(-1); the content of Mg up to the highest in self-pollination 25 d was 2.724 0 mg x g(-1). The results can be used as a reference for spraying foliar fertilizer, and improving seed setting rate and yield in Camellia olei fera.

  15. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality

    PubMed Central

    Wei, Chaoling; Yang, Hua; Wang, Songbo; Zhao, Jian; Liu, Chun; Gao, Liping; Xia, Enhua; Lu, Ying; Tai, Yuling; She, Guangbiao; Sun, Jun; Cao, Haisheng; Tong, Wei; Gao, Qiang; Li, Yeyun; Deng, Weiwei; Jiang, Xiaolan; Wang, Wenzhao; Chen, Qi; Zhang, Shihua; Li, Haijing; Wu, Junlan; Wang, Ping; Li, Penghui; Shi, Chengying; Zheng, Fengya; Jian, Jianbo; Huang, Bei; Shan, Dai; Shi, Mingming; Fang, Congbing; Yue, Yi; Li, Fangdong; Li, Daxiang; Wei, Shu; Han, Bin; Jiang, Changjun; Yin, Ye; Xia, Tao; Zhang, Zhengzhu; Bennetzen, Jeffrey L.; Zhao, Shancen; Wan, Xiaochun

    2018-01-01

    Tea, one of the world’s most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. PMID:29678829

  16. New biofunctional effects of the flower buds of Camellia sinensis and its bioactive acylated oleanane-type triterpene oligoglycosides.

    PubMed

    Matsuda, Hisashi; Nakamura, Seikou; Morikawa, Toshio; Muraoka, Osamu; Yoshikawa, Masayuki

    2016-10-01

    We review the biofunctional effects of the flower buds of Camellia sinensis and C. sinensis var. assamica, such as antihyperlipidemic, antihyperglycemic, antiobesity, and gastroprotective effects in vivo, and antiallergic, pancreatic lipase inhibitory, and amyloid β (Aβ) aggregation inhibitory activities in vitro. Although the biofunctional effects of tea leaves have been extensively studied, less attention has been given to those of the flowers and seeds of the tea plant. Our studies focused on the saponin constituents of the extracts of the flower buds of C. sinensis cultivated in Japan and China, and C. sinensis var. assamica cultivated in India, and we review their beneficial biofunctions for health promotion.

  17. Expression for caffeine biosynthesis and related enzymes in Camellia sinensis.

    PubMed

    Kato, Misako; Kitao, Naoko; Ishida, Mariko; Morimoto, Hanayo; Irino, Fumi; Mizuno, Kouichi

    2010-01-01

    Caffeine (1,3,7-trimethylxanthine) is a purine alkaloid that is present in high concentrations in the tea plant Camellia sinensis. Caffeine synthase (CS, EC 2.1.1.160) catalyzes the S-adenosyl-L-methionine-dependent N-3- and N-1-methylation of the purine base to form caffeine, the last step in the purine alkaloid biosynthetic pathway. We studied the expression profile of the tea caffeine synthase (TCS) gene in developing leaves and flowers by means of northern blot analysis, and compared it with those of phenylalanine ammonia lyase (PAL, EC 4.3.1.5), chalcone synthase (CHS, EC 2.3.1.74), and S-adenosyl-L-methionine synthase (SAMS, EC 2.5.1.6). The amount of TCS transcripts was highest in young leaves and declined markedly during leaf development, whereas it remained constant throughout the development of the flower. Environmental stresses other than heavy metal stress and plant hormone treatments had no effect on the expression of TCS genes, unlike the other three genes. Drought stress suppressed TCS gene expression in leaves, and the expression pattern mirrored that of the dehydrin gene. The amounts of TCS transcripts increased slightly on supply of a nitrogen source. We discuss the regulation of TCS gene expression.

  18. Two new oxysporone derivatives from the fermentation broth of the endophytic plant fungus Pestalotiopsis karstenii isolated from stems of Camellia sasanqua.

    PubMed

    Luo, Du Qiang; Zhang, Lei; Shi, Bao Zhong; Song, Xiao Mei

    2012-07-17

    Two new oxysporone derivatives, pestalrone A (1) and pestalrone B (2), along with two known structurally related compounds 3, 4, were from the fermentation broth of the endophytic plant fungus Pestalotiopsis karstenii isolated from stems of Camellia sasanqua. Their structures and relative configurations were elucidated by extensive spectroscopic analysis and comparison of chemical shifts with related known compounds. Compound 2 exhibited significant activities agains HeLa, HepG2 and U-251 with IC₅₀ values of 12.6, 31.7 and 5.4 µg/mL, respectively.

  19. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality.

    PubMed

    Wei, Chaoling; Yang, Hua; Wang, Songbo; Zhao, Jian; Liu, Chun; Gao, Liping; Xia, Enhua; Lu, Ying; Tai, Yuling; She, Guangbiao; Sun, Jun; Cao, Haisheng; Tong, Wei; Gao, Qiang; Li, Yeyun; Deng, Weiwei; Jiang, Xiaolan; Wang, Wenzhao; Chen, Qi; Zhang, Shihua; Li, Haijing; Wu, Junlan; Wang, Ping; Li, Penghui; Shi, Chengying; Zheng, Fengya; Jian, Jianbo; Huang, Bei; Shan, Dai; Shi, Mingming; Fang, Congbing; Yue, Yi; Li, Fangdong; Li, Daxiang; Wei, Shu; Han, Bin; Jiang, Changjun; Yin, Ye; Xia, Tao; Zhang, Zhengzhu; Bennetzen, Jeffrey L; Zhao, Shancen; Wan, Xiaochun

    2018-05-01

    Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to ∼0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred ∼30 to 40 and ∼90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties. Copyright © 2018 the Author(s). Published by PNAS.

  20. Camellia Oil ( Camellia oleifera Abel.) Modifies the Composition of the Gut Microbiota and Alleviates Acetic Acid-induced Colitis in Rats.

    PubMed

    Lee, Wei-Ting; Tung, Yu-Tang; Wu, Chun-Ching; Tu, Pang-Shuo; Yen, Gow-Chin

    2018-06-13

    Ulcerative colitis (UC), one type of chronic inflammatory bowel disease (IBD), is a chronic and recurrent disorder of the gastrointestinal (GI) tract. As camellia oil (CO) is traditionally used to treat GI disorders, this study investigated the role of CO on acetic acid-induced colitis in the rat. The composition of the gut microbial community is related to many diseases, thus, this study also investigated the effects of CO on the composition of the gut microbiota. The rats were fed a dose of 2 mL/kg body weight CO, olive oil (OO), or soybean oil (SO) once a day for 20 days, and the gut microbiota was analyzed using 16S rRNA gene sequencing. Results of the gut microbiota examination showed significant clustering of feces after treatment with CO and OO; however, individual differences with OO varied considerably. Compared to SO and OO, the intake of CO increased the ratio of Firmicutes/Bacteroidetes, the α-diversity, relative abundance of the Bifidobacterium, and reduced Prevotella of the gut microbiota. On day 21, colitis was induced by a single transrectal administration of 2 mL of 4% acetic acid. However, pretreatment of rats with CO or OO for 24 days slightly enhanced antioxidant and antioxidant enzyme activities, and significantly reduced inflammatory damage and lipid peroxidation, thus ameliorating acetic acid-induced colitis. These results indicated that CO was better able to ameliorate impairment of the antioxidant system induced by acetic acid compared to OO and SO, which may have been due to CO modifying the composition of the gut microbiota or CO being a rich source of phytochemicals.

  1. Camellianols A-G, Barrigenol-like Triterpenoids with PTP1B Inhibitory Effects from the Endangered Ornamental Plant Camellia crapnelliana.

    PubMed

    Xiong, Juan; Wan, Jiang; Ding, Jie; Wang, Pei-Pei; Ma, Guang-Lei; Li, Jia; Hu, Jin-Feng

    2017-11-22

    Seven new naturally occurring barrigenol-like compounds, camellianols A-G (1-7), and 10 known triterpenoids were isolated from the twigs and leaves of the cultivated endangered ornamental plant Camellia crapnelliana. According to the ECD octant rule for saturated cyclohexanones, the absolute configurations of camellianols D (4) and E (5) were defined. The backbones of the remaining new isolates are assumed to have the same absolute configuration as compounds 4, 5, and harpullone (12). Compounds 2, 3, 9, 10, 13, and 16 exhibited inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme, with IC 50 values less than 10 μM.

  2. Conventional and Accelerated-Solvent Extractions of Green Tea (Camellia sinensis) for Metabolomics-based Chemometrics

    PubMed Central

    Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.

    2018-01-01

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673

  3. Functional Characterization of Tea (Camellia sinensis) MYB4a Transcription Factor Using an Integrative Approach

    PubMed Central

    Li, Mingzhuo; Li, Yanzhi; Guo, Lili; Gong, Niandi; Pang, Yongzheng; Jiang, Wenbo; Liu, Yajun; Jiang, Xiaolan; Zhao, Lei; Wang, Yunsheng; Xie, De-Yu; Gao, Liping; Xia, Tao

    2017-01-01

    Green tea (Camellia sinensis, Cs) abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a’s localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters’ activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways. Highlight: A tea (Camellia sinensis) MYB4a is

  4. Thesis Abstract Fermented milk elaborated with Camellia sinensis.

    PubMed

    Ribeiro, O A S; Silva, M I A; Boari, C A

    2016-05-13

    This study aimed to develop and to characterize fermented dairy beverage formulated with Camellia sinensis. The infusion was elaborated with the addiction of dehydrated leaves of C. sinensis in whey (1g/100g) which added in sweetened milk (10% sucrose w/w) coagulated by Streptococcus salivarius subspecies thermophilus and Lactobacillus delbrueckii subspecies bulgaricus in proportions of 10, 20, 30 and 40% (v/w). The control treatment consisted of yogurt added with sucrose (10% w/w). Analysis were performed to quantify dry mass, moisture, ash, protein, fat, sodium, acidity, total quantification of lactic acid bacteria, total antioxidant activity and viscosity at the initial time of production and at 15 and 30 days of storage. Chromatographic determination of volatile compounds and sensory tests of acceptance and consumption intention were conducted at the initial time of production. Dry matter content, moisture, ash and total count of lactic acid bacteria from fermented milk drink formulations were not significantly affected by the amount of infusion of C. sinensis. However, the content of protein, fat and sodium were significantly lower with the increase of the proportion of infusion incorporated into the product. Significant reduction in apparent viscosity occurs with the increase in the amount of infusion added. The total antioxidant activity of the formulations was significantly higher as higher were the amount of added infusion. The addition of infusion contributed to the diversification of volatile aroma and taste makers in the product. The formulation of fermented dairy drink with addition of 30% infusion C. sinensis was better evaluated in sensory tests, with greater acceptance and greater consumer intent of consumption.

  5. Estimating Biochemical Parameters of Tea (camellia Sinensis (L.)) Using Hyperspectral Techniques

    NASA Astrophysics Data System (ADS)

    Bian, M.; Skidmore, A. K.; Schlerf, M.; Liu, Y.; Wang, T.

    2012-07-01

    Tea (Camellia Sinensis (L.)) is an important economic crop and the market price of tea depends largely on its quality. This research aims to explore the potential of hyperspectral remote sensing on predicting the concentration of biochemical components, namely total tea polyphenols, as indicators of tea quality at canopy scale. Experiments were carried out for tea plants growing in the field and greenhouse. Partial least squares regression (PLSR), which has proven to be the one of the most successful empirical approach, was performed to establish the relationship between reflectance and biochemical concentration across six tea varieties in the field. Moreover, a novel integrated approach involving successive projections algorithms as band selection method and neural networks was developed and applied to detect the concentration of total tea polyphenols for one tea variety, in order to explore and model complex nonlinearity relationships between independent (wavebands) and dependent (biochemicals) variables. The good prediction accuracies (r2 > 0.8 and relative RMSEP < 10 %) achieved for tea plants using both linear (partial lease squares regress) and nonlinear (artificial neural networks) modelling approaches in this study demonstrates the feasibility of using airborne and spaceborne sensors to cover wide areas of tea plantation for in situ monitoring of tea quality cheaply and rapidly.

  6. Foam Properties and Detergent Abilities of the Saponins from Camellia oleifera

    PubMed Central

    Chen, Yu-Fen; Yang, Chao-Hsun; Chang, Ming-Shiang; Ciou, Yong-Ping; Huang, Yu-Chun

    2010-01-01

    The defatted seed meal of Camellia oleifera has been used as a natural detergent and its extract is commercially utilized as a foam-stabilizing and emulsifying agent. The goal of this study was to investigate the foam properties and detergent ability of the saponins from the defatted seed meal of C. oleifera. The crude saponin content in the defatted seed meal of C. oleifera was 8.34 and the total saponins content in the crude saponins extract was 39.5% (w/w). The foaming power of the 0.5 crude saponins extract solution from defatted seed meal of C. oleifera was 37.1 of 0.5 SLS solution and 51.3% to that of 0.5% Tween 80 solution. The R5 value of 86.0% represents good foam stability of the crude saponins extracted from the defatted seed meal of the plant. With the reduction of water surface tension from 72 mN/m to 50.0 mN/m, the 0.5% crude saponins extract solution has wetting ability. The sebum-removal experiment indicated that the crude saponins extract has moderate detergency. The detergent abilities of the saponins from C. oleifera and Sapindus mukorossi were also compared. PMID:21151446

  7. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi

    PubMed Central

    Yang, Rui; Qi, Jing; Huang, Yue; Feng, Shuyun; Wu, Yao; Lin, Sensen; Liu, Zhixin; Jia, Ai-Qun; Yuan, Shengtao; Sun, Li

    2018-01-01

    Chemotherapy is the preferred and most common treatment for cancer in clinical practice. An increasing number of researchers all over the world are focusing on natural medicines to find new antitumor drugs, and several reports have shown that Camellia nitidissima (C. nitidis-sima) Chi could reduce blood-lipid, decrease blood pressure, resist oxidation, prevent carcinogenesis and inhibit tumors. Therefore, the pharmacodynamics of the chemical constituents in C. nitidissima need to be investigated further. In the present study, 16 chemical constituents were isolated from the leaves of C. nitidissima, of which 6 compounds are reported to be found in this plant for the first time. Furthermore, all these phytochemicals were screened for antitumor activity on 4 common cancer cell lines, while compound 3, one oleanane-type triterpene, exhibited the most potential antitumor effects. Interestingly, to our knowledge, this was the first report that compound 3 inhibits cancer cells. Compound 3 inhibited EGFR-mutant lung cancer cell line, NCI-H1975 via apoptosis effect, with an IC50 of 13.37±2.05 µM at 48 h. Based on the data, compound 3 showed potential for antitumor drug development, suggesting the scientific basis for the antitumor activity of C. nitidissima. PMID:29484370

  8. Caffeine biosynthesis and degradation in tea [Camellia sinensis (L.) O. Kuntze] is under developmental and seasonal regulation.

    PubMed

    Mohanpuria, Prashant; Kumar, Vinay; Joshi, Robin; Gulati, Ashu; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2009-10-01

    To study caffeine biosynthesis and degradation, here we monitored caffeine synthase gene expression and caffeine and allantoin content in various tissues of four Camellia sinensis (L.) O. Kuntze cultivars during non-dormant (ND) and dormant (D) growth phases. Caffeine synthase expression as well as caffeine content was found to be higher in commercially utilized tissues like apical bud, 1st leaf, 2nd leaf, young stem, and was lower in old leaf during ND compared to D growth phase. Among fruit parts, fruit coats have higher caffeine synthase expression, caffeine content, and allantoin content. On contrary, allantoin content was found lower in the commercially utilized tissues and higher in old leaf. Results suggested that caffeine synthesis and degradation in tea appears to be under developmental and seasonal regulation.

  9. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment.

    PubMed

    Panda, Brajesh Kumar; Datta, Ashis Kumar

    2016-04-01

    This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa. © 2016 Institute of Food Technologists®

  10. Travelling with tea: a Tuckerella’s tale

    USDA-ARS?s Scientific Manuscript database

    Tuckerella japonica appears strongly associated with tea (Camellia sinensis (L.) Kuntze., Theaceae) and, due to certain cultural practices in tea production, has in fact become a world traveller, accompanying the greatly coveted tea plant as it spread across the planet. The history of tea productio...

  11. Conventional and accelerated-solvent extractions of green tea (camellia sinensis) for metabolomics-based chemometrics.

    PubMed

    Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B

    2017-10-25

    Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.

  12. Essential and toxic metals in tea (Camellia sinensis) imported and produced in Ethiopia.

    PubMed

    Ashenef, Ayenew

    2014-01-01

    Sixteen samples of packed tea leaves (Camellia sinensis) were purchased from supermarkets in Addis Ababa, Ethiopia for metal analysis. Elements were measured by FAAS and graphite furnace atomic absorption spectrometer (GFAAS) employing external calibration curves. The levels in mg/kg dried weight basis varied from Cu: 4.7-12.9; Cd: 0.02-2.83; Pb: <0.01-2.29; Zn: 8.6-198.3; Mn: 81.7-962.2; Al: 3376.4-10,369.3; K: 7667.7-10,775; Li: 0.2-0.62; Ba: 9.4-1407.1; Mg: 1145.6-1834.1; Fe: 286.4-880.9; Ca: 1414.2-2646.0; Na: 147.1-557.7. Levels of exposure to the investigated metals by drinking tea were checked with the recommended daily allowance (RDA) of the WHO/FAO. Considering the average daily consumption rate of tea alone, the possible daily intakes of Al, Ba and Mn surpass the amenability to the side effects associated with these elements like Alzheimer's disease, kidney damage and Parkinson's disease, respectively, for which drinking tea should cause awareness. The other investigated elements are in the acceptable range.

  13. Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis).

    PubMed

    Li, Wei; Xiang, Fen; Zhong, Micai; Zhou, Lingyun; Liu, Hongyan; Li, Saijun; Wang, Xuewen

    2017-05-10

    Applied nitrogen (N) fertilizer significantly increases the leaf yield. However, most N is not utilized by the plant, negatively impacting the environment. To date, little is known regarding N utilization genes and mechanisms in the leaf production. To understand this, we investigated transcriptomes using RNA-seq and amino acid levels with N treatment in tea (Camellia sinensis), the most popular beverage crop. We identified 196 and 29 common differentially expressed genes in roots and leaves, respectively, in response to ammonium in two tea varieties. Among those genes, AMT, NRT and AQP for N uptake and GOGAT and GS for N assimilation were the key genes, validated by RT-qPCR, which expressed in a network manner with tissue specificity. Importantly, only AQP and three novel DEGs associated with stress, manganese binding, and gibberellin-regulated transcription factor were common in N responses across all tissues and varieties. A hypothesized gene regulatory network for N was proposed. A strong statistical correlation between key genes' expression and amino acid content was revealed. The key genes and regulatory network improve our understanding of the molecular mechanism of N usage and offer gene targets for plant improvement.

  14. Identification of epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3''Me) and amino acid profiles in various tea (Camellia sinensis L.) cultivars.

    PubMed

    Ji, Hyang-Gi; Lee, Yeong-Ran; Lee, Min-Seuk; Hwang, Kyeng Hwan; Kim, Eun-Hee; Park, Jun Seong; Hong, Young-Shick

    2017-10-01

    This article includes experimental data on the identification of epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3''Me) by 2-dimensional (2D) proton ( 1 H) NMR analysis and on the information of amino acid and catechin compound profiles by HPLC analysis in leaf extracts of various tea cultivars. These data are related to the research article " Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism " (Ji et al., 2017) [1]. The assignment for EGCG3x''Me by 1 H NMR analysis was also confirmed with spiking experiment of its pure chemical.

  15. Potential anthelmintics: polyphenols from the tea plant Camellia sinensis L. are lethally toxic to Caenorhabditis elegans.

    PubMed

    Mukai, Daisuke; Matsuda, Noriko; Yoshioka, Yu; Sato, Masashi; Yamasaki, Toru

    2008-04-01

    A novel gallate of tannin, (-)-epigallocatechin-(2 beta-->O-->7',4 beta-->8')-epicatechin-3'-O-gallate (8), together with (-)-epicatechin-3-O-gallate (4), (-)-epigallocatechin (5), (-)-epigallocatechin-3-O-gallate (6), and (+)-gallocatechin-(4 alpha-->8')-epigallocatechin (7), were isolated from the tea plant Camellia sinensis (L.) O. Kuntze var. sinensis (cv., Yabukita). The structure of 8, including stereochemistry, was elucidated by spectroscopic methods and hydrolysis. The compounds, along with commercially available pyrogallol (1), (+)-catechin (2), and (-)-epicatechin (3), were examined for toxicity towards egg-bearing adults of Caenorhabditis elegans. The anthelmintic mebendazole (9) was used as a positive control. Neither 2 nor 3 were toxic but the other compounds were toxic in the descending order 8, 7 approximately 6, 9, 4, 5, 1. The LC(50) (96 h) values of 8 and 9 were evaluated as 49 and 334 micromol L(-1), respectively. These data show that many green tea polyphenols may be potential anthelmintics.

  16. The Galloyl Catechins Contributing to Main Antioxidant Capacity of Tea Made from Camellia sinensis in China

    PubMed Central

    Zhao, Chunjian; Li, Chunying; Liu, Shuaihua; Yang, Lei

    2014-01-01

    Total polyphenol content, catechins content, and antioxidant capacities of green, dark, oolong, and black teas made from Camellia sinensis in China were evaluated. The total polyphenol content of 20 samples of tea was in the range of 7.82–32.36%. Total catechins content was in the range of 4.34–24.27%. The antioxidant capacity of tea extract was determined by the oxygen radical absorbance capacity (ORAC) test and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging test. Total polyphenol content, catechins content, and antioxidant capacity decreased in the following order: green > oolong > black > dark tea. A positive correlation existed between the antioxidant capacity and total polyphenol content or catechins content (R 2 = 0.67–0.87). The antioxidant capacities of five major catechins (epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epicatechin, epigallocatechin, and catechin) were determined by online HPLC DPPH radical-scavenging; the antioxidant activity of tea was mainly attributed to the esterified catechins (EGCG or ECG). PMID:25243234

  17. Biosynthesis of Jasmine Lactone in Tea ( Camellia sinensis) Leaves and Its Formation in Response to Multiple Stresses.

    PubMed

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Liao, Yinyin; Yuan, Yunfei; Jia, Yongxia; Dong, Fang; Yang, Ziyin

    2018-04-18

    Jasmine lactone has a potent odor that contributes to the fruity, sweet floral aroma of tea ( Camellia sinensis). Our previous study demonstrated that jasmine lactone was mostly accumulated at the turnover stage of the oolong tea manufacturing process. This study investigates the previously unknown mechanism of formation of jasmine lactone in tea leaves exposed to multiple stresses occurring during the growth and manufacturing processes. Both continuous mechanical damage and the dual stress of low temperature and mechanical damage enhanced jasmine lactone accumulation in tea leaves. In addition, only one pathway, via hydroperoxy fatty acids from unsaturated fatty acid, including linoleic acid and α-linolenic acid, under the action of lipoxygenases (LOXs), especially CsLOX1, was significantly affected by these stresses. This is the first evidence of the mechanism of jasmine lactone formation in tea leaves and is a characteristic example of plant volatile formation in response to dual stress.

  18. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xian-Wen, E-mail: xianwenli01@sina.com; College of Life Science, Xinyang Normal University, Xinyang 464000; Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070

    In present research, the full-length cDNA and the genomic sequence of a novel cold-regulated gene, CsCOR1, were isolated from Camellia sinensis L. The deduced protein CsCOR1 contains a hydrophobic N-terminus as a signal peptide and a hydrophilic C-terminal domain that is rich in glycine, arginine and proline. Two internal repetitive tridecapeptide fragments (HSVTAGRGGYNRG) exist in the middle of the C-terminal domain and the two nucleotide sequences encoding them are identical. CsCOR1 was localized in the cell walls of transgenic-tobaccos via CsCOR1::GFP fusion approach. The expression of CsCOR1 in tea leaves was enhanced dramatically by both cold- and dehydration-stress. And overexpressionmore » of CsCOR1 in transgenic-tobaccos improved obviously the tolerance to salinity and dehydration.« less

  19. A Blend of Extracts from Houttuynia cordata, Nelumbo nucifera, and Camellia sinensis Protects Against Ethanol-Induced Liver Damage in C57BL/6 Mice.

    PubMed

    You, Yanghee; Lee, Hyunmi; Yoon, Ho-Geun; Park, Jeongjin; Kim, Ok-Kyung; Kim, Kyungmi; Lee, Min-Jae; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin

    2018-02-01

    The protective activity of a mixture of aqueous and ethanolic extracts from Houttuynia cordata Thunb, Nelumbo nucifera G. leaves, and Camellia sinensis seed (HNC) was evaluated in C57BL/6 mice. Pretreatment with HNC prevented the elevation of serum aspartate aminotransferase and alanine aminotransferase caused by ethanol-induced hepatic damage. The HNC-treated mice showed significantly lower triglyceride levels, reduced CYP2E1 activity, and increased antioxidant enzyme activities and lipogenic mRNA levels. These results suggest that HNC might be a candidate agent for liver protection against ethanol-induced oxidative damage, through enhancement of antioxidant and antilipogenic activity.

  20. Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism.

    PubMed

    Ji, Hyang-Gi; Lee, Yeong-Ran; Lee, Min-Seuk; Hwang, Kyeong Hwan; Kim, Eun-Hee; Park, Jun Seong; Hong, Young-Shick

    2017-10-15

    Recently, we selected three tea (Camellia sinensis) cultivars that are rich in taste, epigallocatechin-3-O-gallate (EGCG) and epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me) and then cultivated them through asexual propagation by cutting in the same region. In the present study, proton nuclear magnetic resonance ( 1 H NMR)-based metabolomics was applied to characterize the metabotype and to understand the metabolic mechanism of these tea cultivars including wild type tea. Of the tea leaf metabolite variations, reverse associations of amino acid metabolism with catechin compound metabolism were found in the rich-taste, and EGCG- and EGCG3″Me-rich tea cultivars. Indeed, the metabolism of individual catechin compounds in the EGCG3″Me-rich cultivar differed from those of other tea cultivars. The current study highlights the distinct metabolism of various tea cultivars newly selected for cultivation and the important role of metabolomics in understanding the metabolic mechanism. Thus, comprehensive metabotyping is a useful method to assess and then develop a new plant cultivar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing.

    PubMed

    Zhou, Ying; Zeng, Lanting; Liu, Xiaoyu; Gui, Jiadong; Mei, Xin; Fu, Xiumin; Dong, Fang; Tang, Jingchi; Zhang, Lingyun; Yang, Ziyin

    2017-09-15

    (E)-Nerolidol is a volatile sesquiterpene that contributes to the floral aroma of teas (Camellia sinensis). The unique manufacturing process for oolong tea involves multiple stresses, resulting in a high content of (E)-nerolidol, which is not known to form in tea leaves. This study aimed to determine the formation mechanism of (E)-nerolidol in tea exposed to multiple stresses during tea manufacture. C. sinensis (E)-nerolidol synthase (CsNES) recombinant protein, found in the cytosol, was found to transform farnesyl diphosphate into (E)-nerolidol. CsNES was highly expressed during the oolong tea turn over process, resulting in (E)-nerolidol accumulation. Continuous mechanical damage, simulating the turn over process, significantly enhanced CsNES expression level and (E)-nerolidol content. The combination of low temperature stress and mechanical damage had a synergistic effect on (E)-nerolidol formation. This is the first evidence of (E)-nerolidol formation mechanism in tea leaves and a characteristic example of plant volatile formation in response to dual stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera.

    PubMed

    Sheng-Liang, Zhou; Shu-Zhen, Yan; Zhen-Ying, Wu; Shuang-Lin, Chen

    2014-06-01

    Endophytic fungi play an important role in terrestrial ecosystem, while little is known about those in hemi-parasitic plants, a group of special plants which absorb nutrients from its hosts by haustoria. The relationship of the endophytes in the two parts of the bipartite systems (hemiparasites together with their hosts) is also poorly understood. Endophytic fungi of a hemi-parasitic plant Macrosolen tricolor, and its host plant Camellia oleifera were investigated and compared in this study. M. tricolor contained rich and diversified endophytic fungi (H' = 2.829), which consisted mainly of ascomycetes, distributed in more than ten orders of four classes (Sordariomycetes, Dothideomycetes, Leotiomycetes and Eurotiomycetes) besides Incertae sedis strains (23.2 % of total). In addition, 2.2 % of isolates were identified to be Basidiomycota, all of which belonged to Agaricomycetes. Obvious differences were observed between the endophytic fungal assembles in the leaves and those in the branches of M. tricolor. The endophytic fungi isolated from C. oleifera distributed in nearly same orders of the four classes of Ascomycota and one class (Agaricomycetes) of Basidiomycota as those from M. tricolor with similar proportion. For both M. tricolor and C. oleifera, Valsa sp. was the dominant endophyte species in the leaves, Torula sp. 1 and Fusarium sp. 1 were the dominant endophytic fungi in the branches. The similarity coefficient of the endophyte assembles in the two host was 64.4 %. Canonical correspondence analysis showed that the endophyte assembles of M. tricolor and C. oleifera were significantly different (p < 0.01).

  3. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Kim, Hak-Nam; Kim, Eun-Hee; Jung, Sungheuk; Lee, Hyosang; Lee, Sang-Jun; Hong, Young-Shick

    2015-05-01

    Numerous factors such as geographical origin, cultivar, climate, cultural practices, and manufacturing processes influence the chemical compositions of tea, in the same way as growing conditions and grape variety affect wine quality. However, the relationships between these factors and tea chemical compositions are not well understood. In this study, a new approach for non-targeted or global analysis, i.e., metabolomics, which is highly reproducible and statistically effective in analysing a diverse range of compounds, was used to better understand the metabolome of Camellia sinensis and determine the influence of environmental factors, including geography, climate, and cultural practices, on tea-making. We found a strong correlation between environmental factors and the metabolome of green, white, and oolong teas from China, Japan, and South Korea. In particular, multivariate statistical analysis revealed strong inter-country and inter-city relationships in the levels of theanine and catechin derivatives found in green and white teas. This information might be useful for assessing tea quality or producing distinct tea products across different locations, and highlights simultaneous identification of diverse tea metabolites through an NMR-based metabolomics approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Synergisms in Alpha-glucosidase Inhibition and Antioxidant Activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts

    PubMed Central

    Vinholes, Juliana; Vizzotto, Márcia

    2017-01-01

    Background: Camellia sinensis, the most consumed and popular beverages worldwide, and Eugenia uniflora, a Brazilian native species, have been already confirmed to have beneficial effects in the treatment of diabetes mellitus. However, their potential acting together against an enzyme linked to this pathology has never been exploited. Objective: The aim of this study was to evaluate the inhibitory properties of individual and combined ethanolic extracts of the leaves of C. sinensis and E. uniflora over alpha-glucosidase, a key digestive enzyme used on the Type 2 diabetes mellitus (T2DM) control. In addition, their inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and peroxyl radicals was also assayed. Materials and Methods: Enzyme inhibition and antioxidant potential were assessed based on in vitro assays. Total phenolic compounds, carotenoids, and chlorophylls A and B were achieved using spectrophotometric methods. Results: E. uniflora was almost 40 times more active on alpha-glucosidase than C. sinensis and combined extracts showed a significant synergistic effect with an obtained IC50 value almost 5 times lower than the theoretical value. C. sinensis extract was twice more active than E. uniflora concerning DPPH•, in contrast, E. uniflora was almost 10 times more effective than C. sinensis on inhibition of peroxyl radicals with a significant synergistic effect for combined extracts. The extracts activities may be related with their phytochemicals, mainly phenolic compounds, and chlorophylls. Conclusion: Combined C. sinensis and E. uniflora ethanolic extracts showed synergistic effect against alpha-glucosidase and lipid peroxidation. These herbal combinations can be used to control postprandial hyperglycemia and can also provide antioxidant defenses to patients with T2DM. SUMMARY Alfa-glucosidase and antioxidant Interaction between Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts was investigated.Extracts showed

  5. Structural, morphological, and optical properties of tin(IV) oxide nanoparticles synthesized using Camellia sinensis extract: a green approach

    NASA Astrophysics Data System (ADS)

    Selvakumari, J. Celina; Ahila, M.; Malligavathy, M.; Padiyan, D. Pathinettam

    2017-09-01

    Tin oxide (SnO2) nanoparticles were cost-effectively synthesized using nontoxic chemicals and green tea ( Camellia sinensis) extract via a green synthesis method. The structural properties of the obtained nanoparticles were studied using X-ray diffraction, which indicated that the crystallite size was less than 20 nm. The particle size and morphology of the nanoparticles were analyzed using scanning electron microscopy and transmission electron microscopy. The morphological analysis revealed agglomerated spherical nanoparticles with sizes varying from 5 to 30 nm. The optical properties of the nanoparticles' band gap were characterized using diffuse reflectance spectroscopy. The band gap was found to decrease with increasing annealing temperature. The O vacancy defects were analyzed using photoluminescence spectroscopy. The increase in the crystallite size, decreasing band gap, and the increasing intensities of the UV and visible emission peaks indicated that the green-synthesized SnO2 may play future important roles in catalysis and optoelectronic devices.

  6. Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase.

    PubMed

    Manir, Md Maniruzzaman; Kim, Jeong Kee; Lee, Byeong-Gon; Moon, Surk-Sik

    2012-04-01

    Four new quercetin acylglycosides, designated camelliquercetisides A-D, quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (17), quercetin 3-O-[2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (18), quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-d-glucoside (19), and quercetin 3-O-[2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (20), together with caffeine and known catechins, and flavonoids (1-16) were isolated from the leaves of Camellia sinensis. Their structures were determined by spectroscopic (1D and 2D NMR, IR, and HR-TOF-MS) and chemical methods. The catechins and flavonoidal glycosides exhibited yeast alcohol dehydrogenase (ADH) inhibitory activities in the range of IC(50) 8.0-70.3μM, and radical scavenging activities in the range of IC(50) 1.5-43.8 μM, measured by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties.

    PubMed

    Kaundun, Shiv Shankhar; Matsumoto, Satoru

    2003-02-01

    The genetic diversity of tea, Camellia sinensis (L.) O. Kuntze, including the two main cultivated sinensis and assamica varieties, was investigated based on PCR-RFLP analysis of PAL, CHS2 and DFR, three key genes involved in catechin and tannin synthesis and directly responsible for tea taste and quality. Polymorphisms were of two types: amplicon length polymorphism (ALP) due to the presence of indels in two introns of PAL and DFR, and point mutations detected after restriction of amplified fragments with appropriate enzymes. A progeny test showed that all markers segregated in a Mendelian fashion and that polymorphisms were exclusively co-dominant. CHS2, which belongs to a multi-gene family, allowed for greater variation than the single-copy PAL gene. Based on Nei's gene diversity index, var. sinensis was revealed to be more variable than var. assamica, and that a higher proportion of overall diversity resided within varieties as compared to between varieties. Even though no specific DNA profile was found for either tea varieties following any single PCR-RFLP analysis, a factorial correspondence analysis carried out on all genotypes and markers separated the tea samples into two distinct groups according to their varietal status. This reflects the large difference between var. sinensis and var. assamica in their polyphenolic profiles. The STS-based markers developed in this study will be very useful in future mapping, population genetics and fingerprinting studies of this important crop species and other Camellia species, as the primers have also proven successful in the three other subgenera of this genus.

  8. Nuclear Magnetic Resonance-Based Metabolomics Approach to Evaluate the Prevention Effect of Camellia nitidissima Chi on Colitis-Associated Carcinogenesis

    PubMed Central

    Li, Ming-Hui; Du, Hong-Zhi; Kong, Gui-Ju; Liu, Li-Bao; Li, Xin-Xin; Lin, Sen-Sen; Jia, Ai-Qun; Yuan, Sheng-Tao; Sun, Li; Wang, Jun-Song

    2017-01-01

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, occurring in the colon or rectum portion of large intestine. With marked antioxidant, anti-inflammation and anti-tumor activities, Camellia nitidissima Chi has been used as an effective treatment of cancer. The azoxymethane/dextran sodium sulfate (AOM/DSS) induced CRC mice model was established and the prevention effect of C. nitidissima Chi extracts on the evolving of CRC was evaluated by examination of neoplastic lesions, histopathological inspection, serum biochemistry analysis, combined with nuclear magnetic resonance (NMR)-based metabolomics and correlation network analysis. C. nitidissima Chi extracts could significantly inhibit AOM/DSS induced CRC, relieve the colonic pathology of inflammation and ameliorate the serum biochemistry, and could significantly reverse the disturbed metabolic profiling toward the normal state. Moreover, the butanol fraction showed a better efficacy than the water-soluble fraction of C. nitidissima Chi. Further development of C. nitidissima Chi extracts as a potent CRC inhibitor was warranted. PMID:28744216

  9. Studies on cytotoxic and clot lysis activity of probiotically fermented cocktail juice prepared using Camellia sinensis and Punica grantum

    NASA Astrophysics Data System (ADS)

    Biswas, Ananya; Deori, Meenakshi; Nivetha, A.; Mohansrinivasan, V.

    2017-11-01

    In the current research the effect of probiotic microorganisms viz; Lactococcus lactis and Lactobacillus plantarum on fermentation of Camellia sinensis and Punica grantum was studied. In vitro test were done to analyze the anticancer, antioxidant and atherosclerosis (clot lysis) properties of fermented juice. The juice was fermented for 48 and 96h, during which concentration of phenolic content, total acid content and free radical scavenging activity of the sample was analyzed by DPPH assay (α, α-diphenyl-β-picrylhydrazyl). Dropping of pH was observed after 48 h of fermentation. The clot lysis activity was found to be 80 % in 100μl concentration of fermented cocktail juice. The 96 h fermented sample has shown around 70% inhibition against colon cancer cell lines. Analytical study of HPLC proves the organic acid production such as ascorbic acid in superior amount for 96h of fermented sample, Based on the retention time, the corresponding peaks were detected at 4.919 and 4.831 min.

  10. Transition rates of selected metals determined in various types of teas (Camellia sinensis L. Kuntze) and herbal/fruit infusions.

    PubMed

    Schulzki, Grit; Nüßlein, Birgit; Sievers, Hartwig

    2017-01-15

    Teas and raw materials used as ingredients of herbal and fruit infusions (HFI) were analysed by means of ICP-MS for their content of aluminium, arsenic, cadmium, copper, lead and mercury in the dry product and in the infusion. Samples of tea (Camellia sinensis L. Kuntze) were selected to include different origins, types (black, green), leaf grades (whole leaf, broken, fannings, dust) and manufacturing techniques (orthodox, "crush, tear, curl"). The selected HFI raw materials (chamomile, elderberries, fennel, hibiscus, mate, peppermint, rooibos and rose hip) cover the most important matrices (flower, fruit, seed, herb, leaf) and reflect the economic significance of these HFI materials in trade. Infusions were prepared under standardised conditions representing typical household brewing. Transition rates for the investigated metals vary significantly but are mostly well below 100%. We propose default transition rates for metals to avoid overestimation of exposure levels from tea/HFI consumption. Copyright © 2016. Published by Elsevier Ltd.

  11. Design and rationale for the Cardiovascular and Metabolic Effects of Lorcaserin in Overweight and Obese Patients-Thrombolysis in Myocardial Infarction 61 (CAMELLIA-TIMI 61) trial.

    PubMed

    Bohula, Erin A; Scirica, Benjamin M; Fanola, Christina; Inzucchi, Silvio E; Keech, Anthony; McGuire, Darren K; Smith, Steven R; Abrahamsen, Tim; Francis, Bruce H; Miao, Wenfeng; Perdomo, Carlos A; Satlin, Andrew; Wiviott, Stephen D; Sabatine, Marc S

    2018-03-29

    Lorcaserin, a selective serotonin 2C receptor agonist, is an effective pharmacologic weight-loss therapy that improves several cardiovascular risk factors. The long-term clinical cardiovascular and metabolic safety and efficacy in patients with elevated cardiovascular risk are unknown. CAMELLIA-TIMI 61 (NCT02019264) is a randomized, double-blind, placebo-controlled, multinational clinical trial designed to evaluate the safety and efficacy of lorcaserin with regard to major adverse cardiovascular events and progression to diabetes in overweight or obese patients at high cardiovascular risk. Overweight or obese patients either with established cardiovascular disease or with diabetes and at least 1 other cardiovascular risk factor were randomized in a 1:1 ratio to lorcaserin 10 mg twice daily or matching placebo. The primary safety objective is to assess for noninferiority of lorcaserin for the composite end point of cardiovascular death, myocardial infarction, or stroke (major adverse cardiovascular event [MACE]) (with noninferiority defined as the upper bound of a 1-sided 97.5% CI excluding a hazard ratio of 1.4) compared with placebo assessed at an interim analysis with 460 adjudicated events. The efficacy objectives, assessed at study completion, will evaluate the superiority of lorcaserin for the primary composite end point of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, heart failure, or any coronary revascularization (MACE+) and the key secondary end point of conversion to diabetes. Recruitment began in January 2014 and was completed in November 2015 resulting in a total population of 12,000 patients. The trial is planned to continue until at least 1,401 adjudicated MACE+ events are accrued and the median treatment duration exceeds 2.5 years. CAMELLIA-TIMI 61 is investigating the safety and efficacy of lorcaserin for MACEs and conversion to diabetes in overweight or obese patients with established cardiovascular

  12. Extraction and free radical scavenging activity of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze).

    PubMed

    Zhang, Zhongshan; Wang, Xiaomei; Li, Jingfen; Wang, Guozhi; Mao, Genxiang

    2016-03-01

    In this study, the optimization of the extraction conditions of polysaccharide from 'Anji Baicha' (Camellia sinensis (L.) O. Kuntze) (AP) was investigated by response surface methodology (RSM). Three main independent variables (extraction temperature, time, ratio of water to raw material) were taken into consideration. And then the free radical scavenging activities of the sample were investigated including scavenging effects of superoxide and hydroxyl radicals. The RSM analysis showed good correspondence between experimental and predicted values.. The optimal condition to obtain the highest yield of AP was determined as follows: temperature 76.79 °C, time 2.48 h, ratio of water to material 22.53 mL/g. For the free radical scavenging activity, the IC50 values of Vc and AP were 7.78 and 83.25 μg/mL. And for the scavenging effect on hydroxyl radical, that of AP and Vc were 1.80 and 1.69 mg/mL. AP showed excellent antioxidant activity. This exhibited AP had a good potential for antioxidant. The purification and structure needs to be study in further. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Optimization of the Production of 1-Phenylethanol Using Enzymes from Flowers of Tea (Camellia sinensis) Plants.

    PubMed

    Dong, Fang; Zhou, Ying; Zeng, Lanting; Watanabe, Naoharu; Su, Xinguo; Yang, Ziyin

    2017-01-13

    1-Phenylethanol (1PE) can be used as a fragrance in food flavoring and cosmetic industries and as an intermediate in the pharmaceutical industry. 1PE can be synthesized from acetophenone, and the cost of 1PE is higher than the cost of acetophenone. Therefore, it is important to establish an effective and low-cost approach for producing 1PE. Our previous studies found that tea ( Camellia sinensis ) flowers, which are an abundant and waste resource, contained enzymes that could transform acetophenone to 1PE. In the present study, we extracted crude enzymes from tea flowers and optimized the production conditions of 1PE using response surface methodology. The optimized conditions were an extraction pH of 7.0, a reaction pH of 5.3, a reaction temperature of 55 °C, a reaction time of 100 min, a coenzyme NADPH concentration of 3.75 μmol/mL in the reaction assay, and a substrate acetophenone concentration of 1.25 μmol/mL in the reaction assay. The results provide essential information for future industrial 1PE production using plant-derived enzymes.

  14. Heavy metal content in tea soils and their distribution in different parts of tea plants, Camellia sinensis (L). O. Kuntze.

    PubMed

    Seenivasan, Subbiah; Anderson, Todd Alan; Muraleedharan, Narayanannair

    2016-07-01

    Soils contaminated with heavy metals may pose a threat to environment and human health if metals enter the food chain over and above threshold levels. In general, there is a lack of information on the presence of heavy metals in tea [Camellia sinensis (L). O. Kuntze] plants and the soils in which they are grown. Therefore, an attempt was made to establish a database on the important heavy metals: cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb). For an initial survey on heavy metals, soil samples were collected randomly from tea-growing areas of Tamil Nadu, Kerala, and Karnataka, India. Parallel studies were conducted in the greenhouse on uptake of Pb, Cd, and Ni from soils supplemented with these metals at different concentrations. Finally, metal distribution in the tea plants under field conditions was also documented to assess the accumulation potential and critical limit of uptake by plants.

  15. Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis)

    PubMed Central

    Lin, Jinke; Kudrna, Dave; Wing, Rod A.

    2011-01-01

    We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers. PMID:21234344

  16. Effect of Camellia sinensis supplementation and increasing holding time on quality of cryopreserved boar semen.

    PubMed

    Gale, I; Gil, L; Malo, C; González, N; Martínez, F

    2015-06-01

    Cryopreservation of boar semen is still considered suboptimal due to the low fertility when compared with fresh semen. This study was performed to evaluate the effects of green tea (Camellia sinensis) supplementation of the freezing extender at different concentration (0, 2.5%, 5%, 10%) and also to determine the influence of increasing holding time from 2 to 24 h at 15 °C. Seventeen ejaculates from nine boars were used to make pools of three of them and then cryopreserved. Sperm motility, viability, acrosome integrity, membrane functionality (HOST) and capacitation status were determined before freezing and at 0, 30, 60, 90 and 120 min after thawing. Lipid peroxidation was evaluated just after thawing. The main findings emerging from this study were the following: (i) no improvement in quality of thawed spermatozoa with addition of tea to the freezing extender, (ii) no improvement in quality of thawed spermatozoa with prolonged holding time, (iii) lower peroxidation rate in presence of tea 5% and (iv) a decrease in the number of uncapacited viable spermatozoa with any tea supplementation. We conclude that amplification of holding time in semen cryopreservation process does not vary results, facilitating freezing protocol. Tea supplementation reduces lipoxidation but did not improve quality parameters. © 2014 Blackwell Verlag GmbH.

  17. Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves.

    PubMed

    Xu, Qingshan; Wang, Yu; Ding, Zhaotang; Fan, Kai; Ma, Dexin; Zhang, Yongliang; Yin, Qi

    2017-06-01

    Tea (Camellia sinensis (L.) O. Kuntze), is an aluminum (Al) hyperaccumulator and grows well in acid soils. Although Al-induced growth of tea plant has been studied, the proteomic profiles of tea plants in response to Al are unclear. In the present study, the proteomic profiles in tea roots and leaves under Al stress were investigated using iTRAQ proteomics approach. In total, 755 and 1059 differentially expressed proteins were identified in tea roots and leaves, respectively. KEGG enrichment analysis showed that the differentially expressed proteins in roots were mainly involved in 11 pathways whereas those from leaves were mainly involved in 9 pathways. Abundance of most protein functions in glycolytic metabolism were enhanced in tea roots, and proteins involved in photosynthesis were stimulated in tea leaves. The protein ferulate-5-hydroxylase (F5H) in lignin biosynthetic pathway was down-regulated in both roots and leaves. Furthermore, antioxidant enzymes (ascorbate peroxidase, catalase and glutathione S-transferase) and citrate synthesis were accumulated in tea roots in response to Al. The results indicated that active photosynthesis and glycolysis as well as increased activities of antioxidant enzymes can be considered as a possible reason for the stimulatory effects of Al on the growth of tea plants. Additionally, the down-regulation of F5H and the binding of Al and phenolic acids may reduce the accumulation of lignin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Microwave assisted synthesis of camellia oleifera shell-derived porous carbon with rich oxygen functionalities and superior supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Liang, Jiyuan; Qu, Tingting; Kun, Xiang; Zhang, Yu; Chen, Shanyong; Cao, Yuan-Cheng; Xie, Mingjiang; Guo, Xuefeng

    2018-04-01

    Biomass-derived carbon (BDCs) materials are receiving extensive attention as electrode materials for energy storage because of the considerable economic value offering possibility for practical applications, but the electrochemical capacitance of BDCs are usually relatively low resulted from limited electric double layer capacitance. Herein, an oxygen-rich porous carbon (KMAC) was fabricated through a rapid and convenient microwave assisted carbonization and KOH activation of camellia oleifera shell. The obtained KMAC possesses three-dimensional porous architecture, large surface area (1229 m2/g) and rich oxygen functionalities (C/O ratio of 1.66). As the electrode materials for supercapacitor, KMAC exhibits superior supercapacitive performances as compared to the activated carbon (KAC) derived from direct carbonization/KOH activation method in 2.0 M H2SO4 (315 F/g vs. 202 F/g) and 6.0 M KOH (251 F/g vs. 214 F/g) electrolyte due to the rich oxygen-containing functional groups on the surface of porous carbon resulted from the developed microwave-assisted carbonization/activation approach.

  19. Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.

    PubMed

    Li, Xin; Zhang, Lan; Ahammed, Golam Jalal; Li, Zhi-Xin; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan

    2017-07-01

    Flavonoids are one of the key secondary metabolites determining the quality of tea. Although exogenous brassinosteroid (BR), a steroidal plant hormone, can stimulate polyphenol biosynthesis in tea plants (Camellia sinensis L.), the relevance of endogenous BR in flavonoid accumulation and the underlying mechanisms remain largely unknown. Here we show that BR enhances flavonoid concentration in tea leaves by inducing an increase in the endogenous concentration of nitric oxide (NO). Notably, exogenous BR increased levels of flavonoids as well as NO in a concentration dependent manner, while suppression of BR levels by an inhibitor of BR biosynthesis, brassinazole (BRz), decreased the concentrations of both flavonoids and NO in tea leaves. Interestingly, combined treatment of BR and BRz reversed the inhibitory effect of BRz alone on the concentrations of flavonoids and NO. Likewise, exogenous NO also increased flavonoids and NO levels dose-dependently. When the NO level in tea leaves was suppressed by using a NO scavenger, 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), flavonoid concentration dramatically decreased. Although individual application of 0.1μM BR increased the concentrations of flavonoids and NO, combined treatment with exogenous NO scavenger, cPTIO, reversed the effect of BR on flavonoid concentration. Furthermore, BR or sodium nitroprusside (SNP) promoted but cPTIO inhibited the transcription and activity of phenylalanine ammonia-lyase (PAL) in leaves, while combined treatment of BR with SNP or cPTIO had no additive effect. The results of this study suggest that an optimal level of endogenous NO is essential for BR-induced promotion of flavonoid biosynthesis in tea leaves. In conclusion, this study unveiled a crucial mechanism of BR-induced flavonoid biosynthesis, which might have potential implication in improving the quality of tea. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Biochemical evaluation of triploid progenies of diploid × tetraploid breeding populations of Camellia for genotypes rich in catechin and caffeine.

    PubMed

    Das, Sourabh Kumar; Sabhapondit, Santanu; Ahmed, Giasuddin; Das, Sudripta

    2013-06-01

    To verify the quality of triploid varieties of Camellia tea species at the secondary metabolite level, we tested caffeine and catechin profiles of 97 F(1) segregating progenies in two breeding populations with a common tetraploid parent and diploid parents of two geographic and varietal origins. Catechin and caffeine levels of the triploid progenies were quantified and compared against their diploid parent. Some of the progenies showed better performance than their diploid parent. Most of the progenies of the diploid C. sinensis × tetraploid cross showed heterosis for caffeine and EGCG. Progenies of the C. assamica subsp. lasiocalyx × tetraploid cross showed heterosis for +C, EC, EGC, and TC. The genomic contributions of the diploid parent seem to be the main factor in the variation between the two populations. Our studies showed quantitative enhancement of some of the quality-related parameters in tea, providing a platform to refocus on this classical breeding approach for developing quality cultivars in tea.

  1. Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography.

    PubMed

    Choi, Soo Jung; Hong, Yong Deog; Lee, Bumjin; Park, Jun Seong; Jeong, Hyun Woo; Kim, Wan Gi; Shin, Song Seok; Yoon, Kee Dong

    2015-07-21

    Leaves from Camellia sienensis are a popular natural source of various beverage worldwide, and contain caffeine and polyphenols derived from catechin analogues. In the current study, caffeine (CAF, 1) and three tea polyphenols including (-)-epigallocatechin 3-O-gallate (EGCg, 2), (-)-gallocatechin 3-O-gallate (GCg, 3), and (-)-epicatechin 3-O-gallate (ECg, 4) were isolated and purified by flow-rate gradient high-performance countercurrent chromatography (HPCCC) using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:9:1:9, v/v). Two hundred milligrams of acetone-soluble extract from fermented C. sinensis leaves was separated by HPCCC to give 1 (25.4 mg), 2 (16.3 mg), 3 (11.1 mg) and 4 (4.4 mg) with purities over 98%. The structures of 1-4 were elucidated by QTOF-MS, as well as 1H- and 13C-NMR, and the obtained data were compared to the previously reported values.

  2. Transcriptome Analysis of an Anthracnose-Resistant Tea Plant Cultivar Reveals Genes Associated with Resistance to Colletotrichum camelliae

    PubMed Central

    Wang, Lu; Wang, Yuchun; Cao, Hongli; Hao, Xinyuan; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2016-01-01

    Tea plant breeding is a topic of great economic importance. However, disease remains a major cause of yield and quality losses. In this study, an anthracnose-resistant cultivar, ZC108, was developed. An infection assay revealed different responses to Colletotrichum sp. infection between ZC108 and its parent cultivar LJ43. ZC108 had greater resistance than LJ43 to Colletotrichum camelliae. Additionally, ZC108 exhibited earlier sprouting in the spring, as well as different leaf shape and plant architecture. Microarray data revealed that the genes that are differentially expressed between LJ43 and ZC108 mapped to secondary metabolism-related pathways, including phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways. In addition, genes involved in plant hormone biosynthesis and signaling as well as plant-pathogen interaction pathways were also changed. Quantitative real-time PCR was used to examine the expression of 27 selected genes in infected and uninfected tea plant leaves. Genes encoding a MADS-box transcription factor, NBS-LRR disease-resistance protein, and phenylpropanoid metabolism pathway components (CAD, CCR, POD, beta-glucosidase, ALDH and PAL) were among those differentially expressed in ZC108. PMID:26849553

  3. Chemical characterization of heteropolysaccharides from green and black teas (Camellia sinensis) and their anti-ulcer effect.

    PubMed

    Scoparo, Camila T; Souza, Lauro M; Dartora, Nessana; Sassaki, Guilherme L; Santana-Filho, Arquimedes P; Werner, Maria Fernanda P; Borato, Débora G; Baggio, Cristiane H; Iacomini, Marcello

    2016-05-01

    In order to obtain polysaccharides from green and black teas (Camellia sinensis), commercial leaves were submitted to infusion and then to alkaline extraction. The extracts were fractionated by freeze-thawing process, giving insoluble and soluble fractions. Complex arabinogalactan protein from the soluble fractions of both teas (GTPS and BTPS) were determined by methylation analysis and (1)H/(13)C-HSQC spectroscopy, showing a main chain of (1→3)-β-Galp, substituted at O-6 by (1→6)-linked β-Galp with side chains of α-Araf and terminal units of α-Araf, α-Fucp and α-Rhap. A highly branched heteroxylan from the insoluble fractions (GTPI and BTPI) showed in methylation analysis and (1)H/(13)C-HSQC spectroscopy the main chain of (1→4)-β-Xylp, substituted in O-3 by α-Araf, β-Galp and α-Glcp units. Evaluating their gastroprotective activity, the fractions containing the soluble heteropolysaccharides from green (GTPS) and black teas (BTPS) reduced the gastric lesions induced by ethanol. Furthermore, the fraction of insoluble heteropolysaccharides of green (GTPI) and black (BTPI) teas also protected the gastric mucosa. In addition, the maintenance of gastric mucus and reduced glutathione (GSH) levels was involved in the polysaccharides gastroprotection. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis).

    PubMed

    Ma, Qingping; Chen, Changsong; Zeng, Zhongping; Zou, Zhongwei; Li, Huan; Zhou, Qiongqiong; Chen, Xuan; Sun, Kang; Li, Xinghui

    2018-04-25

    Self-incompatibility (SI) is a major barrier that obstructs the breeding process in most horticultural plants including tea plants (Camellia sinensis). The aim of this study was to elucidate the molecular mechanism of SI in tea plants through a high throughput transcriptome analysis. In this study, the transcriptomes of self- and cross-pollinated pistils of two tea cultivars 'Fudingdabai' and 'Yulv' were compared to elucidate the SI mechanism of tea plants. In addition, the ion components and pollen tube growth in self- and cross-pollinated pistils were investigated. Our results revealed that both cultivars had similar pollen activities and cross-pollination could promote the pollen tube growth. In tea pistils, the highest ion content was potassium (K + ), followed by calcium (Ca 2+ ), magnesium (Mg 2+ ) and phosphorus (P 5+ ). Ca 2+ content increased after self-pollination but decreased after cross-pollination, while K + showed reverse trend with Ca 2+ . A total of 990 and 3 common differentially expressed genes (DEGs) were identified in un-pollinated vs. pollinated pistils and self- vs. cross-pollinated groups after 48 h, respectively. Function annotation indicated that three genes encoding UDP-glycosyltransferase 74B1 (UGT74B1), Mitochondrial calcium uniporter protein 2 (MCU2) and G-type lectin S-receptor-like serine/threonine-protein kinase (G-type RLK) might play important roles during SI process in tea plants. Ca 2+ and K + are important signal for SI in tea plants, and three genes including UGT74B1, MCU2 and G-type RLK play essential roles during SI signal transduction.

  5. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda).

    PubMed

    Mei, Xin; Liu, Xiaoyu; Zhou, Ying; Wang, Xiaoqin; Zeng, Lanting; Fu, Xiumin; Li, Jianlong; Tang, Jinchi; Dong, Fang; Yang, Ziyin

    2017-12-15

    Famous oolong tea (Oriental Beauty), which is manufactured by tea leaves (Camellia sinensis) infected with tea green leafhoppers, contains characteristic volatile monoterpenes derived from linalool. This study aimed to determine the formation mechanism of linalool in tea exposed to tea green leafhopper attack. The tea green leafhopper responsible for inducing the production of characteristic volatiles was identified as Empoasca (Matsumurasca) onukii Matsuda. E. (M.) onukii attack significantly induced the emission of linalool from tea leaves (p<0.05) as a result of the up-regulation of the linalool synthases (CsLIS1 and CsLIS2) (p<0.05). Continuous mechanical damage significantly enhanced CsLIS1 and CsLIS2 expression levels and linalool emission (p<0.05). Therefore, continuous wounding was a key factor causing the formation and emission of linalool from tea leaves exposed to E. (M.) onukii attack. This information should prove helpful for the future use of stress responses of plant secondary metabolism to improve quality components of agricultural products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fate and risk assessment of heavy metals in residue from co-liquefaction of Camellia oleifera cake and sewage sludge in supercritical ethanol.

    PubMed

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Qiu, Lei; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2014-09-01

    The fate and risk assessment of heavy metals (HMs) in solid residue from co-liquefaction of sewage sludge (SS) and Camellia oleifera cake (COC) in supercritical ethanol (SCE) were investigated. SCE effectively stabilized HMs in solid residues and a better stabilization was presented on Zn than Cd. Moreover, SCE significantly transformed Cd, Cu and Zn into F4, which reduced the risk to the environment. Furthermore, risk assessments of Igeo, Er(i), RI and RAC demonstrated that the addition of COC was beneficial to the contamination decrement of HMs since pollution levels of HMs all decreased after treatment, and the lowest pollution level was obtained with SC-350. Therefore, SS treated by SCE with the addition of COC could be a promising technology for disposal of SS, especially considering the safety of COC as regards HMs problem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study.

    PubMed

    Kellogg, Joshua J; Graf, Tyler N; Paine, Mary F; McCune, Jeannine S; Kvalheim, Olav M; Oberlies, Nicholas H; Cech, Nadja B

    2017-05-26

    A challenge that must be addressed when conducting studies with complex natural products is how to evaluate their complexity and variability. Traditional methods of quantifying a single or a small range of metabolites may not capture the full chemical complexity of multiple samples. Different metabolomics approaches were evaluated to discern how they facilitated comparison of the chemical composition of commercial green tea [Camellia sinensis (L.) Kuntze] products, with the goal of capturing the variability of commercially used products and selecting representative products for in vitro or clinical evaluation. Three metabolomic-related methods-untargeted ultraperformance liquid chromatography-mass spectrometry (UPLC-MS), targeted UPLC-MS, and untargeted, quantitative 1 HNMR-were employed to characterize 34 commercially available green tea samples. Of these methods, untargeted UPLC-MS was most effective at discriminating between green tea, green tea supplement, and non-green-tea products. A method using reproduced correlation coefficients calculated from principal component analysis models was developed to quantitatively compare differences among samples. The obtained results demonstrated the utility of metabolomics employing UPLC-MS data for evaluating similarities and differences between complex botanical products.

  8. Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study

    PubMed Central

    2017-01-01

    A challenge that must be addressed when conducting studies with complex natural products is how to evaluate their complexity and variability. Traditional methods of quantifying a single or a small range of metabolites may not capture the full chemical complexity of multiple samples. Different metabolomics approaches were evaluated to discern how they facilitated comparison of the chemical composition of commercial green tea [Camellia sinensis (L.) Kuntze] products, with the goal of capturing the variability of commercially used products and selecting representative products for in vitro or clinical evaluation. Three metabolomic-related methods—untargeted ultraperformance liquid chromatography–mass spectrometry (UPLC-MS), targeted UPLC-MS, and untargeted, quantitative 1HNMR—were employed to characterize 34 commercially available green tea samples. Of these methods, untargeted UPLC-MS was most effective at discriminating between green tea, green tea supplement, and non-green-tea products. A method using reproduced correlation coefficients calculated from principal component analysis models was developed to quantitatively compare differences among samples. The obtained results demonstrated the utility of metabolomics employing UPLC-MS data for evaluating similarities and differences between complex botanical products. PMID:28453261

  9. iTRAQ-based proteomics monitors the withering dynamics in postharvest leaves of tea plant (Camellia sinensis).

    PubMed

    Wu, Zhi-Jun; Ma, Hong-Yu; Zhuang, Jing

    2018-02-01

    Tea plant [Camellia sinensis (L.) O. Kuntze] is a typical leaf-type beverage crop. Many secondary metabolites, such as tea polyphenols, theanine, and caffeine that accumulated in tea leaves are beneficial to human health. The fresh leaves of tea plant are harvested and timely processed into tea products with different flavors. The withering of fresh tea leaves is the first step in tea processing and directly affects tea color, taste, and fragrance. To understand the molecular mechanism that influences tea quality during withering, we investigated the dynamic changes in the proteome of postharvest tea leaves in four withering stages (0, 1, 4, and 12 h treatments). A total of 863 unique differentially expressed proteins (DEPs) were identified by iTRAQ. The up- and down-regulated DEPs and the protein-protein interaction networks in different samples presented dynamic changes in their characteristics. The results of the functional annotation revealed that the molecular characteristics of tea withering are similar to leaf senescence. The biosynthesis of main tea-specific compounds that constitute tea color, taste, and fragrance of tea is restricted during withering. The substance transformation and degradation may have positive contributions to tea quality in withering technology. The proteome dynamics can be a useful aid for understanding the withering mechanisms and providing available information for functional discovery of proteins in the future.

  10. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    NASA Astrophysics Data System (ADS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8-4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  11. Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis)

    PubMed Central

    Liu, Yanli; Ma, Linlong; Jin, Xiaofang; Guo, Guiyi; Tan, Rongrong; Liu, Zheng; Zheng, Lin; Ye, Fei; Liu, Wei

    2018-01-01

    Tea plant (Camellia sinensis) has strong enrichment ability for selenium (Se). Selenite is the main form of Se absorbed and utilized by tea plant. However, the mechanism of selenite absorption and accumulation in tea plant is still unknown. In this study, RNA sequencing (RNA-seq) was used to perform transcriptomic analysis on the molecular mechanism of selenite absorption and accumulation in tea plant. 397.98 million high-quality reads were obtained and assembled into 168,212 unigenes, 89,605 of which were extensively annotated. There were 60,582 and 1,362 differentially expressed genes (DEGs) in roots and leaves, respectively. RNA-seq results were further validated by quantitative RT-PCR. Based on GO terms, the unigenes were mainly involved in cell, binding and metabolic process. KEGG pathway enrichment analysis showed that predominant pathways included ribosome and protein processing in endoplasmic reticulum. Further analysis revealed that sulfur metabolism, glutathione metabolism, selenocompound metabolism and plant hormone signal transduction responded to selenite in tea plant. Additionally, a large number of genes of higher expressions associated with phosphate transporters, sulfur assimilation, antioxidant enzymes, antioxidant substances and responses to ethylene and jasmonic acid were identified. Stress-related plant hormones might play a signaling role in promoting sulfate/selenite uptake and assimilation in tea plant. Moreover, some other Se accumulation mechanisms of tea plant were found. Our study provides a possibility for controlling Se accumulation in tea plant through bio-technologies and will be helpful for breeding new tea cultivars. PMID:29856771

  12. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS.

    PubMed

    Wu, Yahui; Jiang, Xiaolan; Zhang, Shuxiang; Dai, Xinlong; Liu, Yajun; Tan, Huarong; Gao, Liping; Xia, Tao

    2016-04-01

    Phenolic compounds are major components of tea flavour, in which catechins and flavonol glycosides play important roles in the astringent taste of tea infusion. However, the flavonol glycosides are difficult to quantify because of the large variety, as well as the inefficient seperation on chromatography. In this paper, a total of 15 flavonol glycosides in the tea plant (Camellia sinensis) were identified by the high performance liquid chromatography (HPLC) coupled to a time-of-flight mass spectrometer (TOF-MS), and a quantitative method was established based on multiple reaction monitoring (MRM) mode of ultra-high performance liquid chromatography (UPLC) coupled to a triple quadrupole mass spectrometer (QQQ-MS/MS). It provided the limit of detection and quantification to the order of picogram, which was more sensitive than the HPLC detection of the order of nanogram. The relative standard deviations of the intra- and inter-day variations in retention time and signal intensity (peak area) of six analytes were less than 0.26% and 4%, respectively. The flavonol glycosides of four tea cultivars were relatively quantified using the signal intensity (peak area) of product ion, in which six flavonol glycosides were quantified by the authentic standards. The results showed that the flavonol mono-, di- and tri-glycoside mostly accumulated in young leaves of the four tea cultivars. Notably, the myricetin 3-O-galactoside was the major component among the six flavonol glycosides detected. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of the addition and storage time of crude extract of tea leaves (camellia sinensis l.) toward value of free fatty acid in crude palm oil

    NASA Astrophysics Data System (ADS)

    Erwin; Wahifiyah, E.; Hairani, R.; Panggabean, A. S.

    2018-04-01

    The purpose of this study was to determine the effect of the crude extract of tea leaves (Camellia sinensis L.) and storage time on the content of free fatty acid in palm oil. The dried tea leaves were macerated and concentrated by rotary evaporator. The extract obtained was added to crude palm oil with various added mass of the extract and various storage times. Phytochemical tests indicated the presence of secondary metabolites including alkaloids, triterpenoids, steroids, phenolics and flavonoids. The ANOVA test showed a decrease in free fatty acid content in crude palm oil with the addition of tea leaves extract. The LSD (Least Significant Difference) test showed the best influence on ALB of palm oil is on the total extract mass of 2 grams and the storage time of 20 days.

  14. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    PubMed Central

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  15. Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants.

    PubMed

    Jian, Hong-lei; Liao, Xiao-xia; Zhu, Li-wei; Zhang, Wei-ming; Jiang, Jian-xin

    2011-07-15

    A biosurfactant, named tea saponin (TS), was isolated and purified from the defatted seed of Camellia oleifera Abel. The characterization of TS including molecular weight, glycosyl composition, and thermal behavior as well as the surface and foaming properties was conducted. The synergistic interactions of binary systems of CTAB-TS, SDS-TS, and Brij35-TS were investigated. The results show that TS had a weight-average molecular weight of 809.12 g mol(-1) and contained four aglycones of L-rhamnose, D-galactose, D-glucose, and D-glucuronic acid. The critical micelle concentration (cmc) of 2.242 mmol L(-1) and the minimum surface tension (γ(cmc)) of 43.5 mN m(-1) were determined for TS. Synergisms in surface tension reduction efficiency, in mixed micelle formation, and in surface tension reduction effectiveness were observed in CTAB-TS and SDS-TS systems, whereas that was not shown in Brij35-TS mixtures. The mixtures of TS with CTAB and SDS showed synergism in foaming efficiency, but this synergism did not exist in Brij35-TS system with respect to the surface properties. Nevertheless, there appears to be no significant correlation between foam stability and the surface properties. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects.

    PubMed

    Ye, Yong; Xing, Haiting; Li, Yue

    2014-01-01

    Sasanquasaponin, a bioactive compound isolated from seeds of Camellia oleifera, shows central effects in our previous research. In order to investigate its neuroprotective effects, a new kind of nanocapsule with photo responsiveness was designed to deliver sasanquasaponin into the brain and adjusted by red light. The nanocapsule was prepared using sasanquasaponin emulsified with soybean lecithin and cholesterol solution. The natural phaeophorbide from silkworm excrement as a photosensitizer was added in the lipid phase to make the nanocapsules photo responsive. The physicochemical properties of encapsulation efficiency, size distribution, morphology and stability were measured using high-performance liquid chromatography, particle size analyzer, transmission electron microscope, differential scanning calorimetry and thermogravimetry. Photo responsiveness was determined by the sasanquasaponin release in pH 7.5 phosphate buffer under the laser at 670 nm. The neuroprotective effects were evaluated by the expression of tyrosine hydroxylase (TH), decrease of inflammatory cytokines TNF-α and IL-1β in the brain, and amelioration of kainic acid-induced behavioral disorder in mice. The nanocapsules had higher encapsulation efficiency and stability when the phaeophorbide content was 2% of lecithin weight. The average size was 172.2 nm, distributed in the range of 142-220 nm. The phaeophorbide was scattered sufficiently in the outer lecithin layer of the nanocapsules and increased the drug release after irradiation. TH expression in brain tissues and locomotive activities in mice were reduced by kainic acid, but could be improved by the sasanquasaponin nanocapsules after tail vein injection with 15 minutes of irradiation at the nasal cavity. The sasanquasaponin took effect through inflammatory alleviation in central tissues. The sasanquasaponin nanocapsules with phaeophorbide have photo responsiveness and neuroprotective effects under the irradiation of red light. This

  17. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis.

    PubMed

    Chan, Eric W C; Soh, Eu Ying; Tie, Pei Pei; Law, Yon Peng

    2011-10-01

    The role of non-polymeric phenolic (NP) and polymeric tannin (PT) constituents in the antioxidant and antibacterial properties of six brands of green, black, and herbal teas of Camellia sinensis were investigated. Total phenolic content (TPC) and ascorbic acid equivalent antioxidant capacity (AEAC) were assessed using the Folin-Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. Minimum inhibitory dose (MID) against Gram-positive Micrococcus luteus, Staphylococcus aureus, and Bacillus cereus, and Gram-negative. Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa was assessed using the disc-diffusion method. Teas were extracted with hot water successively three times for one hour each time. The extracts were fractionated using Sephadex LH-20 column chromatography to obtain the NP and PT constituents. Extraction yields ranged from 12 to 23%. Yields of NP fractions (70-81%) were much higher than those of PT fractions (1-11%), suggesting that the former are the major tea components. Ranking of antioxidant properties of extracts was green tea>black tea>herbal tea. For all six teas, antioxidant properties of PT fractions were significantly higher than extracts and NP fractions. Extracts and fractions of all six teas showed no activity against the three Gram-negative bacteria. Green teas inhibited all three Gram-positive bacteria with S. aureus being the least susceptible. Black and herbal teas inhibited the growth of M. luteus and B. cereus, but not S. aureus. The most potent were the PT fractions of Boh Cameron Highlands and Ho Yan Hor with MID of 0.01 and 0.03 mg/disc against M. luteus. Results suggested that NP constituents are major contributors to the antioxidant and antibacterial properties of teas of C. sinensis. Although PT constituents have stronger antioxidant and antibacterial properties, they constitute only a minor component of the teas.

  18. Protective role of tannin-rich fraction of Camellia sinensis in tissue arsenic burden in Sprague Dawley rats.

    PubMed

    Chandronitha, C; Ananthi, S; Ramakrishnan, G; Lakshmisundaram, R; Gayathri, V; Vasanthi, Hannah R

    2010-09-01

    The protective effect of green tea (Camellia sinensis) was tested against arsenic-induced toxicity. However, the possible role of tannins in green tea in alleviating hepatic and renal oxidative injury has also been studied. Administration of sodium arsenite (100 mg/kg/day) for 28 days in Sprague Dawley female rats resulted in significant reduction of biochemical parameters such as delta-aminolevulinic acid dehydratase (ALAD), reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and elevation of thiobarbituric acid reactive substances (TBARS) and the index of nitrite/nitrate (NOx) levels. The tissue arsenic burden was increased after arsenic exposure for a period of 28 days. Green tea crude fraction (GTC) co-treated with sodium arsenite for 28 days caused significant (p < .01) elevation of ALAD, GSH, GPx, SOD, and nitrate/nitrite levels and reduction of the TBARS level and tissue burden when compared to detannified green tea fraction (GTDT)-treated groups. The protective role of tannin-rich fraction of C. sinensis when compared to the detannified fraction was also confirmed by histological examinations. The greater activity of GTC than that of detannified green tea fraction correlates with the higher content of tannins in green tea. Overall, these results indicate that the tannin-rich green tea could have improved the defense mechanism against arsenic-induced oxidative stress and reduced the tissue arsenic burden.

  19. Insight into Catechins Metabolic Pathways of Camellia sinensis Based on Genome and Transcriptome Analysis.

    PubMed

    Wang, Wenzhao; Zhou, Yihui; Wu, Yingling; Dai, Xinlong; Liu, Yajun; Qian, Yumei; Li, Mingzhuo; Jiang, Xiaolan; Wang, Yunsheng; Gao, Liping; Xia, Tao

    2018-04-25

    Tea is an important economic crop with a 3.02 Gb genome. It accumulates various bioactive compounds, especially catechins, which are closely associated with tea flavor and quality. Catechins are biosynthesized through the phenylpropanoid and flavonoid pathways, with 12 structural genes being involved in their synthesis. However, we found that in Camellia sinensis the understanding of the basic profile of catechins biosynthesis is still unclear. The gene structure, locus, transcript number, transcriptional variation, and function of multigene families have not yet been clarified. Our previous studies demonstrated that the accumulation of flavonoids in tea is species, tissue, and induction specific, which indicates that gene coexpression patterns may be involved in tea catechins and flavonoids biosynthesis. In this paper, we screened candidate genes of multigene families involved in the phenylpropanoid and flavonoid pathways based on an analysis of genome and transcriptome sequence data. The authenticity of candidate genes was verified by PCR cloning, and their function was validated by reverse genetic methods. In the present study, 36 genes from 12 gene families were identified and were accessed in the NCBI database. During this process, some intron retention events of the CsCHI and CsDFR genes were found. Furthermore, the transcriptome sequencing of various tea tissues and subcellular location assays revealed coexpression and colocalization patterns. The correlation analysis showed that CsCHIc, CsF3'H, and CsANRb expression levels are associated significantly with the concentration of soluble PA as well as the expression levels of CsPALc and CsPALf with the concentration of insoluble PA. This work provides insights into catechins metabolism in tea and provides a foundation for future studies.

  20. Catechin concentrates of garden tea leaves (Camellia sinensis L.): extraction/isolation and evaluation of chemical composition.

    PubMed

    Gadkari, Pravin Vasantrao; Kadimi, Udaya Sankar; Balaraman, Manohar

    2014-11-01

    Solid-liquid (SLE) and liquid-liquid (LLE) extraction techniques were applied to extract catechins and caffeine from quick mechanically expelled tea leaf juice (QMETLJ) and freeze-dried (FD)-QMETLJ of Camellia sinensis L. The concentrates obtained were analyzed for total polyphenol content and antioxidant activity (DPPH(•) inhibition, FRAP and phosphomolybdenum assay). Catechins were identified and quantified using HPLC. Overall, 95% (v/v) ethanol was the best solvent system for extracting total polyphenols (355.26 ± 23.68 to 457.89 ± 28.94 g GAE kg(-1) extractable solid yield (ESY)) and antioxidants (DPPH(•) inhibition, 16.97 ± 0.52 to 20.83 ± 3.11%; FRAP, 4.15 ± 0.32 to 6.38 ± 0.57 mmol TE g(-1) ESY; Mo(V) reduction, 2.47 ± 0.19 to 3.84 ± 0.39 mmol AAE g(-1) ESY) from FD-QMETLJ. Similarly, in LLE, ethyl acetate showed the best results for recovering polyphenols (960.52 ± 7.89 g GAE kg(-1) ESY) and antioxidants (DPPH(•) inhibition, 42.39 ± 0.91%; FRAP, 11.39 ± 0.83 mmol TE g(-1) ESY; Mo(V) reduction, 6.71 ± 1.14 mmol AAE g(-1) ESY) from QMETLJ. It was found that 95% ethanol can be used to increase the total polyphenols and antioxidants in extracts from FD-QMETLJ, while ethyl acetate can be effectively employed for concentrating catechins from QMETLJ. © 2014 Society of Chemical Industry.

  1. Oleiferoside W from the roots of Camellia oleifera C. Abel, inducing cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Jiang-Ping; Kang, Nai-Xin; Zhang, Mi-Ya; Gao, Hong-Wei; Li, Xiao-Ran; Liu, Yan-Li; Xu, Qiong-Ming; Yang, Shi-Lin

    2017-07-06

    Camellia oleifera C. Abel has been widely cultivated in China, and a group of bioactive constituents such as triterpeniod saponin have been isolated from C. oleifera C. Abel. In the current study, a new triterpeniod saponin was isolated from the EtOH extract of the roots of C. oleifera C. Abel, named as oleiferoside W, and the cytotoxic properties of oleiferoside W were evaluated in non-small cell lung cancer A549 cells. At the same time the inducing apoptosis, the depolarization of mitochondrial membrane potential (Δψ), the up-regulation of related pro-apoptotic proteins, such as cleaved-PARP, cleaved-caspase-3, and the down-regulation of anti-apoptotic marker Bcl-2/Bax were measured on oleiferoside W. Furthermore, the function, inducing the generation of reactive oxygen species (ROS) and apoptosis, of oleiferoside W could be reversed by N-acetylcysteine (NAC). In conclusion, our findings showed that oleiferoside W induced apoptosis involving mitochondrial pathway and increasing intracellular ROS production in the A549 cells, suggesting that oleiferoside W may have the possibility to be a useful anticancer agent for therapy in lung cancer.

  2. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies.

    PubMed

    Gao, Jun-Jie; Qin, Ye-Bo; Zhou, Tao; Cao, Dong-Dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-Fei

    2013-07-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1530.67 mg(2)/g and 0.7826 cm(3)/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  3. High-performance size-exclusion chromatography studies on the formation and distribution of polar compounds in camellia seed oil during heating.

    PubMed

    Feng, Hong-Xia; Sam, Rokayya; Jiang, Lian-Zhou; Li, Yang; Cao, Wen-Ming

    Camellia seed oil (CSO) is rich in oleic acid and has a high number of active components, which give the oil high nutritional value and a variety of biological activity. The aim of the present study was to determine the changes in the content and distribution of total polar compounds (TPC) in CSO during heating. TPC were isolated by means of preparative flash chromatography and further analyzed by high-performance size-exclusion chromatography (HPSEC). The TPC content of CSO increased from 4.74% to 25.29%, showing a significantly lower formation rate as compared to that of extra virgin olive oil (EVOO) and soybean oil (SBO) during heating. Furthermore, heating also resulted in significant differences (P<0.05) in the distribution of TPC among these oils. Though the content of oxidized triacylglycerol dimers, oxidized triacylglycerol oligomers, and oxidized triacylglycerol monomers significantly increased in all these oils, their increased percentages were much less in CSO than those in EVOO, indicating that CSO has a greater ability to resist oxidation. This work may be useful for the food oil industry and consumers in helping to choose the correct oil and to decide on the useful lifetime of the oil.

  4. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies*

    PubMed Central

    Gao, Jun-jie; Qin, Ye-bo; Zhou, Tao; Cao, Dong-dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-fei

    2013-01-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue. PMID:23825151

  5. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  6. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  7. Mechanism of Fenpropathrin Resistance in Red Spider Mite, Oligonychus coffeae (Acarina: Tetranychidae), Infesting Tea [Camellia sinensis L. (O. Kuntze)].

    PubMed

    Amsalingam, Roobakkumar; Gajjeraman, Prabu; Sam, Nisha; Rahman, Vattakandy Jasin; Azariah, Babu

    2017-02-01

    Red spider mite (RSM), Oligonychus coffeae (Nietner) (Acarina: Tetranychidae), has gained special attention in view of their widespread occurrence as a pest on tea [Camellia sinensis L. (O. Kuntze)]. The development of acaricide (fenpropathrin) resistance has been screened in field populations (FPs) of RSMs from different tea-growing regions of south India and compared with a laboratory-susceptible population (SP) based on toxicity bioassay, detoxifying enzyme activities, analysis of acetylcholine esterase gene (AChE, 2064 bp), and their expression pattern using semiquantitative RT-PCR. The increased resistance ratio (RR, 1.39 to 2.13) in LC 50 of fenpropathrin observed in field populations of RSM provides a baseline for screening the development of resistance to fenpropathrin. This resistance developed due to hyperexpression of detoxifying enzymes, i.e., esterase (RR of 1.43 to 2.53) and glutathione S-transferase (RR of 1.11 to 1.86), and overexpression of AChE gene at 1.4 to 2.7-fold. These results necessitate molecular studies and warrant the continuous monitoring of acaricide susceptibility and resistance pattern in order to analyze the usefulness of AChE gene as target for developing alternate pest control strategies and management of pesticide resistance in tea ecosystem.

  8. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress.

    PubMed

    Wu, Zhi-Jun; Li, Xing-Hui; Liu, Zhi-Wei; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-02-01

    Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.

  9. Proteomic analysis of tea plants (Camellia sinensis) with purple young shoots during leaf development

    PubMed Central

    Zhou, Qiongqiong; Chen, Zhidan; Lee, Jinwook; Li, Xinghui; Sun, Weijiang

    2017-01-01

    Tea products made from purple leaves are highly preferred by consumers due to the health benefits. This study developed a proteome reference map related to color changes during leaf growth in tea (Camellia sinensis) plant with purple young shoots using two-dimensional electrophoresis (2-DE). Forty-six differentially expressed proteins were detected in the gel and successfully identified by using MALDI-TOF/TOF-MS. The pronounced changes in the proteomic profile between tender purple leaves (TPL) and mature green leaves (MGL) included: 1) the lower activity of proteins associated with CO2 assimilation, energy metabolism and photo flux efficiency and higher content of anthocyanins in TPL than those in MGL may protect tender leaves against photo-damage; 2) the higher abundance of chalcone synthase (CHS), chalcone isomerase (CHI) and flavonol synthase (FLS) likely contributes to the synthesis of anthocyanins, catechins and flavonols in TPL tissues; 3) higher abundance of stress response proteins, such as glutathione S-transferases (GST) and phospholipid hydroperoxide glutathione peroxidase (PHGPx), could enhance the tolerance of TPL tissues to adverse condition in; and 4) the increased abundance of proteins related to protein synthesis, nucleic acids and cell wall proteins should be beneficial for the proliferation and expansion of leaf cell in TPL tissues. qPCR analysis showed that the expression of differentially abundant proteins was regulated at the transcriptional level. Therefore, the results indicated that higher abundance of CHI and CHS may account for the production of the purple-shoot phenotype in Wuyiqizhong 18 and thereby, enhancing the anthocyanin biosynthesis. The higher abundance of glutamine synthetase (GS) proteins related to the theanine biosynthesis may improve the flavor of tea products from TPL materials. Thus, this work should help to understand the molecular mechanisms underlying the changes in leaf color alteration. PMID:28520776

  10. Optimisation of saponin extraction conditions with Camellia sinensis var. assamica seed and its application for a natural detergent.

    PubMed

    Gong, Wanying; Huang, Yewei; Ji, Aibing; Peng, Wenshu; Liu, Cong; Zeng, Yin; Yang, Ruijuan; Yan, Liang; Wang, Xuanjun; Sheng, Jun

    2018-04-01

    Camellia sinensis var. assamica seed cake (a by-product of tea-seed oil) is an abundant resource with poor utilisation. C. sinensis var. assamica seed saponin (CSS) is one kind of non-ionic surfactant. In this study, the CSS extraction conditions were optimised by response surface methodology (RSM) and then the CSS detergent was developed. Additionally, the safety and decontamination ability of the developed detergent were evaluated. The optimised extraction conditions were including the extracting temperature of 40.04 °C, extraction time of 4.97 h, ethanol concentration of 64.11% and liquid-solid ratio of 14.57:1 mL g -1 . The formula of the CSS detergent was as follows: 20% crude CSS, 0.3% oxidised tea polyphenols (OTPs), 0.2% nisin, 0.3% sodium dehydroacetate, 0.7% sodium alginate and 0.5% sodium polyacrylate. The LD 50 of the CSS detergent exceeds 14 g kg -1 in mice, indicating the detergent was non-toxic. Both of the emulsifying and the pesticide residues removal abilities of the CSS detergent were significantly stronger than the commercial detergent. A natural tea seed saponin detergent with good safety and decontamination ability was successfully developed. This can make better use of the tea seed cake, thereby creating added value in the tea seed oil industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. [Functional saponins in tea flower (flower buds of Camellia sinensis): gastroprotective and hypoglycemic effects of floratheasaponins and qualitative and quantitative analysis using HPLC].

    PubMed

    Yoshikawa, Masayuki; Wang, Tao; Sugimoto, Sachiko; Nakamura, Seikou; Nagatomo, Akifumi; Matsuda, Hisashi; Harima, Shoichi

    2008-01-01

    As a part of our characterization studies on the bioactive saponin constituents of tea flowers (Camellia sinensis, flower buds), the methanolic extract and 1-butanol-soluble portion (the saponin fraction) from the flower buds were found to exhibit potent inhibitory effects on ethanol- and indomethacin-induced gastric mucosal lesions in rats and on serum glucose elevation in sucrose-loaded rats. Among the constituents of the 1-butanol-soluble portion, floratheasaponins A, B, and C showed gastroprotective and hypoglycemic activities. Furthermore, we have developed qualitative and quantitative methods using HPLC for the principle saponins, floratheasaponins A-F, in tea flowers, which were previously found to show antiallergic and antiobesity effects. Using those methods, the saponin composition of Indian tea flowers were found to be similar to those of Chinese (Anhui) but not of Japanese tea flowers. On the other hand, it was found that the floratheasaponin contents in tea flowers varied markedly during the blooming period, and they were abundant at half-bloom. Additionally, the contents of caffeine in the tea flowers were examined using HPLC.

  12. Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers.

    PubMed

    Zhou, Ying; Dong, Fang; Kunimasa, Aiko; Zhang, Yuqian; Cheng, Sihua; Lu, Jiamin; Zhang, Ling; Murata, Ariaki; Mayer, Frank; Fleischmann, Peter; Watanabe, Naoharu; Yang, Ziyin

    2014-08-13

    A previous study found that 1-phenylethanol (1PE) was a major endogenous volatile compound in tea (Camellia sinensis) flowers and can be transformed to glycosically conjugated 1PE (1PE-Gly). However, occurrences of 1PE-Gly in plants remain unknown. In this study, four 1PE-Glys have been isolated from tea flowers. Three of them were determined as (R)-1PE β-d-glucopyranoside ((R)-1PE-Glu), (S)-1PE-Glu, and (S)-1PE β-primeveroside ((S)-1PE-Pri), respectively, on the basis of NMR, MS, LC-MS, and GC-MS evidence. The other one was identified as (R)-1PE-Pri on the basis of LC-MS and GC-MS data. Moreover, these 1PE-Glys were chemically synthesized as the authentic standards to further confirm their occurrences in tea flowers. 1PE-Glu had a higher molar concentration than 1PE-Pri in each floral stage and organ. The ratio of (R) to (S) differed between 1PE-Glu and 1PE-Pri. In addition, a 1PE-Gly hydrolase β-primeverosidase recombinant protein produced in Escherichia coli exhibited high hydrolysis activity toward (R)-1PE-Pri. However, β-primeverosidase transcript level was not highly expressed in the anther part, which accumulated the highest contents of 1PE-Gly and 1PE. This suggests that 1PE-Gly may not be easily hydrolyzed to liberate 1PE in tea flowers. This study provides evidence of occurrences of 1PE-Glys in plants for the first time.

  13. Influence of exogenously applied abscisic acid on carotenoid content and water uptake in flowers of the tea plant (Camellia sinensis).

    PubMed

    Baldermann, Susanne; Yang, Ziyin; Sakai, Miwa; Fleischmann, Peter; Morita, Akio; Todoroki, Yasushi; Watanabe, Naoharu

    2013-05-01

    Carotenoids are a major class of plant pigments and fulfill many functions in different organisms that either produce or consume them. Although the color of the stamina of tea (Camellia sinensis) flowers is clearly due to the presence of carotenoids, the carotenoid profile and content remain to be discovered. We investigated the carotenoid profile of tea flowers and determined changes in concentrations over the floral development. The flowers contained oxygenated xanthophylls such as neoxanthin, lutein and zeaxanthin, as well as the hydrocarbons β-carotene and α-carotene. Flowers of the tea plant contain to vegetables comparable amounts of carotenoids. The content of 9'-cis-epoxycarotenoids, which serve as abscisic acid precursors, as well as changes in concentration of abscisic acid were studied. The concentrations of carotenoids decreased whereas the abscisic acid content increased over the floral development. Exogenously applied S-abscisic acid affected water uptake, flower opening and carotenoid accumulation. In summary, this paper reports, for the first time, the carotenoid profile and content of tea flowers. The study revealed that carotenoids in tea flowers are an interesting target in respect of possible applications of tea flower extracts as well as biological functions of abscisic acid during floral development. © 2012 Society of Chemical Industry.

  14. Phenotypic, histological and proteomic analyses reveal multiple differences associated with chloroplast development in yellow and variegated variants from Camellia sinensis

    PubMed Central

    Ma, Chengying; Cao, Junxi; Li, Jianke; Zhou, Bo; Tang, Jinchi; Miao, Aiqing

    2016-01-01

    Leaf colour variation is observed in several plants. We obtained two types of branches with yellow and variegated leaves from Camellia sinensis. To reveal the mechanisms that underlie the leaf colour variations, combined morphological, histological, ionomic and proteomic analyses were performed using leaves from abnormal branches (variants) and normal branches (CKs). The measurement of the CIE-Lab coordinates showed that the brightness and yellowness of the variants were more intense than the CKs. When chloroplast profiles were analysed, HY1 (branch with yellow leaves) and HY2 (branch with variegated leaves) displayed abnormal chloroplast structures and a reduced number and size compared with the CKs, indicating that the abnormal chloroplast development might be tightly linked to the leaf colour variations. Moreover, the concentration of elemental minerals was different between the variants and the CKs. Furthermore, DEPs (differentially expressed proteins) were identified in the variants and the CKs by a quantitative proteomics analysis using the label-free approach. The DEPs were significantly involved in photosynthesis and included PSI, PSII, cytochrome b6/f complex, photosynthetic electron transport, LHC and F-type ATPase. Our results suggested that a decrease in the abundance of photosynthetic proteins might be associated with the changes of leaf colours in tea plants. PMID:27633059

  15. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis

    PubMed Central

    Rana, Mohammad M.; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-01-01

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties. PMID:27428960

  16. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis.

    PubMed

    Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-07-15

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  17. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth

    PubMed Central

    Wang, Weidong; Sheng, Xianyong; Shu, Zaifa; Li, Dongqin; Pan, Junting; Ye, Xiaoli; Chang, Pinpin; Li, Xinghui; Wang, Yuhua

    2016-01-01

    Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca2+ gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca2+, ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca2+, ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension. PMID:27148289

  18. Camellia sinensis L. Extract and Its Potential Beneficial Effects in Antioxidant, Anti-Inflammatory, Anti-Hepatotoxic, and Anti-Tyrosinase Activities.

    PubMed

    Thitimuta, Surached; Pithayanukul, Pimolpan; Nithitanakool, Saruth; Bavovada, Rapepol; Leanpolchareanchai, Jiraporn; Saparpakorn, Patchreenart

    2017-03-04

    The aims of this study were to investigate the potential benefits of antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities of a methanolic extract of fresh tea leaves (FTE) ( Camellia sinensis L.). The antioxidant capacity was investigated using three different methods at different temperatures. The anti-inflammatory activity was studied in vitro by the inhibition of 5-lipoxygenase assay. The anti-hepatotoxic effect was investigated in CCl₄-induced liver injury in rats. The anti-tyrosinase activities of the FTE and its principal phenolic compounds were investigated in l-3,4-dihydroxyphenylalanine (l-DOPA) oxidation by a mushroom tyrosinase. A molecular docking study was conducted to determine how the FTE's principal catechins interact with the tyrosinase. The FTE exhibited the best shelf life at low temperatures and demonstrated concentration-dependent antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase effects compared to positive references. Treatment of rats with the FTE at 2000 mg/kg/day for 28 consecutive days reversed CCl₄-induced oxidative damage in hepatic tissues by lowering the levels of alanine aminotransferase by 69% and malondialdehyde by 90%. Our findings suggest that the FTE has the capacity to scavenge free radicals and can protect against oxidative stress induced by CCl₄ intoxication. The docking results were consistent with our in vitro data, indicating the anti-tyrosinase potency of the principal catechins.

  19. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide.

    PubMed

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO(2)) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20-90 min), temperature (35-45 °C) and pressure (50-90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO(2) extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO(2) contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO(2) is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO(2) is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets.

  20. A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.)

    PubMed Central

    Li, Qin; Li, Juan; Liu, Shuoqian; Huang, Jianan; Lin, Haiyan; Wang, Kunbo; Cheng, Xiaomei; Liu, Zhonghua

    2015-01-01

    Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, particularly several important secondary metabolites. Due to the significant changes in the metabolite contents of the buds and the young expanding leaves of tea plants, high-performance liquid chromatography (HPLC) analysis and isobaric tags for relative and absolute quantitation (iTRAQ) analysis were performed. A total of 233 differentially expressed proteins were identified. Among these, 116 proteins were up-regulated and 117 proteins were down-regulated in the young expanding leaves compared with the buds. A large array of diverse functions was revealed, including roles in energy and carbohydrate metabolism, secondary metabolite metabolism, nucleic acid and protein metabolism, and photosynthesis- and defense-related processes. These results suggest that polyphenol biosynthesis- and photosynthesis-related proteins regulate the secondary metabolite content of tea plants. The energy and antioxidant metabolism-related proteins may promote tea leaf development. However, reverse transcription quantitative real-time PCR (RT-qPCR) showed that the protein expression levels were not well correlated with the gene expression levels. These findings improve our understanding of the molecular mechanism of the changes in the metabolite content of the buds and the young expanding leaves of tea plants. PMID:26096006

  1. Fatty Acid Composition and Antioxidant Activity of Tea (Camellia sinensis L.) Seed Oil Extracted by Optimized Supercritical Carbon Dioxide

    PubMed Central

    Wang, Yuefei; Sun, Da; Chen, Hao; Qian, Lisheng; Xu, Ping

    2011-01-01

    Seeds are another product in addition to leaves (raw materials for teas) of tea (Camellia sinensis L.) plant. The great increase of tea consumption in recent years raises the challenge of finding commercial applications for tea seeds. In the present study, supercritical carbon dioxide (SC-CO2) extraction edible oil from tea seed was carried out, response surface methodology (RSM) was used to optimize processing parameters including time (20–90 min), temperature (35–45 °C) and pressure (50–90 MPa). The fatty acid composition and antioxidant activity of the extracted oil was also investigated. The highest yield of oil (29.2 ± 0.6%) was obtained under optimal SC-CO2 extraction conditions (45 °C, 89.7 min and 32 MPa, respectively), which was significantly higher (p < 0.05) than that (25.3 ± 1.0%) given by Soxhlet extraction. Meanwhile, tea seed oil extracted by SC-CO2 contained approximately 80% unsaturated fatty acids and showed a much stronger scavenging ability on the DPPH radical than that extracted by Soxhlet. SC-CO2 is a promising alternative for efficient extraction of edible oil from tea seed. Moreover, tea seed oil extracted by SC-CO2 is highly edible and has good antioxidant activity, and therefore may play a potential role as a health-promoting food resource in human diets. PMID:22174626

  2. Chitosan-induced immunity in Camellia sinensis (L.) O. Kuntze against blister blight disease is mediated by nitric-oxide.

    PubMed

    Chandra, Swarnendu; Chakraborty, Nilanjan; Panda, Koustubh; Acharya, Krishnendu

    2017-06-01

    Blister blight disease, caused by an obligate biotrophic fungal pathogen, Exobasidium vexans Massee is posing a serious threat for tea cultivation in Asia. As the use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption, serious attempts are being made to control such pathogens by boosting the intrinsic natural defense responses against invading pathogens in tea plants. In this study, the nature and durability of resistance offered by chitosan and the possible mechanism of chitosan-induced defense induction in Camellia sinensis (L.) O. Kuntze plants against blister blight disease were investigated. Foliar application of 0.01% chitosan solution at 15 days interval not only reduced the blister blight incidence for two seasons, but also maintained the induced expressions of different defense related enzymes and total phenol content compared to the control. Defense responses induced by chitosan were found to be down regulated under nitric oxide (NO) deficient conditions in vivo, indicating that the observed chitosan-induced resistance is probably activated via NO signaling. Such role of NO in host defense response was further established by application of the NO donor, sodium nitroprusside (SNP), which produced similar defense responses accomplished through chitosan treatment. Taken together, our results suggest that increased production of NO in chitosan-treated tea plants may play a critical role in triggering the innate defense responses effective against plant pathogens, including that causing the blister blight disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants.

    PubMed

    Zeng, Lanting; Liao, Yinyin; Li, Jianlong; Zhou, Ying; Tang, Jinchi; Dong, Fang; Yang, Ziyin

    2017-11-01

    Herbivore-induced plant volatiles (HIPVs) act as direct defenses against herbivores and as indirect defenses by attracting herbivore enemies. However, the involvement of HIPVs in within-plant or plant-to-plant signaling is not fully clarified. Furthermore, in contrast to model plants, HIPV signaling roles in crops have hardly been reported. Here, we investigated HIPVs emitted from tea (Camellia sinensis) plants, an important crop used for beverages, and their involvement in tea plant-to-plant signaling. To ensure uniform and sufficient exposure to HIPVs, jasmonic acid combined with mechanical damage (JAMD) was used to simulate herbivore attacks. Metabonomics techniques based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry were employed to determine metabolite changes in undamaged tea plants exposed to JAMD-stimulated volatiles. JAMD-stimulated volatiles mainly enhanced the amounts of 1-O-galloyl-6-O-luteoyl-α-d-glucose, assamicain C, 2,3,4,5-tetrahydroxy-6-oxohexyl gallate, quercetagitrin, 2-(2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-8-yl)-4,5-dihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-3-yl, 3,4-dimethoxybenzoate, 1,3,4,5,6,7-hexahydroxyheptan-2-one, and methyl gallate in neighboring undamaged tea leaves. Furthermore, α-farnesene and β-ocimene, which were produced after JAMD treatments, were identified as two main JAMD-stimulated volatiles altering metabolite profiles of the neighboring undamaged tea leaves. This research advances our understanding of the ecological functions of HIPVs and can be used to develop crop biological control agents against pest insects in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mixture-mixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis.

    PubMed

    Borges, Cleber N; Bruns, Roy E; Almeida, Aline A; Scarminio, Ieda S

    2007-07-09

    A composite simplex centroid-simplex centroid mixture design is proposed for simultaneously optimizing two mixture systems. The complementary model is formed by multiplying special cubic models for the two systems. The design was applied to the simultaneous optimization of both mobile phase chromatographic mixtures and extraction mixtures for the Camellia sinensis Chinese tea plant. The extraction mixtures investigated contained varying proportions of ethyl acetate, ethanol and dichloromethane while the mobile phase was made up of varying proportions of methanol, acetonitrile and a methanol-acetonitrile-water (MAW) 15%:15%:70% mixture. The experiments were block randomized corresponding to a split-plot error structure to minimize laboratory work and reduce environmental impact. Coefficients of an initial saturated model were obtained using Scheffe-type equations. A cumulative probability graph was used to determine an approximate reduced model. The split-plot error structure was then introduced into the reduced model by applying generalized least square equations with variance components calculated using the restricted maximum likelihood approach. A model was developed to calculate the number of peaks observed with the chromatographic detector at 210 nm. A 20-term model contained essentially all the statistical information of the initial model and had a root mean square calibration error of 1.38. The model was used to predict the number of peaks eluted in chromatograms obtained from extraction solutions that correspond to axial points of the simplex centroid design. The significant model coefficients are interpreted in terms of interacting linear, quadratic and cubic effects of the mobile phase and extraction solution components.

  5. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review.

    PubMed

    Saeed, Muhammad; Naveed, Muhammad; Arif, Muhammad; Kakar, Mohib Ullah; Manzoor, Robina; Abd El-Hack, Mohamed Ezzat; Alagawany, Mahmoud; Tiwari, Ruchi; Khandia, Rekha; Munjal, Ashok; Karthik, Kumaragurubaran; Dhama, Kuldeep; Iqbal, Hafiz M N; Dadar, Maryam; Sun, Chao

    2017-11-01

    Green tea (Camellia sinensis) is a famous herb, and its extract has been extensively used in traditional Chinese medicinal system. In this context, several studies have revealed its health benefits and medicinal potentialities for several ailments. With ever increasing scientific knowledge, search for safer, potential and novel type of health-related supplements quest, scientists are re-directing their research interests to explore natural resources i.e. medicinal herbs/plant derived compounds. Green tea consumption has gained a special attention and popularity in the modern era of changing lifestyle. The present review is aimed to extend the current knowledge by highlighting the importance and beneficial applications of green tea in humans for safeguarding various health issues. Herein, we have extensively reviewed, analyzed, and compiled salient information on green tea from the authentic published literature available in PubMed and other scientific databases. Scientific literature evidenced that owing to the bioactive constituents including caffeine, l-theanine, polyphenols/flavonoids and other potent molecules, green tea has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans. This review also provides in-depth insights on the medicinal values of green tea which will be useful for researchers, medical professionals, veterinarians, nutritionists, pharmacists and pharmaceutical industry. Future research emphasis and promotional avenues are needed to explore its potential therapeutic applications for designing appropriate pharmaceuticals, complementary medicines, and effective drugs as well as popularize and propagate its multidimensional health benefits. Copyright © 2017. Published by Elsevier Masson SAS.

  6. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  7. Phytochemical analysis of the triterpenoids with cytotoxicity and QR inducing properties from the total tea seed saponin of Camellia sinensis.

    PubMed

    Li, Ning; Ma, Zhong-Jun; Chu, Yang; Wang, Ying; Li, Xian

    2013-01-01

    The tea seed triterpene saponin (TS) from Camellia sinensis was found to exhibit better antitumor activity in vivo in S180 implanted ICR mice and QR inducing activity for hepa lclc7 cells respectively compared with the total tea seed saponin (TTS), hydrolysate of the TTS and tea seed flavonoid glycosides (TF). By bioassay-guided isolation, the TS fraction was separated and seven major components were purified and identified as theasaponin E1 (1), theasaponin E2 (2), theasaponin C1 (3), assamsaponin C (4), theasaponin H1 (5), theasaponin A9 (6), and theasaponin A8 (7), among which compounds 4 and 5 were isolated from this genus for the first time. The antitumor bioassay of the isolated compounds showed that compounds 1, 2 and 3 exhibited potential activities against the human tumor cell lines K562 and HL60. Furthermore, compound 1 (the major constituent with a mass content of over 1%) showed significant QR inducing activity with an IR value of 4.2 at 4μg/ml. So it can be concluded that tea seed especially the compound 1 (theasaponin E1) could be used as an antitumor agent and a chemoprevention agent of cancer. The preliminary structure-activity relationship in the anti-tumor activity and QR inducing activity of tea saponins was discussed briefly. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma.

    PubMed

    Zeng, Lanting; Zhou, Ying; Fu, Xiumin; Mei, Xin; Cheng, Sihua; Gui, Jiadong; Dong, Fang; Tang, Jinchi; Ma, Shengzhou; Yang, Ziyin

    2017-12-15

    The raw materials used to make oolong tea (Camellia sinensis) are a combination of leaf and stem. Oolong tea made from leaf and stem is thought to have a more aromatic smell than leaf-only tea. However, there is no available evidence to support the viewpoint. In this study, sensory evaluation and detailed characterization of emitted and internal volatiles (not readily emitted, but stored in samples) of dry oolong teas and infusions indicated that the presence of stem did not significantly improve the total aroma characteristics. During the enzyme-active processes, volatile monoterpenes and theanine were accumulated more abundantly in stem than in leaf, while jasmine lactone, indole, and trans-nerolidol were lower in stem than in leaf. Tissue-specific aroma-related gene expression and availability of precursors of aroma compounds resulted in different aroma distributions in leaf and stem. This study presents the first determination of the contribution of stem to oolong tea aroma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Exploring optimal supplement strategy of medicinal herbs and tea extracts for bioelectricity generation in microbial fuel cells.

    PubMed

    Chen, Bor-Yann; Liao, Jia-Hui; Hsu, An-Wei; Tsai, Po-Wei; Hsueh, Chung-Chuan

    2018-05-01

    This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique

  11. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers.

    PubMed

    Zhao, Dong-Wei; Yang, Jun-Bo; Yang, Shi-Xiong; Kato, Kenji; Luo, Jian-Ping

    2014-01-09

    Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which

  12. Gene Discovery of Characteristic Metabolic Pathways in the Tea Plant (Camellia sinensis) Using ‘Omics’-Based Network Approaches: A Future Perspective

    PubMed Central

    Zhang, Shihua; Zhang, Liang; Tai, Yuling; Wang, Xuewen; Ho, Chi-Tang; Wan, Xiaochun

    2018-01-01

    Characteristic secondary metabolites, including flavonoids, theanine and caffeine, in the tea plant (Camellia sinensis) are the primary sources of the rich flavors, fresh taste, and health benefits of tea. The decoding of genes involved in these characteristic components is still significantly lagging, which lays an obstacle for applied genetic improvement and metabolic engineering. With the popularity of high-throughout transcriptomics and metabolomics, ‘omics’-based network approaches, such as gene co-expression network and gene-to-metabolite network, have emerged as powerful tools for gene discovery of plant-specialized (secondary) metabolism. Thus, it is pivotal to summarize and introduce such system-based strategies in facilitating gene identification of characteristic metabolic pathways in the tea plant (or other plants). In this review, we describe recent advances in transcriptomics and metabolomics for transcript and metabolite profiling, and highlight ‘omics’-based network strategies using successful examples in model and non-model plants. Further, we summarize recent progress in ‘omics’ analysis for gene identification of characteristic metabolites in the tea plant. Limitations of the current strategies are discussed by comparison with ‘omics’-based network approaches. Finally, we demonstrate the potential of introducing such network strategies in the tea plant, with a prospects ending for a promising network discovery of characteristic metabolite genes in the tea plant. PMID:29915604

  13. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity.

    PubMed

    Chen, Zhenchun; Mei, Xin; Jin, Yuxia; Kim, Eun-Hye; Yang, Ziyin; Tu, Youying

    2014-01-30

    To extract natural volatile compounds from tea (Camellia sinensis) flowers without thermal degradation and residue of organic solvents, supercritical fluid extraction (SFE) using carbon dioxide was employed to prepare essential oil of tea flowers in the present study. Four important parameters--pressure, temperature, static extraction time, and dynamic extraction time--were selected as independent variables in the SFE. The optimum extraction conditions were the pressure of 30 MPa, temperature of 50°C, static time of 10 min, and dynamic time of 90 min. Based on gas chromatography-mass spectrometry analysis, 59 compounds, including alkanes (45.4%), esters (10.5%), ketones (7.1%), aldehydes (3.7%), terpenes (3.7%), acids (2.1%), alcohols (1.6%), ethers (1.3%) and others (10.3%) were identified in the essential oil of tea flowers. Moreover, the essential oil of tea flowers showed relatively stronger DPPH radical scavenging activity than essential oils of geranium and peppermint, although its antioxidative activity was weaker than those of essential oil of clove, ascorbic acid, tert-butylhydroquinone, and butylated hydroxyanisole. Essential oil of tea flowers using SFE contained many types of volatile compounds and showed considerable DPPH scavenging activity. The information will contribute to the future application of tea flowers as raw materials in health-care food and food flavour industries. © 2013 Society of Chemical Industry.

  14. Effect of shading intensity on morphological and color traits, and chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation.

    PubMed

    Sano, Tomohito; Horie, Hideki; Matsunaga, Akiko; Hirono, Yuhei

    2018-05-02

    Use of covering cultivation to shade tea (Camellia sinensis L.) trees to produce high-quality, high-priced green tea has recently increased in Japan. Knowledge of shading effects on morphological and color traits, and chemical components of new tea shoots is important for product quality and productivity. We assessed these traits of tea shoots and their relationships under covering cultivation of various radiation intensities. Leaf thickness, LMA (leaf mass per area), and leaf density of new tea leaves were smaller under covering culture than under open-field culture. SPAD values and chlorophyll contents were larger under covering culture than under open culture. The derived exponential equation for estimating chlorophyll contents from SPAD values was improved by considering leaf thickness. Covering culture decreased EC (epicatechin) and EGC (epigallocatechin) contents, and increased theanine and caffeine contents. Principal component analysis on shoot and leaf traits indicated that LMA, and chlorophyll, EC, and EGC contents were strongly associated with shading effects. Morphological and color traits, and chemical components of new tea shoots and leaves varied depending on radiation intensity, shoot growth, and cropping season. These findings are useful for covering cultivation with high quality and high productivity in tea gardens. This article is protected by copyright. All rights reserved.

  15. SWAPDT: A method for Short-time Withering Assessment of Probability for Drought Tolerance in Camellia sinensis validated by targeted metabolomics.

    PubMed

    Nyarukowa, Christopher; Koech, Robert; Loots, Theodor; Apostolides, Zeno

    2016-07-01

    Climate change is causing droughts affecting crop production on a global scale. Classical breeding and selection strategies for drought-tolerant cultivars will help prevent crop losses. Plant breeders, for all crops, need a simple and reliable method to identify drought-tolerant cultivars, but such a method is missing. Plant metabolism is often disrupted by abiotic stress conditions. To survive drought, plants reconfigure their metabolic pathways. Studies have documented the importance of metabolic regulation, i.e. osmolyte accumulation such as polyols and sugars (mannitol, sorbitol); amino acids (proline) during drought. This study identified and quantified metabolites in drought tolerant and drought susceptible Camellia sinensis cultivars under wet and drought stress conditions. For analyses, GC-MS and LC-MS were employed for metabolomics analysis.%RWC results show how the two drought tolerant and two drought susceptible cultivars differed significantly (p≤0.05) from one another; the drought susceptible exhibited rapid water loss compared to the drought tolerant. There was a significant variation (p<0.05) in metabolite content (amino acid, sugars) between drought tolerant and drought susceptible tea cultivars after short-time withering conditions. These metabolite changes were similar to those seen in other plant species under drought conditions, thus validating this method. The Short-time Withering Assessment of Probability for Drought Tolerance (SWAPDT) method presented here provides an easy method to identify drought tolerant tea cultivars that will mitigate the effects of drought due to climate change on crop losses. Copyright © 2016. Published by Elsevier GmbH.

  16. Laboratory, Epidemiological, and Human Intervention Studies Show That Tea (Camellia sinensis) May Be Useful in the Prevention of Obesity12

    PubMed Central

    Grove, Kimberly A.; Lambert, Joshua D.

    2010-01-01

    Tea (Camellia sinensis, Theaceae) and tea polyphenols have been studied for the prevention of chronic diseases, including obesity. Obesity currently affects >20% of adults in the United States and is a risk factor for chronic diseases such as type II diabetes, cardiovascular disease, and cancer. Given this increasing public health concern, the use of dietary agents for the prevention of obesity would be of tremendous benefit. Whereas many laboratory studies have demonstrated the potential efficacy of green or black tea for the prevention of obesity, the underlying mechanisms remain unclear. The results of human intervention studies are mixed and the role of caffeine has not been clearly established. Finally, there is emerging evidence that high doses of tea polyphenols may have adverse side effects. Given that the results of scientific studies on dietary components, including tea polyphenols, are often translated into dietary supplements, understanding the potential toxicities of the tea polyphenols is critical to understanding their potential usefulness in preventing obesity. In this review, we will critically evaluate the evidence for the prevention of obesity by tea, discuss the relevance of proposed mechanisms in light of tea polyphenol bioavailability, and review the reports concerning the toxic effects of high doses of tea polyphenols and the implication that this has for the potential use of tea for the prevention of obesity. We hope that this review will expose areas for further study and encourage research on this important public health issue. PMID:20089791

  17. Distribution of tannin-'tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand.

    PubMed

    Kanpiengjai, Apinun; Chui-Chai, Naradorn; Chaikaew, Siriporn; Khanongnuch, Chartchai

    2016-12-05

    Miang is a fermented food product prepared from the tea leaves of Camellia sinensis var. assamica, and is traditionally produced in mountainous areas of northern Thailand. Although Miang has a long history and reveals deep-rooted cultural involvement with local people in northern Thailand, little is known regarding its microbial diversity. Yeasts were isolated from 47 Miang samples collected from 28 sampling sites, including eight provinces in upper northern Thailand. A hundred and seven yeast isolates were recovered and identified within 14 species based on the comparison of the D1/D2 sequence of the large subunit (LSU) rRNA gene. Candida ethanolica was determined to be the dominant species that was frequently found in Miang together with minor resident yeast species. All yeast isolates demonstrated their tannin-tolerant capability when cultivated on yeast malt agar (YMA) containing 50g/l tannin, but nine isolates displayed clear zones forming around their colonies, e.g., Debaryomyces hansenii, Cyberlindnera rhodanensis, and Sporidiobolus ruineniae. The results obtained from a visual reading method of tannase revealed that all yeast isolates were positive for methyl gallate, indicating that they possess tannase activity. It is assumed that a tannin-tolerant ability is one of the most important factors for developing a yeast community in Miang. This research study is the first report to describe tannin-tolerant yeasts and yeast communities in traditionally fermented tea leaves. Copyright © 2016. Published by Elsevier B.V.

  18. Synthesis and neuroprotective effects of the complex nanoparticles of iron and sapogenin isolated from the defatted seeds of Camellia oleifera.

    PubMed

    Yang, Qian; Zhao, Chuang; Zhao, Jun; Ye, Yong

    2017-12-01

    The defatted seeds of Camellia oleifera var. monosperma Hung T. Chang (Theaceae) are currently discarded without effective utilization. However, sapogenin has been isolated and shows antioxidative, anti-inflammatory and analgesic activities suggestive of its neuroprotective function. In order to improve the activities of sapogenin, the nanoparticles of iron-sapogenin have been synthesized, and the neuroprotective effects are evaluated. Structural characters of the nanoparticles were analyzed, and the antioxidant effect was assessed by DPPH method, and the neuroprotective effect was evaluated by rotenone-induced neurodegeneration in Kunming mice injected subcutaneously into the back of neck with rotenone (50 mg/kg/day) for 6 weeks and then treated by tail intravenous injection with the iron-sapogenin at the dose of 25, 50 and 100 mg/kg for 7 days. Mice behaviour and neurotransmitters were tested. The product had an average size of 162 nm with spherical shape, and scavenged more than 90% DPPH radicals at 0.8 mg/mL concentration. It decreased behavioural disorder and malondialdehyde content in mice brain, and increased superoxide dismutase activity, tyrosine hydroxylase expression, dopamine and acetylcholine levels in brain in dose dependence, and their maximum changes were respectively up to 60.83%, 25.17%, 22.13%, 105.26%, 42.17% and 22.89% as compared to vehicle group. Iron-sapogenin nanoparticle shows significantly better effects than the sapogenin. Iron-sapogenin alleviates neurodegeneration of mice injured by neurotoxicity of rotenone, it is a superior candidate of drugs for neuroprotection.

  19. Construction of a SSR-Based Genetic Map and Identification of QTLs for Catechins Content in Tea Plant (Camellia sinensis)

    PubMed Central

    Ma, Chun-Lei; Wang, Xin-Chao; Jin, Ji-Qiang; Wang, Xue-Min; Chen, Liang

    2014-01-01

    Catechins are the most important bioactive compounds in tea, and have been demonstrated to possess a wide variety of pharmacological activities. To characterize quantitative trait loci (QTLs) for catechins content in the tender shoots of tea plant, we constructed a moderately saturated genetic map using 406 simple sequence repeat (SSR) markers, based on a pseudo-testcross population of 183 individuals derived from an intraspecific cross of two Camellia sinensis varieties with diverse catechins composition. The map consisted of fifteen linkage groups (LGs), corresponding to the haploid chromosome number of tea plant (2n = 2x = 30). The total map length was 1,143.5 cM, with an average locus spacing of 2.9 cM. A total of 25 QTLs associated with catechins content were identified over two measurement years. Of these, nine stable QTLs were validated across years, and clustered into four main chromosome regions on LG03, LG11, LG12 and LG15. The population variability explained by each QTL was predominantly at moderate-to-high levels and ranged from 2.4% to 71.0%, with an average of 17.7%. The total number of QTL for each trait varied from four to eight, while the total population variability explained by all QTLs for a trait ranged between 38.4% and 79.7%. This is the first report on the identification of QTL for catechins content in tea plant. The results of this study provide a foundation for further cloning and functional characterization of catechin QTLs for utilization in improvement of tea plant. PMID:24676054

  20. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses.

    PubMed

    Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun; Li, Xing-Hui

    2017-01-01

    Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants.

  1. Reliable reference genes for normalization of gene expression data in tea plants (Camellia sinensis) exposed to metal stresses

    PubMed Central

    Wang, Ming-Le; Li, Qing-Hui; Xin, Hua-Hong; Chen, Xuan; Zhu, Xu-Jun

    2017-01-01

    Tea plants [Camellia sinensis (L.) O. Kuntze] are an important leaf-type crop that are widely used for the production of non-alcoholic beverages in the world. Exposure to excessive amounts of heavy metals adversely affects the quality and yield of tea leaves. To analyze the molecular responses of tea plants to heavy metals, a reliable quantification of gene expression is important and of major importance herein is the normalization of the measured expression levels for the target genes. Ideally, stably expressed reference genes should be evaluated in all experimental systems. In this study, 12 candidate reference genes (i.e., 18S rRNA, Actin, CYP, EF-1α, eIF-4α, GAPDH, MON1, PP2AA3, TBP, TIP41, TUA, and UBC) were cloned from tea plants, and the stability of their expression was examined systematically in 60 samples exposed to diverse heavy metals (i.e., manganese, aluminum, copper, iron, and zinc). Three Excel-based algorithms (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of these genes. PP2AA3 and 18S rRNA were the most stably expressed genes, even though their expression profiles exhibited some variability. Moreover, commonly used reference genes (i.e., GAPDH and TBP) were the least appropriate reference genes for most samples. To further validate the suitability of the analyzed reference genes, the expression level of a phytochelatin synthase gene (i.e., CsPCS1) was determined using the putative reference genes for data normalizations. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in tea plants. PMID:28453515

  2. Cymbopogon citratus and Camellia sinensis extracts selectively induce apoptosis in cancer cells and reduce growth of lymphoma xenografts in vivo

    PubMed Central

    Philion, Cory; Ma, Dennis; Ruvinov, Ivan; Mansour, Fadi; Pignanelli, Christopher; Noel, Megan; Saleem, Ammar; Arnason, John; Rodrigues, Mark; Singh, Inderpal; Ropat, Jesse; Pandey, Siyaram

    2017-01-01

    Cancer cells are reported to have elevated levels of reactive oxygen species (ROS) and are highly dependent on cellular defense mechanisms against oxidative stress. Numerous nutraceuticals and natural polyphenolic compounds have a wide range of abilities to alter cellular redox states with potential implications in various diseases. Furthermore, therapeutic options for cancers are mostly nonselective treatments including genotoxic or tubulin-targeting compounds. Some of the natural extracts, containing multiple bioactive compounds, could target multiple pathways in cancer cells to selectively induce cell death. Cymbopogon citratus (lemongrass) and Camellia sinensis (white tea) extracts have been shown to have medicinal properties, however, their activity against lymphoma and leukemia, as well as mechanistic details, have not been fully characterized. Herein, we report potent anti-cancer properties in dose and time-dependent manners of ethanolic lemongrass and hot water white tea extracts in lymphoma and leukemia models. Both extracts were able to effectively induce apoptosis selectively in these human cancer cell types. Interestingly, ethanolic lemongrass extract induces apoptosis primarily by the extrinsic pathway and was found to be dependent on the generation of ROS. Conversely, apoptotic induction by hot water white tea extract was independent of ROS. Furthermore, both of these extracts caused mitochondrial depolarization and decreased rates of oxygen consumption in lymphoma and leukemia cells, leading to cell death. Most importantly, both these extracts were effective in reducing tumor growth in human lymphoma xenograft models when administered orally. Thus, these natural extracts could have potential for being nontoxic alternatives for the treatment of cancer. PMID:29340014

  3. Green tea (Camellia sinensis) administration induces expression of immune relevant genes and biochemical parameters in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Nootash, Shahab; Sheikhzadeh, Najmeh; Baradaran, Behzad; Oushani, Ali Khani; Maleki Moghadam, Mohammad Reza; Nofouzi, Katayoon; Monfaredan, Amir; Aghebati, Leili; Zare, Fatemeh; Shabanzadeh, Sadigheh

    2013-12-01

    Present study elucidates the efficacy of green tea (Camellia sinensis) on growth performance, immune and antioxidant systems and cytokine gene expression in rainbow trout tissues. Green tea was supplemented at 20, 100, and 500 mg kg(-1) diet and fed to fish (average weight: 23.5 g) for 35 days. No remarkable changes in growth performance were observed among all test groups. Lower lipid peroxidation product and higher superoxide dismutase activity were noted in fish received the medium dose of green tea. Significant increase in serum bactericidal activity and total protein were recorded in all treatment groups. All doses of green tea up-regulated Interleukin-1β transcription in the spleen, while Interleukin-1β mRNA level decreased significantly in the kidney of low dose of green tea. Interleukin-6 mRNA level was up-regulated in the spleen of high dose of green tea and liver of middle and high doses of green tea. High dose and medium dose of green tea up-regulated the interleukin-8 transcription in the kidney and liver, respectively. Meanwhile, green tea inhibited the production of interleukin-10 in all treatment groups compared with control group. Medium dose of green tea up-regulated tumor necrosis factor-α transcription in all fish tissues, while high dose and low dose of green tea enhanced tumor necrosis factor-α mRNA levels in the kidney and spleen, respectively. Present study suggests that green tea especially at 100 mg kg(-1) feed may effectively enhance the antioxidant system and immune system in rainbow trout. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Influence of Cytokinins in Combination with GA3 on Shoot Multiplication and Elongation of Tea Clone Iran 100 (Camellia sinensis (L.) O. Kuntze)

    PubMed Central

    Gonbad, Reza Azadi; Mohamad, Rosfarizan

    2014-01-01

    The use of in vitro culture has been accepted as an efficient technique for clonal propagation of many woody plants. In the present research, we report the results of a number of experiments aimed at optimizing micropropagation protocol for tea (Camellia sinensis (L.) O. Kuntze) (clone Iran 100) using nodal segments as the explant. The effect of different combinations and concentrations of plant growth regulators (PGR) (BAP, TDZ, GA3) on shoot multiplication and elongation was assessed. The influence of exposure to IBA in liquid form prior to transfer to solid media on rooting of tea microshoots was investigated. The results of this study showed that the best treatment for nodal segment multiplication in terms of the number of shoot per explant and shoot elongation was obtained using 3 mg/L BAP in combination with 0.5 mg/L GA3. TDZ was found to be inappropriate for multiplication of tea clone Iran 100 as it resulted in hyperhydricity especially at concentrations higher than 0.05 mg/L. Healthy shoots treated with 300 mg/L IBA for 30 min followed by transfer to 1/2 strength MS medium devoid of PGR resulted in 72.3% of shoots producing roots and upon transferring them to acclimatization chamber 65% survival was obtained prior to field transfer. PMID:24605069

  5. The contribution of cell wall composition in the expansion of Camellia sinensis seedlings roots in response to aluminum.

    PubMed

    Safari, Masoumeh; Ghanati, Faezeh; Safarnejad, Mohammad Reza; Chashmi, Najmeh Ahmadian

    2018-02-01

    Treatment with aluminum triggers a unique response in tea seedlings resulting in biochemical modification of the cell wall, regulation of the activity of the loosening agents, and elongation of root. Unlike most terrestrial plants, tea (Camellia sinensis L.) responds to aluminum (Al) through the promotion of its root elongation; but the real mechanism(s) behind this phenomenon is not well understood. A plausible relationship between the modifications of the cell wall and the promotion of root elongation was examined in tea seedlings treated for 8 days with 400 µM Al. The mechanical properties of the cell wall, the composition of its polysaccharides and their capacity to absorb Al, the expression of genes, and the activities of the wall-modifying proteins were studied. With 6 h of the treatment, about 40% of the absorbed Al was bound to the cell wall; however, the amount did not increase thereafter. Meanwhile, the activity of pectin methylesterase, the level of pectin demethylation, the amounts and the average molecular mass of xyloglucan in the root apices significantly decreased upon exposure to Al, resulting in the reduction of Al binding sites. On the other hand, the activity and the gene expression of peroxidase decreased, whereas the activity and gene expression of xyloglucan-degrading enzymes, the expression of expansin A and the H + -ATPase4 genes increased in the Al-treated plants. Interestingly, it was accompanied by the increase of elastic and viscous extensibility of the root apices. From the results, it can be suggested that the biochemical modification of the cell walls reduces sites of Al binding to roots and triggers the activity of the loosening agents, thereby increasing the length of tea roots.

  6. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line.

    PubMed

    Azizi, Susan; Mahdavi Shahri, Mahnaz; Rahman, Heshu Sulaiman; Rahim, Raha Abdul; Rasedee, Abdullah; Mohamad, Rosfarizan

    2017-01-01

    Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs) are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis ) extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV-vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The Pd@W.tea NPs were spherical (size 6-18 nm) and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH), OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli . MTT assay showed that Pd@W.tea NPs (IC 50 =0.006 μM) were more antiproliferative toward the human leukemia (MOLT-4) cells than the W.tea extract (IC 50 =0.894 μM), doxorubicin (IC 50 =2.133 μM), or cisplatin (IC 50 =0.013 μM), whereas they were relatively innocuous for normal human fibroblast (HDF-a) cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis and G2/M cell-cycle arrest.

  7. Cloning and Characterization of a Flavonoid 3′-Hydroxylase Gene from Tea Plant (Camellia sinensis)

    PubMed Central

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-01-01

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3′H, designated as CsF3′H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3′H was highly homologous with the characterized F3′Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3′H-specific conserved motifs were discovered in the protein sequence of CsF3′H. Enzymatic analysis of the heterologously expressed CsF3′H in yeast demonstrated that tea F3′H catalyzed the 3′-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min−1, respectively. Transcription level of CsF3′H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3′,4′-flavan-3-ols, 3′,4′,5′-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3′H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3′H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3′H in the biosynthesis of 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols in tea leaves. PMID:26907264

  8. Healing mechanisms of the hydroalcoholic extract and ethyl acetate fraction of green tea (Camellia sinensis (L.) Kuntze) on chronic gastric ulcers.

    PubMed

    Borato, Débora Gasparin; Scoparo, Camila Toledo; Maria-Ferreira, Daniele; da Silva, Luísa Mota; de Souza, Lauro Mera; Iacomini, Marcello; Werner, Maria Fernanda de Paula; Baggio, Cristiane Hatsuko

    2016-03-01

    Green tea is an infusion of unfermented leaves of Camellia sinensis (L.) Kuntze (Theaceae), traditionally used for the treatment of obesity, hypercholesterolemia, and gastric complaints. This study evaluated the mechanisms involved in the gastric ulcer healing of the hydroalcoholic extract from green tea (GEt), its ethyl acetate fraction, (GEAc) and epigallocatechin gallate (EGCG) using the model of acetic acid-induced gastric ulcer in rats. The chronic gastric ulcer was induced by application of 80 % acetic acid on serosal mucosa of rats. After 7 days of oral treatment with GEt and GEAc, the ulcer area, mucin content, inflammatory parameters (MPO and NAG), and antioxidant system (GSH and LOOH levels, SOD and GST activities) were evaluated. In vitro, the scavenging activity of GEt and GEAc were also measured. The antisecretory action was studied on the pylorus ligature method in rats. Oral treatment with GEt and GEAc reduced significantly the gastric ulcer area induced by acetic acid. The gastric ulcer healing was accompanied by increasing of mucin content, restoration of GSH levels and SOD activity, and reduction of MPO and LOOH levels. In addition, GEt and GEAc reduced the DPPH free radicals in vitro. Furthermore, the oral treatment of animals with GEt and GEAc did not alter the gastric acid secretion or cause signs of toxicity. Collectively, these results showed that GEt had a pronounced antiulcer effect, possibly through maintenance of mucin content and reduction of inflammation and oxidative stress. In addition, the compounds present in its ethyl acetate fraction could be responsible for the extract activity.

  9. Phylogeography of Camellia taliensis (Theaceae) inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation.

    PubMed

    Liu, Yang; Yang, Shi-xiong; Ji, Peng-zhang; Gao, Li-zhi

    2012-06-21

    As one of the most important but seriously endangered wild relatives of the cultivated tea, Camellia taliensis harbors valuable gene resources for tea tree improvement in the future. The knowledge of genetic variation and population structure may provide insights into evolutionary history and germplasm conservation of the species. Here, we sampled 21 natural populations from the species' range in China and performed the phylogeography of C. taliensis by using the nuclear PAL gene fragment and chloroplast rpl32-trnL intergenic spacer. Levels of haplotype diversity and nucleotide diversity detected at rpl32-trnL (h = 0.841; π = 0.00314) were almost as high as at PAL (h = 0.836; π = 0.00417). Significant chloroplast DNA population subdivision was detected (GST = 0.988; NST = 0.989), suggesting fairly high genetic differentiation and low levels of recurrent gene flow through seeds among populations. Nested clade phylogeographic analysis of chlorotypes suggests that population genetic structure in C. taliensis has been affected by habitat fragmentation in the past. However, the detection of a moderate nrDNA population subdivision (GST = 0.222; NST = 0.301) provided the evidence of efficient pollen-mediated gene flow among populations and significant phylogeographical structure (NST > GST; P < 0.01). The analysis of PAL haplotypes indicates that phylogeographical pattern of nrDNA haplotypes might be caused by restricted gene flow with isolation by distance, which was also supported by Mantel's test of nrDNA haplotypes (r = 0.234, P < 0.001). We found that chlorotype C1 was fixed in seven populations of Lancang River Region, implying that the Lancang River might have provided a corridor for the long-distance dispersal of the species. We found that C. taliensis showed fairly high genetic differentiation resulting from restricted gene flow and habitat fragmentation. This phylogeographical study gives us deep insights into

  10. Brassinosteroids Improve Quality of Summer Tea (Camellia sinensis L.) by Balancing Biosynthesis of Polyphenols and Amino Acids.

    PubMed

    Li, Xin; Ahammed, Golam J; Li, Zhi-Xin; Zhang, Lan; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan

    2016-01-01

    Summer grown green tea is less popular due to bitterness and high astringency, which are attributed to high levels of tea polyphenols (TP) and low levels of amino acids (AA) in tea leaves (Camellia sinensis L.). Brassinosteroids (BRs), a group of steroidal plant hormones can regulate primary and secondary metabolism in a range of plant species under both normal and stress conditions. However, specific effects of BRs on the photosynthesis of tea plants and the quality of summer green tea are largely unknown. Here we show that 24-epibrassinolide (EBR), a bioactive BR, promoted photosynthesis in tea plants in a concentration-dependent manner. Stimulation in photosynthesis by EBR resulted in an increased summer tea yield. Although all tested concentrations (0.01, 0.05, 0.1, 0.5, and 1.0 ppm) of EBR increased concentrations of TP and AA, a moderate concentration (0.5 ppm) caused the highest decrease in TP to AA ratio, an important feature of quality tea. Time-course analysis using 0.5 ppm EBR as foliar spray revealed that TP or AA concentration increased as early as 3 h after EBR application, reaching the highest peak at 24 h and that remained more or less stable. Importantly, such changes in TP and AA concentration by EBR resulted in a remarkably decreased but stable TP to AA ratio at 24 h and onward. Furthermore, concentrations of catechins and theanine increased, while that of caffeine remained unaltered following treatment with EBR. EBR improved activity of phenylalanine ammonia-lyase (PAL) and glutamine: 2-oxoglutarate aminotransferase (GOGAT) enzymes involved in catechins and theanine biosynthesis, respectively. Transcript analysis revealed that transcript levels of CsPAL and CsGS peaked as early as 6 h, while that of CsGOGAT peaked at 12 h following application of EBR, implying that EBR increased the concentration of TP and AA by inducing their biosynthesis. These results suggest a positive role of BR in enhancing green tea quality, which might have potential

  11. Brassinosteroids Improve Quality of Summer Tea (Camellia sinensis L.) by Balancing Biosynthesis of Polyphenols and Amino Acids

    PubMed Central

    Li, Xin; Ahammed, Golam J.; Li, Zhi-Xin; Zhang, Lan; Wei, Ji-Peng; Shen, Chen; Yan, Peng; Zhang, Li-Ping; Han, Wen-Yan

    2016-01-01

    Summer grown green tea is less popular due to bitterness and high astringency, which are attributed to high levels of tea polyphenols (TP) and low levels of amino acids (AA) in tea leaves (Camellia sinensis L.). Brassinosteroids (BRs), a group of steroidal plant hormones can regulate primary and secondary metabolism in a range of plant species under both normal and stress conditions. However, specific effects of BRs on the photosynthesis of tea plants and the quality of summer green tea are largely unknown. Here we show that 24-epibrassinolide (EBR), a bioactive BR, promoted photosynthesis in tea plants in a concentration-dependent manner. Stimulation in photosynthesis by EBR resulted in an increased summer tea yield. Although all tested concentrations (0.01, 0.05, 0.1, 0.5, and 1.0 ppm) of EBR increased concentrations of TP and AA, a moderate concentration (0.5 ppm) caused the highest decrease in TP to AA ratio, an important feature of quality tea. Time-course analysis using 0.5 ppm EBR as foliar spray revealed that TP or AA concentration increased as early as 3 h after EBR application, reaching the highest peak at 24 h and that remained more or less stable. Importantly, such changes in TP and AA concentration by EBR resulted in a remarkably decreased but stable TP to AA ratio at 24 h and onward. Furthermore, concentrations of catechins and theanine increased, while that of caffeine remained unaltered following treatment with EBR. EBR improved activity of phenylalanine ammonia-lyase (PAL) and glutamine: 2-oxoglutarate aminotransferase (GOGAT) enzymes involved in catechins and theanine biosynthesis, respectively. Transcript analysis revealed that transcript levels of CsPAL and CsGS peaked as early as 6 h, while that of CsGOGAT peaked at 12 h following application of EBR, implying that EBR increased the concentration of TP and AA by inducing their biosynthesis. These results suggest a positive role of BR in enhancing green tea quality, which might have potential

  12. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    PubMed

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  13. Effect of Dietary Cocoa Tea (Camellia ptilophylla) Supplementation on High-Fat Diet-Induced Obesity, Hepatic Steatosis, and Hyperlipidemia in Mice

    PubMed Central

    Yang, Xiao Rong; Wat, Elaine; Wang, Yan Ping; Ko, Chun Hay; Koon, Chi Man; Siu, Wing Sum; Gao, Si; Cheung, David Wing Shing; Lau, Clara Bik San; Ye, Chuang Xing; Leung, Ping Chung

    2013-01-01

    Recent studies suggested that green tea has the potential to protect against diet-induced obesity. The presence of caffeine within green tea has caused limitations. Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. To determine whether cocoa tea supplementation results in an improvement in high-fat diet-induced obesity, hyperlipidemia and hepatic steatosis, and whether such effects would be comparable to those of green tea extract, we studied six groups (n = 10) of C57BL/6 mice that were fed with (1) normal chow (N); (2) high-fat diet (21% butterfat + 0.15% cholesterol, wt/wt) (HF); (3) a high-fat diet supplemented with 2% green tea extract (HFLG); (4) a high-fat diet supplemented with 4% green tea extract (HFHG); (5) a high-fat diet supplemented with 2% cocoa tea extract (HFLC); and (6) a high-fat diet supplemented with 4% cocoa tea extract (HFHC). From the results, 2% and 4% dietary cocoa tea supplementation caused a dose-dependent decrease in (a) body weight, (b) fat pad mass, (c) liver weight, (d) total liver lipid, (e) liver triglyceride and cholesterol, and (f) plasma lipids (triglyceride and cholesterol). These data indicate that dietary cocoa tea, being naturally decaffeinated, has a beneficial effect on high-fat diet-induced obesity, hepatomegaly, hepatic steatosis, and elevated plasma lipid levels in mice, which are comparable to green tea. The present findings have provided the proof of concept that dietary cocoa tea might be of therapeutic value and could therefore provide a safer and cost effective option for patients with diet-induced metabolic syndrome. PMID:23935682

  14. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves.

    PubMed

    Chen, Yiyong; Fu, Xiumin; Mei, Xin; Zhou, Ying; Cheng, Sihua; Zeng, Lanting; Dong, Fang; Yang, Ziyin

    2017-03-22

    Shade management (dark treatment) on tea (Camellia sinensis) plants is a common approach to improve free amino acids in raw materials of tea leaves. However, the reason for amino acid accumulation in dark-treated tea leaves is still unknown. In the present study, dark treatment significantly increased content of free amino acids and reduced content of soluble proteins in tea leaves. Quantitative proteomics analysis showed that most enzymes involved in biosyntheses of amino acids were down-accumulated by dark treatment. Chloroplast numbers reduced in dark-treated leaves and the content of soluble proteins reduced in the chloroplasts isolated from dark-treated leaves compared to control. These suggest that proteolysis of chloroplast proteins contributed to amino acid accumulation in dark-treated leaves. Two chloroplasts proteases, ATP-dependent Clp protease proteolytic subunit 3 and protease Do-like 2, were up-accumulated in dark-treated leaves. This study firstly elucidated the mechanism of accumulation of amino acids in dark-treated tea leaves. Effect of dark on crop growth has been widely studied, while less attention has been paid to effect of dark on quality-related metabolites in crops. Shade management (dark treatment) on tea plants is a common approach to improve free amino acids in tea leaves. However, the reason for accumulation of free amino acids in dark-treated tea leaves is still unknown. In the present study, an iTRAQ-based quantitative proteomic analysis was performed and the results revealed the accumulation of free amino acids in dark-treated tea leaves was not due to activation of biosyntheses of amino acids, but resulted from proteolysis of chloroplast proteins. The information will advance our understanding of formation of quality or function-related metabolites in agricultural crops exposed to dark stress/shade management. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Gene expression profile indicates involvement of NO in Camellia sinensis pollen tube growth at low temperature.

    PubMed

    Pan, Junting; Wang, Weidong; Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Chang, Pinpin; Wang, Yuhua

    2016-10-18

    Nitric oxide (NO) functions as a critical signaling molecule in the low-temperature stress responses in plants, including polarized pollen tube growth in Camellia sinensis. Despite this, the potential mechanisms underlying the participation of NO in pollen tube responses to low temperature remain unclear. Here, we investigate alterations to gene expression in C. sinensis pollen tubes exposed to low-temperature stress and NO using RNA-Seq technology, in order to find the potential candidate genes related to the regulation of pollen tube elongation by NO under low-temperature stress. Three libraries were generated from C. sinensis cv. 'Longjingchangye' pollen tubes cultured at 25 °C (CsPT-CK) and 4 °C (CsPT-LT) or with 25 μM DEA NONOate (CsPT-NO). The number of unigenes found for the three biological replications were 39,726, 40,440 and 41,626 for CsPT-CK; 36,993, 39,070 and 39,439 for CsPT-LT; and 39,514, 38,298 and 39,061 for CsPT-NO. A total of 36,097 unique assembled and annotated sequences from C. sinensis pollen tube reads were found in a BLAST search of the following databases: NCBI non-redundant nucleotide, Swiss-prot protein, Kyoto Encyclopedia of Genes and Genomes, Cluster of Orthologous Groups of proteins, and Gene Ontology. The absolute values of log 2 Ratio > 1 and probability > 0.7 were used as the thresholds for significantly differential gene expression, and 766, 497 and 929 differentially expressed genes (DEGs) were found from the comparison analyses of the CK-VS-LT, CK-VS-NO and LT-VS-NO libraries, respectively. Genes related to metabolism and signaling pathways of plant hormones, transcription factors (TFs), vesicle polarized trafficking, cell wall biosynthesis, the ubiquitination machinery of the ubiquitin system and species-specific secondary metabolite pathways were mainly observed in the CK-VS-LT and CK-VS-NO libraries. Differentially expressed unigenes related to the inhibition of C. sinensis pollen tube growth under low

  16. Time series changes in radiocaesium distribution in tea plants (Camellia sinensis (L.)) after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Hirono, Yuhei; Nonaka, Kunihiko

    2016-02-01

    Radiocaesium ((134)Cs and (137)Cs) release following the accident at the Fukushima Dai-ichi Nuclear Power Plant, belonging to the Tokyo Electric Power Company caused severe contamination of new tea plant (Camellia sinensis (L.)) shoots by radiocaesium in many prefectures in eastern Japan. Because tea plants are perennial crops, there is the fear that the contamination might last for a long time. The objectives of this study were to reveal time series changes in the distribution of radiocaesium in tea plants after radioactive fallout and to evaluate the effect of pruning on reduction of radiocaesium concentrations in new shoots growing next year. The experimental tea field was located in Shizuoka, Japan, approximately 400 km away from the Fukushima Dai-ichi Nuclear Power Plant in a southwest direction. Time series changes in radiocaesium concentrations in unrefined tea, a tea product primarily produced for making Japanese green tea, from May 2011 to June 2013 and distribution of radiocaesium in tea plants from May 2011 to May 2012 were monitored. The radiocaesium concentrations in unrefined tea exponentially decreased; the effective half-lives for (134)Cs and (137)Cs were 0.30 and 0.36 y during the first 2 y after the accident, respectively. With time, the highest concentrations of (137)Cs moved from the upper to the lower parts of plants. Medium pruning 2-3 months after the accident reduced the concentration of (137)Cs in new shoots harvested in the first crop season of the following year by 56% compared with unpruned tea plants; thus, pruning is an effective measure for reducing radiocaesium concentration in tea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Determination of some selected secondary metabolites and their invitro antioxidant activity in commercially available Ethiopian tea (Camellia sinensis).

    PubMed

    Bizuayehu, Dereje; Atlabachew, Minaleshewa; Ali, Mirtachew Tihar

    2016-01-01

    Eight brands of tea (Camellia sinensis),which are cultivated and commercially available in Ethiopian market, were analyzed for estimation of their total secondary metabolites (polyphenols, flavonoids and tannins) content and free radical scavenging activity which is expressed on dry weight basis. In this present study, the total polyphenols, tannin and flavonoid contents were studied spectrophotometrically using Folin-Dennis, Folin-Dennis/protein precipitation and aluminium chloride methods respectively. The free radical scavenging activity was determined by using DPPH radical assay. Results of the analysis revealed that the total polyphenol content varied from 21.3 ± 0.24 to 31.6 ± 0.31 mg of gallic acid equivalent/g of dry matter. Total flavonoids content in the tea samples varied from 8.17 ± 0.68 to 23.2 ± 0.68 mg of catechin equivalent/g of dry weight and tannin content varied from 5.64 ± 0.39 7.45 ± 0.27 mg tannic acid equivalent/g of dry weight basis. The free radical scavenging activity among the tea brand samples ranged from 28.8 ± 1.86 to 80.0 ± 0.63 mg ascorbic acid equivalent/g and the half maximal inhibitory concentration (IC50%) values varied from 7.3 ± 1.35 to 64.0 ± 2.81 µg/mL of extract. The correlation between the antioxidant activity with total polyphenol content (R = 0.91325), with flavonoids (R = 0.80658) and with tannin (R = 0.73125) was calculated and maximum correlation value was found between polyphenol content and the free radical scavenging activity of the tea samples. The results in this study also revealed that green tea had the higher polyphenolic content and found to have the most promising antioxidant activity. This study further confirmed that Ethiopia tea is reach in phenolic compounds as compared to some overseas tea cultivars/varieties.

  18. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.).

    PubMed

    Ruan, Jianyun; Ma, Lifeng; Shi, Yuanzhi; Han, Wenyan

    2004-01-01

    Tea plants (Camellia sinensis L.) accumulate large amounts of fluoride (F) from soils containing normal F concentrations. The present experiments examined the effects of pH and Ca on F uptake by this accumulating plant species. The effect of pH was assessed in two experiments, one using uptake solutions with different pHs, and the other using lime, as CaO, applied to the soil. The effect of Ca was examined by analysing F concentrations in plants supplied with varying amounts of Ca, as Ca(NO3)2, either in uptake solutions or through the soil. F uptake was highest at solution pH 5.5, and significantly lower at pH 4.0. In the soil experiment, leaf F decreased linearly with the amounts of lime, which raised the soil pH progressively from 4.32 to 4.91, 5.43, 5.89 and, finally, 6.55. Liming increased the water-soluble F content of the soil. Including Ca in the uptake solution or adding Ca to soil significantly decreased leaf F concentrations. The distribution pattern of F in tea plants was not altered by Ca treatment, with most F being allocated to leaves. The activity of F- in the uptake solution was unaffected and water-soluble F in the soil was sometimes increased by added Ca. F uptake by tea plants, which are inherently able to accumulate large quantities of F, was affected both by pH and by Ca levels in the medium. The reduced F uptake following Ca application appeared not to be due simply to the precipitation of CaF2 in solution and soil or to the complexing of Ca and F in roots, although these factors cannot be dismissed. It was more likely due to the effect of Ca on the properties of cell wall or membrane permeability in the solution experiments, and to alteration of F speciations and their quantities in soil solutions following Ca application.

  19. Quantitative analysis of acylated oleanane-type triterpene saponins, chakasaponins I-III and floratheasaponins A-F, in the flower buds of Camellia sinensis from different regional origins.

    PubMed

    Morikawa, Toshio; Miyake, Sohachiro; Miki, Yoshinobu; Ninomiya, Kiyofumi; Yoshikawa, Masayuki; Muraoka, Osamu

    2012-10-01

    A quantitative analytical method was developed for the determination of acylated oleanane-type triterpene saponins, chakasaponins I-III (1-3) and floratheasaponins A-F (4-9), found in Camellia sinensis (Theaceae). The practical conditions for separation and detection of these saponins were established on an ODS column with methanol containing 5 mM trifluoroacetic acid as a mobile phase, and the detection and quantitation limits of the method were estimated to be 1.1-3.8 and 3.5-12.5 ng, respectively. The relative standard deviation values of intra- and interday precision were lower than 2.35 and 6.12%, respectively, overall mean recoveries of all saponins being 94.7-108.8%, and the correlation coefficients of all the calibration curves showed good linearity within the test ranges. To approve the validity of the protocol, extracts of 13 kinds of C. sinensis collected in China, Taiwan, Japan, and India were evaluated. The results indicated that the assay was reproducible and precise, and could be readily utilized for the quality evaluation of tea flowers. It was noteworthy that the distinct regional difference was observed with respect to the content of chakasaponins and floratheasaponins, more chakasaponins being contained in the extracts of tea flowers from Fujian and Sichuan provinces, China than those from Japan, Taiwan, and India. Optimum conditions for the extraction process were also established.

  20. Synthesis of molecularly imprinted polymers using acrylamide-β-cyclodextrin as a cofunctional monomer for the specific capture of tea saponins from the defatted cake extract of Camellia oleifera.

    PubMed

    Guo, Huiqin; Xiong, Jingjing; Ma, Wentian; Wu, Minghuo; Yan, Liushui; Li, Kexin; Liu, Yu

    2016-11-01

    Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide-β-cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first-order kinetic model (R 2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir-Freundlich model (R 2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid-phase extraction materials was investigated and the results indicated that using acrylamide-β-cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid-phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of extreme climate events on tea (Camellia sinensis) functional quality validate indigenous farmer knowledge and sensory preferences in tropical China.

    PubMed

    Ahmed, Selena; Stepp, John Richard; Orians, Colin; Griffin, Timothy; Matyas, Corene; Robbat, Albert; Cash, Sean; Xue, Dayuan; Long, Chunlin; Unachukwu, Uchenna; Buckley, Sarabeth; Small, David; Kennelly, Edward

    2014-01-01

    Climate change is impacting agro-ecosystems, crops, and farmer livelihoods in communities worldwide. While it is well understood that more frequent and intense climate events in many areas are resulting in a decline in crop yields, the impact on crop quality is less acknowledged, yet it is critical for food systems that benefit both farmers and consumers through high-quality products. This study examines tea (Camellia sinensis; Theaceae), the world's most widely consumed beverage after water, as a study system to measure effects of seasonal precipitation variability on crop functional quality and associated farmer knowledge, preferences, and livelihoods. Sampling was conducted in a major tea producing area of China during an extreme drought through the onset of the East Asian Monsoon in order to capture effects of extreme climate events that are likely to become more frequent with climate change. Compared to the spring drought, tea growth during the monsoon period was up to 50% higher. Concurrently, concentrations of catechin and methylxanthine secondary metabolites, major compounds that determine tea functional quality, were up to 50% lower during the monsoon while total phenolic concentrations and antioxidant activity increased. The inverse relationship between tea growth and concentrations of individual secondary metabolites suggests a dilution effect of precipitation on tea quality. The decrease in concentrations of tea secondary metabolites was accompanied by reduced farmer preference on the basis of sensory characteristics as well as a decline of up to 50% in household income from tea sales. Farmer surveys indicate a high degree of agreement regarding climate patterns and the effects of precipitation on tea yields and quality. Extrapolating findings from this seasonal study to long-term climate scenario projections suggests that farmers and consumers face variable implications with forecasted precipitation scenarios and calls for research on management

  2. Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate Indigenous Farmer Knowledge and Sensory Preferences in Tropical China

    PubMed Central

    Ahmed, Selena; Stepp, John Richard; Orians, Colin; Griffin, Timothy; Matyas, Corene; Robbat, Albert; Cash, Sean; Xue, Dayuan; Long, Chunlin; Unachukwu, Uchenna; Buckley, Sarabeth; Small, David; Kennelly, Edward

    2014-01-01

    Climate change is impacting agro-ecosystems, crops, and farmer livelihoods in communities worldwide. While it is well understood that more frequent and intense climate events in many areas are resulting in a decline in crop yields, the impact on crop quality is less acknowledged, yet it is critical for food systems that benefit both farmers and consumers through high-quality products. This study examines tea (Camellia sinensis; Theaceae), the world's most widely consumed beverage after water, as a study system to measure effects of seasonal precipitation variability on crop functional quality and associated farmer knowledge, preferences, and livelihoods. Sampling was conducted in a major tea producing area of China during an extreme drought through the onset of the East Asian Monsoon in order to capture effects of extreme climate events that are likely to become more frequent with climate change. Compared to the spring drought, tea growth during the monsoon period was up to 50% higher. Concurrently, concentrations of catechin and methylxanthine secondary metabolites, major compounds that determine tea functional quality, were up to 50% lower during the monsoon while total phenolic concentrations and antioxidant activity increased. The inverse relationship between tea growth and concentrations of individual secondary metabolites suggests a dilution effect of precipitation on tea quality. The decrease in concentrations of tea secondary metabolites was accompanied by reduced farmer preference on the basis of sensory characteristics as well as a decline of up to 50% in household income from tea sales. Farmer surveys indicate a high degree of agreement regarding climate patterns and the effects of precipitation on tea yields and quality. Extrapolating findings from this seasonal study to long-term climate scenario projections suggests that farmers and consumers face variable implications with forecasted precipitation scenarios and calls for research on management

  3. Eco-physiological basis of shade adaptation of Camellia nitidissima, a rare and endangered forest understory plant of Southeast Asia.

    PubMed

    Chai, Shengfeng; Tang, Jianmin; Mallik, Azim; Shi, Yancai; Zou, Rong; Li, Jitao; Wei, Xiao

    2018-02-07

    Camellia nitidissima, a rare and endangered shrub is narrowly distributed in South China and North Vietnam occurring in forest understory. Their light tolerance mechanism is unclear. We measured photosynthesis and related parameters on 2-years-old cuttings growing at 10, 30, 50 and 100% sunlight. Our research question was: At what light level are C. nitidissima cuttings responding most favorably, and what is the eco-physiological basis for their response to light? We hypothesized that as a forest understory growth of C. nitidissima would respond most favorably at low to intermediate light by optimizing photosynthetic activity, and high light will affect photosynthetic functions due to photoinhibition, damage of photosynthetic apparatus and concomitant enzyme activity. With increasing light, the maximum net photosynthetic rate (P Nmax ) and apparent quantum yield (AQY) decreased, while the light compensation point increased, and light saturation point first increased followed by a decrease. The P Nmax and AQY under 50 and 100% sunlight were significantly lower than that under 10 and 30% sunlight. The chlorophyll fluorescence parameters F m , F v , F v /F m all decreased under high light (> 50%). The contents of chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoid (Car) decreased with increasing light. Relative conductivity, malondialdehyde (MDA) and proline contents in leaves were significantly increased in high light but we found no significant difference in these indices at 10 and 30% sunlight. We conclude that C. nitidissima is a shade adapted plant with poor adaptability to high light (> 50%). The novelty of this research is the demonstration of the eco-physiological basis of its light tolerance (conversely, shade adaptation) mechanisms indicated by decreased photosynthetic activity, chlorophyll fluorescence, Chla, Chlb and Car contents and concomitant increase in relative conductivity, MDA and proline contents at high light causing photoinhibition. For

  4. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control.

    PubMed

    Zhang, Cheng-Cai; Wang, Li-Yuan; Wei, Kang; Wu, Li-Yun; Li, Hai-Lin; Zhang, Fen; Cheng, Hao; Ni, De-Jiang

    2016-05-17

    Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self

  5. Synthesis of structured lipids by lipase-catalyzed interesterification of triacetin with camellia oil methyl esters and preliminary evaluation of their plasma lipid-lowering effect in mice.

    PubMed

    Cao, Yu; Qi, Suijian; Zhang, Yang; Wang, Xiaoning; Yang, Bo; Wang, Yonghua

    2013-03-25

    Structured lipids (SLCTs triacylglycerols with short- and long-chain acyl residues) were synthesized by interesterification of triacetin and fatty acid methyl esters (FAMEs) from camellia oil, followed by molecular distillation for purification. Different commercial immobilized lipases (Lipozyme RM IM and Novozyme 435), the substrate molar ratios of FAMEs to triacetin, the reaction temperatures and the lipase amounts were studied for their efficiency in producing SLCTs. Results showed that Novozyme 435 was more suitable for this reaction system. Moreover, the optimal reaction conditions for the highest conversion of FAMEs and the highest LLS-TAGs (triacylglycerols with one short- and two long-chain acyl residues) yields were achieved at a molar ratio of FAMEs to triacetin of 3:1, 50 °C of reaction temperature and a lipase amount of 4% (w/v). Scale-up was conducted based on the optimized reaction conditions. Results showed that after 24 h of reaction , the conversion rate of FAMEs was 82.4% and the rate of disubstituted triacetin was 52.4 mol%. The final product yield rate was 94.6%. The effects of the synthesized SLCTs on the plasma lipid level of fasting mice were also studied. The SLCTs could effectively lessen the total triacylglycerol levels in plasma compared to the triacylglycerol group in fasting NIH mice. It suggested that this type of structured lipid might be beneficial for human health, especially for the prevention of obesity.

  6. The Impact of pH and Calcium on the Uptake of Fluoride by Tea Plants (Camellia sinensis L.)

    PubMed Central

    RUAN, JIANYUN; MA, LIFENG; SHI, YUANZHI; HAN, WENYAN

    2004-01-01

    • Background and Aims Tea plants (Camellia sinensis L.) accumulate large amounts of fluoride (F) from soils containing normal F concentrations. The present experiments examined the effects of pH and Ca on F uptake by this accumulating plant species. • Methods The effect of pH was assessed in two experiments, one using uptake solutions with different pHs, and the other using lime, as CaO, applied to the soil. The effect of Ca was examined by analysing F concentrations in plants supplied with varying amounts of Ca, as Ca(NO3)2, either in uptake solutions or through the soil. • Key results F uptake was highest at solution pH 5·5, and significantly lower at pH 4·0. In the soil experiment, leaf F decreased linearly with the amounts of lime, which raised the soil pH progressively from 4·32 to 4·91, 5·43, 5·89 and, finally, 6·55. Liming increased the water‐soluble F content of the soil. Including Ca in the uptake solution or adding Ca to soil significantly decreased leaf F concentrations. The distribution pattern of F in tea plants was not altered by Ca treatment, with most F being allocated to leaves. The activity of F– in the uptake solution was unaffected and water‐soluble F in the soil was sometimes increased by added Ca. • Conclusions F uptake by tea plants, which are inherently able to accumulate large quantities of F, was affected both by pH and by Ca levels in the medium. The reduced F uptake following Ca application appeared not to be due simply to the precipitation of CaF2 in solution and soil or to the complexing of Ca and F in roots, although these factors cannot be dismissed. It was more likely due to the effect of Ca on the properties of cell wall or membrane permeability in the solution experiments, and to alteration of F speciations and their quantities in soil solutions following Ca application. PMID:14644914

  7. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, CY; Yang, H; Wei, CL

    Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Using high-throughput Illumina RNA-seq, the transcriptome from poly (A){sup +} RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled intomore » 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and

  8. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds

    PubMed Central

    2011-01-01

    Background Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Results Using high-throughput Illumina RNA-seq, the transcriptome from poly (A)+ RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and

  9. Online gas chromatography combustion/pyrolysis-isotope ratio mass spectrometry (HRGC-C/P-IRMS) of (+/-)-Dihydroactinidiolide from tea ( Camellia sinensis ) and rooibos tea ( Aspalathus linearis ).

    PubMed

    del Mar Caja, María; Preston, Christina; Menzel, Michael; Kempf, Michael; Schreier, Peter

    2009-07-08

    Online capillary gas chromatography-isotope ratio mass spectrometry in both the combustion and the pyrolysis modes (HRGC-C/P-IRMS) was employed to perform authentication studies of the flavoring agent (+/-)-dihydroactinidiolide. Thus, the delta(13)C(V-PDB) and delta(2)H(V-SMOW) values of synthetic (ex synthetic beta-ionone and natural beta-carotene) as well as enzymatically (ex synthetic and natural beta-carotene) produced references were studied in comparison with those of the natural substance isolated from black (n = 17) and green teas (n = 6) ( Camellia sinensis ) as well as Rooibos tea ( Aspalathus linearis ) (n = 7). The isotope values determined for both the synthetic and enzymatically produced samples of (+/-)-dihydroactinidiolide reflected the influence of the origin of their educts. Hence, in cases when synthetic educts were used, the delta(13)C(V-PDB) and delta(2)H(V-SMOW) values ranged from -27.0 to -28.4 per thousand and from -28 to -169 per thousand, respectively, whereas the use of natural educts led to ranges from -30.3 to -31.6 per thousand and from -154 to -228 per thousand, respectively. As to the tea samples, delta(13)C(V-PDB) and delta(2)H(V-SMOW) values ranging from -29.0 to -34.1 per thousand and from -153 to -274 per thousand, respectively, were recorded for (+/-)-dihydroactinidiolide from black and green teas, whereas that from Rooibos tea showed (2)H/(1)H ratios ranging from -189 to -210 per thousand as well as slightly enriched values in the (13)C/(12)C ratios ranging from -24.4 to -27.1 per thousand.

  10. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis).

    PubMed

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants' growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., 'Photosynthesis'), GO terms (e.g., 'response to karrikin') and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology.

  11. Paradigm shift of contamination risk of six heavy metals in tea (Camellia sinensis L.) growing soil: A new approach influenced by inorganic and organic amendments.

    PubMed

    Karak, Tanmoy; Bora, Krishnamoni; Paul, Ranjit Kumar; Das, Sampa; Khare, Puja; Dutta, Amrit Kumar; Boruah, Romesh Kumar

    2017-09-15

    The present study provides several contamination and ecological risk indices for selected metals (Cd, Cr, Cu, Mn, Ni and Zn) in tea (Camellia sinensis L.; cv. S.3A/3) growing soil influenced by lower to higher doses of inorganic and organic amendments. While ecological risk indices were applied, it was observed that same treatment showed different risk levels but contamination risk status did not vary significantly. All the indices showed significant correlation with heavy metals' concentration in young shoots of tea plants. As the indices characterized experimental soils with different extents of contamination, it would be important to standardize the indices with long term experiments followed by generation of new index. Therefore, we formulated a new contamination index named as Tea Research Association Heavy Metal Contamination Index (TRAHMCI) for tea growing soils. TRAHMCI is based on the probable change of metal status in soil with progress of growth of tea plant. This could be useful to negate discrepancies arised from use of various existing metal contamination indices in tea growing soils amended with different doses of fertilizers. TRAHMCI was formulated based on individual contamination factor using statistical technique and applied to the present dataset which provided a more holistic understanding of overall tea growing soil behavior. The limitation of the developed TRAHMCI index is that, the index had not been validated for other crops in our study not to claim its effective use for crops other than tea. As already mentioned, this new index had been formulated by taking tea as the test crop with above mentioned six heavy metal contents in young shoot and made tea. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars.

    PubMed

    Chen, Yongzhong; Wang, Baoming; Chen, Jianjun; Wang, Xiangnan; Wang, Rui; Peng, Shaofeng; Chen, Longsheng; Ma, Li; Luo, Jian

    2015-01-01

    Tea oil derived from seeds of Camellia oleifera Abel. is high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 615 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 89, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha(-1), respectively. The Co-rbcL expression in 'Xianglin 14' was significantly higher than 'Xianglin 1', and 'Xianglin 1' was greater than 'Hengchong 89'. The expression levels of Co-rbcS in 'Xianglin 1' and 'Xianglin 14' were similar but were significantly greater than in 'Hengchong 89'. The net photosynthetic rate of 'Xianglin 14' was significantly higher than 'Xianglin 1', and 'Xianglin 1' was higher than 'Hengchong 89'. Pearson's correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P < 0.001 level; and the expression of Co-rbcS was correlated with oil yield at P < 0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P < 0.001 and P < 0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency.

  13. L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia sinensis L.) Tissues and Cultivars

    PubMed Central

    Liu, Zhi-Wei; Wu, Zhi-Jun; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2017-01-01

    L-Theanine content has tissues and cultivars specificity in tea plant (Camellia sinensis L.), the correlations of theanine metabolic related genes expression profiles with theanine contents were explored in this study. L-theanine contents in the bud and 1st leaf, 2nd leaf, 3rd leaf, old leaf, stem, and lateral root were determined by HPLC from three C. sinensis cultivars, namely ‘Huangjinya’, ‘Anjibaicha’, and ‘Yingshuang’, respectively. The theanine contents in leaves and root of ‘Huangjinya’ were the highest, followed by ‘Anjibaicha’, and ‘Yingshuang’. The theanine contents in the leaves reduced as the leaf mature gradually, and in stem were the least. Seventeen genes encoding enzymes involved in theanine metabolism were identified from GenBank and our tea transcriptome database, including CsTS1, CsTS2, CsGS1, CsGS2, CsGOGAT-Fe, CsGOGAT-NAD(P)H, CsGDH1, CsGDH2, CsALT, CsSAMDC, CsADC, CsCuAO, CsPAO, CsNiR, CsNR, CsGGT1, and CsGGT3. The transcript profiles of those seventeen genes in the different tissues of three tea plant cultivars were analyzed comparatively. Among the different cultivars, the transcript levels of most selected genes in ‘Huangjinya’ were significantly higher than that in the ‘Anjibaicha’ and ‘Yingshuang’. Among the different tissues, the transcript levels of CsTS2, CsGS1, and CsGDH2 almost showed positive correlation with the theanine contents, while the other genes showed negative correlation with the theanine contents in most cases. The theanine contents showed correlations with related genes expression levels among cultivars and tissues of tea plant, and were determined by the integrated effect of the metabolic related genes. PMID:28439281

  14. Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics.

    PubMed

    Kim, Eun T; Guan, Le Luo; Lee, Shin J; Lee, Sang M; Lee, Sang S; Lee, Il D; Lee, Su K; Lee, Sung S

    2015-04-01

    The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants.

  15. A comparative evaluation of antibacterial effectiveness of sodium hypochlorite, Curcuma longa, and Camellia sinensis as irrigating solutions on isolated anaerobic bacteria from infected primary teeth.

    PubMed

    Dhariwal, Neha Shashikant; Hugar, Shivayogi M; Harakuni, Sheetal; Sogi, Suma; Assudani, Harsha G; Mistry, Laresh Naresh

    2016-01-01

    In endodontics, most of the commercial intra-canal medicaments have cytotoxic reactions and because of their inability to eliminate bacteria from dentinal tubules, recent medicine has turned its attention to the usage of biologic medication prepared from natural plants. The literature to testify the efficacy of natural alternatives in primary teeth is meagre and its effects as irrigating solutions need to be evaluated. To evaluate the antibacterial effectiveness of sodium hypochlorite, ethanolic extracts of Curcuma longa (turmeric) and Camellia sinensis (green tea) as irrigating solutions against the anaerobic bacteria isolated from the root canals of infected primary teeth. Thirty patients were selected based on the selected inclusion and exclusion criteria. Preoperative radiographs were taken. Rubber dam isolation and working length estimation were done, following which thirty samples were taken from the root canals of infected primary teeth using sterile absorbent paper points and transferred to tubes containing thioglycolate transport medium. The bacteria were then isolated using standard microbiological protocols and were subjected to antibiotic sensitivity testing using the three test irrigants. SPSS 18 software using Chi-square test was used for statistical analysis. The most commonly isolated bacteria included Porphyromonas sp., Bacteroides fragilis, Peptostreptococcus, and Staphylococcus aureus. Sodium hypochlorite and C. longa (turmeric) showed good antibacterial effect and were effective against most of the isolated bacteria. There was statistically significant difference in the antibacterial effect among the three tested groups (P < 0.001). The least effective was C. sinensis (green tea). The infected primary teeth almost always present with a polymicrobial structure with a wide variety of anaerobic bacteria. The chemo-mechanical preparation plays an important role in eradicating the population of predominant micro-organisms in treating these teeth with

  16. Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis.

    PubMed

    Rani, Riveka; Arora, Saroj; Kaur, Jeevanjot; Manhas, Rajesh Kumari

    2018-03-09

    strain TES17 isolated from the rhizosphere of Camellia sinensis (tea) plant; produces potent compounds with antioxidant activity, further might be developed into therapeutic drugs to combat oxidative stress.

  17. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis)

    PubMed Central

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4℃) and freezing (-5℃) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and β-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology. PMID:25901577

  18. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study.

    PubMed

    Ho, Cyrus K; Choi, Siu-wai; Siu, Parco M; Benzie, Iris F F

    2014-06-01

    Regular intake of green tea (Camellia sinensis) lowers DNA damage in humans, but molecular mechanisms of genoprotection are not clear. Protection could be via direct antioxidant effects of tea catechins, but, paradoxically, catechins have pro-oxidant activity in vitro, and it is hypothesized that mechanisms relate to redox-sensitive cytoprotective adaptations. We investigated this hypothesis, focusing particularly on effects on the DNA repair enzyme human oxoguanine glycosylase 1 (hOGG1), and heme oxygenase-1, a protein that has antioxidant and anti-inflammatory effects. A randomized, placebo-controlled, human supplementation study of crossover design was performed. Subjects (n = 16) took a single dose (200 mL of 1.5%, w/v) and 7-days of (2 × 200 mL 1%, w/v per day) green tea (with water as control treatment). Lymphocytic DNA damage was ∼30% (p < 0.001) lower at 60 and 120 min after the single dose and in fasting samples collected after 7-day tea supplementation. Lymphocytic hOGG1 activity was higher (p < 0.0001) at 60 and 120 min after tea ingestion. Significant increases (p < 0.0005) were seen in hOGG1 activity and heme oxygenase-1 after 7 days. Results indicate that molecular triggering of redox-sensitive cytoprotective adaptations and posttranslational changes affecting hOGG1 occur in vivo in response to both a single dose and regular intake of green tea, and contribute to the observed genoprotective effects of green tea. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The impact of packaging materials on the antioxidant phytochemical stability of aqueous infusions of green tea (Camellia sinensis) and yaupon holly (Ilex vomitoria) during cold storage.

    PubMed

    Kim, Youngmok; Welt, Bruce A; Talcott, Stephen T

    2011-05-11

    Ready to drink (RTD) teas are a growing segment in the beverage category, brought about by improvements in the flavor of these products and healthy market trends driven by consumers. The presented results evaluated the antioxidant phytochemical stability of RTD teas from aqueous infusions of traditional green tea (Camellia sinensis) and a botanical tea from yaupon holly (Ilex vomitoria) as influenced by packaging materials during cold storage. Two common packaging materials for RTD products are glass and polyethylene terephthalate (PET) and have been compared to a retortable pouch (RP), an emerging packaging material for various types of food since it is durable, inexpensive, lightweight, and easy to sterilize. Storage stability was then evaluated for each aqueous infusion prepared at 10 g/L at 90 °C for 10 min and evaluated at 3 °C in the absence of light over 12 weeks. Analyses included quantification and characterization of individual polyphenolics by high-performance liquid chromatography-photodiode array and liquid chromatography-electrospray ionization-mass spectrometry as well as changes in total antioxidant capacity. For green tea, concentrations of the three major flavan-3-ols, epigallocatechin gallate, epigallocatechin, and epicatechin gallate were better retained in glass bottles as compared to other packages over 12 weeks. In yaupon holly, chlorogenic acid and its isomers that were the predominant compounds were generally stable in each packaging material, and a 20.6-fold higher amount of saponin was found as compared to green tea, which caused higher stability of flavonol glycosides present in yaupon holly during storage. The antioxidant capacity of green tea was better retained in glass and PET versus RP, whereas no differences were again observed for yaupon holly. Results highlight the superiority of oxygen-impervious glass packaging, but viable alternatives may be utilizable for RTD teas with variable phytochemical compositions.

  20. Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars

    PubMed Central

    Chen, Yongzhong; Wang, Baoming; Chen, Jianjun; Wang, Xiangnan; Wang, Rui; Peng, Shaofeng; Chen, Longsheng; Ma, Li; Luo, Jian

    2015-01-01

    Tea oil derived from seeds of Camellia oleifera Abel. is high-quality edible oil in China. This study isolated full-length cDNAs of Rubisco subunits rbcL and rbcS from C. oleifera. The rbcL has 1,522 bp with a 1,425 bp coding region, encoding 475 amino acids; and the rbcS has 615 bp containing a 528 bp coding region, encoding 176 amino acids. The expression level of the two genes, designated as Co-rbcL and Co-rbcS, was determined in three C. oleifera cultivars: Hengchong 89, Xianglin 1, and Xianglin 14 whose annual oil yields were 546.9, 591.4, and 657.7 kg ha-1, respectively. The Co-rbcL expression in ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was greater than ‘Hengchong 89’. The expression levels of Co-rbcS in ‘Xianglin 1’ and ‘Xianglin 14’ were similar but were significantly greater than in ‘Hengchong 89’. The net photosynthetic rate of ‘Xianglin 14’ was significantly higher than ‘Xianglin 1’, and ‘Xianglin 1’ was higher than ‘Hengchong 89’. Pearson’s correlation analysis showed that seed yields and oil yields were highly correlated with the expression level of Co-rbcL at P < 0.001 level; and the expression of Co-rbcS was correlated with oil yield at P < 0.01 level. Net photosynthetic rate was also correlated with oil yields and seed yields at P < 0.001 and P < 0.01 levels, respectively. Our results suggest that Co-rbcS and Co-rbcL in particular could potentially be molecular markers for early selection of high oil yield cultivars. In combination with the measurement of net photosynthetic rates, the early identification of potential high oil production cultivars would significantly shorten plant breeding time and increase breeding efficiency. PMID:25873921

  1. Chemical profiling of infusions and decoctions of Helichrysum italicum subsp. picardii by UHPLC-PDA-MS and in vitro biological activities comparatively with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis).

    PubMed

    Pereira, Catarina Guerreiro; Barreira, Luísa; Bijttebier, Sebastiaan; Pieters, Luc; Neves, Vanessa; Rodrigues, Maria João; Rivas, Ricardo; Varela, João; Custódio, Luísa

    2017-10-25

    Several medicinal plants are currently used by the food industry as functional additives, for example botanical extracts in herbal drinks. Moreover, the scientific community has recently begun focusing on halophytes as sources of functional beverages. Helichrysum italicum subsp. picardii (everlasting) is an aromatic halophyte common in southern Europe frequently used as spice and in traditional medicine. In this context, this work explored for the first time H. italicum subsp. picardii as a potential source of innovative herbal beverages with potential health promoting properties. For that purpose, infusions and decoctions were prepared from roots, vegetative aerial-organs (stems and leaves) and flowers and evaluated for in vitro antioxidant and anti-diabetic activities. Samples were also assessed for toxicity in different mammalian cell lines and chemically characterized by spectrophotometric methods and ultra-high performance liquid chromatography-photodiode array-mass-spectrometry (UHPLC-PDA-MS). Results were expressed relating to 'a cup-of-tea' and compared with those obtained with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis). Tisanes from the everlasting's above-ground organs, particularly flowers, have high polyphenolic content and several phenolics were identified; the main compounds were chlorogenic and quinic acids, dicaffeoylquinic-acid isomers and gnaphaliin-A. The antioxidant activity of beverages from the everlasting's above-ground organs matched or surpassed that of green tea and rooibos. Its anti-diabetic activity was moderate and toxicity low. Overall, our results suggest that the everlasting is a potential source of innovative and functional herbal beverages. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Suppressive subtractive hybridization approach revealed differential expression of hypersensitive response and reactive oxygen species production genes in tea (Camellia sinensis (L.) O. Kuntze) leaves during Pestalotiopsis thea infection.

    PubMed

    Senthilkumar, Palanisamy; Thirugnanasambantham, Krishnaraj; Mandal, Abul Kalam Azad

    2012-12-01

    Tea (Camellia sinensis (L.) O. Kuntze) is an economically important plant cultivated for its leaves. Infection of Pestalotiopsis theae in leaves causes gray blight disease and enormous loss to the tea industry. We used suppressive subtractive hybridization (SSH) technique to unravel the differential gene expression pattern during gray blight disease development in tea. Complementary DNA from P. theae-infected and uninfected leaves of disease tolerant cultivar UPASI-10 was used as tester and driver populations respectively. Subtraction efficiency was confirmed by comparing abundance of β-actin gene. A total of 377 and 720 clones with insert size >250 bp from forward and reverse library respectively were sequenced and analyzed. Basic Local Alignment Search Tool analysis revealed 17 sequences in forward SSH library have high degree of similarity with disease and hypersensitive response related genes and 20 sequences with hypothetical proteins while in reverse SSH library, 23 sequences have high degree of similarity with disease and stress response-related genes and 15 sequences with hypothetical proteins. Functional analysis indicated unknown (61 and 59 %) or hypothetical functions (23 and 18 %) for most of the differentially regulated genes in forward and reverse SSH library, respectively, while others have important role in different cellular activities. Majority of the upregulated genes are related to hypersensitive response and reactive oxygen species production. Based on these expressed sequence tag data, putative role of differentially expressed genes were discussed in relation to disease. We also demonstrated the efficiency of SSH as a tool in enriching gray blight disease related up- and downregulated genes in tea. The present study revealed that many genes related to disease resistance were suppressed during P. theae infection and enhancing these genes by the application of inducers may impart better disease tolerance to the plants.

  3. Indications for Three Independent Domestication Events for the Tea Plant (Camellia sinensis (L.) O. Kuntze) and New Insights into the Origin of Tea Germplasm in China and India Revealed by Nuclear Microsatellites

    PubMed Central

    Meegahakumbura, M. K.; Wambulwa, M. C.; Thapa, K. K.; Li, M. M.; Möller, M.; Xu, J. C.; Yang, J. B.; Liu, B. Y.; Ranjitkar, S.; Liu, J.; Li, D. Z.; Gao, L. M.

    2016-01-01

    Background Tea is the world’s most popular non-alcoholic beverage. China and India are known to be the largest tea producing countries and recognized as the centers for the domestication of the tea plant (Camellia sinensis (L.) O. Kuntze). However, molecular studies on the origin, domestication and relationships of the main teas, China type, Assam type and Cambod type are lacking. Methodology/Principal Findings Twenty-three nuclear microsatellite markers were used to investigate the genetic diversity, relatedness, and domestication history of cultivated tea in both China and India. Based on a total of 392 samples, high levels of genetic diversity were observed for all tea types in both countries. The cultivars clustered into three distinct genetic groups (i.e. China tea, Chinese Assam tea and Indian Assam tea) based on STRUCTURE, PCoA and UPGMA analyses with significant pairwise genetic differentiation, corresponding well with their geographical distribution. A high proportion (30%) of the studied tea samples were shown to possess genetic admixtures of different tea types suggesting a hybrid origin for these samples, including the Cambod type. Conclusions We demonstrate that Chinese Assam tea is a distinct genetic lineage from Indian Assam tea, and that China tea sampled from India was likely introduced from China directly. Our results further indicate that China type tea, Chinese Assam type tea and Indian Assam type tea are likely the result of three independent domestication events from three separate regions across China and India. Our findings have important implications for the conservation of genetic stocks, as well as future breeding programs. PMID:27218820

  4. Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea (Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation.

    PubMed

    Tian, Dan-Dan; Kellogg, Joshua J; Okut, Neşe; Oberlies, Nicholas H; Cech, Nadja B; Shen, Danny D; McCune, Jeannine S; Paine, Mary F

    2018-05-01

    Green tea ( Camellia sinensis ) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20-180 μ g/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis. Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (-)-epicatechin gallate and (-)-epigallocatechin gallate showed concentration-dependent inhibition, with IC 50 values (105 and 59 μ M, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 μ M, respectively). Using the clinical intestinal UGT substrate raloxifene, the K i values were ∼1.0 and 2.0 μ M, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing. Copyright © 2018 by The American Society for

  5. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis.

    PubMed

    Wang, Lu; Yao, Lina; Hao, Xinyuan; Li, Nana; Qian, Wenjun; Yue, Chuan; Ding, Changqing; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2018-04-01

    Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.

  6. Comparing the antiplaque efficacy of 0.5% Camellia sinensis extract, 0.05% sodium fluoride, and 0.2% chlorhexidine gluconate mouthwash in children.

    PubMed

    Hambire, Chaitali U; Jawade, Rashmi; Patil, Amol; Wani, Vaibhav R; Kulkarni, Ankur A; Nehete, Parag B

    2015-01-01

    Dental caries is a multifactorial disease which requires a susceptible host, a cariogenic microflora, and a suitable substrate that must be present for a sufficient length of time. Tea is prepared by the infusion of dried leaves of the tea plant, Camellia sinensis, which contains bioactive compounds like polyphenols, flavonoids, and catechins that are thought to be responsible for the health benefits that have traditionally been attributed to tea. These compounds have multidimensional effects such as antibacterial action, inhibitory action on the bacterial and salivary amylase, and inhibition of acid production. The aim of this study is to compare the antiplaque efficacy of 0.5% C. sinensis extract, 0.05% sodium fluoride, and 0.2% chlorhexidine gluconate mouthwash in children. A randomized blinded controlled trial with 60 healthy children of age group 9-14 years was carried out. The subjects were randomly assigned to three groups, i.e. group A - 0.2% chlorhexidine gluconate, group B - 0.05% sodium fluoride, and group C - 0.5% C. sinensis extract, with 20 subjects per group. Plaque accumulation and gingival condition were recorded using plaque index and gingival index. Oral hygiene was assessed by simplified oral hygiene index (OHIS). Salivary pH was assessed using indikrom pH strips. Plaque, gingival, and simplified OHI scores as well as salivary pH were recorded at baseline, immediately after first rinse, after 1 week, and in the 2(nd) week. The data were analyzed using a computer software program (SPSS version 17). Analysis of variance (ANOVA) tests were used to identify significant differences between the means of the study groups. Finally, paired t-tests were used to assess the significance of changes within each group between time periods. Critical P values of significance were set at 0.05 and the confidence level set at 95%. Mean plaque and gingival scores were reduced over the 2-week trial period in the experimental groups. Antiplaque effectiveness was

  7. Ginseng, green tea or fibrate: valid options for nonalcoholic steatohepatitis prevention?

    PubMed

    Miranda-Henriques, Mônica Souza de; Diniz, Margareth de Fátima Formiga de Melo; Araújo, Maria Salete Trigueiro de

    2014-01-01

    Panax ginseng, Camellia sinensis and bezafibrate were compared for their lipid-lowering, antioxidant and anti-inflammatory properties as potential agents to prevent nonalcoholic fatty liver disease and its progression to nonalcoholic steatohepatitis. Fifty Wistar rats were randomized into five groups: G1 (feed with standard diet); G2 (feed with high-fat diet with 58% of energy from fat); G3 (high-fat diet + standardized Panax ginseng extract at 100 mg/kg/day); G4 (high-fat diet + standardized Camellia sinensis extract at 100 mg/kg/day); and G5 (high-fat diet + bezafibrate at 100 mg/kg/day), given by gavage. The animals were sacrificed eight weeks later and blood was collected for glucose, insulin, cholesterol, triglycerides, AST, ALT, alkaline phosphatase and gamma-glutamyl transferase determinations. The score system for nonalcoholic fatty liver disease was used to analyse the liver samples. High-fat diet resulted in a significant increase in animal body weight, biochemical changes and enzymatic elevations. Steatosis, inflammation and hepatocellular ballooning scores were significant high in this group. The biochemical and histological variables were statistically similar in the bezafibrate group and control group. Treatment with Panax ginseng extract prevented obesity and histological features of nonalcoholic steatohepatitis (steatosis and inflammation) compared to high-fat diet. Camellia sinensis showed a less effective biochemical response, with small reduction in steatosis and inflammation but lower ballooning scores.

  8. Potent suppressive activity of nonpolyphenolic fraction of green tea (Camellia sinensis) against genotoxin-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002), tumor promotor-dependent ornithine decarboxylase induction of BALB/c 3T3 fibroblast cells, and chemically induced mouse skin tumorigenesis.

    PubMed

    Okai, Y; Higashi-Okai, K

    Many experimental studies for anticarcinogenic activity of green tea (Camellia sinensis) and tea-derived polyphenols have been carried out. However, the anticarcinogenic activity of the nonpolyphenolic fraction of green tea has been poorly elucidated. To study this problem, the effect of the nonpolyphenolic fraction of green tea leaves was analyzed using in vitro and in vivo experiments associated with tumor initiation and promotion as follows: 1) The nonpolyphenolic fraction caused a strong suppressive effect on umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) induced by genotoxic substances such as 2-amino-6-methyldipirido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 2-aminoanthracene (2-AA) in the presence of a hepatic metabolizing enzyme mixture. 2) The same fraction showed a dose-dependent inhibition of ornithine decarboxylase (ODC) in BALB/c 3T3 fibroblasts induced by a tumor promotor, 12-O-tetradecanoylphorbol-13-acetate (TPA). 3) The same fraction also exhibited a significant suppression against mouse skin tumorigenesis induced by 7,12-dimethylbenz[a]anthracene (DMBA) (initiator) and TPA (promotor) through inhibition at both stages of tumor initiation and promotion. These results suggest that the nonpolyphenolic fraction of green tea has a potent suppressing activity against carcinogenesis associated with tumor initiation and promotion.

  9. A systematic review of anti-obesity medicinal plants - an update

    PubMed Central

    2013-01-01

    Obesity is the most prevalent health problem affecting all age groups, and leads to many complications in the form of chronic heart disease, diabetes mellitus Type 2 and stroke. A systematic review about safety and efficacy of herbal medicines in the management of obesity in human was carried out by searching bibliographic data bases such as, PubMed, Scopus, Google Scholar, Web of Science, and IranMedex, for studies reported between 30th December 2008 to 23rd April 2012 on human or animals, investigating the beneficial and harmful effects of herbal medicine to treat obesity. Actually we limited our search to such a narrow window of time in order to update our article published before December of 2008. In this update, the search terms were “obesity” and (“herbal medicine” or “plant”, “plant medicinal” or “medicine traditional”) without narrowing or limiting search items. Publications with available abstracts were reviewed only. Total publications found in the initial search were 651. Total number of publications for review study was 33 by excluding publications related to animals study. Studies with Nigella Sativa, Camellia Sinensis, Crocus Sativus L, Seaweed laminaria Digitata, Xantigen, virgin olive oil, Catechin enriched green tea, Monoselect Camellia, Oolong tea, Yacon syrup, Irvingia Gabonensi, Weighlevel, RCM-104 compound of Camellia Sinensis, Pistachio, Psyllium fibre, black Chinese tea, sea buckthorn and bilberries show significant decreases in body weight. Only, alginate-based brown seaweed and Laminaria Digitata caused an abdominal bloating and upper respiratory tract infection as the side effect in the trial group. No other significant adverse effects were reported in all 33 trials included in this article. In conclusion, Nigella Sativa, Camellia Synensis, Green Tea, and Black Chinese Tea seem to have satisfactory anti-obesity effects. The effect size of these medicinal plants is a critical point that should be considered for

  10. A systematic review of anti-obesity medicinal plants - an update.

    PubMed

    Hasani-Ranjbar, Shirin; Jouyandeh, Zahra; Abdollahi, Mohammad

    2013-06-19

    Obesity is the most prevalent health problem affecting all age groups, and leads to many complications in the form of chronic heart disease, diabetes mellitus Type 2 and stroke. A systematic review about safety and efficacy of herbal medicines in the management of obesity in human was carried out by searching bibliographic data bases such as, PubMed, Scopus, Google Scholar, Web of Science, and IranMedex, for studies reported between 30th December 2008 to 23rd April 2012 on human or animals, investigating the beneficial and harmful effects of herbal medicine to treat obesity. Actually we limited our search to such a narrow window of time in order to update our article published before December of 2008. In this update, the search terms were "obesity" and ("herbal medicine" or "plant", "plant medicinal" or "medicine traditional") without narrowing or limiting search items. Publications with available abstracts were reviewed only. Total publications found in the initial search were 651. Total number of publications for review study was 33 by excluding publications related to animals study.Studies with Nigella Sativa, Camellia Sinensis, Crocus Sativus L, Seaweed laminaria Digitata, Xantigen, virgin olive oil, Catechin enriched green tea, Monoselect Camellia, Oolong tea, Yacon syrup, Irvingia Gabonensi, Weighlevel, RCM-104 compound of Camellia Sinensis, Pistachio, Psyllium fibre, black Chinese tea, sea buckthorn and bilberries show significant decreases in body weight. Only, alginate-based brown seaweed and Laminaria Digitata caused an abdominal bloating and upper respiratory tract infection as the side effect in the trial group. No other significant adverse effects were reported in all 33 trials included in this article.In conclusion, Nigella Sativa, Camellia Synensis, Green Tea, and Black Chinese Tea seem to have satisfactory anti-obesity effects. The effect size of these medicinal plants is a critical point that should be considered for interpretation. Although there

  11. Ring Beholds a Delicate Flower

    NASA Image and Video Library

    2005-02-11

    NASA Spitzer Space Telescope finds a delicate flower in the Ring Nebula, as shown in this image. The outer shell of this planetary nebula looks surprisingly similar to the delicate petals of a camellia blossom.

  12. In-vitro antibacterial and antioxidant potential of winged prickly ash, green tea and thyme.

    PubMed

    Hafiz, I; Bhatti, H N; Hanif, M A; Shahid, M

    2018-01-01

    Herbs and plants are mostly used as antimicrobials and antioxidants owing to the harmfulness and linked side-effects of synthetic chemical constituents. Plants and spices produce various metabolites with antibacterial and antioxidant potential. These metabolites are principally revealed as encouraging healing components or mediators which control ailments in human beings. The present study was aimed to characterize the extracts from selected medicinal plants through in-vitro activities. Winged prickly ash, green tea and thyme were selected and extracted through ethanol and methanol solutions. The extracts were assessed for antibacterial and antioxidant activities. The antibacterial potential of extracts showed the significant extent of the activity against Bacillus subtilis and E. coli. The maximum activity was noted in 80% methanolic fraction of Thymus vulgaris (15.20±0.64 mm) against Bacillus subtilis. Antioxidant potential exhibited the highest phenolic and flavonoid content in Camellia sinensis . The total phenolic content was significantly higher (1456.26±12.05 mg gallic acid) in 80% ethanolic fraction of Camellia sinensis. The flavonoid content in different plant extracts ranged from 8.17±2.02 to 376.29±7.11 mg/g. The radical scavenging DPPH assay also showed the significant antioxidant capacity of selected plants with the methanolic (50%) extract of Camellia sinensis found to be the most potent (78.95±7.12%). It was concluded that the alcoholic extracts of selected medicinal plants revealed the effective antibacterial and antioxidant activity, showing protective prospective against oxidative injury.

  13. Trehalase: A New Pollen Enzyme

    PubMed Central

    Gussin, Arnold E. S.; McCormack, Jeffrey H.; Waung, Lucille Yih-Lo; Gluckin, Doreen S.

    1969-01-01

    Pollen from 5 plant species (Lycopersicon pimpinellifolium Mill., Hermerocallis minor Mill., Galtonia condicans Decne., Camellia japonica L., and Lathyrus odoratus L.) representing 4 families germinated well in media containing trehalose as the sole carbon source. Data are presented indicating that pollen metabolized this disaccharide for germination and subsequent pollen-tube growth; the sugar was not merely an osmoregulator. An inhibitor of trehalase activity depressed germination in trehalose but not in sucrose. Phloridzin dihydrate, an inhibitor of glucose transport, depressed germination in both disaccharides. Biochemical tests demonstrated that a pollen extract was capable of hydrolyzing trehalose to its constituent glucose monomers. Heat inactivation experiments confirmed the presence of a distinct trehalase having a rigid specificity for its substrate. By this method, trehalase activity was completely distinguishable from the activities of other α- and β-glucosidases and β-galactosidases. Localization data indicated that the enzyme diffused from intact grains and was probably soluble. The presence of its substrate could not be demonstrated in pollen or in stigmatic or stylar tissues. PMID:5379538

  14. Trehalase: a new pollen enzyme.

    PubMed

    Gussin, A E; McCormack, J H; Waung, L Y; Gluckin, D S

    1969-08-01

    Pollen from 5 plant species (Lycopersicon pimpinellifolium Mill., Hermerocallis minor Mill., Galtonia condicans Decne., Camellia japonica L., and Lathyrus odoratus L.) representing 4 families germinated well in media containing trehalose as the sole carbon source. Data are presented indicating that pollen metabolized this disaccharide for germination and subsequent pollen-tube growth; the sugar was not merely an osmoregulator. An inhibitor of trehalase activity depressed germination in trehalose but not in sucrose. Phloridzin dihydrate, an inhibitor of glucose transport, depressed germination in both disaccharides. Biochemical tests demonstrated that a pollen extract was capable of hydrolyzing trehalose to its constituent glucose monomers. Heat inactivation experiments confirmed the presence of a distinct trehalase having a rigid specificity for its substrate. By this method, trehalase activity was completely distinguishable from the activities of other alpha- and beta-glucosidases and beta-galactosidases. Localization data indicated that the enzyme diffused from intact grains and was probably soluble. The presence of its substrate could not be demonstrated in pollen or in stigmatic or stylar tissues.

  15. Tea, coffee, and cocoa as ultraviolet radiation protectants for beet armyworm nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    The addition of 1% (wt/v) aqueous extracts of cocoa (Theobroma cacao L.) (Malvales: Malvaceae), coffee (Coffea arabica L.) (Gentianales: Rubiaceae), green, and black tea (Camellia sinensis L.) (Ericales: Theaceae) provided excellent ultraviolet (UV) radiation protection for the beet armyworm, Spodo...

  16. Better detection of pest Euwallacea nr. fornicatus in Florida avocado groves using a two-component lure containing a-copaene and quercivorol.

    USDA-ARS?s Scientific Manuscript database

    The Asian tea shot-hole borer (TSHB), Euwallacea fornicatus Eichhoff (Coleoptera: Curculionidae: Scolytinae), is a pest of commercial tea, Camellia sinensis (L.) Kuntze. In recent years, several ambrosia beetles morphologically indistinguishable from TSHB have become established in Israel and the U...

  17. Micronutrients (B, Co, Cu, Fe, Mn, Mo, and Zn) content in made tea (Camellia sinensis L.) and tea infusion with health prospect: A critical review.

    PubMed

    Karak, Tanmoy; Kutu, Funso Raphael; Nath, Jyoti Rani; Sonar, Indira; Paul, Ranjit Kumar; Boruah, Romesh Kumar; Sanyal, Sandip; Sabhapondit, Santanu; Dutta, Amrit Kumar

    2017-09-22

    Tea (Camellia sinensis L.) is a perennial acidophilic crop, and known to be a nonalcoholic stimulating beverage that is most widely consumed after water. The aim of this review paper is to provide a detailed documentation of selected micronutrient contents, viz. boron (B), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), and zinc (Zn) in made tea and tea infusion. Available data from the literature were used to calculate human health aspect associated with the consumption of tea infusion. A wide range of micronutrients reported in both made tea and tea infusion could be the major sources of micronutrients for human. The content of B, Co, Cu, Fe, Mn, Mo, and Zn in made tea are ranged from 3.04 to 58.44 μg g -1 , below detectable limit (BDL) to 122.4 μg g -1 , BDL to 602 μg g -1 , 0.275 to 13,040 μg g -1 , 0.004 to 15,866 μg g -1 , 0.04 to 570.80 μg g -1 and 0.01 to 1120 μg g -1 , respectively. Only 3.2 μg L -1 to 7.25 mg L -1 , 0.01 μg L -1 to 7 mg L -1 , 3.80 μg L -1 to 6.13 mg L -1 , 135.59 μg L -1 -11.05 mg L -1 , 0.05 μg L -1 to 1980.34 mg L -1 , 0.012 to 3.78 μg L -1 , and 1.12 μg L -1 to 2.32 μg L -1 of B, Co, Cu, Fe, Mn, Mo, and Zn, respectively, are found in tea infusion which are lower than the prescribed limit of micronutrients in drinking water by World Health Organization. Furthermore, micronutrient contents in tea infusion depend on infusion procedure as well as on the instrument used for analysis. The proportion of micronutrients found in different tea types are 1.0-88.9% for B, 10-60% for Co, 2.0-97.8% for Cu, 67.8-89.9% for Fe, 71.0-87.4% for Mn, 13.3-34% for Mo, and 34.9-83% for Zn. From the results, it can also be concluded that consumption of three cups of tea infusion per day does not have any adverse effect on human health with respect to the referred micronutrients rather got beneficial effects to human.

  18. A combination of a-copaene and quercivorol results in improved detection of Euwallacea nr. fornicatus in Florida

    USDA-ARS?s Scientific Manuscript database

    The tea shot-hole borer, Euwallacea fornicatus Eichhoff (Coleoptera: Curculionidae: Scolytinae), is a serious pest of commercial tea, Camellia sinensis (L.) Kuntze, in India. In recent years, several pest ambrosia beetles morphologically similar to E. fornicatus have become established in Israel an...

  19. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    EPA Science Inventory

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  20. Identification, quantitation, and comprehensive assessment of green, white, and pu-erh teas using UPLC/UV/MS

    USDA-ARS?s Scientific Manuscript database

    Tea (Camellia sinensis L.), an important drink and a traditional medicine for thousands of years, contains many compounds of potential benefit to health. Growing season, geographic region, and fermentation method create many variations in tea composition, which contributes to the unique characteris...

  1. Formulation of intumescent flame retardant coatings containing natural-based tea saponin.

    PubMed

    Qian, Wei; Li, Xiang-Zhou; Wu, Zhi-Ping; Liu, Yan-Xin; Fang, Cong-Cong; Meng, Wei

    2015-03-18

    Natural product tea saponin (TS), extracted from the nutshell of camellia (Camellia oleifera Abel, Theaceae), was introduced into intumescent flame retardant formulations as blowing agent and carbon source. The formulations of the flame retardant system were optimized to get the optimum proportion of TS, and intumescent flame retardant coatings containing tea saponin (TS-IFRCs) were then prepared. It was found that TS can significantly affect the combustion behavior and the thermal stability of TS-IFRCs evaluated by cone calorimetry and simultaneous thermal analyzer, respectively. It was shown that TS, degraded to water vapor and carbon at high temperatures, can combine with other components to form a well-developed char layer. The char layer was supposed to inhibit erosion upon exposure to heat and oxygen and enhance the flame retardancy of TS-IFRCs. In addition, the smoke release of TS-IFRCs was also studied, which provided a low amount of smoke production.

  2. Green synthesis of Fe0 and bimetallic Fe0 for oxidative catalysis and reduction applications

    EPA Science Inventory

    A single-step green approach to the synthesis of nanoscale zero valent iron (nZVI) and nanoscale bimetallic (Fe0/Pd) particles using tea (Camellia sinensis) polyphenols is described. The expedient reaction between polyphenols and ferric chloride (FeCl3) occurs within a minute at ...

  3. Identification of the varietal origin of loose leaf tea based on analysis of a single leaf by SNP nanofluidic array

    USDA-ARS?s Scientific Manuscript database

    Tea [Camellia sinensis (L.) O Kuntze] is an economically important crop cultivated in more than 50 countries. Production and marketing of premium specialty tea products provides opportunities for tea growers, the tea industry and consumers. Rapid market segmentation in the tea industry has resulted ...

  4. a-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae)

    USDA-ARS?s Scientific Manuscript database

    The tea shot-hole borer, Euwallacea fornicatus Eichhoff, is an ambrosia beetle endemic to Asia and a pest of commercial tea, Camellia sinensis (L.) Kuntze. Recently, a complex of species morphologically similar to E. fornicatus has been recognized, which includes new pests established in Israel and...

  5. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    PubMed

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil.

    PubMed

    Meinhart, Adriana Dillenburg; Damin, Fernanda Mateus; Caldeirão, Lucas; da Silveira, Tayse Ferreira Ferreira; Filho, José Teixeira; Godoy, Helena Teixeira

    2017-09-01

    This study analysed 100 plants employed in Brazil as ingredients to infusions for their caffeic acid, 3-caffeoylquinic acid (3-CQA), 4-caffeoylquinic acid (4-CQA), 5-caffeoylquinic acid (5-CQA), 3,4-dicaffeoylquinic acid (3,4-DQA), 3,5-dicaffeoylquinic acid (3,5-DQA), and 4,5-dicaffeoylquinic acid (4,5-DQA) contents. The samples were collected from public markets and analysed using ultra-high performance liquid chromatography (UPLC). The highest concentrations of chlorogenic acids were found in yerba mate (Ilex paraguariensis), 9,2g·100g -1 , white tea (Camellia sinensis), winter's bark (Drimys winteri), green tea (Camellia sinensis), elderflower (Sambucus nigra), and Boehmeria caudata (known as assa-peixe in Brazil), 1,1g·100g -1 . The present work showcased the investigation of chlorogenic acids in a wide range of plants not yet studied in this regard and also resulted in a comparative table which explores the content of six isomers in the samples. Copyright © 2017. Published by Elsevier Ltd.

  7. Metabolic Engineering of Saccharomyces cerevisiae for Caffeine and Theobromine Production

    PubMed Central

    Jin, Lu; Bhuiya, Mohammad Wadud; Li, Mengmeng; Liu, XiangQi; Han, Jixiang; Deng, WeiWei; Wang, Min; Yu, Oliver; Zhang, Zhengzhu

    2014-01-01

    Caffeine (1, 3, 7-trimethylxanthine) and theobromine (3, 7-dimethylxanthine) are the major purine alkaloids in plants, e.g. tea (Camellia sinensis) and coffee (Coffea arabica). Caffeine is a major component of coffee and is used widely in food and beverage industries. Most of the enzymes involved in the caffeine biosynthetic pathway have been reported previously. Here, we demonstrated the biosynthesis of caffeine (0.38 mg/L) by co-expression of Coffea arabica xanthosine methyltransferase (CaXMT) and Camellia sinensis caffeine synthase (TCS) in Saccharomyces cerevisiae. Furthermore, we endeavored to develop this production platform for making other purine-based alkaloids. To increase the catalytic activity of TCS in an effort to increase theobromine production, we identified four amino acid residues based on structural analyses of 3D-model of TCS. Two TCS1 mutants (Val317Met and Phe217Trp) slightly increased in theobromine accumulation and simultaneously decreased in caffeine production. The application and further optimization of this biosynthetic platform are discussed. PMID:25133732

  8. Diagnostic Assay for Rickettsia japonica

    PubMed Central

    Hanaoka, Nozomu; Matsutani, Minenosuke; Kawabata, Hiroki; Yamamoto, Seigo; Fujita, Hiromi; Sakata, Akiko; Azuma, Yoshinao; Ogawa, Motohiko; Takano, Ai; Watanabe, Haruo; Kishimoto, Toshio; Shirai, Mutsunori; Kurane, Ichiro

    2009-01-01

    We developed a specific and rapid detection system for Rickettsia japonica and R. heilongjiangensis, the causative agents of spotted fever, using a TaqMan minor groove binder probe for a particular open reading frame (ORF) identified by the R. japonica genome project. The target ORF was present only in R. japonica–related strains. PMID:19961684

  9. Review and perspective on the composition and safety of green tea extracts

    USDA-ARS?s Scientific Manuscript database

    The growing body of evidence regarding the putative health benefits of green tea (Camellia sinensis), including reduced risk of cancer and cardiovascular disease, has led to an increase in the consumption of brewed green tea and the formulation of green tea extracts (GTE) into a variety of food and ...

  10. Lonicerae Japonicae Flos and Lonicerae Flos: A Systematic Pharmacology Review

    PubMed Central

    Li, Yujie; Cai, Weiyan; Weng, Xiaogang; Li, Qi; Wang, Yajie; Chen, Ying; Zhang, Wei; Yang, Qing; Guo, Yan; Zhu, Xiaoxin; Wang, Hainan

    2015-01-01

    Lonicerae japonicae flos, a widely used traditional Chinese medicine (TCM), has been used for several thousand years in China. Chinese Pharmacopeia once included Lonicerae japonicae flos of Caprifoliaceae family and plants of the same species named Lonicerae flos in general in the same group. Chinese Pharmacopeia (2005 Edition) lists Lonicerae japonicae flos and Lonicerae flos under different categories, although they have the similar history of efficacy. In this study, we research ancient books of TCM, 4 main databases of Chinese academic journals, and MEDLINE/PubMed to verify the origins and effects of Lonicerae japonicae flos and Lonicerae flos in traditional medicine and systematically summarized the research data in light of modern pharmacology and toxicology. Our results show that Lonicerae japonicae flos and Lonicerae flos are similar pharmacologically, but they also differ significantly in certain aspects. A comprehensive systematic review and a standard comparative pharmacological study of Lonicerae japonicae flos and Lonicerae flos as well as other species of Lonicerae flos support their clinical safety and application. Our study provides evidence supporting separate listing of Lonicerae japonicae flos and Lonicerae flos in Chinese Pharmacopeia as well as references for revision of relevant pharmacopeial records dealing with traditional efficacy of Lonicerae japonicae flos and Lonicerae flos. PMID:26257818

  11. The Influence of Different Processing Methods on Component Content of Sophora japonica

    NASA Astrophysics Data System (ADS)

    Ji, Y. B.; Zhu, H. J.; Xin, G. S.; Wei, C.

    2017-12-01

    The purpose of this experiment is to understand the effect of different processing methods on the content of active ingredients in Sophora japonica, and to determine the content of rutin and quercetin in Sophora japonica under different processing methods by UV spectrophotometry of the content determination. So as to compare the effect of different processing methods on the active ingredient content of Sophora japonica. Experiments can be seen in the rutin content: Fried Sophora japonica>Vinegar sunburn Sophora> Health products Sophora japonica> Charred sophora flower, Vinegar sunburn Sophora and Fried Sophora japonica difference is not obvious; Quercetin content: Charred sophora flower> Fried Sophora japonica> Vinegar sunburn Sophora>Health products Sophora japonica. It is proved that there are some differences in the content of active ingredients in Sophora japonica in different processing methods. The content of rutin increased with the increase of the processing temperature, but the content decreased after a certain temperature; Quercetin content will increase gradually with time.

  12. Characteristics and Application Analysis of Traditional Chinese Medicine Containing Sophora Japonica

    NASA Astrophysics Data System (ADS)

    Wei, Zhenzhen; Feng, Suxiang; Fang, Xiaoyan; Miao, Mingsan

    2018-01-01

    Purposes: To sum up the characteristics of Chinese medicine with Sophora Japonica and provide reference for the research, development and utilization of the Chinese medicine of Sophora japonica in the future. Methods: The author sums up the forms, functions, indications, usage, dosage and contraindications of the proprietary Chinese medicine containing Sophora Japonica in the Chinese Pharmacopoeia and the Ministerial standards. In addition, we will inquire about the clinical application of proprietary Chinese medicine containing Sophora japonica in the China National Knowledge Infrastructure (CNKI). Results: The proprietary Chinese medicine containing Sophora Japonica was widely used in the treatment of various diseases in clinic, but it was taken orally and without any external use of Chinese patent medicine. Moreover, in most of the proprietary Chinese medicine, Sophora japonica was used as a supplement; In addition, the causes of adverse reactions were not analyzed, and the safety of the drugs needed to be further analyzed. Conclusions: To make clear the role of Sophora japonica in proprietary Chinese medicine, we can develop the Chinese medicine new dosage forms of Sophora japonica; The Chinese medicine is made up of a variety of single herbs, some are toxic drugs, when an adverse reaction occurs, We should analyze the specific causes and avoid the occurrence of adverse reactions. In addition, Sophora japonica is a traditional herbal medicine and food in China; we can expand the application in other areas and explore the pharmacological and toxicological pathology.

  13. Validation of yield component traits identified by GWA mapping in a rice tropical japonica x tropical japonica RIL mapping population

    USDA-ARS?s Scientific Manuscript database

    The Rice Diversity Panel 1 (RDP1) was developed for genome-wide association (GWA) mapping to explore the five diverse rice (Oryza sativa) subpopulations (indica, aus, aromatic, temperate japonica and tropical japonica). RDP1 was evaluated for over 30 agronomic and morphological traits, most of whic...

  14. Traditional Therapies Used to Manage Diabetes and Related Complications in Mauritius: A Comparative Ethnoreligious Study.

    PubMed

    Mahomoodally, M Fawzi; Mootoosamy, A; Wambugu, S

    2016-01-01

    Religious communities from Mauritius still rely on traditional therapies (TT) for primary healthcare. Nonetheless, there is still a dearth of scientific information on TT used by the different religious groups to manage diabetes and related complications (DRC). This study aimed to gather ethnomedicinal knowledge on TT used by the different religious groups against DRC. Diabetic patients (n = 95) and traditional healers (n = 5) were interviewed. Fifty-two plant species belonging to 33 families and 26 polyherbal formulations were documented to manage DRC. The most reported DRC was hypertension (n = 36). Leaves (45.2%) and juice (36%) were the most cited mode of preparation of herbal recipes. Plants which scored high relative frequency of citation were Citrus aurantifolia (0.55) and Morinda citrifolia (0.54). The cultural importance index showed that Ocimum tenuiflorum, Cardiospermum halicacabum, Camellia sinensis, and Ophiopogon japonicas were the most culturally important plants among Hindu, Muslim, Christian, and Buddhist community, respectively. Hindu and Muslim community showed the highest similarity of medicinal plants usage (Jaccard index = 95.8). Seven animal species distributed over 4 classes were recorded for the management of DRC. Plants and animals recorded as TT should be submitted to scientific studies to confirm safety and efficacy in clinical practice and to identify pharmacologically active metabolites.

  15. Traditional Therapies Used to Manage Diabetes and Related Complications in Mauritius: A Comparative Ethnoreligious Study

    PubMed Central

    Mahomoodally, M. Fawzi; Mootoosamy, A.; Wambugu, S.

    2016-01-01

    Religious communities from Mauritius still rely on traditional therapies (TT) for primary healthcare. Nonetheless, there is still a dearth of scientific information on TT used by the different religious groups to manage diabetes and related complications (DRC). This study aimed to gather ethnomedicinal knowledge on TT used by the different religious groups against DRC. Diabetic patients (n = 95) and traditional healers (n = 5) were interviewed. Fifty-two plant species belonging to 33 families and 26 polyherbal formulations were documented to manage DRC. The most reported DRC was hypertension (n = 36). Leaves (45.2%) and juice (36%) were the most cited mode of preparation of herbal recipes. Plants which scored high relative frequency of citation were Citrus aurantifolia (0.55) and Morinda citrifolia (0.54). The cultural importance index showed that Ocimum tenuiflorum, Cardiospermum halicacabum, Camellia sinensis, and Ophiopogon japonicas were the most culturally important plants among Hindu, Muslim, Christian, and Buddhist community, respectively. Hindu and Muslim community showed the highest similarity of medicinal plants usage (Jaccard index = 95.8). Seven animal species distributed over 4 classes were recorded for the management of DRC. Plants and animals recorded as TT should be submitted to scientific studies to confirm safety and efficacy in clinical practice and to identify pharmacologically active metabolites. PMID:27200100

  16. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences.

    PubMed

    Jeyaraj, Anburaj; Zhang, Xiao; Hou, Yan; Shangguan, Mingzhu; Gajjeraman, Prabu; Li, Yeyun; Wei, Chaoling

    2017-11-21

    MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory

  17. Negative gravitactic behavior of Caenorhabditis japonica dauer larvae.

    PubMed

    Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi

    2013-04-15

    Gravity on Earth is a constant stimulus and many organisms are able to perceive and respond to it. However, there is no clear evidence that nematodes respond to gravity. In this study, we demonstrated negative gravitaxis in a nematode using dauer larvae (DL) of Caenorhabditis japonica, which form an association with their carrier insect Parastrachia japonensis. Caenorhabditis japonica DL demonstrating nictation, a typical host-finding behavior, had a negative gravitactic behavior, whereas non-nictating C. japonica and C. elegans DL did not. The negative gravitactic index of nictating DL collected from younger nematode cultures was higher than that from older cultures. After a 24 h incubation in M9 buffer, nictating DL did not alter their negative gravitactic behavior, but a longer incubation resulted in less pronounced negative gravitaxis. These results are indicative of negative gravitaxis in nictating C. japonica DL, which is maintained once initiated, seems to be affected by the age of DL and does not appear to be a simple passive mechanism.

  18. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    PubMed

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  19. Systematic review for geo-authentic Lonicerae Japonicae Flos.

    PubMed

    Yang, Xingyue; Liu, Yali; Hou, Aijuan; Yang, Yang; Tian, Xin; He, Liyun

    2017-06-01

    In traditional Chinese medicine, Lonicerae Japonicae Flos is commonly used as anti-inflammatory, antiviral, and antipyretic herbal medicine, and geo-authentic herbs are believed to present the highest quality among all samples from different regions. To discuss the current situation and trend of geo-authentic Lonicerae Japonicae Flos, we searched Chinese Biomedicine Literature Database, Chinese Journal Full-text Database, Chinese Scientific Journal Full-text Database, Cochrane Central Register of Controlled Trials, Wanfang, and PubMed. We investigated all studies up to November 2015 pertaining to quality assessment, discrimination, pharmacological effects, planting or processing, or ecological system of geo-authentic Lonicerae Japonicae Flos. Sixty-five studies mainly discussing about chemical fingerprint, component analysis, planting and processing, discrimination between varieties, ecological system, pharmacological effects, and safety were systematically reviewed. By analyzing these studies, we found that the key points of geo-authentic Lonicerae Japonicae Flos research were quality and application. Further studies should focus on improving the quality by selecting the more superior of all varieties and evaluating clinical effectiveness.

  20. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica

    PubMed Central

    Choi, Jae-Suk; Seo, Hyo Ju; Lee, Yu-Ri; Kwon, Su-Jung; Moon, Sun Hwa; Park, Sun-Mee; Sohn, Jae Hak

    2014-01-01

    New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties. PMID:25054108

  1. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica.

    PubMed

    Choi, Jae-Suk; Seo, Hyo Ju; Lee, Yu-Ri; Kwon, Su-Jung; Moon, Sun Hwa; Park, Sun-Mee; Sohn, Jae Hak

    2014-06-01

    New in vitro anti-diabetes makgeolli was produced from rice by adding various quantities of Laminaria japonica, and the fermentation characteristics of the L. japonica makgeolli during the fermentation process were investigated. The contents of alcohol and reducing sugar, and viable count of yeast, of L. japonica makgeolli were not significantly changed when the proportion of L. japonica was increased. The total acid content decreased with an increase in L. japonica concentration; the pH and total bacterial cell count increased in proportion with the increase in L. japonica concentration. The L. japonica makgeolli contents of free sugars, such as fructose, glucose, and sucrose, and of organic acids, such as acetic acid, citric acid, succinic acid, and lactic acid, were altered during fermentation and showed various patterns. The effects of the quantity of L. japonica added on the acceptability and anti-diabetes activities of L. japonica makgeolli were also investigated. In a sensory evaluation, L. japonica makgeolli brewed by adding 2.5 or 5% L. japonica to the mash showed the best overall acceptability; the 12.5% L. japonica sample was least favored due to its seaweed flavor. L. japonica addition did not increase the peroxynitrite-scavenging activity of makgeolli. L. japonica makgeolli showed potent anti-diabetes activity, particularly that containing >7.5% L. japonica. Therefore, L. japonica makgeolli may represent a new functional makgeolli with anti-diabetes properties.

  2. [Study on Commercial Specification of Lonicerae Japonicae Flos].

    PubMed

    Zhou, Jie; Zou, Lin; Liu, Wei; Bian, Li-hua; Wang, Xiao; Zhang, Yong-qing; Dan, Staerk

    2015-04-01

    To provide the basis data for the institute of commercial specification standard of Lonicerae Japonicae Flos. 39 samples of Lonicerae Japonicae Flos commercial of different grades in market were collected, and vernier caliper and electronic balance were used to measure the numbers of flower bud and blooming rate per 0. 5 g, contamination content, browning degree, milden and rot, length, upside diameter, middle diameter and bottom diameter of Lonicerae Japonicae Flos. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, galuteolin,3,5-icaffeoylquinic acid and 4,5-dicaffeoylquinic acid were detected by HPLC. Correlation analysis, principal component analysis and cluster analysis were used by SPSS to analyze all index data,and the correlation of appearance characteristics and intrinsic active constituents was discussed. The numbers of flower bud and blooming rate per 0. 5 g, contamination content and browning degree were principal component indexes. The length of flower bud showed a significant correlation with galuteolin content, and the browning degree and upside diameter showed a significant correlation with chlorogenic acid content. Lonicerae Japonicae Flos commercial should be divided into four specification grades by sieved indexes.

  3. Antioxidant and Anti-Adipogenic Activities of Trapa japonica Shell Extract Cultivated in Korea

    PubMed Central

    Lee, DooJin; Lee, Ok-Hwan; Choi, Geunpyo; Kim, Jong Dai

    2017-01-01

    Trapa japonica shell contains phenolic compounds such as tannins. Studies regarding the antioxidant and anti-adipogenic effects of Trapa japonica shell cultivated in Korea are still unclear. Antioxidant and anti-adipogenic activities were measured by in vitro assays such as 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, 2,2′-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing ability of plasma assay, reducing power, superoxide dismutase-like activity, and iron chelating ability in 3T3-L1 cells. We also measured the total phenol and flavonoids contents (TPC and TFC, respectively) in Trapa japonica shell extract. Our results show that TPC and TFC of Trapa japonica shell extract were 157.7±0.70 mg gallic acid equivalents/g and 25.0±1.95 mg quercetin equivalents/g, respectively. Trapa japonica shell extract showed strong antioxidant activities in a dose-dependent manner in DPPH and ABTS radical scavenging activities and other methods. Especially, the whole antioxidant activity test of Trapa japonica shell extract exhibited higher levels than that of butylated hydroxytoluene as a positive control. Furthermore, Trapa japonica shell extract inhibited lipid accumulation and reactive oxygen species production during the differentiation of 3T3-L1 preadipocytes. Trapa japonica shell extract possessed a significant antioxidant and anti-adipogenic property, which suggests its potential as a natural functional food ingredient. PMID:29333386

  4. Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms.

    PubMed

    Kim, Yeon-Hee; Kim, Jeong Hwan; Jin, Hyung-Joo; Lee, Si Young

    2013-06-01

    Laminaria japonica is a brown alga, which is consumed widely in Korea, Japan, and China. This study investigated the antimicrobial activity of ethanol extracts of L. japonica against oral microbial species to assess the possible application of L. japonica extracts in dental care products. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in culture medium using a microdilution method. The MICs of ethanol extracts of L. japonica with oral streptococci were 62.5-500 μg/ml and the MBCs were 125-1000 μg/ml. The MICs of Actinomyces naeslundii and Actinomyces odontolyticus were 250 and 62.5 μg/ml, respectively. The MBCs of A. naeslundii and A. odontolyticus were 500 and 250 μg/ml, respectively. The MICs were 250 and 62.5 μg/ml for Fusobacterium nucleatum and Porphyromonas gingivalis, respectively. The killing of Streptococcus mutans and P. gingivalis was dependent on the incubation time. The killing of S. mutans, A. odontolyticus, and P. gingivalis was significantly dependent on the extract concentration. Bacterial treatment with L. japonica extracts changed the cell surface texture of S. mutans, A. odontolyticus, and P. gingivalis. The results of this study suggest that L. japonica extracts may be useful for the development of antimicrobial agents to combat oral pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Plant food supplements with anti-inflammatory properties: a systematic review (I).

    PubMed

    Dell'Agli, Mario; Di Lorenzo, Chiara; Badea, Mihaela; Sangiovanni, Enrico; Dima, Lorena; Bosisio, Enrica; Restani, Patrizia

    2013-01-01

    Plant food supplements (PFS) receive great acceptance by European consumers. However, quality and efficacy of these products remain a question of concern. The aim of this systematic review is to summarize and critically evaluate the evidence for or against the efficacy of PFS for coping inflammatory conditions by considering epidemiological and human intervention studies. The review, which consists of two parts, considers Olea europea L., Camellia sinensis L., Vitis vinifera L., and Matricaria recutita L., which are herbal material frequently used also as food. The search retrieved 1251 publications. By applying the inclusion/exclusion criteria, the final number of papers was 91. Vitis vinifera L. showed promising results, but other trials should be performed in order to assessing the efficacy. Surprisingly, it was impossible to draw conclusions for the anti-inflammatory effect of Camellia sinensis L. as green tea. No studies were found on the leaves of Olea europea L. whereas more human trials are needed to assess the anti-inflammatory effect of olive oil. Only one study for Matricaria recutita L. was selected. In conclusion, it is advisable to conduct further studies with more homogeneous population and larger number of subjects by avoiding the heterogeneity of the herbal preparations considered.

  6. Stability of a Cosmetic Multiple Emulsion Loaded with Green Tea Extract

    PubMed Central

    Mahmood, Tariq; Akhtar, Naveed

    2013-01-01

    Multiple emulsions are excellent and exciting potential systems for the delivery of useful cosmetic agents. The work describes stability of a multiple emulsion for cosmetic purpose, loaded with extract of Camellia sinensis L. (Theaceae) in concentration of 5%. The formulation constitutes of cetyl dimethicone copolyol and polyoxyethylene (20) cetyl ether as emulsifiers and was characterised and monitored for various physicochemical aspects. Centrifugation has no devastating effect on physical destabilization/phase separation observed for 30 days. Mean globule sizes of multiple droplets were found in the range of 10.29 ± 4.4 μm to 12.77 ± 5.1 μm and of inner droplets were in the range of 0.8 ± 0.4 μm to 1.6 ± 0.8 μm. All samples exhibited shear thinning behavior with increase in shear stress. The results of the present study indicate that multiple emulsions can be used as carrier of 5% Camellia sinensis L. extract to enhance desired effects. The developed physically and chemically stable system is an effective system for targeting skin layers; however, long-term stability at elevated temperatures may be needed with suitable modifications, if required. PMID:24058284

  7. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review.

    PubMed

    Malongane, Florence; McGaw, Lyndy J; Mudau, Fhatuwani N

    2017-11-01

    Tea is one of the most widely consumed non-alcoholic beverages in the world next to water. It is classified as Camellia sinensis and non-Camellia sinensis (herbal teas). The common bioactive compounds found mainly in green teas are flavan-3-ols (catechins) (also called flavanols), proanthocyanidins (tannins) and flavonols. Black tea contains theaflavins and thearubigins and white tea contains l-theanine and gamma-aminobutyric acid (GABA), while herbal teas contain diverse polyphenols. Phytochemicals in tea exhibit antimicrobial, anti-diabetic and anti-cancer activities that are perceived to be helpful in managing chronic diseases linked to lifestyle. Many of these phytochemicals are reported to be biologically active when combined. Knowledge of the synergistic interactions of tea with other teas or herbs in terms of biological activities will be of benefit for therapeutic enhancement. There is evidence that various types of teas act synergistically in exhibiting health benefits to humans, improving consumer acceptance and economic value. Similar observations have been made when teas and herbs or medicinal drugs were combined. The aim of this review is to highlight potential beneficial synergies between combinations of different types of teas, tea and herbs, and tea and medicinal drugs. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Species-specific and female host-biased ectophoresy in the roundworm Caenorhabditis japonica

    NASA Astrophysics Data System (ADS)

    Yoshiga, Toyoshi; Ishikawa, Yuji; Tanaka, Ryusei; Hironaka, Mantaro; Okumura, Etsuko

    2013-02-01

    Caenorhabditis japonica is a bacteriophagous nematode species that was discovered on the semi-social burrower bug, Parastrachia japonensis, which demonstrates egg-guarding and provisioning behaviors. To understand the life history of C. japonica in relation to P. japonensis, we demonstrated the specificity of this association and fluctuations in nematode number on the insect throughout the year. C. japonica dauer larvae (DL), larvae in a nonfeeding diapause stage, were predominantly found as clumps on the adult female insects but rarely found on the male insects in all populations examined. This female-biased association was consistent throughout the year, but after the nymphs hatched, nematodes were not detected on the mother insects showing provisioning behavior. DL appeared on the nymphs, and the number of DL on the newly emerged female insects gradually increased thereafter. C. japonica has never been detected on other invertebrates collected from the P. japonensis habitat thus far. Our data suggest that the life cycles of C. japonica and P. japonensis are synchronized.

  9. Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review.

    PubMed

    He, Xirui; Bai, Yajun; Zhao, Zefeng; Wang, Xiaoxiao; Fang, Jiacheng; Huang, Linhong; Zeng, Min; Zhang, Qiang; Zhang, Yajun; Zheng, Xiaohui

    2016-07-01

    Sophora japonica (Fabaceae), also known as Huai (Chinese: ), is a medium-sized deciduous tree commonly found in China, Japan, Korea, Vietnam, and other countries. The use of this plant has been recorded in classical medicinal treatises of ancient China, and it is currently recorded in both the Chinese Pharmacopoeia and European Pharmacopoeia. The flower buds and fruits of S. japonica, also known as Flos Sophorae Immaturus and Fructus Sophorae in China, are most commonly used in Asia (especially in China) to treat hemorrhoids, hematochezia, hematuria, hematemesis, hemorrhinia, uterine or intestinal hemorrhage, arteriosclerosis, headache, hypertension, dysentery, dizziness, and pyoderma. To discuss feasible trends for further research on S. japonica, this review highlights the botany, ethnopharmacology, phytochemistry, biological activities, and toxicology of S. japonica based on studies published in the last six decades. Information on the S. japonica was collected from major scientific databases (SciFinder, PubMed, Elsevier, SpringerLink, Web of Science, Google Scholar, Medline Plus, China Knowledge Resource Integrated (CNKI), and "Da Yi Yi Xue Sou Suo (http://www.dayi100.com/login.jsp)" for publications between 1957 and 2015 on S. japonica. Information was also obtained from local classic herbal literature, government reports, conference papers, as well as PhD and MSc dissertations. Approximately 153 chemical compounds, including flavonoids, isoflavonoids, triterpenes, alkaloids, polysaccharides, amino acids, and other compounds, have been isolated from the leaves, branches, flowers, buds, pericarps, and/or fruits of S. japonica. Among these compounds, several flavonoids and isoflavonoids comprise the active constituents of S. japonica, which exhibit a wide range of biological activities in vitro and in vivo such as anti-inflammatory, antibacterial, antiviral, anti-osteoporotic, antioxidant, radical scavenging, antihyperglycemic, antiobesity, antitumor, and

  10. Vitellogenin gene characterization and expression of Asian paddle crabs ( Charybdis japonica) following endocrine disrupting chemicals

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Tae-Soo; Kwak, Ihn-Sil

    2014-06-01

    Vitellogenin (VTG), the yolk-precursor lipoprotein, has been widely recognized as a biomarker for the detection of estrogenic activity in water-borne chemical pollutants. The Asian paddle crab, Charybdis japonica, is a potential bio-indicator for monitoring marine environments. The aim of this study was to identify the possibility of using C. japonica VTG as biomarkers of stress caused by endocrine disrupting chemicals (EDCs). We characterized a partial sequence of the VTG cDNA in the C. japonica crab and evaluated the crab's mRNA expression profiles following exposure to different concentrations of bisphenol A (BPA) and 4-nonylphenol (NP) for 24 or 96 h. The sequence homology of C. japonica VTG is over 93% in nucleotide and over 98% in amino acid with the corresponding gene of other crabs. Phylogenetic analysis revealed that the C. japonica VTG is an ortholog of other species of lobster and shrimp. Tissue distribution analysis of the C. japonica VTG mRNA revealed that the expression of VTG mRNA was highest in the ovary of females and hepatopancreas. The expression of the C. japonica VTG gene in various BPA or NP concentrations during shorter and longer times was assessed. The expression of VTG transcripts was significantly increased in the C. japonica crab exposed to BPA and NP at different concentrations for 24 h. The mRNA expression of the VTG gene was significantly induced in concentration- and time-dependent manners after BPA or NP exposures for 96 h. These results indicate that crab C. japonica VTG could be used as a potential biomarker of EDCs in marine environment monitoring.

  11. Science and Management of the Introduced Seagrass Zostera japonica in North America

    EPA Science Inventory

    Healthy seagrass is considered a prime indicator of estuarine ecosystem function. On the Pacific coast of North America, at least two congeners of Zostera occur: native Zostera marina, and introduced, Z. japonica. Z. japonica is considered “invasive” and therefore, ecologically...

  12. Species-specific recognition of the carrier insect by dauer larvae of the nematode Caenorhabditis japonica.

    PubMed

    Okumura, Etsuko; Tanaka, Ryusei; Yoshiga, Toyoshi

    2013-02-15

    Host recognition is crucial during the phoretic stage of nematodes because it facilitates their association with hosts. However, limited information is available on the direct cues used for host recognition and host specificity in nematodes. Caenorhabditis japonica forms an intimate association with the burrower bug Parastrachia japonensis. Caenorhabditis japonica dauer larvae (DL), the phoretic stage of the nematode, are mainly found on adult P. japonensis females but no other species. To understand the mechanisms of species-specific and female carrier-biased ectophoresy in C. japonica, we investigated whether C. japonica DL could recognize their hosts using nematode loading and chemoattraction experiments. During the loading experiments, up to 300 C. japonica DL embarked on male and female P. japonensis, whereas none or very few utilized the other shield bugs Erthesina fullo and Macroscytus japonensis or the terrestrial isopod Armadillidium vulgare. In the chemoattraction experiments, hexane extracts containing the body surface components of nymphs and both adult P. japonensis sexes attracted C. japonica DL, whereas those of other shield bugs did not. Parastrachia japonensis extracts also arrested the dispersal of C. japonica DL released at a site where hexane extracts were spotted on an agar plate; i.e. >50% of DL remained at the site even 60 min after nematode inoculation whereas M. japonensis extracts or hexane alone did not have the same effect. These results suggest that C. japonica DL recognize their host species using direct chemical attractants from their specific host to maintain their association.

  13. [Research progress on chemical constituents and their differences between Lonicerae Japonicae Flos and Lonicerae Flos].

    PubMed

    Yang, Qian-Ru; Zhao, Yuan-Yuan; Hao, Jiang-Bo; Li, Wei-Dong

    2016-04-01

    The dried flower buds or initial flowers of Lonicerae Japonicae Flos and Lonicerae Flos, which belong to different species of Lonicera or Caprifoliaceae, are usually taken to clear away heat and toxic material and treat the exopathogenic wind-heat. They are two different herbs, and due to various reasons, there are far more controversies. This paper reviews the research on the chemical constituents and their differences between Lonicerae Japonicae Flos and Lonicerae Flos. Both of them contain the similar chemical constituents, such as organic acids, flavonoids, triterpenoidal saponins, iridoids, volatile oils and trace elements. But there are also differences between them. The main differences:Lonicerae Japonicae Flos contains a wealth of iridoids and flavonoids, while Lonicerae Flos contains more kinds of triterpenoidal saponins; the content of chlorogenic acid in Lonicerae Flos is significantly higher than that of Lonicerae Japonicae Flos; the content of rutin, luteoloside,luteolin-7-O-β-D-galactoside and lonicerin in Lonicerae Japonicae Flos is much higher than that of Lonicerae Flos; the content of Fe and Ni in Lonicerae Japonicae Flos is higher, while the content of Mn is higher in Lonicerae Flos. Finally, main problems and suggestions on chemical composition between Lonicerae Japonicae Flos and Lonicerae Flos were also discussed. Copyright© by the Chinese Pharmaceutical Association.

  14. Phenotypic and molecular characterization of Malassezia japonica isolated from psoriasis vulgaris patients.

    PubMed

    Honnavar, Prasanna; Chakrabarti, Arunaloke; Dogra, Sunil; Handa, Sanjeev; Rudramurthy, Shivaprakash M

    2015-03-01

    Malassezia species, which are skin colonizers, are being debated as to their pathogenic role in various cutaneous diseases. Species identification of Malassezia is important as particular species have been implicated in or associated with specific diseases. Malassezia japonica, a relatively newly described species, has not been completely characterized owing to the rarity of its isolation. In the present study we describe phenotypic and molecular characterization of six M. japonica strains isolated from patients with psoriasis vulgaris. In contrast to the physiological and biochemical properties of the M. japonica type strain, CBS9348, all our isolates assimilated Tween 20 and showed positive β-glucosidase activity, and the Cremophor EL utilization test was negative. However, the sequences of the D1/D2 region of rDNA, ITS2 and IGS1 regions of all our isolates clustered with the type strain of M. japonica. © 2015 The Authors.

  15. Comparative Study on Volatile Compounds of Alpinia japonica and Elettaria cardamomum.

    PubMed

    Asakawa, Yoshinori; Ludwiczuk, Agnieszka; Sakurai, Kazutoshi; Tomiyama, Kenichi; Kawakami, Yukihiro; Yaguchi, Yoshihiro

    2017-08-01

    The volatile compounds obtained from the ether extracts, headspace gases and steam distillates of Alpinia japonica and Elettaria cardamomum were analyzed by GC/MS. Both species were rich sources of naturally rare fenchane-type monoterpenoids, fenchene, fenchone, fenchyl alcohol and its acetate, together with 1,8-cineole. The distributions of volatile sesquiterpenoids were very poor in both species. Chiralities of fenchone in A. japonica and E. cardamomum were 99% of (1S,4R)-(+)-form. Camphor in A. japonica is composed of a mixture of (1R,4R)-(+)-form (94.3%) and (1S,4S)-(-)-form (5.7%). On the other hand, E. cardamomum produced only (1R,4R)-(+)-camphor (99%).

  16. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity.

    PubMed

    Jadoon, Saima; Karim, Sabiha; Bin Asad, Muhammad Hassham Hassan; Akram, Muhammad Rouf; Khan, Abida Kalsoom; Malik, Arif; Chen, Chunye; Murtaza, Ghulam

    2015-01-01

    The exposure to ultraviolet radiations (UVR) is the key source of skin sunburn; it may produce harmful entities, reactive oxygen species (ROS), leading to aging. The skin can be treated and protected from the injurious effects of ROS by using various pharmaceutical formulations, such as cream. Cream can be loaded with antioxidants to quench ROS leading to photo-protective effects. Moreover, modern medicines depend on ethnobotanicals for protection or treatment of human diseases. This review article summarizes various in vivo antioxidant studies on herbal creams loaded with phyto-extracts. These formulations may serve as cosmeceuticals to protect skin against injurious effects of UVR. The botanicals studied for dermatologic use in cream form include Acacia nilotica, Benincasa hispida, Calendula officinalis, Camellia sinensis, Camellia sinensis, Nelumbo nucifera, Capparis decidua, Castanea sativa, Coffea arabica, Crocus sativus, Emblica officinalis Gaertn, Foeniculum vulgare, Hippophae rhamnoides, Lithospermum erythrorhizon, Malus domestica, Matricaria chamomilla L., Moringa oleifera, Morus alba, Ocimum basilicum, Oryza sativa, Polygonum minus, Punica granatum, Silybum marianum, Tagetes erecta Linn., Terminalia chebula, Trigonella foenum-graecum, and Vitis vinifera. The observed anti-aging effects of cream formulations could be an outcome of a coordinating action of multiple constituents. Of numerous botanicals, the phenolic acids and flavonoids appear effective against UVR-induced damage; however the evidence-based studies for their anti-aging effects are still needed.

  17. Multimycotoxin UPLC-MS/MS for tea, herbal infusions and the derived drinkable products.

    PubMed

    Monbaliu, Sofie; Wu, Aibo; Zhang, Dabing; Van Peteghem, Carlos; De Saeger, Sarah

    2010-12-22

    In recent years the consumption of tea and herbal infusions has increased. These hot drinks are consumed as daily drinks as well as for medicinal purposes. All tea varieties (white, yellow, green, oolong, black and puerh) originate from the leaves of the tea plant, Camellia sinensis. All extracts made of plant or herbal materials which do not contain Camellia sinensis are referred as herbal infusions or tisanes. During processing and manufacturing fungal contamination of the plant materials is possible, enabling contamination of these products with mycotoxins. In this study a multimycotoxin UPLC-MS/MS method was developed and validated for the analysis of the raw tea and herbal infusion materials as well as for their drinkable products. The samples were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), with a mobile phase consisting of variable mixtures of water and methanol with 0.3% formic acid. The limits of detection for the different mycotoxins varied between 2.1 μg/kg and 121 μg/kg for raw materials and between 0.4 μg/L and 46 μg/L for drinkable products. Afterward 91 different tea and herbal infusion samples were analyzed. Only in one sample, Ceylon melange, 76 μg/kg fumonisin B(1) was detected. No mycotoxins were detected in the drinkable products.

  18. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis.

    PubMed

    Xia, En-Hua; Zhang, Hai-Bin; Sheng, Jun; Li, Kui; Zhang, Qun-Jie; Kim, Changhoon; Zhang, Yun; Liu, Yuan; Zhu, Ting; Li, Wei; Huang, Hui; Tong, Yan; Nan, Hong; Shi, Cong; Shi, Chao; Jiang, Jian-Jun; Mao, Shu-Yan; Jiao, Jun-Ying; Zhang, Dan; Zhao, Yuan; Zhao, You-Jie; Zhang, Li-Ping; Liu, Yun-Long; Liu, Ben-Ying; Yu, Yue; Shao, Sheng-Fu; Ni, De-Jiang; Eichler, Evan E; Gao, Li-Zhi

    2017-06-05

    Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Anti-Aging Potential of Phytoextract Loaded-Pharmaceutical Creams for Human Skin Cell Longetivity

    PubMed Central

    Karim, Sabiha; Asad, Muhammad Hassham Hassan Bin; Kalsoom Khan, Abida; Malik, Arif; Chen, Chunye

    2015-01-01

    The exposure to ultraviolet radiations (UVR) is the key source of skin sunburn; it may produce harmful entities, reactive oxygen species (ROS), leading to aging. The skin can be treated and protected from the injurious effects of ROS by using various pharmaceutical formulations, such as cream. Cream can be loaded with antioxidants to quench ROS leading to photo-protective effects. Moreover, modern medicines depend on ethnobotanicals for protection or treatment of human diseases. This review article summarizes various in vivo antioxidant studies on herbal creams loaded with phyto-extracts. These formulations may serve as cosmeceuticals to protect skin against injurious effects of UVR. The botanicals studied for dermatologic use in cream form include Acacia nilotica, Benincasa hispida, Calendula officinalis, Camellia sinensis, Camellia sinensis, Nelumbo nucifera, Capparis decidua, Castanea sativa, Coffea arabica, Crocus sativus, Emblica officinalis Gaertn, Foeniculum vulgare, Hippophae rhamnoides, Lithospermum erythrorhizon, Malus domestica, Matricaria chamomilla L., Moringa oleifera, Morus alba, Ocimum basilicum, Oryza sativa, Polygonum minus, Punica granatum, Silybum marianum, Tagetes erecta Linn., Terminalia chebula, Trigonella foenum-graecum, and Vitis vinifera. The observed anti-aging effects of cream formulations could be an outcome of a coordinating action of multiple constituents. Of numerous botanicals, the phenolic acids and flavonoids appear effective against UVR-induced damage; however the evidence-based studies for their anti-aging effects are still needed. PMID:26448818

  20. Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.

    PubMed

    Saito, M; Seki, M; Amemiya, S; Yamasu, K; Suyemitsu, T; Ishihara, K

    1998-06-01

    The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.

  1. Variations of metabolites and proteome in Lonicera japonica Thunb. buds and flowers under UV radiation.

    PubMed

    Zhu, Wei; Zheng, Wen; Hu, Xingjiang; Xu, Xiaobao; Zhang, Lin; Tian, Jingkui

    2017-04-01

    Lonicera japonica Thunb., also known as Jin Yin Hua and Japanese honeysuckle, is used as a herbal medicine in Asian countries. Its flowers have been used in folk medicine in the clinic and in making food or healthy beverages for over 1500years in China. To investigate the molecular processes involved in L. japonica development from buds to flowers exposed to UV radiation, a comparative proteomics analysis was performed. Fifty-four proteins were identified as differentially expressed, including 42 that had increased expression and 12 that had decreased expression. The levels of the proteins related to glycolysis, TCA/organic acid transformation, major carbohydrate metabolism, oxidative pentose phosphate, stress, secondary metabolism, hormone, and mitochondrial electron transport were increased during flower opening process after exposure to UV radiation. Six metabolites in L. japonica buds and flowers were identified and relatively quantified using LC-MS/MS. The antioxidant activity was performed using a 1,1-diphenyl-2-picrylhydrazyl assay, which revealed that L. japonica buds had more activity than the UV irradiated flowers. This suggests that UV-B radiation induces production of endogenous ethylene in L. japonica buds, thus facilitating blossoming of the buds and activating the antioxidant system. Additionally, the higher metabolite contents and antioxidant properties of L. japonica buds indicate that the L. japonica bud stage may be a more optimal time to harvest than the flower stage when using for medicinal properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Antiviral activity of polysaccharide extract from Laminaria japonica against respiratory syncytial virus.

    PubMed

    Cao, Yin-Guang; Hao, Yu; Li, Zhi-Hui; Liu, Shun-Tao; Wang, Le-Xin

    2016-12-01

    This study was designed to investigate the inhibition activity of polysaccharide extract from Laminaria japonica against RSV. The polysaccharide from Laminaria japonica was isolated by ethanol precipitation. HEK293 cells were infected with RVS, and the antiviral activity of polysaccharide extract against RSV in host cells was tested. By using ELISA and western blot assay, the expression level of IFN-α and IRF3 and their functional roles in polysaccharide-mediated antiviral activity against RSV were investigated. The polysaccharide extract from Laminaria japonica had low toxicity to HEK293 cell. The TC50 to HEK293 cells was up to 1.76mg/mL. Furthermore, the EC50 of polysaccharide extract to RSV was 5.27μg/mL, and TI was 334. The polysaccharide extract improved IRF-3 expression which promoted the level of IFN-α. Polysaccharide extract from Laminaria japonica elicits antiviral activity against RSV by up-regulation of IRF3 signaling-mediated IFN-α production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  4. Influence of the cyclooctadepsipeptides PF1022A and PF1022E as natural products on the design of semi-synthetic anthelmintics such as emodepside.

    PubMed

    Jeschke, R; Iinuma, K; Harder, A; Schindler, M; Murakami, T

    2005-10-01

    The 24-membered cyclooctadepsipeptide (CODP) PF1022A, the active metabolite of the fungus imperfectus Mycelia sterilia (Rosellinia sp.) isolated from the plant Camellia japonica in Japan, is described as a powerful broad-spectrum anthelmintic natural product with low toxicity in animals. Further CODPs such as PF1022B, C, D and E have been isolated from the same culture and their structures have been established. Both PF1022A and PF1022E serve as valuable starting materials for the synthesis of semi-synthetic CODP derivatives with improved intrinsic anthelmintic potency and broad-spectrum activity. It was found that in most cases the di-substituted PF1022A derivatives showed a greater (or equal) activity by oral application against the gastrointestinal nematode Haemonchus contortus compared to the corresponding mono-substituted PF1022A analogues as exemplified by emodepside. In order to get additional information on the bioactive conformation, emodepside was transformed into its mono- and tetra-thionated derivatives by isosteric replacement. In the light of the increased efficacy of these derivatives against H. contortus or Trichostrongylus colubriformis, it has been suggested that the asymmetric conformation clearly influences the anthelmintic activity of CODPs. Although useful synthetic pathways are available today for the preparation of the semi-synthetic CODP emodepside, the fermentative production of its bis-para-nitro and bis-para-amino precursors could be the process used for its industrial-scale production in the future.

  5. Green Tea (Camellia Sinensis): Chemistry and Oral Health.

    PubMed

    Khurshid, Zohaib; Zafar, Muhammad S; Zohaib, Sana; Najeeb, Shariq; Naseem, Mustafa

    2016-01-01

    Green tea is a widely consumed beverage worldwide. Numerous studies have suggested about the beneficial effects of green tea on oral conditions such as dental caries, periodontal diseases and halitosis. However, to date there have not been many review articles published that focus on beneficial effects of green tea on oral disease. The aim of this publication is to summarize the research conducted on the effects of green tea on oral cavity. Green tea might help reduce the bacterial activity in the oral cavity that in turn, can reduce the aforementioned oral afflictions. Furthermore, the antioxidant effect of the tea may reduce the chances of oral cancer. However, more clinical data is required to ascertain the possible benefits of green tea consumption on oral health.

  6. Efficient extraction strategies of tea (Camellia sinensis) biomolecules.

    PubMed

    Banerjee, Satarupa; Chatterjee, Jyotirmoy

    2015-06-01

    Tea is a popular daily beverage worldwide. Modulation and modifications of its basic components like catechins, alkaloids, proteins and carbohydrate during fermentation or extraction process changes organoleptic, gustatory and medicinal properties of tea. Through these processes increase or decrease in yield of desired components are evident. Considering the varied impacts of parameters in tea production, storage and processes that affect the yield, extraction of tea biomolecules at optimized condition is thought to be challenging. Implementation of technological advancements in green chemistry approaches can minimize the deviation retaining maximum qualitative properties in environment friendly way. Existed extraction processes with optimization parameters of tea have been discussed in this paper including its prospects and limitations. This exhaustive review of various extraction parameters, decaffeination process of tea and large scale cost effective isolation of tea components with aid of modern technology can assist people to choose extraction condition of tea according to necessity.

  7. Genetic dissection of agronomically important traits in closely related temperate japonica rice cultivars

    PubMed Central

    Hori, Kiyosumi; Yamamoto, Toshio; Yano, Masahiro

    2017-01-01

    Many quantitative trait loci (QTLs) for agronomically important traits such as grain yield, disease resistance, and stress tolerance of rice (Oryza sativa L.) have been detected by using segregating populations derived from crosses between indica and japonica subspecies or with wild relatives. However, the QTLs involved in the control of natural variation in agronomic traits among closely related cultivars are still unclear. Decoding the whole genome sequences of Nipponbare and other temperate japonica rice cultivars has accelerated the collection of a huge number of single nucleotide polymorphisms (SNPs). These SNPs are good resource for developing polymorphic DNA markers and for detecting QTLs distributed across all rice chromosomes. The temperate japonica rice cultivar Koshihikari has remained the top cultivar for about 40 years since 1979 in Japan. Unraveling the genetic factors in Koshihikari will provide important insights into improving agronomic traits in temperate japonica rice cultivars. Here we describe recent progress in our studies as an example of genetic analysis in closely related cultivars. PMID:29398936

  8. Mapping invasive Fallopia japonica by combined spectral, spatial, and temporal analysis of digital orthophotos

    NASA Astrophysics Data System (ADS)

    Dorigo, Wouter; Lucieer, Arko; Podobnikar, Tomaž; Čarni, Andraž

    2012-10-01

    Japanese knotweed (Fallopia japonica) is listed among 100 of the World's worst invasive alien species and poses an increasing threat to ecosystems and agriculture in Northern America, Europe, and Oceania. This study proposes a remote sensing method to detect local occurrences of F. japonica from low-cost digital orthophotos taken in early spring and summer by concurrently exploring its temporal, spectral, and spatial characteristics. Temporal characteristics of the species are quantified by a band ratio calculated from the green and red spectral channels of both images. The normalized difference vegetation index was used to capture the high near-infrared (NIR) reflectance of F. japonica in summer while the characteristic texture of F. japonica is quantified by calculating gray level co-occurrence matrix (GLCM) measures. After establishing the optimum kernel size to quantify texture, the different input features (spectral, spatial, and texture) were stacked and used as input to the random forest (RF) classifier. The proposed method was tested for a built-up and semi-natural area in Slovenia. The spectral, spatial, and temporal provided an equally important contribution for differentiating F. japonica from other land cover types. The combination of all signatures resulted in a producer accuracy of 90.3% and a user accuracy of 98.1% for F. japonica when validation was based on independent regions of interest. A producer accuracy of 61.4% was obtained for F. japonica when comparing the classification result with all occurrences of F. japonica identified during a field validation campaign. This is an encouraging result given the very small patches in which the species usually occur and the high degree of intermingling with other plants. All hot spots were identified and even likely infestations of F. japonica that had remained undiscovered during the field campaign were detected. The probability images resulting from the RF classifier can be used to reduce the

  9. Synthesis of dihydroresveratrol glycosides and evaluation of their activity against melanogenesis in B16F0 melanoma cells.

    PubMed

    Oode, Chisato; Shimada, Wataru; Izutsu, Yukiko; Yokota, Mariko; Iwadate, Takehiro; Nihei, Ken-ichi

    2014-11-24

    Dihydroresveratrol glucoside 1 isolated from Camellia oleifera and its xyloside derivative 2 were synthesized for the first time in 5 steps from TBS-protected aldehyde 4. Natural product 1 is a potent melanogenesis inhibitor in B16F0 melanoma cells (approximately 40 fold more potent than kojic acid). In contrast, the synthetic product 2 stimulates melanogenesis, suggesting that a single hydroxymethyl group in the glycoside substituent of dihydroresveratrols is responsible for inhibition or activation of melanogenesis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Pharmacognostic Specification, Chlorogenic Acid Content, and In vitro Antioxidant Activities of Lonicera japonica Flowering Bud.

    PubMed

    Chaowuttikul, Chayanon; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Lonicera japonica Thunb. or Japanese Honeysuckle has been widely used in traditional medicine for antipyretic. To establish the pharmacognostic specification of L. japonica flowering bud in Thailand and to determine its chlorogenic acid content and in vitro antioxidant activities. Dried L. japonica flowering bud from 15 various herbal drugstores throughout Thailand were investigated for pharmacognostic specification. Their chlorogenic acid contents were quantitatively analyzed by thin layer chromatography (TLC) densitometry with winCATS software. The mobile phase for TLC development consisted of ethyl acetate: formic acid: acetic acid: water (10:1.1:1.1:2.6). Antioxidant activities were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric ion reducing antioxidant power assay, nitric oxide scavenging assay, and β-carotene bleaching assays. Qualified L. japonica flowering bud in Thailand was presented that the contents of loss on drying, total ash, acid-insoluble ash, and water should not be >10.11%, 6.59%, 1.14%, and 10.82% by weight, respectively. The ethanol and water soluble extractive values should not be < 16.46% and 28.88% by weight, respectively. Chlorogenic acid content in L. japonica flowering bud was found to be 2.24 ± 0.50 g/100 g of crude drug. L. japonica flowering bud showed DPPH and nitric oxide scavenging activities as well as reducing power property. This pharmacognostic specification with special reference to the chlorogenic acid content can be used for quality control of L. japonica flowering bud in Thailand. The potential antioxidant of this crude drug was demonstrated in vitro . Pharmacognostic specification of Lonicera japonica flowering bud in Thailand has been establishedThe chlorogenic acid content has been quantified by thin layer chromatography-densitometryThe ethanolic extract of L. japonica flowering bud showed antioxidation potential, especially on reducing power property. Abbreviations Used: TLC: Thin layer

  11. Pharmacognostic Specification, Chlorogenic Acid Content, and In vitro Antioxidant Activities of Lonicera japonica Flowering Bud

    PubMed Central

    Chaowuttikul, Chayanon; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2017-01-01

    Background: Lonicera japonica Thunb. or Japanese Honeysuckle has been widely used in traditional medicine for antipyretic. Objective: To establish the pharmacognostic specification of L. japonica flowering bud in Thailand and to determine its chlorogenic acid content and in vitro antioxidant activities. Materials and Methods: Dried L. japonica flowering bud from 15 various herbal drugstores throughout Thailand were investigated for pharmacognostic specification. Their chlorogenic acid contents were quantitatively analyzed by thin layer chromatography (TLC) densitometry with winCATS software. The mobile phase for TLC development consisted of ethyl acetate: formic acid: acetic acid: water (10:1.1:1.1:2.6). Antioxidant activities were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric ion reducing antioxidant power assay, nitric oxide scavenging assay, and β-carotene bleaching assays. Results: Qualified L. japonica flowering bud in Thailand was presented that the contents of loss on drying, total ash, acid-insoluble ash, and water should not be >10.11%, 6.59%, 1.14%, and 10.82% by weight, respectively. The ethanol and water soluble extractive values should not be < 16.46% and 28.88% by weight, respectively. Chlorogenic acid content in L. japonica flowering bud was found to be 2.24 ± 0.50 g/100 g of crude drug. L. japonica flowering bud showed DPPH and nitric oxide scavenging activities as well as reducing power property. Conclusion: This pharmacognostic specification with special reference to the chlorogenic acid content can be used for quality control of L. japonica flowering bud in Thailand. The potential antioxidant of this crude drug was demonstrated in vitro. SUMMARY Pharmacognostic specification of Lonicera japonica flowering bud in Thailand has been establishedThe chlorogenic acid content has been quantified by thin layer chromatography-densitometryThe ethanolic extract of L. japonica flowering bud showed antioxidation potential

  12. [Effect of gas-turbine green discoloring and drying processing methods on herbal quality of tetraploid Lonicerae Japonicae Flos].

    PubMed

    Hu, Xuan; Li, Wei-dong; Li, Ou; Hao, Jiang-bo; Liu, Jia-kun

    2012-09-01

    To study the effect of gas-turbine green discoloring and drying processing method on the quality of various Lonicerae Japonicae Flos herbs. DIKMA DiamonsilTM-C18 column (4.6 mm x 250 mm, 5 microm) was adopted using HPLC Waters 1525 and eluted with acetonitrile and 0.1% phosphate acid as the mobile phase. The flow rate was 1.0 mL x min(-1) , the column temperature was 25 degrees C the detection wavelength was 355 nm. After being processed by the gas-turbine green discoloring and drying method, tetraploid Lonicerae Japonicae Flos showed a green color. The contents of chlorogenic acid and galuteolin were 5.31% and 0.105% , both significantly higher by 18.0% and 32.1% than those of diploid Lonicerae Japonicae Flos processed by the same method. The content of chlorogenic acid in tetraploid Lonicerae Japonicae Flos processed the gas-turbine green discoloring and drying method were also remarkably higher than that of tetraploid and diploid Lonicerae Japonicae Flos processed by traditional processing method of natural drying. The gas-turbine green discoloring and drying processing method is a new-type drying method suitable for tetraploid Lonicerae Japonicae Flos. Under the condition of gas-turbine green discoloring and drying processing, tetraploid Lonicerae Japonicae Flos shows much higher quality than Lonicerae Japonicae Flos, suggesting that it is a good variety worth popularizing and applying.

  13. Laminaria japonica Extract, an Inhibitor of Clavibater michiganense Subsp. Sepedonicum

    PubMed Central

    Cai, Jin; Feng, Jia; Xie, Shulian; Wang, Feipeng; Xu, Qiufeng

    2014-01-01

    Bacterial ring rot of potato is one of the most serious potato plant and tuber diseases. Laminaria japonica extract was investigated for its antimicrobial activity against Clavibater michiganense subsp. sepedonicum (Spieckermann & Kotthoff) Davis et al., the causative agent of bacterial ring rot of potato. The results showed that the optimum extraction conditions of antimicrobial substances from L. japonica were an extraction temperature of 80°C, an extraction time of 12 h, and a solid to liquid ratio of 1∶25. Active compounds of L. japonica were isolated by solvent partition, thin layer chromatography (TLC) and column chromatography. All nineteen fractionations had antimicrobial activities against C. michiganense subsp. sepedonicum, while Fractionation three (Fr.3) had the highest (P<0.05) antimicrobial activity. Chemical composition analysis identified a total of 26 components in Fr.3. The main constituents of Fr.3 were alkanes (80.97%), esters (5.24%), acids (4.87%) and alcohols (2.21%). Antimicrobial activity of Fr.3 against C. michiganense subsp. sepedonicum could be attributed to its ability to damage the cell wall and cell membrane, induce the production of reactive oxygen species (ROS), increase cytosolic Ca2+ concentration, inhibit the glycolytic pathway (EMP) and tricarboxylic acid (TCA) cycle, inhibit protein and nucleic acid synthesis, and disrupt the normal cycle of DNA replication. These findings indicate that L. japonica extracts have potential for inhibiting C. michiganense subsp. sepedonicum. PMID:24714388

  14. Microcosm investigation of growth and phytoremediation potential of Azolla japonica along nitrogen gradients.

    PubMed

    Park, Hun; Song, Uhram

    2017-10-03

    Although Azolla species are among the most promising plants for use in phytoremediation, more studies on their growth and nitrogen (N) uptake along the N gradients of growing media are required. In this study, N concentration-dependent growth in growing media and phosphorus (P) and N accumulation by Azolla japonica were studied by estimating direct N uptake from media by molybdenum-iron proteins. The doubling time of A. japonica was less than a week, regardless of the N concentration (0, 5, and 25 mg N/L) present in the growth media, indicating that this plant is suitable for remediation. Plants showed a high uptake of P, probably via plant-bacteria symbiosis, indicating their potential for effective P remediation. A. japonica also showed more than 4% N content regardless of the treatment and accumulated more than 40 mg of N per microcosm in 3 weeks. iron and molybdenum levels in plants were strongly associated with N fixation, and N uptake from media was estimated to be more than 25 mg per microcosm in 3 weeks, indicating that A. japonica has N remediation potential. As A. japonica is a rapidly growing plant, capable of efficient P and N remediation, it has great potential for use in phytoremediation of nutrient-enriched waters such as agricultural or urban wastewater and eutrophicated aquatic ecosystems.

  15. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  16. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  17. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  18. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  19. 50 CFR 226.215 - Critical habitat for the North Pacific Right Whale (Eubalaena japonica).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Right Whale (Eubalaena japonica). 226.215 Section 226.215 Wildlife and Fisheries NATIONAL MARINE... DESIGNATED CRITICAL HABITAT § 226.215 Critical habitat for the North Pacific Right Whale (Eubalaena japonica). (a) Primary Constituent Elements. The primary constituent elements of the North Pacific right whale...

  20. Exploiting genes and functional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes.

    PubMed

    Yuan, Yuan; Wang, Zhouyong; Jiang, Chao; Wang, Xumin; Huang, Luqi

    2014-01-25

    Chlorogenic acids (CGAs) and luteolin are active compounds in Lonicera japonica, a plant of high medicinal value in traditional Chinese medicine. This study provides a comprehensive overview of gene families involved in chlorogenic acid and luteolin biosynthesis in L. japonica, as well as its substitutes Lonicera hypoglauca and Lonicera macranthoides. The gene sequence feature and gene expression patterns in various tissues and buds of the species were characterized. Bioinformatics analysis revealed that 14 chlorogenic acid and luteolin biosynthesis-related genes were identified from the L. japonica transcriptome assembly. Phylogenetic analyses suggested that the function of individual gene could be differentiation and induce active compound diversity. Their orthologous genes were also recognized in L. hypoglauca and L. macranthoides genomic datasets, except for LHCHS1 and LMC4H2. The expression patterns of these genes are different in the tissues of L. japonica, L. hypoglauca and L. macranthoides. Results also showed that CGAs were controlled in the first step of biosynthesis, whereas both steps controlled luteolin in the bud of L. japonica. The expression of LJFNS2 exhibited positive correlation with luteolin levels in L. japonica. This study provides significant information for understanding the functional diversity of gene families involved in chlorogenic acid and the luteolin biosynthesis, active compound diversity of L. japonica and its substitutes, and the different usages of the three species. Copyright © 2012. Published by Elsevier B.V.

  1. The promoter of an A9 homolog from the conifer Cryptomeria japonica imparts male strobilus-dominant expression in transgenic trees.

    PubMed

    Kurita, Manabu; Konagaya, Ken-ichi; Watanabe, Atsushi; Kondo, Teiji; Ishii, Katsuaki; Taniguchi, Toru

    2013-02-01

    KEY MESSAGE : GUS analysis in Cryptomeria japonica revealed that the CjMALE1 promoter is activated in the male strobilus of C. japonica. Toward the development of male sterile technology for Cryptomeria japonica, a male strobilus-dominant promoter of C. japonica was isolated. The CjMALE1 gene was isolated from a male strobilus-specific suppression subtractive hybridization (SSH) library, and the promoter was isolated by the TAIL-PCR method. To characterize the CjMALE1 promoter, β-glucuronidase (GUS)-fused genes were constructed and introduced into C. japonica using Agrobacterium tumefaciens. GUS expression from CjMALE1-2.5 K (2,718 bp fragment)::GUS C. japonica and CjMALE1-1 K (1,029 bp fragment)::GUS C. japonica was detected in the tapetum and microspore mother cells. These promoter fragments were comparably active in the pre-meiotic stage of the male strobilus of C. japonica. Our analysis showed that the 1,029 bp promoter had all the cis-elements necessary for male strobilus-dominant expression of CjMALE1. When CjMALE1-1 K::GUS was introduced into Arabidopsis, GUS expression was detected in the same spatiotemporal pattern as in C. japonica. These results suggest that the CjMALE1 promoter is subject to transcriptional regulatory systems consisting of cis- and trans-elements that have been highly conserved during evolution.

  2. Duration of Temperature exposure controls growth of Zostera japonica: implications for zonation and colonization

    EPA Science Inventory

    At least two seagrass congeners in the genus Zostera are found along the Pacific Coast of North America: native Z. marina L. and the non-native Z. japonica Aschers. & Graebn. Efforts to understand the drivers behind the expanding colonization of Z. japonica have led to interest ...

  3. Development of SCAR markers for sex determination in the dioecious shrub Aucuba japonica (Cornaceae).

    PubMed

    Maki, Masayuki

    2009-03-01

    Two sex-linked fragments were identified by RAPD analyses in the dioecious diploid shrub Aucuba japonica var. ovoidea and were converted into markers of male-specific sequence characterized amplified region (SCAR) markers. PCRs using the primers designed in this study correctly discriminated 24 flowering males and 24 flowering females at higher annealing temperatures (SCAR markers OPA10-424 at 55 degrees C and OPN11-1095 at 65 degrees C), although at relatively low annealing temperatures, the fragments were amplified in both males and females. These SCAR primers were also tested to see whether they were applicable to sex identification in the conspecific tetraploid Aucuba japonica var. japonica. One set pf SCAR primers could be used for sex identification even in this tetraploid variety, although the other failed. The SCAR markers developed in this study will provide a powerful tool in identifying the sex of immature plants of dioecious A. japonica, which is a commercially valuable shrub due to its conspicuous fruits.

  4. Suppressive Effects of Tea Catechins on Breast Cancer

    PubMed Central

    Xiang, Li-Ping; Wang, Ao; Ye, Jian-Hui; Zheng, Xin-Qiang; Polito, Curt Anthony; Lu, Jian-Liang; Li, Qing-Sheng; Liang, Yue-Rong

    2016-01-01

    Tea leaf (Camellia sinensis) is rich in catechins, which endow tea with various health benefits. There are more than ten catechin compounds in tea, among which epigallocatechingallate (EGCG) is the most abundant. Epidemiological studies on the association between tea consumption and the risk of breast cancer were summarized, and the inhibitory effects of tea catechins on breast cancer, with EGCG as a representative compound, were reviewed in the present paper. The controversial results regarding the role of tea in breast cancer and areas for further study were discussed. PMID:27483305

  5. First occurrence of the non-native bryozoan Schizoporella japonica Ortmann (1890) in Western Europe.

    PubMed

    Ryland, John S; Holt, Rohan; Loxton, Jennifer

    2014-03-24

    Schizoporella japonica Ortmann was described from Japan but was subsequently introduced on Pacific oysters to the Pacific coast of North America, where it is now well established. In this paper we record it for the first time in European waters. The initial discovery was in a marina at Holyhead, North Wales, in July 2010 but S. japonica has since been observed abundantly in the Orkney Islands (from May 2011) and, subsequently, at other localities in northern Scotland. Introduction seems most likely to have been on an ocean-going vessel. The British material is here fully described and illustrated with SEMs and colour photographs; some unusual characters are discussed. Unlike other recently introduced bryozoans, S. japonica is a cold-water species and its breeding season in Britain extends through the winter. Extensive confusion between this and other species of Schizoporella on the west coast of Canada and the USA led us to make thorough morphometric comparisons between the species concerned (Schizoporella unicornis (Johnston in Wood), Schizoporella errata (Waters) and Schizoporella pseudoerrata Soule, Soule and Chaney). Zooid size in cheilostomate bryozoans is variable and often an unreliable character for species separation but shape (and therefore ratios between variables, which are independent of size) are often valuable: S. japonica zooids have a much greater length:width ratio than the other species. Density of frontal pseudopores provides a useful discriminatory character. Schizoporella unicornis, repeatedly reported in error from the Pacific coast of North America, does not occur there; it is a European species. Full comparisons are made between S. japonica and S. unicornis for European identification and between S. japonica, S. errata and S. pseudoerrata (which are also illustrated) for North American localities.

  6. Use of a pollen-based diet to expose the ladybird beetle Propylea japonica to insecticidal proteins.

    PubMed

    Zhang, Xiaojie; Li, Yunhe; Romeis, Jörg; Yin, Xinming; Wu, Kongming; Peng, Yufa

    2014-01-01

    A rape seed pollen-based diet was developed and found to be suitable for use in a dietary exposure assay for Propylea japonica. Using the diet, we established and validated a dietary exposure assay by using the protease inhibitor E-64 as positive control. Dose-dependent responses were documented for all observed life-table parameters of P. japonica including survival, pupation and eclosion rates, development time and adult weight. Results suggested that the dietary assay can detect the effects of insecticidal compounds on the survival and development of P. japonica. Using the established dietary assay, we subsequently tested the toxicity of Cry1Ab, Cry1Ac and Cry1F proteins that are expressed by transgenic maize, cotton or rice plants to P. japonica larvae. The diet containing E-64 was included as a positive control. Survival and development of P. japonica larvae were not adversely affected when the diet contained purified Cry1Ab, Cry1Ac, or Cry1F at 500 µg/g diet representing a worst-case exposure scenario. In contrast, P. japonica larvae were adversely affected when the diet contained E-64. The bioactivity and stability of the Cry proteins in the diet and Cry protein uptake by the ladybird larvae were confirmed by bioassay with a Cry-sensitive insect species and by ELISA. The current study describes a suitable experimental system for assessing the potential effects of gut-active insecticidal compounds on ladybird beetle larvae. The experiments with the Cry proteins demonstrate that P. japonica larvae are not sensitive to Cry1Ab, Cry1Ac and Cry1F.

  7. Newly discovered role of the heterotrophic nanoflagellate Katablepharis japonica, a predator of toxic or harmful dinoflagellates and raphidophytes.

    PubMed

    Kwon, Ji Eun; Jeong, Hae Jin; Kim, So Jin; Jang, Se Hyeon; Lee, Kyung Ha; Seong, Kyeong Ah

    2017-09-01

    Heterotrophic nanoflagellates are ubiquitous and known to be major predators of bacteria. The feeding of free-living heterotrophic nanoflagellates on phytoplankton is poorly understood, although these two components usually co-exist. To investigate the feeding and ecological roles of major heterotrophic nanoflagellates Katablepharis spp., the feeding ability of Katablepharis japonica on bacteria and phytoplankton species and the type of the prey that K. japonica can feed on were explored. Furthermore, the growth and ingestion rates of K. japonica on the dinoflagellate Akashiwo sanguinea-a suitable algal prey item-heterotrophic bacteria, and the cyanobacteria Synechococcus sp., as a function of prey concentration were determined. Among the prey tested, K. japonica ingested heterotrophic bacteria, Synechococcus sp., the prasinophyte Pyramimonas sp., the cryptophytes Rhodomonas salina and Teleaulax sp., the raphidophytes Heterosigma akashiwo and Chattonella ovata, the dinoflagellates Heterocapsa rotundata, Amphidinium carterae, Prorocentrum donghaiense, Alexandrium minutum, Cochlodinium polykrikoides, Gymnodinium catenatum, A. sanguinea, Coolia malayensis, and the ciliate Mesodinium rubrum, however, it did not feed on the dinoflagellates Alexandrium catenella, Gambierdiscus caribaeus, Heterocapsa triquetra, Lingulodinium polyedra, Prorocentrum cordatum, P. micans, and Scrippsiella acuminata and the diatom Skeletonema costatum. Many K. japonica cells attacked and ingested a prey cell together after pecking and rupturing the surface of the prey cell and then uptaking the materials that emerged from the ruptured cell surface. Cells of A. sanguinea supported positive growth of K. japonica, but neither heterotrophic bacteria nor Synechococcus sp. supported growth. The maximum specific growth rate of K. japonica on A. sanguinea was 1.01 d -1 . In addition, the maximum ingestion rate of K. japonica for A. sanguinea was 0.13ngC predator -1 d -1 (0.06 cells predator -1 d -1

  8. Low survivorship of dauer larva in the nematode Caenorhabditis japonica, a potential comparative system for a model organism, C. elegans.

    PubMed

    Tanaka, Ryusei; Okumura, Etsuko; Kanzaki, Natsumi; Yoshiga, Toyoshi

    2012-05-01

    The nematode dauer larva (DL) is a non-aging diapause stage. The DL of the model nematode Caenorhabditis elegans has been studied as a model system for aging and longevity. However, information on DL in other nematode species is limited. In this study, the survivorship, storage, energy consumption, and oxidative stress tolerance of Caenorhabditis japonica DL were examined. C. japonica is a close relative of C. elegans, but has species-specific phoretic associations with the shield bug Parastrachia japonensis. Also, its DL has a much longer lifespan than C. elegans in a biological setting. However, when C. japonica DLs were detached from their phoretic host, they did not survive more than 10 days while more than 80% of C. elegans survived under the same conditions. Also, C. japonica DL showed more active movement (swimming) and lower tolerance to oxidative stress than C. elegans DL. Because the concentration of triacylglycerol (TAG), the energy source of nematodes, did not decrease significantly during the experiment, exhaustion of the energy reservoir did not cause the low survivorship of C. japonica. Instead, low tolerance to oxidizing stress and increased production of reactive oxygen species in C. japonica were the main causes of the reduced survivorship. The fact that C. japonica DL cannot survive away from its insect host indicates that its longevity is increased by unknown factors derived from the host. Despite these significant differences between C. japonica and C. elegans, these two species are phylogenetically closely related (they are derived from a common ancestor). Therefore, C. japonica could be a good comparative system for C. elegans, and further physiological and molecular analyses of C. japonica DL may provide important information about the internal and external factors affecting the longevity of nematodes in general. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Comparative mitogenomic analysis of Aposthonia borneensis and Aposthonia japonica (Embioptera: Oligotomidae) reveals divergent evolution of webspinners.

    PubMed

    Chen, Zhi-Teng; Lü, Liang; Lu, Ming-Xing; Du, Yu-Zhou

    2017-08-15

    In this study, we report the complete mitochondrial genome (mitogenome, mtDNA) of Aposthonia borneensis and compare it with another sequenced webspinner, Aposthonia japonica. The A. borneensis mitogenome is smaller than A. japonica, but the size of each gene and the A + T content of protein-coding genes (PCGs) are almost identical in the two mitogenomes. Among the PCGs, atp6 shows the highest evolutionary rate and cox1 the lowest. The mtDNA map in A. borneensis is similar to Drosophila yakuba, but distinctly different from A. japonica, which has extensive rearrangement. Phylogenetic analyses dated the divergence time of the two webspinners at ca. 103 Ma. We speculate that the most recent common ancestor (MRCA) of A. borneensis and A. japonica was divided into several geographic groups during the Pangea breakup. Geographic isolation between the Japanese islands and the continental southeastern Asia resulted in the divergent evolution of A. borneensis and A. japonica, thus generating mtDNA structural variations between the two species. Based on the phylogenetic analyses and specific distributional features, the genus Aposthonia was supported as non-monophyly, and we speculate that both highly rearranged and relatively conserved mitogenomes exist in other webspinners.

  10. Induction of hsp70, hsp90, and catalase activity in planarian Dugesia japonica exposed to cadmium.

    PubMed

    Zhang, Xiufang; Mo, Yehua; Zhou, Luming; Wang, Yinan; Wang, Zhongchen; Zhao, Bosheng

    2016-08-01

    The hsp70 and hsp90 expression patterns and catalase (CAT) activity in the freshwater planaria Dugesia japonica exposed to cadmium (Cd) under laboratory conditions were investigated. Planaria were exposed to a range of Cd concentrations (0-150 μg Cd/L) for 24 h. The expression levels of hsp70 and hsp90 were determined by relative quantitative real-time polymerase chain reaction. Within the overall dose range in the experiment, the expression level of hsp70 and the activity of CAT in D. japonica were altered significantly. Hsp70 was induced in D. japonica upon Cd exposure concentrations as low as 9.375 μg Cd/L. No significant effect on the expression level of hsp90 was observed. Our findings demonstrated that stress gene hsp70, but not hsp90, was responsive to Cd contamination in D. japonica CAT activity was significantly induced at concentrations of 18.75, 37.5, and 75 μg Cd/L after 24-h exposure. We recommend that the use of hsp70 as a biomarker should be complemented by evidence of changes in other parameters, such as CAT activity, in D. japonica. © The Author(s) 2014.

  11. Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan.

    PubMed

    Chen, Chiou-Pin; Juang, Kai-Wei; Cheng, Chih-Hsin; Pai, Chuang-Wen

    2016-12-01

    Soil organic carbon (SOC) stocks can be altered through reforestation and cropping. We estimated the effects of land use on SOC stocks after natural deciduous forests replaced by crops and coniferous plantations by examining the vertical distribution of SOC stocks at different depth intervals in an adjacent Oolong tea (Camellia sinensis L.) plantation, Moso bamboo (Phyllostachys pubescens) forest, Japanese cedar (Cryptomeria japonica) forest, and Taiwania (Taiwania cryptomerioides) forest in central Taiwan. The main soil characteristics, soil nitrogen (N) content, and soil carbon to nitrogen (C/N) ratio were also determined. Different land uses resulted in significantly higher bulk density, lower cation exchange capacity, SOC, soil N, soil C/N ratio, and SOC stocks in croplands compared to forestlands. Due to the long-term application of chemical fertilizers, a significantly lower soil pH was found in the tea plantation. Croplands had a lower soil C/N ratio because of less C input into the soil and a higher mineralization rate of organic carbon during cultivation. Similar SOC stocks were found in Taiwania and Japanese cedar forests (148.5 and 151.8 Mg C ha -1 , respectively), while the tea plantation had comparable SOC stocks to the bamboo forest (101.8 and 100.5 Mg C ha -1 , respectively). Over 40% of SOC stocks was stored in croplands and over 56% was stored in forestland within the upper 10 cm of soil. Coniferous plantations can contribute to a higher SOC stock than croplands, and a significant difference can be found in the top 0-5 cm of soil.

  12. Synergy between antibiotics and natural agents results in increased antimicrobial activity against Staphylococcus epidermidis.

    PubMed

    Abidi, Syed Hani; Ahmed, Khalid; Sherwani, Sikander Khan; Kazmi, Shahana Urooj

    2015-09-27

    Staphylococcus epidermidis is one of the most frequent causes of biofilm-associated infections on indwelling medical devices. With the emergence of methicillin-resistant S. epidermidis (MRSE), there is an urgent need to discover novel active agents against a range of Gram-positive pathogens. We screened the clinical isolates of S. epidermidis for susceptibility/resistance against commonly prescribed antibiotics. Furthermore, we tested some natural agents alone and in combination with antibiotics to find possible synergistic antimicrobial effects. S. epidermidis clinical isolates were screened for susceptibility/resistance against vancomycin, erythromycin, tetracycline, chloramphenicol, ampicillin, ofloxacin, cephalexin, and gentamicin using the Kirby-Bauer disk diffusion method. The antimicrobial potential of Camellia sinensis, Juglans regia, and Hippophae rhamnoides alone and in combination with antibiotics were examined using the disk diffusion method, where the antimicrobial potential activity was measured in terms of formation of zones of inhibition. Most S. epidermidis isolates were found to be resistant to one or more antibiotics. Gentamycin and ofloxacin were found to be the most effective antibiotics against S. epidermidis isolates. Extracts of Hippophae rhamnoides, Juglans regia, and Camellia sinensis were found to be equally effective against S. epidermidis isolates. In combination with antibiotics, these extracts exhibited appreciable synergistic activity; the highest synergistic activity was observed with erythromycin and cephalexin. In the case of cephalexin, a reversion in resistance was observed. The plant extracts used in the study exhibited additive and synergistic antibacterial activity against S. epidermidis, hence providing an effective alternative to deal with the problem of multidrug resistance.

  13. Inhibition of Cyclic Adenosine Monophosphate-Specific Phosphodiesterase by Various Food Plant-Derived Phytotherapeutic Agents

    PubMed Central

    Pacjuk, Olga; Hernández-Huguet, Silvia; Körner, Johanna; Scherer, Katharina; Richling, Elke

    2017-01-01

    Background: Phosphodiesterases (PDEs) play a major role in the regulation of cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-mediated pathways. Their inhibitors exhibit anti-inflammatory, vasodilatory and antithrombotic effects. Therefore, consumption of foods with PDE-inhibiting potential may possess beneficial influence on the risk of cardiovascular diseases. Methods: Four plant extracts (Arbutus unedo, Camellia sinensis, Cynara scolymus, Zingiber officinale) with promising ingredient profiles and physiological effects were tested for their ability to inhibit cAMP-specific PDE in vitro in a radioactive assay. Results: Strawberry tree fruit (Arbutus unedo) and tea (Camellia sinensis) extracts did not inhibit PDE markedly. Alternatively, artichoke (Cynara scolymus) extract had a significant inhibitory influence on PDE activity (IC50 = 0.9 ± 0.1 mg/mL) as well as its flavone luteolin (IC50 = 41 ± 10 μM) and 3,4-dicaffeoylquinic acid (IC50 > 1.0 mM). Additionally, the ginger (Zingiber officinale) extract and one of its constituents, [6]-gingerol, significantly inhibited PDE (IC50 = 1.7 ± 0.2 mg/mL and IC50 > 1.7 mM, respectively). Crude fractionation of ginger extract showed that substances responsible for PDE inhibition were in the lipoid fraction (IC50 = 455 ± 19 μg/mL). Conclusions: A PDE-inhibitory effect was shown for artichoke and ginger extract. Whether PDE inhibition in vivo can be achieved through ingestion of artichoke or ginger extracts leading to physiological effects concerning cardiovascular health should be addressed in future research. PMID:29113064

  14. Consumption of Bt Maize Pollen Containing Cry1Ie Does Not Negatively Affect Propylea japonica (Thunberg) (Coleoptera: Coccinellidae).

    PubMed

    Li, Yonghui; Liu, Yanmin; Yin, Xinming; Romeis, Jörg; Song, Xinyuan; Chen, Xiuping; Geng, Lili; Peng, Yufa; Li, Yunhe

    2017-03-16

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) are prevalent predators and pollen feeders in East Asian maize fields. They are therefore indirectly (via prey) and directly (via pollen) exposed to Cry proteins within Bt -transgenic maize fields. The effects of Cry1Ie-producing transgenic maize pollen on the fitness of P. japonica was assessed using two dietary-exposure experiments in the laboratory. In the first experiment, survival, larval developmental time, adult fresh weight, and fecundity did not differ between ladybirds consuming Bt or non- Bt maize pollen. In the second experiment, none of the tested lethal and sublethal parameters of P. japonica were negatively affected when fed a rapeseed pollen-based diet containing Cry1Ie protein at 200 μg/g dry weight of diet. In contrast, the larval developmental time, adult fresh weight, and fecundity of P. japonica were significantly adversely affected when fed diet containing the positive control compound E-64. In both experiments, the bioactivity of the Cry1Ie protein in the food sources was confirmed by bioassays with a Cry1Ie-sensitive lepidopteran species. These results indicated that P. japonica are not affected by the consumption of Cry1Ie-expressing maize pollen and are not sensitive to the Cry1Ie protein, suggesting that the growing of Bt maize expressing Cry1Ie protein will pose a negligible risk to P. japonica .

  15. Stimulated parametric emission microscopy.

    PubMed

    Isobe, Keisuke; Kataoka, Shogo; Murase, Rena; Watanabe, Wataru; Higashi, Tsunehito; Kawakami, Shigeki; Matsunaga, Sachihiro; Fukui, Kiichi; Itoh, Kazuyoshi

    2006-01-23

    We propose a novel microscopy technique based on the four-wave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our proposed FWM technique can be used to obtain a one-dimensional image of ethanol-thinned Coumarin 120 solution sandwiched between a hole-slide glass and a cover slip, and a two-dimensional image of a leaf of Camellia sinensis.

  16. Morphology, taxonomic status and distribution of the opisthobranch mollusc Coryphella (s.l.) japonica from the central deep water basin of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Martynov, Alexander V.

    2013-02-01

    The opisthobranch fauna (Gastropoda: Opisthobranchia) of the deep sea basins of the Sea of Japan is reviewed. A detailed description of the most common deep sea nudibranch species Coryphella japonicaVolodchenko, 1941 is given based on materials from various expeditions (including R/V "Vityaz" cruises and SoJaBio project). Distinct morphological features of C. japonica are discussed and its valid taxonomic status is confirmed. The considerable radular variability of C. japonica for the first time is documented using a scanning electron microscope. Unique features of the bathymetric distribution of C. japonica ranging from shelf to the abyssal depths are discussed in connection with the "pseudabyssal area" concept. C. japonica was compared to its assumed synonym C. salmonacea, and to similar C. athadona. Material from all these species, including types of C. japonica, was examined externally, anatomically via dissection, and SEM. C. salmonacea is restricted to North Atlantic and Arctic only, whereas C. japonica inhabits NE Pacific including deep water basins of the Sea of Japan.

  17. Effects of salinity on survival of the exotic seagrass Zostera japonica subjected to extreme high temperature stress

    EPA Science Inventory

    Zostera japonica is a non-indigenous seagrass that is expanding along the Pacific Coast of North America. The ecophysiology of this seagrass is poorly studied and management of the species is fragmented. We collected Z. japonica plants from Padilla Bay, WA., Yaquina Bay and Coo...

  18. [Anti-radical activity of products of processing of holothurian Cucumaria japonica and their practical application for lipid stabilization].

    PubMed

    Tabakaeva, O V; Kalenik, T K; Tabakaev, A V

    2015-01-01

    Products of technological and biotechnological modification (acid and enzymatic hydrolyzates and hydrothermal extracts) of the holothurian Cucumariajaponica from the Far East region are the complex multicomponent systems containing biologically active agents of a sea origin that has to provide them biological activity. The research objective consisted in quantitative studying of anti-radical properties of acid, enzymatic hydrolyzates and hydrothermal extracts from soft fabrics of a holothurian from the Far East region (Cucumaria japonica) and their influence on oxidation of lipids in fat emulsion products. The reaction with stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was used as a model system. Radical relating activity of hydrolyzates and extracts from Cucumaria japonica varied over a wide range from 48 to 78%. The maximum radical binding activity was noted for acid hydrolyzates. The activity of the hydrolyzate from a nimbus and feelers of Cucumaria japonica was comparable with activity of ionol. It has been defined that levels of manifestation of anti-radical activity depended on a way of technological and biotechnological processing of raw materials. Studying of fractional composition of melanoidins of hydrolyzates and extracts from Cucumaria japonica established that they can be divided into fractions--with molecular masses about 10,000 and 1000 Da. The maximum content of melanoidins has been defined in fraction weighing about 1000 Da. Introduction of acid, enzymatic hydrolyzates and hydrothermal extracts from Cucumaria japonica in the composition of oil-fat emulsion systems allowed to slow down processes of lipid oxidation and triglyceride hydrolysis in mayonnaise. Introduction of hydrolyzates and hydrothermal extracts from Cucumaria japonica in an oil-fat emulsion product allowed to reduce peroxide value by 22-45%, acid value by 12-35% on the 90th days of storage. Acid hydrolysates of Cucumaria Japonica most significantly reduce the rate of

  19. Cytotoxic hydrolyzable tannins from Balanophora japonica.

    PubMed

    Jiang, Zhi-Hong; Wen, Xiao-Yun; Tanaka, Takashi; Wu, Shao-Yu; Liu, Zhongqiu; Iwata, Hiromi; Hirose, Yoko; Wu, Shuguang; Kouno, Isao

    2008-04-01

    Four hydrolyzable tannins named balanophotannins D-G ( 1- 4) were isolated from the aerial parts of the parasitic plant Balanophora japonica. Their structures were characterized on the basis of spectroscopic and chemical evidence. Balanophotannins D-G contain an oxidized hexahydroxydiphenoyl (HHDP) group. The absolute configurations of balanophotannins D ( 1) and F ( 3) were determined via the PGME method. Balanophotannin E ( 2) showed cytotoxicity to Hep G2 cancer cells with an IC 50 value of 4.22 microM.

  20. Combined Phytochemistry and Chemotaxis Assays for Identification and Mechanistic Analysis of Anti-Inflammatory Phytochemicals in Fallopia japonica

    PubMed Central

    Shen, Ming-Yi; Liu, Yan-Jun; Don, Ming-Jaw; Liu, Hsien-Yueh; Chen, Zeng-Weng; Mettling, Clément; Corbeau, Pierre; Chiang, Chih-Kang; Jang, Yu-Song; Li, Tzu-Hsuan; Young, Paul; Chang, Cicero L. T.; Lin, Yea-Lih; Yang, Wen-Chin

    2011-01-01

    Plants provide a rich source of lead compounds for a variety of diseases. A novel approach combining phytochemistry and chemotaxis assays was developed and used to identify and study the mechanisms of action of the active compounds in F. japonica, a medicinal herb traditionally used to treat inflammation. Based on a bioactivity-guided purification strategy, two anthranoids, emodin and physcion, were identified from F. japonica. Spectroscopic techniques were used to characterize its crude extract, fractions and phytochemicals. The crude extract, chloroform fraction, and anthranoids of F. japonica significantly inhibited CXCR4-mediated chemotaxis. Mechanistic studies showed that emodin and physcion inhibited chemotaxis via inactivating the MEK/ERK pathway. Moreover, the crude extract and emodin could prevent or treat type 1 diabetes in non-obese diabetic (NOD) mice. This study illustrates the applicability of a combinational approach for the study of anti-inflammatory medicine and shows the potential of F. japonica and its anthranoids for anti-inflammatory therapy. PMID:22087325

  1. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica.

    PubMed

    Zhang, Jingru; Wu, Minlin; Li, Weidong; Bai, Genben

    2017-12-01

    For many centuries, Lonicera japonica has been used as an effective herb for the treatment of inflammation and swelling because of the presence of bioactive components such as chlorogenic acid (CGA). To clarify the relationship between L. japonica hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (HQT) gene expression and CGA content, an HQT eukaryotic expression system was constructed using Gateway cloning. L. japonica callus transformed with HQT was obtained using Agrobacterium tumefaciens-mediated transformation. We found a positive correlation between CGA content, determined by High-Performance Liquid Chromatography (HPLC), and the expression of HQT, analyzed by semi-quantitative RT-PCR. This study demonstrates that the HQT gene positively regulates CGA synthesis and lays the foundation for further study into enhancing efficacious components of medicinal plants. Copyright © 2017. Published by Elsevier Masson SAS.

  2. Studies on the interaction of the Sophora japonica lectin and concanavalin A with erythrocytes and lymphocytes.

    PubMed Central

    Poretz, R D; Barth, R F

    1976-01-01

    The agglutinating activity of lectins from the seeds of Sophora japonica and Canavalia ensiformis (concanavalin A) with human and murine erythrocytes and lymphocytes have been compared to one another and related to the mitogenic and immunosuppressive properties of these purified proteins. The S. japonica lectin, which demonstrates blood group specificity, is more active than concanavalin A with human erythrocytes, but has a much lower reactivity than concanavalin A with murine red blood cells. Ficin treatment of human erythrocytes results in an increase in agglutinability by both lectins as well as causing the appearance of S. japonica lectin receptors on type O cells. Treatment of murine reythrocytes with ficin alone or followed by beta-galactosidase causes the cells to be more reactive with concanavalin A. Beta-Galactosidase alone has no observable affect on the cells. In contrast, the agglutinability of cells by the S. japonica lectin increases after ficin treatment but is not affected by beta-galaetosidose treatment either after or in the absence of ficinization. Murine lymphocytes react with both lectins in a manner paralleling the agglutination patterns of murine erythrocytes. The S. japonica lectin appears to be devoid of mitogenic and immuno-suppressive activity, in contrast to concanavalin A which suppresses the T helper-dependent antibody response to sheep erythrocytes. These results are discussed in terms of the types of lectin receptors on lymphocytes related to agglutination, induction of blastogenesis and immuno-suppression. PMID:955676

  3. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines

    PubMed Central

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-01-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs. PMID:27246799

  4. Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines.

    PubMed

    Guo, Jie; Xu, Xiaomei; Li, Wentao; Zhu, Wenyin; Zhu, Haitao; Liu, Ziqiang; Luan, Xin; Dai, Ziju; Liu, Guifu; Zhang, Zemin; Zeng, Ruizhen; Tang, Guang; Fu, Xuelin; Wang, Shaokui; Zhang, Guiquan

    2016-06-01

    Rice (Oryza sativa L.) is an important staple crop. The exploitation of the great heterosis that exists in the inter-subspecific crosses between the indica and japonica rice has long been considered as a promising way to increase the yield potential. However, the male and female sterility frequently occurred in the inter-subspecific hybrids hampered the utilization of the heterosis. Here we report that the inter-subspecific hybrid sterility in rice is mainly affected by the genes at Sb, Sc, Sd and Se loci for F1 male sterility and the gene at S5 locus for F1 female sterility. The indica-compatible japonica lines (ICJLs) developed by pyramiding the indica allele (S-i) at Sb, Sc, Sd and Se loci and the neutral allele (S-n) at S5 locus in japonica genetic background through marker-assisted selection are compatible with indica rice in pollen fertility and in spikelet fertility. These results showed a great promise of overcoming the inter-subspecific hybrid sterility and exploiting the heterosis by developing ICJLs.

  5. Study on creep properties of Japonica cooked rice and its relationship with rice chemical compositions and sensory evaluation

    USDA-ARS?s Scientific Manuscript database

    Creep properties of four varieties japonica cooked rice were tested using a Dynamic Mechanical Analyser (DMA Q800). The creep curve was described by Burgers model. The creep process of japonica cooked rice mainly consisted of retarded elastic deformation, epsilonR and viscous flow deformation, epsil...

  6. Expression of stress response HSP70 gene in Asian paddle crabs, Charybdis japonica, exposure to endocrine disrupting chemicals, bisphenol A (BPA) and 4-nonylphenol (NP)

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Ihn-Sil

    2013-06-01

    The Asian paddle crab, Charybdis japonica, is a potential bio-indicator reflecting marine sediment toxicity as well as a commercially important species living along coastal areas in Korea. This study investigated its stress response by looking at the heat shock protein (HSP70) gene of C. japonica when the organism is exposed to bisphenol A (BPA) and 4-nonylphenol (NP). We characterized partial sequence of HSP70 as the stressresponse gene of C. japonica. The nucleotide sequence of C. japonica HSP70 is over 90% homologous with the corresponding gene of other crabs. Phylogenetic tree analysis revealed a close relationship between C. japonica HSP70 and HSP70 in other species of lobster and shrimps. HSP70 mRNA transcripts were detected in all the examined tissues of C. japonica, with the highest level in gills, the organ that most frequently came into contact with the external BPA or NP-laden water. As no reference data were available for C. japonica crab exposure, the BPA and NP 24-h LC50 values have not been previously determined. The expression of the C. japonica HSP70 gene to various BPA or NP concentrations during short and longer times was assessed. Gene expression was significantly induced in concentration- and time-dependent manners after BPA or NP exposures. These results support the postulation that crab C. japonica HSP70 could be a potential stress response molecular marker to monitor marine ecosystems.

  7. Characterize and Gene Expression of Heat Shock Protein 90 in Marine Crab Charybdis japonica following Bisphenol A and 4-Nonylphenol Exposures.

    PubMed

    Park, Kiyun; Kwak, Ihn-Sil

    2014-01-01

    Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments.

  8. Six New Record Species of Whiteflies (Hemiptera: Aleyrodidae) Infesting Morus alba in China

    PubMed Central

    Wang, Ji-Rui; Song, Zao-Qin; Du, Yu-Zhou

    2014-01-01

    Abstract To determine the species of whiteflies occurring on mulberry, Morus alba L. (Rosales: Moraceae) in China, we collected samples in more than 87 sites in 16 provinces of China from 2008 to 2011. In total, 10 species, representing seven genera of the subfamily Aleyrodinae, were identified. Of these, six species are newly recorded on mulberry in China, namely, Aleuroclava ficicola Takahashi, Aleuroclava gordoniae (Takahashi), Aleurotrachelus camelliae (Kuwana), Bemisia afer (Priesner & Hosny), Bemisia tabaci Gennadius, and Pealius machili Takahashi. Information on the taxonomy, distribution, and host plants of the whitefly species found on mulberry in China, along with a brief description and illustrations of each species are provided. PMID:25368095

  9. Review on medicinal uses, pharmacological, phytochemistry and immunomodulatory activity of plants.

    PubMed

    Akram, M; Hamid, A; Khalil, A; Ghaffar, A; Tayyaba, N; Saeed, A; Ali, M; Naveed, A

    2014-01-01

    Since ancient times, plants have been an exemplary source of medicine. Researchers have discovered some important compounds from plants. The present work constitutes a review of the medicinal plants whose immunomodulant activity has been proven. We performed PUBMED, EMBASE, Google scholar searches for research papers of medicinal plants having immunomodulant activity. Medicinal plants used by traditional physicians or reported as having immunomodulant activity include Acacia concocinna, Camellia sinensis, Lawsonia inermis Linn, Piper longum Linn, Gelidium amansii, Petroselinum crispum, Plantago major and Allium sativum. Immunomodulant activities of some of these medicinal plants have been investigated. The medicinal plants documented have immunomodulant activity and should be further investigated via clinical trial.

  10. Effects of N,N-dimethylformamide on behaviour and regeneration of planarian Dugesia japonica.

    PubMed

    Zhang, Jianyong; Yuan, Zuoqing; Zheng, Mingyue; Sun, Yuqian; Wang, Youjun; Yang, Shudong

    2013-09-01

    In this study, the toxicity, behavioural and regeneration effects of dimethylformamide (DMF) on planarian Dugesia japonica were investigated. One control and six different concentrations of DMF (10 ppm, 100 ppm, 500 ppm, 1000 ppm, 5000 ppm and 10,000 ppm) were used in triplicate. The results showed that the mortality was directly proportional to the DMF concentration and planarian locomotor velocity (pLMV) was significantly reduced by increasing the exposure time and DMF concentration. pLMV of D. japonica was significantly reduced at a lower concentration of 10 ppm after 7 days of continuous exposure to DMF. The recovery of the motility of planarians pretreated with DMF was found to be time- and dose dependent, all planarians had complete recovery in their motility after 48 h. The appearance of auricles in regenerating animals was easily affected by DMF exposure in comparison with the appearance of eyespot. The present results suggest that the intact adult mobility in the aquatic planarian D. japonica is a more sensitive biomarker than mortality, and the appearance of auricles in regenerating animals is a more sensitive biomarker than eyespot.

  11. Changes in Rice Grain Quality of Indica and Japonica Type Varieties Released in China from 2000 to 2014.

    PubMed

    Feng, Fan; Li, Yajun; Qin, Xiaoliang; Liao, Yuncheng; Siddique, Kadambot H M

    2017-01-01

    China is the first country to use heterosis successfully for commercial rice production. This study compared the main quality characteristics (head rice rate, chalky rice rate, chalkiness degree, gel consistency, amylose content, and length-to-width ratio) of 635 rice varieties (not including upland and glutinous rice) released from 2000 to 2014 to establish the quality status and offer suggestions for future rice breeding for grain quality in China. In the past 15 years, grain quality in japonica rice and indica hybrid rice has improved. In japonica rice, inbred varieties have increased head rice rates and decreased chalkiness degree over time, while hybrid rice varieties have decreased chalky rice rates and chalkiness degree. In indica hybrid rice, the chalkiness degree and amylose contents have decreased and gel consistency has increased. Improvements in grain quality in indica inbred rice have been limited, with some increases in head rice rate and decreases in chalky rice rate and amylose content. From 2010 to 2014, the percentage of indica varieties meeting the Grade III national standard of rice quality for different quality traits was low, especially for chalky rice rate and chalkiness degree. Japonica varieties have more superior grain quality than indica rice in terms of higher head rice rates and gel consistency, lower chalky rice rates and chalkiness degree, and lower amylose contents, which may explain why the Chinese prefer japonica rice. The japonica rice varieties, both hybrid and inbred, had similar grain qualities, but this varied in indica rice with the hybrid varieties having higher grain quality than inbred varieties due to significantly better head rice rates and lower chalkiness degree. For better quality rice in future, the chalky rice rate and chalkiness degree should be improved in japonica rice along with most of the quality traits in indica rice.

  12. Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica.

    PubMed

    Kita, Jun; Kikkawa, Takashi; Asai, Takamasa; Ishimatsu, Atsushi

    2013-08-30

    We investigated the effects of elevated pCO2 in seawater both on the acute mortality and the reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica with the purpose of accumulating basic data for assessing potential environmental impacts of sub-sea geological storage of anthropogenic CO2 in Japan. Acute tests showed that nauplii of T. japonicus have a high tolerance to elevated pCO2 environments. Full life cycle tests on T. japonicus indicated NOEC=5800μatm and LOEC=37,000μatm. Adult B. japonica showed remarkable resistance to elevated pCO2 in the acute tests. Embryonic development of B. japonica showed a NOEC=1500μatm and LOEC=5400μatm. T. japonicus showed high resistance to elevated pCO2 throughout the life cycle and B. japonica are rather sensitive during the veliger stage when they started to form their shells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Characterize and Gene Expression of Heat Shock Protein 90 in Marine Crab Charybdis japonica following Bisphenol A and 4-Nonylphenol Exposures

    PubMed Central

    Park, Kiyun

    2014-01-01

    Objectives Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. Methods This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. Results The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Conclusions Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments. PMID:24955332

  14. Pharmacological assessment of methamphetamine-induced behavioral hyperactivity mediated by dopaminergic transmission in planarian Dugesia japonica.

    PubMed

    Tashiro, Natsuka; Nishimura, Kaneyasu; Daido, Kanako; Oka, Tomoe; Todo, Mio; Toshikawa, Asami; Tsushima, Jun; Takata, Kazuyuki; Ashihara, Eishi; Yoshimoto, Kanji; Agata, Kiyokazu; Kitamura, Yoshihisa

    2014-07-11

    The freshwater planarian Dugesia japonica has a simple central nervous system (CNS) and can regenerate complete organs, even a functional brain. Recent studies demonstrated that there is a great variety of neuronal-related genes, specifically expressed in several domains of the planarian brain. We identified a planarian dat gene, named it D. japonica dopamine transporter (Djdat), and analyzed its expression and function. Both in situ hybridization and immunofluorescence revealed that localization of Djdat mRNA and protein was the same as that of D. japonica tyrosine hydroxylase (DjTH). Although, dopamine (DA) content in Djdat(RNAi) planarians was not altered, Djdat(RNAi) planarians showed increased spontaneous locomotion. The hyperactivity in the Djdat(RNAi) planarians was significantly suppressed by SCH23390 or sulpiride pretreatment, which are D1 or D2 receptor antagonists, respectively. These results suggest that planarians have a Djdat ortholog and the ability to regulate dopaminergic neurotransmission and association with spontaneous locomotion. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Concentrating phenolic acids from Lonicera japonica by nanofiltration technology

    NASA Astrophysics Data System (ADS)

    Li, Cunyu; Ma, Yun; Li, Hongyang; Peng, Guoping

    2017-03-01

    Response surface analysis methodology was used to optimize the concentrate process of phenolic acids from Lonicera japonica by nanofiltration technique. On the basis of the influences of pressure, temperature and circulating volume, the retention rate of neochlorogenic acid, chlorogenic acid and 4-dicaffeoylquinic acid were selected as index, molecular weight cut-off of nanofiltration membrane, concentration and pH were selected as influencing factors during concentrate process. The experiment mathematical model was arranged according to Box-Behnken central composite experiment design. The optimal concentrate conditions were as following: nanofiltration molecular weight cut-off, 150 Da; solutes concentration, 18.34 µg/mL; pH, 4.26. The predicted value of retention rate was 97.99% under the optimum conditions, and the experimental value was 98.03±0.24%, which was in accordance with the predicted value. These results demonstrate that the combination of Box-Behnken design and response surface analysis can well optimize the concentrate process of Lonicera japonica water-extraction by nanofiltration, and the results provide the basis for nanofiltration concentrate for heat-sensitive traditional Chinese medicine.

  16. Golden Indica and Japonica rice lines amenable to deregulation.

    PubMed

    Hoa, Tran Thi Cuc; Al-Babili, Salim; Schaub, Patrick; Potrykus, Ingo; Beyer, Peter

    2003-09-01

    As an important step toward free access and, thus, impact of GoldenRice, a freedom-to-operate situation has been achieved for developing countries for the technology involved. Specifically, to carry the invention beyond its initial "proof-of-concept" status in a Japonica rice (Oryza sativa) cultivar, we report here on two transformed elite Indica varieties (IR64 and MTL250) plus one Japonica variety Taipei 309. Indica varieties are predominantly consumed in the areas with vitamin A deficiency. To conform with regulatory constraints, we changed the vector backbone, investigated the absence of beyond-border transfer, and relied on Agrobacterium tumefaciens-mediated transformation to obtain defined integration patterns. To avoid an antibiotic selection system, we now rely exclusively on phosphomannose isomerase as the selectable marker. Single integrations were given a preference to minimize potential epigenetic effects in subsequent generations. These novel lines, now in the T(3) generation, are highly valuable because they are expected to more readily receive approval for follow-up studies such as nutritional and risk assessments and for breeding approaches leading to locally adapted variety development.

  17. A tale of two seagrasses: Comparing the science and management of Zostera marina and Zostera japonica in the Pacific Northwest

    EPA Science Inventory

    On the Pacific coast of North America, at least two congeners of Zostera occur: native Zostera marina, and introduced, Z. japonica. Z. japonica is considered “invasive” and therefore, ecologically and economically harmful by some, while others consider it benign or perhaps benef...

  18. Antioxidant and isozyme features of two strains of Laminaria japonica (Phaeophyceae)

    NASA Astrophysics Data System (ADS)

    Wang, You; Tang, Xuexi; Li, Yongqi; Yu, Zhiming

    2007-01-01

    Healthy sporophytes of two gametophyte mutants of Laminaria japonica with different heat resistances: kelp 901 ( 901, with comparatively stronger heat-resistance) and Rongcheng No.1 ( RC, sensitive to heat stress), were respectively collected during October to December 2002 from Yantai and Rongcheng Sea Farm in the Shandong Peninsula of China. The contents of some biochemical materials and antioxidant capacity were analyzed under controlled laboratory conditions to identify if there is any relation between the overall antioxidant capacity and the heat-resistance in L. japonica and to understand possible mechanism of heat-resistance. Results show that: (1) the overall antioxidant capacity in healthy sporophyte of 901, such as vitamin E, polyphenol, and ascorbic acid contents and the enzymatic activity of SOD, POD, CAT, Gpx, PPO, and PAL, were not always higher than that of RC under controlled laboratory conditions, and no significance ( P>0.05) was shown in total antioxidant capacity (T-AOC) in 901 and RC. Result suggested that the difference in antioxidant capacity was not a decisive factor for different heat-resistances in L. japonica; (2) the simultaneous assay on isozymes was carried out using vertical polyacrylamide gel electrophoresis (PAGE). Considerable differences in peroxide (PRX), malate dehydrogenase (MDH), malic enzyme (ME), polyphenol oxidase (PPO) and glutamate dehydrogenase (GDH) were obtained in 901 and RC from either the band number, relative mobility ( R f ), or staining intensity, and ME could be used as an indicator to distinguish healthy sporophyte of 901 and RC under controlled laboratory conditions.

  19. Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)).

    PubMed

    Liu, Feng; Wang, Yu; Ding, Zhaotang; Zhao, Lei; Xiao, Jun; Wang, Linjun; Ding, Shibo

    2017-10-05

    Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Identification and characterisation of ROS modulator 1 in Lampetra japonica.

    PubMed

    Zhao, Chunhui; Feng, Bin; Cao, Ying; Xie, Peng; Xu, Jie; Pang, Yue; Liu, Xin; Li, Qingwei

    2013-08-01

    Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidise targets in biological systems. ROS are also considered important immune regulators. In this study, we identified a homologue of reactive oxygen species modulator 1 (Romo1) in the Japanese lamprey (Lampetra japonica). The L japonica Romo1 (Lj-Romo1) gene shares high sequence homology with the Romo1 genes of jawed vertebrates. Real-time quantitative PCR demonstrated the wide distribution of Lj-Romo1 in lamprey tissues. Furthermore, after the lampreys were stimulated with lipopolysaccharide (LPS), the level of Lj-Romo1 mRNA was markedly up-regulated in the liver, gill, kidney, and intestine tissues. Lj-Romo1 was localised to the mitochondria and has the capacity to increase the ROS level in cells. The results obtained in the present study will help us to understand the roles of Romo1 in ROS production and innate immune responses in jawless vertebrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Extremely Low Genomic Diversity of Rickettsia japonica Distributed in Japan.

    PubMed

    Akter, Arzuba; Ooka, Tadasuke; Gotoh, Yasuhiro; Yamamoto, Seigo; Fujita, Hiromi; Terasoma, Fumio; Kida, Kouji; Taira, Masakatsu; Nakadouzono, Fumiko; Gokuden, Mutsuyo; Hirano, Manabu; Miyashiro, Mamoru; Inari, Kouichi; Shimazu, Yukie; Tabara, Kenji; Toyoda, Atsushi; Yoshimura, Dai; Itoh, Takehiko; Kitano, Tomokazu; Sato, Mitsuhiko P; Katsura, Keisuke; Mondal, Shakhinur Islam; Ogura, Yoshitoshi; Ando, Shuji; Hayashi, Tetsuya

    2017-01-01

    Rickettsiae are obligate intracellular bacteria that have small genomes as a result of reductive evolution. Many Rickettsia species of the spotted fever group (SFG) cause tick-borne diseases known as "spotted fevers". The life cycle of SFG rickettsiae is closely associated with that of the tick, which is generally thought to act as a bacterial vector and reservoir that maintains the bacterium through transstadial and transovarial transmission. Each SFG member is thought to have adapted to a specific tick species, thus restricting the bacterial distribution to a relatively limited geographic region. These unique features of SFG rickettsiae allow investigation of how the genomes of such biologically and ecologically specialized bacteria evolve after genome reduction and the types of population structures that are generated. Here, we performed a nationwide, high-resolution phylogenetic analysis of Rickettsia japonica, an etiological agent of Japanese spotted fever that is distributed in Japan and Korea. The comparison of complete or nearly complete sequences obtained from 31 R. japonica strains isolated from various sources in Japan over the past 30 years demonstrated an extremely low level of genomic diversity. In particular, only 34 single nucleotide polymorphisms were identified among the 27 strains of the major lineage containing all clinical isolates and tick isolates from the three tick species. Our data provide novel insights into the biology and genome evolution of R. japonica, including the possibilities of recent clonal expansion and a long generation time in nature due to the long dormant phase associated with tick life cycles. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Maize Benefits the Predatory Beetle, Propylea japonica (Thunberg), to Provide Potential to Enhance Biological Control for Aphids in Cotton

    PubMed Central

    Ouyang, Fang; Men, Xingyuan; Yang, Bing; Su, Jianwei; Zhang, Yongsheng; Zhao, Zihua; Ge, Feng

    2012-01-01

    Background Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. Methodology The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008–2010. Principal Finding Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C3- to a C4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C4 resources within one week. Approximately 80–100% of the diet of P. japonica adults in maize originated from a C3-based resource in June, July and August, while approximately 80% of the diet originated from a C4-based resource in September. Conclusion/Significance Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton. PMID:22984499

  3. Quantifying Quality of Life and Disability of Patients with Advanced Schistosomiasis Japonica

    PubMed Central

    Jia, Tie-Wu; Utzinger, Jürg; Deng, Yao; Yang, Kun; Li, Yi-Yi; Zhu, Jin-Huan; King, Charles H.; Zhou, Xiao-Nong

    2011-01-01

    Background The Chinese government lists advanced schistosomiasis as a leading healthcare priority due to its serious health and economic impacts, yet it has not been included in the estimates of schistosomiasis burden in the Global Burden of Disease (GBD) study. Therefore, the quality of life and disability weight (DW) for the advanced cases of schistosomiasis japonica have to be taken into account in the re-estimation of burden of disease due to schistosomiasis. Methodology/Principal Findings A patient-based quality-of-life evaluation was performed for advanced schistosomiasis japonica. Suspected or officially registered advanced cases in a Schistosoma japonicum-hyperendemic county of the People's Republic of China (P.R. China) were screened using a short questionnaire and physical examination. Disability and morbidity were assessed in confirmed cases, using the European quality of life questionnaire with an additional cognitive dimension (known as the “EQ-5D plus”), ultrasonography, and laboratory testing. The age-specific DW of advanced schistosomiasis japonica was estimated based on patients' self-rated health scores on the visual analogue scale of the questionnaire. The relationships between health status, morbidity and DW were explored using multivariate regression models. Of 506 candidates, 215 cases were confirmed as advanced schistosomiasis japonica and evaluated. Most of the patients reported impairments in at least one health dimension, such as pain or discomfort (90.7%), usual activities (87.9%), and anxiety or depression (80.9%). The overall DW was 0.447, and age-specific DWs ranged from 0.378 among individuals aged 30–44 years to 0.510 among the elderly aged ≥60 years. DWs are positively associated with loss of work capacity, psychological abnormality, ascites, and active hepatitis B virus, while splenectomy and high albumin were protective factors for quality of life. Conclusions/Significance These patient-preference disability estimates

  4. INTERTIDAL SEDIMENT TEMPERATURE VARIANCE AS A POSSIBLE LIMITING FACTOR FOR EELGRASSES ZOSTERA MARINA AND ZOSTERA JAPONICA IN YAQUINA BAY, OR

    EPA Science Inventory

    The eelgrass species Zostera marina and Z. japonica co-occur in most Pacific Northwest estuaries; Z. marina is regarded as a native species, Z. japonica as non-indigenous, introduced in Yaquina Bay in approximately 1975. The mean tidal range is ~2 m, extreme ~3m. The vertical d...

  5. Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species.

    PubMed

    Hirao, Tomonori; Watanabe, Atsushi; Kurita, Manabu; Kondo, Teiji; Takata, Katsuhiko

    2008-06-23

    The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the

  6. A tale of two seagrasses: Comparing the science and management of Zostera marina and Zostera japonica in the Pacific Northwest - CERF

    EPA Science Inventory

    On the Pacific coast of North America, at least two congeners of Zostera occur: native Z. marina, and introduced, Z. japonica. Z. marina is protected by State and Federal laws as essential fish habitat. Z. japonica is considered “invasive” and therefore, ecologicall...

  7. Comprehensive evaluation of candidate reference genes for gene expression studies in Lysiphlebia japonica (Hymenoptera: Aphidiidae) using RT-qPCR.

    PubMed

    Gao, Xue-Ke; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lü, Li-Min; Zhang, Li-Juan; Zhu, Xiang-Zhen; Wang, Li; Lu, Hui; Cui, Jin-Jie

    2017-12-30

    Lysiphlebia japonica (Ashmead) is a predominant parasitoid of cotton-melon aphids in the fields of northern China with a proven ability to effectively control cotton aphid populations in early summer. For accurate normalization of gene expression in L. japonica using quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), reference genes with stable gene expression patterns are essential. However, no appropriate reference genes is L. japonica have been investigated to date. In the present study, 12 selected housekeeping genes from L. japonica were cloned. We evaluated the stability of these genes under various experimental treatments by RT-qPCR using four independent (geNorm, NormFinder, BestKeeper and Delta Ct) and one comparative (RefFinder) algorithm. We identified genes showing the most stable levels of expression: DIMT, 18S rRNA, and RPL13 during different stages; AK, RPL13, and TBP among sexes; EF1A, PPI, and RPL27 in different tissues, and EF1A, RPL13, and PPI in adults fed on different diets. Moreover, the expression profile of a target gene (odorant receptor 1, OR1) studied during the developmental stages confirms the reliability of the chosen selected reference genes. This study provides for the first time a comprehensive list of suitable reference genes for gene expression studies in L. japonica and will benefit subsequent genomics and functional genomics research on this natural enemy. Copyright © 2017. Published by Elsevier B.V.

  8. Ingestion of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac does not harm Propylea japonica larvae

    PubMed Central

    Liu, Yanmin; Liu, Qingsong; Wang, Yanan; Chen, Xiuping; Song, Xinyuan; Romeis, Jörg; Li, Yunhe; Peng, Yufa

    2016-01-01

    Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) is a prevalent pollen consumer in corn fields and is therefore exposed to insecticidal proteins contained in the pollen of insect-resistant transgenic corn cultivars expressing Cry proteins derived from Bacillus thuringiensis (Bt). In the present study, the potential effect of Cry1Ab/2Aj- or Cry1Ac-containing transgenic Bt corn pollen on the fitness of P. japonica larvae was evaluated. The results show that the larval developmental time was significantly shorter when P. japonica larvae were fed pollen from Bt corn cultivars rather than control pollen but that pupation rate, eclosion rate, and adult fresh weight were not significantly affected. In the feeding experiments, the stability of the Cry proteins in the food sources was confirmed. When Bt corn pollen passed through the gut of P. japonica, 23% of Cry1Ab/2Aj was digested. The results demonstrate that consumption of Bt corn pollen containing Cry1Ab/2Aj or Cry1Ac has no detrimental effect on P. japonica larvae; the shortened developmental time of larvae that consumed these proteins was likely attributable to unknown differences in the nutritional composition between the Bt-transgenic and control corn pollen. PMID:27005950

  9. Antiproliferative constituents in plants 14. Coumarins and acridone alkaloids from Boenninghausenia japonica NAKAI.

    PubMed

    Chaya, Norihito; Terauchi, Kazuko; Yamagata, Yuriko; Kinjo, Junei; Okabe, Hikaru

    2004-08-01

    The MeOH extracts of the ground part and the root of Boenninghausenia japonica NAKAI showed inhibitory activity against tumor cell growth. Fractionation of the extracts has resulted in isolation of 1,3-dihydroxy-4-(2'-hydroxy-3'-hydroxymethyl-3',4'-epoxy-butyl)-N-methylacridone, 1,3-dihydroxy-4-[(Z)-3'-hydroxy-3'-methyl-buten-1'-yl]-N-methylacridone, 3-(1',1'-dimethylallyl)-7-hydroxy-8-methoxy-2H-1-benzopyran-2-one, casegravol, cis-casegravol, and edgeworin in addition to 9 compounds reported from B. japonica and B. albiflora. The isolates from this plant and some related compounds were tested for antiproliferative activity against human gastric adenocarcinoma (MK-1), human uterus carcinoma (HeLa), and murine melanoma (B16F10) cells.

  10. De novo Transcriptome Analysis of Rhizoctonia solani AG1 IA Strain Early Invasion in Zoysia japonica Root.

    PubMed

    Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming

    2016-01-01

    Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.

  11. Plants used as food and medicine by Polish migrants in Misiones, Argentina.

    PubMed

    Kujawska, Monika; Pieroni, Andrea

    2015-01-01

    In this article we discuss the importance of food plants, both introduced and native, in the pharmacopoeia of the Polish community in Misiones, Argentina. Food species constitute a relevant portion of all botanicals used by Polish settlers in home therapies (41%), while introduced food species prevail among the continued herbal remedies used by the study group. We explain this pattern of use by food plant availability, their versatility as reflected in the number of medicinal applications, and also their importance in cross-cultural relations. Finally, we conclude that several food plants used by Polish migrants (e.g., Allium sativum, Mentha xpiperita, and Camellia sinensis) may have served to "strengthen" migrants' identity within the host country.

  12. Diaphorina citri Induces Huanglongbing-Infected Citrus Plant Volatiles to Repel and Reduce the Performance of Propylaea japonica.

    PubMed

    Lin, Yongwen; Lin, Sheng; Akutse, Komivi S; Hussain, Mubasher; Wang, Liande

    2016-01-01

    Transmission of plant pathogens through insect vectors is a complex biological process involving interactions between the host plants, insects, and pathogens. Simultaneous impact of the insect damage and pathogenic bacteria in infected host plants induce volatiles that modify not only the behavior of its insect vector but also of their natural enemies, such as parasitoid wasps. Therefore, it is essential to understand how insects such as the predator ladybird beetle responds to volatiles emitted from a host plant and how the disease transmission alters the interactions between predators, vector, pathogens, and plants. In this study, we investigated the response of Propylaea japonica to volatiles from citrus plants damaged by Diaphorina citri and Candidatus Liberibacter asiaticus through olfactometer bioassays. Synthetic chemical blends were also used to determine the active compounds in the plant volatile. The results showed that volatiles emitted by healthy plants attracted more P. japonica than other treatments, due to the presence of high quantities of D-limonene and beta-ocimene, and the lack of methyl salicylate. When using synthetic chemicals in the olfactory tests, we found that D-limonene attracted P. japonica while methyl salicylate repelled the predator. However, beta-ocimene attracted the insects at lower concentrations but repelled them at higher concentrations. These results indicate that P. japonica could not efficiently search for its host by using volatile cues emitted from psyllids- and Las bacteria-infected citrus plants.

  13. Variation of cleavage pattern permitting normal development in a sand dollar, Peronella japonica: comparison with other sand dollars.

    PubMed

    Amemiya, S; Arakawa, E

    1996-09-01

    Peronella japonica, a sand dollar, forms an abbreviated pluteus larva and metamorphoses within 3 days without feeding. In the present study, the cleavage pattern of Peronella embryos was found to be quite irregular in the vegetal blastomeres at the fourth cleavage. Less than half of the embryos examined formed four typical micromeres. The majority formed zero, one, two or three typical micromeres of regular size, and the blastomere(s) remaining in the vegetal-most region was atypical in size and/or its direction of division. Most embryos were able to form pluteus larvae and a considerable proportion of these metamorphosed into juvenile sea urchins, regardless of whether or not they had formed four typical micromeres of regular size, although embryos which formed no typical micromeres developed into pluteus larvae less frequently. The micromere progeny in Peronella embryos form skeletogenic mesenchyme cells. The average numbers of skeletogenic mesenchyme cells in the three sand dollar species, Clypeaster japonicus, Astriclypeus manni and P. japonica were 62, 122 and 219, respectively. In these species, the skeletogenic mesenchyme cell-specific glycoprotein (msp130) was first detected immediately after ingression of the primary mesenchyme cells, spicules appeared at the early gastrula stage and triradiate spicules were found in late gastrulae. Appearance of these characteristics was markedly accelerated in the embryos of A. manni and P. japonica in comparison with those of C. japonicus. Each step in the formation of larval spicules was equally accelerated in A. manni and P. japonica, although the appearance of the adult skeleton was further accelerated in P. japonica in comparison with A. manni, possibly because of omission of the four- to eight-armed pluteus stages.

  14. De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways.

    PubMed

    Rai, Amit; Kamochi, Hidetaka; Suzuki, Hideyuki; Nakamura, Michimi; Takahashi, Hiroki; Hatada, Tomoki; Saito, Kazuki; Yamazaki, Mami

    2017-01-01

    Lonicera japonica is one of the most important medicinal plants with applications in traditional Chinese and Japanese medicine for thousands of years. Extensive studies on the constituents of L. japonica extracts have revealed an accumulation of pharmaceutically active metabolite classes, such as chlorogenic acid, luteolin and other flavonoids, and secoiridoids, which impart characteristic medicinal properties. Despite being a rich source of pharmaceutically active metabolites, little is known about the biosynthetic enzymes involved, and their expression profile across different tissues of L. japonica. In this study, we performed de novo transcriptome assembly for L. japonica, representing transcripts from nine different tissues. A total of 22 Gbps clean RNA-seq reads from nine tissues of L. japonica were used, resulting in 243,185 unigenes, with 99,938 unigenes annotated based on a homology search using blastx against the NCBI-nr protein database. Unsupervised principal component analysis and correlation studies using transcript expression data from all nine tissues of L. japonica showed relationships between tissues, explaining their association at different developmental stages. Homologs for all genes associated with chlorogenic acid, luteolin, and secoiridoid biosynthesis pathways were identified in the L. japonica transcriptome assembly. Expression of unigenes associated with chlorogenic acid was enriched in stems and leaf-2, unigenes from luteolin were enriched in stems and flowers, while unigenes from secoiridoid metabolic pathways were enriched in leaf-1 and shoot apex. Our results showed that different tissues of L. japonica are enriched with sets of unigenes associated with specific pharmaceutically important metabolic pathways and, therefore, possess unique medicinal properties. The present study will serve as a resource for future attempts for functional characterization of enzyme coding genes within key metabolic processes.

  15. Impact of Tributyltin and Triphenyltin on Ivory Shell (Babylonia japonica) Populations

    PubMed Central

    Horiguchi, Toshihiro; Kojima, Mitsuhiro; Hamada, Fumihiko; Kajikawa, Akira; Shiraishi, Hiroaki; Morita, Masatoshi; Shimizu, Makoto

    2006-01-01

    We histopathologically examined gonads and chemically determined organotin compounds in tissues of the ivory shell, Babylonia japonica. Imposex (a superimposition of male-type genital organs on females) occurred in approximately 80–90% of B. japonica specimens that we examined, with the penis and vas deferens both well developed. No oviduct blockage by vas deferens formation was observed. Ovarian spermatogenesis and suppressed ovarian maturation were observed in the females that exhibited imposex, although no histopathological abnormalities were found in males. Tissue distributions of organotin compounds [tributyltin (TBT), triphenyltin (TPhT), and their metabolites] were different for butyltins and phenyltins; a remarkably high accumulation of TBT was observed in the ctenidium, osphradium, and heart, whereas high concentrations of TPhT were detected in the ovary and digestive gland. More than one-third of TBT accumulated in the digestive glands of both males and females, followed by the testis, ctenidium, muscle, and heart tissues in males and in the muscle, ovary, ctenidium, and head tissues (including the central nervous system ganglia) in females. In both males and females, more than half of total TPhT accumulated in the digestive glands, followed by the gonads. The next highest values were in the muscle, ctenidium, and heart tissues in males and in the muscle, oviduct, and head tissues in females. Both TBT and TPhT concentrations in the gonads were positively correlated with penis length in females. Our findings strongly suggest that reproductive failure in adult females accompanied by imposex, possibly induced by TBT and TPhT from antifouling paints, may have caused the marked decline of B. japonica populations in Japan. PMID:16818241

  16. Impact of tributyltin and triphenyltin on ivory shell (Babylonia japonica) populations.

    PubMed

    Horiguchi, Toshihiro; Kojima, Mitsuhiro; Hamada, Fumihiko; Kajikawa, Akira; Shiraishi, Hiroaki; Morita, Masatoshi; Shimizu, Makoto

    2006-04-01

    We histopathologically examined gonads and chemically determined organotin compounds in tissues of the ivory shell, Babylonia japonica. Imposex (a superimposition of male-type genital organs on females) occurred in approximately 80-90% of B. japonica specimens that we examined, with the penis and vas deferens both well developed. No oviduct blockage by vas deferens formation was observed. Ovarian spermatogenesis and suppressed ovarian maturation were observed in the females that exhibited imposex, although no histopathological abnormalities were found in males. Tissue distributions of organotin compounds [tributyltin (TBT), triphenyltin (TPhT), and their metabolites] were different for butyltins and phenyltins; a remarkably high accumulation of TBT was observed in the ctenidium, osphradium, and heart, whereas high concentrations of TPhT were detected in the ovary and digestive gland. More than one-third of TBT accumulated in the digestive glands of both males and females, followed by the testis, ctenidium, muscle, and heart tissues in males and in the muscle, ovary, ctenidium, and head tissues (including the central nervous system ganglia) in females. In both males and females, more than half of total TPhT accumulated in the digestive glands, followed by the gonads. The next highest values were in the muscle, ctenidium, and heart tissues in males and in the muscle, oviduct, and head tissues in females. Both TBT and TPhT concentrations in the gonads were positively correlated with penis length in females. Our findings strongly suggest that reproductive failure in adult females accompanied by imposex, possibly induced by TBT and TPhT from antifouling paints, may have caused the marked decline of B. japonica populations in Japan.

  17. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    PubMed Central

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282

  18. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst.

    PubMed

    Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.

  19. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon

    2014-08-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro- d-galactitol and 1,5-anhydro- d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.

  20. Rice, Japonica (Oryza sativa L.).

    PubMed

    Main, Marcy; Frame, Bronwyn; Wang, Kan

    2015-01-01

    The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events.

  1. Isolation and characterization of a SEPALLATA-like gene, ZjMADS1, from marine angiosperm Zostera japonica.

    PubMed

    Kakinuma, Makoto; Inoue, Miho; Morita, Teruwo; Tominaga, Hiroshi; Maegawa, Miyuki; Coury, Daniel A; Amano, Hideomi

    2012-05-01

    In flowering plants, floral homeotic MADS-box genes, which constitute a large multigene family, play important roles in the specification of floral organs as defined by the ABCDE model. In this study, a MADS-box gene, ZjMADS1, was isolated and characterized from the marine angiosperm Zostera japonica. The predicted length of the ZjMADS1 protein was 246 amino acids (AA), and the AA sequence was most similar to those of the SEPALLATA (SEP) subfamily, corresponding to E-function genes. Southern blot analysis suggested the presence of two SEP3-like genes in the Z. japonica genome. ZjMADS1 mRNA levels were extremely high in the spadices, regardless of the developmental stage, compared to other organs from the reproductive and vegetative shoots. These results suggest that the ZjMADS1 gene may be involved in spadix development in Z. japonica and act as an E-function gene in floral organ development in marine angiosperms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Expansion of the invasive dwarf eelgrass, Zostera japonica, in Yaquina Bay, Oregon

    EPA Science Inventory

    The areal coverage of the non-indigenous dwarf eelgrass, Zostera japonica, is increasing in several estuaries on the US West Coast. As a result, regulatory agencies in the states of California and Washington are considering methods of controlling its expansion. Factors relevan...

  3. Dwarf eelgrass, Zostera japonica: a malevolent, benevolent, or benign invasive ecosystem engineer?

    EPA Science Inventory

    Dwarf eelgrass, Zostera japonica, is an introduced ecosystem engineering species first reported on the US west coast in 1957. In some US Pacific Northwest estuaries its areal coverage now exceeds that of the native eelgrass species, Zostera marina. Natural resource management’s...

  4. Unusual coelom formation in the direct-type developing sand dollar Peronella japonica.

    PubMed

    Tsuchimoto, Jun; Yamada, Toshihiro; Yamaguchi, Masaaki

    2011-11-01

    Peronella japonica is a sand dollar with a zygote that develops into an abbreviated pluteus but then metamorphoses on day three. The adult rudiment formation is unique; it uses a median position of the hydrocoel and a stomodeum-like invagination of vestibule that covers the dorsal side of the hydrocoel. However, the developmental processes underlying coelom formation remain unclear. In this study, we examined this process by reconstructing three-dimensional images from serial sections of larvae. We show that the left coelom developed by both schizocoely and enterocoely from the archenteron tip, whereas the hydrocoel and right coelom formed by enterocoely from the archenteron. This coelom formation arranged the coelomic compartments directly along the adult oral-aboral axis by skipping the initial bilateral phases. Furthermore, our data indicate P. japonica retains ancestral asymmetry along the left-right axis in the location of the adult rudiment. Copyright © 2011 Wiley Periodicals, Inc.

  5. Sex change in the subdioecious shrub Eurya japonica (Pentaphylacaceae).

    PubMed

    Wang, Hui; Matsushita, Michinari; Tomaru, Nobuhiro; Nakagawa, Michiko

    2017-04-01

    Sex change affects the sex ratios of plant populations and may play an essential role in the evolutionary shift of sexual systems. Sex change can be a strategy for increasing fitness over the lifetime of a plant, and plant size, environmental factors, and growth rate may affect sex change. We described frequent, repeated sex changes following various patterns in a subdioecious Eurya japonica population over five successive years. Of the individuals, 27.5% changed their sex at least once, and these changes were unidirectional or bidirectional. The sex ratio (females/males/all hermaphrodite types) did not fluctuate over the 5 years. In our study plots, although the current sex ratio among the sexes appears to be stable, the change in sex ratio may be slowly progressing toward increasing females and decreasing males. Sex was more likely to change with higher growth rates and more exposure to light throughout the year. Among individuals that changed sex, those that were less exposed to light in the leafy season and had less diameter growth tended to shift from hermaphrodite to a single sex. Therefore, sex change in E . japonica seemed to be explained by a response to the internal physiological condition of an individual mediated by intrinsic and abiotic environmental factors.

  6. Identity and specificity of Rhizoctonia-like fungi from different populations of Liparis japonica (Orchidaceae) in Northeast China.

    PubMed

    Ding, Rui; Chen, Xu-Hui; Zhang, Li-Jun; Yu, Xiao-Dan; Qu, Bo; Duan, Ru; Xu, Yu-Feng

    2014-01-01

    Mycorrhizal association is known to be important to orchid species, and a complete understanding of the fungi that form mycorrhizas is required for orchid ecology and conservation. Liparis japonica (Orchidaceae) is a widespread terrestrial photosynthetic orchid in Northeast China. Previously, we found the genetic diversity of this species has been reduced recent years due to habitat destruction and fragmentation, but little was known about the relationship between this orchid species and the mycorrhizal fungi. The Rhizoctonia-like fungi are the commonly accepted mycorrhizal fungi associated with orchids. In this study, the distribution, diversity and specificity of culturable Rhizoctonia-like fungi associated with L. japonica species were investigated from seven populations in Northeast China. Among the 201 endophytic fungal isolates obtained, 86 Rhizoctonia-like fungi were identified based on morphological characters and molecular methods, and the ITS sequences and phylogenetic analysis revealed that all these Rhizoctonia-like fungi fell in the same main clade and were closely related to those of Tulasnella calospora species group. These findings indicated the high mycorrhizal specificity existed in L. japonica species regardless of habitats at least in Northeast China. Our results also supported the wide distribution of this fungal partner, and implied that the decline of L. japonica in Northeast China did not result from high mycorrhizal specificity. Using culture-dependent technology, these mycorrhizal fungal isolates might be important sources for the further utilizing in orchids conservation.

  7. Next-Generation Sequencing of an 88-Year-Old Specimen of the Poorly Known Species Liagora japonica (Nemaliales, Rhodophyta) Supports the Recognition of Otohimella gen. nov.

    PubMed Central

    Suzuki, Masahiro; Segawa, Takahiro; Mori, Hiroshi; Akiyoshi, Ayumi; Ootsuki, Ryo; Kurihara, Akira; Sakayama, Hidetoshi; Kitayama, Taiju; Abe, Tsuyoshi; Kogame, Kazuhiro; Kawai, Hiroshi; Nozaki, Hisayoshi

    2016-01-01

    Liagora japonica is a red algal species distributed in temperate regions of Japan. This species has not been collected from its type locality on the Pacific coast of Japan since 1927 and seems to have become extinct in this area. For molecular characterization of L. japonica, we extracted DNA from the topotype material of L. japonica collected in 1927, analyzed seven genes using Illumina next-generation sequencing, and compared these data with sequences from modern samples of similar red algae collected from the Japan Sea coast of Japan. Both morphological and molecular data from modern samples and historical specimens (including the lectotype and topotype) suggest that the specimens from the Pacific and Japan Sea coasts of Japan should be treated as a single species, and that L. japonica is phylogenetically separated from the genus Liagora. Based on the phylogenetic results and examination of reproductive structures, we propose Otohimella japonica gen. et comb. nov., characterized morphologically by diffuse carposporophytes, undivided carposporangia, and involucral filaments initiated only from the cortical cell on the supporting cell. PMID:27388436

  8. Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica

    PubMed Central

    Zhao, Yao; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Wang, Xiao-Ping; Cui, Jin-Jie; Lei, Chao-Liang

    2016-01-01

    Plant varieties expressing the Bt (Bacillus thuringiensis) insecticidal proteins Cry1Ah and Cry2Ab have potential commercialization prospects in China. However, their potential effects on non-target arthropods (NTAs) remain uncharacterized. The cotton aphid Aphis gossypii is a worldwide pest that damages various important crops. The ladybeetle Propylea japonica is a common and abundant natural enemy in many cropping systems in East Asia. In the present study, the effects of Cry1Ah and Cry2Ab proteins on A. gossypii and P. japonica were assessed from three aspects. First, neither of the Cry proteins affected the growth or developmental characteristics of the two test insects. Second, the expression levels of the detoxification-related genes of the two test insects did not change significantly in either Cry protein treatment. Third, neither of the Cry proteins had a favourable effect on the expression of genes associated with the amino acid metabolism of A. gossypii and the nutrition utilization of P. japonica. In conclusion, the Cry1Ah and Cry2Ab proteins do not appear to affect the cotton aphid A. gossypii or the ladybeetle P. japonica. PMID:26829252

  9. Bacterial community composition in the gut content of Lampetra japonica revealed by 16S rRNA gene pyrosequencing.

    PubMed

    Zuo, Yu; Xie, Wenfang; Pang, Yue; Li, Tiesong; Li, Qingwei; Li, Yingying

    2017-01-01

    The composition of the bacterial communities in the hindgut contents of Lampetrs japonica was surveyed by Illumina MiSeq of the 16S rRNA gene. An average of 32385 optimized reads was obtained from three samples. The rarefaction curve based on the operational taxonomic units tended to approach the asymptote. The rank abundance curve representing the species richness and evenness was calculated. The composition of microbe in six classification levels was also analyzed. Top 20 members in genera level were displayed as the classification tree. The abundance of microorganisms in different individuals was displayed as the pie charts at the branch nodes in the classification tree. The differences of top 50 genera in abundance between individuals of lamprey are displayed as a heatmap. The pairwise comparison of bacterial taxa abundance revealed that there are no significant differences of gut microbiota between three individuals of lamprey at a given rarefied depth. Also, the gut microbiota derived from L. japonica displays little similarity with other aquatic organism of Vertebrata after UPGMA analysis. The metabolic function of the bacterial communities was predicted through KEGG analysis. This study represents the first analysis of the bacterial community composition in the gut content of L. japonica. The investigation of the gut microbiota associated with L. japonica will broaden our understanding of this unique organism.

  10. Identification and analysis of CYP450 genes from transcriptome of Lonicera japonica and expression analysis of chlorogenic acid biosynthesis related CYP450s.

    PubMed

    Qi, Xiwu; Yu, Xu; Xu, Daohua; Fang, Hailing; Dong, Ke; Li, Weilin; Liang, Chengyuan

    2017-01-01

    Lonicera japonica is an important medicinal plant that has been widely used in traditional Chinese medicine for thousands of years. The pharmacological activities of L. japonica are mainly due to its rich natural active ingredients, most of which are secondary metabolites. CYP450s are a large, complex, and widespread superfamily of proteins that participate in many endogenous and exogenous metabolic reactions, especially secondary metabolism. Here, we identified CYP450s in L. japonica transcriptome and analyzed CYP450s that may be involved in chlorogenic acid (CGA) biosynthesis. The recent availability of L. japonica transcriptome provided opportunity to identify CYP450s in this herb. BLAST based method and HMM based method were used to identify CYP450s in L. japonica transcriptome. Then, phylogenetic analysis, conserved motifs analysis, GO annotation, and KEGG annotation analyses were conducted to characterize the identified CYP450s. qRT-PCR was used to explore expression patterns of five CGA biosynthesis related CYP450s. In this study, 151 putative CYP450s with complete cytochrome P450 domain, which belonged to 10 clans, 45 families and 76 subfamilies, were identified in L. japonica transcriptome. Phylogenetic analysis classified these CYP450s into two major branches, A-type (47%) and non-A type (53%). Both types of CYP450s had conserved motifs in L. japonica . The differences of typical motif sequences between A-type and non-A type CYP450s in L. japonica were similar with other plants. GO classification indicated that non-A type CYP450s participated in more molecular functions and biological processes than A-type. KEGG pathway annotation totally assigned 47 CYP450s to 25 KEGG pathways. From these data, we cloned two LjC3Hs (CYP98A subfamily) and three LjC4Hs (CYP73A subfamily) that may be involved in biosynthesis of CGA, the major ingredient for pharmacological activities of L. japonica . qRT-PCR results indicated that two LjC3Hs exhibited oppositing expression

  11. Temporal pattern in biometrics and nutrient stoichiometry of the intertidal seagrass Zostera japonica and its adaptation to air exposure in a temperate marine lagoon (China): Implications for restoration and management.

    PubMed

    Zhang, Xiaomei; Zhou, Yi; Liu, Peng; Wang, Feng; Liu, Bingjian; Liu, Xujia; Yang, Hongsheng

    2015-05-15

    In coastal areas of China, the seagrass Zostera japonica has drastically decreased in the past decades. Swan Lake is an exception, where we found extensive areas of Z. japonica beds. The growth of Z. japonica in the lagoon exhibited strong seasonal variation. The maximum shoot density of 9880±2786 shoots m(-2) occurred in August. The maximum specific growth rate (SGR) of 4.99±1.99%⋅d(-1) was recorded in June 2012. SGR might be a good parameter for assessing the growth status of Z. japonica population. N and P contents in the rhizome were significantly lower than those in the leaf and leaf sheath. Lower C/P ratios suggested P enrichment of the seagrass. The occurrence of Z. japonica in Swan Lake was featured by adapting to the intertidal harsh environments. The transplantation method using sectioned rhizomes would be a potential way for restoration of degraded Z. japonica beds. The establishment of the Rongcheng Swan National Nature Reserve in China has contributed to the survival and expansion of Z. japonica in Swan Lake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. EFFECTS OF THE INVASIVE, NONINDIGENOUS SEAGRASS ZOSTERA JAPONICA ON NUTRIENT FLUXES BETWEEN THE WATER COLUMN AND BENTHOS IN A NE PACIFIC ESTUARY

    EPA Science Inventory

    Since its introduction in the early to mid-20th century, the Asian seagrass Zostera japonica has become established in marine and mesohaline portions of many estuaries in the Pacific Northwest. Z. japonica forms dense patches from 0.3-2.4m above mean lower low water, a zone that...

  13. Effects of road dust on the growth characteristics of Sophora japonica L. seedlings.

    PubMed

    Bao, Le; Qu, Laiye; Ma, Keming; Lin, Lin

    2016-08-01

    Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load, composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root-shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root-shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces. Copyright © 2016. Published by Elsevier B.V.

  14. Effects of several immunostimulants on phenoloxidase and hemocytes of the crab Charybdis japonica

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Yu, Miaomiao; Yang, Lingling; Shi, Zhenping; Sun, Wenjie; Cong, Rishan; Yang, Xiuxia; Jiang, Guojian

    2009-09-01

    To investigate the stimulating effects of immunostimulants on the autogenous immunocompetence of crabs and the possible mechanisms involved, the immunostimulating effects of β-1,3-glucan, lipopolysaccharide (LPS), inactivated Vibrio harveyi and Vibrio anguillarum on phenoloxidase (PO) and hemocytes of Charybdis japonica were investigated in this study. It was found that the yields and the enzymatic activities of purified PO in C. japonica increased significantly after the crabs were treated with immunostimulants, while the unit enzymatic activities remained almost the same. After treatment with β-1,3-glucan and LPS, the amount of rough endoplasmic reticulum (RER) and the number of mitochondria in both semigranular cells and granular cells increased greatly, and the number of cytoplasmic granules decreased but with enlarged volume. However, the corresponding characteristics of hyaline cells remained almost the same. On the other hand, the number of granules in semigranular cells decreased greatly, and the number of mitochondria of hyaline cells increased greatly, after treatment with inactivated vibrios. It may be concluded that the effect of polysaccharide immunostimulants on the innate immune system of C. japonica is different from that of inactivated vibrio immunostimulants. The immunity-enhancing mechanism of polysaccharides in crab autogenous immunocompetence is probably accomplished by the increased yields of PO and total PO activities, while that of inactivated vibrios is probably accomplished by the partially increased yields of PO and total PO activities as well as the significantly improved phagocytotic abilities of semigranular cells and hyaline cells.

  15. Slipping through the cracks: the taxonomic impediment conceals the origin and dispersal of Haminoea japonica, an invasive species with impacts to human health.

    PubMed

    Hanson, Dieta; Cooke, Samantha; Hirano, Yayoi; Malaquias, Manuel A E; Crocetta, Fabio; Valdés, Ángel

    2013-01-01

    Haminoea japonica is a species of opisthobranch sea slug native to Japan and Korea. Non-native populations have spread unnoticed for decades due to difficulties in the taxonomy of Haminoea species. Haminoea japonica is associated with a schistosome parasite in San Francisco Bay, thus further spread could have consequence to human health and economies. Anecdotal evidence suggests that H. japonica has displaced native species of Haminoea in North America and Europe, becoming locally dominant in estuaries and coastal lagoons. In this paper we study the population genetics of native and non-native populations of H. japonica based on mt-DNA data including newly discovered populations in Italy and France. The conclusions of this study further corroborate a Northeastern Japan origin for the non-native populations and suggest possible independent introductions into North America and Europe. Additionally, the data obtained revealed possible secondary introductions within Japan. Although non-native populations have experienced severe genetic bottlenecks they have colonized different regions with a broad range of water temperatures and other environmental conditions. The environmental tolerance of this species, along with its ability to become dominant in invaded areas and its association with a schistosome parasite, suggest H. japonica could be a dangerous invasive species.

  16. Slipping through the Cracks: The Taxonomic Impediment Conceals the Origin and Dispersal of Haminoea japonica, an Invasive Species with Impacts to Human Health

    PubMed Central

    Hanson, Dieta; Cooke, Samantha; Hirano, Yayoi; Malaquias, Manuel A. E.; Crocetta, Fabio; Valdés, Ángel

    2013-01-01

    Haminoea japonica is a species of opisthobranch sea slug native to Japan and Korea. Non-native populations have spread unnoticed for decades due to difficulties in the taxonomy of Haminoea species. Haminoea japonica is associated with a schistosome parasite in San Francisco Bay, thus further spread could have consequence to human health and economies. Anecdotal evidence suggests that H. japonica has displaced native species of Haminoea in North America and Europe, becoming locally dominant in estuaries and coastal lagoons. In this paper we study the population genetics of native and non-native populations of H. japonica based on mt-DNA data including newly discovered populations in Italy and France. The conclusions of this study further corroborate a Northeastern Japan origin for the non-native populations and suggest possible independent introductions into North America and Europe. Additionally, the data obtained revealed possible secondary introductions within Japan. Although non-native populations have experienced severe genetic bottlenecks they have colonized different regions with a broad range of water temperatures and other environmental conditions. The environmental tolerance of this species, along with its ability to become dominant in invaded areas and its association with a schistosome parasite, suggest H. japonica could be a dangerous invasive species. PMID:24098588

  17. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content.

    PubMed

    Nagakura, Junko; Shigenaga, Hidetoshi; Akama, Akio; Takahashi, Masamichi

    2004-11-01

    To investigate the effects of soil water content on growth and transpiration of Japanese cedar (Cryptomeria japonica D. Don) and Hinoki cypress (Chamaecyparis obtusa (Siebold et Zucc.) Endl.), potted seedlings were grown in well-watered soil (wet treatment) or in drying soil (dry treatment) for 12 weeks. Seedlings in the wet treatment were watered once every 2 or 3 days, whereas seedlings in the dry treatment were watered when soil water content (Theta; m3 m(-3)) reached 0.30, equivalent to a soil matric potential of -0.06 MPa. From Weeks 7 to 12 after the onset of the treatments, seedling transpiration was measured by weighing the potted seedlings. After the last watering, changes in transpiration rate during soil drying were monitored intensely. The dry treatment restricted aboveground growth but increased biomass allocation to the roots in both species, resulting in no significant treatment difference in whole-plant biomass production. The species showed similar responses in relative growth rate (RGR), net assimilation rate (NAR) and shoot mass ratio (SMR) to the dry treatment. Although NAR did not change significantly in either C. japonica or C. obtusa as the soil dried, the two species responded differently to the dry treatment in terms of mean transpiration rate (E) and water-use efficiency (WUE), which are parameters that relate to NAR. In the dry treatment, both E and WUE of C. japonica were stable, whereas in C. obtusa, E decreased and WUE increased (E and WUE counterbalanced to maintain a constant NAR). Transpiration rates were lower in C. obtusa seedlings than in C. japonica seedlings, even in well-watered conditions. During soil drying, the transpiration rate decreased after Theta reached about 0.38 (-0.003 MPa) in C. obtusa and 0.32 (-0.028 MPa) in C. japonica. We conclude that C. obtusa has more water-saving characteristics than C. japonica, particularly when water supply is limited.

  18. Evolution and Expansion of the Prokaryote-Like Lipoxygenase Family in the Brown Alga Saccharina japonica

    PubMed Central

    Teng, Linhong; Han, Wentao; Fan, Xiao; Xu, Dong; Zhang, Xiaowen; Dittami, Simon M.; Ye, Naihao

    2017-01-01

    Lipoxygenase (LOX) plays important roles in fatty acid oxidation and lipid mediator biosynthesis. In this study, we give first insights into brown algal LOX evolution. Whole genome searches revealed four, three, and eleven LOXs in Ectocarpus siliculosus, Cladosiphon okamuranus, and Saccharina japonica, respectively. In phylogenetic analyses, LOXs from brown algae form a robust clade with those from prokaryotes, suggesting an ancestral origin and slow evolution. Brown algal LOXs were divided into two clades, C1 and C2 in a phylogenetic tree. Compared to the two species of Ectocarpales, LOX gene expansion occurred in the kelp S. japonica through tandem duplication and segmental duplication. Selection pressure analysis showed that LOX genes in brown algae have undergone strong purifying selection, while the selective constraint in the C2 clade was more relaxed than that in the C1 clade. Furthermore, within each clade, LOXs of S. japonica evolved under more relaxed selection constraints than E. siliculosus and C. okamuranus. Structural modeling showed that unlike LOXs of plants and animals, which contain a β barrel in the N-terminal part of the protein, LOXs in brown algae fold into a single domain. Analysis of previously published transcriptomic data showed that LOXs in E. siliculosus are responsive to hyposaline, hypersaline, oxidative, and copper stresses. Moreover, clear divergence of expression patterns was observed among different life stages, as well as between duplicate gene pairs. In E. siliculosus, all four LOXs are male-biased in immature gametophytes, and mature gametophytes showed significantly higher LOX mRNA levels than immature gametophytes and sporophytes. In S. japonica, however, our RNA-Seq data showed that most LOXs are highly expressed in sporophytes. Even the most recently duplicated gene pairs showed divergent expression patterns, suggesting that functional divergence has likely occurred since LOX genes duplicated, which potentially contributes

  19. Temperature trumps light: Teasing apart interactive factors controlling non-indigenous Zostera japonica growth

    EPA Science Inventory

    In the Pacific Northwest Zostera marina and Z. japonica co-exist by occupying separate elevation niches. We conducted two mesocosm experiments to evaluate light and temperature as factors controlling the disjunct distribution of congeners. The first study tests the hypothesis t...

  20. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota.

    PubMed

    Kong, Qing; Dong, Shiyuan; Gao, Jian; Jiang, Chaoyu

    2016-10-01

    In vitro fermentation of the sulfated polysaccharides from seaweeds Enteromorpha prolifera and Laminaria japonica and their prebiotic effects on human fecal microbiota were investigated in this study. The sulfated polysaccharides were fermented in vitro for 48h by human fecal cultures. When 0.8g MWCOL (polysaccharides MWCO<30kD) from L. japonica was fermented, the pH in fecal cultures decreased from 6.5 to 5.1 and the levels of short chain fatty acids, such as acetic, butyric and lactic acids all significantly increased. After 48h fermentation, 0.8g MWCOL showed good effect on modulating the gut microflora balance, because the beneficial strains (Lactobacillus and Bifidobacterium) were both significantly higher than those in control group (p<0.05). As far as we know, this is the first report that consumption of sulfated polysaccharides from E. prolifera and L. japonica is beneficial to the ecosystem of the intestinal tract by increasing the populations of probiotics and short chain fatty acids. Furthermore, our reports indicated that molecular weight of sulfated polysaccharide from marine algae is related to its prebiotic effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    PubMed

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  2. Identification of seedling vigor-associated quantitative trait loci in temperate japonica rice

    USDA-ARS?s Scientific Manuscript database

    A quantitative trait loci (QTL) analysis of seedling vigor traits was conducted under dry-seeded conditions using 176 recombinant inbred lines developed from a cross of two California temperate japonica rice varieties M-203 and M-206. Height at early seedling (HES) and late seedling (HLS) stage, gro...

  3. Sympatric Spawning but Allopatric Distribution of Anguilla japonica and Anguilla marmorata : Temperature- and Oceanic Current-Dependent Sieving

    PubMed Central

    Han, Yu-San; Yambot, Apolinario V.; Zhang, Heng; Hung, Chia-Ling

    2012-01-01

    Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24°C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them “temperate” and “tropical” eels, respectively. PMID:22675481

  4. Potentiating effects of honey on antioxidant properties of lemon-flavoured black tea.

    PubMed

    Pereira, Carla; Barros, Lillian; Vilas-Boas, Miguel; Ferreira, Isabel C F R

    2013-03-01

    Health benefits including antioxidant potential of black tea (Camellia sinensis), lemon (Citrus limon) and honey bees (Apis mellifera) have been extensively reported. Nevertheless, nothing is reported about the effects of their concomitant use. Herein, those effects were evaluated in infusions of lemon-flavoured black tea with three different kinds of honey (light amber, amber and dark amber) from Lavandula stoechas, Erica sp. pl. and other indigenous floral species from north-east Portugal, a region with high amounts of this food product. Data obtained showed that the use of honey (dark amber>amber>light amber) potentiates the antioxidant activity of lemon-flavoured black tea, increasing the reducing power and lipid peroxidation inhibition properties, as also the antioxidant contents such as phenolics, flavonoids and organic acids including ascorbic acid.

  5. Responses of Crepis japonica induced by supplemental blue light and UV-A radiation.

    PubMed

    Constantino, L F da S; Nascimento, L B Dos S; Casanova, L M; Moreira, N Dos S; Menezes, E A; Esteves, R L; Costa, S S; Tavares, E S

    2017-02-15

    Crepis japonica (L.) D.C. (Asteraceae), a weed with antioxidant, antiallergenic, antiviral and antitumor properties displays both medicinal properties and nutritional value. This study aims to assess the effects of a supplementation of blue light and UV-A radiation on the growth, leaf anatomical structure and phenolic profile of the aerial parts of Crepis japonica. Plants were grown under two light treatments: W (control - white light), W + B (white light supplemented with blue light) and W + UV-A (white light supplemented with UV-A radiation). We recorded the length, width, and weight of fresh and dry leaves, the thickness of the epidermis and mesophyll, and stomata density. The phenolic profiles of the aqueous extracts of the aerial parts were analyzed by HPLC-DAD. There was an increase in the leaf size, stomatal density, and phenolic production, and a thickening of the mesophyll and epidermis. UV-A radiation increased the phenolic production more than blue light. Blue light and UV-A radiation both improved the production of caffeic acid by about 6 and 3 times, respectively, in comparison to control. This compound was first reported as a constituent of the extract from the aerial parts together with caftaric acid. UV-A also promoted the production of chlorogenic acid (about 1.5 times in comparison to the control). We observed that the morphological and chemical parameters of C. japonica are modified in response to blue light and UV-A radiation, which can be used as tools in the cultivation of this species in order to improve its medicinal properties and nutritional value.

  6. Reproductive strategy of the intertidal seagrass Zostera japonica under different levels of disturbance and tidal inundation

    NASA Astrophysics Data System (ADS)

    Suonan, Zhaxi; Kim, Seung Hyeon; Qin, Le-Zheng; Lee, Kun-Seop

    2017-10-01

    Zostera japonica populations along the coastline of the northwestern Pacific Ocean are declining, mainly due to anthropogenic and natural disturbances. Although reproductive strategy is an important factor in achieving population persistence, changes in the reproductive strategy of Z. japonica under anthropogenic disturbances and tidal stresses are largely unknown. Thus, the duration and frequency of flowering, reproductive effort, potential seed production, and seed density in sediments were measured at three study stations (undisturbed upper, undisturbed lower, and disturbed stations), which were classified based on the levels of inundation stress and clamming activity, in monospecific meadows of Z. japonica on the southern coast of Korea. The flowering duration was approximately six months in the disturbed station, with disturbance due to clam harvesting, whereas the duration was about five months in the undisturbed lower station, and only three months in the undisturbed upper station. The maximum flowering frequency was 25.5% in the disturbed station, which was approximately 4- and 2-fold higher than in the undisturbed upper (6.1%) and lower (12.3%) stations, respectively. A similar trend in reproductive effort was also found among the three study stations. Potential seed production was 7850, 6220, and 1560 seeds m-2 in the disturbed, undisturbed lower, and undisturbed upper stations, respectively. The annual maximum seed density in sediments was also higher in the disturbed and undisturbed lower stations than in the undisturbed upper station, but the densities were relatively low (ranging from 71 to 254 seeds m-2) at all three study stations. It was found that the allocation to sexual reproduction was highest in the disturbed station, followed by the undisturbed lower station, and lowest in the undisturbed upper station, suggesting that sexual reproduction in Z. japonica tends to be enhanced under disturbed and inundated environmental conditions for population

  7. DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato).

    PubMed Central

    Kado, Tomoyuki; Yoshimaru, Hiroshi; Tsumura, Yoshihiko; Tachida, Hidenori

    2003-01-01

    We investigated the nucleotide variation of a conifer, Cryptomeria japonica, and the divergence between this species and its closest relative, Taxodium distichum, at seven nuclear loci (Acl5, Chi1, Ferr, GapC, HemA, Lcyb, and Pat). Samples of C. japonica were collected from three areas, Kantou-Toukai, Hokuriku, and Iwate. No apparent geographic differentiation was found among these samples. However, the frequency spectrum of the nucleotide polymorphism revealed excesses of intermediate-frequency variants, which suggests that the population was not panmictic and a constant size in the past. The average nucleotide diversity, pi, for silent sites was 0.00383. However, values of pi for silent sites vary among loci. Comparisons of polymorphism to divergence among loci (the HKA test) showed that the polymorphism at the Acl5 locus was significantly lower. We also observed a nearly significant excess of replacement polymorphisms at the Lcyb locus. These results suggested possibilities of natural selection acting at some of the loci. Intragenic recombination was detected only once at the Chi1 locus and was not detected at the other loci. The low level of population recombination rate, 4Nr, seemed to be due to both low level of recombination, r, and small population size, N. PMID:12930759

  8. Response of Vegetation in Northern China to Global Warming

    NASA Astrophysics Data System (ADS)

    Cui, H.; Huang, R.

    2009-05-01

    During the last 30 years, the warmth index (WI) (Kira, 1945) has increased by 10 to 20 points in northern China and the humid index (HI) (Xu,1985) correspondingly decreased by 1 to 2 points. Accordingly, the green leaf stage of plants and herbs around Beijing prolonged from late Nov. to mid-Dec. The phenophase has also been changed, e.g., the most enjoyable period of red leaves such as common smoketree (Cotinus coggygria) and maple (Acer mono and A.truncatum) has postponed for 10 days and the blooming period of flowering plants has also advanced for the same span. Some plants, e.g. japanese pagodatree (Sophora japonica) and hispid locust (Robinia hispida) even blossom again in fall. Some evergreen and thermophilic plants have also been planted to further north. Rice (Oryza sativa) have extended to around 49 degree N and, as an extreme case, to 52 degree N (Huma County, Heilongjiang Province), and tea (Camellia sinensis) from around 35 to 36.5 degree N. River basins of Songhuajiang and Nenjiang in Heilongjiang Province become important rice production bases. Rizhao and Qingdao in Shandong province become famous tea production bases. Before 1970s, evergreen broadleaf woody plants were rarely cultivated in Beijing. But now such plants as privet (Lygustrum lucidum), magnolia (Magnolia grandiflora), evergreen euonymus (Euonymus japonicus), and boxwood (Buxus sinica var. margaritacea) all live there through the winter. Many thermophilic garden plants, such as fig (Ficus carica), Chinese tulip tree (Liliodendron chinense), Chinese photinia (Photinia serrulata), crape myrtle (Lagerstroemia indica), and plum blossom (Prunus mume) are also successively cultivated outdoors in Beijing. Common papermulberry (Broussonetia papirifera) gradually increases and even becomes subdominant species of deciduous forest during last 30 years in the piedmont around Beijing. The cultivation boundary of some thermophilic trees, e.g., Chinese catalpa (Catalpa ovata), japanese pagodatree

  9. [Simultaneous determination of 4 diterpenoids in Rabdosia japonica var.glaucocalyx by HPLC-ESI-MS/MS and cluster analysis].

    PubMed

    Tian, Ting-Ting; Ma, Ying-Hua; Xie, Wei-Wei; Jin, Yi-Ran; Xu, Hui-Jun; Zhang, Lan-Tong; Du, Ying-Feng

    2016-01-01

    A quick HPLC-ESI-MS/MS method was established for simultaneous determination of four major diterpenoids in Rabdosia japonica var.glaucocalyx, including glaucocalyxin A, oridonin, hebeirubesensin and enmenol. Analysis was performed on an Agilent ZORBAX SB-C18(4.6 mm×250 mm, 5 μm ) column eluted in a gradient program with methanol and water. The flow rate was 0.8 mL•min⁻¹. Multiple reaction monitoring (MRM) scanning mode was performed in negative ion switching mode to apply for the quantitative determination. The calibration curves for the above four compounds were linear in corresponding injection amount. The average recoveries of the compounds ranged from 92.40% to 105.9%, with RSDs of 1.7%-6.5%. The method is simple, rapid, accurate with good repeatability, which can provide a reference for overcalling evaluation the quality of R. japonica var.glaucocalyx. The result of cluster analysis- showed that the quality of R. japonica glaucocalyx var. greatly varied between areas and parts. Copyright© by the Chinese Pharmaceutical Association.

  10. Hexamermis popilliae n. sp. (Nematoda: Mermithidae) parasitizing the Japanese beetle Popillia japonica Newman (Coleoptera: Scarabaeidae) in Italy.

    PubMed

    Mazza, Giuseppe; Paoli, Francesco; Strangi, Agostino; Torrini, Giulia; Marianelli, Leonardo; Peverieri, Giuseppino Sabbatini; Binazzi, Francesco; Bosio, Giovanni; Sacchi, Stefano; Benvenuti, Claudia; Venanzio, Davide; Giacometto, Emanuela; Roversi, Pio F; Poinar, George O

    2017-10-01

    A new species of mermithid nematode, Hexamermis popilliae n. sp. (Nematoda: Mermithidae) is described from the Japanese beetle Popillia japonica Newman in Italy, an area of new introduction for this invasive pest. The combination of the following characters separates H. popilliae from other members of the genus Hexamermis Steiner, 1924: adult head obtuse; amphidial pouches slightly posterior to lateral head papillae in female but adjacent to lateral head papillae in males; amphidial openings large, well developed; amphidial pouches elliptical in females and oblong in males; cuticular vulvar cone well developed, vulvar lips greatly reduced or lacking, vagina curved at tip where meeting uteri, without reverse bend (not S-shaped), spicules slightly curved, with a slight bend in the basal portion, approximately equal to body width at cloaca. This is the first record of a species of Hexamermis parasitizing the Japanese beetle Popillia japonica. The only previous mention of mermithid nematodes from P. japonica was an undescribed species of Psammomermis in North America. Hexamermis popilliae will be evaluated as a potential biological control agent in an integrated control program of the Japanese beetle in Italy.

  11. Spermatozoid life-span of two brown seaweeds, Saccharina japonica and Undaria pinnatifida, as measured by fertilization efficiency

    NASA Astrophysics Data System (ADS)

    Li, Jing; Pang, Shaojun; Liu, Feng; Shan, Tifeng; Gao, Suqin

    2013-07-01

    During sexual reproduction of seaweeds, spermatozoid (sperm) discharge is triggered by chemical messengers (pheromones) released by the female gametes. The chemotactic ability of the sperm ensures fertilization success. Using unialgal male and female gametophyte material under designated standard gametogenesis testing (SGT) conditions, the potential life-span of the sperm of two seaweeds, Saccharina japonica and Undaria pinnatifida, was assessed by their ability to fertilize eggs. Results show that within 20-30 min after being discharged, sperm of both species could complete fertilization without an apparent decline in fertilization rate. Although fertilization rate 60-120 min after sperm discharge dropped significantly in both species, some sperm were viable enough to fertilize the eggs. In S. japonica, at 12°C, some sperm were able to fertilize eggs up to 12 h after discharge. In both species, egg discharge rates (EDR) in the male and female mixed positive controls were significantly higher than those of all the sperm-testing groups. Doubling the seeded male gametophytes of S. japonica in the SGT tests significantly increased the EDR, further confirming the effect of the presence of the male on the female in terms of facilitating egg discharge from oogonia.

  12. Antioxidant and Cytoprotective Activities of Enzymatic Extracts from Rhizoid of Laminaria japonica

    PubMed Central

    Je, Jae-Young; Park, Soo Yeon; Ahn, Chang-Bum

    2017-01-01

    Rhizoid of Laminaria japonica was hydrolyzed with proteases and carbohydrases to obtain antioxidant materials. Oxygen radical absorbance capacity (ORAC) of the enzymatic extracts was evaluated and the Protamex extract (PE) exhibited the highest ORAC value. PE also potently scavenged 2,2-diphenyl-1-picrylhydrazyl radical, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid cation radical, and hydrogen peroxide (H2O2) and had good reducing power. PE inhibited hydroxyl radical-induced DNA scission by measuring the conversion of supercoiled pBR322 plasmid DNA to the open circular form. The cytoprotective effect of PE against H2O2-induced hepatic cell damage was also investigated. PE showed a dose-dependent cytoprotective effect in cultured hepatocytes by inhibiting intracellular reactive oxygen species scavenging activity. In addition, PE up-regulated the expression of heme oxygenase-1, which is a cytoprotective enzyme, by activating translocation of nuclear factor-erythroid 2-related factor 2. Taken together, the enzymatic extract of rhizoid of L. japonica, particularly PE, may be useful for antioxidant additives. PMID:29333384

  13. Harvest time of Cryptomeria japonica seeds depending on climate factors

    NASA Astrophysics Data System (ADS)

    Son, Seog-Gu; Kim, Hyo-Jeong; Kim, Chang-Soo; Byun, Kwang-Ok

    2010-05-01

    Sound seeds should have good germination rates and seed germination can be influenced by several factors. Seed picking time is regarded as one of the necessary elements to obtain sound seeds. From a clonal seed orchard of Cryptomeria japonica located in southern part of Korean peninsular, cones were picked about every 10 days from 30th of July 2005 to 30th of October in both 2005 and 2006. We have also analyzed the effects of climatic factors about two consecutive years on seed productivity. From the picked cones, seeds were collected and these germination ability, seed size and embryo shapes were investigated according to cone picking time. The 1,000-seed weight picked on 18th of August was 3.3 g and 5.3 g on 30th of September 2005and 2006. The size of seeds picked from 18th of August to 30th of September increased from 19.3 mm to 21.3 mm in length and from 15.8 mm to 18.5 mm in width. Depending on picking time, various shapes of embryos, including embryos with liquid material, jellied material and fully matured ones were observed. Germination aspects also varied throughout the test days. About two weeks after seeding in a glass petri-dish, germinal apparatuses appeared from each test seed sets which had been picked from after 10 August 2005 and 10 August 2006. The germination rates started from 10.7% from seeds picked 20 August 2006. Average germination rate in 2005 was 18.3 and 19.6 in 2006. In 2005, the highest germination rate was 34.3% from seeds picked on the 30th of September. In 2006, the highest germination rate was 31.7% for seeds picked at the same date as the 2005 seeds. After September, the highest germination rate for picked seeds decreased in both 2005 and 2006. Among the climatic factors, monthly sum of temperature and of precipitation were the main factors for maturation of C. japonica seeds. The results implied that the best cone picking time for the Korean C. japonica seed orchard to be around the end of September.

  14. Rapid and quantitative determination of 10 major active components in Lonicera japonica Thunb. by ultrahigh pressure extraction-HPLC/DAD

    NASA Astrophysics Data System (ADS)

    Fan, Li; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Liu, Jianhua; Liu, Feng

    2015-01-01

    An ultrahigh pressure extraction (UPE)-high performance liquid chromatography (HPLC)/diode array detector (DAD) method was established to evaluate the quality of Lonicera japonica Thunb. Ten active components, including neochlorogenic acid, chlorogenic acid, 4-dicaffeoylquinic acid, caffeic acid, rutin, luteoloside, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C, and quercetin, were qualitatively evaluated and quantitatively determined. Scanning electron microscope images elucidated the bud surface microstructure and extraction mechanism. The optimal extraction conditions of the UPE were 60% methanol solution, 400 MPa of extraction pressure, 3 min of extraction time, and 1:30 (g/mL) solid:liquid ratio. Under the optimized conditions, the total extraction yield of 10 active components was 57.62 mg/g. All the components showed good linearity (r2 ≥ 0.9994) and recoveries. This method was successfully applied to quantify 10 components in 22 batches of L. japonica samples from different areas. Compared with heat reflux extraction and ultrasonic-assisted extraction, UPE can be considered as an alternative extraction technique for fast extraction of active ingredient from L. japonica.

  15. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression.

    PubMed

    Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi

    2017-01-01

    The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5'-UTR of phenylalanine ammonia-lyase 2 ( PAL2 ). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5'-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica .

  16. Bactericidal catechins damage the lipid bilayer.

    PubMed

    Ikigai, H; Nakae, T; Hara, Y; Shimamura, T

    1993-04-08

    The mode of antibacterial action of, the green tea (Camellia sinensis) extracts, (-)-epigallocatechin gallate (EGCg) and (-)-epicatechin (EC) was investigated. Strong bactericidal EGCg caused leakage of 5,6-carboxyfluorescein from phosphatidylcholine liposomes (PC), but EC with very weak bactericidal activity caused little damage to the membrane. Phosphatidylserine and dicetyl phosphate partially protected the membrane from EGCg-mediated damage when reconstituted into the liposome membrane with PC. EGCg, but not EC, caused strong aggregation and NPN-fluorescence quenching of PC-liposomes and these actions were markedly lowered in the presence of negatively charged lipids. These results show that bactericidal catechins primarily act on and damage bacterial membranes. The observation that Gram-negative bacteria are more resistant to bactericidal catechins than Gram-positive bacteria can be explained to some extent by the presence of negatively charged lipopolysaccharide.

  17. Theacrine, a special purine alkaloid with sedative and hypnotic properties from Cammelia assamica var. kucha in mice.

    PubMed

    Xu, Jie-Kun; Kurihara, Hiroshi; Zhao, Liang; Yao, Xin-Sheng

    2007-01-01

    The central nervous system activities of theacrine (1,3,7,9-tetramethyluric acid), a purine alkaloid which is abundantly present in Camellia assamica var. kucha, were investigated in ambulatory activity, pentobarbital-induced sleep and forced swimming test in mice, compared with two other purine alkaloids, caffeine and theobromine. Caffeine treatment led to a marked increase in the ambulatory activity accompanied with decreasing of the immobility time in forced swimming test at both 10 and 30 mg/kg. Under the same conditions, neither theacrine nor theobromine showed obvious excited efficacy. Both doses of theacrine could significantly prolong the sleeping time induced by pentobarbital, while caffeine and theobromine exhibited an inverted effect. These results indicated that theacrine possessed potent sedative and hypnotic properties and its central nervous system effects were different from those of caffeine and theobromine.

  18. Differential neuritogenic activities of two edible brown macroalgae, Undaria pinnatifida and Saccharina japonica.

    PubMed

    Hannan, Md Abdul; Mohibbullah, Md; Hwang, Seon-Yeong; Lee, Kyungyong; Kim, Yang-Chun; Hong, Yong-Ki; Moon, Il Soo

    2014-01-01

    Undaria pinnatifida (Harvey) Suringar and Saccharina japonica Areschoug are two common seaweeds, and both are known to have numerous pharmacological properties that include neuroprotective effects. In a previous study, we found that the ethanol extracts of U. pinnatifida (UPE) and S. japonica (SJE) had neurite promoting activities on developing hippocampal neurons. In the present study, we studied and compared the effects of UPE and SJE on neuronal maturation. Both UPE and SJE promoted neurite outgrowth in a dose-dependent manner with optimal concentrations of 5 and 15 μg/mL, respectively. Initial neuronal differentiation was significantly promoted by UPE and SJE. Subsequently, treatment with both increased indices of axonal and dendritic cytoarchitecture, such as, the numbers and lengths of primary processes, although only UPE had a significant effect on branching frequencies. In addition, UPE and SJE showed no evidence of cytotoxicity, rather they protected neurons from naturally occurring death in vitro. These results indicate that UPE and SJE promote axodendritic maturation and neuronal survival and suggest that these algal extracts, especially UPE, have beneficial effects on the nervous system.

  19. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers.

    PubMed

    Zhang, Yu; Zhang, Xiaojuan; Chen, Xi; Sun, Wang; Li, Jiao

    2018-01-01

    Qinba area has a long history of tea planting and is a northernmost region in China where Camellia sinensis L. is grown. In order to provide basic data for selection and optimization of molecular markers of tea plants. 118 markers, including 40 EST-SSR, 40 SRAP and 38 SCoT markers were used to evaluate the genetic diversity of 50 tea plant ( Camellia sinensis. ) samples collected from Qinb. tea germplasm, assess population structure. In this study, a total of 414 alleles were obtained using 38 pairs of SCoT primers, with an average of 10.89 alleles per primer. The percentage of polymorphic bands (PPB), polymorphism information content (PIC), resolving power (Rp), effective multiplex ratio (EMR), average band informativeness (Ib av ), and marker index (MI) were 96.14%, 0.79, 6.71, 10.47, 0.58, and 6.07 respectively. 338 alleles were amplified via 40 pairs of SRAP (8.45 per primer), with PPB, PIC, Rp, EMR, Ib av, and MI values of 89.35%, 0.77, 5.11, 7.55, 0.61, and 4.61, respectively. Furthermore, 320 alleles have been detected using 40 EST-SSR primers (8.00 per primer), with PPB, PIC, Rp, EMR, Ib av , and MI values of 94.06%, 0.85, 4.48, 7.53, 0.56, and 4.22 respectively. These results indicated that SCoT markers had higher efficiency.Mantel test was used to analyze the genetic distance matrix generated by EST-SSRs, SRAPs and SCoTs. The results showed that the correlation between the genetic distance matrix based on EST-SSR and that based on SRAP was very small ( r  = 0.01), followed by SCoT and SRAP ( r  = 0.17), then by SCoT and EST-SSR ( r  = 0.19).The 50 tea samples were divided into two sub-populations using STRUCTURE, Neighbor-joining (NJ) method and principal component analyses (PCA). The results produced by STRUCTURE were completely consistent with the PCA analysis. Furthermore, there is no obvious relationship between the results produced using sub-populational and geographical data. Among the three types of markers, SCoT markers has many

  20. Innate olfactory responses of Asobara japonica toward fruits infested by the invasive spotted wing Drosophila

    USDA-ARS?s Scientific Manuscript database

    Insect parasitoids are often manipulated to improve biological control programs for various arthropod pests. Volatile compounds can be a relevant cue used by most parasitoid hymenoptera for host or host microhabitat location. We studied olfactory responses of the braconid Asobara japonica Belokobyls...

  1. Estuarine intertidal sediment temperature variability in Zoster marina and Z. japonica habitats in Yaquina Bay, Oregon

    EPA Science Inventory

    Physical characterization of intertidal estuarine plant habitats over time may reveal distribution-limiting thresholds. Temperature data from loggers embedded in sediment in transects crossing Zostera marina and Z. japonica habitats in lower Yaquina Bay, Oregon display signific...

  2. Effects of Swertia japonica extract and its main compound swertiamarin on gastric emptying and gastrointestinal motility in mice.

    PubMed

    Kimura, Yoshiyuki; Sumiyoshi, Maho

    2011-09-01

    The Swertia japonica is used clinically as a remedy for gastrointestinal symptoms in Japan. We examined the effects of a S. japonica and swertiamarin on gastric emptying and gastrointestinal motility in atropine-, dopamine-, and 5-hydroxytryptamine (5-HT)-treated mice. All three preparations inhibited reductions in gastric emptying and gastrointestinal motility induced by dopamine (1mg/kg, intraperitoneal injection, ip). Neither the powder, swertiamarin, nor itopride had any effect on the reductions in gastric emptying and gastrointestinal motility caused by 5-HT (4 mg/kg, ip). These findings suggest that the powder and swertiamarin stimulate gastric emptying and gastrointestinal motility by inhibiting the dopamine D(2) receptor. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. DNA Methylation Influences Chlorogenic Acid Biosynthesis in Lonicera japonica by Mediating LjbZIP8 to Regulate Phenylalanine Ammonia-Lyase 2 Expression

    PubMed Central

    Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi

    2017-01-01

    The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5′-UTR of phenylalanine ammonia-lyase 2 (PAL2). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5′-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica. PMID:28740500

  4. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.).

    PubMed

    Yi, Xiaoyun; Qiao, Sha; Ma, Lifeng; Wang, Jie; Ruan, Jianyun

    2017-10-01

    Drinking teas containing high fluoride (F) imposes fluorosis risk. The soil F bioavailability is an important factor influencing its uptake and contents in teas. The present work was conducted to investigate F fractions in soil and their bioavailability to tea plants. Tea seedlings were cultivated on 6 typical soils treated with a mixture consisting of dolomite, lime, peat and KCl at variable rates in the pot experiment. Soils and young shoots were collected in pairs from 63 sites of 21 plantations in a field experiment. Soil fluoride was sequentially separated into hot water soluble [Formula: see text], exchangeable [Formula: see text] (by 1 mol L -1 MgCl 2 , pH = 7.0), F bound to Mn and Fe hydroxides [F (oxides,s) ], and organic matter [F (OM,s) ] or extracted independently by water [Formula: see text] or 0.01 mol L -1 CaCl 2 solution [Formula: see text]. Averaged [Formula: see text], [Formula: see text], F (oxides,s) and F (OM,s) accounted for 51, 14, 5 and 30 % of the total sequential extracts, respectively. There were significant correlations among [Formula: see text], [Formula: see text] and F (OM,s) . Fluoride contents in leaves correlated with [Formula: see text] (r = 0.71, p < 0.001), [Formula: see text] (r = 0.93, p < 0.001) and F (OM,s) (r = 0.69, p < 0.01) but not other fractions in the pot experiment and with [Formula: see text] (r = 0.43-0.57, p < 0.001) and [Formula: see text] (r = 0.42-0.79, p < 0.001) in the field experiment. It was concluded that 0.01 M CaCl 2 extractable fluoride can be a good indicator of soil F bioavailability to tea plants. The significant correlations among some of the F fractions suggested that F in solution, AlF complexes (AlF 2 + , AlF 2+ ) and those bound to organic matter likely represent the available pools to tea plants.

  5. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    PubMed Central

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  6. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    PubMed

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  7. Comparison of photosynthetic characteristics of the seagrasscongeners Zostera marina L. and Zostera japonica Ascher. & Graeb.

    EPA Science Inventory

    On the Pacific coast of North America two seagrass species in the genus Zostera co-exist; the native species Zostera marina, and an introduced species, Z. japonica. These two species typically occupy separate habitat niches, with Z. marina occupying the lower intertidal and shal...

  8. [Construction of individual-based ecological model for Scomber japonicas at its early growth stages in East China Sea].

    PubMed

    Li, Yue-Song; Chen, Xin-Jun; Yang, Hong

    2012-06-01

    By adopting FVCOM-simulated 3-D physical field and based on the biological processes of chub mackerel (Scomber japonicas) in its early life history from the individual-based biological model, the individual-based ecological model for S. japonicas at its early growth stages in the East China Sea was constructed through coupling the physical field in March-July with the biological model by the method of Lagrange particle tracking. The model constructed could well simulate the transport process and abundance distribution of S. japonicas eggs and larvae. The Taiwan Warm Current, Kuroshio, and Tsushima Strait Warm Current directly affected the transport process and distribution of the eggs and larvae, and indirectly affected the growth and survive of the eggs and larvae through the transport to the nursery grounds with different water temperature and foods. The spawning grounds in southern East China Sea made more contributions to the recruitment to the fishing grounds in northeast East China Sea, but less to the Yangtze estuary and Zhoushan Island. The northwestern and southwestern parts of spawning grounds had strong connectivity with the nursery grounds of Cheju and Tsushima Straits, whereas the northeastern and southeastern parts of the spawning ground had strong connectivity with the nursery grounds of Kyushu and Pacific Ocean.

  9. Mapping estuarine distributions of the non-indigenous Japanese Eelgrass Zostera japonica using Color Infrared Aerial Photography

    EPA Science Inventory

    This presentation describes a technique for mapping distributions of the nonindigenous Japanese eelgrass Zostera japonica in estuarine ecosystems of the Pacific Northwest. The relatively broad distribution of this intertidal plant, often on very soft substrate, makes classical g...

  10. Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates.

    PubMed

    Zhang, Wujun; Wu, Longmei; Wu, Xiaoran; Ding, Yanfeng; Li, Ganghua; Li, Jingyong; Weng, Fei; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua

    2016-12-01

    Lodging in rice production often limits grain yield and quality by breaking or bending stems. Excessive nitrogen (N) fertilizer rates are the cause of poor lodging resistance in rice, but little is known about the effect of top-dressing N application rates on the mechanical strength of japonica rice plants, especially how the anatomical structure in culms is affected by N. In this study, field experiments on two japonica rice varieties with three top-dressing N application rates, 0 kg N ha(-1) (LN), 135 kg N ha(-1) (MN), and 270 kg N ha(-1) (HN) as urea, were conducted. Wuyunjing23, a lodging-resistant japonica rice cultivar and W3668, a lodging-susceptible japonica rice cultivar were used. The lodging index, breaking strength, morphological and anatomical traits in culms were measured in this study. The visual lodging rate in japonica rice differed remarkably between genotypes and top-dressing N treatments. The higher lodging index of rice plants was primarily attributed to the weak breaking strength of the lower internodes. The longer elongated basal internodes were responsible for higher plant height and a higher lodging index. Correlation analysis showed that breaking strength was significantly and positively correlated with the thickness of the mechanical tissue but was significantly and negatively correlated with the inner diameter of the major axis (b2). With increasing top-dressing N rates, the sclerenchyma cells of the mechanical tissues and the vascular bundles of the Wuyunjing23 cultivar varied little. The plant height, inner diameter of the minor axis (a2) and b2 increased significantly, but the area of the large vascular bundle (ALVB) and the area of the small vascular bundle (ASVB) decreased significantly and resulted in lower stem strength and a higher lodging index under higher top-dressing N conditions. The culm diameter of the W3668 cultivar increased slightly with no significant difference, and the sclerenchyma cells in the mechanical

  11. Effects of temperature on development of Lymantria dispar asiatica and Lymantria dispar japonica (Lepidoptera: Erebidae)

    Treesearch

    Samita Limbu; Melody Keena; Fang Chen; Gericke Cook; Hannah Nadel; Kelli Hoover

    2017-01-01

    Periodic introductions of the Asian subspecies of gypsy moth, Lymantria dispar asiatica Vnukovskij and Lymantria dispar japonica Motschulsky, in North America are threatening forests and interrupting foreign trade. Although Asian gypsy moth has similar morphology to that of European and North American gypsy moth, it has several...

  12. Flavonoids from Machilus japonica Stems and Their Inhibitory Effects on LDL Oxidation

    PubMed Central

    Joo, Se-Jin; Park, Hee-Jung; Park, Ji-Hae; Cho, Jin-Gyeong; Kang, Ji-Hyun; Jeong, Tae-Sook; Kang, Hee Cheol; Lee, Dae-Young; Kim, Hack-Soo; Byun, Sang-Yo; Baek, Nam-In

    2014-01-01

    Stems of Machilus japonica were extracted with 80% aqueous methanol (MeOH) and the concentrated extract was successively extracted with ethyl acetate (EtOAc), normal butanol (n-BuOH), and water. Six flavonoids were isolated from the EtOAc fraction: (+)-taxifolin, afzelin, (−)-epicatechin, 5,3'-di-O-methyl-(−)-epicatechin, 5,7,3'-tri-O-methyl-(−)-epicatechin, and 5,7-di-O-methyl-3',4'-methylenedioxyflavan-3-ol. The chemical structures were identified using spectroscopic data including NMR, mass spectrometry and infrared spectroscopy. This is the first report of isolation of these six compounds from M. japonica. The compounds were evaluated for their diphenyl picryl hydrazinyl scavenging activity and inhibitory effects on low-density lipoprotein oxidation. Compounds 1 and 3–6 exhibited DPPH antioxidant activity equivalent with that of ascorbic acid, with half maximal inhibitory concentration (IC50) values of 0.16, 0.21, 0.17, 0.15 and 0.07 mM, respectively. The activity of compound 1 was similar to the positive control butylated hydroxytoluene, which had an IC50 value of 1.9 µM, while compounds 3 and 5 showed little activity. Compounds 1, 3, and 5 exhibited LDL antioxidant activity with IC50 values of 2.8, 7.1, and 4.6 µM, respectively. PMID:25229822

  13. Identification and characterization of a phospholipid scramblase encoded by planarian Dugesia japonica.

    PubMed

    Han, Yu; Li, Ao; Gao, Lili; Wu, Weiwei; Deng, Hongkuan; Hu, Wenjing; Li, Na; Sun, Shimin; Zhang, Xiufang; Zhao, Bosheng; Liu, Baohua; Pang, Qiuxiang

    2017-02-20

    Phospholipid scramblases (PLSCRs) are the conserved calcium-binding, type II transmembrane proteins synthesized in all eukaryotic organisms. In mammals, these proteins play essential roles in various physiological processes, especially in the immune responses. However, the existence of PLSCRs and their biological functions in planarian are still unknown at present. In this study, a new member of PLSCRs was identified in planarian Dugesia japonica (D. japonica), named DjPLSCR. The sequence analysis revealed that it contains an opening reading frame consisting of 726bp encoding a putative protein of 241 amino acids with a predicted molecular mass of ~28.7kDa and an isoelectric point of 6.21. Whole-mount in situ hybridization showed that mRNAs of DjPLSCR are predominantly expressed in adult and regenerative pharynx which is an important organ of immune system in planarians. Importantly, we found that the transcription level of DjPLSCR was significantly upregulated when planarians were stimulated with the pathogen-associated molecular patterns [polyinosinic-polycytidylic acid, lipopolysaccharide, peptidoglycan and β-glucan], suggesting that DjPLSCR is involved in the immune response upon pathogen invasion. Our findings provide the first experimental insights into the characteristics and potential functions of PLSCR in planarians. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Changes in growth conditions alter the male strobilus gene expression pattern in Cryptomeria japonica.

    PubMed

    Fukui, Mitsue

    2003-11-01

    Two-year old saplings grown from cuttings of Cryptomeria japonica D. Don initiate strobilus development following treatment with gibberellic acid under long-day photoperiods. At 25 degrees C with a 14-h photoperiod in a phytotron, male strobili initiated normally; however, they remained green and fell from the saplings prematurely. To examine the change in male strobilus development at the molecular level, three genes expressed specifically in male strobili were analyzed. Two were MADS box genes homologous to the B-function genes in angiosperms, CjMADS1 and CjMADS2, and the third was Cry j I, which encodes an allergen protein, and this gene is expressed mainly in microspores. Under phytotron growing conditions, the homeotic genes were expressed constantly, which reflected the extended early developmental stage of male strobili. On the other hand, Cry j I expression was detected after a long delay just before strobilus development ceased. These results indicate that the expression of the genes related to male reproductive development in C. japonica is regulated by a factor(s) that is sensitive to environmental signals.

  15. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages.

    PubMed

    Kim, Jin; Park, Chang-Shin; Lim, Yunsook; Kim, Hyun-Sook

    2009-04-01

    Natural products are increasingly recognized as potential targets for drug discovery and development. We previously reported that Paeonia japonica, Houttuynia cordata, and Aster scaber enhanced macrophage activation both in vitro and in vivo. In the present study we investigated the immunomodulating effects of these plants on lipopolysacharide (LPS)-stimulated macrophages. An aqueous extract of each plant was administered to female BALB/c mice every other day for 4 weeks. Peritoneal macrophages were then collected and incubated to examine the immunoreactivity of macrophages against LPS at different time points. The expression levels of inducible nitric oxide (NO) synthetase (iNOS), cyclooxygenase (COX)-2, and inhibitory factor kappaB alpha (IkappaBalpha) proteins and the production of NO metabolite (nitrite), prostaglandin (PG) E(2), and the pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were determined in the activated macrophages treated with extracts from each plant individually or combined. High levels of pro-inflammatory cytokines were produced by A. scaber-, P. japonica-, and H. cordata-treated macrophages following 24 hours of LPS stimulation. P. japonica, H. cordata, and A. scaber treatment also induced the production of nitrate by LPS-treated macrophages. Induction of iNOS mRNA and protein was also different in each group. PGE(2) secretion was up-regulated by all extract-treated macrophages at early time points; however, no significant differences were observed between the groups by 8 hours post-LPS stimulation. Treatment with A. scaber extract resulted in the highest levels of IkappaBalpha degradation. Our findings illustrate that the natural plant products P. japonica, H. cordata, and A. scaber may enhance immune function by modulating ex vivo pro-inflammatory cytokine and NO production as well as the expression of iNOS and COX-2.

  16. Thalli Growth, Propagule Survival, and Integrated Physiological Response to Nitrogen Stress of Ramalina calicaris var. japonica in Shennongjia Mountain (China).

    PubMed

    Wang, Chuan-Hua; Wang, Ming; Jia, Rao-Zhen; Guo, Hua

    2018-01-01

    In this study, effects of nitrogen (N) availability on growth, survival of Ramalina calicaris var. japonica , and whether it respond nitrogen stress in an integrated physiological way was evaluated. Thalli growth and propagule survival, thalli N and phosphorus (P) content, and activity of phosphomonoesterase (PME) of R. calicaris var. japonica were determined in a field experiment. Its differentiate adsorption in ammonia and nitrate, the activity of glutamine synthetase (GSA) and nitrate reductase (NRA) also were investigated in a series of indoor experiments. The results showed that N deposition significantly decreased the growth and survival of this lichen, and the N sensitivity threshold was suggested at 6.0 kg N⋅ha -1 ⋅y -1 . When the N deposition increased from 8.59 kg N⋅ha -1 ⋅y -1 to 14.24, 20.49, 32.99 and 57.99 kg N⋅ha -1 ⋅y -1 , the growth rates of lichen thalli decreased by 26.47, 39.01, 52.18 and 60.3%, respectively; Whereas the survival rate of the lichen propagules decreased from 92.8% of control (0.0 kg N⋅ha -1 ⋅y -1 ) to 10.7% of 50.0 kg N⋅ha -1 ⋅y -1 , when they were treated with 0.00, 6.25, 12.5, 25.0, and 50.0 kg N⋅ha -1 ⋅y -1 deposition. Compared with an adequate adsorption of ammonium N, no nitrate adsorption occurred when thalli was submerged in solution lower than 0.4 mM. Our results also suggested that thalli total nitrogen, N:P ratio increased with N availability, and the activity of PME was significantly correlated with thalli total nitrogen. These all indicated that phosphorus limitation occurred when R. calicaris var. japonica treated with higher nitrogen deposition. Compared with slightly effects of NRA, GSA of R. calicaris var. japonica responded nitrogen availability significantly; In addition, GSA and NRA negatively correlated with thalli growth rate and propagule survival significantly. These results indicated that nitrogen stress do decrease growth and survival of R. calicaris var. japonica , and lichen

  17. Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils?

    NASA Astrophysics Data System (ADS)

    Jiang, Qiu-Yun; Zhuo, Feng; Long, Shi-Hui; Zhao, Hai-Di; Yang, Dan-Jing; Ye, Zhi-Hong; Li, Shao-Shan; Jing, Yuan-Xiao

    2016-02-01

    A greenhouse pot experiment was conducted to study the impact of arbuscular mycorrhizal fungi-Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the growth, Cd uptake, antioxidant indices [glutathione reductase (GR), ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), ascorbate (ASA), glutathione (GSH) and malonaldehyde (MDA)] and phytochelatins (PCs) production of Lonicera japonica in Cd-amended soils. Gv and Ri significantly increased P acquisition, biomass of shoots and roots at all Cd treatments. Gv significantly decreased Cd concentrations in shoots and roots, and Ri also obviously reduced Cd concentrations in shoots but increased Cd concentrations in roots. Meanwhile, activities of CAT, APX and GR, and contents of ASA and PCs were remarkably higher in Gv/Ri-inoculated plants than those of uninoculated plants, but lower MDA and GSH contents in Gv/Ri-inoculated plants were found. In conclusion, Gv and Ri symbiosis alleviated Cd toxicity of L. japonica through the decline of shoot Cd concentrations and the improvement of P nutrition, PCs content and activities of GR, CAT, APX in inoculated plants, and then improved plant growth. The decrease of shoot Cd concentrations in L. japonica inoculated with Gv/Ri would provide a clue for safe production of this plant from Cd-contaminated soils.

  18. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage

    PubMed Central

    Wilson, Clyde; Zeng, Linghe; Ismail, Abdelbagi M.; Condamine, Pascal; Close, Timothy J.

    2006-01-01

    Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) stage. In this study, we have focused on physiological and transcriptional responses of four rice genotypes exposed to salinity stress during PI. The genotypes selected included a pair of indicas (IR63731 and IR29) and a pair of japonica (Agami and M103) rice subspecies with contrasting salt tolerance. Physiological characterization showed that tolerant genotypes maintained a much lower shoot Na+ concentration relative to sensitive genotypes under salinity stress. Global gene expression analysis revealed a strikingly large number of genes which are induced by salinity stress in sensitive genotypes, IR29 and M103 relative to tolerant lines. We found 19 probe sets to be commonly induced in all four genotypes. We found several salinity modulated, ion homeostasis related genes from our analysis. We also studied the expression of SKC1, a cation transporter reported by others as a major source of variation in salt tolerance in rice. The transcript abundance of SKC1 did not change in response to salinity stress at PI stage in the shoot tissue of all four genotypes. However, we found the transcript abundance of SKC1 to be significantly higher in tolerant japonica Agami relative to sensitive japonica M103 under control and stressed conditions during PI stage. Electronic supplementary material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11103-006-9112-0 and is accessible for authorized users. PMID:17160619

  19. Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica

    PubMed Central

    Kimura, Megumi K.; Uchiyama, Kentaro; Nakao, Katsuhiro; Moriguchi, Yoshinari; San Jose-Maldia, Lerma; Tsumura, Yoshihiko

    2014-01-01

    Background and Aims Distribution shifts and natural selection during past climatic changes are important factors in determining the genetic structure of forest species. In particular, climatic fluctuations during the Quaternary appear to have caused changes in the distribution ranges of plants, and thus strongly affected their genetic structure. This study was undertaken to identify the responses of the conifer Cryptomeria japonica, endemic to the Japanese Archipelago, to past climatic changes using a combination of phylogeography and species distribution modelling (SDM) methods. Specifically, this study focused on the locations of refugia during the last glacial maximum (LGM). Methods Genetic diversity and structure were examined using 20 microsatellite markers in 37 populations of C. japonica. The locations of glacial refugia were assessed using STRUCTURE analysis, and potential habitats under current and past climate conditions were predicted using SDM. The process of genetic divergence was also examined using the approximate Bayesian computation procedure (ABC) in DIY ABC to test the divergence time between the gene pools detected by the STRUCTURE analysis. Key Results STRUCTURE analysis identified four gene pools: northern Tohoku district; from Chubu to Chugoku district; from Tohoku to Shikoku district on the Pacific Ocean side of the Archipelago; and Yakushima Island. DIY ABC analysis indicated that the four gene pools diverged at the same time before the LGM. SDM also indicated potential northern cryptic refugia. Conclusions The combined evidence from microsatellites and SDM clearly indicates that climatic changes have shaped the genetic structure of C. japonica. The gene pool detected in northern Tohoku district is likely to have been established by cryptic northern refugia on the coast of the Japan Sea to the west of the Archipelago. The gene pool in Yakushima Island can probably be explained simply by long-term isolation from the other gene pools since

  20. Recombinant expression of rt-PA gene (encoding Reteplase) in gametophytes of the seaweed Laminaria japonica (Laminariales, Phaeophyta).

    PubMed

    Zhang, YiChen; Jiang, Peng; Gao, JiangTao; Liao, JianMin; Sun, ShiJing; Shen, ZiLong; Qin, Song

    2008-12-01

    The life cycle of seaweed Laminaria japonica involves a generation alternation between diploid sporophyte and haploid gametophte. The expression of foreign genes in sporophte has been proved. In this research, the recombinant expression in gametophyte was investigated by particle bombardment with the rt-PA gene encoding the recombinant human tissue-type plasminogen activator (Reteplase), which is a thrombolytic agent for acute myocardial infarction (AMI). Transgenic gametophytes were selected by their resistance to herbicide phosphiothricin (PPT), and proliferated in an established bubble column photo-bioreactor. According to the results from quantitative ELISA, Southern blotting, and fibrin agarose plate assay (FAPA) for bioactivity, it was showed that the rt-PA gene had been integrated into the genome of gametophytes of L. japonica, and the expression product showed the expected bioactivity, implying the proper post-transcript modification in haploid gametophyte.

  1. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments.

    PubMed

    Wang, Lu; Sun, Da-Wen; Pu, Hongbin; Cheng, Jun-Hu

    2017-05-03

    Nowadays, near-infrared spectroscopy (NIR) has become one of the most efficient and advanced techniques for analysis of food products. Many relevant researches have been conducted in this regard. However, no reviews about the applications of NIR for liquid food analysis are reported. Therefore, this review summarizes the recent research developments of NIR technology in the field of liquid foods, focusing on the detection of quality attributes of various liquid foods, including alcoholic beverages (red wines, rice wines, and beer), nonalcoholic beverages (juice, fruit vinegars, coffee beverages, and cola beverages), dairy products (milk and yogurt), and oils (vegetable, camellia, peanut, and virgin olive oils and frying oil). In addition, the classification and authentication detection of adulteration are also covered. It is hoped that the current paper can serve as a reference source for the future liquid food analysis by NIR techniques.

  2. Comprehensive Lipidome-Wide Profiling Reveals Dynamic Changes of Tea Lipids during Manufacturing Process of Black Tea.

    PubMed

    Li, Jia; Hua, Jinjie; Zhou, Qinghua; Dong, Chunwang; Wang, Jinjin; Deng, Yuliang; Yuan, Haibo; Jiang, Yongwen

    2017-11-22

    As important biomolecules in Camellia sinensis L., lipids undergo substantial changes during black tea manufacture, which is considered to contribute to tea sensory quality. However, limited by analytical capacity, detailed lipid composition and its dynamic changes during black tea manufacture remain unclear. Herein, we performed tea lipidome profiling using high resolution liquid chromatography coupled to mass spectrometry (LC-MS), which allows simultaneous and robust analysis of 192 individual lipid species in black tea, covering 17 (sub)classes. Furthermore, dynamic changes of tea lipids during black tea manufacture were investigated. Significant alterations of lipid pattern were revealed, involved with chlorophyll degradation, metabolic pathways of glycoglycerolipids, and other extraplastidial membrane lipids. To our knowledge, this report presented most comprehensive coverage of lipid species in black tea. This study provides a global and in-depth metabolic map of tea lipidome during black tea manufacture.

  3. Effects of Temperature, Salinity and Seed Age on Induction of Zostera japonica Germination in North America, USA

    EPA Science Inventory

    Seagrasses can colonize unstructured mudflats either through clonal growth or seed germination and survival. Zostera japonica is an introduced seagrass in North America that has rapidly colonized mudflats along the Pacific Coast, leading to active management of the species. Gro...

  4. Optimization of the microwave-assisted extraction of phlorotannins from Saccharina japonica Aresch and evaluation of the inhibitory effects of phlorotannin-containing extracts on HepG2 cancer cells

    NASA Astrophysics Data System (ADS)

    He, Zhizhou; Chen, Yongshun; Chen, Yongheng; Liu, Haohuai; Yuan, Guanfu; Fan, Yaming; Chen, Kun

    2013-09-01

    The use of a microwave-assisted extraction (MAE) method for the extraction of phlorotannins from Saccharina japonica Aresch ( S. japonica) has been evaluated with particular emphasis on the influential parameters, including the ethanol concentration, solid/liquid ratio, extraction time, extraction temperature, and microwave power. The MAE procedure was optimized using single-factor design and orthogonal array design (OAD). The content of total phlorotannins in S. japonica was determined using a Folin-Ciocalteu (FC) assay. A maximum total phlorotannin content of 0.644 mg of phloroglucinol equivalent per gram of dry weight plant (mg PGE/g DW) was obtained using the optimized model, which included an ethanol concentration of 55%, solid/liquid ratio of 1:8, extraction time of 25 min, irradiation power of 400 W, and temperature of 60°C. Under similar conditions, the application of a conventional extraction method led to a lower phlorotannin yield of 0.585 mg PGE/g WD. These results demonstrated that the MAE approach provided better results for the extraction of phlorotannins from S. japonica and was a promising technique for the extraction of phenolic compounds from S. japonica and other materials. In addition, screening tests for the inhibitory activity showed that the phlorotannin-containing extracts significantly inhibited the growth of human hepatocellular carcinoma cells (HepG2) by inducing their apoptosis. The morphological changes that occurred during cell apoptosis were characterized using Hoechst33258 staining.

  5. Microjaponin, a new dihydroagarofuranoid sesquiterpene from the stem of Microtropis japonica with antituberculosis activity.

    PubMed

    Chen, Jih-Jung; Kuo, Wen-Lung; Chen, Ih-Sheng; Peng, Chien-Fang; Sung, Ping-Jyun; Cheng, Ming-Jen; Lim, Yun-Ping

    2014-08-01

    A new dihydroagarofuran-based sesquiterpene, microjaponin (1), was isolated from the stem of Microtropis japonica. Its structure was determined by in-depth spectroscopic and mass-spectrometric analyses. Microjaponin (1) exhibited potent in vitro antituberculosis activity, with an MIC value of 12.5 μg/ml against Mycobacterium tuberculosis H37 Rv. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  6. Cloning of a FLOWERING LOCUS T ortholog in Wasabia japonica (Matsum).

    PubMed

    Kubo, Hiroyoshi; Yoshida, Kiyoshi; Nozue, Masayuki

    2011-01-01

    A FLOWERING LOCUS T ortholog (WjFT) was identified in Wasabia japonica. Heterologous expression of WjFT remarkably promoted the flowering of Arabidopsis. The expression of WjFT was examined in field-grown wasabi in October and November of 2009, and February of 2010 because the differentiation of flower buds occurs in autumn in field-grown wasabi. No expression of WjFT was detected in October, it was slightly increased in November, and highly increased in February. WjFT might be useful for examining the flowering response of wasabi.

  7. Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica.

    PubMed

    Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko

    2015-04-01

    Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. © 2015 The Authors Development, Growth & Differentiation published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Developmental Biologists.

  8. Microtropins Q-W, ent-Labdane Glucosides: Microtropiosides G-I, Ursane-Type Triterpene Diglucoside and Flavonol Glycoside from the Leaves of Microtropis japonica.

    PubMed

    Terazawa, Saori; Uemura, Yuka; Koyama, Yuka; Kawakami, Susumu; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Kawahata, Masatoshi; Yamaguchi, Kentaro

    2017-01-01

    Microtropins Q-W, (2S,3R)-2-ethyl-2,3-dihydroxybutyrate of various glucosides and glucose, as well as three ent-labdane diterpenoid glucosides, named microtropiosides G, H and I, an ursane-type triterpene diglucoside and a flavonoid glycoside were isolated from the MeOH extract of the leaves of Microtropis japonica. The structure of microtropioside A, also isolated from the branches of M. japonica, was elucidated spectroscopically in a previous experiment and was found to possess a rare seven-membered oxyrane ring. Its structure was confirmed by X-ray crystallographic analysis of its pentaacetate.

  9. Optimization and development of a SPE-HPLC-UV method to determine astaxanthin in Saccharina japonica.

    PubMed

    Zhou, Jun; Bi, Wentao; Row, Kyung Ho

    2011-04-01

    An effective and accurate method including extraction, saponification, and separation was developed to determine astaxanthin (AX) in Saccharina japonica. The optimal extraction conditions with different solvents were investigated. 29.30 μg/g of AX was extracted from dry Saccharina japonica powder by solvent. After subsequent saponification, the extracted amount of AX was increased to 37.26 μg/g. Furthermore, 3 different ionic liquid-based silicas were prepared as sorbents for the solid phase extraction of AX from the extract. By comparing the adsorption isotherms of AX on different ionic liquid-based silicas, suitable sorbent was successfully selected and applied for separation of AX from extract. Astaxanthin, in 3 main forms (free, monoesters, and diesters), can be obtained from marine plants and animals. By extraction with subsequent saponification, the astaxanthin was extracted from Saccharina japonica. And then, ionic liquid-based silicas were used to separate the astaxanthin from the extract solution. This method can be widely applied for determination, or even industrial separation and purification of astaxanthin from many other algae.

  10. GC/MS analysis of high-performance liquid chromatography fractions from Sophora flavescens and Torilis japonica extracts and their in vitro anti-neosporal effects on Neospora caninum.

    PubMed

    Seo, Hun-Su; Kim, Kyoung Hee; Kim, Dae-Yong; Park, Bong-Kyun; Shin, Nam-Shik; Kim, Jae-Hoon; Youn, Heejeong

    2013-01-01

    We analyzed alcoholic extracts of herbs possessing anti-neosporal activity against Neospora (N.) caninum. To identify the chemical components of Sophora (S.) flavescens and Torilis (T.) japonica associated with anti-neosporal activity, specific fractions were isolated by high-performance liquid chromatography (HPLC). In vitro activity of the fractions against N. caninum was then assessed. Gas chromatography/ mass spectrometry (GC/MS) was used to identify and quantify specific anti-neosporal molecules in the herbal extracts. Almost all HPLC fractions of S. flavescens and T. japonica had higher levels of anti-neosporal activity compared to the not treated control. Active constituents of the extracts were sophoridane, furosardonin A, and tetraisopropylidene-cyclobutane in S. flavescens; 5,17-β-dihydroxy-de-A-estra-5,7,9,14-tetraene, furanodiene, and 9,12-octadecadienoic acid (Z,Z)-(CAS,1) in T. japonica.

  11. GC/MS analysis of high-performance liquid chromatography fractions from Sophora flavescens and Torilis japonica extracts and their in vitro anti-neosporal effects on Neospora caninum

    PubMed Central

    Seo, Hun-Su; Kim, Kyoung Hee; Kim, Dae-Yong; Park, Bong-Kyun; Shin, Nam-Shik; Kim, Jae-Hoon

    2013-01-01

    We analyzed alcoholic extracts of herbs possessing anti-neosporal activity against Neospora (N.) caninum. To identify the chemical components of Sophora (S.) flavescens and Torilis (T.) japonica associated with anti-neosporal activity, specific fractions were isolated by high-performance liquid chromatography (HPLC). In vitro activity of the fractions against N. caninum was then assessed. Gas chromatography/mass spectrometry (GC/MS) was used to identify and quantify specific anti-neosporal molecules in the herbal extracts. Almost all HPLC fractions of S. flavescens and T. japonica had higher levels of anti-neosporal activity compared to the not treated control. Active constituents of the extracts were sophoridane, furosardonin A, and tetraisopropylidene-cyclobutane in S. flavescens; 5,17-β-dihydroxy-de-A-estra-5,7,9,14-tetraene, furanodiene, and 9,12-octadecadienoic acid (Z,Z)-(CAS,1) in T. japonica. PMID:23820198

  12. RNA-Seq and UHPLC-Q-TOF/MS Based Lipidomics Study in Lysiphlebia japonica.

    PubMed

    Gao, Xueke; Luo, Junyu; Lü, Limin; Zhang, LiJuan; Zhang, Shuai; Cui, Jinjie

    2018-05-17

    Lipids play an important role in energy storage, membrane structure stabilization and signaling. Parasitoids are excellent models to study lipidomics because a majority of them do not accumulate during their free-living life-stage. Studies on parasitoids have mostly focused on the changes in the lipids and gene transcripts in hosts and little attention has been devoted to lipidomics and transcriptomics changes in parasitoids. In this study, a relative quantitative analysis of lipids and their gene transcripts in 3-days-old Lysiphlebia japonica larva (3 days after spawning) and pupae were performed using liquid chromatography, mass spectrometry and RNA-seq. Thirty-three glycerolipids and 250 glycerophospholipids were identified in this study; all triglycerides and the vast majority of phospholipids accumulated in the pupal stage. This was accompanied by differentially regulated lipid uptake and remolding. Furthermore, our data showed that gene transcription was up-regulated in key nutrient metabolic pathways involved in lipid synthesis in 3-days-old larvae. Finally, our data suggests that larva and pupa of L. japonica may lack the ability for fatty acids synthesis. A comprehensive, quantitative, and expandable resource was provided for further studies of metabolic regulation and molecular mechanisms underlying parasitic response to hosts defense.

  13. Effect of indica pedigree on eating and cooking quality in rice backcross inbred lines of indica and japonica crosses

    PubMed Central

    Fan, Mingyu; Wang, Xiaojing; Sun, Jian; Zhang, Qun; Xu, Zhengjin; Xu, Quan

    2017-01-01

    Amylopectin is one of the major determinants of rice (Oryza sativa L.) grain quality, and a large difference in amylopectin is found between two subspecies: japonica and indica. However, the relationship among rice grain quality, indica/japonica genetic background, and amylopectin has not been clearly established. In this study, a series of backcross inbred lines derived from the cross between japonica (cv. Sasanishiki) and indica (cv. Habataki) were used to survey eating and cooking quality (ECQ), rapid visco analyzer (RVA) profiles, and the chain length distribution of amylopectin. The frequency of indica pedigree (Fi) was calculated to analyze the effects of Fi on grain quality and amylopectin. The results showed that the Sasanishiki cultivar was markedly enriched in chain length with DP6-15 and DP34-45 compared to the Habataki. DP34-45 strongly correlated to RVA characteristics, cooking quality, and prolamin content. The Fi also has significant correlations to RVA characteristics and ECQ, but only significantly negative correlation to DP34-45. Seven quantitative trait loci (QTLs) corresponding to amylopectin were mapped, of which three were in agreement with previous findings. The results of this study provide valuable information for amylopectin characteristics in the offspring derived from the subspecies cross, and the novel QTLs may provide new insights to the identification of minor starch synthesis-related genes. PMID:29398938

  14. TMDB: a literature-curated database for small molecular compounds found from tea.

    PubMed

    Yue, Yi; Chu, Gang-Xiu; Liu, Xue-Shi; Tang, Xing; Wang, Wei; Liu, Guang-Jin; Yang, Tao; Ling, Tie-Jun; Wang, Xiao-Gang; Zhang, Zheng-Zhu; Xia, Tao; Wan, Xiao-Chun; Bao, Guan-Hu

    2014-09-16

    Tea is one of the most consumed beverages worldwide. The healthy effects of tea are attributed to a wealthy of different chemical components from tea. Thousands of studies on the chemical constituents of tea had been reported. However, data from these individual reports have not been collected into a single database. The lack of a curated database of related information limits research in this field, and thus a cohesive database system should necessarily be constructed for data deposit and further application. The Tea Metabolome database (TMDB), a manually curated and web-accessible database, was developed to provide detailed, searchable descriptions of small molecular compounds found in Camellia spp. esp. in the plant Camellia sinensis and compounds in its manufactured products (different kinds of tea infusion). TMDB is currently the most complete and comprehensive curated collection of tea compounds data in the world. It contains records for more than 1393 constituents found in tea with information gathered from 364 published books, journal articles, and electronic databases. It also contains experimental 1H NMR and 13C NMR data collected from the purified reference compounds or collected from other database resources such as HMDB. TMDB interface allows users to retrieve tea compounds entries by keyword search using compound name, formula, occurrence, and CAS register number. Each entry in the TMDB contains an average of 24 separate data fields including its original plant species, compound structure, formula, molecular weight, name, CAS registry number, compound types, compound uses including healthy benefits, reference literatures, NMR, MS data, and the corresponding ID from databases such as HMDB and Pubmed. Users can also contribute novel regulatory entries by using a web-based submission page. The TMDB database is freely accessible from the URL of http://pcsb.ahau.edu.cn:8080/TCDB/index.jsp. The TMDB is designed to address the broad needs of tea biochemists

  15. Detecting aroma changes of local flavored green tea (Camellia sinensis) using electronic nose

    NASA Astrophysics Data System (ADS)

    Ralisnawati, D.; Sukartiko, A. C.; Suryandono, A.; Triyana, K.

    2018-03-01

    Indonesia is currently the sixth largest tea producer in the world. However, consumption of the product in the country was considered low. Besides tea, the country also has various local flavor ingredients that are potential to be developed. The addition of local flavored ingredients such as ginger, lemon grass, and lime leaves on green tea products is gaining acceptance from consumers and producers. The aroma of local flavored green tea was suspected to changes during storage, while its sensory testing has some limitations. Therefore, the study aimed to detect aroma changes of local flavors added in green tea using electronic nose (e-nose), an instrument developed to mimic the function of the human nose. The test was performed on a four-gram sample. The data was collected with 120 seconds of sensing time and 60 seconds of blowing time. Principal Component Analysis (PCA) was used to find out the aroma changes of local flavored green tea during storage. We observed that electronic nose could detect aroma changes of ginger flavored green tea from day 0 to day 6 with variance percentage 99.6%. Variance proportion of aroma changes of lemon grass flavored green tea from day 0 to day 6 was 99.3%. Variance proportion of aroma changes of lime leaves flavored green tea from day 0 to day 6 was 99.4%.

  16. Comparison of the Trace Elements and Active Components of Lonicera japonica flos and Lonicera flos Using ICP-MS and HPLC-PDA.

    PubMed

    Zhao, Yueran; Dou, Deqiang; Guo, Yueqiu; Qi, Yue; Li, Jun; Jia, Dong

    2018-06-01

    Thirteen trace elements and active constituents of 40 batches of Lonicera japonica flos and Lonicera flos were comparatively studied using inductively coupled plasma mass-spectrometry (ICP-MS) and high-performance liquid chromatography-photodiode array (HPLC-PDA). The trace elements were 24 Mg, 52 Cr, 55 Mn, 57 Fe, 60 Ni, 63 Cu, 66 Zn, 75 As, 82 Se, 98 Mo, 114 Cd, 202 Hg, and 208 Pb, and the active compounds were chlorogenic acid, 3,5-O-dicaffeoylquinc acid, 4,5-O-dicaffeoylquinc acid, luteolin-7-O-glucoside, and 4-O-caffeoylquinic acid. The data of 18 variables were statistically processed using principal component analysis (PCA) and discriminate analysis (DA) to classify L. japonica flos and L. flos. The validated method was developed to divide the 40 samples into two groups based on the PCA in terms of 18 variables. Furthermore, the species of Lonicera was better discriminated by using DA with 12 variables. These results suggest that the method and statistical analysis of the contents of trace elements and chemical components can classify the L. japonica flos and L. flos using 12 variables, such as 3,5-O-dicaffeoylquincacid, luteolin-7-O-glucoside, Cd, Mn, Hg, Pb, Ni, 4-O-caffeoyl-quinic acid, 4,5-O-dicaffeoylquinc acid, Fe, Mg, and Cr.

  17. Development and validation of a habitat suitability model for the non-indigenous seagrass Zostera japonica in North America

    EPA Science Inventory

    We developed a spatially-explicit, flexible 3-parameter habitat suitability model that can be used to identify and predict areas at higher risk for non-native dwarf eelgrass (Zostera japonica) invasion. The model uses simple environmental parameters (depth, nearshore slope, and s...

  18. Effects of Laminaria japonica polysaccharides on exercise endurance and oxidative stress in forced swimming mouse model.

    PubMed

    Yan, Feiwei; Hao, Haitao

    2016-12-01

    Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxidative stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg(-1) LJP, respectively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various biochemical parameters. LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superoxide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by corresponding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood lactic acid and serum myeloperoxidase (MPO) levels were observed. LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative stress.

  19. Improving seedless kelp (Saccharina japonica) during its domestication by hybridizing gametophytes and seedling-raising from sporophytes

    PubMed Central

    Li, Xiaojie; Zhang, Zhuangzhi; Qu, Shancun; Liang, Guangjin; Sun, Juan; Zhao, Nan; Cui, Cuiju; Cao, Zengmei; Li, Yan; Pan, Jinhua; Yu, Shenhui; Wang, Qingyan; Li, Xia; Luo, Shiju; Song, Shaofeng; Guo, Li; Yang, Guanpin

    2016-01-01

    Dongfang no.7 (Saccharina japonica) was bred and maintained by hybridizing gametophytes, self-crossing the best individuals, selecting the best self-crossing line and seedling-raising from yearly reconstructed sporophytes. It increased the air dry yield by 43.2% in average over 2 widely farmed controls. Dongfang no.7 was seedling-raised from bulked sporophytes reconstructed from its representative gametophyte clones. Such strategy ensured it against variety contamination due to possible cross fertilization and occasional mixing and inbred depletion due to self-crossing number-limited sporophytes year after year. It derived from an intraspecific hybrid through 4 rounds of self-crossing and selection and retained a certain degree of genetic heterozygosity, thus being immune to inbred depletion due to purification of unknown detrimental alleles. Most importantly, it can be farmed in currently available system as the seedlings for large scale culture can be raised from reconstructed Dongfang no.7 sporophytes. Breeding and maintaining Dongfang no.7 provided a model that other varieties of kelp (S. japonica) and brown algae may follow during their domestication. PMID:26887644

  20. [In Vivo Study of Chitin in Fungal Hyphae Based on Confocal Raman Microscopy].

    PubMed

    Li, Xiao-li; Luo, Liu-bin; Zhou, Bin-xiong; Hu, Xiao-qian; Sun, Chan-jun; He, Yong

    2016-01-01

    Chitin is an important structural polysaccharide of fungal cell wall. In this paper, aerial hyphae of Colletotrichum camelliae Massee was first studied by confocal Raman microscopy in vivo. Firstly, the optimal experimental parameters of hyphae for collecting the Raman spectra were determined, and the typical Raman spectra of hyphae, chitin standard and background were acquired. By comparing analysis, characteristic peaks of chitin were found in hyphae. Then, a region of interesting on hyphae was selected for Raman scanning. Through principal component analysis, the Raman signal of hyphae and background in the scanning area can be separated clearly. Combined with loading weight plot, two main characteristic peaks of hyphae were obtained, 1 622 cm(-1) was belong to chitin and 1 368 cm(-1) was assigned to pectic polysaccharide. Finally, two and three dimension chemical images of fungal hyphae were realized based on Raman fingerprint spectra of chitin in a nondestructive way.

  1. Carbon and nitrogen dynamics of the intertidal seagrass, Zostera japonica, on the southern coast of the Korean peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Hyeob; Kim, Seung Hyeon; Kim, Young Kyun; Lee, Kun-Seop

    2016-12-01

    Seagrasses require a large amount of nutrient assimilation to support high levels of production, and thus nutrient limitation for growth often occurs in seagrass habitats. Seagrasses can take up nutrients from both the water column and sediments. However, since seagrasses inhabiting in the intertidal zones are exposed to the air during low tide, the intertidal species may exhibit significantly different carbon (C) and nitrogen (N) dynamics compared to the subtidal species. To examine C and N dynamics of the intertidal seagrass, Zostera japonica, C and N content and stable isotope ratios of above- and below-ground tissues were measured monthly at the three intertidal zones in Koje Bay on the southern coast of Korea. The C and N content and stable isotope (δ13C and δ15N) ratios of seagrass tissues exhibited significant seasonal variations. Both leaf and rhizome C content were not significantly correlated with productivity. Leaf δ13C values usually exhibited negative correlations with leaf productivity. These results of tissue C content and δ13C values suggest that photosynthesis of Z. japonica in the study site was not limited by inorganic C supply, and sufficient inorganic C was provided from the atmosphere. The tissue N content usually exhibited negative correlations with leaf productivity except at the upper intertidal zone, suggesting that Z. japonica growth was probably limited by N availability during high growing season. In the upper intertidal zone, no correlations between leaf productivity and tissue elemental content and stable isotope ratios were observed due to the severely suppressed growth caused by strong desiccation stress.

  2. High efficiency induction of callus and regeneration of sporophytes of Laminaria japonica (Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Hua; Qin, Song; Li, Xin-Ping; Jiang, Peng; Zeng, Cheng-Kui; Qin, Mei

    1998-03-01

    Four media (PESI solid, MS liquid, MS solid and ASP-C-I solid medium) were used to induce callus from excised tissues of the kelp Laminaria japonica. Only PESI solid medium and MS solid medium produced calli. Modified MS solid medium supplemented with mannitol (3%,W/V), yeast extract (0.1%, W/V), VB2 (0.5 mg/ml), VB12 (0.5 mg/ml), kinetin (0.108 μg/ml) and NAA (1.860μg/ml) showed much better effect on callus induction than non-modified MS solid medium. After 24 days of induction 75.5% of tissues in PESI solid medium showed callus formation. For modified MS solid medium, after three months of induction 67.3% of tissues dedifferentiated into calli. No callus could be found after five months of induction in either MS liquid or ASP-C-I solid medium. When calli were squashed and cultured in N-P enriched autoclaved seawater, MS liquid medium and ASP12-NTA liquid medium (both modified with kelp extract), differentiation of cells and regeneration of sporophytes were only observed in ASP12-NTA medium supplemented with kelp extract. Gametophyte-like filaments formed first, then eggs were released. It was suggested that sporophyte formation could be a process of parthenogenesis. Sterilization techniques in tissue culture of L. japonica were also tested in this study.

  3. [Pediatric pneumonia, pleural effusion, and pericarditis following cat scratch disease and serological cross-reactions among Bartonella henselae and Rickettsia japonica determined by indirect fluorescence antibodies].

    PubMed

    Takeda, Nobue; Ishiwada, Naruhiko; Fukasawa, Chie; Furuya, Yumiko; Tsuneoka, Hidehiro; Tsukahara, Masato; Kohno, Yoichi

    2007-03-01

    Cat scratch disease is associated with a variety of systemic manifestations. We report a pediatric case associated with pneumonia, pleural effusion, and pericarditis. A 3-year-old boy developed prolonged fever unresponsive to antibiotic treatment, including azithromycin and minocycline. Although the fever resolved with corticosteroid treatment, Bartonella henselae IgG titer was positive in indirect fluorescence antibodies, as was Rickettsia japonica IgG titer. Both titers were significantly reduced by serum absorption with B. henselae antigens, and we observed a serological cross-reaction between B. henselae and R. japonica.

  4. Development of microsatellite markers from loquat, Eriobotrya japonica (Thunb.) Lindl.

    PubMed

    Gisbert, A D; Lopez-Capuz, I; Soriano, J M; Llacer, G; Romero, C; Badenes, M L

    2009-05-01

    Loquat (Eriobotrya japonica) is a minor fruit which has become an interesting alternative into the European fruit industry. This interest resulted in a loquat germplasm collection established at the Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain. Currently, it is the main reservoir of this species outside Asia. We developed and characterized the first 21 polymorphic microsatellite loci from a CT/AG-enriched loquat genomic library. The observed heterozygosity ranged between 0.20 and 1.00, expected heterozygosity ranged between 0.17 and 0.81, three markers were multilocus and eight loci departed significantly from Hardy-Weinberg equilibrium. These markers will facilitate diversity and genetic studies into the species. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  5. Polarization Analysis of Light Scattered by Pollen Grains of Cryptomeria japonica

    NASA Astrophysics Data System (ADS)

    Iwai, Toshiaki

    2013-06-01

    Pollinosis to airborne pollen grains is a severe problem that concerns the whole world. Almost spring allergies in Japan are caused by pollen grains of Japan cedar (Cryptomeria japonica) during the period of pollination from February to May. One of the key technologies in a pollen monitoring and forecast system is a pollen sensor. The pollen grain of Japan cedar is identified by introducing the degree of polarization to the optical sensor based on the scattered intensity. The detectability and discriminability in identifying the pollen grains of Japan cedar from the polystyrene spherical particles and the Kanto loam grains are achieved up to 95 and 86%, respectively.

  6. PRODUCTION ECOLOGY OF THE NON-INDIGENOUS SEAGRASS, DWARF EELGRASS (ZOSTERA JAPONICA ASCHER. & GRAEB.), IN A PACIFIC NORTHWEST ESTUARY, USA

    EPA Science Inventory

    The non-indigenous seagrass Zostera japonica Ascher. & Graeb. (dwarf eelgrass) was first identified in central Oregon (USA) estuaries about 30 years ago. The autecology of this species is poorly described at the southern end of its non-native range although several process orien...

  7. Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties.

    PubMed

    Sales, Ester; Viruel, Juan; Domingo, Concha; Marqués, Luis

    2017-01-01

    A pool of 200 traditional, landraces and modern elite and old cultivars of rice, mainly japonica varieties adapted to temperate regions, have been used to perform a genome wide association study to detect chromosome regions associated to low temperature germination (LTG) regulation using a panel of 1672 SNP markers. Phenotyping was performed by determining growth rates when seeds were germinated at 25° and 15°C in order to separate the germination vigorousness from cold tolerance effects. As expected, the ability to produce viable seedlings varied widely among rice cultivars and also depended greatly on temperature. Furthermore, we observed a differential response during seed germination and in coleoptile elongation. Faster development at 15°C was observed in seeds from varieties traditionally used as cold tolerant parents by breeders, along with other potentially useful cultivars, mainly of Italian origin. When phenotypic data were combined with the panel of SNPs for japonica rice cultivars, significant associations were detected for 31 markers: 7 were related to growth rate at 25°C and 24 to growth rates at 15°. Among the latter, some chromosome regions were associated to LTG while others were related to coleoptile elongation. Individual effects of the associated markers were low, but by combining favourable alleles in a linear regression model we estimated that 27 loci significantly explained the observed phenotypic variation. From these, a core panel of 13 markers was selected and, furthermore, two wide regions of chromosomes 3 and 6 were consistently associated to rice LTG. Varieties with higher numbers of favourable alleles for the panels of associated markers significantly correlated with increased phenotypic values at both temperatures, thus corroborating the utility of the tagged markers for marker assisted selection (MAS) when breeding japonica rice for LTG.

  8. Genome wide association analysis of cold tolerance at germination in temperate japonica rice (Oryza sativa L.) varieties

    PubMed Central

    Viruel, Juan; Domingo, Concha; Marqués, Luis

    2017-01-01

    A pool of 200 traditional, landraces and modern elite and old cultivars of rice, mainly japonica varieties adapted to temperate regions, have been used to perform a genome wide association study to detect chromosome regions associated to low temperature germination (LTG) regulation using a panel of 1672 SNP markers. Phenotyping was performed by determining growth rates when seeds were germinated at 25° and 15°C in order to separate the germination vigorousness from cold tolerance effects. As expected, the ability to produce viable seedlings varied widely among rice cultivars and also depended greatly on temperature. Furthermore, we observed a differential response during seed germination and in coleoptile elongation. Faster development at 15°C was observed in seeds from varieties traditionally used as cold tolerant parents by breeders, along with other potentially useful cultivars, mainly of Italian origin. When phenotypic data were combined with the panel of SNPs for japonica rice cultivars, significant associations were detected for 31 markers: 7 were related to growth rate at 25°C and 24 to growth rates at 15°. Among the latter, some chromosome regions were associated to LTG while others were related to coleoptile elongation. Individual effects of the associated markers were low, but by combining favourable alleles in a linear regression model we estimated that 27 loci significantly explained the observed phenotypic variation. From these, a core panel of 13 markers was selected and, furthermore, two wide regions of chromosomes 3 and 6 were consistently associated to rice LTG. Varieties with higher numbers of favourable alleles for the panels of associated markers significantly correlated with increased phenotypic values at both temperatures, thus corroborating the utility of the tagged markers for marker assisted selection (MAS) when breeding japonica rice for LTG. PMID:28817683

  9. Brown seaweed (Saccharina japonica) as an edible natural delivery matrix for allyl isothiocyanate inhibiting food-borne bacteria.

    PubMed

    Siahaan, Evi Amelia; Pendleton, Phillip; Woo, Hee-Chul; Chun, Byung-Soo

    2014-01-01

    The edible, brown seaweed Saccharina japonica was prepared as powder in the size range 500-900 μm for the desorption release of allyl isothiocyanate (AITC). Powders were used as raw (containing lipids) and as de-oiled, where the lipid was removed. In general, de-oiled powders adsorbed larger masses of AITC after vapour or solution contact. Mass adsorbed due to solution contact exceeded vapour contact. Larger particles adsorbed more than smaller particles. No chemical bonding between AITC and the powder surface occurred. Release from vapour deposited particles reached 70-85% available within 72 h; solution deposited reached 70-90% available at 192 h. The larger amounts of AITC adsorbed via solution deposition resulted in greater vapour-phase concentrations at 72 h for antimicrobial activity studies. No loss of activity was detected against Escherichia coli, Salmonella Typhimurium or Bacillus cereus. Only a nominal activity against Staphylococcus aureus was demonstrated. S. japonica powder could be used as an edible, natural vehicle for AITC delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Distribution of the invasive bryozoan Schizoporella japonica in Great Britain and Ireland and a review of its European distribution.

    PubMed

    Loxton, J; Wood, C A; Bishop, J D D; Porter, J S; Spencer Jones, M; Nall, C R

    2017-01-01

    The bryozoan Schizoporella japonica Ortmann (1890) was first recorded in European waters in 2010 and has since been reported from further locations in Great Britain (GB) and Norway. This paper provides a new earliest European record for the species from 2009, a first record from Ireland and presence and absence records from a total of 231 marinas and harbours across GB, Ireland, the Isle of Man, France and Portugal. This species is typically associated with human activity, including commercial and recreational vessels, aquaculture equipment, and both wave and tidal energy devices. It has also been observed in the natural environment, fouling rocks and boulders. The species has an extensive but widely discontinuous distribution in GB and Ireland. Although found frequently in marinas and harbours in Scotland, it inhabits only a few sites in England, Wales and Ireland, interspersed with wide gaps that are well documented as genuine absences. This appears to be a rare example of a southward-spreading invasion in GB and Ireland. The species has been reported from the Isle of Man and Norway but has not been found in France or Portugal. In the future we expect S. japonica to spread into suitable sections of the English, Welsh and Irish coasts, and further within Europe. The species' capability for long-distance saltatory spread and potential for negative impact on native ecosystems and economic activity suggests that S. japonica should now be considered invasive in GB and Ireland. As such, it is recommended that biosecurity procedures alongside effective surveillance and monitoring should be prioritised for regions outside the species' current distribution.

  11. Agatharesinol biosynthesis-related changes of ray parenchyma in sapwood sticks of Cryptomeria japonica during cell death.

    PubMed

    Nakaba, Satoshi; Arakawa, Izumi; Morimoto, Hikaru; Nakada, Ryogo; Bito, Nobumasa; Imai, Takanori; Funada, Ryo

    2016-05-01

    The work demonstrates a relationship between the biosynthesis of the secondary metabolite, agatharesinol, and cytological changes that occur in ray parenchyma during cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions. To characterize the death of ray parenchyma cells that accompanies the biosynthesis of secondary metabolites, we examined cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions. We monitored features of ray parenchyma cells, such as viability, the morphology of nuclei and vacuoles, and the amount of starch grains. In addition, we analyzed levels of agatharesinol, a heartwood norlignan, by gas chromatography-mass spectrometry in the same sapwood sticks. Dramatic changes in the amount of starch grains and in the level of agatharesinol occurred simultaneously. Therefore, the biosynthesis of agatharesinol appeared to originate from the breakdown of starch. Furthermore, we observed the expansion of vacuoles in ray parenchyma cells prior to other cytological changes at the final stage of cell death. In our experimental system, we were able to follow the process of cell death and to demonstrate relationships between cytological changes and the biosynthesis of a secondary metabolite during the death of ray parenchyma cells.

  12. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  13. Understory dominance and the new climax: Impacts of Japanese knotweed (Fallopia japonica) invasion on native plant diversity and recruitment in a riparian woodland

    PubMed Central

    Wilson, Matthew J.; Freundlich, Anna E.

    2017-01-01

    Abstract Riparian forests exhibit levels of ecological disturbance that leave them especially prone to biological invasions. Japanese knotweed (Fallopia japonica) is particularly suited to these habitats and is an aggressive invader along watercourses throughout its now-global range as an exotic invader. Using one of the few Silver Maple Floodplain Forest communities that has not been invaded by F. japonica in the West Branch Susquehanna River valley (Pennsylvania, USA) as a baseline, this study examines whether and how this primarily intact riparian forest community differs from nearby invaded communities in terms of 1) native species richness, 2) native species density, and 3) riparian forest tree recruitment. Defining a baseline (intact) community composition will inform restoration plans for local riparian forests where knotweed might be eradicated or reduced. Invaded and non-invaded sites differed statistically across species richness, species density, and tree recruitment. Our results suggest that F. japonica has reduced the diversity and abundance of native understory riparian plant species. The species also appears to have suppressed long-term tree recruitment, setting up a trajectory whereby the eventual decline of trees currently in the canopy could shift this community from a tree-dominated riparian forest to a knotweed-dominated herbaceous shrubland. PMID:29308042

  14. Microtropiosides A-F: ent-Labdane diterpenoid glucosides from the leaves of Microtropis japonica (Celastraceae).

    PubMed

    Koyama, Yuka; Matsunami, Katsuyoshi; Otsuka, Hideaki; Shinzato, Takakazu; Takeda, Yoshio

    2010-04-01

    From a 1-BuOH-soluble fraction of a MeOH extract of the leaves of Microtropis japonica, collected in the Okinawa islands, six ent-labdane glucosides, named microtropiosides A-F, were isolated together with one known acyclic sesquiterpene glucoside. Their structures were elucidated by a combination of spectroscopic analyses, and their absolute configurations determined by application of the beta-D-glucopyranosylation-induced shift-trend rule in (13)C NMR spectroscopy and the modified Mosher's method. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa.

    PubMed

    Lee, Jeong-Ho; Lee, Byung-Kyu; Kim, Jong-Hee; Lee, Sang Hee; Hong, Soon-Kwang

    2009-04-01

    The chemical compositions, and antibacterial and antifungal effects of essential oils extracted from three coniferous species, Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa, were investigated. Gas chromatography mass analysis of the essential oils revealed that the major components and the percentage of each essential oil were 16.66% beta-phellandrene and 14.85% alpha-pinene in P. densiflora; 31.45% kaur-16-ene and 11.06% sabinene in C. japonica; and 18.75% bicyclo [2, 2, 1] heptan-2-ol and 17.41% 2-carene in Ch. obtusa. The antimicrobial assay by agar disc diffusion method showed that 2.2 microg of Ch. obtusa oil inhibited most effectively the growth of Escherichia coli ATCC 33312 and Klebsiella oxytoca ATCC 10031, whereas the C. japonica oil gave weak antimicrobial activity. The minimal inhibitory concentration (MIC) values for bacterial strains were in the range of 5.45-21.8 mg/ml depending on essential oils, but most Gram-negative bacteria were resistant even at 21.8 mg oil/ml. P. densiflora oil showed the most effective antifungal activity and the MIC values for Cryptococcus neoformans B42419 and Candida glabrata YFCC 062CCM 11658 were as low as 0.545 and 2.18 mg/ml, respectively. Cryp. neoformans B42419 was the most sensitive to all essential oils in the range of 0.545-2.18 mg/ml. Our data clearly showed that the essential oils from the three conifers had effective antimicrobial activity, especially against fungi.

  16. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    PubMed

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  17. Which plant for which skin disease? Part 2: Dermatophytes, chronic venous insufficiency, photoprotection, actinic keratoses, vitiligo, hair loss, cosmetic indications.

    PubMed

    Reuter, Juliane; Wölfle, Ute; Korting, Hans Christian; Schempp, Christoph

    2010-11-01

    This paper continues our review of scientifically evaluated plant extracts in dermatology. After plants effective against dermatophytes, botanicals with anti-edema effects in chronic venous insufficiency are discussed. There is good evidence from randomized clinical studies that plant extracts from grape vine leaves (Vitis vinifera), horse chestnut (Aesculus hippocastanum), sea pine (Pinus maritima) and butcher's broom (Ruscus aculeatus) can reduce edema in chronic venous insufficiency. Plant extracts from witch hazel (Hamamelis virginiana), green tea (Camellia sinensis), the fern Polypodium leucotomos and others contain antioxidant polyphenolic compounds that may protect the skin from sunburn and photoaging when administered topically or systemically. Extracts from the garden spurge (Euphorbia peplus) and from birch bark (Betula alba) have been shown to be effective in the treatment of actinic keratoses in phase II studies. Some plant extracts have also been investigated in the treatment of vitiligo, various forms of hair loss and pigmentation disorders, and in aesthetic dermatology. © The Authors • Journal compilation © Blackwell Verlag GmbH, Berlin.

  18. Modeled dosage-response relationship on the net photosynthetic rate for the sensitivity to acid rain of 21 plant species.

    PubMed

    Deng, Shihuai; Gou, Shuzhen; Sun, Baiye; Lv, Wenlin; Li, Yuanwei; Peng, Hong; Xiao, Hong; Yang, Gang; Wang, Yingjun

    2012-08-01

    This study investigated the sensitivity of plant species to acid rain based on the modeled dosage-response relationship on the net photosynthetic rate (P (N)) of 21 types of plant species, subjected to the exposure of simulated acid rain (SAR) for 5 times during a period of 50 days. Variable responses of P (N) to SAR occurred depending on the type of plant. A majority (13 species) of the dosage-response relationship could be described by an S-shaped curve and be fitted with the Boltzmann model. Model fitting allowed quantitative evaluation of the dosage-response relationship and an accurate estimation of the EC(10), termed as the pH of the acid rain resulting in a P (N) 10 % lower than the reference value. The top 9 species (Camellia sasanqua, Cinnamomum camphora, etc. EC(10) ≤ 3.0) are highly endurable to very acid rain. The rare, relict plant Metasequoia glyptostroboides was the most sensitive species (EC(10) = 5.1) recommended for protection.

  19. Bioconversion of wastewater from sweet potato starch production to Paenibacillus polymyxa biofertilizer for tea plants.

    PubMed

    Xu, Shengjun; Bai, Zhihui; Jin, Bo; Xiao, Runlin; Zhuang, Guoqiang

    2014-02-28

    Wastewater from the sweet potato starch industry is a large source of nutrient-rich substrates. We assessed whether this wastewater could be used to produce Paenibacillus polymyxa biofertilizer for foliar application to tea trees. Using the central composite design methods we experientially determined that the optimal culture conditions for P. polymyxa were pH, 6.5; temperature, 29.0 °C; and incubation time, 16 h. Under these conditions, a maximum biomass of 9.7 × 10(9) cfu/mL was achieved. We then conducted a yearlong field investigation to determine the effect of P. polymyxa biofertilizer on the growth of tea plants (Camellia sinensis). Tea yield, quantity of water extract, and tea polyphenol levels were significantly higher after foliar application of the biofertilizer compared to that in the controls by an average of 16.7%, 6.3%, and 10.4%, respectively. This approach appears to be technically feasible for organic tea production, and is an environmentally friendly way to utilize wastewater.

  20. Bioconversion of wastewater from sweet potato starch production to Paenibacillus polymyxa biofertilizer for tea plants

    PubMed Central

    Xu, Shengjun; Bai, Zhihui; Jin, Bo; Xiao, Runlin; Zhuang, Guoqiang

    2014-01-01

    Wastewater from the sweet potato starch industry is a large source of nutrient-rich substrates. We assessed whether this wastewater could be used to produce Paenibacillus polymyxa biofertilizer for foliar application to tea trees. Using the central composite design methods we experientially determined that the optimal culture conditions for P. polymyxa were pH, 6.5; temperature, 29.0°C; and incubation time, 16 h. Under these conditions, a maximum biomass of 9.7 × 109 cfu/mL was achieved. We then conducted a yearlong field investigation to determine the effect of P. polymyxa biofertilizer on the growth of tea plants (Camellia sinensis). Tea yield, quantity of water extract, and tea polyphenol levels were significantly higher after foliar application of the biofertilizer compared to that in the controls by an average of 16.7%, 6.3%, and 10.4%, respectively. This approach appears to be technically feasible for organic tea production, and is an environmentally friendly way to utilize wastewater. PMID:24576979

  1. Green tea flavour determinants and their changes over manufacturing processes.

    PubMed

    Han, Zhuo-Xiao; Rana, Mohammad M; Liu, Guo-Feng; Gao, Ming-Jun; Li, Da-Xiang; Wu, Fu-Guang; Li, Xin-Bao; Wan, Xiao-Chun; Wei, Shu

    2016-12-01

    Flavour determinants in tea infusions and their changes during manufacturing processes were studied using Camellia sinensis cultivars 'Bai-Sang Cha' ('BAS') possessing significant floral scents and 'Fuding-Dabai Cha' ('FUD') with common green tea odour. Metabolite profiling based on odour activity threshold revealed that 'BAS' contained higher levels of the active odorants β-ionone, linalool and its two oxides, geraniol, epoxylinalool, decanal and taste determinant catechins than 'FUD' (p<0.05). Enhanced transcription of some terpenoid and catechin biosynthetic genes in 'BAS' suggested genetically enhanced production of those flavour compounds. Due to manufacturing processes, the levels of linalool and geraniol decreased whereas those of β-ionone, linalool oxides, indole and cis-jasmone increased. Compared with pan-fire treatment, steam treatment reduced the levels of catechins and proportion of geraniol, linalool and its derivatives, consequently, reducing catechin-related astringency and monoterpenol-related floral scent. Our study suggests that flavour determinant targeted modulation could be made through genotype and manufacturing improvements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Novel acetylcholinesterase inhibitors from Zijuan tea and biosynthetic pathway of caffeoylated catechin in tea plant.

    PubMed

    Wang, Wei; Fu, Xi-Wen; Dai, Xin-Long; Hua, Fang; Chu, Gang-Xiu; Chu, Ming-Jie; Hu, Feng-Lin; Ling, Tie-Jun; Gao, Li-Ping; Xie, Zhong-Wen; Wan, Xiao-Chun; Bao, Guan-Hu

    2017-12-15

    Zijuan tea is a special cultivar of Yunnan broad-leaf tea (Camellia sinensis var. assamica) with purple buds, leaves, and stems. Phytochemical study on this tea led to the discovery of three hydroxycinnamoylated catechins (HCCs) (1-3), seven other catechins (4-10), three proanthocyanidins (11-13), five flavones and flavone glycosides (14-18), two alkaloids (19, 20), one steroid (21), and one phenylpropanoid glycoside (22). The isolation and structural elucidation of the caffeoylated catechin (1) by means of spectroscopic techniques were described. We also provide the first evidence that 1 is synthesized via a two-step pathway in tea plant. The three HCCs (1-3) were investigated on their bioactivity through molecular modeling simulation and biochemical experiments. Our results show that they bind acetylcholinesterase (AChE) tightly and have strong AChE inhibitory activity with IC 50 value at 2.49, 11.41, 62.26μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tea, coffee, and cocoa as ultraviolet radiation protectants for the beet armyworm nucleopolyhedrovirus.

    PubMed

    El-Salamouny, S; Ranwala, D; Shapiro, M; Shepard, B M; Farrar, Robert R

    2009-10-01

    The addition of 1% (wt:vol) aqueous extracts of cocoa (Theobroma cacao L.) (Malvales: Malvaceae), coffee (Coffea arabica L.) (Gentianales: Rubiaceae), and green and black tea (Camellia sinensis L.) (Ericales: Theaceae) provided excellent UV radiation protection for the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), nucleopolyhedrovirus under laboratory conditions. Aqueous extracts of coffee, green tea, and black tea at 0.5% provided 85-100% UV protection, whereas cocoa provided 50% UV protection. Epigallocatechin gallate (EGCG), a component of green tea, and caffeine, a component of tea and coffee, also were tested as UV protectants. Both compounds were ineffective when tested alone. When EGCG and caffeine were combined, UV protection increased in a synergistic manner, but <35% of the original virus activity was maintained. This study demonstrated that coffee was comparable to green tea and black tea as a UV protectant. Further studies should be conducted to optimize their use in biopesticide formulations.

  4. Diversity of Catechin in Northeast Indian Tea Cultivars

    PubMed Central

    Sabhapondit, Santanu; Karak, Tanmoy; Bhuyan, Lakshi Prasad; Goswami, Bhabesh Chandra; Hazarika, Mridul

    2012-01-01

    Tea (Camellia sinensis L.) leaf contains a large amount of catechins (a group of very active flavonoids) which contribute to major quality attributes of black tea. Based on morphological characters tea plants were classified as Assam, China, and Cambod varieties. The present study is an attempt for biochemical fingerprinting of the tea varieties based on catechin composition in green leaf of cultivars grown in Northeast India. Assam variety cultivars contained the highest level of catechins followed by Cambod and China. The average catechin contents were 231 ± 7 mg g−1, 202 ± 5 mg g−1, and 157 ± 4 mg g−1 of dry weight of green leaf for Assam, Cambod, and China cultivars, respectively. Among the individual catechins the variations in epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were the most prominent among the varieties. High EGC content was found to be a characteristic of Assam variety which was further corroborated through multivariate analysis. PMID:22448135

  5. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation.

    PubMed

    Zhu, Yuchen; Luo, Yinghua; Wang, Pengpu; Zhao, Mengyao; Li, Lei; Hu, Xiaosong; Chen, Fang

    2016-03-01

    Pu-erh ripened tea is produced through a unique microbial fermentation process from the sun-dried leaves of large-leaf tea species (Camellia sinensis (Linn.) var. assamica (Masters) Kitamura) in Yunnan province of China. In this study, the changes of amino acid profiles during fermentation of Pu-erh tea were investigated, based on the improved HPLC-UV method with PITC pre-column derivatization for the simultaneous determination of twenty free amino acids. Results showed that aspartic acid, glutamic acid, arginine, alanine, theanine and tyrosine were the major amino acids in tea samples. Fermentation significantly influenced on the amino acid profiles. The total free amino acid contents significantly decreased during fermentation (p<0.05). Meanwhile, low amount of acrylamide were detected. Its concentration increased after 7-days' fermentation and then decreased gradually. The results provided the useful information for the manipulation of fermentation process according to the changes of amino acids and acrylamide contents in Pu-erh ripened tea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea.

    PubMed

    Ayoub, Shereen; Melzig, Matthias F

    2006-04-01

    Deposition of amyloid beta-peptide as senile plaques in the brain is one of the neuropathological hallmarks of Alzheimer's disease, which is the most prevalent progressive neurodegenerative disease leading to dementia. Neutral endopeptidase is one of the major beta-amyloid-degrading enzymes in the brain. To examine the influence of different polyphenols and other natural products from green tea extract (from Camellia sinensis, Theaceae), we used the neuroblastoma cell line SK-N-SH and studied the changes in the specific cellular neutral endopeptidase activity after long-term treatment with these substances. We have shown that caffeine leads to an increase in specific cellular neutral endopeptidase activity more than theophylline, theobromine or theanine. We have also shown that the combination of epicatechin, epigallocatechin and epigallocatechingallate with caffeine, theobromine or theophylline induced cellular neutral endopeptidase activity. It is suggested that the enhancement of cellular neutral endopeptidase activity by green tea extract and its natural products might be correlated with an elevated level of intracellular cyclic adenosine monophosphate.

  7. Functional Properties of Novel Epigallocatechin Gallate Glucosides Synthesized by Using Dextransucrase from Leuconostoc mesenteroides B-1299CB4.

    PubMed

    Kim, Jiyoun; Nguyen, Thi Thanh Hanh; Kim, Nahyun M; Moon, Young-Hwan; Ha, Jung-Min; Park, Namhyeon; Lee, Dong-Gu; Hwang, Kyeong-Hwan; Park, Jun-Seong; Kim, Doman

    2016-12-07

    Epigallocatechin gallate (EGCG) is the most abundant catechin found in the leaves of green tea, Camellia sinensis. In this study, novel epigallocatechin gallate-glucocides (EGCG-Gs) were synthesized by using dextransucrase from Leuconostoc mesenteroides B-1299CB4. Response surface methodology was adopted to optimize the conversion of EGCG to EGCG-Gs, resulting in a 91.43% conversion rate of EGCG. Each EGCG-G was purified using a C 18 column. Of nine EGCG-Gs identified by nuclear magnetic resonance analysis, five EGCG-Gs (2 and 4-7) were novel compounds with yields of 2.2-22.6%. The water solubility of the five novel compounds ranged from 229.7 to 1878.5 mM. The 5'-OH group of EGCG-Gs expressed higher antioxidant activities than the 4'-OH group of EGCG-Gs. Furthermore, glucosylation at 7-OH group of EGCG-Gs was found to be responsible for maintaining tyrosinase inhibitory activity and increasing browning-resistant activities.

  8. Role of Green Tea Flavonoids and Other Related Contents in Cancer Prevention.

    PubMed

    Qadir, Muhammad Imran

    2017-01-01

    Green tea is made from Camellia sinensis and leaves through the oxidation process. It mainly originates in China and has been used traditionally throughout Asia. In the West, black tea has been used mostly, but green tea has become the most popular beverage throughout the world. It is also used as a raw material in cosmetics, health foods, and as an added ingredient in various beverages. Different varieties of green tea are available. The main differences between the varieties are due to harvesting time, production procedures, and horticulture. Drinking green tea has many positive effects on the body. It helps to nourish our five vital organs, among which the most important is the heart. It also has many qualities to help improve our state of mind (thus possibly reducing the consumption of alcohol), it acts as a stimulant, cures blotchiness, fulfills thirst, eliminates indigestion, cures beriberi disease, prevents fatigue, and improves kidney and brain function.

  9. Identification of the two new, functional actinoporins, CJTOX I and CJTOX II, from the deep-sea anemone Cribrinopsis japonica.

    PubMed

    Tsutsui, Kenta; Sato, Tomomi

    2018-06-15

    Actinoporins are pore-forming proteins found in sea anemones. Although we now have a large collection of data on actinoporins, our knowledge is based heavily on those identified in shallow-water anemones. Because the deep sea differs considerably from shallow waters in hydrostatic pressures, temperatures, and the prey composition, the deep-sea actinoporin may have evolved in unique ways. This study, therefore, aimed to obtain new actinoporins in the deep-sea anemone Cribrinopis japonica (Actiniaria, Actiniidae). An actinoporin-like sequence was identified from the previously established C. japonica RNA-Seq database, and the complete length (663 bp) of the deep-sea actinoporin gene, Cjtox I, was obtained. In addition, a similar gene, Cjtox II (666 bp), was also identified from RNA of actinopharynx. CJTOX I and CJTOX II were similar in their primary structures, but CJTOX I lacked one residue in the middle of the protein. There was also a difference in the gene expression in live animals, where only Cjtox I was expressed in tentacles of C. japonica. In the heterologous expression where BL21 (DE3) strain was retransformed with the plasmid containing either Cjtox I or Cjtox II gene, the supernatants of both cell lysates showed hemolytic activity on the equine erythrocytes. Preincubation of the supernatants with sphingomyelin caused reduced activity, implying that the CJTOX I and II would target sphingomyelin as with other actinoporins. Because of the structures similarity to the known actinoporins and the sphingomyelin-inhibitable hemolytic activity, both CJTOX I and II were concluded to be new actinoporins, which were identified for the first time from a deep-sea anemone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Background matching by means of dorsal color change in treefrog populations (Hyla japonica).

    PubMed

    Choi, Noori; Jang, Yikweon

    2014-02-01

    Treefrogs change dorsal coloration to match background colors, presumably for predator avoidance. Dorsal coloration in treefrogs results from rearrangement of pigment granules in dermal chromatophores. This physiological basis for color change suggests that brightness and chroma are the color components that may change in response to background color. However, results of experiments are conflicting in that there is no consensus as to which color component is critical for color change in treefrogs. We tested predictions of the physiological model for color change in treefrogs by investigating dorsal color change under five background colors in three different populations of the treefrog Hyla japonica. Differences in color components between background colors and frogs were used as a measure of background matching. Throughout a 1-week experimental period, brightness and chroma differences decreased monotonically, while hue difference remained constant for all background colors. Chroma differences were smaller with the natural colors such as green and brown than with achromatic colors. Moreover, variation in color change among frogs from three localities that differed in land cover suggested that chroma change capacity may be sensitive to environmental conditions. Under the white background color, however, decreasing brightness difference seemed to be crucial to background matching. Furthermore, chroma difference and brightness difference did not decrease indefinitely, suggesting a trade-off between chroma difference and brightness difference under the white background. Thus, background matching may generally occur by decreasing chroma difference under most background colors in H. japonica, but brightness matching may be important under the white color. © 2013 Wiley Periodicals, Inc.

  11. Cell wall layers delimit cell groups derived from cell division in the foliose trebouxiophycean alga Prasiola japonica.

    PubMed

    Mine, Ichiro; Kinoshita, Urara; Kawashima, Shigetaka; Sekida, Satoko

    2018-01-22

    The cells in the foliose thallus of trebouxiophycean alga Prasiola japonica apparently develop into 2 × 2 cell groups composed of two two-celled groups, each of which is a pair of derivative cells of the latest cell division. In the present study, the structural features of cell walls of the alga P. japonica concerning the formation of the cell groups were investigated using histochemical methods. Thin cell layers stained by Calcofluor White appeared to envelope the two-celled and four-celled groups separately and, hence, separated them from neighboring cell groups, and the Calcofluor White-negative gaps between neighboring four-celled groups were specifically stained by lectins, such as soybean agglutinin, jacalin, and Vicia villosa lectin conjugated with fluorescein. These results indicated that the Calcofluor White-positive cell wall layer of parent cell that existed during two successive cell divisions structurally distinguished two-celled and four-celled groups from others in this alga. Moreover, the results suggested that the cell wall components of the Calcofluor White-negative gaps would possibly contribute to the formation of the planar thallus through lateral union of the cell groups.

  12. Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.).

    PubMed

    Tong, Mengmeng; Gao, Wanjun; Jiao, Weiting; Zhou, Jie; Li, Yeyun; He, Lili; Hou, Ruyan

    2017-09-06

    The uptake, translocation, metabolism, and distribution behavior of glyphosate in nontarget tea plant were investigated. The negative effects appeared to grown tea saplings when the nutrient solution contained glyphosate above 200 mg L -1 . Glyphosate was highest in the roots of the tea plant, where it was also metabolized to aminomethyl phosphonic acid (AMPA). The glyphosate and AMPA in the roots were transported through the xylem or phloem to the stems and leaves. The amount of AMPA in the entire tea plant was less than 6.0% of the amount of glyphosate. The glyphosate level in fresh tea shoots was less than that in mature leaves at each day. These results indicated that free glyphosate in the soil can be continuously absorbed by, metabolized in, and transported from the roots of the tea tree into edible leaves, and therefore, free glyphosate residues in the soil should be controlled to produce teas free of glyphosate.

  13. Predicting the spatial distribution of Lonicera japonica, based on species occurrence data from two watersheds in Western Kentucky and Tennessee

    Treesearch

    Dongjiao Liu; Hao Jiang; Robin Zhang; Kate S. He

    2011-01-01

    The spatial distribution of most invasive plants is poorly documented and studied. This project examined and compared the spatial distribution of a successful invasive plant, Japanese honeysuckle (Lonicera japonica), in two similar-sized but ecologically distinct watersheds in western Kentucky (Ledbetter Creek) and western Tennessee (Panther Creek)....

  14. Identification of Insecticidal Constituents from the Essential Oil from the Aerial Parts Stachys riederi var. japonica.

    PubMed

    Quan, Meirong; Liu, Qi Zhi; Liu, Zhi Long

    2018-05-17

    The essential oil of Stachys riederi var. japonica (Family: Lamiaceae) was extracted by hydrodistillation and determined by GC and GC-MS. A total of 40 components were identified, representing 96.01% of the total oil composition. The major compounds in the essential oil were acetanisole (15.43%), anisole (9.43%), 1,8-cineole (8.07%), geraniol (7.89%), eugenol (4.54%), caryophyllene oxide (4.47%), caryophyllene (4.21%) and linalool (4.07%). Five active constituents (acetanisole, anisole, 1,8-cineole, eugenol and geraniol) were identified by bioactivity-directed fractionation. The essential oil possessed fumigant toxicity against maize weevils ( Sitophilus zeamais ) and booklice ( Liposcelis bostrychophila ), with LC 50 values of 15.0 mg/L and 0.7 mg/L, respectively. Eugenol and anisole exhibited stronger fumigant toxicity than the oil against booklice. 1,8-Cineole showed stronger toxicity, and anisole