Sample records for camera based pet

  1. [Microeconomics of introduction of a PET system based on the revised Japanese National Insurance reimbursement system].

    PubMed

    Abe, Katsumi; Kosuda, Shigeru; Kusano, Shoichi; Nagata, Masayoshi

    2003-11-01

    It is crucial to evaluate an annual balance before-hand when an institution installs a PET system because the revised Japanese national insurance reimbursement system set the cost of a FDG PET study as 75,000 yen. A break-even point was calculated in an 8-hour or a 24-hour operation of a PET system, based on the total costs reported. The break-even points were as follows: 13.4, 17.7, 22.1 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in an ordinary PET system operation of 8 hours. The break-even points were 19.9, 25.5, 31.2 studies per day for the 1 cyclotron-1 PET camera, 1 cyclotron-2 PET cameras, 1 cyclotron-3 PET cameras system, respectively, in a full PET system operation of 24 hours. The results indicate no profit would accrue in an ordinary PET system operation of 8 hours. The annual profit and break-even point for the total cost including the initial investment would be respectively 530 million yen and 2.8 years in a 24-hour operation with 1 cyclotron-3 PET cameras system.

  2. Quality controls for gamma cameras and PET cameras: development of a free open-source ImageJ program

    NASA Astrophysics Data System (ADS)

    Carlier, Thomas; Ferrer, Ludovic; Berruchon, Jean B.; Cuissard, Regis; Martineau, Adeline; Loonis, Pierre; Couturier, Olivier

    2005-04-01

    Acquisition data and treatments for quality controls of gamma cameras and Positron Emission Tomography (PET) cameras are commonly performed with dedicated program packages, which are running only on manufactured computers and differ from each other, depending on camera company and program versions. The aim of this work was to develop a free open-source program (written in JAVA language) to analyze data for quality control of gamma cameras and PET cameras. The program is based on the free application software ImageJ and can be easily loaded on any computer operating system (OS) and thus on any type of computer in every nuclear medicine department. Based on standard parameters of quality control, this program includes 1) for gamma camera: a rotation center control (extracted from the American Association of Physics in Medicine, AAPM, norms) and two uniformity controls (extracted from the Institute of Physics and Engineering in Medicine, IPEM, and National Electronic Manufacturers Association, NEMA, norms). 2) For PET systems, three quality controls recently defined by the French Medical Physicist Society (SFPM), i.e. spatial resolution and uniformity in a reconstructed slice and scatter fraction, are included. The determination of spatial resolution (thanks to the Point Spread Function, PSF, acquisition) allows to compute the Modulation Transfer Function (MTF) in both modalities of cameras. All the control functions are included in a tool box which is a free ImageJ plugin and could be soon downloaded from Internet. Besides, this program offers the possibility to save on HTML format the uniformity quality control results and a warning can be set to automatically inform users in case of abnormal results. The architecture of the program allows users to easily add any other specific quality control program. Finally, this toolkit is an easy and robust tool to perform quality control on gamma cameras and PET cameras based on standard computation parameters, is free, run on any type of computer and will soon be downloadable from the net (http://rsb.info.nih.gov/ij/plugins or http://nucleartoolkit.free.fr).

  3. An Educational PET Camera Model

    ERIC Educational Resources Information Center

    Johansson, K. E.; Nilsson, Ch.; Tegner, P. E.

    2006-01-01

    Positron emission tomography (PET) cameras are now in widespread use in hospitals. A model of a PET camera has been installed in Stockholm House of Science and is used to explain the principles of PET to school pupils as described here.

  4. GePEToS: A Geant4 Monte Carlo Simulation Package for Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Jan, S.; Collot, J.; Gallin-Martel, M.-L.; Martin, P.; Mayet, F.; Tournefier, E.

    2005-02-01

    GePEToS is a simulation framework developed over the last few years for assessing the instrumental performance of future positron emission tomography (PET) scanners. It is based on Geant4, written in object-oriented C++ and runs on Linux platforms. The validity of GePEToS has been tested on the well-known Siemens ECAT EXACT HR+ camera. The results of two application examples are presented: the design optimization of a liquid Xe /spl mu/PET camera dedicated to small animal imaging as well as the evaluation of the effect of a strong axial magnetic field on the image resolution of a Concorde P4 /spl mu/PET camera.

  5. Clinical applications with the HIDAC positron camera

    NASA Astrophysics Data System (ADS)

    Frey, P.; Schaller, G.; Christin, A.; Townsend, D.; Tochon-Danguy, H.; Wensveen, M.; Donath, A.

    1988-06-01

    A high density avalanche chamber (HIDAC) positron camera has been used for positron emission tomographic (PET) imaging in three different human studies, including patients presenting with: (I) thyroid diseases (124 cases); (II) clinically suspected malignant tumours of the pharynx or larynx (ENT) region (23 cases); and (III) clinically suspected primary malignant and metastatic tumours of the liver (9 cases, 19 PET scans). The positron emitting radiopharmaceuticals used for the three studies were Na 124I (4.2 d half-life) for the thyroid, 55Co-bleomycin (17.5 h half-life) for the ENT-region and 68Ga-colloid (68 min half-life) for the liver. Tomographic imaging was performed: (I) 24 h after oral Na 124I administration to the thyroid patients, (II) 18 h after intraveneous administration of 55Co-bleomycin to the ENT patients and (III) 20 min following the intraveneous injection of 68Ga-colloid to the liver tumour patients. Three different imaging protocols were used with the HIDAC positron camera to perform appropriate tomographic imaging in each patient study. Promising results were obtained in all three studies, particularly in tomographic thyroid imaging, where a significant clinical contribution is made possible for diagnosis and therapy planning by the PET technique. In the other two PET studies encouraging results were obtained for the detection and precise localisation of malignant tumour disease including an estimate of the functional liver volume based on the reticulo-endothelial-system (RES) of the liver, obtained in vivo, and the three-dimensional display of liver PET data using shaded graphics techniques. The clinical significance of the overall results obtained in both the ENT and the liver PET study, however, is still uncertain and the respective role of PET as a new imaging modality in these applications is not yet clearly established. To appreciate the clinical impact made by PET in liver and ENT malignant tumour staging needs further investigation, and more detailed data on a larger number of clinical and experimental PET scans will be necessary for definitive evaluation. Nevertheless, the HIDAC positron camera may be used for clinical PET imaging in well-defined patient cases, particularly in situations where both high spatial resolution is desired in the reconstructed image of the examined pathological condition and at the same time "static" PET imaging may be adequate, as is the case in thyroid-, ENT- and liver tomographic imaging using the HIDAC positron camera.

  6. Commissioning and Characterization of a Dedicated High-Resolution Breast PET Camera

    DTIC Science & Technology

    2014-02-01

    aim to achieve 1 mm3 resolution using a unique detector design that is able to measure annihilation radiation coming from the PET tracer in 3...undergoing a regular staging PET /CT. We will image with the novel two-panel system after the standard PET /CT scan , in order not to interfere with the...Resolution Breast PET Camera PRINCIPAL INVESTIGATOR: Arne Vandenbroucke, Ph.D. CONTRACTING ORGANIZATION: Stanford University

  7. Performance of the Tachyon Time-of-Flight PET Camera

    NASA Astrophysics Data System (ADS)

    Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-02-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  8. Performance of the Tachyon Time-of-Flight PET Camera.

    PubMed

    Peng, Q; Choong, W-S; Vu, C; Huber, J S; Janecek, M; Wilson, D; Huesman, R H; Qi, Jinyi; Zhou, Jian; Moses, W W

    2015-02-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 × 25 mm 2 side of 6.15 × 6.15 × 25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  9. Performance of the Tachyon Time-of-Flight PET Camera

    PubMed Central

    Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon’s detector module is optimized for timing by coupling the 6.15 × 25 mm2 side of 6.15 × 6.15 × 25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/− ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. PMID:26594057

  10. Performance of the Tachyon Time-of-Flight PET Camera

    DOE PAGES

    Peng, Q.; Choong, W. -S.; Vu, C.; ...

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm 2 side of 6.15 ×6.15 ×25 mm 3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according tomore » the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.« less

  11. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm3 resolution clinical PET system

    PubMed Central

    Vandenbroucke, A.; Innes, D.; Lau, F. W. Y.; Hsu, D. F. C.; Reynolds, P. D.; Levin, Craig S.

    2015-01-01

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm3 resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under construction consists of 2304 units, each containing two 8 × 8 arrays of 1 mm3 LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image. PMID:25563270

  12. Thermal regulation of tightly packed solid-state photodetectors in a 1 mm{sup 3} resolution clinical PET system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, D. L.; Vandenbroucke, A.; Innes, D.

    2015-01-15

    Purpose: Silicon photodetectors are of significant interest for use in positron emission tomography (PET) systems due to their compact size, insensitivity to magnetic fields, and high quantum efficiency. However, one of their main disadvantages is fluctuations in temperature cause strong shifts in gain of the devices. PET system designs with high photodetector density suffer both increased thermal density and constrained options for thermally regulating the devices. This paper proposes a method of thermally regulating densely packed silicon photodetectors in the context of a 1 mm{sup 3} resolution, high-sensitivity PET camera dedicated to breast imaging. Methods: The PET camera under constructionmore » consists of 2304 units, each containing two 8 × 8 arrays of 1 mm{sup 3} LYSO crystals coupled to two position sensitive avalanche photodiodes (PSAPD). A subsection of the proposed camera with 512 PSAPDs has been constructed. The proposed thermal regulation design uses water-cooled heat sinks, thermoelectric elements, and thermistors to measure and regulate the temperature of the PSAPDs in a novel manner. Active cooling elements, placed at the edge of the detector stack due to limited access, are controlled based on collective leakage current and temperature measurements in order to keep all the PSAPDs at a consistent temperature. This thermal regulation design is characterized for the temperature profile across the camera and for the time required for cooling changes to propagate across the camera. These properties guide the implementation of a software-based, cascaded proportional-integral-derivative control loop that controls the current through the Peltier elements by monitoring thermistor temperature and leakage current. The stability of leakage current, temperature within the system using this control loop is tested over a period of 14 h. The energy resolution is then measured over a period of 8.66 h. Finally, the consistency of PSAPD gain between independent operations of the camera over 10 days is tested. Results: The PET camera maintains a temperature of 18.00 ± 0.05 °C over the course of 12 h while the ambient temperature varied 0.61 °C, from 22.83 to 23.44 °C. The 511 keV photopeak energy resolution over a period of 8.66 h is measured to be 11.3% FWHM with a maximum photopeak fluctuation of 4 keV. Between measurements of PSAPD gain separated by at least 2 day, the maximum photopeak shift was 6 keV. Conclusions: The proposed thermal regulation scheme for tightly packed silicon photodetectors provides for stable operation of the constructed subsection of a PET camera over long durations of time. The energy resolution of the system is not degraded despite shifts in ambient temperature and photodetector heat generation. The thermal regulation scheme also provides a consistent operating environment between separate runs of the camera over different days. Inter-run consistency allows for reuse of system calibration parameters from study to study, reducing the time required to calibrate the system and hence to obtain a reconstructed image.« less

  13. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halama, J.

    2016-06-15

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less

  14. Gamma-camera 18F-FDG PET in diagnosis and staging of patients presenting with suspected lung cancer and comparison with dedicated PET.

    PubMed

    Oturai, Peter S; Mortensen, Jann; Enevoldsen, Henriette; Eigtved, Annika; Backer, Vibeke; Olesen, Knud P; Nielsen, Henrik W; Hansen, Hanne; Stentoft, Poul; Friberg, Lars

    2004-08-01

    It is not clear whether high-quality coincidence gamma-PET (gPET) cameras can provide clinical data comparable with data obtained with dedicated PET (dPET) cameras in the primary diagnostic work-up of patients with suspected lung cancer. This study focuses on 2 main issues: direct comparison between foci resolved with the 2 different PET scanners and the diagnostic accuracy compared with final diagnosis determined by the combined information from all other investigations and clinical follow-up. Eighty-six patients were recruited to this study through a routine diagnostic program. They all had changes on their chest radiographs, suggesting malignant lung tumor. In addition to the standard diagnostic program, each patient had 2 PET scans that were performed on the same day. After administration of 419 MBq (range = 305-547 MBq) (18)F-FDG, patients were scanned in a dedicated PET scanner about 1 h after FDG administration and in a dual-head coincidence gamma-camera about 3 h after tracer injection. Images from the 2 scans were evaluated in a blinded set-up and compared with the final outcome. Malignant intrathoracic disease was found in 52 patients, and 47 patients had primary lung cancers. dPET detected all patients as having malignancies (sensitivity, 100%; specificity, 50%), whereas gPET missed one patient (sensitivity, 98%; specificity, 56%). For evaluating regional lymph node involvement, sensitivity and specificity rates were 78% and 84% for dPET and 61% and 90% for gPET, respectively. When comparing the 2 PET techniques with clinical tumor stage (TNM), full agreement was obtained in 64% of the patients (Cohen's kappa = 0.56). Comparing categorization of the patients into clinical relevant stages (no malignancy/malignancy suitable for treatment with curative intent/nontreatable malignancy), resulted in full agreement in 81% (Cohen's kappa = 0.71) of patients. Comparing results from a recent generation of gPET cameras obtained about 2 h later than those of dPET, there was a fairly good agreement with regard to detecting primary lung tumors but slightly reduced sensitivity in detecting smaller malignant lesions such as lymph nodes. Depending on the population to be investigated, and if dPET is not available, gPET might provide significant diagnostic information in patients in whom lung cancer is suspected.

  15. PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera

    NASA Astrophysics Data System (ADS)

    Frohwein, Lynn J.; Heß, Mirco; Schlicher, Dominik; Bolwin, Konstantin; Büther, Florian; Jiang, Xiaoyi; Schäfers, Klaus P.

    2018-01-01

    PET attenuation correction for flexible MRI radio frequency surface coils in hybrid PET/MRI is still a challenging task, as position and shape of these coils conform to large inter-patient variabilities. The purpose of this feasibility study is to develop a novel method for the incorporation of attenuation information about flexible surface coils in PET reconstruction using the Microsoft Kinect V2 depth camera. The depth information is used to determine a dense point cloud of the coil’s surface representing the shape of the coil. From a CT template—acquired once in advance—surface information of the coil is extracted likewise and converted into a point cloud. The two point clouds are then registered using a combination of an iterative-closest-point (ICP) method and a partially rigid registration step. Using the transformation derived through the point clouds, the CT template is warped and thereby adapted to the PET/MRI scan setup. The transformed CT template is converted into an attenuation map from Hounsfield units into linear attenuation coefficients. The resulting fitted attenuation map is then integrated into the MRI-based patient-specific DIXON-based attenuation map of the actual PET/MRI scan. A reconstruction of phantom PET data acquired with the coil present in the field-of-view (FoV), but without the corresponding coil attenuation map, shows large artifacts in regions close to the coil. The overall count loss is determined to be around 13% compared to a PET scan without the coil present in the FoV. A reconstruction using the new μ-map resulted in strongly reduced artifacts as well as increased overall PET intensities with a remaining relative difference of about 1% to a PET scan without the coil in the FoV.

  16. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging

    PubMed Central

    Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2014-01-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171

  17. High-performance electronics for time-of-flight PET systems

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  18. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.

  19. MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera

    NASA Astrophysics Data System (ADS)

    Wang, Hongkai; Stout, David B.; Taschereau, Richard; Gu, Zheng; Vu, Nam T.; Prout, David L.; Chatziioannou, Arion F.

    2012-10-01

    This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.

  20. MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera.

    PubMed

    Wang, Hongkai; Stout, David B; Taschereau, Richard; Gu, Zheng; Vu, Nam T; Prout, David L; Chatziioannou, Arion F

    2012-10-07

    This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.

  1. Engineering and performance (NEMA and animal) of a lower-cost higher-resolution animal PET/CT scanner using photomultiplier-quadrant-sharing detectors.

    PubMed

    Wong, Wai-Hoi; Li, Hongdi; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio A; Liu, Shitao; Wang, Chao; An, Shaohui

    2012-11-01

    The dedicated murine PET (MuPET) scanner is a high-resolution, high-sensitivity, and low-cost preclinical PET camera designed and manufactured at our laboratory. In this article, we report its performance according to the NU 4-2008 standards of the National Electrical Manufacturers Association (NEMA). We also report the results of additional phantom and mouse studies. The MuPET scanner, which is integrated with a CT camera, is based on the photomultiplier-quadrant-sharing concept and comprises 180 blocks of 13 × 13 lutetium yttrium oxyorthosilicate crystals (1.24 × 1.4 × 9.5 mm(3)) and 210 low-cost 19-mm photomultipliers. The camera has 78 detector rings, with an 11.6-cm axial field of view and a ring diameter of 16.6 cm. We measured the energy resolution, scatter fraction, sensitivity, spatial resolution, and counting rate performance of the scanner. In addition, we scanned the NEMA image-quality phantom, Micro Deluxe and Ultra-Micro Hot Spot phantoms, and 2 healthy mice. The system average energy resolution was 14% at 511 keV. The average spatial resolution at the center of the field of view was about 1.2 mm, improving to 0.8 mm and remaining below 1.2 mm in the central 6-cm field of view when a resolution-recovery method was used. The absolute sensitivity of the camera was 6.38% for an energy window of 350-650 keV and a coincidence timing window of 3.4 ns. The system scatter fraction was 11.9% for the NEMA mouselike phantom and 28% for the ratlike phantom. The maximum noise-equivalent counting rate was 1,100 at 57 MBq for the mouselike phantom and 352 kcps at 65 MBq for the ratlike phantom. The 1-mm fillable rod was clearly observable using the NEMA image-quality phantom. The images of the Ultra-Micro Hot Spot phantom also showed the 1-mm hot rods. In the mouse studies, both the left and right ventricle walls were clearly observable, as were the Harderian glands. The MuPET camera has excellent resolution, sensitivity, counting rate, and imaging performance. The data show it is a powerful scanner for preclinical animal study and pharmaceutical development.

  2. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  3. PET with the HIDAC camera?

    NASA Astrophysics Data System (ADS)

    Townsend, D. W.

    1988-06-01

    In 1982 the first prototype high density avalanche chamber (HIDAC) positron camera became operational in the Division of Nuclear Medicine of Geneva University Hospital. The camera consisted of dual 20 cm × 20 cm HIDAC detectors mounted on a rotating gantry. In 1984, these detectors were replaced by 30 cm × 30 cm detectors with improved performance and reliability. Since then, the larger detectors have undergone clinical evaluation. This article discusses certain aspects of the evaluation program and the conclusions that can be drawn from the results. The potential of the HIDAC camera for quantitative positron emission tomography (PET) is critically examined, and its performance compared with a state-of-the-art, commercial ring camera. Guidelines for the design of a future HIDAC camera are suggested.

  4. [Diagnostic use of positron emission tomography in France: from the coincidence gamma-camera to mobile hybrid PET/CT devices].

    PubMed

    Talbot, Jean-Noël

    2010-11-01

    Positron emission tomography (PET) is a well-established medical imaging method. PET is increasingly used for diagnostic purposes, especially in oncology. The most widely used radiopharmaceutical is FDG, a glucose analogue. Other radiopharmaceuticals have recently been registered or are in development. We outline technical improvements of PET machines during more than a decade of clinical use in France. Even though image quality has improved considerably and PET-CT hybrid machines have emerged, spending per examination has remained remarkably constant. Replacement and maintenance costs have remained in the range of 170-190 Euros per examination since 1997, whether early CDET gamma cameras or the latest time-of-flight PET/CT devices are used. This is mainly due to shorter acquisition times and more efficient use of FDG New reimbursement rates for PET/CT are needed in France in order to favor regular acquisition of state-of-the-art devices. One major development is the coupling of PET and MR imaging.

  5. Comparison of Monte Carlo simulated and measured performance parameters of miniPET scanner

    NASA Astrophysics Data System (ADS)

    Kis, S. A.; Emri, M.; Opposits, G.; Bükki, T.; Valastyán, I.; Hegyesi, Gy.; Imrek, J.; Kalinka, G.; Molnár, J.; Novák, D.; Végh, J.; Kerek, A.; Trón, L.; Balkay, L.

    2007-02-01

    In vivo imaging of small laboratory animals is a valuable tool in the development of new drugs. For this purpose, miniPET, an easy to scale modular small animal PET camera has been developed at our institutes. The system has four modules, which makes it possible to rotate the whole detector system around the axis of the field of view. Data collection and image reconstruction are performed using a data acquisition (DAQ) module with Ethernet communication facility and a computer cluster of commercial PCs. Performance tests were carried out to determine system parameters, such as energy resolution, sensitivity and noise equivalent count rate. A modified GEANT4-based GATE Monte Carlo software package was used to simulate PET data analogous to those of the performance measurements. GATE was run on a Linux cluster of 10 processors (64 bit, Xeon with 3.0 GHz) and controlled by a SUN grid engine. The application of this special computer cluster reduced the time necessary for the simulations by an order of magnitude. The simulated energy spectra, maximum rate of true coincidences and sensitivity of the camera were in good agreement with the measured parameters.

  6. Application of Timepix3 based CdTe spectral sensitive photon counting detector for PET imaging

    NASA Astrophysics Data System (ADS)

    Turecek, Daniel; Jakubek, Jan; Trojanova, Eliska; Sefc, Ludek; Kolarova, Vera

    2018-07-01

    Positron emission tomography (PET) is a nuclear medicine functional imaging technique. It is used in clinical oncology (medical imaging of tumors and the search for metastases), and pre-clinical studies using animals. PET uses small amounts of radioactive materials (radiotracers) and a special photon sensitive camera. Most of these cameras use scintillators with photomultipliers as detectors. However, these detectors have limited energy sensitivity and large pixels. Therefore, the false signal caused by a scattering poses a significant problem. In this work we study properties of position, energy and time sensitive semiconductor detector of Timepix3 type and its applicability for PET measurements. This work presents an initial study and evaluation of two Timepix3 detectors with 2 mm thick CdTe sensors used in simplified geometry for PET imaging. The study is performed on 2 samples - a capillary tube and a cylindrical plexiglass phantom with cavities. Both samples are filled with fluodeoxyglucose (FDG) solution that is used as a radiotracer. The Timepix3 offers better properties compared to conventional detectors - high granularity (55 μm pixel pitch), good energy resolution (1 keV at 60 keV) and sufficient time resolution (1.6 ns). The spectral sensitivity of Timepix3 together with coincidence/anticoincidence technique allows for significant reduction of background signal caused by Compton scattering and internal X-ray fluorescence of Cd and Te.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkington, T.

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less

  8. Marker-less multi-frame motion tracking and compensation in PET-brain imaging

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Mukherjee, J. M.; Johnson, K.; Olivier, P.; Song, X.; Shao, L.; King, M. A.

    2015-03-01

    In PET brain imaging, patient motion can contribute significantly to the degradation of image quality potentially leading to diagnostic and therapeutic problems. To mitigate the image artifacts resulting from patient motion, motion must be detected and tracked then provided to a motion correction algorithm. Existing techniques to track patient motion fall into one of two categories: 1) image-derived approaches and 2) external motion tracking (EMT). Typical EMT requires patients to have markers in a known pattern on a rigid too attached to their head, which are then tracked by expensive and bulky motion tracking camera systems or stereo cameras. This has made marker-based EMT unattractive for routine clinical application. Our main contributions are the development of a marker-less motion tracking system that uses lowcost, small depth-sensing cameras which can be installed in the bore of the imaging system. Our motion tracking system does not require anything to be attached to the patient and can track the rigid transformation (6-degrees of freedom) of the patient's head at a rate 60 Hz. We show that our method can not only be used in with Multi-frame Acquisition (MAF) PET motion correction, but precise timing can be employed to determine only the necessary frames needed for correction. This can speeds up reconstruction by eliminating the unnecessary subdivision of frames.

  9. Dual-Modality PET/Ultrasound imaging of the Prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should helpmore » provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.« less

  10. Molecular imaging of angiogenesis with SPECT

    PubMed Central

    Boerman, Otto C.

    2010-01-01

    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. PMID:20617435

  11. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  12. MO-AB-206-00: Nuclear Medicine Physics and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less

  13. A contactless approach for respiratory gating in PET using continuous-wave radar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ersepke, Thomas, E-mail: Thomas.Ersepke@rub.de; Büther, Florian; Heß, Mirco

    Purpose: Respiratory gating is commonly used to reduce motion artifacts in positron emission tomography (PET). Clinically established methods for respiratory gating in PET require contact to the patient or a direct optical line between the sensor and the patient’s torso and time consuming preparation. In this work, a contactless method for capturing a respiratory signal during PET is presented based on continuous-wave radar. Methods: The proposed method relies on the principle of emitting an electromagnetic wave and detecting the phase shift of the reflected wave, modulated due to the respiratory movement of the patient’s torso. A 24 GHz carrier frequencymore » was chosen allowing wave propagation through plastic and clothing with high reflections at the skin surface. A detector module and signal processing algorithms were developed to extract a quantitative respiratory signal. The sensor was validated using a high precision linear table. During volunteer measurements and [{sup 18}F] FDG PET scans, the radar sensor was positioned inside the scanner bore of a PET/computed tomography scanner. As reference, pressure belt (one volunteer), depth camera-based (two volunteers, two patients), and PET data-driven (six patients) signals were acquired simultaneously and the signal correlation was quantified. Results: The developed system demonstrated a high measurement accuracy for movement detection within the submillimeter range. With the proposed method, small displacements of 25 μm could be detected, not considerably influenced by clothing or blankets. From the patient studies, the extracted respiratory radar signals revealed high correlation (Pearson correlation coefficient) to those derived from the external pressure belt and depth camera signals (r = 0.69–0.99) and moderate correlation to those of the internal data-driven signals (r = 0.53–0.70). In some cases, a cardiac signal could be visualized, due to the representation of the mechanical heart motion on the skin. Conclusions: Accurate respiratory signals were obtained successfully by the proposed method with high spatial and temporal resolution. By working without contact and passing through clothing and blankets, this approach minimizes preparation time and increases the convenience of the patient during the scan.« less

  14. Development of a PET/Cerenkov-light hybrid imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Hamamura, Fuka; Kato, Katsuhiko

    2014-09-15

    Purpose: Cerenkov-light imaging is a new molecular imaging technology that detects visible photons from high-speed electrons using a high sensitivity optical camera. However, the merit of Cerenkov-light imaging remains unclear. If a PET/Cerenkov-light hybrid imaging system were developed, the merit of Cerenkov-light imaging would be clarified by directly comparing these two imaging modalities. Methods: The authors developed and tested a PET/Cerenkov-light hybrid imaging system that consists of a dual-head PET system, a reflection mirror located above the subject, and a high sensitivity charge coupled device (CCD) camera. The authors installed these systems inside a black box for imaging the Cerenkov-light.more » The dual-head PET system employed a 1.2 × 1.2 × 10 mm{sup 3} GSO arranged in a 33 × 33 matrix that was optically coupled to a position sensitive photomultiplier tube to form a GSO block detector. The authors arranged two GSO block detectors 10 cm apart and positioned the subject between them. The Cerenkov-light above the subject is reflected by the mirror and changes its direction to the side of the PET system and is imaged by the high sensitivity CCD camera. Results: The dual-head PET system had a spatial resolution of ∼1.2 mm FWHM and sensitivity of ∼0.31% at the center of the FOV. The Cerenkov-light imaging system's spatial resolution was ∼275μm for a {sup 22}Na point source. Using the combined PET/Cerenkov-light hybrid imaging system, the authors successfully obtained fused images from simultaneously acquired images. The image distributions are sometimes different due to the light transmission and absorption in the body of the subject in the Cerenkov-light images. In simultaneous imaging of rat, the authors found that {sup 18}F-FDG accumulation was observed mainly in the Harderian gland on the PET image, while the distribution of Cerenkov-light was observed in the eyes. Conclusions: The authors conclude that their developed PET/Cerenkov-light hybrid imaging system is useful to evaluate the merits and the limitations of Cerenkov-light imaging in molecular imaging research.« less

  15. Smart point-of-care systems for molecular diagnostics based on nanotechnology: whole blood glucose analysis

    NASA Astrophysics Data System (ADS)

    Devadhasan, Jasmine P.; Kim, Sanghyo

    2015-07-01

    Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.

  16. A PET system based on 2-18FDG production with a low energy electrostatic proton accelerator and a dual headed PET scanner.

    PubMed

    Sandell, A; Ohlsson, T; Erlandsson, K; Hellborg, R; Strand, S E

    1992-01-01

    We have developed a comparatively inexpensive PET system, based on a rotating scanner with two scintillation camera heads, and a nearby low energy electrostatic proton accelerator for production of short-lived radionuclides. Using a 6 MeV proton beam of 5 microA, and by optimization of the target geometry for the 18O(p,n)18F reaction, 750 MBq of 2-18FDG can be obtained. The PET scanner shows a spatial resolution of 6 mm (FWHM) and a sensitivity of 80 s-1kBq-1ml-1 (3 kcps/microCi/ml). Various corrections are included in the imaging process, to compensate for spatial and temporal response variations in the detector system. Both filtered backprojection and iterative reconstruction methods are employed. Clinical studies have been performed with acquisition times of 30-40 min. The system will be used for clinical experimental research with short- as well as long-lived positron emitters. Also the possibility of true 3D reconstruction is under evaluation.

  17. Silicon detectors for combined MR-PET and MR-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2013-02-01

    Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.

  18. Design study of dedicated brain PET with polyhedron geometry.

    PubMed

    Shi, Han; Du, Dong; Xu, JianFeng; Su, Zhihong; Peng, Qiyu

    2015-01-01

    Despite being the conventional choice, whole body PET cameras with a 76 cm diameter ring are not the optimal means of human brain imaging. In fact, a dedicated brain PET with a better geometrical structure has the potential to achieve a higher sensitivity, a higher signal-to-noise ratio, and a better imaging performance. In this study, a polyhedron geometrical dedicated brain PET (a dodecahedron design) is compared to three other candidates via their geometrical efficiencies by calculating the Solid Angle Fractions (SAF); the three other candidates include a spherical cap design, a cylindrical design, and the conventional whole body PET. The spherical cap and the dodecahedron have an identical SAF that is 58.4% higher than that of a 30 cm diameter cylinder and 5.44 times higher than that of a 76 cm diameter cylinder. The conceptual polygon-shape detectors (including pentagon and hexagon detectors based on the PMT-light-sharing scheme instead of the conventional square-shaped block detector module) are presented for the polyhedron PET design. Monte Carlo simulations are performed in order to validate the detector decoding. The results show that crystals in a pentagon-shape detector can be successfully decoded by Anger Logic. The new detector designs support the polyhedron PET investigation.

  19. Gallium-68 EDTA PET/CT for Renal Imaging.

    PubMed

    Hofman, Michael S; Hicks, Rodney J

    2016-09-01

    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of (68)Ga EDTA PET/CT for measuring glomerular filtration rate and split renal function. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Timing Calibration in PET Using a Time Alignment Probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, William W.; Thompson, Christopher J.

    2006-05-05

    We evaluate the Scanwell Time Alignment Probe for performing the timing calibration for the LBNL Prostate-Specific PET Camera. We calibrate the time delay correction factors for each detector module in the camera using two methods--using the Time Alignment Probe (which measures the time difference between the probe and each detector module) and using the conventional method (which measures the timing difference between all module-module combinations in the camera). These correction factors, which are quantized in 2 ns steps, are compared on a module-by-module basis. The values are in excellent agreement--of the 80 correction factors, 62 agree exactly, 17 differ bymore » 1 step, and 1 differs by 2 steps. We also measure on-time and off-time counting rates when the two sets of calibration factors are loaded into the camera and find that they agree within statistical error. We conclude that the performance using the Time Alignment Probe and conventional methods are equivalent.« less

  1. Performance modeling of a wearable brain PET (BET) camera

    NASA Astrophysics Data System (ADS)

    Schmidtlein, C. R.; Turner, J. N.; Thompson, M. O.; Mandal, K. C.; Häggström, I.; Zhang, J.; Humm, J. L.; Feiglin, D. H.; Krol, A.

    2016-03-01

    Purpose: To explore, by means of analytical and Monte Carlo modeling, performance of a novel lightweight and low-cost wearable helmet-shaped Brain PET (BET) camera based on thin-film digital Geiger Avalanche Photo Diode (dGAPD) with LSO and LaBr3 scintillators for imaging in vivo human brain processes for freely moving and acting subjects responding to various stimuli in any environment. Methods: We performed analytical and Monte Carlo modeling PET performance of a spherical cap BET device and cylindrical brain PET (CYL) device, both with 25 cm diameter and the same total mass of LSO scintillator. Total mass of LSO in both the BET and CYL systems is about 32 kg for a 25 mm thick scintillator, and 13 kg for 10 mm thick scintillator (assuming an LSO density of 7.3 g/ml). We also investigated a similar system using an LaBr3 scintillator corresponding to 22 kg and 9 kg for the 25 mm and 10 mm thick systems (assuming an LaBr3 density of 5.08 g/ml). In addition, we considered a clinical whole body (WB) LSO PET/CT scanner with 82 cm ring diameter and 15.8 cm axial length to represent a reference system. BET consisted of distributed Autonomous Detector Arrays (ADAs) integrated into Intelligent Autonomous Detector Blocks (IADBs). The ADA comprised of an array of small LYSO scintillator volumes (voxels with base a×a: 1.0 <= a <= 2.0 mm and length c: 3.0 <= c <= 6.0 mm) with 5-65 μm thick reflective layers on its five sides and sixth side optically coupled to the matching array of dGAPDs and processing electronics with total thickness of 50 μm. Simulated energy resolution was 10.8% and 3.3% for LSO and LaBr3 respectively and the coincidence window was set at 2 ns. The brain was simulated as a sphere of uniform F-18 activity with diameter of 10 cm embedded in a center of water sphere with diameter of 10 cm. Results: Analytical and Monte Carlo models showed similar results for lower energy window values (458 keV versus 445 keV for LSO, and 492 keV versus 485 keV for LaBr3), and for the relative performance of system sensitivity. Monte Carlo results further showed that the BET geometry had >50% better noise equivalent count (NEC) performance relative to the CYL geometry, and >1100% better performance than a WB geometry for 25 mm thick LSO and LaBr3. For 10 mm thick LaBr3 equivalent mass systems LSO (7 mm thick) performed ~40% higher NEC than LaBr3. Analytic and Monte Carlo simulations also showed that 1×1×3 mm scintillator crystals can achieve ~1.2 mm FWHM spatial resolution. Conclusions: This study shows that a spherical cap brain PET system can provide improved NEC while preserving spatial resolution when compared to an equivalent dedicated cylindrical PET brain camera and shows greatly improved PET performance relative to a conventional whole body PET/CT. In addition, our simulations show that LSO will generally outperform LaBr3 for NEC unless the timing resolution for LaBr3 is considerably smaller than presently used for LSO, i.e. well below 300 ps.

  2. Myocardial perfusion imaging: Lessons learned and work to be done-update.

    PubMed

    Iskandrian, Ami E; Dilsizian, Vasken; Garcia, Ernest V; Beanlands, Rob S; Cerqueira, Manuel; Soman, Prem; Berman, Daniel S; Cuocolo, Alberto; Einstein, Andrew J; Morgan, Charity J; Hage, Fadi G; Schelbert, Heinrich R; Bax, Jeroen J; Wu, Joseph C; Shaw, Leslee J; Sadeghi, Mehran M; Tamaki, Nagara; Kaufmann, Philipp A; Gropler, Robert; Dorbala, Sharmila; Van Decker, William

    2018-02-01

    As the second term of our commitment to Journal begins, we, the editors, would like to reflect on a few topics that have relevance today. These include prognostication and paradigm shifts; Serial testing: How to handle data? Is the change in perfusion predictive of outcome and which one? Ischemia-guided therapy: fractional flow reserve vs perfusion vs myocardial blood flow; positron emission tomography (PET) imaging using Rubidium-82 vs N-13 ammonia vs F-18 Flurpiridaz; How to differentiate microvascular disease from 3-vessel disease by PET? The imaging scene outside the United States, what are the differences and similarities? Radiation exposure; Special issues with the new cameras? Is attenuation correction needed? Are there normal databases and are these specific to each camera system? And finally, hybrid imaging with single-photon emission tomography or PET combined with computed tomography angiography or coronary calcium score. We hope these topics are of interest to our readers.

  3. HIGH-RESOLUTION L(Y)SO DETECTORS USING PMT-QUADRANT-SHARING FOR HUMAN & ANIMAL PET CAMERAS

    PubMed Central

    Ramirez, Rocio A.; Liu, Shitao; Liu, Jiguo; Zhang, Yuxuan; Kim, Soonseok; Baghaei, Hossain; Li, Hongdi; Wang, Yu; Wong, Wai-Hoi

    2009-01-01

    We developed high resolution L(Y)SO detectors for human and animal PET applications using Photomultiplier-quadrant-sharing (PQS) technology. The crystal sizes were 1.27 × 1.27 × 10 mm3 for the animal PQS-blocks and 3.25 × 3.25 × 20 mm3 for human ones. Polymer mirror film patterns (PMR) were placed between crystals as reflector. The blocks were assembled together using optical grease and wrapped by Teflon tape. The blocks were coupled to regular round PMT’s of 19/51 mm in PQS configuration. List-mode data of Ga-68 source (511 KeV) were acquired with our high yield pileup-event recovery (HYPER) electronics and data acquisition software. The high voltage bias was 1100V. Crystal decoding maps and individual crystal energy resolutions were extracted from the data. To investigate the potential imaging resolution of the PET cameras with these blocks, we used GATE (Geant4 Application for Tomographic Emission) simulation package. GATE is a GEANT4 based software toolkit for realistic simulation of PET and SPECT systems. The packing fractions of these blocks were found to be 95.6% and 98.2%. From the decoding maps, all 196 and 225 crystals were clearly identified. The average energy resolutions were 14.0% and 15.6%. For small animal PET systems, the detector ring diameter was 16.5 cm with an axial field of view (AFOV) of 11.8 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 1.24 (1.25) mm near the center is potentially achievable. For the wholebody human PET systems, the detector ring diameter was 86 cm. The simulation data suggests that a reconstructed radial (tangential) spatial resolution of 3.09(3.38) mm near the center is potentially achievable. From this study we can conclude that PQS design could achieve high spatial resolutions and excellent energy resolutions on human and animal PET systems with substantially lower production costs and inexpensive readout devices. PMID:19946463

  4. Activity-based costing evaluation of a [(18)F]-fludeoxyglucose positron emission tomography study.

    PubMed

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Borght, Thierry Vander

    2009-10-01

    The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. The cost data were obtained from the hospital administration, personnel and vendor interviews as well as from structured questionnaires. A process map separates the process in 16 patient- and non-patient-related activities, to which the detailed cost data are related. One-way sensitivity analyses shows to which degree of uncertainty the different parameters affect the individual cost and evaluate the impact of possible resource or practice changes like the acquisition of a hybrid PET/CT device, the patient throughput or the sales price of a 370MBq (18)F-FDG patient dose. The PET centre spends 73% of time in clinical activities and the resting time after injection of the tracer (42%) is the single largest departmental cost element. The tracer cost and the operational time have the most influence on cost per procedure. The analysis shows a total cost per FDG-PET ranging from 859 Euro for a BGO PET camera to 1142 Euro for a 16 slices PET-CT system, with a distribution of the resource costs in decreasing order: materials (44%), equipment (24%), wage (16%), space (6%) and hospital overhead (10%). The cost of FDG-PET is mainly influenced by the cost of the radiopharmaceutical. Therefore, the latter rather than the operational time should be reduced in order to improve its cost-effectiveness.

  5. Validation of a Multimodality Flow Phantom and Its Application for Assessment of Dynamic SPECT and PET Technologies.

    PubMed

    Gabrani-Juma, Hanif; Clarkin, Owen J; Pourmoghaddas, Amir; Driscoll, Brandon; Wells, R Glenn; deKemp, Robert A; Klein, Ran

    2017-01-01

    Simple and robust techniques are lacking to assess performance of flow quantification using dynamic imaging. We therefore developed a method to qualify flow quantification technologies using a physical compartment exchange phantom and image analysis tool. We validate and demonstrate utility of this method using dynamic PET and SPECT. Dynamic image sequences were acquired on two PET/CT and a cardiac dedicated SPECT (with and without attenuation and scatter corrections) systems. A two-compartment exchange model was fit to image derived time-activity curves to quantify flow rates. Flowmeter measured flow rates (20-300 mL/min) were set prior to imaging and were used as reference truth to which image derived flow rates were compared. Both PET cameras had excellent agreement with truth ( [Formula: see text]). High-end PET had no significant bias (p > 0.05) while lower-end PET had minimal slope bias (wash-in and wash-out slopes were 1.02 and 1.01) but no significant reduction in precision relative to high-end PET (<15% vs. <14% limits of agreement, p > 0.3). SPECT (without scatter and attenuation corrections) slope biases were noted (0.85 and 1.32) and attributed to camera saturation in early time frames. Analysis of wash-out rates from non-saturated, late time frames resulted in excellent agreement with truth ( [Formula: see text], slope = 0.97). Attenuation and scatter corrections did not significantly impact SPECT performance. The proposed phantom, software and quality assurance paradigm can be used to qualify imaging instrumentation and protocols for quantification of kinetic rate parameters using dynamic imaging.

  6. 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: comparison to conventional 51Cr-EDTA.

    PubMed

    Hofman, Michael; Binns, David; Johnston, Val; Siva, Shankar; Thompson, Mick; Eu, Peter; Collins, Marnie; Hicks, Rodney J

    2015-03-01

    Glomerular filtration rate (GFR) can accurately be determined using (51)Cr-ethylenediaminetetraacetic acid (EDTA) plasma clearance counting but is time-consuming and requires technical skills and equipment not always available in imaging departments. (68)Ga-EDTA can be readily available using an onsite generator, and PET/CT enables both imaging of renal function and accurate camera-based quantitation of clearance of activity from blood and its appearance in the urine. This study aimed to assess agreement between (68)Ga-EDTA GFR ((68)Ga-GFR) and (51)Cr-EDTA GFR ((51)Cr-GFR), using serial plasma sampling and PET imaging. (68)Ga-EDTA and (51)Cr-EDTA were injected concurrently in 31 patients. Dynamic PET/CT encompassing the kidneys was acquired for 10 min followed by 3 sequential 3-min multibed step acquisitions from kidneys to bladder. PET quantification was performed using renal activity at 1-2 min (PETinitial), renal excretion at 2-10 min (PETearly), and, subsequently, urinary excretion into the collecting system and bladder (PETlate). Plasma sampling at 2, 3, and 4 h was performed, with (68)Ga followed by (51)Cr counting after positron decay. The level of agreement for GFR determination was calculated using a Bland-Altman plot and Pearson correlation coefficient (PCC). (51)Cr-GFR ranged from 10 to 220 mL/min (mean, 85 mL/min). There was good agreement between (68)Ga-GFR and (51)Cr-GFR using serial plasma sampling, with a Bland-Altman bias of -14 ± 20 mL/min and a PCC of 0.94 (95% confidence interval, 0.88-0.97). Of the 3 methods used for camera-based quantification, the strongest correlation was for plasma sampling-derived GFR with PETlate (PCC of 0.90; 95% confidence interval, 0.80-0.95). (68)Ga-GFR agreed well with (51)Cr-GFR for estimation of GFR using serial plasma counting. PET dynamic imaging provides a method to estimate GFR without plasma sampling, with the additional advantage of enabling renal imaging in a single study. Additional validation in a larger cohort is warranted to further assess utility. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Robust real-time extraction of respiratory signals from PET list-mode data.

    PubMed

    Salomon, Andre; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-05-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions' detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting ("binning") of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signalsdirectly from the acquired PET data simplifies the clinical workflow as it avoids to handle additional signal measurement equipment. We introduce a new data-driven method "Combined Local Motion Detection" (CLMD). It uses the Time-of-Flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using 7 measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4s in total on a standard multi-core CPU and thus provides a robust and accurate approach enabling real-time processing capabilities using standard PC hardware. © 2018 Institute of Physics and Engineering in Medicine.

  8. Robust real-time extraction of respiratory signals from PET list-mode data

    NASA Astrophysics Data System (ADS)

    Salomon, André; Zhang, Bin; Olivier, Patrick; Goedicke, Andreas

    2018-06-01

    Respiratory motion, which typically cannot simply be suspended during PET image acquisition, affects lesions’ detection and quantitative accuracy inside or in close vicinity to the lungs. Some motion compensation techniques address this issue via pre-sorting (‘binning’) of the acquired PET data into a set of temporal gates, where each gate is assumed to be minimally affected by respiratory motion. Tracking respiratory motion is typically realized using dedicated hardware (e.g. using respiratory belts and digital cameras). Extracting respiratory signals directly from the acquired PET data simplifies the clinical workflow as it avoids handling additional signal measurement equipment. We introduce a new data-driven method ‘combined local motion detection’ (CLMD). It uses the time-of-flight (TOF) information provided by state-of-the-art PET scanners in order to enable real-time respiratory signal extraction without additional hardware resources. CLMD applies center-of-mass detection in overlapping regions based on simple back-positioned TOF event sets acquired in short time frames. Following a signal filtering and quality-based pre-selection step, the remaining extracted individual position information over time is then combined to generate a global respiratory signal. The method is evaluated using seven measured FDG studies from single and multiple scan positions of the thorax region, and it is compared to other software-based methods regarding quantitative accuracy and statistical noise stability. Correlation coefficients around 90% between the reference and the extracted signal have been found for those PET scans where motion affected features such as tumors or hot regions were present in the PET field-of-view. For PET scans with a quarter of typically applied radiotracer doses, the CLMD method still provides similar high correlation coefficients which indicates its robustness to noise. Each CLMD processing needed less than 0.4 s in total on a standard multi-core CPU and thus provides a robust and accurate approach enabling real-time processing capabilities using standard PC hardware.

  9. Performance evaluation of a high resolution dedicated breast PET scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García Hernández, Trinitat, E-mail: mtrinitat@eresa.com; Vicedo González, Aurora; Brualla González, Luis

    2016-05-15

    Purpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision). Methods: Global status, uniformity, sensitivity, energy, and spatial resolution were measured. Spheres of different sizes (2.5, 4, 5, and 6 mm diameter) and various 18 fluorodeoxyglucose ({sup 18}F-FDG) activity concentrations were randomly inserted in a gelatine breast phantom developed at our institution. Several lesion-to-background ratios (LBR) weremore » simulated, 5:1, 10:1, 20:1, 30:1, and 50:1. Images were reconstructed using different voxel sizes. The ability of experienced reporters to detect spheres was tested as a function of acquisition time, LBR, sphere size, and matrix reconstruction voxel size. For comparison, phantoms were scanned in the DbPET camera and in a whole body PET (WB-PET). Two patients who just underwent WB-PET/CT exams were imaged with the DbPET system and the images were compared. Results: The measured absolute peak sensitivity was 2.0%. The energy resolution was 24.0% ± 1%. The integral and differential uniformity were 10% and 6% in the total field of view (FOV) and 9% and 5% in the central FOV, respectively. The measured spatial resolution was 2.0, 1.9, and 1.7 mm in the radial, tangential, and axial directions. The system exhibited very good detectability for spheres ≥4 mm and LBR ≥10 with a sphere detection of 100% when acquisition time was set >3 min/bed. For LBR = 5 and acquisition time of 7 min the detectability was 100% for spheres of 6 mm and 75% for spheres of 5, 4, and 2.5 mm. Lesion WB-PET detectability was only comparable to the DbPET camera for lesion sizes ≥5 mm when acquisition time was >3 min and LBR > 10. Conclusions: The DbPET has a good performance for its clinical use and shows an improved resolution and lesion detectability of small lesions compared to WB-PET.« less

  10. Commissioning and Characterization of a Dedicated High Resolution Breast PET Camera

    DTIC Science & Technology

    2013-07-01

    coming from the PET tracer in 3 dimensions, using many 1 × 1 × 1 mm3 scintillation crystals. 2 Body: Research accomplishments as outlined in SOW 2-SA1...In addition, we won’t need to administer FDG for the sole purpose of the study: we will image with the remainder of the activity. This study will

  11. Characterization of the LBNL PEM Camera

    NASA Astrophysics Data System (ADS)

    Wang, G.-C.; Huber, J. S.; Moses, W. W.; Qi, J.; Choong, W.-S.

    2006-06-01

    We present the tomographic images and performance measurements of the LBNL positron emission mammography (PEM) camera, a specially designed positron emission tomography (PET) camera that utilizes PET detector modules with depth of interaction measurement capability to achieve both high sensitivity and high resolution for breast cancer detection. The camera currently consists of 24 detector modules positioned as four detector banks to cover a rectangular patient port that is 8.2/spl times/6 cm/sup 2/ with a 5 cm axial extent. Each LBNL PEM detector module consists of 64 3/spl times/3/spl times/30 mm/sup 3/ LSO crystals coupled to a single photomultiplier tube (PMT) and an 8/spl times/8 silicon photodiode array (PD). The PMT provides accurate timing, the PD identifies the crystal of interaction, the sum of the PD and PMT signals (PD+PMT) provides the total energy, and the PD/(PD+PMT) ratio determines the depth of interaction. The performance of the camera has been evaluated by imaging various phantoms. The full-width-at-half-maximum (FWHM) spatial resolution changes slightly from 1.9 mm to 2.1 mm when measured at the center and corner of the field of the view, respectively, using a 6 ns coincidence timing window and a 300-750 keV energy window. With the same setup, the peak sensitivity of the camera is 1.83 kcps//spl mu/Ci.

  12. Building blocks of a multi-layer PET with time sequence photon interaction discrimination and double Compton camera

    NASA Astrophysics Data System (ADS)

    Ilisie, V.; Giménez-Alventosa, V.; Moliner, L.; Sánchez, F.; González, A. J.; Rodríguez-Álvarez, M. J.; Benlloch, J. M.

    2018-07-01

    Current PET detectors have a very low sensitivity, of the order of a few percent. One of the reasons is the fact that Compton interactions are rejected. If an event involves multiple Compton scattering and the total deposited energy lays within the photoelectric peak, then an energy-weighted centroid is the given output for the coordinates of the reconstructed interaction point. This introduces distortion in the final reconstructed image. The aim of our work is to prove that Compton events are a very rich source of additional information as one can improve the resolution of the detector and implicitly the final reconstructed image. This could be a real breakthrough for PET detector technology as one should be able to obtain better results with less patient radiation. Using a PET as a double Compton camera, by means of Compton cone matching i.e., Compton cones coming from the same event should be compatible, is applied to discard randoms, patient scattered events and also, to perform a correct matching among events with multiple coincidences. In order to fully benefit experimentally from Compton events using monolithic scintillators a multi-layer configuration is needed and a good time-of-flight resolution.

  13. A novel SPECT camera for molecular imaging of the prostate

    NASA Astrophysics Data System (ADS)

    Cebula, Alan; Gilland, David; Su, Li-Ming; Wagenaar, Douglas; Bahadori, Amir

    2011-10-01

    The objective of this work is to develop an improved SPECT camera for dedicated prostate imaging. Complementing the recent advancements in agents for molecular prostate imaging, this device has the potential to assist in distinguishing benign from aggressive cancers, to improve site-specific localization of cancer, to improve accuracy of needle-guided prostate biopsy of cancer sites, and to aid in focal therapy procedures such as cryotherapy and radiation. Theoretical calculations show that the spatial resolution/detection sensitivity of the proposed SPECT camera can rival or exceed 3D PET and further signal-to-noise advantage is attained with the better energy resolution of the CZT modules. Based on photon transport simulation studies, the system has a reconstructed spatial resolution of 4.8 mm with a sensitivity of 0.0001. Reconstruction of a simulated prostate distribution demonstrates the focal imaging capability of the system.

  14. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy

    NASA Astrophysics Data System (ADS)

    Janek, S.; Svensson, R.; Jonsson, C.; Brahme, A.

    2006-11-01

    A method for dose delivery monitoring after high energy photon therapy has been investigated based on positron emission tomography (PET). The technique is based on the activation of body tissues by high energy bremsstrahlung beams, preferably with energies well above 20 MeV, resulting primarily in 11C and 15O but also 13N, all positron-emitting radionuclides produced by photoneutron reactions in the nuclei of 12C, 16O and 14N. A PMMA phantom and animal tissue, a frozen hind leg of a pig, were irradiated to 10 Gy and the induced positron activity distributions were measured off-line in a PET camera a couple of minutes after irradiation. The accelerator used was a Racetrack Microtron at the Karolinska University Hospital using 50 MV scanned photon beams. From photonuclear cross-section data integrated over the 50 MV photon fluence spectrum the predicted PET signal was calculated and compared with experimental measurements. Since measured PET images change with time post irradiation, as a result of the different decay times of the radionuclides, the signals from activated 12C, 16O and 14N within the irradiated volume could be separated from each other. Most information is obtained from the carbon and oxygen radionuclides which are the most abundant elements in soft tissue. The predicted and measured overall positron activities are almost equal (-3%) while the predicted activity originating from nitrogen is overestimated by almost a factor of two, possibly due to experimental noise. Based on the results obtained in this first feasibility study the great value of a combined radiotherapy-PET-CT unit is indicated in order to fully exploit the high activity signal from oxygen immediately after treatment and to avoid patient repositioning. With an RT-PET-CT unit a high signal could be collected even at a dose level of 2 Gy and the acquisition time for the PET could be reduced considerably. Real patient dose delivery verification by means of PET imaging seems to be applicable provided that biological transport processes such as capillary blood flow containing mobile 15O and 11C in the activated tissue volume can be accounted for.

  15. Clinical trials of the prototype Rutherford Appleton Laboratory MWPC positron camera at the Royal Marsden Hospital

    NASA Astrophysics Data System (ADS)

    Flower, M. A.; Ott, R. J.; Webb, S.; Leach, M. O.; Marsden, P. K.; Clack, R.; Khan, O.; Batty, V.; McCready, V. R.; Bateman, J. E.

    1988-06-01

    Two clinical trials of the prototype RAL multiwire proportional chamber (MWPC) positron camera were carried out prior to the development of a clinical system with large-area detectors. During the first clinical trial, the patient studies included skeletal imaging using 18F, imaging of brain glucose metabolism using 18F FDG, bone marrow imaging using 52Fe citrate and thyroid imaging with Na 124I. Longitudinal tomograms were produced from the limited-angle data acquisition from the static detectors. During the second clinical trial, transaxial, coronal and sagittal images were produced from the multiview data acquisition. A more detailed thyroid study was performed in which the volume of the functioning thyroid tissue was obtained from the 3D PET image and this volume was used in estimating the radiation dose achieved during radioiodine therapy of patients with thyrotoxicosis. Despite the small field of view of the prototype camera, and the use of smaller than usual amounts of activity administered, the PET images were in most cases comparable with, and in a few cases visually better than, the equivalent planar view using a state-of-the-art gamma camera with a large field of view and routine radiopharmaceuticals.

  16. Noninvasive imaging of cationic lipid-mediated delivery of optical and PET reporter genes in living mice.

    PubMed

    Iyer, Meera; Berenji, Manijeh; Templeton, Nancy S; Gambhir, Sanjiv S

    2002-10-01

    Gene therapy involves the safe and effective delivery of one or more genes of interest to target cells in vivo. The advantages of using nonviral delivery systems include ease of preparation, low toxicity, and weak immunogenicity. Nonviral delivery methods, when combined with a noninvasive, clinically applicable imaging assay, will greatly aid in the optimization of gene therapy approaches for cancer. We demonstrate cationic lipid-mediated noninvasive monitoring of reporter gene expression of firefly (Photinus pyralis) luciferase (fl) and a mutant herpes simplex virus type I thymidine kinase (HSV1-sr39tk, tk) in living mice using a cooled charge coupled device (CCD) camera and positron emission tomography (PET), respectively. We observe a high level of fl and tk reporter gene expression predominantly in the lungs after a single injection of the extruded DOTAP:cholesterol DNA liposome complexes by way of the tail vein, seen to be time- and dose-dependent. We observe a good correlation between the in vivo bioluminescent signal and the ex vivo firefly luciferase enzyme (FL) activity in different organs. We further demonstrate the feasibility of noninvasively imaging both optical and PET reporter gene expression in the same animal using the CCD camera and microPET, respectively.

  17. The electronics system for the LBNL positron emission mammography (PEM) camera

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Young, J. W.; Baker, K.; Jones, W.; Lenox, M.; Ho, M. H.; Weng, M.

    2001-06-01

    Describes the electronics for a high-performance positron emission mammography (PEM) camera. It is based on the electronics for a human brain positron emission tomography (PET) camera (the Siemens/CTI HRRT), modified to use a detector module that incorporates a photodiode (PD) array. An application-specified integrated circuit (ASIC) services the photodetector (PD) array, amplifying its signal and identifying the crystal of interaction. Another ASIC services the photomultiplier tube (PMT), measuring its output and providing a timing signal. Field-programmable gate arrays (FPGAs) and lookup RAMs are used to apply crystal-by-crystal correction factors and measure the energy deposit and the interaction depth (based on the PD/PMT ratio). Additional FPGAs provide event multiplexing, derandomization, coincidence detection, and real-time rebinning. Embedded PC/104 microprocessors provide communication, real-time control, and configure the system. Extensive use of FPGAs make the overall design extremely flexible, allowing many different functions (or design modifications) to be realized without hardware changes. Incorporation of extensive onboard diagnostics, implemented in the FPGAs, is required by the very high level of integration and density achieved by this system.

  18. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    NASA Astrophysics Data System (ADS)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  19. Optimising rigid motion compensation for small animal brain PET imaging

    NASA Astrophysics Data System (ADS)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  20. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study.

    PubMed

    Agostini, Denis; Roule, Vincent; Nganoa, Catherine; Roth, Nathaniel; Baavour, Raphael; Parienti, Jean-Jacques; Beygui, Farzin; Manrique, Alain

    2018-07-01

    We assessed the feasibility of myocardial blood flow (MBF) and flow reserve (MFR) estimation using dynamic SPECT with a novel CZT camera in patients with stable CAD, in comparison with 15 O-water PET and fractional flow reserve (FFR). Thirty patients were prospectively included and underwent FFR measurements in the main coronary arteries (LAD, LCx, RCA). A stenosis ≥50% was considered obstructive and a FFR abnormal if ≤0.8. All patients underwent a dynamic rest/stress 99m Tc-sestamibi CZT-SPECT and 15 O-water PET for MBF and MFR calculation. Net retention kinetic modeling was applied to SPECT data to estimate global uptake values, and MBF was derived using Leppo correction. Ischemia by PET and CZT-SPECT was considered present if MFR was lower than 2 and 2.1, respectively. CZT-SPECT yielded higher stress and rest MBF compared to PET for global and LAD and LCx territories, but not in RCA territory. MFR was similar in global and each vessel territory for both modalities. The sensitivity, specificity, accuracy, positive and negative predictive value of CZT-SPECT were, respectively, 83.3, 95.8, 93.3, 100 and 85.7% for the detection of ischemia and 58.3, 84.6, 81.1, 36.8 and 93% for the detection of hemodynamically significant stenosis (FFR ≤ 0.8). Dynamic 99m Tc-sestamibi CZT-SPECT was technically feasible and provided similar MFR compared to 15 O-water PET and high diagnostic value for detecting impaired MFR and abnormal FFR in patients with stable CAD.

  1. Markerless rat head motion tracking using structured light for brain PET imaging of unrestrained awake small animals

    NASA Astrophysics Data System (ADS)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-03-01

    Preclinical positron emission tomography (PET) imaging in small animals is generally performed under anesthesia to immobilize the animal during scanning. More recently, for rat brain PET studies, methods to perform scans of unrestrained awake rats are being developed in order to avoid the unwanted effects of anesthesia on the brain response. Here, we investigate the use of a projected structure stereo camera to track the motion of the rat head during the PET scan. The motion information is then used to correct the PET data. The stereo camera calculates a 3D point cloud representation of the scene and the tracking is performed by point cloud matching using the iterative closest point algorithm. The main advantage of the proposed motion tracking is that no intervention, e.g. for marker attachment, is needed. A manually moved microDerenzo phantom experiment and 3 awake rat [18F]FDG experiments were performed to evaluate the proposed tracking method. The tracking accuracy was 0.33 mm rms. After motion correction image reconstruction, the microDerenzo phantom was recovered albeit with some loss of resolution. The reconstructed FWHM of the 2.5 and 3 mm rods increased with 0.94 and 0.51 mm respectively in comparison with the motion-free case. In the rat experiments, the average tracking success rate was 64.7%. The correlation of relative brain regional [18F]FDG uptake between the anesthesia and awake scan reconstructions was increased from on average 0.291 (not significant) before correction to 0.909 (p  <  0.0001) after motion correction. Markerless motion tracking using structured light can be successfully used for tracking of the rat head for motion correction in awake rat PET scans.

  2. A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.

    PubMed

    Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George

    2017-01-01

    To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and acquisition strategies.

  3. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, thesemore » small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. Conclusions: The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.« less

  4. Quantitative analysis of a reconstruction method for fully three-dimensional PET.

    PubMed

    Suckling, J; Ott, R J; Deehan, B J

    1992-03-01

    The major advantage of positron emission tomography (PET) using large area planar detectors over scintillator-based commercial ring systems is the potentially larger (by a factor of two or three) axial field-of-view (FOV). However, to achieve the space invariance of the point spread function necessary for Fourier filtering a polar angle rejection criterion is applied to the data during backprojection resulting in a trade-off between FOV size and sensitivity. A new algorithm due to Defrise and co-workers developed for list-mode data overcomes this problem with a solution involving the division of the image into several subregions. A comparison between the existing backprojection-then-filter algorithm and the new method (with three subregions) has been made using both simulated and real data collected from the MUP-PET positron camera. Signal-to-noise analysis reveals that improvements of up to a factor of 1.4 are possible resulting from an increased data usage of up to a factor of 2.5 depending on the axial extent of the imaged object. Quantitation is also improved.

  5. [Business administration of PET facilities: a cost analysis of three facilities utilizing delivery FDG].

    PubMed

    Mitsutake, Naohiro; Oku, Shinya; Fujii, Ryo; Furui, Yuji; Yasunaga, Hideo

    2008-05-01

    PET (positron emission tomography) has been proved to be a powerful imaging tool in clinical oncology. The number of PET facilities in Japan has remarkably increased over the last decade. Furthermore, the approval of delivery FDG in 2005 resulted in a tremendous expansion of the PET institutions without a cyclotron facility. The aim of this study was to conduct a cost analysis of PET institutions that utilized delivery FDG. Three PET facilities using delivery FDG were investigated about the costs for PET service. Fixed costs included depreciation costs for construction and medical equipments such as positron camera. Variable costs consisted of costs for medical materials including delivery FDG. The break-even point was analyzed in each of three institutions. In the three hospitals (A, B and C), the annual number of PET scan was 1,591, 1,637 and 914, while cost per scan was accounted as yen 110,262, yen 111,091, and yen 134,192, respectively. The break-even point was calculated to be 2,583, 2,679 and 2,081, respectively. PET facilities utilizing delivery FDG seemed to have difficulty in business administration. Such a situation suggests the possibility that the current supply of PET facilities might exceed actual demand for the service. The efficiency of resource allocation should be taken into consideration in the future health service researches on PET.

  6. Positron emission particle tracking using a modular positron camera

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.

    2009-06-01

    The technique of positron emission particle tracking (PEPT), developed at Birmingham in the early 1990s, enables a radioactively labelled tracer particle to be accurately tracked as it moves between the detectors of a "positron camera". In 1999 the original Birmingham positron camera, which consisted of a pair of MWPCs, was replaced by a system comprising two NaI(Tl) gamma camera heads operating in coincidence. This system has been successfully used for PEPT studies of a wide range of granular and fluid flow processes. More recently a modular positron camera has been developed using a number of the bismuth germanate (BGO) block detectors from standard PET scanners (CTI ECAT 930 and 950 series). This camera has flexible geometry, is transportable, and is capable of delivering high data rates. This paper presents simple models of its performance, and initial experience of its use in a range of geometries and applications.

  7. Motion and Emotional Behavior Design for Pet Robot Dog

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Tai; Yang, Yu-Ting; Miao, Shih-Heng; Wong, Ching-Chang

    A pet robot dog with two ears, one mouth, one facial expression plane, and one vision system is designed and implemented so that it can do some emotional behaviors. Three processors (Inter® Pentium® M 1.0 GHz, an 8-bit processer 8051, and embedded soft-core processer NIOS) are used to control the robot. One camera, one power detector, four touch sensors, and one temperature detector are used to obtain the information of the environment. The designed robot with 20 DOF (degrees of freedom) is able to accomplish the walking motion. A behavior system is built on the implemented pet robot so that it is able to choose a suitable behavior for different environmental situation. From the practical test, we can see that the implemented pet robot dog can do some emotional interaction with the human.

  8. An inter-laboratory comparison study of image quality of PET scanners using the NEMA NU 2-2001 procedure for assessment of image quality

    NASA Astrophysics Data System (ADS)

    Bergmann, Helmar; Dobrozemsky, Georg; Minear, Gregory; Nicoletti, Rudolf; Samal, Martin

    2005-05-01

    An inter-laboratory comparison study was conducted to assess the image quality of PET scanners in Austria. The survey included both dedicated PET scanners (D-PET, n = 8) and coincidence cameras (GC-PET, n = 7). Measurement of image quality was based on the NEMA (National Electrical Manufacturers Association) NU 2-2001 protocol and the IEC (International Electrotechnical Commission) body phantom. The latter contains six fillable spheres ranging in diameter from 37 mm down to 10 mm and a 'lung' insert. The two largest lesions L1-2 simulate cold lesions, the four smaller ones (L3-6) are filled with 18F and activity concentration ratios relative to background of 8:1 and 4:1, respectively. Acquisition and reconstruction in the study employed the participating institutes' standard oncological processing protocol. Calculation of contrast of the spheres was performed with a fully automated procedure. Contrast quality indices (CQIs) reflecting global performance were obtained by summing individual contrast values. Other image quality parameters calculated according to the NEMA protocol were background variability and relative error for correction of attenuation and scatter. Contrast values obtained were 61 ± 16 and 37 ± 14 for L1 (per cent contrast ± SD for D-PET and GC-PET, respectively), 57 ± 16 and 29 ± 16 for L2, 46 ± 10 and 26 ± 6.3 for L3, 37 ± 10 and 15 ± 4.3 for L4, 26 ± 11.5 and 6.1 ± 2.5 for L5, 14 ± 7.1 and 2.6 ± 2.6 for L6, with D-PET systems consistently being superior to GC-PET systems. CQIs permitted ranking of the scanners, also demonstrating a clear distinction between D-PET and GC-PET systems. Background variability was largest for GC-PET systems; the relative error of attenuation and scatter correction was significantly correlated with image quality for D-PET systems only. The study demonstrated considerable differences in image quality not only between GC-PET and D-PET systems but also between individual D-PET systems with possible consequences for clinical interpretation of images and measurement of quantitative indices such as the standardized uptake value. The study provided valuable feedback to the participants as well as baseline data for improving interchangeability of PET images and of quantitative indices between different laboratories.

  9. Real-Time Counting People in Crowded Areas by Using Local Empirical Templates and Density Ratios

    NASA Astrophysics Data System (ADS)

    Hung, Dao-Huu; Hsu, Gee-Sern; Chung, Sheng-Luen; Saito, Hideo

    In this paper, a fast and automated method of counting pedestrians in crowded areas is proposed along with three contributions. We firstly propose Local Empirical Templates (LET), which are able to outline the foregrounds, typically made by single pedestrians in a scene. LET are extracted by clustering foregrounds of single pedestrians with similar features in silhouettes. This process is done automatically for unknown scenes. Secondly, comparing the size of group foreground made by a group of pedestrians to that of appropriate LET captured in the same image patch with the group foreground produces the density ratio. Because of the local scale normalization between sizes, the density ratio appears to have a bound closely related to the number of pedestrians who induce the group foreground. Finally, to extract the bounds of density ratios for groups of different number of pedestrians, we propose a 3D human models based simulation in which camera viewpoints and pedestrians' proximity are easily manipulated. We collect hundreds of typical occluded-people patterns with distinct degrees of human proximity and under a variety of camera viewpoints. Distributions of density ratios with respect to the number of pedestrians are built based on the computed density ratios of these patterns for extracting density ratio bounds. The simulation is performed in the offline learning phase to extract the bounds from the distributions, which are used to count pedestrians in online settings. We reveal that the bounds seem to be invariant to camera viewpoints and humans' proximity. The performance of our proposed method is evaluated with our collected videos and PETS 2009's datasets. For our collected videos with the resolution of 320x240, our method runs in real-time with good accuracy and frame rate of around 30 fps, and consumes a small amount of computing resources. For PETS 2009's datasets, our proposed method achieves competitive results with other methods tested on the same datasets [1], [2].

  10. Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System

    PubMed Central

    Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.

    2015-01-01

    Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591

  11. Improved UTE-based attenuation correction for cranial PET-MR using dynamic magnetic field monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aitken, A. P.; Giese, D.; Tsoumpas, C.

    2014-01-15

    Purpose: Ultrashort echo time (UTE) MRI has been proposed as a way to produce segmented attenuation maps for PET, as it provides contrast between bone, air, and soft tissue. However, UTE sequences require samples to be acquired during rapidly changing gradient fields, which makes the resulting images prone to eddy current artifacts. In this work it is demonstrated that this can lead to misclassification of tissues in segmented attenuation maps (AC maps) and that these effects can be corrected for by measuring the true k-space trajectories using a magnetic field camera. Methods: The k-space trajectories during a dual echo UTEmore » sequence were measured using a dynamic magnetic field camera. UTE images were reconstructed using nominal trajectories and again using the measured trajectories. A numerical phantom was used to demonstrate the effect of reconstructing with incorrect trajectories. Images of an ovine leg phantom were reconstructed and segmented and the resulting attenuation maps were compared to a segmented map derived from a CT scan of the same phantom, using the Dice similarity measure. The feasibility of the proposed method was demonstrated inin vivo cranial imaging in five healthy volunteers. Simulated PET data were generated for one volunteer to show the impact of misclassifications on the PET reconstruction. Results: Images of the numerical phantom exhibited blurring and edge artifacts on the bone–tissue and air–tissue interfaces when nominal k-space trajectories were used, leading to misclassification of soft tissue as bone and misclassification of bone as air. Images of the tissue phantom and thein vivo cranial images exhibited the same artifacts. The artifacts were greatly reduced when the measured trajectories were used. For the tissue phantom, the Dice coefficient for bone in MR relative to CT was 0.616 using the nominal trajectories and 0.814 using the measured trajectories. The Dice coefficients for soft tissue were 0.933 and 0.934 for the nominal and measured cases, respectively. For air the corresponding figures were 0.991 and 0.993. Compared to an unattenuated reference image, the mean error in simulated PET uptake in the brain was 9.16% when AC maps derived from nominal trajectories was used, with errors in the SUV{sub max} for simulated lesions in the range of 7.17%–12.19%. Corresponding figures when AC maps derived from measured trajectories were used were 0.34% (mean error) and −0.21% to +1.81% (lesions). Conclusions: Eddy current artifacts in UTE imaging can be corrected for by measuring the true k-space trajectories during a calibration scan and using them in subsequent image reconstructions. This improves the accuracy of segmented PET attenuation maps derived from UTE sequences and subsequent PET reconstruction.« less

  12. Modification of a medical PET scanner for PEPT studies

    NASA Astrophysics Data System (ADS)

    Sadrmomtaz, Alireza; Parker, D. J.; Byars, L. G.

    2007-04-01

    Over the last 20 years, positron emission tomography (PET) has developed as the most powerful functional imaging modality in medicine. Over the same period the University of Birmingham Positron Imaging Centre has applied PET to study engineering processes and developed the alternative technique of positron emission particle tracking (PEPT) in which a single radioactively labelled tracer particle is tracked by detecting simultaneously the pairs of back-to-back photons arising from positron/electron annihilation. Originally PEPT was performed using a pair of multiwire detectors, and more recently using a pair of digital gamma camera heads. In 2002 the Positron Imaging Centre acquired a medical PET scanner, an ECAT 931/08, previously used at Hammersmith Hospital. This scanner has been rebuilt in a flexible geometry for use in PEPT studies. This paper presents initial results from this system. Fast moving tracer particles can be rapidly and accurately located.

  13. Current Status of Nuclear Medicine Practice in the Middle East.

    PubMed

    Paez, Diana; Becic, Tarik; Bhonsle, Uday; Jalilian, Amir R; Nuñez-Miller, Rodolfo; Osso, Joao Alberto

    2016-07-01

    The practice of nuclear medicine (NM) in the Middle East region has experienced an important growth in the last 2 decades and has become crucial in providing healthcare to the region's population of about 395 million people. Even though there are some countries in which the services provided are limited to basic coverage of studies with (99m)Tc and (131)I, most have well-established practices covering most of the available studies in this medical specialty; this is the case in for example, Iran, Israel, Kuwait, Saudi Arabia, and Turkey. According to data provided by the NM professionals in the 17 countries included in the present publication, which was collected by the International Atomic Energy Agency in 2015, the total number of gamma cameras in the region is 910 with an average of 2.3 gamma cameras per million inhabitants. Out of these, 107 cameras, or 12%, are SPECT/CT cameras. There are 194 operating PET/CT scanners, translating to one PET/CT scanner for 2.04 million people on average. The availability of PET/CT scanners in relation to population is the highest in Lebanon and Kuwait, with 2.2 and 1.7 scanners per million people, respectively. There is a total of 628 NM centers in the 17 countries, whereas most NM centers belong to the public healthcare system and in most of the countries are widely spread and not confined exclusively to capital cities. As for the radionuclide therapies, (131)I is used regularly in diagnostic workup as well as in therapeutic applications in all the countries included in this analysis. Only five countries have the capability of assembling (99)Mo-(99m)Tc generators (Egypt, Iran, Saudi Arabia, Israel, and Turkey), and cold kits are produced in several countries. Although there are no capabilities in the region to produce (99)Mo from nuclear reactors, a total of 46 cyclotrons are operated for production of PET radionuclides. The most widely used PET tracer in the region is (18)F-FDG followed by (18)F-NaF; concomitantly, the availability of (68)Ge-(68)Ga generators is increasing and studies involving prostate-specific membrane antigen or DOTA-chelated peptides or both are performed in at least seven countries. Although therapeutic radionuclide agents are mostly imported from outside the region, this does not limit the availability of therapies with (90)Y, (153)Sm, (177)Lu, (131)I, (188)Re, and (89)Sr. Nevertheless, therapies based on alpha particle emitters are still largely not available in the region and are currently only available in Israel and Turkey. Regarding human resources, according to the data provided there are 1157 NM physicians, 1953 technologists, 586 medical physicists, and 173 radiopharmacists or radiochemists in the region. Approximately half of all available human resources are accounted for by Turkey. The region has great potential for expanding the applications of NM; this becomes especially important in view of the high prevalence of non-communicable diseases. Further increasing awareness of the clinical applications of NM in healthcare and strengthening technical and human capacities including the establishment of training programs for all professionals and disciplines in the field are recognized as key components in advancing the practice of NM in the Middle East. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Hybrid radioguided occult lesion localization (hybrid ROLL) of (18)F-FDG-avid lesions using the hybrid tracer indocyanine green-(99m)Tc-nanocolloid.

    PubMed

    KleinJan, G H; Brouwer, O R; Mathéron, H M; Rietbergen, D D D; Valdés Olmos, R A; Wouters, M W; van den Berg, N S; van Leeuwen, F W B

    2016-01-01

    To assess if combined fluorescence- and radio-guided occult lesion localization (hybrid ROLL) is feasible in patients scheduled for surgical resection of non-palpable (18)F-FDG-avid lesions on PET/CT. Four patients with (18)F-FDG-avid lesions on follow-up PET/CT that were not palpable during physical examination but were suspected to harbor metastasis were enrolled. Guided by ultrasound, the hybrid tracer indocyanine green (ICG)-(99m)Tc-nanocolloid was injected centrally in the target lesion. SPECT/CT imaging was used to confirm tracer deposition. Intraoperatively, lesions were localized using a hand-held gamma ray detection probe, a portable gamma camera, and a fluorescence camera. After excision, the gamma camera was used to check the wound bed for residual activity. A total of six (18)F-FDG-avid lymph nodes were identified and scheduled for hybrid ROLL. Comparison of the PET/CT images with the acquired SPECT/CT after hybrid tracer injection confirmed accurate tracer deposition. No side effects were observed. Combined radio- and fluorescence-guidance enabled localization and excision of the target lesion in all patients. Five of the six excised lesions proved tumor-positive at histopathology. The hybrid ROLL approach appears to be feasible and can facilitate the intraoperative localization and excision of non-palpable lesions suspected to harbor tumor metastases. In addition to the initial radioguided detection, the fluorescence component of the hybrid tracer enables high-resolution intraoperative visualization of the target lesion. The procedure needs further evaluation in a larger cohort and wider range of malignancies to substantiate these preliminary findings. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  15. Intercampus network of the Department of Radiology, School of Medicine, Indiana University

    NASA Astrophysics Data System (ADS)

    Witt, Robert M.; Gibbs, Thomas; Holden, Robert W.

    1994-05-01

    During the past year, the Department of Radiology, School of Medicine, Indiana University designed, specified, and installed a campus wide network. The network supports three functions: a laser camera network to allow the transfer of hard copy images across the campus; a positron emission tomography (PET) network to allow the interconnection of the workstations comprising the PET system; and a future personal computer network to allow support of departmental administrative functions with an upgrade path to allow the display of soft copy images in physician offices and other locations in the department.

  16. The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson's disease.

    PubMed

    Tomše, Petra; Jensterle, Luka; Rep, Sebastijan; Grmek, Marko; Zaletel, Katja; Eidelberg, David; Dhawan, Vijay; Ma, Yilong; Trošt, Maja

    2017-09-01

    To evaluate the reproducibility of the expression of Parkinson's Disease Related Pattern (PDRP) across multiple sets of 18F-FDG-PET brain images reconstructed with different reconstruction algorithms. 18F-FDG-PET brain imaging was performed in two independent cohorts of Parkinson's disease (PD) patients and normal controls (NC). Slovenian cohort (20 PD patients, 20 NC) was scanned with Siemens Biograph mCT camera and reconstructed using FBP, FBP+TOF, OSEM, OSEM+TOF, OSEM+PSF and OSEM+PSF+TOF. American Cohort (20 PD patients, 7 NC) was scanned with GE Advance camera and reconstructed using 3DRP, FORE-FBP and FORE-Iterative. Expressions of two previously-validated PDRP patterns (PDRP-Slovenia and PDRP-USA) were calculated. We compared the ability of PDRP to discriminate PD patients from NC, differences and correlation between the corresponding subject scores and ROC analysis results across the different reconstruction algorithms. The expression of PDRP-Slovenia and PDRP-USA networks was significantly elevated in PD patients compared to NC (p<0.0001), regardless of reconstruction algorithms. PDRP expression strongly correlated between all studied algorithms and the reference algorithm (r⩾0.993, p<0.0001). Average differences in the PDRP expression among different algorithms varied within 0.73 and 0.08 of the reference value for PDRP-Slovenia and PDRP-USA, respectively. ROC analysis confirmed high similarity in sensitivity, specificity and AUC among all studied reconstruction algorithms. These results show that the expression of PDRP is reproducible across a variety of reconstruction algorithms of 18F-FDG-PET brain images. PDRP is capable of providing a robust metabolic biomarker of PD for multicenter 18F-FDG-PET images acquired in the context of differential diagnosis or clinical trials. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. A modular positron camera for the study of industrial processes

    NASA Astrophysics Data System (ADS)

    Leadbeater, T. W.; Parker, D. J.

    2011-10-01

    Positron imaging techniques rely on the detection of the back-to-back annihilation photons arising from positron decay within the system under study. A standard technique, called positron emitting particle tracking (PEPT) [1], uses a number of these detected events to rapidly determine the position of a positron emitting tracer particle introduced into the system under study. Typical applications of PEPT are in the study of granular and multi-phase materials in the disciplines of engineering and the physical sciences. Using components from redundant medical PET scanners a modular positron camera has been developed. This camera consists of a number of small independent detector modules, which can be arranged in custom geometries tailored towards the application in question. The flexibility of the modular camera geometry allows for high photon detection efficiency within specific regions of interest, the ability to study large and bulky systems and the application of PEPT to difficult or remote processes as the camera is inherently transportable.

  18. High-Speed Data Acquisition and Digital Signal Processing System for PET Imaging Techniques Applied to Mammography

    NASA Astrophysics Data System (ADS)

    Martinez, J. D.; Benlloch, J. M.; Cerda, J.; Lerche, Ch. W.; Pavon, N.; Sebastia, A.

    2004-06-01

    This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.

  19. Joint project of the international network of agencies for health technology assessment--Part 1: Survey results on diffusion, assessment, and clinical use of positron emission tomography.

    PubMed

    Hastings, John; Adams, Elizabeth J

    2006-01-01

    The International Network of Agencies for Health Technology Assessment (INAHTA) has been tracking activities associated with the clinical use of positron emission tomography (PET) in its members' healthcare systems since 1997 and published its first Joint Project report on PET in 1999. Part 1 of this Joint Project report presents survey results on diffusion, assessment activities, and policy for clinical use related to PET among INAHTA members since 1999. INAHTA members were surveyed in 2003-2004. Twenty-seven INAHTA agencies (69 percent response rate) from nineteen countries responded to the survey. Dedicated PET systems are the most universally installed systems to date. Mobile scanners and modified gamma cameras are used occasionally as lower cost alternatives, and interest in PET-computed tomography hybrid models is rising despite limited assessment of impact on service planning. PET was used and assessed most commonly for managing patients with cancer. All respondents reported having some form of public funding for clinical PET frequently linked to data collection for the purpose of gathering evidence to refine clinical use and guide resource allocation toward indications that maximize clinical and cost-effectiveness. The use of HTA within a continuous quality improvement framework can help optimize scarce resources for evaluation and use of high cost diagnostic technologies such as PET, particularly where potential clinical or cost-effectiveness is considerable but conclusive evidence is lacking.

  20. A Comparison of Four-Image Reconstruction Algorithms for 3-D PET Imaging of MDAPET Camera Using Phantom Data

    NASA Astrophysics Data System (ADS)

    Baghaei, H.; Wong, Wai-Hoi; Uribe, J.; Li, Hongdi; Wang, Yu; Liu, Yaqiang; Xing, Tao; Ramirez, R.; Xie, Shuping; Kim, Soonseok

    2004-10-01

    We compared two fully three-dimensional (3-D) image reconstruction algorithms and two 3-D rebinning algorithms followed by reconstruction with a two-dimensional (2-D) filtered-backprojection algorithm for 3-D positron emission tomography (PET) imaging. The two 3-D image reconstruction algorithms were ordered-subsets expectation-maximization (3D-OSEM) and 3-D reprojection (3DRP) algorithms. The two rebinning algorithms were Fourier rebinning (FORE) and single slice rebinning (SSRB). The 3-D projection data used for this work were acquired with a high-resolution PET scanner (MDAPET) with an intrinsic transaxial resolution of 2.8 mm. The scanner has 14 detector rings covering an axial field-of-view of 38.5 mm. We scanned three phantoms: 1) a uniform cylindrical phantom with inner diameter of 21.5 cm; 2) a uniform 11.5-cm cylindrical phantom with four embedded small hot lesions with diameters of 3, 4, 5, and 6 mm; and 3) the 3-D Hoffman brain phantom with three embedded small hot lesion phantoms with diameters of 3, 5, and 8.6 mm in a warm background. Lesions were placed at different radial and axial distances. We evaluated the different reconstruction methods for MDAPET camera by comparing the noise level of images, contrast recovery, and hot lesion detection, and visually compared images. We found that overall the 3D-OSEM algorithm, especially when images post filtered with the Metz filter, produced the best results in terms of contrast-noise tradeoff, and detection of hot spots, and reproduction of brain phantom structures. Even though the MDAPET camera has a relatively small maximum axial acceptance (/spl plusmn/5 deg), images produced with the 3DRP algorithm had slightly better contrast recovery and reproduced the structures of the brain phantom slightly better than the faster 2-D rebinning methods.

  1. Monte Carlo simulations of GeoPET experiments: 3D images of tracer distributions (18F, 124I and 58Co) in Opalinus clay, anhydrite and quartz

    NASA Astrophysics Data System (ADS)

    Zakhnini, Abdelhamid; Kulenkampff, Johannes; Sauerzapf, Sophie; Pietrzyk, Uwe; Lippmann-Pipke, Johanna

    2013-08-01

    Understanding conservative fluid flow and reactive tracer transport in soils and rock formations requires quantitative transport visualization methods in 3D+t. After a decade of research and development we established the GeoPET as a non-destructive method with unrivalled sensitivity and selectivity, with due spatial and temporal resolution by applying Positron Emission Tomography (PET), a nuclear medicine imaging method, to dense rock material. Requirements for reaching the physical limit of image resolution of nearly 1 mm are (a) a high-resolution PET-camera, like our ClearPET scanner (Raytest), and (b) appropriate correction methods for scatter and attenuation of 511 keV—photons in the dense geological material. The latter are by far more significant in dense geological material than in human and small animal body tissue (water). Here we present data from Monte Carlo simulations (MCS) reflecting selected GeoPET experiments. The MCS consider all involved nuclear physical processes of the measurement with the ClearPET-system and allow us to quantify the sensitivity of the method and the scatter fractions in geological media as function of material (quartz, Opalinus clay and anhydrite compared to water), PET isotope (18F, 58Co and 124I), and geometric system parameters. The synthetic data sets obtained by MCS are the basis for detailed performance assessment studies allowing for image quality improvements. A scatter correction method is applied exemplarily by subtracting projections of simulated scattered coincidences from experimental data sets prior to image reconstruction with an iterative reconstruction process.

  2. Role for positron emission tomography in skeletal diseases.

    PubMed

    Duet, Michèle; Pouchot, Jacques; Lioté, Frédéric; Faraggi, Marc

    2007-01-01

    Imaging plays a prominent role in the diagnosis and management of rheumatic diseases. Conventional imaging methods provide high-resolution structural information but usually fail to distinguish between active lesions and residual changes. Positron emission tomography (PET) with the tracer 18F-fluorodeoxyglucose (18F-FDG) was recently introduced into clinical practice as a means of obtaining information on both structure and metabolic activity. 18F-FDG-PET is widely used in oncology and may be valuable in patients with infections or inflammatory diseases, most notably vasculitis. Although encouraging results have been published, the number of studies remains small, as 18F-FDG-PET is an expensive investigation that is not available everywhere. Further work is needed to determine the cost-effectiveness ratio of 18F-FDG-PET in patients with infections or inflammatory diseases. Imaging plays a prominent role in the diagnosis and management of many musculoskeletal diseases. Although considerable progress has been made recently, the structural information supplied by conventional imaging methods is inadequate in some patients. Positron emission tomography (PET) after injection of 18fluorodeoxyglucose (18F-FDG) provides information on tissue metabolism. The usefulness of 18F-FDG-PET in oncology is now widely recognized. Other uses are emerging, in part thanks to the development of new cameras that combine dedicated detectors and an X-scanner in order to ensure accurate three-dimensional localization of metabolically active lesions. However, the exact role for 18F-FDG-PET needs to be studied in larger populations of patients.

  3. Development of a small prototype for a proof-of-concept of OpenPET imaging

    NASA Astrophysics Data System (ADS)

    Yamaya, Taiga; Yoshida, Eiji; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Kawai, Hideyuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Haneishi, Hideaki; Suga, Mikio; Kinouchi, Shoko

    2011-02-01

    The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.

  4. Development of a simultaneous optical/PET imaging system for awake mice

    NASA Astrophysics Data System (ADS)

    Takuwa, Hiroyuki; Ikoma, Yoko; Yoshida, Eiji; Tashima, Hideaki; Wakizaka, Hidekatsu; Shinaji, Tetsuya; Yamaya, Taiga

    2016-09-01

    Simultaneous measurements of multiple physiological parameters are essential for the study of brain disease mechanisms and the development of suitable therapies to treat them. In this study, we developed a measurement system for simultaneous optical imaging and PET for awake mice. The key elements of this system are the OpenPET, optical imaging and fixation apparatus for an awake mouse. The OpenPET is our original open-type PET geometry, which can be used in combination with another device because of the easily accessible open space of the former. A small prototype of the axial shift single-ring OpenPET was used. The objective lens for optical imaging with a mounted charge-coupled device camera was placed inside the open space of the AS-SROP. Our original fixation apparatus to hold an awake mouse was also applied. As a first application of this system, simultaneous measurements of cerebral blood flow (CBF) by laser speckle imaging (LSI) and [11C]raclopride-PET were performed under control and 5% CO2 inhalation (hypercapnia) conditions. Our system successfully obtained the CBF and [11C]raclopride radioactivity concentration simultaneously. Accumulation of [11C]raclopride was observed in the striatum where the density of dopamine D2 receptors is high. LSI measurements could be stably performed for more than 60 minutes. Increased CBF induced by hypercapnia was observed while CBF under the control condition was stable. We concluded that our imaging system should be useful for investigating the mechanisms of brain diseases in awake animal models.

  5. A machine learning method for fast and accurate characterization of depth-of-interaction gamma cameras

    NASA Astrophysics Data System (ADS)

    Pedemonte, Stefano; Pierce, Larry; Van Leemput, Koen

    2017-11-01

    Measuring the depth-of-interaction (DOI) of gamma photons enables increasing the resolution of emission imaging systems. Several design variants of DOI-sensitive detectors have been recently introduced to improve the performance of scanners for positron emission tomography (PET). However, the accurate characterization of the response of DOI detectors, necessary to accurately measure the DOI, remains an unsolved problem. Numerical simulations are, at the state of the art, imprecise, while measuring directly the characteristics of DOI detectors experimentally is hindered by the impossibility to impose the depth-of-interaction in an experimental set-up. In this article we introduce a machine learning approach for extracting accurate forward models of gamma imaging devices from simple pencil-beam measurements, using a nonlinear dimensionality reduction technique in combination with a finite mixture model. The method is purely data-driven, not requiring simulations, and is applicable to a wide range of detector types. The proposed method was evaluated both in a simulation study and with data acquired using a monolithic gamma camera designed for PET (the cMiCE detector), demonstrating the accurate recovery of the DOI characteristics. The combination of the proposed calibration technique with maximum- a posteriori estimation of the coordinates of interaction provided a depth resolution of  ≈1.14 mm for the simulated PET detector and  ≈1.74 mm for the cMiCE detector. The software and experimental data are made available at http://occiput.mgh.harvard.edu/depthembedding/.

  6. Characterization of Disease-Related Covariance Topographies with SSMPCA Toolbox: Effects of Spatial Normalization and PET Scanners

    PubMed Central

    Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G; Mattis, Paul; Feigin, Andrew; Dhawan, Vijay; Eidelberg, David

    2013-01-01

    In order to generate imaging biomarkers from disease-specific brain networks, we have implemented a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial covariance patterns whose expression in individual subjects can discriminate patients from controls or predict behavioral measures. The technique may depend on differences in spatial normalization algorithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic patterns generated by SSMPCA in patients with Parkinson's disease (PD). We used [18F]fluorodeoxyglucose PET scans from PD patients and normal controls. Motor-related (PDRP) and cognition-related (PDCP) metabolic patterns were derived from images spatially normalized using four versions of SPM software (spm99, spm2, spm5 and spm8). Differences between these patterns and subject scores were compared across multiple independent groups of patients and control subjects. These patterns and subject scores were highly reproducible with different normalization programs in terms of disease discrimination and cognitive correlation. Subject scores were also comparable in PD patients imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among brain networks and their clinical correlates in PD using images normalized in four different SPM platforms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers despite the continued evolution of image preprocessing software in the neuroimaging community. Network expressions can be quantified in individual patients independent of different physical characteristics of PET cameras. PMID:23671030

  7. Characterization of disease-related covariance topographies with SSMPCA toolbox: effects of spatial normalization and PET scanners.

    PubMed

    Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G; Mattis, Paul; Feigin, Andrew; Dhawan, Vijay; Eidelberg, David

    2014-05-01

    To generate imaging biomarkers from disease-specific brain networks, we have implemented a general toolbox to rapidly perform scaled subprofile modeling (SSM) based on principal component analysis (PCA) on brain images of patients and normals. This SSMPCA toolbox can define spatial covariance patterns whose expression in individual subjects can discriminate patients from controls or predict behavioral measures. The technique may depend on differences in spatial normalization algorithms and brain imaging systems. We have evaluated the reproducibility of characteristic metabolic patterns generated by SSMPCA in patients with Parkinson's disease (PD). We used [(18) F]fluorodeoxyglucose PET scans from patients with PD and normal controls. Motor-related (PDRP) and cognition-related (PDCP) metabolic patterns were derived from images spatially normalized using four versions of SPM software (spm99, spm2, spm5, and spm8). Differences between these patterns and subject scores were compared across multiple independent groups of patients and control subjects. These patterns and subject scores were highly reproducible with different normalization programs in terms of disease discrimination and cognitive correlation. Subject scores were also comparable in patients with PD imaged across multiple PET scanners. Our findings confirm a very high degree of consistency among brain networks and their clinical correlates in PD using images normalized in four different SPM platforms. SSMPCA toolbox can be used reliably for generating disease-specific imaging biomarkers despite the continued evolution of image preprocessing software in the neuroimaging community. Network expressions can be quantified in individual patients independent of different physical characteristics of PET cameras. Copyright © 2013 Wiley Periodicals, Inc.

  8. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    NASA Astrophysics Data System (ADS)

    Bowen, S. R.; Nyflot, M. J.; Herrmann, C.; Groh, C. M.; Meyer, J.; Wollenweber, S. D.; Stearns, C. W.; Kinahan, P. E.; Sandison, G. A.

    2015-05-01

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.

  9. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study.

    PubMed

    Bowen, S R; Nyflot, M J; Herrmann, C; Groh, C M; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-05-07

    Effective positron emission tomography / computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [(18)F]FDG. The lung lesion insert was driven by six different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses, and 2%-2 mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10-20%, treatment planning errors were 5-10%, and treatment delivery errors were 5-30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5-10% in PET/CT imaging, <5% in treatment planning, and <2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery.

  10. Imaging and dosimetric errors in 4D PET/CT-guided radiotherapy from patient-specific respiratory patterns: a dynamic motion phantom end-to-end study

    PubMed Central

    Bowen, S R; Nyflot, M J; Hermann, C; Groh, C; Meyer, J; Wollenweber, S D; Stearns, C W; Kinahan, P E; Sandison, G A

    2015-01-01

    Effective positron emission tomography/computed tomography (PET/CT) guidance in radiotherapy of lung cancer requires estimation and mitigation of errors due to respiratory motion. An end-to-end workflow was developed to measure patient-specific motion-induced uncertainties in imaging, treatment planning, and radiation delivery with respiratory motion phantoms and dosimeters. A custom torso phantom with inserts mimicking normal lung tissue and lung lesion was filled with [18F]FDG. The lung lesion insert was driven by 6 different patient-specific respiratory patterns or kept stationary. PET/CT images were acquired under motionless ground truth, tidal breathing motion-averaged (3D), and respiratory phase-correlated (4D) conditions. Target volumes were estimated by standardized uptake value (SUV) thresholds that accurately defined the ground-truth lesion volume. Non-uniform dose-painting plans using volumetrically modulated arc therapy (VMAT) were optimized for fixed normal lung and spinal cord objectives and variable PET-based target objectives. Resulting plans were delivered to a cylindrical diode array at rest, in motion on a platform driven by the same respiratory patterns (3D), or motion-compensated by a robotic couch with an infrared camera tracking system (4D). Errors were estimated relative to the static ground truth condition for mean target-to-background (T/Bmean) ratios, target volumes, planned equivalent uniform target doses (EUD), and 2%-2mm gamma delivery passing rates. Relative to motionless ground truth conditions, PET/CT imaging errors were on the order of 10–20%, treatment planning errors were 5–10%, and treatment delivery errors were 5–30% without motion compensation. Errors from residual motion following compensation methods were reduced to 5–10% in PET/CT imaging, < 5% in treatment planning, and < 2% in treatment delivery. We have demonstrated that estimation of respiratory motion uncertainty and its propagation from PET/CT imaging to RT planning, and RT delivery under a dose painting paradigm is feasible within an integrated respiratory motion phantom workflow. For a limited set of cases, the magnitude of errors was comparable during PET/CT imaging and treatment delivery without motion compensation. Errors were moderately mitigated during PET/CT imaging and significantly mitigated during RT delivery with motion compensation. This dynamic motion phantom end-to-end workflow provides a method for quality assurance of 4D PET/CT-guided radiotherapy, including evaluation of respiratory motion compensation methods during imaging and treatment delivery. PMID:25884892

  11. Methods for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian [Pleasanton, CA; Vetter, Kai M [Alameda, CA; Chivers, Daniel H [Fremont, CA

    2012-02-07

    Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  12. Systems for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  13. Instrumentation in molecular imaging.

    PubMed

    Wells, R Glenn

    2016-12-01

    In vivo molecular imaging is a challenging task and no single type of imaging system provides an ideal solution. Nuclear medicine techniques like SPECT and PET provide excellent sensitivity but have poor spatial resolution. Optical imaging has excellent sensitivity and spatial resolution, but light photons interact strongly with tissues and so only small animals and targets near the surface can be accurately visualized. CT and MRI have exquisite spatial resolution, but greatly reduced sensitivity. To overcome the limitations of individual modalities, molecular imaging systems often combine individual cameras together, for example, merging nuclear medicine cameras with CT or MRI to allow the visualization of molecular processes with both high sensitivity and high spatial resolution.

  14. Real-time people counting system using a single video camera

    NASA Astrophysics Data System (ADS)

    Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain

    2008-02-01

    There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.

  15. Using triple gamma coincidences with a pixelated semiconductor Compton-PET scanner: a simulation study

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.

  16. New cardiac cameras: single-photon emission CT and PET.

    PubMed

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow measurements for this tracer. The availability of high-end CT component in most PET/CT configurations enables hybrid multimodality cardiac imaging protocols with calcium scoring or CT angiography or both. Copyright © 2014. Published by Elsevier Inc.

  17. A philosophy for CNS radiotracer design.

    PubMed

    Van de Bittner, Genevieve C; Ricq, Emily L; Hooker, Jacob M

    2014-10-21

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test-retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available to predict bioavailability, blood-brain barrier (BBB) permeability, and the associated issues of nonspecific binding and metabolic stability. To evaluate the synthesized chemical library, researchers need to consider high-throughput affinity assays, the analysis of specific binding, and the importance of fast binding kinetics. Finally, we describe how we initially assess preclinical radiotracer imaging, using brain uptake, specific binding, and preliminary kinetic analysis to identify promising radiotracers that may be useful for human brain imaging. Although we discuss these five design components separately and linearly in this Account, in practice we develop new PET-based radiotracers using these design components nonlinearly and iteratively to develop new compounds in the most efficient way possible.

  18. Imaging grafted cells with [18F]FHBG using an optimized HSV1-TK mammalian expression vector in a brain injury rodent model.

    PubMed

    Salabert, Anne-Sophie; Vaysse, Laurence; Beaurain, Marie; Alonso, Mathieu; Arribarat, Germain; Lotterie, Jean-Albert; Loubinoux, Isabelle; Tafani, Mathieu; Payoux, Pierre

    2017-01-01

    Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression. A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo. Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft. The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.

  19. F18-FDG coincidence-PET in patients with suspected gynecological malignancy.

    PubMed

    Zor, E; Stokkel, M P; Ozalp, S; Vardareli, E; Yalçin, O Tarik; Ak, I

    2006-07-01

    To assess the role of F18-FDG imaging with a dual-head coincidence mode gamma camera (Co-PET) in identifying malignant tumors in patients with a suspicious adnexal mass depicted by conventional imaging methods. F18-FDG Co-PET was performed preoperatively in 18 women (mean age 56.38 years) with suspected malignant gynecologic tumors according to clinical and abdomino-pelvic/transvaginal ultrasound or computed tomography findings. Exploratory laparotomy was performed in all patients within the 10 days post-F18-FDG Co-PET study, and the definitive diagnosis of the adnexal masses was established by histopathological examination. Histopathological examinations of the surgically excised adnexal masses revealed eight malignant, one borderline, and nine benign neoplastic tumors. Four benign tumors had no F18-FDG uptake, while the remaining five tumors, all leiomyomas, showed mild FDG accumulation. Eight malignant tumors showed intense F18-FDG uptake. Sensitivity, specificity, PPV, and NPV of F18-FDG co-PET in differentiating benign from malign adnexal masses were 88%, 44%, 61%, and 80%, respectively. Tumor to background ratios (T/B) in benign lesions (2.04 +/- 0.27) were significantly lower than in malignant lesions (7.4 +/- 0.99). F18-FDG Co-PET is of clinical value when assessing suspicious malignant adnexal masses. False-negative F18-FDG results might arise from borderline disease. Moderate F18-FDG uptake in leiomyomas can result false-positive, but T/B ratios may be helpful in such cases.

  20. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate accuracy is improved, as DOI resolution is high.

  1. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study.

    PubMed

    Ikari, Yasuhiko; Nishio, Tomoyuki; Makishi, Yoko; Miya, Yukari; Ito, Kengo; Koeppe, Robert A; Senda, Michio

    2012-08-01

    Head motion during 30-min (six 5-min frames) brain PET scans starting 30 min post-injection of FDG was evaluated together with the effect of post hoc motion correction between frames in J-ADNI multicenter study carried out in 24 PET centers on a total of 172 subjects consisting of 81 normal subjects, 55 mild cognitive impairment (MCI) and 36 mild Alzheimer's disease (AD) patients. Based on the magnitude of the between-frame co-registration parameters, the scans were classified into six levels (A-F) of motion degree. The effect of motion and its correction was evaluated using between-frame variation of the regional FDG uptake values on ROIs placed over cerebral cortical areas. Although AD patients tended to present larger motion (motion level E or F in 22 % of the subjects) than MCI (3 %) and normal (4 %) subjects, unignorable motion was observed in a small number of subjects in the latter groups as well. The between-frame coefficient of variation (SD/mean) was 0.5 % in the frontal, 0.6 % in the parietal and 1.8 % in the posterior cingulate ROI for the scans of motion level 1. The respective values were 1.5, 1.4, and 3.6 % for the scans of motion level F, but reduced by the motion correction to 0.5, 0.4 and 0.8 %, respectively. The motion correction changed the ROI value for the posterior cingulate cortex by 11.6 % in the case of severest motion. Substantial head motion occurs in a fraction of subjects in a multicenter setup which includes PET centers lacking sufficient experience in imaging demented patients. A simple frame-by-frame co-registration technique that can be applied to any PET camera model is effective in correcting for motion and improving quantitative capability.

  2. SU-D-9A-01: Listmode-Driven Optimal Gating (OG) Respiratory Motion Management: Potential Impact On Quantitative PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K; Hristov, D

    2014-06-01

    Purpose: To evaluate the potential impact of listmode-driven amplitude based optimal gating (OG) respiratory motion management technique on quantitative PET imaging. Methods: During the PET acquisitions, an optical camera tracked and recorded the motion of a tool placed on top of patients' torso. PET event data were utilized to detect and derive a motion signal that is directly coupled with a specific internal organ. A radioactivity-trace was generated from listmode data by accumulating all prompt counts in temporal bins matching the sampling rate of the external tracking device. Decay correction for 18F was performed. The image reconstructions using OG respiratorymore » motion management technique that uses 35% of total radioactivity counts within limited motion amplitudes were performed with external motion and radioactivity traces separately with ordered subset expectation maximization (OSEM) with 2 iterations and 21 subsets. Standard uptake values (SUVs) in a tumor region were calculated to measure the effect of using radioactivity trace for motion compensation. Motion-blurred 3D static PET image was also reconstructed with all counts and the SUVs derived from OG images were compared with SUVs from 3D images. Results: A 5.7 % increase of the maximum SUV in the lesion was found for optimal gating image reconstruction with radioactivity trace when compared to a static 3D image. The mean and maximum SUVs on the image that was reconstructed with radioactivity trace were found comparable (0.4 % and 4.5 % increase, respectively) to the values derived from the image that was reconstructed with external trace. Conclusion: The image reconstructed using radioactivity trace showed that the blurring due to the motion was reduced with impact on derived SUVs. The resolution and contrast of the images reconstructed with radioactivity trace were comparable to the resolution and contrast of the images reconstructed with external respiratory traces. Research supported by Siemens.« less

  3. In vivo PET evaluation in tumour-bearing rats of 2-[ 18F]fluoromethyl- L-phenylalanine as a new potential tracer for molecular imaging of brain and extra-cranial tumours in humans with PET

    NASA Astrophysics Data System (ADS)

    Kersemans, Ken; Bauwens, Matthias; Lahoutte, Tony; Bossuyt, Axel; Mertens, John

    2007-02-01

    The Na +-independent L-type LAT1 amino acid transport system for large and neutral amino acids has been shown to be expressed higher in tumour tissue relative to normal tissue and has been regarded as a key point for the development of new amino acid based tumour tracers for molecular imaging. We developed a new fluorinated phenylalanine analogue, 2-[ 18F]fluoromethyl- L-phenylalanine, considering that the spatial volume of FCH 3 is comparable with that of the iodine atom in 2-I- L-phenylalanine, of which we have proven that it is taken up excellently in tumours by the LAT1 system. The substrate molecule for radiolabeling, Boc-2-bromomethyl- L-phenylalanine- tButylester, was prepared by radical bromination of Boc-2-methyl- L-phenylalanine- tButylester. [ 18F -] for bromine exchange is performed within 3 min in conditions comparable to the [ 18F]FDG synthesis with a radiochemical yield of at least 85%. After deprotection and semi-preparative HPLC purification, the 2-[ 18F]fluoromethyl- L-phenylalanine is recovered n.c.a. (57%) with a high purity and 3.7 MBq were injected into R1M rhabdomyosarcoma tumour-bearing rats. Imaging was performed with a human PET camera from 5 to 45 min p.i. The tumour/background and tumour/blood ratios obtained from PET acquisition were at least 2.5. DUR values for the tumours were at least about 5. Furthermore, a small tumour implanted near a kidney could be well visualized completely separated from this kidney. Moreover in all tumours the "active" tumour tissue can clearly be differentiated from less active tumour tissue. This proves that 2-[ 18F]fluoromethyl- L-phenylalanine has a great potential as a new tracer for specific tumour diagnosis with PET.

  4. A front-end readout Detector Board for the OpenPET electronics system

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.

    2015-08-01

    We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.

  5. A front-end readout Detector Board for the OpenPET electronics system

    DOE PAGES

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...

    2015-08-12

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  6. Quantitative myocardial blood flow imaging with integrated time-of-flight PET-MR.

    PubMed

    Kero, Tanja; Nordström, Jonny; Harms, Hendrik J; Sörensen, Jens; Ahlström, Håkan; Lubberink, Mark

    2017-12-01

    The use of integrated PET-MR offers new opportunities for comprehensive assessment of cardiac morphology and function. However, little is known on the quantitative accuracy of cardiac PET imaging with integrated time-of-flight PET-MR. The aim of the present work was to validate the GE Signa PET-MR scanner for quantitative cardiac PET perfusion imaging. Eleven patients (nine male; mean age 59 years; range 46-74 years) with known or suspected coronary artery disease underwent 15 O-water PET scans at rest and during adenosine-induced hyperaemia on a GE Discovery ST PET-CT and a GE Signa PET-MR scanner. PET-MR images were reconstructed using settings recommended by the manufacturer, including time-of-flight (TOF). Data were analysed semi-automatically using Cardiac VUer software, resulting in both parametric myocardial blood flow (MBF) images and segment-based MBF values. Correlation and agreement between PET-CT-based and PET-MR-based MBF values for all three coronary artery territories were assessed using regression analysis and intra-class correlation coefficients (ICC). In addition to the cardiac PET-MR reconstruction protocol as recommended by the manufacturer, comparisons were made using a PET-CT resolution-matched reconstruction protocol both without and with TOF to assess the effect of time-of-flight and reconstruction parameters on quantitative MBF values. Stress MBF data from one patient was excluded due to movement during the PET-CT scanning. Mean MBF values at rest and stress were (0.92 ± 0.12) and (2.74 ± 1.37) mL/g/min for PET-CT and (0.90 ± 0.23) and (2.65 ± 1.15) mL/g/min for PET-MR (p = 0.33 and p = 0.74). ICC between PET-CT-based and PET-MR-based regional MBF was 0.98. Image quality was improved with PET-MR as compared to PET-CT. ICC between PET-MR-based regional MBF with and without TOF and using different filter and reconstruction settings was 1.00. PET-MR-based MBF values correlated well with PET-CT-based MBF values and the parametric PET-MR images were excellent. TOF and reconstruction settings had little impact on MBF values.

  7. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers.

    PubMed

    Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia

    2015-10-15

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging. ©2015 American Association for Cancer Research.

  8. Clinical validation of FDG-PET/CT in the radiation treatment planning for patients with oesophageal cancer.

    PubMed

    Muijs, Christina T; Beukema, Jannet C; Woutersen, Dankert; Mul, Veronique E; Berveling, Maaike J; Pruim, Jan; van der Jagt, Eric J; Hospers, Geke A P; Groen, Henk; Plukker, John Th; Langendijk, Johannes A

    2014-11-01

    The aim of this prospective study was to determine the proportion of locoregional recurrences (LRRs) that could have been prevented if radiotherapy treatment planning for oesophageal cancer was based on PET/CT instead of CT. Ninety oesophageal cancer patients, eligible for high dose (neo-adjuvant) (chemo)radiotherapy, were included. All patients underwent a planning FDG-PET/CT-scan. Radiotherapy target volumes (TVs) were delineated on CT and patients were treated according to the CT-based treatment plans. The PET images remained blinded. After treatment, TVs were adjusted based on PET/CT, when appropriate. Follow up included CT-thorax/abdomen every 6months. If LRR was suspected, a PET/CT was conducted and the site of recurrence was compared to the original TVs. If the LRR was located outside the CT-based clinical TV (CTV) and inside the PET/CT-based CTV, we considered this LRR possibly preventable. Based on PET/CT, the gross tumour volume (GTV) was larger in 23% and smaller in 27% of the cases. In 32 patients (36%), >5% of the PET/CT-based GTV would be missed if the treatment planning was based on CT. The median follow up was 29months. LRRs were seen in 10 patients (11%). There were 3 in-field recurrences, 4 regional recurrences outside both CT-based and PET/CT-based CTV and 3 recurrences at the anastomosis without changes in TV by PET/CT; none of these recurrences were considered preventable by PET/CT. No LRR was found after CT-based radiotherapy that could have been prevented by PET/CT. The value of PET/CT for radiotherapy seems limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Novel iodinated tracers, MIBG and BMIPP, for nuclear cardiology.

    PubMed

    Tamaki, Nagara; Yoshinaga, Keiichiro

    2011-02-01

    With the rapid growth of molecular biology, in vivo imaging of such molecular process (i.e., molecular imaging) has been well developed. The molecular imaging has been focused on justifying advanced treatments and for assessing the treatment effects. Most of molecular imaging has been developed using PET camera and suitable PET radiopharmaceuticals. However, this technique cannot be widely available and we need alternative approach. ¹²³I-labeled compounds have been also suitable for molecular imaging using single-photon computed tomography (SPECT) ¹²³I-labeled meta-iodobenzylguanidine (MIBG) has been used for assessing severity of heart failure and prognosis. In addition, it has a potential role to predict fatal arrhythmia, particularly for those who had and are planned to receive implantable cardioverter-defibrillator treatment. ¹²³I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) plays an important role for identifying ischemia at rest, based on the unique capability to represent persistent metabolic alteration after recovery of ischemia, so called ischemic memory. Since BMIPP abnormalities may represent severe ischemia or jeopardized myocardium, it may permit risk analysis in CAD patients, particularly for those with chronic kidney disease and/or hemodialysis patients. This review will discuss about recent development of these important iodinated compounds.

  10. Novel iodinated tracers, MIBG and BMIPP, for nuclear cardiology

    PubMed Central

    Yoshinaga, Keiichiro

    2010-01-01

    With the rapid growth of molecular biology, in vivo imaging of such molecular process (i.e., molecular imaging) has been well developed. The molecular imaging has been focused on justifying advanced treatments and for assessing the treatment effects. Most of molecular imaging has been developed using PET camera and suitable PET radiopharmaceuticals. However, this technique cannot be widely available and we need alternative approach. 123I-labeled compounds have been also suitable for molecular imaging using single-photon computed tomography (SPECT) 123I-labeled meta-iodobenzylguanidine (MIBG) has been used for assessing severity of heart failure and prognosis. In addition, it has a potential role to predict fatal arrhythmia, particularly for those who had and are planned to receive implantable cardioverter-defibrillator treatment. 123I-beta-methyl-iodophenylpentadecanoic acid (BMIPP) plays an important role for identifying ischemia at rest, based on the unique capability to represent persistent metabolic alteration after recovery of ischemia, so called ischemic memory. Since BMIPP abnormalities may represent severe ischemia or jeopardized myocardium, it may permit risk analysis in CAD patients, particularly for those with chronic kidney disease and/or hemodialysis patients. This review will discuss about recent development of these important iodinated compounds. PMID:21082300

  11. OpenPET: A Flexible Electronics System for Radiotracer Imaging

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Buckley, S.; Vu, C.; Peng, Q.; Pavlov, N.; Choong, W.-S.; Wu, J.; Jackson, C.

    2010-10-01

    We present the design for OpenPET, an electronics readout system designed for prototype radiotracer imaging instruments. The critical requirements are that it has sufficient performance, channel count, channel density, and power consumption to service a complete camera, and yet be simple, flexible, and customizable enough to be used with almost any detector or camera design. An important feature of this system is that each analog input is processed independently. Each input can be configured to accept signals of either polarity as well as either differential or ground referenced signals. Each signal is digitized by a continuously sampled ADC, which is processed by an FPGA to extract pulse height information. A leading edge discriminator creates a timing edge that is “time stamped” by a TDC implemented inside the FPGA. This digital information from each channel is sent to an FPGA that services 16 analog channels, and information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc. As all of this processing is controlled by firmware and software, it can be modified/customized easily. The system is open source, meaning that all technical data (specifications, schematics and board layout files, source code, and instructions) will be publicly available.

  12. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions.

    PubMed

    Eiber, Matthias; Martinez-Möller, Axel; Souvatzoglou, Michael; Holzapfel, Konstantin; Pickhard, Anja; Löffelbein, Dennys; Santi, Ivan; Rummeny, Ernst J; Ziegler, Sibylle; Schwaiger, Markus; Nekolla, Stephan G; Beer, Ambros J

    2011-09-01

    In this study, the potential contribution of Dixon-based MR imaging with a rapid low-resolution breath-hold sequence, which is a technique used for MR-based attenuation correction (AC) for MR/positron emission tomography (PET), was evaluated for anatomical correlation of PET-positive lesions on a 3T clinical scanner compared to low-dose CT. This technique is also used in a recently installed fully integrated whole-body MR/PET system. Thirty-five patients routinely scheduled for oncological staging underwent (18)F-fluorodeoxyglucose (FDG) PET/CT and a 2-point Dixon 3-D volumetric interpolated breath-hold examination (VIBE) T1-weighted MR sequence on the same day. Two PET data sets reconstructed using attenuation maps from low-dose CT (PET(AC_CT)) or simulated MR-based segmentation (PET(AC_MR)) were evaluated for focal PET-positive lesions. The certainty for the correlation with anatomical structures was judged in the low-dose CT and Dixon-based MRI on a 4-point scale (0-3). In addition, the standardized uptake values (SUVs) for PET(AC_CT) and PET(AC_MR) were compared. Statistically, no significant difference could be found concerning anatomical localization for all 81 PET-positive lesions in low-dose CT compared to Dixon-based MR (mean 2.51 ± 0.85 and 2.37 ± 0.87, respectively; p = 0.1909). CT tended to be superior for small lymph nodes, bone metastases and pulmonary nodules, while Dixon-based MR proved advantageous for soft tissue pathologies like head/neck tumours and liver metastases. For the PET(AC_CT)- and PET(AC_MR)-based SUVs (mean 6.36 ± 4.47 and 6.31 ± 4.52, respectively) a nearly complete concordance with a highly significant correlation was found (r = 0.9975, p < 0.0001). Dixon-based MR imaging for MR AC allows for anatomical allocation of PET-positive lesions similar to low-dose CT in conventional PET/CT. Thus, this approach appears to be useful for future MR/PET for body regions not fully covered by diagnostic MRI due to potential time constraints.

  13. Diagnostic performance of FDG PET or PET/CT in prosthetic infection after arthroplasty: a meta-analysis.

    PubMed

    Jin, H; Yuan, L; Li, C; Kan, Y; Hao, R; Yang, J

    2014-03-01

    The purpose of this study was to systematically review and perform a meta-analysis of published data regarding the diagnostic performance of positron emission tomography (PET) or PET/computed tomography (PET/CT) in prosthetic infection after arthroplasty. A comprehensive computer literature search of studies published through May 31, 2012 regarding PET or PET/CT in patients suspicious of prosthetic infection was performed in PubMed/MEDLINE, Embase and Scopus databases. Pooled sensitivity and specificity of PET or PET/CT in patients suspicious of prosthetic infection on a per prosthesis-based analysis were calculated. The area under the receiver-operating characteristic (ROC) curve was calculated to measure the accuracy of PET or PET/CT in patients with suspicious of prosthetic infection. Fourteen studies comprising 838 prosthesis with suspicious of prosthetic infection after arthroplasty were included in this meta-analysis. The pooled sensitivity of PET or PET/CT in detecting prosthetic infection was 86% (95% confidence interval [CI] 82-90%) on a per prosthesis-based analysis. The pooled specificity of PET or PET/CT in detecting prosthetic infection was 86% (95% CI 83-89%) on a per prosthesis-based analysis. The area under the ROC curve was 0.93 on a per prosthesis-based analysis. In patients suspicious of prosthetic infection, FDG PET or PET/CT demonstrated high sensitivity and specificity. FDG PET or PET/CT are accurate methods in this setting. Nevertheless, possible sources of false positive results and influcing factors should kept in mind.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.

    Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less

  15. A philosophy for CNS radiotracer design

    DOE PAGES

    Van de Bittner, Genevieve C.; Ricq, Emily L.; Hooker, Jacob M.

    2014-10-01

    Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfallsmore » of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available to predict bioavailability, blood–brain barrier (BBB) permeability, and the associated issues of nonspecific binding and metabolic stability. To evaluate the synthesized chemical library, researchers need to consider high-throughput affinity assays, the analysis of specific binding, and the importance of fast binding kinetics. Lastly, we describe how we initially assess preclinical radiotracer imaging, using brain uptake, specific binding, and preliminary kinetic analysis to identify promising radiotracers that may be useful for human brain imaging. Although we discuss these five design components separately and linearly in this Account, in practice we develop new PET-based radiotracers using these design components nonlinearly and iteratively to develop new compounds in the most efficient way possible.« less

  16. A Philosophy for CNS Radiotracer Design

    PubMed Central

    2015-01-01

    Conspectus Decades after its discovery, positron emission tomography (PET) remains the premier tool for imaging neurochemistry in living humans. Technological improvements in radiolabeling methods, camera design, and image analysis have kept PET in the forefront. In addition, the use of PET imaging has expanded because researchers have developed new radiotracers that visualize receptors, transporters, enzymes, and other molecular targets within the human brain. However, of the thousands of proteins in the central nervous system (CNS), researchers have successfully imaged fewer than 40 human proteins. To address the critical need for new radiotracers, this Account expounds on the decisions, strategies, and pitfalls of CNS radiotracer development based on our current experience in this area. We discuss the five key components of radiotracer development for human imaging: choosing a biomedical question, selection of a biological target, design of the radiotracer chemical structure, evaluation of candidate radiotracers, and analysis of preclinical imaging. It is particularly important to analyze the market of scientists or companies who might use a new radiotracer and carefully select a relevant biomedical question(s) for that audience. In the selection of a specific biological target, we emphasize how target localization and identity can constrain this process and discuss the optimal target density and affinity ratios needed for binding-based radiotracers. In addition, we discuss various PET test–retest variability requirements for monitoring changes in density, occupancy, or functionality for new radiotracers. In the synthesis of new radiotracer structures, high-throughput, modular syntheses have proved valuable, and these processes provide compounds with sites for late-stage radioisotope installation. As a result, researchers can manage the time constraints associated with the limited half-lives of isotopes. In order to evaluate brain uptake, a number of methods are available to predict bioavailability, blood–brain barrier (BBB) permeability, and the associated issues of nonspecific binding and metabolic stability. To evaluate the synthesized chemical library, researchers need to consider high-throughput affinity assays, the analysis of specific binding, and the importance of fast binding kinetics. Finally, we describe how we initially assess preclinical radiotracer imaging, using brain uptake, specific binding, and preliminary kinetic analysis to identify promising radiotracers that may be useful for human brain imaging. Although we discuss these five design components separately and linearly in this Account, in practice we develop new PET-based radiotracers using these design components nonlinearly and iteratively to develop new compounds in the most efficient way possible. PMID:25272291

  17. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.

    PubMed

    Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas

    2009-03-01

    Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.

  18. Compact CdZnTe-based gamma camera for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera have been completed. The results show better than 6-mm resolution at a distance of 1 cm. Details of the test results are discussed in this paper.

  19. MR/PET quantification tools: Registration, segmentation, classification, and MR-based attenuation correction

    PubMed Central

    Fei, Baowei; Yang, Xiaofeng; Nye, Jonathon A.; Aarsvold, John N.; Raghunath, Nivedita; Cervo, Morgan; Stark, Rebecca; Meltzer, Carolyn C.; Votaw, John R.

    2012-01-01

    Purpose: Combined MR/PET is a relatively new, hybrid imaging modality. A human MR/PET prototype system consisting of a Siemens 3T Trio MR and brain PET insert was installed and tested at our institution. Its present design does not offer measured attenuation correction (AC) using traditional transmission imaging. This study is the development of quantification tools including MR-based AC for quantification in combined MR/PET for brain imaging. Methods: The developed quantification tools include image registration, segmentation, classification, and MR-based AC. These components were integrated into a single scheme for processing MR/PET data. The segmentation method is multiscale and based on the Radon transform of brain MR images. It was developed to segment the skull on T1-weighted MR images. A modified fuzzy C-means classification scheme was developed to classify brain tissue into gray matter, white matter, and cerebrospinal fluid. Classified tissue is assigned an attenuation coefficient so that AC factors can be generated. PET emission data are then reconstructed using a three-dimensional ordered sets expectation maximization method with the MR-based AC map. Ten subjects had separate MR and PET scans. The PET with [11C]PIB was acquired using a high-resolution research tomography (HRRT) PET. MR-based AC was compared with transmission (TX)-based AC on the HRRT. Seventeen volumes of interest were drawn manually on each subject image to compare the PET activities between the MR-based and TX-based AC methods. Results: For skull segmentation, the overlap ratio between our segmented results and the ground truth is 85.2 ± 2.6%. Attenuation correction results from the ten subjects show that the difference between the MR and TX-based methods was <6.5%. Conclusions: MR-based AC compared favorably with conventional transmission-based AC. Quantitative tools including registration, segmentation, classification, and MR-based AC have been developed for use in combined MR/PET. PMID:23039679

  20. Evaluating the purity of a {sup 57}Co flood source by PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiFilippo, Frank P., E-mail: difilif@ccf.org

    2014-11-01

    Purpose: Flood sources of {sup 57}Co are commonly used for quality control of gamma cameras. Flood uniformity may be affected by the contaminants {sup 56}Co and {sup 58}Co, which emit higher energy photons. Although vendors specify a maximum combined {sup 56}Co and {sup 58}Co activity, a convenient test for flood source purity that is feasible in a clinical environment would be desirable. Methods: Both {sup 56}Co and {sup 58}Co emit positrons with branching 19.6% and 14.9%, respectively. As is known from {sup 90}Y imaging, a positron emission tomography (PET) scanner is capable of quantitatively imaging very weak positron emission inmore » a high single-photon background. To evaluate this approach, two {sup 57}Co flood sources were scanned with a clinical PET/CT multiple times over a period of months. The {sup 56}Co and {sup 58}Co activity was clearly visible in the reconstructed PET images. Total impurity activity was quantified from the PET images after background subtraction of prompt gamma coincidences. Results: Time-of-flight PET reconstruction was highly beneficial for accurate image quantification. Repeated measurements of the positron-emitting impurities showed excellent agreement with an exponential decay model. For both flood sources studied, the fit parameters indicated a zero intercept and a decay half-life consistent with a mixture of {sup 56}Co and {sup 58}Co. The total impurity activity at the reference date was estimated to be 0.06% and 0.07% for the two sources, which was consistent with the vendor’s specification of <0.12%. Conclusions: The robustness of the repeated measurements and a thorough analysis of the detector corrections and physics suggest that the accuracy is acceptable and that the technique is feasible. Further work is needed to validate the accuracy of this technique with a calibrated high resolution gamma spectrometer as a gold standard, which was not available for this study, and for other PET detector models.« less

  1. Design and development of a dedicated mammary and axillary region positron emission tomography system

    NASA Astrophysics Data System (ADS)

    Doshi, Niraj Kumar

    Breast cancer is the second leading cause of cancer death in women. Currently, mammography and physical breast examination, both non-invasive techniques, provide the two most effective methods available for screening potential breast cancer patients. During the management of patients, however, several invasive techniques such as axillary lymph node dissection, core biopsies and lumpectomies, are utilized to determine the stage or malignancy of the disease with significant cost and morbidity associated with them. Positron Emission Tomography (PET), using [F-18] fluorodeoxyglucose (FDG) tracer is a sensitive and non-invasive imaging modality that may be a cost-effective alternative to certain invasive procedures. In this project we have developed a low cost, high performance, dedicated PET camera (maxPET) for mammary and axillary region imaging. The system consists of two 15x15 cm2 planar scintillation detector arrays composed of modular detectors operating in coincidence. The modular detectors are comprised of a 9x9 array of 3x3x20 mm3 lutetiurn oxyorthosilicate (LSO) detector elements, read out by a 5x5 array of position- sensitive photomultiplier tubes. The average measured intrinsic spatial resolution of a detector module is 2.26 mm with a sensitivity of up to 40% for a central point source. The measured coincidence timing resolution for two modules is 2.4 ns. The average energy resolution measured across the entire two detector plates is 21.6%. The coincidence timing resolution for the entire system is 8.1 ns. A line bar phantom was imaged and images were reconstructed using the focal plane tomography algorithm. A 4 mm projection image resolution was measured based on profiles taken through the line bar phantom images. The goal of the maxPET system will be to aid in breast cancer patient management by assisting in imaging women with dense, fibro-glandular breasts, detecting axillary lymph node metastases without surgery, monitoring chemotherapy effectiveness and assisting in visualization of recurrence and tumoral boundaries.

  2. Reproducibility of Quantitative Brain Imaging Using a PET-Only and a Combined PET/MR System

    PubMed Central

    Lassen, Martin L.; Muzik, Otto; Beyer, Thomas; Hacker, Marcus; Ladefoged, Claes Nøhr; Cal-González, Jacobo; Wadsak, Wolfgang; Rausch, Ivo; Langer, Oliver; Bauer, Martin

    2017-01-01

    The purpose of this study was to test the feasibility of migrating a quantitative brain imaging protocol from a positron emission tomography (PET)-only system to an integrated PET/MR system. Potential differences in both absolute radiotracer concentration as well as in the derived kinetic parameters as a function of PET system choice have been investigated. Five healthy volunteers underwent dynamic (R)-[11C]verapamil imaging on the same day using a GE-Advance (PET-only) and a Siemens Biograph mMR system (PET/MR). PET-emission data were reconstructed using a transmission-based attenuation correction (AC) map (PET-only), whereas a standard MR-DIXON as well as a low-dose CT AC map was applied to PET/MR emission data. Kinetic modeling based on arterial blood sampling was performed using a 1-tissue-2-rate constant compartment model, yielding kinetic parameters (K1 and k2) and distribution volume (VT). Differences for parametric values obtained in the PET-only and the PET/MR systems were analyzed using a 2-way Analysis of Variance (ANOVA). Comparison of DIXON-based AC (PET/MR) with emission data derived from the PET-only system revealed average inter-system differences of −33 ± 14% (p < 0.05) for the K1 parameter and −19 ± 9% (p < 0.05) for k2. Using a CT-based AC for PET/MR resulted in slightly lower systematic differences of −16 ± 18% for K1 and −9 ± 10% for k2. The average differences in VT were −18 ± 10% (p < 0.05) for DIXON- and −8 ± 13% for CT-based AC. Significant systematic differences were observed for kinetic parameters derived from emission data obtained from PET/MR and PET-only imaging due to different standard AC methods employed. Therefore, a transfer of imaging protocols from PET-only to PET/MR systems is not straightforward without application of proper correction methods. Clinical Trial Registration: www.clinicaltrialsregister.eu, identifier 2013-001724-19 PMID:28769742

  3. Development of a vision-based pH reading system

    NASA Astrophysics Data System (ADS)

    Hur, Min Goo; Kong, Young Bae; Lee, Eun Je; Park, Jeong Hoon; Yang, Seung Dae; Moon, Ha Jung; Lee, Dong Hoon

    2015-10-01

    pH paper is generally used for pH interpretation in the QC (quality control) process of radiopharmaceuticals. pH paper is easy to handle and useful for small samples such as radio-isotopes and radioisotope (RI)-labeled compounds for positron emission tomography (PET). However, pHpaper-based detecting methods may have some errors due limitations of eye sight and inaccurate readings. In this paper, we report a new device for pH reading and related software. The proposed pH reading system is developed with a vision algorithm based on the RGB library. The pH reading system is divided into two parts. First is the reading device that consists of a light source, a CCD camera and a data acquisition (DAQ) board. To improve the accuracy of the sensitivity, we utilize the three primary colors of the LED (light emission diode) in the reading device. The use of three colors is better than the use of a single color for a white LED because of wavelength. The other is a graph user interface (GUI) program for a vision interface and report generation. The GUI program inserts the color codes of the pH paper into the database; then, the CCD camera captures the pH paper and compares its color with the RGB database image in the reading mode. The software captures and reports information on the samples, such as pH results, capture images, and library images, and saves them as excel files.

  4. Evaluating [11C]PBR28 PET for Monitoring Gut and Brain Inflammation in a Rat Model of Chemically Induced Colitis.

    PubMed

    Kurtys, E; Doorduin, J; Eisel, U L M; Dierckx, R A J O; de Vries, E F J

    2017-02-01

    Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that affects an increasing number of patients. High comorbidity is observed between UC and other diseases in which inflammation may be involved, including brain diseases such as cognitive impairment, mental disorders, anxiety, and depression. To investigate the increased occurrence of these brain diseases in patients with UC, non-invasive methods for monitoring peripheral and central inflammation could be applied. Therefore, the goal of this study is to assess the feasibility of monitoring gut and brain inflammation in a rat model of chemically induced colitis by positron emission tomography (PET) with [ 11 C]PBR28, a tracer targeting the translocator protein (TSPO), which is upregulated when microglia and macrophages are activated. Colitis was induced in rats by intra-rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Rats with colitis and healthy control animals were subjected to [ 11 C]PBR28 PET of the abdomen followed by ex vivo biodistribution in order to assess whether inflammation in the gut could be detected. Another group of rats with colitis underwent repetitive [ 11 C]PBR28 PET imaging of the brain to investigate the development of neuroinflammation. Eleven days after TNBS injection, ex vivo biodistribution studies demonstrated increased [ 11 C]PBR28 uptake in the inflamed cecum and colon of rats with colitis as compared to healthy controls, whereas PET imaging did not show any difference between groups at any time. Similarly, repetitive PET imaging of the brain did not reveal any neuroinflammation induced by the TNBS administration in the colon. In contrast, significantly increased [ 11 C]PBR28 uptake in cerebellum could be detected in ex vivo biodistribution studies on day 11. Inflammation in both the gut and the brain of rats with chemically induced colitis was observed by ex vivo biodistribution. However, these effects could not be detected by [ 11 C]PBR28 PET imaging in our colitis model, which is likely due to spill-over effects and insufficient resolution of the PET camera.

  5. Inexpensive position sensitive detector block for dedicated PET cameras using 40-mm diameter PMT in quadrant sharing configuration

    NASA Astrophysics Data System (ADS)

    Uribe, J.; Aykac, M.; Baghaei, H.; Li, Hongdi; Wang, Yu; Liu, Yaqiang; Wong, V.; Xing, Tao; Ramirez, R.; Wong, Wai-Hoi

    2003-06-01

    Recent approvals by CMS (HCFA) for reimbursement of positron emission tomography (PET) scans fuels the rapid grow of the PET market, thus creating the need for more affordable dedicated PET scanners. The objective of the work presented here was the development of a BGO position-sensitive block with similar detector area (40 mm /spl times/ 40 mm) and same number of crystals (8 /spl times/ 8) as the block of a commercial BGO PET, using the less expensive photomultiplier quadrant sharing (PQS) technique. This block is coupled to four single-anode 40-mm diameter photomultipliers (PMT) instead of the 19-mm PMT used in a popular commercial BGO PET, and each PMT is shared by four adjacent detector blocks. Potentially, this design needs only 25% of the number of PMT used in the commercial BGO PET. In order not to waste the unused half-row of PMT at the edges of a detector panel/module when the module is made up solely of square blocks, an extended rectangular block has to be developed for the edge-blocks in the module, which maximized the use of the PMT and minimized the gap between modules. Only the extended block needs to be developed to derive the design for all the blocks in the module because the symmetric square block uses the same light-distributing partitions as those along the short side of the extended rectangular block. White-paint masks applied with accurate templates and airbrush were fine-tuned for every pair of adjacent crystals. The experimental block developed in this study provided good crystal-decoding. The composite energy spectrum of all 64 crystals showed a prominent photopeak. The worst crystal sitting in the air space between 4 round PMTs still has 60% of the signal pulse height as the best crystal. The average energy resolution was 21.8% for 511 keV gamma (range 17% - 28.7%) that compared well with the 22% - 44% measured with GE and CTI blocks. The image resolution provided by the PQS blocks is expected to be comparable to that of commercial BGO PETs as similar size crystals were decoded.

  6. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μ m mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μ W from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e - RMS at room temperature.

  7. Magnetic Resonance-based Motion Correction for Quantitative PET in Simultaneous PET-MR Imaging.

    PubMed

    Rakvongthai, Yothin; El Fakhri, Georges

    2017-07-01

    Motion degrades image quality and quantitation of PET images, and is an obstacle to quantitative PET imaging. Simultaneous PET-MR offers a tool that can be used for correcting the motion in PET images by using anatomic information from MR imaging acquired concurrently. Motion correction can be performed by transforming a set of reconstructed PET images into the same frame or by incorporating the transformation into the system model and reconstructing the motion-corrected image. Several phantom and patient studies have validated that MR-based motion correction strategies have great promise for quantitative PET imaging in simultaneous PET-MR. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng; Ye, Jinghan; Chen, Buxin; Perkins, Amy E.; Rose, Sean; Sidky, Emil Y.; Kao, Chien-Min; Xia, Dan; Tung, Chi-Hua; Pan, Xiaochuan

    2016-08-01

    Interest remains in reconstruction-algorithm research and development for possible improvement of image quality in current PET imaging and for enabling innovative PET systems to enhance existing, and facilitate new, preclinical and clinical applications. Optimization-based image reconstruction has been demonstrated in recent years of potential utility for CT imaging applications. In this work, we investigate tailoring the optimization-based techniques to image reconstruction for PET systems with standard and non-standard scan configurations. Specifically, given an image-total-variation (TV) constraint, we investigated how the selection of different data divergences and associated parameters impacts the optimization-based reconstruction of PET images. The reconstruction robustness was explored also with respect to different data conditions and activity up-takes of practical relevance. A study was conducted particularly for image reconstruction from data collected by use of a PET configuration with sparsely populated detectors. Overall, the study demonstrates the robustness of the TV-constrained, optimization-based reconstruction for considerably different data conditions in PET imaging, as well as its potential to enable PET configurations with reduced numbers of detectors. Insights gained in the study may be exploited for developing algorithms for PET-image reconstruction and for enabling PET-configuration design of practical usefulness in preclinical and clinical applications.

  9. Textural features and SUV-based variables assessed by dual time point 18F-FDG PET/CT in locally advanced breast cancer.

    PubMed

    Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel

    2017-12-01

    To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.

  10. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System.

    PubMed

    Yang, Jaewon; Jian, Yiqiang; Jenkins, Nathaniel; Behr, Spencer C; Hope, Thomas A; Larson, Peder E Z; Vigneron, Daniel; Seo, Youngho

    2017-07-01

    Purpose To assess the patient-dependent accuracy of atlas-based attenuation correction (ATAC) for brain positron emission tomography (PET) in an integrated time-of-flight (TOF) PET/magnetic resonance (MR) imaging system. Materials and Methods Thirty recruited patients provided informed consent in this institutional review board-approved study. All patients underwent whole-body fluorodeoxyglucose PET/computed tomography (CT) followed by TOF PET/MR imaging. With use of TOF PET data, PET images were reconstructed with four different attenuation correction (AC) methods: PET with patient CT-based AC (CTAC), PET with ATAC (air and bone from an atlas), PET with ATAC patientBone (air and tissue from the atlas with patient bone), and PET with ATAC boneless (air and tissue from the atlas without bone). For quantitative evaluation, PET mean activity concentration values were measured in 14 1-mL volumes of interest (VOIs) distributed throughout the brain and statistical significance was tested with a paired t test. Results The mean overall difference (±standard deviation) of PET with ATAC compared with PET with CTAC was -0.69 kBq/mL ± 0.60 (-4.0% ± 3.2) (P < .001). The results were patient dependent (range, -9.3% to 0.57%) and VOI dependent (range, -5.9 to -2.2). In addition, when bone was not included for AC, the overall difference of PET with ATAC boneless (-9.4% ± 3.7) was significantly worse than that of PET with ATAC (-4.0% ± 3.2) (P < .001). Finally, when patient bone was used for AC instead of atlas bone, the overall difference of PET with ATAC patientBone (-1.5% ± 1.5) improved over that of PET with ATAC (-4.0% ± 3.2) (P < .001). Conclusion ATAC in PET/MR imaging achieves similar quantification accuracy to that from CTAC by means of atlas-based bone compensation. However, patient-specific anatomic differences from the atlas causes bone attenuation differences and misclassified sinuses, which result in patient-dependent performance variation of ATAC. © RSNA, 2017 Online supplemental material is available for this article.

  11. Optimization of a LSO-Based Detector Module for Time-of-Flight PET

    NASA Astrophysics Data System (ADS)

    Moses, W. W.; Janecek, M.; Spurrier, M. A.; Szupryczynski, P.; Choong, W.-S.; Melcher, C. L.; Andreaco, M.

    2010-06-01

    We have explored methods for optimizing the timing resolution of an LSO-based detector module for a single-ring, “demonstration” time-of-flight PET camera. By maximizing the area that couples the scintillator to the PMT and minimizing the average path length that the scintillation photons travel, a single detector timing resolution of 218 ps fwhm is measured, which is considerably better than the 385 ps fwhm obtained by commercial LSO or LYSO TOF detector modules. We explored different surface treatments (saw-cut, mechanically polished, and chemically etched) and reflector materials (Teflon tape, ESR, Lumirror, Melinex, white epoxy, and white paint), and found that for our geometry, a chemically etched surface had 5% better timing resolution than the saw-cut or mechanically polished surfaces, and while there was little dependence on the timing resolution between the various reflectors, white paint and white epoxy were a few percent better. Adding co-dopants to LSO shortened the decay time from 40 ns to 30 ns but maintained the same or higher total light output. This increased the initial photoelectron rate and so improved the timing resolution by 15%. Using photomultiplier tubes with higher quantum efficiency (blue sensitivity index of 13.5 rather than 12) improved the timing resolution by an additional 5%. By choosing the optimum surface treatment (chemically etched), reflector (white paint), LSO composition (co-doped), and PMT (13.5 blue sensitivity index), the coincidence timing resolution of our detector module was reduced from 309 ps to 220 ps fwhm.

  12. A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.

    PubMed

    Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi

    2010-04-01

    The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.

  13. Pre-clinical and Clinical Evaluation of High Resolution, Mobile Gamma Camera and Positron Imaging Devices

    DTIC Science & Technology

    2009-10-01

    Field-of-View, Mobile PET/SPECT System for Bedside Environments: A Dynamic Cardiac Phantom Study using 99mTc and 18F- FDG . Presented at the American...using Tc-99m tracers and viability imaging using F- 18 tracers [3]-[7]. For cardiac F-18 imaging in a bedside environment, the 511 keV SPECT approach...SPECT system may have difficulty imaging subtle myocardial defects with F-18 tracers , but it may effectively image moderate to severe defects. The

  14. Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET.

    PubMed

    Fällmar, David; Haller, Sven; Lilja, Johan; Danfors, Torsten; Kilander, Lena; Tolboom, Nelleke; Egger, Karl; Kellner, Elias; Croon, Philip M; Verfaillie, Sander C J; van Berckel, Bart N M; Ossenkoppele, Rik; Barkhof, Frederik; Larsson, Elna-Marie

    2017-10-01

    Cerebral perfusion analysis based on arterial spin labeling (ASL) MRI has been proposed as an alternative to FDG-PET in patients with neurodegenerative disease. Z-maps show normal distribution values relating an image to a database of controls. They are routinely used for FDG-PET to demonstrate disease-specific patterns of hypometabolism at the individual level. This study aimed to compare the performance of Z-maps based on ASL to FDG-PET. Data were combined from two separate sites, each cohort consisting of patients with Alzheimer's disease (n = 18 + 7), frontotemporal dementia (n = 12 + 8) and controls (n = 9 + 29). Subjects underwent pseudocontinuous ASL and FDG-PET. Z-maps were created for each subject and modality. Four experienced physicians visually assessed the 166 Z-maps in random order, blinded to modality and diagnosis. Discrimination of patients versus controls using ASL-based Z-maps yielded high specificity (84%) and positive predictive value (80%), but significantly lower sensitivity compared to FDG-PET-based Z-maps (53% vs. 96%, p < 0.001). Among true-positive cases, correct diagnoses were made in 76% (ASL) and 84% (FDG-PET) (p = 0.168). ASL-based Z-maps can be used for visual assessment of neurodegenerative dementia with high specificity and positive predictive value, but with inferior sensitivity compared to FDG-PET. • ASL-based Z-maps yielded high specificity and positive predictive value in neurodegenerative dementia. • ASL-based Z-maps had significantly lower sensitivity compared to FDG-PET-based Z-maps. • FDG-PET might be reserved for ASL-negative cases where clinical suspicion persists. • Findings were similar at two study sites.

  15. Molecular Imaging of Smoke-Induced Changes in Nuclear Factor-Kappa B Expression in Murine Tissues Including the Lung.

    PubMed

    Syrkina, Olga; Hales, Charles H; Bonab, Ali A; Hamrahi, Victoria; Paul, Kasie; Jung, Walter J; Tompkins, Ronald G; Fischman, Alan J; Carter, Edward A

    Many inflammatory responses are mediated by activation of the transcription factor, nuclear factor-kappa B (NF-κB), and a wide variety of human diseases involve abnormal regulation of its expression. In this investigation, we evaluated the effect of smoke inhalation injury on NF-κB expression in lung using two strains of NF-κB reporter mice. Groups of reporter mice with viral thymidine kinase (TK) or "fire fly" luciferase (Luc) genes under control by the NF-κB promoter (TK/NF-κB mice and Luc/NF-κB mice) were subjected to nonlethal smoke inhalation injury. Sham-treated animals served as controls. Twenty-four hours (each animal was injected intravenously with either 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (FHBG) (~ 1.0 mCi) or luciferin (1.0 mg). One hour later, the TK/NF-κB mice were studied by micro-positron emission tomography (µ-PET) imaging using a Concord P4 µ-PET camera, and the Luc/NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. The µ-PET data demonstrated that smoke injury produced massive increases in NF-κB expression (FHBG-standardized uptake value: 3.1 vs 0.0) 24 hours after smoke inhalation, which was reduced 48 hours after smoke inhalation, but still significantly different than the control. Qualitative analysis of the bioluminescence data revealed a remarkably similar effect of burn NF-κB luciferase expression in vivo. Biodistribution studies of FHBG uptake and luciferase activity in lung tissue demonstrated a similar increase 24 hours after injury, which was reduced 48 hours later, but still significantly higher than the sham. The present data with these models providing longitudinal imaging data on the same mouse may prove useful in the examination of the factors producing lung injury by smoke inhalation, as well as the treatment(s) for the damage produced with and without burn injury.

  16. Evaluation of the effect of filter apodization for volume PET imaging using the 3-D RP algorithm

    NASA Astrophysics Data System (ADS)

    Baghaei, H.; Wong, Wai-Hoi; Li, Hongdi; Uribe, J.; Wang, Yu; Aykac, M.; Liu, Yaqiang; Xing, Tao

    2003-02-01

    We investigated the influence of filter apodization and cutoff frequency on the image quality of volume positron emission tomography (PET) imaging using the three-dimensional reprojection (3-D RP) algorithm. An important parameter in 3-D RP and other filtered backprojection algorithms is the choice of the filter window function. In this study, the Hann, Hamming, and Butterworth low-pass window functions were investigated. For each window, a range of cutoff frequencies was considered. Projection data were acquired by scanning a uniform cylindrical phantom, a cylindrical phantom containing four small lesion phantoms having diameters of 3, 4, 5, and 6 mm and the 3-D Hoffman brain phantom. All measurements were performed using the high-resolution PET camera developed at the M.D. Anderson Cancer Center (MDAPET), University of Texas, Houston, TX. This prototype camera, which is a multiring scanner with no septa, has an intrinsic transaxial resolution of 2.8 mm. The evaluation was performed by computing the noise level in the reconstructed images of the uniform phantom and the contrast recovery of the 6-mm hot lesion in a warm background and also by visually inspecting images, especially those of the Hoffman brain phantom. For this work, we mainly studied the central slices which are less affected by the incompleteness of the 3-D data. Overall, the Butterworth window offered a better contrast-noise performance over the Hann and Hamming windows. For our high statistics data, for the Hann and Hamming apodization functions a cutoff frequency of 0.6-0.8 of the Nyquist frequency resulted in a reasonable compromise between the contrast recovery and noise level and for the Butterworth window a cutoff frequency of 0.4-0.6 of the Nyquist frequency was a reasonable choice. For the low statistics data, use of lower cutoff frequencies was more appropriate.

  17. Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source.

    PubMed

    Mollet, Pieter; Keereman, Vincent; Bini, Jason; Izquierdo-Garcia, David; Fayad, Zahi A; Vandenberghe, Stefaan

    2014-02-01

    Quantitative PET imaging relies on accurate attenuation correction. Recently, there has been growing interest in combining state-of-the-art PET systems with MR imaging in a sequential or fully integrated setup. As CT becomes unavailable for these systems, an alternative approach to the CT-based reconstruction of attenuation coefficients (μ values) at 511 keV must be found. Deriving μ values directly from MR images is difficult because MR signals are related to the proton density and relaxation properties of tissue. Therefore, most research groups focus on segmentation or atlas registration techniques. Although studies have shown that these methods provide viable solutions in particular applications, some major drawbacks limit their use in whole-body PET/MR. Previously, we used an annulus-shaped PET transmission source inside the field of view of a PET scanner to measure attenuation coefficients at 511 keV. In this work, we describe the use of this method in studies of patients with the sequential time-of-flight (TOF) PET/MR scanner installed at the Icahn School of Medicine at Mount Sinai, New York, NY. Five human PET/MR and CT datasets were acquired. The transmission-based attenuation correction method was compared with conventional CT-based attenuation correction and the 3-segment, MR-based attenuation correction available on the TOF PET/MR imaging scanner. The transmission-based method overcame most problems related to the MR-based technique, such as truncation artifacts of the arms, segmentation artifacts in the lungs, and imaging of cortical bone. Additionally, the TOF capabilities of the PET detectors allowed the simultaneous acquisition of transmission and emission data. Compared with the MR-based approach, the transmission-based method provided average improvements in PET quantification of 6.4%, 2.4%, and 18.7% in volumes of interest inside the lung, soft tissue, and bone tissue, respectively. In conclusion, a transmission-based technique with an annulus-shaped transmission source will be more accurate than a conventional MR-based technique for measuring attenuation coefficients at 511 keV in future whole-body PET/MR studies.

  18. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boellaard, Ronald, E-mail: r.boellaard@vumc.nl; European Association of Nuclear Medicine Research Ltd., Vienna 1060; European Association of Nuclear Medicine Physics Committee, Vienna 1060

    2015-10-15

    Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5more » min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for attenuation correction.« less

  19. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    PubMed

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  20. The impact of 18 F-FET PET-CT on target definition in image-guided stereotactic radiotherapy in patients with skull base lesions.

    PubMed

    Badakhshi, Harun; Graf, Reinhold; Prasad, Vikas; Budach, Volker

    2014-06-25

    18 F-fluoro-ethyl-tyrosine PET is gaining more indications in the field of oncology. We investigated the potentials of usage of FET-PET/CT in addition to MRI for definition of gross tumor volume (GTV) in stereotactic radiotherapy of lesions of skull base. We included in a prospective setting 21 cases. An MRI was performed, completed by FET PET/CT. Different GTV's were defined based on respective imaging tools: 1. GTVMRI, 2. GTV MRI /CT, 3. GTV composit (1 + 2), and GTVPET = GTV Boost. Lesions could be visualised by MRI and FET-PET/CT in all patients. FET tracer enhancement was found in all cases. Skull base infiltration by these lesions was observed by MRI, CT (PET/CT) and FET-PET (PET/CT) in all patients. Totally, brain tissue infiltration was seen in 10 patients. While, in 7 (out 10) cases, MRI and CT (from PET/CT) were indicating brain infiltration, FET-PET could add additional information regarding infiltrative behaviour: in 3 (out 10) patients, infiltration of the brain was displayed merely in FET-PET. An enlargement of GTVMRI/CT due to the FET-PET driven information, which revealed GTVcomposite , was necessary in 7 cases,. This enlargement was significant by definition (> 10% of GTVMRI/CT). The mean PET-effect on GTV counted for 1 ± 4 cm3. The restricted boost fields were based mainly on the GTVPET volume. In mean, about 8.5 cm3 of GTVMRI/CT, which showed no FET uptake, were excluded from target volume. GTV boost driven by only-PET-activity, was in mean by 33% smaller than the initial large treatment field, GTV composite, for those cases received boost treatment. FET-PET lead to significant (>10%) changes in the initial treatment fields in 11/21 patients and showed additional tumour volume relevant for radiation planning in 6/21 cases, and led to a subsequent decrease of more than 10% of the initial volumes for the boost fields. The implementation of FET PET into the planning procedures showed a benefit in terms of accurate definition of skull base lesions as targets for Image-guided stereotactic Radiotherapy. This has to be investigated prospectively in larger cohorts.

  1. Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors

    PubMed Central

    Kjaer, Andreas; Knigge, Ulrich

    2015-01-01

    Abstract Radionuclides are needed both for nuclear medicine imaging as well as for peptide-receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NET). Imaging is important in the initial diagnostic work-up and for staging NETs. In therapy planning, somatostatin receptor imaging (SRI) is used when treatment is targeted at the somatostatin receptors as with the use of somatostatin analogues or PRRT. SRI with gamma camera technique using the tracer 111In-DTPA-octreotide has for many years been the backbone of nuclear imaging of NETs. However, increasingly PET tracers for SRI are now used. 68Ga-DOTATATE, 68Ga-DOTATOC and 68Ga-DOTANOC are the three most often used PET tracers. They perform better than SPECT tracers and should be preferred. FDG-PET is well suited for visualization of most of the somatostatin receptor-negative tumors prognostic in NET patients. Also 11C-5-HTP, 18F-DOPA and 123I-MIBG may be used in NET. However, with FDG-PET and somatostatin receptor PET at hand we see limited necessity of other tracers. PRRT is an important tool in the treatment of advanced NETs causing complete or partial response in 20% and minor response or tumor stabilization in 60% with response duration of up to 3 years. Grade 3–4 kidney or bone marrow toxicity is seen in 1.5% and 9.5%, respectively, but are completely or partly reversible in most patients. 177Lu-DOTATATE seems to have less toxicity than 90Y-DOTATOC. However, until now only retrospective, non-randomized studies have been performed and the role of PRRT in treatment of NETs remains to be established. PMID:25959100

  2. Use of radioactive substances in diagnosis and treatment of neuroendocrine tumors.

    PubMed

    Kjaer, Andreas; Knigge, Ulrich

    2015-06-01

    Radionuclides are needed both for nuclear medicine imaging as well as for peptide-receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NET). Imaging is important in the initial diagnostic work-up and for staging NETs. In therapy planning, somatostatin receptor imaging (SRI) is used when treatment is targeted at the somatostatin receptors as with the use of somatostatin analogues or PRRT. SRI with gamma camera technique using the tracer (111)In-DTPA-octreotide has for many years been the backbone of nuclear imaging of NETs. However, increasingly PET tracers for SRI are now used. (68)Ga-DOTATATE, (68)Ga-DOTATOC and (68)Ga-DOTANOC are the three most often used PET tracers. They perform better than SPECT tracers and should be preferred. FDG-PET is well suited for visualization of most of the somatostatin receptor-negative tumors prognostic in NET patients. Also (11)C-5-HTP, (18)F-DOPA and (123)I-MIBG may be used in NET. However, with FDG-PET and somatostatin receptor PET at hand we see limited necessity of other tracers. PRRT is an important tool in the treatment of advanced NETs causing complete or partial response in 20% and minor response or tumor stabilization in 60% with response duration of up to 3 years. Grade 3-4 kidney or bone marrow toxicity is seen in 1.5% and 9.5%, respectively, but are completely or partly reversible in most patients. (177)Lu-DOTATATE seems to have less toxicity than (90)Y-DOTATOC. However, until now only retrospective, non-randomized studies have been performed and the role of PRRT in treatment of NETs remains to be established.

  3. Fluorescence-enhanced optical tomography and nuclear imaging system for small animals

    NASA Astrophysics Data System (ADS)

    Tan, I.-Chih; Lu, Yujie; Darne, Chinmay; Rasmussen, John C.; Zhu, Banghe; Azhdarinia, Ali; Yan, Shikui; Smith, Anne M.; Sevick-Muraca, Eva M.

    2012-03-01

    Near-infrared (NIR) fluorescence is an alternative modality for molecular imaging that has been demonstrated in animals and recently in humans. Fluorescence-enhanced optical tomography (FEOT) using continuous wave or frequency domain photon migration techniques could be used to provide quantitative molecular imaging in vivo if it could be validated against "gold-standard," nuclear imaging modalities, using dual-labeled imaging agents. Unfortunately, developed FEOT systems are not suitable for incorporation with CT/PET/SPECT scanners because they utilize benchtop devices and require a large footprint. In this work, we developed a miniaturized fluorescence imaging system installed in the gantry of the Siemens Inveon PET/CT scanner to enable NIR transillumination measurements. The system consists of a CCD camera equipped with NIR sensitive intensifier, a diode laser controlled by a single board compact controller, a 2-axis galvanometer, and RF circuit modules for homodyne detection of the phase and amplitude of fluorescence signals. The performance of the FEOT system was tested and characterized. A mouse-shaped solid phantom of uniform optical properties with a fluorescent inclusion was scanned using CT, and NIR fluorescence images at several projections were collected. The method of high-order approximation to the radioactive transfer equation was then used to reconstruct the optical images. Dual-labeled agents were also used on a tumor bearing mouse to validate the results of the FEOT against PET/CT image. The results showed that the location of the fluorophore obtained from the FEOT matches the location of tumor obtained from the PET/CT images. Besides validation of FEOT, this hybrid system could allow multimodal molecular imaging (FEOT/PET/CT) for small animal imaging.

  4. A High-Resolution Time-of-Flight Clinical PET Detection System Using a Gapless PMT-Quadrant-Sharing Method

    NASA Astrophysics Data System (ADS)

    Wong, Wai-Hoi; Li, Hongdi; Zhang, Yuxuan; Ramirez, Rocio; An, Shaohui; Wang, Chao; Liu, Shitao; Dong, Yun; Baghaei, Hossain

    2015-10-01

    We developed a high-resolution Photomultiplier-Quadrant-Sharing (PQS) PET system for human imaging. This system is made up of 24 detector panels. Each panel (bank) consists of 3 ×7 detector blocks, and each block has 16 ×16 LYSO crystals of 2.35 ×2.35 ×15.2 mm3. We used a novel detector-grinding scheme that is compatible with the PQS detector-pixel-decoding requirements to make a gapless cylindrical detector ring for maximizing detection efficiency while delivering an ultrahigh spatial-resolution for a whole-body PET camera with a ring diameter of 87 cm and axial field of view of 27.6 cm. This grinding scheme enables two adjacent gapless panels to share one row of the PMTs to extend the PQS configuration beyond one panel and thus maximize the economic benefit (in PMT usage) of the PQS design. The entire detector ring has 129,024 crystals, all of which are clearly decoded using only 576 PMTs (38-mm diameter). Thus, each PMT on average decodes 224 crystals to achieve a high crystal-pitch resolution of 2.44 mm ×2.44 mm. The detector blocks were mass-produced with our slab-sandwich-slice technique using a set of optimized mirror-film patterns (between crystals) to maximize light output and achieve high spatial and timing resolution. This detection system with time-of-flight capability was placed in a human PET/CT gantry. The reconstructed image resolution of the system was about 2.87 mm using 2D-filtered back-projection. The time-of-flight resolution was 473 ps. The preliminary images of phantoms and clinical studies presented in this work demonstrate the capability of this new PET/CT system to produce high-quality images.

  5. Positron emission tomography: a novel technique for investigating the biodistribution and transport of nanoparticles.

    PubMed

    Palko, Heather A; Fung, Jennifer Y; Louie, Angelique Y

    2010-07-01

    Particulate matter (PM) has been associated with serious health effects within but also outside of the pulmonary system. Therefore, there is great interest in studying the biodistribution of PM after delivery to the lung to correlate sites of extrapulmonary particle accumulation and abnormal conditions known to be associated with PM exposure. Traditional PM tracking studies have introduced nanoparticles to animal models or humans and have determined the biodistribution with gamma counting, gamma camera, and inductively coupled plasma mass spectrometry (ICP-MS). The authors here demonstrate that positron emission tomography (PET) is a powerful tool that can be employed to visualize the deposition and track the fate of nanoparticles in the mouse model. In these studies, approximately 100-nm polystyrene nanoparticles were labeled with the positron emitter 64Cu bound by the chelator (S)-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The labeled nanoparticles were instilled intratracheally into C57BL/6 mice; the initial deposition and biodistribution through 48 h was determined by PET imaging. In addition to static imaging, dynamic imaging was performed in the Sprague-Dawley rat model to demonstrate that PET can capture particle movement in pseudo-time-lapse videos. Particle deposition and clearance was clearly identified by PET, and the same animals could be imaged repeatedly without any adverse effects from anesthesia. PET has the potential to require many fewer animals than traditional methods while still providing quantitative results. In addition, the initial deposition pattern in each animal can be accurately determined and the same animal monitored over time so that data interpretation is not clouded by variations in initial deposition profiles.

  6. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.

    PubMed

    Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian

    2018-03-08

    Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs was also decreased using MR-based MC. All comparisons were significant at the P = 0.05 level. Incorporating temporally correlated MR data to account for intraframe motion has a positive impact on the FDG PET image quality and data quantification in dementia patients. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  7. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging.

    PubMed

    Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H

    2015-12-01

    In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.

  8. 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma

    PubMed Central

    Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.

    2016-01-01

    Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0.83) and SUVmean (r = 0.81) but no significant correlation between ADCmin and SUVmax (18F-FDG PET/CT: r = 0.46, P = 0.65; 18F-FDG PET/MR: r = 0.64, P = 0.53) or between ADCmean and SUVmean (respectively, r = −0.14, P = 0.17 for the correlation with PET/CT and r = −0.14, P = 0.14 for the correlation with PET/MR). Conclusions 18F-FDG PET/MR and 18F-FDG PET/CT show a similar diagnostic performance in lymphoma patients. However, if DWI is included in the 18F-FDG PET/MR protocol, results surpass those of 18F-FDG PET/CT because of the higher sensitivity of DWI for mucosa-associated lymphoid tissue lymphomas. PMID:26784400

  9. Development of a PET/OMRI combined system for simultaneous imaging of positron and free radical probes for small animals.

    PubMed

    Yamamoto, Seiichi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ichikawa, Kazuhiro; Nakao, Motonao; Kato, Katsuhiko; Hatazawa, Jun

    2016-10-01

    Positron emission tomography (PET) has high sensitivity for imaging radioactive tracer distributions in subjects. However, it is not possible to image free radical distribution in a subject by PET. Since free radicals are quite reactive, they are related to many diseases, including but not limited to cancer, inflammation, strokes, and heart disease. The Overhauser enhanced magnetic resonance imaging (OMRI) is so far the only method that images free radical distribution in vivo. By combining PET and OMRI, a new hybrid imaging modality might be developed that can simultaneously image the radioactive tracer and free radical distributions. For this purpose, the authors developed a PET/OMRI combined system for small animals. The developed PET/OMRI system used an optical fiber-based PET system combined with a permanent magnet-based OMRI system. The optical fiber-based PET system uses flexible optical fiber bundles. Eight optical fiber-based block detectors were arranged in a 56 mm diameter ring to form a PET system. The LGSO blocks were located inside the field-of-view (FOV) of the OMRI, and the position sensitive photomultiplier tubes were positioned behind the OMRI to minimize the interference between the PET and the OMRI. The OMRI system used a 0.0165 T permanent magnet. The system has an electron spin resonance coil to enhance the MRI signal using the Overhauser effect to image the free radical in the FOV of the PET/OMRI system. The spatial resolution and sensitivity of the optical fiber-based PET system were 1.2 mm FWHM and 1.2% at the central FOV, respectively. The OMRI system imaged the distribution of a nitroxyl radical (NXR) solution. The interference between PET and OMRI was small. Simultaneous imaging of the positron radiotracer and the NXR solution was successfully conducted with the developed PET/OMRI system for phantom and small animal studies. The authors developed a PET/OMRI combined system with the potential to provide interesting new results in molecular imaging research, such as in vivo molecular and free radical distributions.

  10. Image-Based 2D Re-Projection for Attenuation Substitution in PET Neuroimaging.

    PubMed

    Laymon, Charles M; Minhas, Davneet S; Becker, Carl R; Matan, Cristy; Oborski, Matthew J; Price, Julie C; Mountz, James M

    2018-02-27

    In dual modality positron emission tomography (PET)/magnetic resonance imaging (MRI), attenuation correction (AC) methods are continually improving. Although a new AC can sometimes be generated from existing MR data, its application requires a new reconstruction. We evaluate an approximate 2D projection method that allows offline image-based reprocessing. 2-Deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) brain scans were acquired (Siemens HR+) for six subjects. Attenuation data were obtained using the scanner's transmission source (SAC). Additional scanning was performed on a Siemens mMR including production of a Dixon-based MR AC (MRAC). The MRAC was imported to the HR+ and the PET data were reconstructed twice: once using native SAC (ground truth); once using the imported MRAC (imperfect AC). The re-projection method was implemented as follows. The MRAC PET was forward projected to approximately reproduce attenuation-corrected sinograms. The SAC and MRAC images were forward projected and converted to attenuation-correction factors (ACFs). The MRAC ACFs were removed from the MRAC PET sinograms by division; the SAC ACFs were applied by multiplication. The regenerated sinograms were reconstructed by filtered back projection to produce images (SUBAC PET) in which SAC has been substituted for MRAC. Ideally SUBAC PET should match SAC PET. Via coregistered T1 images, FreeSurfer (FS; MGH, Boston) was used to define a set of cortical gray matter regions of interest. Regional activity concentrations were extracted for SAC PET, MRAC PET, and SUBAC PET. SUBAC PET showed substantially smaller root mean square error than MRAC PET with averaged values of 1.5 % versus 8.1 %. Re-projection is a viable image-based method for the application of an alternate attenuation correction in neuroimaging.

  11. Biological Image-Guided Radiotherapy in Rectal Cancer: Challenges and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roels, Sarah; Slagmolen, Pieter; Nuyts, Johan

    2009-11-01

    Purpose: To investigate the feasibility of integrating multiple imaging modalities for image-guided radiotherapy in rectal cancer. Patients and Methods: Magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) were performed before, during, and after preoperative chemoradiotherapy (CRT) in patients with resectable rectal cancer. The FDG-PET signals were segmented with an adaptive threshold-based and a gradient-based method. Magnetic resonance tumor volumes (TVs) were manually delineated. A nonrigid registration algorithm was applied to register the images, and mismatch analyses were carried out between MR and FDG-PET TVs and between TVs over time. Tumor volumes delineated on the images after CRTmore » were compared with the pathologic TV. Results: Forty-five FDG-PET/CT and 45 MR images were analyzed from 15 patients. The mean MRI and FDG-PET TVs showed a tendency to shrink during and after CRT. In general, MRI showed larger TVs than FDG-PET. There was an approximately 50% mismatch between the FDG-PET TV and the MRI TV at baseline and during CRT. Sixty-one percent of the FDG-PET TV and 76% of the MRI TV obtained after 10 fractions of CRT remained inside the corresponding baseline TV. On MRI, residual tumor was still suspected in all 6 patients with a pathologic complete response, whereas FDG-PET showed a metabolic complete response in 3 of them. The FDG-PET TVs delineated with the gradient-based method matched closest with pathologic findings. Conclusions: Integration of MRI and FDG-PET into radiotherapy seems feasible. Gradient-based segmentation is recommended for FDG-PET. Spatial variance between MRI and FDG-PET TVs should be taken into account for target definition.« less

  12. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency.

    PubMed

    Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens

    2016-08-01

    Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P < .001 for all), but were underestimated by PET (P < .001 for all except ESV P = .79). PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P < .001, bias -3 ± 21%, P = .56). PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

  13. Dose Optimization in TOF-PET/MR Compared to TOF-PET/CT

    PubMed Central

    Queiroz, Marcelo A.; Delso, Gaspar; Wollenweber, Scott; Deller, Timothy; Zeimpekis, Konstantinos; Huellner, Martin; de Galiza Barbosa, Felipe; von Schulthess, Gustav; Veit-Haibach, Patrick

    2015-01-01

    Purpose To evaluate the possible activity reduction in FDG-imaging in a Time-of-Flight (TOF) PET/MR, based on cross-evaluation of patient-based NECR (noise equivalent count rate) measurements in PET/CT, cross referencing with phantom-based NECR curves as well as initial evaluation of TOF-PET/MR with reduced activity. Materials and Methods A total of 75 consecutive patients were evaluated in this study. PET/CT imaging was performed on a PET/CT (time-of-flight (TOF) Discovery D 690 PET/CT). Initial PET/MR imaging was performed on a newly available simultaneous TOF-PET/MR (Signa PET/MR). An optimal NECR for diagnostic purposes was defined in clinical patients (NECRP) in PET/CT. Subsequent optimal activity concentration at the acquisition time ([A]0) and target NECR (NECRT) were obtained. These data were used to predict the theoretical FDG activity requirement of the new TOF-PET/MR system. Twenty-five initial patients were acquired with (retrospectively reconstructed) different imaging times equivalent for different activities on the simultaneous PET/MR for the evaluation of clinically realistic FDG-activities. Results The obtained values for NECRP, [A]0 and NECRT were 114.6 (± 14.2) kcps (Kilocounts per second), 4.0 (± 0.7) kBq/mL and 45 kcps, respectively. Evaluating the NECRT together with the phantom curve of the TOF-PET/MR device, the theoretical optimal activity concentration was found to be approximately 1.3 kBq/mL, which represents 35% of the activity concentration required by the TOF-PET/CT. Initial evaluation on patients in the simultaneous TOF-PET/MR shows clinically realistic activities of 1.8 kBq/mL, which represent 44% of the required activity. Conclusion The new TOF-PET/MR device requires significantly less activity to generate PET-images with good-to-excellent image quality, due to improvements in detector geometry and detector technologies. The theoretically achievable dose reduction accounts for up to 65% but cannot be fully translated into clinical routine based on the coils within the FOV and MR-sequences applied at the same time. The clinically realistic reduction in activity is slightly more than 50%. Further studies in a larger number of patients are needed to confirm our findings. PMID:26147919

  14. Qualification test of a MPPC-based PET module for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Funamoto, H.; Tsujikawa, T.; Yamamoto, S.

    2014-11-01

    We have developed a high-resolution, compact Positron Emission Tomography (PET) module for future use in MRI-PET scanners. The module consists of large-area, 4×4 ch MPPC arrays (Hamamatsu S11827-3344MG) optically coupled with Ce:LYSO scintillators fabricated into 12×12 matrices of 1×1 mm2 pixels. At this stage, a pair of module and coincidence circuits was assembled into an experimental prototype gantry arranged in a ring of 90 mm in diameter to form the MPPC-based PET system. The PET detector ring was then positioned around the RF coil of the 4.7 T MRI system. We took an image of a point 22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure interference between the MPPC-based PET and the MRI. We only found a slight degradation in the spatial resolution of the PET image from 1.63 to 1.70 mm (FWHM; x-direction), or 1.48-1.55 mm (FWHM; y-direction) when operating with the MRI, while the signal-to-noise ratio (SNR) of the MRI image was only degraded by 5%. These results encouraged us to develop a more advanced version of the MRI-PET gantry with eight MPPC-based PET modules, whose detailed design and first qualification test are also presented in this paper.

  15. Towards Implementing an MR-based PET Attenuation Correction Method for Neurological Studies on the MR-PET Brain Prototype

    PubMed Central

    Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J.; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A. Gregory

    2013-01-01

    A number of factors have to be considered for implementing an accurate attenuation correction (AC) in a combined MR-PET scanner. In this work, some of these challenges were investigated and an AC method based entirely on the MR data obtained with a single dedicated sequence was developed and used for neurological studies performed with the MR-PET human brain scanner prototype. Methods The focus was on the bone/air segmentation problem, the bone linear attenuation coefficient selection and the RF coil positioning. The impact of these factors on the PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultra-short echo time (DUTE) MR sequence was proposed for head imaging. Simultaneous MR-PET data were acquired and the PET images reconstructed using the proposed MR-DUTE-based AC method were compared with the PET images reconstructed using a CT-based AC. Results Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm−1 to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. Based on these results, the segmented CT AC method was established as the “silver standard” for the segmented MR-based AC method. Particular to an integrated MR-PET scanner, ignoring the RF coil attenuation can cause large underestimations (i.e. up to 50%) in the reconstructed images. Furthermore, the coil location in the PET field of view has to be accurately known. Good quality bone/air segmentation can be performed using the DUTE data. The PET images obtained using the MR-DUTE- and CT-based AC methods compare favorably in most of the brain structures. Conclusion An MR-DUTE-based AC method was implemented considering all these factors and our preliminary results suggest that this method could potentially be as accurate as the segmented CT method and it could be used for quantitative neurological MR-PET studies. PMID:20810759

  16. Molecular Imaging in the College of Optical Sciences – An Overview of Two Decades of Instrumentation Development

    PubMed Central

    Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.

    2015-01-01

    During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069

  17. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.

    2017-11-01

    A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.

  18. SU-C-BRA-02: Gradient Based Method of Target Delineation On PET/MR Image of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance, M; Chera, B; Falchook, A

    2015-06-15

    Purpose: Validate the consistency of a gradient-based segmentation tool to facilitate accurate delineation of PET/CT-based GTVs in head and neck cancers by comparing against hybrid PET/MR-derived GTV contours. Materials and Methods: A total of 18 head and neck target volumes (10 primary and 8 nodal) were retrospectively contoured using a gradient-based segmentation tool by two observers. Each observer independently contoured each target five times. Inter-observer variability was evaluated via absolute percent differences. Intra-observer variability was examined by percentage uncertainty. All target volumes were also contoured using the SUV percent threshold method. The thresholds were explored case by case so itsmore » derived volume matched with the gradient-based volume. Dice similarity coefficients (DSC) were calculated to determine overlap of PET/CT GTVs and PET/MR GTVs. Results: The Levene’s test showed there was no statistically significant difference of the variances between the observer’s gradient-derived contours. However, the absolute difference between the observer’s volumes was 10.83%, with a range from 0.39% up to 42.89%. PET-avid regions with qualitatively non-uniform shapes and intensity levels had a higher absolute percent difference near 25%, while regions with uniform shapes and intensity levels had an absolute percent difference of 2% between observers. The average percentage uncertainty between observers was 4.83% and 7%. As the volume of the gradient-derived contours increased, the SUV threshold percent needed to match the volume decreased. Dice coefficients showed good agreement of the PET/CT and PET/MR GTVs with an average DSC value across all volumes at 0.69. Conclusion: Gradient-based segmentation of PET volume showed good consistency in general but can vary considerably for non-uniform target shapes and intensity levels. PET/CT-derived GTV contours stemming from the gradient-based tool show good agreement with the anatomically and metabolically more accurate PET/MR-derived GTV contours, but tumor delineation accuracy can be further improved with the use PET/MR.« less

  19. Quantitative Comparison of PET and Bremsstrahlung SPECT for Imaging the In Vivo Yttrium-90 Microsphere Distribution after Liver Radioembolization

    PubMed Central

    Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.

    2013-01-01

    Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization. PMID:23405207

  20. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.

    PubMed

    Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E

    2004-04-01

    The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.

  1. Metabolic Tumor Burden Assessed by Dual Time Point [18F]FDG PET/CT in Locally Advanced Breast Cancer: Relation with Tumor Biology.

    PubMed

    Garcia-Vicente, Ana María; Pérez-Beteta, Julián; Pérez-García, Víctor Manuel; Molina, David; Jiménez-Londoño, German Andrés; Soriano-Castrejón, Angel; Martínez-González, Alicia

    2017-08-01

    The aim of the study was to investigate the influence of dual time point 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) on the standard uptake value (SUV) and volume-based metabolic variables of breast lesions and their relation with biological characteristics and molecular phenotypes. Retrospective analysis including 67 patients with locally advanced breast cancer (LABC). All patients underwent a dual time point [ 18 F]FDG PET/CT, 1 h (PET-1) and 3 h (PET-2) after [ 18 F]FDG administration. Tumors were segmented following a three-dimensional methodology. Semiquantitative metabolic variables (SUV max , SUV mean , and SUV peak ) and volume-based variables (metabolic tumor volume, MTV, and total lesion glycolysis, TLG) were obtained. Biologic prognostic parameters, such as the hormone receptors status, p53, HER2 expression, proliferation rate (Ki-67), and grading were obtained. Molecular phenotypes and risk-classification [low: luminal A, intermediate: luminal B HER2 (-) or luminal B HER2 (+), and high: HER2 pure or triple negative] were established. Relations between clinical and biological variables with the metabolic parameters were studied. The relevance of each metabolic variable in the prediction of phenotype risk was assessed using a multivariate analysis. SUV-based variables and TLG obtained in the PET-1 and PET-2 showed high and significant correlations between them. MTV and SUV variables (SUV max , SUV mean , and SUV peak ) where only marginally correlated. Significant differences were found between mean SUV variables and TLG obtained in PET-1 and PET-2. High and significant associations were found between metabolic variables obtained in PET-1 and their homonymous in PET-2. Based on that, only relations of PET-1 variables with biological tumor characteristics were explored. SUV variables showed associations with hormone receptors status (p < 0.001 and p = 0.001 for estrogen and progesterone receptor, respectively) and risk-classification according to phenotype (SUV max , p = 0.003; SUV mean , p = 0.004; SUV peak , p = 0.003). As to volume-based variables, only TLG showed association with hormone receptors status (estrogen, p < 0.001; progesterone, p = 0.031), risk-classification (p = 0.007), and grade (p = 0.036). Hormone receptor negative tumors, high-grade tumors, and high-risk phenotypes showed higher TLG values. No association was found between the metabolic variables and Ki-67, HER2, or p53 expression. Statistical differences were found between mean SUV-based variables and TLG obtained in the dual time point PET/CT. Most of PET-derived parameters showed high association with molecular factors of breast cancer. However, dual time point PET/CT did not offer any added value to the single PET acquisition with respect to the relations with biological variables, based on PET-1 SUV, and volume-based variables were predictors of those obtained in PET-2.

  2. Development of a MPPC-based prototype gantry for future MRI-PET scanners

    NASA Astrophysics Data System (ADS)

    Kurei, Y.; Kataoka, J.; Kato, T.; Fujita, T.; Ohshima, T.; Taya, T.; Yamamoto, S.

    2014-12-01

    We have developed a high spatial resolution, compact Positron Emission Tomography (PET) module designed for small animals and intended for use in magnetic resonance imaging (MRI) systems. This module consists of large-area, 4 × 4 ch MPPC arrays (S11830-3344MF; Hamamatsu Photonics K.K.) optically coupled with Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) scintillators fabricated into 16 × 16 matrices of 0.5 × 0.5 mm2 pixels. We set the temperature sensor (LM73CIMK-0; National Semiconductor Corp.) at the rear of the MPPC acceptance surface, and apply optimum voltage to maintain the gain. The eight MPPC-based PET modules and coincidence circuits were assembled into a gantry arranged in a ring 90 mm in diameter to form the MPPC-based PET system. We have developed two types PET gantry: one made of non-magnetic metal and the other made of acrylonitrile butadiene styrene (ABS) resins. The PET gantry was positioned around the RF coil of the 4.7 T MRI system. We took an image of a point }22Na source under fast spin echo (FSE) and gradient echo (GE), in order to measure the interference between the MPPC-based PET and MRI. The spatial resolution of PET imaging in a transaxial plane of about 1 mm (FWHM) was achieved in all cases. Operating with PET made of ABS has no effect on MR images, while operating with PET made of non-magnetic metal has a significant detrimental effect on MR images. This paper describes our quantitative evaluations of PET images and MR images, and presents a more advanced version of the gantry for future MRI/DOI-PET systems.

  3. Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity.

    PubMed

    Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2018-04-01

    Positron emission tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neuroscience. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information into image reconstruction. Previously, kernel learning has been successfully embedded into static and dynamic PET image reconstruction using either PET temporal or MRI information. Here, we combine both PET temporal and MRI information adaptively to improve the quality of direct Patlak reconstruction. We examined different approaches to combine the PET and MRI information in kernel learning to address the issue of potential mismatches between MRI and PET signals. Computer simulations and hybrid real-patient data acquired on a simultaneous PET/MR scanner were used to evaluate the proposed methods. Results show that the method that combines PET temporal information and MRI spatial information adaptively based on the structure similarity index has the best performance in terms of noise reduction and resolution improvement.

  4. Thermal regulation for APDs in a 1 mm(3) resolution clinical PET camera: design, simulation and experimental verification.

    PubMed

    Zhai, Jinjian; Vandenbroucke, Arne; Levin, Craig S

    2014-07-21

    We are developing a 1 mm(3) resolution positron emission tomography camera dedicated to breast imaging. The camera collects high energy photons emitted from radioactively labeled agents introduced in the patients in order to detect molecular signatures of breast cancer. The camera comprises many layers of lutetium yttrium oxyorthosilicate (LYSO) scintillation crystals coupled to position sensitive avalanche photodiodes (PSAPDs). The main objectives of the studies presented in this paper are to investigate the temperature profile of the layers of LYSO-PSAPD detectors (a.k.a. 'fins') residing in the camera and to use these results to present the design of the thermal regulation system for the front end of the camera. The study was performed using both experimental methods and simulation. We investigated a design with a heat-dissipating fin. Three fin configurations are tested: fin with Al windows (FwW), fin without Al windows (FwoW) and fin with alumina windows (FwAW). A Fluent® simulation was conducted to study the experimentally inaccessible temperature of the PSAPDs. For the best configuration (FwW), the temperature difference from the center to a point near the edge is 1.0 K when 1.5 A current was applied to the Peltier elements. Those of FwoW and FwAW are 2.6 K and 1.7 K, respectively. We conclude that the design of a heat-dissipating fin configuration with 'aluminum windows' (FwW) that borders the scintillation crystal arrays of 16 adjacent detector modules has better heat dissipation capabilities than the design without 'aluminum windows' (FwoW) and the design with 'alumina windows' (FwAW), respectively.

  5. Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype.

    PubMed

    Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A Gregory

    2010-09-01

    Several factors have to be considered for implementing an accurate attenuation-correction (AC) method in a combined MR-PET scanner. In this work, some of these challenges were investigated, and an AC method based entirely on the MRI data obtained with a single dedicated sequence was developed and used for neurologic studies performed with the MR-PET human brain scanner prototype. The focus was on the problem of bone-air segmentation, selection of the linear attenuation coefficient for bone, and positioning of the radiofrequency coil. The impact of these factors on PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultrashort echo time (DUTE) MRI sequence was proposed for head imaging. Simultaneous MR-PET data were acquired, and the PET images reconstructed using the proposed DUTE MRI-based AC method were compared with the PET images that had been reconstructed using a CT-based AC method. Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm(-1) to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. On the basis of these results, the segmented CT AC method was established as the silver standard for the segmented MRI-based AC method. For an integrated MR-PET scanner, in particular, ignoring the radiofrequency coil attenuation can cause large underestimations (i.e.,

  6. Staging of neuroendocrine tumours: comparison of [68Ga]DOTATOC multiphase PET/CT and whole-body MRI

    PubMed Central

    Schwenzer, N. F.; Sperling, O.; Aschoff, P.; Lichy, M. P.; Müller, M.; Brendle, C.; Werner, M. K.; Claussen, C. D.; Pfannenberg, C.

    2013-01-01

    Abstract Purpose: In patients with a neuroendocrine tumour (NET), the extent of disease strongly influences the outcome and multidisciplinary therapeutic management. Thus, systematic analysis of the diagnostic performance of the existing staging modalities is necessary. The aim of this study was to compare the diagnostic performance of 2 whole-body imaging modalities, [68Ga]DOTATOC positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI) in patients with NET with regard to possible impact on treatment decisions. Materials and methods: [68Ga]DOTATOC-PET/CT and whole-body magnetic resonance imaging (wbMRI) were performed on 51 patients (25 females, 26 males, mean age 57 years) with histologically proven NET and suspicion of metastatic spread within a mean interval of 2.4 days (range 0–28 days). PET/CT was performed after intravenous administration of 150 MBq [68Ga]DOTATOC. The CT protocol comprised multiphase contrast-enhanced imaging. The MRI protocol consisted of standard sequences before and after intravenous contrast administration at 1.5 T. Each modality (PET, CT, PET/CT, wbMRI) was evaluated independently by 2 experienced readers. Consensus decision based on correlation of all imaging data, histologic and surgical findings and clinical follow-up was established as the standard of reference. Lesion-based and patient-based analysis was performed. Detection rates and accuracy were compared using the McNemar test. P values <0.05 were considered significant. The impact of whole-body imaging on the treatment decision was evaluated by the interdisciplinary tumour board of our institution. Results: 593 metastatic lesions were detected in 41 of 51 (80%) patients with NET (lung 54, liver 266, bone 131, lymph node 99, other 43). One hundred and twenty PET-negative lesions were detected by CT or MRI. Of all 593 lesions detected, PET identified 381 (64%) true-positive lesions, CT 482 (81%), PET/CT 545 (92%) and wbMRI 540 (91%). Comparison of lesion-based detection rates between PET/CT and wbMRI revealed significantly higher sensitivity of PET/CT for metastatic lymph nodes (100% vs 73%; P < 0.0001) and pulmonary lesions (100% vs 87%; P = 0.0233), whereas wbMRI had significantly higher detection rates for liver (99% vs 92%; P < 0.0001) and bone lesions (96% vs 82%; P < 0.0001). Of all 593 lesions, 22 were found only in PET, 11 only in CT and 47 only in wbMRI. The patient-based overall assessment of the metastatic status of the patient showed comparable sensitivity of PET/CT and MRI with slightly higher accuracy of PET/CT. Patient-based analysis of metastatic organ involvement revealed significantly higher accuracy of PET/CT for bone and lymph node metastases (100% vs 88%; P = 0.0412 and 98% vs 78%; P = 0.0044) and for the overall comparison (99% vs 89%; P < 0.0001). The imaging results influenced the treatment decision in 30 patients (59%) with comparable information from PET/CT and wbMRI in 30 patients, additional relevant information from PET/CT in 16 patients and from wbMRI in 7 patients. Conclusion: PET/CT and wbMRI showed comparable overall lesion-based detection rates for metastatic involvement in NET but significantly differed in organ-based detection rates with superiority of PET/CT for lymph node and pulmonary lesions and of wbMRI for liver and bone metastases. Patient-based analysis revealed superiority of PET/CT for NET staging. Individual treatment strategies benefit from complementary information from PET/CT and MRI. PMID:23466785

  7. Raw food diets in companion animals: A critical review

    PubMed Central

    Schlesinger, Daniel P.; Joffe, Daniel J.

    2011-01-01

    Feeding of raw meat-based diets to pets has become an increasingly popular trend amongst pet owners. Owners, who desire to provide the best for their pets, seek veterinary opinions about food options. This paper reviews and applies standards of evidence-based medicine to grade the available scientific literature that addresses the nutritional benefits or risks, infectious disease risks, and public health implications of raw, meat-based pet diets. Although there is a lack of large cohort studies to evaluate risk or benefit of raw meat diets fed to pets, there is enough evidence to compel veterinarians to discuss human health implications of these diets with owners. PMID:21461207

  8. Correction of quantification errors in pelvic and spinal lesions caused by ignoring higher photon attenuation of bone in [{sup 18}F]NaF PET/MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, Georg, E-mail: georg.schramm@kuleuven.be; Maus, Jens; Hofheinz, Frank

    Purpose: MR-based attenuation correction (MRAC) in routine clinical whole-body positron emission tomography and magnetic resonance imaging (PET/MRI) is based on tissue type segmentation. Due to lack of MR signal in cortical bone and the varying signal of spongeous bone, standard whole-body segmentation-based MRAC ignores the higher attenuation of bone compared to the one of soft tissue (MRAC{sub nobone}). The authors aim to quantify and reduce the bias introduced by MRAC{sub nobone} in the standard uptake value (SUV) of spinal and pelvic lesions in 20 PET/MRI examinations with [{sup 18}F]NaF. Methods: The authors reconstructed 20 PET/MR [{sup 18}F]NaF patient data setsmore » acquired with a Philips Ingenuity TF PET/MRI. The PET raw data were reconstructed with two different attenuation images. First, the authors used the vendor-provided MRAC algorithm that ignores the higher attenuation of bone to reconstruct PET{sub nobone}. Second, the authors used a threshold-based algorithm developed in their group to automatically segment bone structures in the [{sup 18}F]NaF PET images. Subsequently, an attenuation coefficient of 0.11 cm{sup −1} was assigned to the segmented bone regions in the MRI-based attenuation image (MRAC{sub bone}) which was used to reconstruct PET{sub bone}. The automatic bone segmentation algorithm was validated in six PET/CT [{sup 18}F]NaF examinations. Relative SUV{sub mean} and SUV{sub max} differences between PET{sub bone} and PET{sub nobone} of 8 pelvic and 41 spinal lesions, and of other regions such as lung, liver, and bladder, were calculated. By varying the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}, the authors investigated its influence on the reconstructed SUVs of the lesions. Results: The comparison of [{sup 18}F]NaF-based and CT-based bone segmentation in the six PET/CT patients showed a Dice similarity of 0.7 with a true positive rate of 0.72 and a false discovery rate of 0.33. The [{sup 18}F]NaF-based bone segmentation worked well in the pelvis and spine. However, it showed artifacts in the skull and in the extremities. The analysis of the 20 [{sup 18}F]NaF PET/MRI examinations revealed relative SUV{sub max} differences between PET{sub nobone} and PET{sub bone} of (−8.8% ± 2.7%, p = 0.01) and (−8.1% ± 1.9%, p = 2.4 × 10{sup −8}) in pelvic and spinal lesions, respectively. A maximum SUV{sub max} underestimation of −13.7% was found in lesion in the third cervical spine. The averaged SUV{sub mean} differences in volumes of interests in lung, liver, and bladder were below 3%. The average SUV{sub max} differences in pelvic and spinal lesions increased from −9% to −18% and −8% to −17%, respectively, when increasing the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}. Conclusions: The developed automatic [{sup 18}F]NaF PET-based bone segmentation allows to include higher bone attenuation in whole-body MRAC and thus improves quantification accuracy for pelvic and spinal lesions in [{sup 18}F]NaF PET/MRI examinations. In nonbone structures (e.g., lung, liver, and bladder), MRAC{sub nobone} yields clinically acceptable accuracy.« less

  9. Comparative diagnostic value of 18F-fluoride PET-CT versus MRI for skull-base bone invasion in nasopharyngeal carcinoma.

    PubMed

    Le, Yali; Chen, Yu; Zhou, Fan; Liu, Guangfu; Huang, Zhanwen; Chen, Yue

    2016-10-01

    This study compared the diagnostic value of F-fluoride PET-computed tomography (PET-CT) and MRI in skull-base bone erosion in nasopharyngeal carcinoma (NPC) patients. A total of 93 patients with biopsy-confirmed NPC were enrolled, including 68 men and 25 women between 23 and 74 years of age. All patients were evaluated by both F-fluoride PET-CT and MRI, and the interval between the two imaging examinations was less than 20 days. The patients received no treatment either before or between scans. The studies were interpreted by two nuclear medicine physicians or two radiologists with more than 10 years of professional experience who were blinded to both the diagnosis and the results of the other imaging studies. The reference standard was skull-base bone erosion at a 20-week follow-up imaging study. On the basis of the results of the follow-up imaging studies, 52 patients showed skull-base bone erosion. The numbers of true positives, false positives, true negatives, and false negatives with F-fluoride PET-CT were 49, 4, 37, and 3, respectively. The numbers of true positives, false positives, true negatives, and false negatives with MRI were 46, 5, 36, and 6, respectively. The sensitivity, specificity, and crude accuracy of F-fluoride PET-CT were 94.23, 90.24, and 92.47%, respectively; for MRI, these values were 88.46, 87.80, and 88.17%. Of the 52 patients, 43 showed positive findings both on F-fluoride PET-CT and on MRI. Within the patient cohort, F-fluoride PET-CT and MRI detected 178 and 135 bone lesions, respectively. Both F-fluoride PET-CT and MRI have high sensitivity, specificity, and crude accuracy for detecting skull-base bone invasion in patients with NPC. F-fluoride PET-CT detected more lesions than did MRI in the skull-base bone. This suggests that F-fluoride PET-CT has a certain advantage in evaluating the skull-base bone of NPC patients. Combining the two methods could improve the diagnostic accuracy of skull-base bone invasion for NPC.

  10. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    PubMed

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  11. Development of an instrument for time activity curve measurements during PET imaging of rodents

    NASA Astrophysics Data System (ADS)

    Reymond, Jean-Marc; Guez, David; Kerhoas, Sophie; Mangeot, Philippe; Boisgard, Raphaël; Jan, Sébastien; Tavitian, Bertrand; Trebossen, Régine

    2007-02-01

    Molecular imaging using PET in small rodents requires commonly the knowledge of the input function of the tracer (quantitative and kinetic studies of the metabolism, development of new drugs or new tracers, etc.). In this paper, we report the status and the performances of the prototype of a counting system that is under development at DAPNIA a in collaboration with SHFJ b. The detection device is made of silicon diodes of 0.3 mm thickness proper to measure the positrons emitted by the radiotracer contained in arterial blood flowing in a thin-wall microtube. Such diodes are poorly efficient for the 511 keV gammas from the rodent and thus require a rather light lead shielding and allow operating very close by to the animal. The detectors, the front-end electronics (for signal preamplification, shaping, and discrimination) and the acquisition circuits are mounted on a single card. The device is connected directly to a portable computer via an USB port. Such a design provides a compact, rugged and portable device for working close to a small animal PET camera. Preliminary results show the performances of this counting system with 18F solution and a time-activity curve for FDG blood samples (with ∣˜30 μL/samples) from a rat.

  12. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer.

    PubMed

    Muijs, Christina T; Schreurs, Liesbeth M; Busz, Dianne M; Beukema, Jannet C; van der Borden, Arnout J; Pruim, Jan; Van der Jagt, Eric J; Plukker, John Th; Langendijk, Johannes A

    2009-12-01

    To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p<0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  13. Evacuating People and Their Pets: Older Floridians' Need for and Proximity to Pet-Friendly Shelters.

    PubMed

    Douglas, Rachel; Kocatepe, Ayberk; Barrett, Anne E; Ozguven, Eren Erman; Gumber, Clayton

    2017-10-04

    Pets influence evacuation decisions, but little is known about pet-friendly emergency shelters' availability or older adults' need for them. Our study addresses this issue, focusing on the most densely populated area of Florida (Miami-Dade)-the state with the oldest population and greatest hurricane susceptibility. We use Geographic Information Systems (GIS)-based methodology to identify the shortest paths to pet-friendly shelters, based on distance and congested and uncongested travel times-taking into account the older population's spatial distribution. Logistic regression models using the 2013 American Housing Survey's Disaster Planning Module examine anticipated shelter use as a function of pet ownership and requiring pet evacuation assistance. Thirty-four percent of older adults in the Miami-Dade area have pets-35% of whom report needing pet evacuation assistance. However, GIS accessibility measures show that travel time factors are likely to impede older adults' use of the area's few pet-friendly shelters. Logistic regression results reveal that pet owners are less likely to report anticipating shelter use; however, the opposite holds for pet owners reporting they would need help evacuating their pets-they anticipate using shelters. High pet shelter need coupled with low availability exacerbates older adults' heightened vulnerability during Florida's hurricane season. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Pet ownership and health in older adults: findings from a survey of 2,551 community-based Australians aged 60-64.

    PubMed

    Parslow, Ruth A; Jorm, Anthony F; Christensen, Helen; Rodgers, Bryan; Jacomb, Patricia

    2005-01-01

    It is commonly assumed that owning a pet provides older residents in the community with health benefits including improved physical health and psychological well-being. It has also been reported that pet owners are lower on neuroticism and higher on extraversion compared with those without pets. However, findings of research on this topic have been mixed with a number of researchers reporting that, for older people, there is little or no health benefit associated with pet ownership. To identify health benefits associated with pet ownership and pet caring responsibilities in a large sample of older community-based residents. Using survey information provided by 2,551 individuals aged between 60 and 64 years, we compared the sociodemographic attributes, mental and physical health measures, and personality traits of pet owners and non-owners. For 78.8% of these participants, we were also able to compare the health services used, based on information obtained from the national insurer on the number of general practitioner (GP) visits they made over a 12-month period. Compared with non-owners, those with pets reported more depressive symptoms while female pet owners who were married also had poorer physical health. We found that caring for a pet was associated with negative health outcomes including more symptoms of depression, poorer physical health and higher rates of use of pain relief medication. No relationship was found between pet ownership and use of GP services. When we examined the personality traits of pet owners and carers, we found that men who cared for pets had higher extraversion scores. Our principal and unexpected finding, however, was that pet owners and carers reported higher levels of psychoticism as measured by the Revised Eysenck Personality Questionnaire. We conclude that pet ownership confers no health benefits for this age group. Instead, those with pets have poorer mental and physical health and use more pain relief medication. Further, our study suggests that those with pets are less conforming to social norms as indicated by their higher levels of psychoticism. Copyright (c) 2005 S. Karger AG, Basel

  15. SBML-PET: a Systems Biology Markup Language-based parameter estimation tool.

    PubMed

    Zi, Zhike; Klipp, Edda

    2006-11-01

    The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of experimental data from different experimental conditions. SBML-PET has a unique feature of supporting event definition in the SMBL model. SBML models can also be simulated in SBML-PET. Stochastic Ranking Evolution Strategy (SRES) is incorporated in SBML-PET for parameter estimation jobs. A classic ODE Solver called ODEPACK is used to solve the Ordinary Differential Equation (ODE) system. http://sysbio.molgen.mpg.de/SBML-PET/. The website also contains detailed documentation for SBML-PET.

  16. An experimental phantom study of the effect of gadolinium-based MR contrast agents on PET attenuation coefficients and PET quantification in PET-MR imaging: application to cardiac studies.

    PubMed

    O' Doherty, Jim; Schleyer, Paul

    2017-12-01

    Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image-based activity concentrations upon increasing the GBCA concentration of the solution. The presence of high GBCA concentration (representing a worst-case scenario in dynamic cardiac studies) in solution with PET radiotracer produces a minimal effect on attenuation-corrected PET quantification.

  17. Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images

    PubMed Central

    Yang, Juan; Zhang, You; Yin, Yong

    2015-01-01

    Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic‐based demons algorithm was more accurate than the GMI‐based demons algorithm in registering PET/CT esophageal images. PACS numbers: 87.57.nj, 87.57. Q‐, 87.57.uk PMID:26218993

  18. Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.

    PubMed

    Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong

    2015-07-08

    Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons algorithm was more accurate than the GMI-based demons algorithm in registering PET/CT esophageal images.

  19. 18FDG-PET based radiation planning of mediastinal lymph nodes in limited disease small cell lung cancer changes radiotherapy fields: a planning study.

    PubMed

    van Loon, Judith; Offermann, Claudia; Bosmans, Geert; Wanders, Rinus; Dekker, André; Borger, Jacques; Oellers, Michel; Dingemans, Anne-Marie; van Baardwijk, Angela; Teule, Jaap; Snoep, Gabriel; Hochstenbag, Monique; Houben, Ruud; Lambin, Philippe; De Ruysscher, Dirk

    2008-04-01

    To investigate the influence of selective irradiation of 18FDG-PET positive mediastinal nodes on radiation fields and normal tissue exposure in limited disease small cell lung cancer (LD-SCLC). Twenty-one patients with LD-SCLC, of whom both CT and PET images were available, were studied. For each patient, two three-dimensional conformal treatment plans were made with selective irradiation of involved lymph nodes, based on CT and on PET, respectively. Changes in treatment plans as well as dosimetric factors associated with lung and esophageal toxicity were analyzed and compared. FDG-PET information changed the treatment field in 5 patients (24%). In 3 patients, this was due to a decrease and in 2 patients to an increase in the number of involved nodal areas. However, there were no significant differences in gross tumor volume (GTV), lung, and esophageal parameters between CT- and PET-based plans. Incorporating FDG-PET information in radiotherapy planning for patients with LD-SCLC changed the treatment plan in 24% of patients compared to CT. Both increases and decreases of the GTV were observed, theoretically leading to the avoidance of geographical miss or a decrease of radiation exposure of normal tissues, respectively. Based on these findings, a phase II trial, evaluating PET-scan based selective nodal irradiation, is ongoing in our department.

  20. Life cycle assessment of bottled water: A case study of Green2O products.

    PubMed

    Horowitz, Naomi; Frago, Jessica; Mu, Dongyan

    2018-06-01

    This study conducted a full life cycle analysis of bottled water on four types of bottles: ENSO, PLA (corn based), recycled PET, and regular (petroleum based) PET, to discern which bottle material is more beneficial to use in terms of environmental impacts. PET bottles are the conventional bottles used that are not biodegradable and accumulate in landfills. PLA corn based bottles are derived from an organic substance and are degradable under certain environmental conditions. Recycled PET bottles are purified PET bottles that were disposed of and are used in a closed loop system. An ENSO bottle contains a special additive which is designed to help the plastic bottle degrade after disposed of in a landfill. The results showed that of all fourteen impact categories examined, the recycled PET and ENSO bottles were generally better than the PLA and regular PET bottles; however, the ENSO had the highest impacts in the categories of global warming and respiratory organics, and the recycled PET had the highest impact in the eutrophication category. The life cycle stages that were found to have the highest environmental impacts were the bottle manufacturing stage and the bottled water distribution to storage stage. Analysis of the mixed bottle material based on recycled PET resin and regular PET resin was discussed as well, in which key impact categories were identified. The PLA bottle contained extremely low impacts in the carcinogens, respiratory organics and global warming categories, yet it still contained the highest impacts in seven of the fourteen categories. Overall, the results demonstrate that the usage of more sustainable bottles, such as biodegradable ENSO bottles and recycled PET bottles, appears to be a viable option for decreasing impacts of the bottled water industry on the environment. Published by Elsevier Ltd.

  1. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation

    NASA Astrophysics Data System (ADS)

    España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M

    2009-03-01

    Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.

  2. Diagnostic Performance of 11C-choline PET/CT and FDG PET/CT in Prostate Cancer.

    PubMed

    Kitajima, Kazuhiro; Yamamoto, Shingo; Odawara, Soichi; Kobayashi, Kaoru; Fujiwara, Masayuki; Kamikonya, Norihiko; Fukushima, Kazuhito; Nakanishi, Yukako; Hashimoto, Takahiko; Yamada, Yusuke; Suzuki, Toru; Kanematsu, Akihiro; Nojima, Michio; Yamakado, Koichiro

    2018-06-01

    We compared 11C-choline and FDG PET/CT scan findings for the staging and restaging of prostate cancer. Twenty Japanese prostate cancer patients underwent 11C-choline and FDG PET/CT before (n=5) or after (n=15) treatment. Using a five-point scale, we compared these scanning modalities regarding patient- and lesion-based diagnostic performance for local recurrence, untreated primary tumor, and lymph node and bony metastases. Of the 20 patients, documented local lesions, and node and bony metastases were present in 11 (55.0%), 9 (45.0%), and 13 (65.0%), respectively. The patient-based sensitivity/specificity/accuracy/area under the receiver-operating-characteristic curve (AUC) values for 11C-choline-PET/CT for diagnosing local lesions were 90.9% /100%/ 95.0% / 1.0, whereas those for FDG-PET/CT were 45.5% /100%/ 75.0% / 0.773. Those for 11C-choline-PET/CT for node metastasis were 88.9% /100%/ 95.0% / 0.944, and those for FDG-PET/CT were 44.4%/100%/75.0%/0.722. Those for 11C-choline-PET/CT for bone metastasis were 84.6%/100%/90.0%/0.951, and those for FDG-PET/CT were 76.9% /100%/ 85.0% / 0.962. The AUCs for local lesion and node metastasis differed significantly (p=0.0039, p=0.011, respectively). The lesion-based detection rates of 11C-choline compared to FDG PET/CT for local lesion, and node and bone metastases were 91.7% vs. 41.7%, 92.0% vs. 32.0%, and 94.8% vs. 83.0% (p=0.041, p=0.0030, p<0.0001), respectively. 11C-choline-PET/CT is more useful for the staging and restaging of prostate cancer than FDG-PET/CT in Japanese men.

  3. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    PubMed

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

    PubMed

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

  5. Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data

    PubMed Central

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700

  6. Theory of mind in dogs: is the perspective-taking task a good test?

    PubMed

    Roberts, William A; Macpherson, Krista

    2011-12-01

    Udell, Dorey, and Wynne (in press) have reported an experiment in which wolves, shelter dogs, and pet dogs all showed a significant preference for begging from a person who faced them (seer) over a person whose back was turned to them (blind experimenter). On tests with the blind person's eyes covered with a bucket, a book, or a camera, pet dogs showed more preference for the seer than did wolves and shelter dogs. We agree with the authors' position that most of these findings are best explained by preexperimental learning experienced by the subjects. We argue, however, that the perspective-taking task is not a good test of the domestication theory or of the theory of mind in dogs. The problem we see is that use of the perspective-taking task, combined with preexperimental learning in all the subjects, strongly biases the outcome in favor of a behavioral learning interpretation. Tasks less influenced by preexperimental training would provide less confounded tests of domestication and theory of mind.

  7. Principles of PET/MR Imaging.

    PubMed

    Disselhorst, Jonathan A; Bezrukov, Ilja; Kolb, Armin; Parl, Christoph; Pichler, Bernd J

    2014-06-01

    Hybrid PET/MR systems have rapidly progressed from the prototype stage to systems that are increasingly being used in the clinics. This review provides an overview of developments in hybrid PET/MR systems and summarizes the current state of the art in PET/MR instrumentation, correction techniques, and data analysis. The strong magnetic field requires considerable changes in the manner by which PET images are acquired and has led, among others, to the development of new PET detectors, such as silicon photomultipliers. During more than a decade of active PET/MR development, several system designs have been described. The technical background of combined PET/MR systems is explained and related challenges are discussed. The necessity for PET attenuation correction required new methods based on MR data. Therefore, an overview of recent developments in this field is provided. Furthermore, MR-based motion correction techniques for PET are discussed, as integrated PET/MR systems provide a platform for measuring motion with high temporal resolution without additional instrumentation. The MR component in PET/MR systems can provide functional information about disease processes or brain function alongside anatomic images. Against this background, we point out new opportunities for data analysis in this new field of multimodal molecular imaging. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    PubMed

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  9. Simulation study comparing the helmet-chin PET with a cylindrical PET of the same number of detectors

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdella M.; Tashima, Hideaki; Yoshida, Eiji; Nishikido, Fumihiko; Yamaya, Taiga

    2017-06-01

    There is a growing interest in developing brain PET scanners with high sensitivity and high spatial resolution for early diagnosis of neurodegenerative diseases and studies of brain functions. Sensitivity of the PET scanner can be improved by increasing the solid angle. However, conventional PET scanners are designed based on a cylindrical geometry, which may not be the most efficient design for brain imaging in terms of the balance between sensitivity and cost. We proposed a dedicated brain PET scanner based on a hemispheric shape detector and a chin detector (referred to as the helmet-chin PET), which is designed to maximize the solid angle by increasing the number of lines-of-response in the hemisphere. The parallax error, which PET scanners with a large solid angle tend to have, can be suppressed by the use of depth-of-interaction detectors. In this study, we carry out a realistic evaluation of the helmet-chin PET using Monte Carlo simulation based on the 4-layer GSO detector which consists of a 16  ×  16  ×  4 array of crystals with dimensions of 2.8  ×  2.8  ×  7.5 mm3. The purpose of this simulation is to show the gain in imaging performance of the helmet-chin PET compared with the cylindrical PET using the same number of detectors in each configuration. The sensitivity of the helmet-chin PET evaluated with a cylindrical phantom has a significant increase, especially at the top of the (field-of-view) FOV. The peak-NECR of the helmet-chin PET is 1.4 times higher compared to the cylindrical PET. The helmet-chin PET provides relatively low noise images throughout the FOV compared to the cylindrical PET which exhibits enhanced noise at the peripheral regions. The results show the helmet-chin PET can significantly improve the sensitivity and reduce the noise in the reconstructed images.

  10. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    NASA Astrophysics Data System (ADS)

    Jonasson, L. S.; Axelsson, J.; Riklund, K.; Boraxbekk, C. J.

    2017-07-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function resolution modeling provided the most accurate data. For striatum, the BP changed by 0.08% for every 1% volume change, but for smaller volumes such as the posterior caudate the artificial change in BP was as high as 0.7% per 1% volume change. A simple gross correction for striatal volume is unsatisfactory, as the amplitude of the PVE on the BP differs depending on where in the striatum the change occurred. Therefore, to correctly interpret age-related longitudinal changes in the BP, we must account for volumetric changes also within a structure, rather than across the whole volume. The present 3D-printing technology, combined with the wall removal method, can be implemented to gain knowledge about the predictable bias introduced by the PVE differences in uptake regions of varying shape.

  11. The Internet and health information: differences in pet owners based on age, gender, and education.

    PubMed

    Kogan, Lori R; Schoenfeld-Tacher, Regina; Viera, Ann R

    2012-07-01

    The research assessed the attitudes and behaviors of pet owners pertaining to online search behavior for pet health information. A survey was conducted with a random sample of pet owners drawn from two US metropolitan areas and surrounding cities. Participating clinics were chosen randomly, and each participating clinic was asked to distribute 100 surveys to their clients until all surveys were disbursed. Although some perceptions and behaviors surrounding the use of the Internet for pet health information differ based on gender, age, or education level of pet owners, there are many aspects in which there are no differences based on these demographics. Results of the study suggest that closer examination of the common perception that gender, age, or education level has an effect on Internet behavior as it relates to veterinary medicine is required. Recommendations are made pertaining to the growing presence of the Internet and its impact on veterinary medicine.

  12. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  13. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    NASA Astrophysics Data System (ADS)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C-180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  14. Postapplication Fipronil Exposure Following Use on Pets.

    PubMed

    Cochran, R C; Yu, Liu; Krieger, R I; Ross, J H

    2015-01-01

    Fipronil is a pyrazole acaricide and insecticide that may be used for insect, tick, lice, and mite control on pets. Residents' short-term and long-term postapplication exposures to fipronil, including secondary environmental exposures, were estimated using data from chemical-specific studies. Estimations of acute (24-h) absorbed doses for residents were based on U.S. Environmental Protection Agency (U.S. EPA) 2012 standard operating procedures (SOPs) for postapplication exposure. Chronic exposures were not estimated for residential use, as continuous, long-term application activities were unlikely to occur. Estimated acute postapplication absorbed doses were as high as 0.56 μg/kg-d for toddlers (1-2 yr) in households with treated pets based on current U.S. EPA SOPs. Acute toddler exposures estimated here were fivefold larger in comparison to adults. Secondary exposure from the household environment in which a treated pet lives that is not from contacting the pet, but from contacting the house interior to which pet residues were transferred, was estimated based on monitoring socks worn by pet owners. These secondary exposures were more than an order of magnitude lower than those estimated from contacting the pet and thus may be considered negligible.

  15. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?: Observations in a Series of 13 Patients.

    PubMed

    Mayerhoefer, Marius E; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-02-01

    To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed-time-point 2-F-fluoro-2-deoxy-d-glucose-positron emission tomography (F-FDG-PET) performs better than standard-time-point F-FDG-PET. Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic F-FDG-PET/computed tomography (CT) and consecutive F-FDG-PET/magnetic resonance imaging (MRI), using a single F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective F-FDG-PET scans at time points 1 (45-60 minutes after tracer injection, TP1) and 2 (100-150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%-84.67%) and 100% (CI, 100%-100%) for F-FDG-PET at TP1; and 87.0% (CI, 73.26%-100%) and 100% (CI, 100%-100%) for F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%-80.9%) for F-FDG-PET at TP1, and 76.9% (CI, 54.0%-99.8%) for F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Delayed-time-point imaging may improve F-FDG-PET in MALT lymphoma.

  16. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    PubMed

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI-based estimates. An MRI-based MC algorithm was implemented for an integrated MR-PET scanner. High-temporal-resolution MRI-derived motion estimates (obtained while simultaneously acquiring anatomic or functional MRI data) can be used for PET MC. An MRI-based MC method has the potential to improve PET image quality, increasing its reliability, reproducibility, and quantitative accuracy, and to benefit many neurologic applications.

  17. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heß, Mirco, E-mail: mirco.hess@uni-muenster.de; Büther, Florian; Dawood, Mohammad

    2015-05-15

    Purpose: Respiratory gating is commonly used to reduce blurring effects and attenuation correction artifacts in positron emission tomography (PET). Established clinically available methods that employ body-attached hardware for acquiring respiration signals rely on the assumption that external surface motion and internal organ motion are well correlated. In this paper, the authors present a markerless method comprising two Microsoft Kinects for determining the motion on the whole torso surface and aim to demonstrate its validity and usefulness—including the potential to study the external/internal correlation and to provide useful information for more advanced correction approaches. Methods: The data of two Kinects aremore » used to calculate 3D representations of a patient’s torso surface with high spatial coverage. Motion signals can be obtained for any position by tracking the mean distance to a virtual camera with a view perpendicular to the surrounding surface. The authors have conducted validation experiments including volunteers and a moving high-precision platform to verify the method’s suitability for providing meaningful data. In addition, the authors employed it during clinical {sup 18}F-FDG-PET scans and exemplarily analyzed the acquired data of ten cancer patients. External signals of abdominal and thoracic regions as well as data-driven signals were used for gating and compared with respect to detected displacement of present lesions. Additionally, the authors quantified signal similarities and time shifts by analyzing cross-correlation sequences. Results: The authors’ results suggest a Kinect depth resolution of approximately 1 mm at 75 cm distance. Accordingly, valid signals could be obtained for surface movements with small amplitudes in the range of only few millimeters. In this small sample of ten patients, the abdominal signals were better suited for gating the PET data than the thoracic signals and the correlation of data-driven signals was found to be stronger with abdominal signals than with thoracic signals (average Pearson correlation coefficients of 0.74 ± 0.17 and 0.45 ± 0.23, respectively). In all cases, except one, the abdominal respiratory motion preceded the thoracic motion—a maximum delay of approximately 600 ms was detected. Conclusions: The method provides motion information with sufficiently high spatial and temporal resolution. Thus, it enables meaningful analysis in the form of comparisons between amplitudes and phase shifts of signals from different regions. In combination with a large field-of-view, as given by combining the data of two Kinect cameras, it yields surface representations that might be useful in the context of motion correction and motion modeling.« less

  18. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation.

    PubMed

    Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris

    2011-11-01

    The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.

  19. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  20. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  1. Optimization of yttrium-90 PET for simultaneous PET/MR imaging: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, Mootaz

    2016-08-15

    Purpose: Positron emission tomography (PET) imaging of yttrium-90 in the liver post radioembolization has been shown useful for personalized dosimetry calculations and evaluation of extrahepatic deposition. The purpose of this study was to quantify the benefits of several MR-based data correction approaches offered by using a combined PET/MR system to improve Y-90 PET imaging. In particular, the feasibility of motion and partial volume corrections were investigated in a controlled phantom study. Methods: The ACR phantom was filled with an initial concentration of 8 GBq of Y-90 solution resulting in a contrast of 10:1 between the hot cylinders and the background.more » Y-90 PET motion correction through motion estimates from MR navigators was evaluated by using a custom-built motion stage that simulated realistic amplitudes of respiration-induced liver motion. Finally, the feasibility of an MR-based partial volume correction method was evaluated using a wavelet decomposition approach. Results: Motion resulted in a large (∼40%) loss of contrast recovery for the 8 mm cylinder in the phantom, but was corrected for after MR-based motion correction was applied. Partial volume correction improved contrast recovery by 13% for the 8 mm cylinder. Conclusions: MR-based data correction improves Y-90 PET imaging on simultaneous PET/MR systems. Assessment of these methods must be studied further in the clinical setting.« less

  2. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    NASA Astrophysics Data System (ADS)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  3. Hybrid registration of PET/CT in thoracic region with pre-filtering PET sinogram

    NASA Astrophysics Data System (ADS)

    Mokri, S. S.; Saripan, M. I.; Marhaban, M. H.; Nordin, A. J.; Hashim, S.

    2015-11-01

    The integration of physiological (PET) and anatomical (CT) images in cancer delineation requires an accurate spatial registration technique. Although hybrid PET/CT scanner is used to co-register these images, significant misregistrations exist due to patient and respiratory/cardiac motions. This paper proposes a hybrid feature-intensity based registration technique for hybrid PET/CT scanner. First, simulated PET sinogram was filtered with a 3D hybrid mean-median before reconstructing the image. The features were then derived from the segmented structures (lung, heart and tumor) from both images. The registration was performed based on modified multi-modality demon registration with multiresolution scheme. Apart from visual observations improvements, the proposed registration technique increased the normalized mutual information index (NMI) between the PET/CT images after registration. All nine tested datasets show marked improvements in mutual information (MI) index than free form deformation (FFD) registration technique with the highest MI increase is 25%.

  4. GATE Monte Carlo simulations for variations of an integrated PET/MR hybrid imaging system based on the Biograph mMR model

    NASA Astrophysics Data System (ADS)

    Aklan, B.; Jakoby, B. W.; Watson, C. C.; Braun, H.; Ritt, P.; Quick, H. H.

    2015-06-01

    A simulation toolkit, GATE (Geant4 Application for Tomographic Emission), was used to develop an accurate Monte Carlo (MC) simulation of a fully integrated 3T PET/MR hybrid imaging system (Siemens Biograph mMR). The PET/MR components of the Biograph mMR were simulated in order to allow a detailed study of variations of the system design on the PET performance, which are not easy to access and measure on a real PET/MR system. The 3T static magnetic field of the MR system was taken into account in all Monte Carlo simulations. The validation of the MC model was carried out against actual measurements performed on the PET/MR system by following the NEMA (National Electrical Manufacturers Association) NU 2-2007 standard. The comparison of simulated and experimental performance measurements included spatial resolution, sensitivity, scatter fraction, and count rate capability. The validated system model was then used for two different applications. The first application focused on investigating the effect of an extension of the PET field-of-view on the PET performance of the PET/MR system. The second application deals with simulating a modified system timing resolution and coincidence time window of the PET detector electronics in order to simulate time-of-flight (TOF) PET detection. A dedicated phantom was modeled to investigate the impact of TOF on overall PET image quality. Simulation results showed that the overall divergence between simulated and measured data was found to be less than 10%. Varying the detector geometry showed that the system sensitivity and noise equivalent count rate of the PET/MR system increased progressively with an increasing number of axial detector block rings, as to be expected. TOF-based PET reconstructions of the modeled phantom showed an improvement in signal-to-noise ratio and image contrast to the conventional non-TOF PET reconstructions. In conclusion, the validated MC simulation model of an integrated PET/MR system with an overall accuracy error of less than 10% can now be used for further MC simulation applications such as development of hardware components as well as for testing of new PET/MR software algorithms, such as assessment of point-spread function-based reconstruction algorithms.

  5. 4D ML reconstruction as a tool for volumetric PET-based treatment verification in ion beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bernardi, E., E-mail: elisabetta.debernardi@unimib.it; Ricotti, R.; Riboldi, M.

    2016-02-15

    Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generatedmore » by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.« less

  6. PKU-PET-II: A novel SiPM-based PET imaging system for small animals

    NASA Astrophysics Data System (ADS)

    Xie, Zhaoheng; Li, Suying; Zhou, Kun; Vuletic, Ivan; Meng, Xiangxi; Zhu, Sihao; Xu, Huan; Yang, Kun; Xu, Baixuan; Zhang, Jinming; Ren, Qiushi

    2018-01-01

    The objective of this study was to introduce, describe, and validate the performance of a novel preclinical silicon photomultiplier (SiPM)-based PET system (PKU-PET-II). Briefly, the detector assembly consisted of cerium-doped lutetium-yttrium oxyorthosilicate (LYSO) crystals, with dimensions of 2 ×2 ×15 mm3, that offered a 60 mm transaxial field of view (FOV) and 32 mm axial FOV, respectively. The compact front-end electronics readout and digital controller implemented architecture in the FPGA were noteworthy improvements in PKU-PET-II over its predecessor (PKU-PET-I). Based on the National Electrical Manufacturers Association (NEMA) NU 04-2008 standards, the design of the PKU-PET-II system was validated by a phantom experiment. The results presented spatial resolution (evaluated as full width at half maximum) with a system range from 1.68 ±0.07 to 2.31 ±0.03 mm at the FOV center and from 1.43 ±0.02 to 2.10 ±0.10 mm at the 1/4th axial FOV, respectively. The system's absolute sensitivity at the center position was 1.35% with the coincidence window of 6 ns and energy window of 300-700 keV. In addition, the NEMA image quality phantom and an animal study results validated the system imaging performance in preclinical imaging application. In conclusion, this SiPM-based, small-animal PET system (PKU-PET-II) provided higher-resolution, adequate sensitivity, and excellent image quality and has potential as a useful tool for real-time imaging of disease progression and development in vivo.

  7. Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.

    PubMed

    Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B

    2018-02-01

    Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.

  8. TU-AB-202-11: Tumor Segmentation by Fusion of Multi-Tracer PET Images Using Copula Based Statistical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapuyade-Lahorgue, J; Ruan, S; Li, H

    Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model ismore » used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume effect by considering dependency between neighboring voxels.« less

  9. Initial clinical evaluation of PET-based ion beam therapy monitoring under consideration of organ motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Christopher, E-mail: christopher.kurz@physik.uni-muenchen.de; Bauer, Julia; Unholtz, Daniel

    2016-02-15

    Purpose: Intrafractional organ motion imposes considerable challenges to scanned ion beam therapy and demands for a thorough verification of the applied treatment. At the Heidelberg Ion-Beam Therapy Center (HIT), the scanned ion beam delivery is verified by means of postirradiation positron-emission-tomography (PET) imaging. This work presents a first clinical evaluation of PET-based treatment monitoring in ion beam therapy under consideration of target motion. Methods: Three patients with mobile liver lesions underwent scanned carbon ion irradiation at HIT and postirradiation PET/CT (x-ray-computed-tomography) imaging with a commercial scanner. Respiratory motion was recorded during irradiation and subsequent image acquisition. This enabled a time-resolvedmore » (4D) calculation of the expected irradiation-induced activity pattern and, for one patient where an additional 4D CT was acquired at the PET/CT scanner after treatment, a motion-compensated PET image reconstruction. For the other patients, PET data were reconstructed statically. To verify the treatment, calculated prediction and reconstructed measurement were compared with a focus on the ion beam range. Results: Results in the current three patients suggest that for motion amplitudes in the order of 2 mm there is no benefit from incorporating respiratory motion information into PET-based treatment monitoring. For a target motion in the order of 10 mm, motion-related effects become more severe and a time-resolved modeling of the expected activity distribution can lead to an improved data interpretation if a sufficient number of true coincidences is detected. Benefits from motion-compensated PET image reconstruction could not be shown conclusively at the current stage. Conclusions: The feasibility of clinical PET-based treatment verification under consideration of organ motion has been shown for the first time. Improvements in noise-robust 4D PET image reconstruction are deemed necessary to enhance the clinical potential.« less

  10. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kronfeld, Andrea; Müller-Forell, Wibke; Buchholz, Hans-Georg

    Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawleymore » rats were investigated for template construction using MRI and [{sup 18}F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL templates together with nonlinear registration algorithms allows for accurate spatial normalization of combined MRI/PET or PET-only studies.« less

  11. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    PubMed Central

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC algorithm was developed for the integrated MR-PET scanner. High temporal resolution MR-derived motion estimates (obtained while simultaneously acquiring anatomical or functional MR data) can be used for PET MC. An MR-based MC has the potential to improve PET as a quantitative method, increasing its reliability and reproducibility which could benefit a large number of neurological applications. PMID:21189415

  12. Multi-Atlas-Based Attenuation Correction for Brain 18F-FDG PET Imaging Using a Time-of-Flight PET/MR Scanner: Comparison with Clinical Single-Atlas- and CT-Based Attenuation Correction.

    PubMed

    Sekine, Tetsuro; Burgos, Ninon; Warnock, Geoffrey; Huellner, Martin; Buck, Alfred; Ter Voert, Edwin E G W; Cardoso, M Jorge; Hutton, Brian F; Ourselin, Sebastien; Veit-Haibach, Patrick; Delso, Gaspar

    2016-08-01

    In this work, we assessed the feasibility of attenuation correction (AC) based on a multi-atlas-based method (m-Atlas) by comparing it with a clinical AC method (single-atlas-based method [s-Atlas]), on a time-of-flight (TOF) PET/MRI scanner. We enrolled 15 patients. The median patient age was 59 y (age range, 31-80). All patients underwent clinically indicated whole-body (18)F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MRI scan of the head (no additional tracer being injected). For each patient, 3 AC maps were generated. Both s-Atlas and m-Atlas AC maps were generated from the same patient-specific LAVA-Flex T1-weighted images being acquired by default on the PET/MRI scanner during the first 18 s of the PET scan. An s-Atlas AC map was extracted by the PET/MRI scanner, and an m-Atlas AC map was created using a Web service tool that automatically generates m-Atlas pseudo-CT images. For comparison, the AC map generated by PET/CT was registered and used as a gold standard. PET images were reconstructed from raw data on the TOF PET/MRI scanner using each AC map. All PET images were normalized to the SPM5 PET template, and (18)F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative (%diff) and absolute differences (|%diff|) between images based on each atlas AC and CT-AC were calculated. (18)F-FDG uptake in all VOIs and generalized merged VOIs were compared using the paired t test and Bland-Altman test. The range of error on m-Atlas in all 1,005 VOIs was -4.99% to 4.09%. The |%diff| on the m-Atlas was improved by about 20% compared with s-Atlas (s-Atlas vs. m-Atlas: 1.49% ± 1.06% vs. 1.21% ± 0.89%, P < 0.01). In generalized VOIs, %diff on m-Atlas in the temporal lobe and cerebellum was significantly smaller (s-Atlas vs. m-Atlas: temporal lobe, 1.49% ± 1.37% vs. -0.37% ± 1.41%, P < 0.01; cerebellum, 1.55% ± 1.97% vs. -1.15% ± 1.72%, P < 0.01). The errors introduced using either s-Atlas or m-Atlas did not exceed 5% in any brain region investigated. When compared with the clinical s-Atlas, m-Atlas is more accurate, especially in regions close to the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Longitudinal studies of the 18F-FDG kinetics after ipilimumab treatment in metastatic melanoma patients based on dynamic FDG PET/CT.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia K; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-06-05

    Immunotherapy has raised the issue of appropriate treatment response evaluation, due to the unique mechanism of action of the immunotherapeutic agents. Aim of this analysis is to evaluate the potential role of quantitative analysis of 2-deoxy-2-( 18 F)fluoro-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) data in monitoring of patients with metastatic melanoma undergoing ipilimumab therapy. 25 patients with unresectable metastatic melanoma underwent dynamic PET/CT (dPET/CT) of the thorax and upper abdomen as well as static, whole body PET/CT with 18 F-FDG before the start of ipilimumab treatment (baseline PET/CT), after two cycles of treatment (interim PET/CT) and at the end of treatment after four cycles (late PET/CT). The evaluation of dPET/CT studies was based on semi-quantitative (standardized uptake value, SUV) calculation as well as quantitative analysis, based on two-tissue compartment modeling and a fractal approach. Patients' best clinical response, assessed at a mean of 59 weeks, was used as reference. According to their best clinical response, patients were dichotomized in those demonstrating clinical benefit (CB, n = 16 patients) and those demonstrating no clinical benefit (no-CB, n = 9 patients). No statistically significant differences were observed between CB and no-CB regarding either semi-quantitative or quantitative parameters in all scans. On contrary, the application of the recently introduced PET response evaluation criteria for immunotherapy (PERCIMT) led to a correct classification rate of 84% (21/25 patients). Quantitative analysis of 18 F-FDG PET data does not provide additional information in treatment response evaluation of metastatic melanoma patients receiving ipilimumab. PERCIMT criteria correlated better with clinical response.

  14. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    PubMed

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Survey of FDG- and Amyloid-PET Imaging in Dementia and GRADE Analysis

    PubMed Central

    Daniela, Perani; Orazio, Schillaci; Alessandro, Padovani; Mariano, Nobili Flavio; Leonardo, Iaccarino; Pasquale Anthony, Della Rosa; Giovanni, Frisoni; Carlo, Caltagirone

    2014-01-01

    PET based tools can improve the early diagnosis of Alzheimer's disease (AD) and differential diagnosis of dementia. The importance of identifying individuals at risk of developing dementia among people with subjective cognitive complaints or mild cognitive impairment has clinical, social, and therapeutic implications. Within the two major classes of AD biomarkers currently identified, that is, markers of pathology and neurodegeneration, amyloid- and FDG-PET imaging represent decisive tools for their measurement. As a consequence, the PET tools have been recognized to be of crucial value in the recent guidelines for the early diagnosis of AD and other dementia conditions. The references based recommendations, however, include large PET imaging literature based on visual methods that greatly reduces sensitivity and specificity and lacks a clear cut-off between normal and pathological findings. PET imaging can be assessed using parametric or voxel-wise analyses by comparing the subject's scan with a normative data set, significantly increasing the diagnostic accuracy. This paper is a survey of the relevant literature on FDG and amyloid-PET imaging aimed at providing the value of quantification for the early and differential diagnosis of AD. This allowed a meta-analysis and GRADE analysis revealing high values for PET imaging that might be useful in considering recommendations. PMID:24772437

  16. Laser transmission welding of poly(ethylene terephthalate) and biodegradable poly(ethylene terephthalate) - Based blends

    NASA Astrophysics Data System (ADS)

    Gisario, Annamaria; Veniali, Francesco; Barletta, Massimiliano; Tagliaferri, Vincenzo; Vesco, Silvia

    2017-03-01

    Joining of Poly(Ethylene Terephthalate) PET and its biodegradable derivatives is of high relevance to ensure good productive rate, low cost and operational safety for fabrication of medical and electronic devices, sport equipments as well as for manufacturing of food and drug packaging solutions. In the present investigation, granules of PET and PETs modified by organic additives, which promote biodegradation of the polymeric chains, were prepared by extrusion compounding. The achieved granules were subsequently re-extruded to shape thin (330 μm) flat sheets. Substrates cut from these sheets were joined by Laser Transmission Welding (LTW) with a continuous wave High Power Diode Laser (cw-HPDL). First, based on a qualitative evaluation of the welded joints, the most suitable operational windows for PETs laser joining were identified. Second, characterization of the mechanical properties of the welded joints was performed by tensile tests. Accordingly, Young's modulus of PET and biodegradable PET blends was studied by Takayanagi's model and, based on the experimental results, a novel predicting analytical model derived from the mixture rule was developed. Lastly, material degradation of the polymeric joints was evaluated by FT-IR analysis, thus allowing to identify the main routes to thermal degradation of PET and, especially, of biodegradable PET blends during laser processing.

  17. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  18. A meaty matter. Pet diet and the vegetarian's dilemma.

    PubMed

    Rothgerber, Hank

    2013-09-01

    The present research examined pet ownership, current pet diet, and guilt associated with pet diet among a fairly large sample of non-meat-eaters (n=515). It specifically focused on the conflict that pits feeding one's pet an animal-based diet that may be perceived as best promoting their well-being with concerns over animal welfare and environmental degradation threatened by such diets, here labeled the vegetarian's dilemma. Questionnaire responses indicated that ethically motivated meat abstainers were more likely to own pets and owned more of them than those motivated by health concerns or a combination of ethical and health concerns. Vegans and those resisting meat on ethical grounds were more likely to feed their pet a vegetarian diet and expressed the greatest concerns over feeding their pet an animal-based diet. For vegans and ethical meat abstainers, it is suggested that questions concerning what to feed their pet approaches a tragic tradeoff contrasting two sacred values: protecting the well-being of their pets and protecting the well-being of other animals and the environment. For meat abstainers motivated by health concerns, this constitutes a relatively easy moral problem because the primary concern for such individuals is the health of their pet with less or no regard for other ramifications of the decision, i.e., harming other animals or the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox.

    PubMed

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J; Dierckx, Rudi A J O; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].

  20. A new classification scheme of plastic wastes based upon recycling labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özkan, Kemal, E-mail: kozkan@ogu.edu.tr; Ergin, Semih, E-mail: sergin@ogu.edu.tr; Işık, Şahin, E-mail: sahini@ogu.edu.tr

    Highlights: • PET, HPDE or PP types of plastics are considered. • An automated classification of plastic bottles based on the feature extraction and classification methods is performed. • The decision mechanism consists of PCA, Kernel PCA, FLDA, SVD and Laplacian Eigenmaps methods. • SVM is selected to achieve the classification task and majority voting technique is used. - Abstract: Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize thesemore » materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher’s Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP.« less

  1. A Standardized Method for the Construction of Tracer Specific PET and SPECT Rat Brain Templates: Validation and Implementation of a Toolbox

    PubMed Central

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J.; Dierckx, Rudi A. J. O.; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70±0.32mm for [18F]FDG (n = 25), 0.23±0.10mm for [11C]flumazenil (n = 13), 0.88±0.20 mm for [11C]MeDAS (n = 15), 0.64±0.28mm for [11C]PK11195 (n = 19), 0.34±0.15mm for [11C]raclopride (n = 6), and 0.40±0.13mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p&0.001). Additionally, registration errors were smallest with strain-specific templates (p&0.05), and when images and templates had the same size (p≤0.001). Moreover, highest registration errors were found for the focal lesion group (p&0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community. PMID:25823005

  2. Dual-modality brain PET-CT image segmentation based on adaptive use of functional and anatomical information.

    PubMed

    Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan

    2012-01-01

    Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Potential clinical impact of radionuclide imaging technologies: highlights of the ITBS 2003 meeting

    NASA Astrophysics Data System (ADS)

    Itti, Roland

    2004-07-01

    Radiopharmaceuticals are major determinants of progress in Nuclear Medicine. Besides 18FDG, the most common PET tracer, several other molecules are under evaluation, such as 18F-fluoride for bone studies, numerous ligands for neurotransmission, 18F-DOPA for neuro-endocrine tumors or generator produced 68Ga-peptides for various cancers. Nuclear medicine gradually changes for "molecular imaging" and medical imaging, which was at the beginning mainly anatomic, has progressed in the direction of functional and metabolic imaging. The present challenge is to achieve some degree of "in vivo" biochemistry or even histology or genetics. The importance of anatomic/functional image fusion justifies the development of combined PET-CT instrumentation, whose objectives have to be discussed in terms of anatomical landmarks and/or additional clinical information. The question of "hard" or "soft" image co-registration remains open, involving not only CT, but also SPECT or MRI. Development of dedicated imaging devices, whether single photon or positron, is of major interest for breast imaging, allowing optimal imaging conditions, with results definitely superior to classical gamma-cameras or PET. The patient population concerned with scintimammography is still controversial, as well as the imaging modalities: FDG or sestaMIBI, planar or tomographic, scintillators or semi-conductors, and the research field remains open. This is also valid for external or per-operative probe systems for tumor or lymph nodes localization.

  4. Evaluation of Atlas-Based Attenuation Correction for Integrated PET/MR in Human Brain: Application of a Head Atlas and Comparison to True CT-Based Attenuation Correction.

    PubMed

    Sekine, Tetsuro; Buck, Alfred; Delso, Gaspar; Ter Voert, Edwin E G W; Huellner, Martin; Veit-Haibach, Patrick; Warnock, Geoffrey

    2016-02-01

    Attenuation correction (AC) for integrated PET/MR imaging in the human brain is still an open problem. In this study, we evaluated a simplified atlas-based AC (Atlas-AC) by comparing (18)F-FDG PET data corrected using either Atlas-AC or true CT data (CT-AC). We enrolled 8 patients (median age, 63 y). All patients underwent clinically indicated whole-body (18)F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MR of the head (additional tracer was not injected). For each patient, 2 AC maps were generated: an Atlas-AC map registered to a patient-specific liver accelerated volume acquisition-Flex MR sequence and using a vendor-provided head atlas generated from multiple CT head images and a CT-based AC map. For comparative AC, the CT-AC map generated from PET/CT was superimposed on the Atlas-AC map. PET images were reconstructed from the list-mode raw data from the PET/MR imaging scanner using each AC map. All PET images were normalized to the SPM5 PET template, and (18)F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative difference (%diff) between images based on Atlas-AC and CT-AC was calculated, and averaged difference images were generated. (18)F-FDG uptake in all VOIs was compared using Bland-Altman analysis. The range of error in all 536 VOIs was -3.0%-7.3%. Whole-brain (18)F-FDG uptake based on Atlas-AC was slightly underestimated (%diff = 2.19% ± 1.40%). The underestimation was most pronounced in the regions below the anterior/posterior commissure line, such as the cerebellum, temporal lobe, and central structures (%diff = 3.69% ± 1.43%, 3.25% ± 1.42%, and 3.05% ± 1.18%), suggesting that Atlas-AC tends to underestimate the attenuation values of the skull base bone. When compared with the gold-standard CT-AC, errors introduced using Atlas-AC did not exceed 8% in any brain region investigated. Underestimation of (18)F-FDG uptake was minor (<4%) but significant in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Nuclear Cardiology: Are We Using the Right Protocols and Tracers the Right Way?

    PubMed

    Dondi, Maurizio; Pascual, Thomas; Paez, Diana; Einstein, Andrew J

    2017-12-01

    The field of nuclear cardiology has changed considerably over recent years, with greater attention paid to safety and radiation protection issues. The wider usage of technetium-99m (Tc-99m)-labeled radiopharmaceuticals for single-photon emission computed tomography (SPECT) imaging using gamma cameras has contributed to better quality studies and lower radiation exposure to patients. Increased availability of tracers and scanners for positron emission tomography (PET) will help further improve the quality of studies and quantify myocardial blood flow and myocardial flow reserve, thus enhancing the contribution of non-invasive imaging to the management of coronary artery disease. The introduction of new instrumentation such as solid state cameras and new software will help reduce further radiation exposure to patients undergoing nuclear cardiology studies. Results from recent studies, focused on assessing the relationship between best practices and radiation risk, provide useful insights on simple measures to improve the safety of nuclear cardiology studies without compromising the quality of results.

  6. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PETmore » using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide relatively accurate motion fields and yield tMR-based motion corrected PET images with similar image quality as those reconstructed using fully sampled tMR data. The reduction of tMR acquisition time makes it more compatible with routine clinical cardiac PET-MR studies.« less

  7. FDG-PET Imaging in Hematological Malignancies

    PubMed Central

    Valls, L.; Badve, C.; Avril, S.; Herrmann, K.; Faulhaber, P.; O'Donnell, J.; Avril, N.

    2016-01-01

    The majority of aggressive lymphomas is characterized by an up regulated glycolytic activity, which enables the visualization by F-18 FDG-PET/CT. One-stop hybrid FDG-PET/CT combines the functional and morphologic information, outperforming both, CT and FDG-PET as separate imaging modalities. This has resulted in several recommendations using FDG-PET/CT for staging, restaging, monitoring during therapy, and assessment of treatment response as well as identification of malignant transformation. FDG-PET/CT may obviate the need for a bone marrow biopsy in patients with Hodgkin's lymphoma and diffuse large B-cell lymphoma. FDG-PET/CT response assessment is recommended for FDG-avid lymphomas, whereas CT-based response evaluation remains important in lymphomas with low or variable FDG avidity. The treatment induced change in metabolic activity allows for assessment of response after completion of therapy as well as prediction of outcome early during therapy. The five point scale Deauville Criteria allows the assessment of treatment response based on visual FDG-PET analysis. Although the use of FDG-PET/CT for prediction of therapeutic response is promising it should only be conducted in the context of clinical trials. Surveillance FDG-PET/CT after complete remission is discouraged due to the relative high number of false-positive findings, which in turn may result in further unnecessary investigations. Future directions include the use of new PET tracers such as F-18 fluorothymidine (FLT), a surrogate biomarker of cellular proliferation and Ga-68 CXCR4, a chemokine receptor imaging biomarker as well as innovative digital PET/CT and PET/MRI techniques. PMID:27090170

  8. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics.

    PubMed

    Schleyer, P J; Thielemans, K; Marsden, P K

    2014-08-07

    Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions.

  9. Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.

    PubMed

    Han, Dongfeng; Bayouth, John; Song, Qi; Taurani, Aakant; Sonka, Milan; Buatti, John; Wu, Xiaodong

    2011-01-01

    Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.

  10. Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer.

    PubMed

    Jimenez-Jimenez, E; Mateos, P; Aymar, N; Roncero, R; Ortiz, I; Gimenez, M; Pardo, J; Salinas, J; Sabater, S

    2018-05-02

    Evidence supporting the use of 18F-FDG-PET/CT in the segmentation process of oesophageal cancer for radiotherapy planning is limited. Our aim was to compare the volumes and tumour lengths defined by fused PET/CT vs. CT simulation. Twenty-nine patients were analyzed. All patients underwent a single PET/CT simulation scan. Two separate GTVs were defined: one based on CT data alone and another based on fused PET/CT data. Volume sizes for both data sets were compared and the spatial overlap was assessed by the Dice similarity coefficient (DSC). The gross tumour volume (GTVtumour) and maximum tumour diameter were greater by PET/CT, and length of primary tumour was greater by CT, but differences were not statistically significant. However, the gross node volume (GTVnode) was significantly greater by PET/CT. The DSC analysis showed excellent agreement for GTVtumour, 0.72, but was very low for GTVnode, 0.25. Our study shows that the volume definition by PET/CT and CT data differs. CT simulation, without taking into account PET/CT information, might leave cancer-involved nodes out of the radiotherapy-delineated volumes.

  11. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?

    PubMed Central

    Mayerhoefer, Marius E.; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J.; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-01-01

    Purpose To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed–time-point 2-18F-fluoro-2-deoxy-d-glucose-positron emission tomography (18F-FDG-PET) performs better than standard–time-point 18F-FDG-PET. Materials and Methods Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic 18F-FDG-PET/computed tomography (CT) and consecutive 18F-FDG-PET/magnetic resonance imaging (MRI), using a single 18F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective 18F-FDG-PET scans at time points 1 (45–60 minutes after tracer injection, TP1) and 2 (100–150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. Results 18F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and 18F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%–84.67%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP1; and 87.0% (CI, 73.26%–100%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and 18F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%–80.9%) for 18F-FDG-PET at TP1, and 76.9% (CI, 54.0%–99.8%) for 18F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Conclusions Delayed–time-point imaging may improve 18F-FDG-PET in MALT lymphoma. PMID:26402137

  12. FDG-PET/CT imaging for tumor staging and definition of tumor volumes in radiation treatment planning in non-small cell lung cancer.

    PubMed

    Zheng, Yuanda; Sun, Xiaojiang; Wang, Jian; Zhang, Lingnan; DI, Xiaoyun; Xu, Yaping

    2014-04-01

    18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has the potential to improve the staging and radiation treatment (RT) planning of various tumor sites. However, from a clinical standpoint, questions remain with regard to what extent PET/CT changes the target volume and whether PET/CT reduces interobserver variability in target volume delineation. The present study analyzed the use of FDG-PET/CT images for staging and evaluated the impact of FDG-PET/CT on the radiotherapy volume delineation compared with CT in patients with non-small cell lung cancer (NSCLC) who were candidates for radiotherapy. Intraobserver variation in delineating tumor volumes was also observed. In total, 23 patients with stage I-III NSCLC were enrolled and treated with fractionated RT-based therapy with or without chemotherapy. FDG-PET/CT scans were acquired within two weeks prior to RT. PET and CT data sets were sent to the treatment planning system, Pinnacle, through compact discs. The CT and PET images were subsequently fused by means of a dedicated RT planning system. Gross tumor volume (GTV) was contoured by four radiation oncologists on CT (GTV-CT) and PET/CT images (GTV-PET/CT). The resulting volumes were analyzed and compared. For the first phase, two radiation oncologists outlined the contours together, achieving a final consensus. Based on PET/CT, changes in tumor-node-metastasis categories occurred in 8/23 cases (35%). Radiation targeting with fused FDG-PET and CT images resulted in alterations in radiation therapy planning in 12/20 patients (60%) in comparison with CT targeting. The most prominent changes in GTV were observed in cases with atelectasis. For the second phase, the variation in delineating tumor volumes was assessed by four observers. The mean ratio of largest to smallest CT-based GTV was 2.31 (range, 1.01-5.96). The addition of the PET results reduced the mean ratio to 1.46 (range, 1.02-2.27). PET/CT fusion images may have a potential impact on tumor staging and treatment planning. Implementing matched PET/CT results reduced observer variation in delineating tumor volumes significantly with respect to CT only.

  13. 4D laser camera for accurate patient positioning, collision avoidance, image fusion and adaptive approaches during diagnostic and therapeutic procedures.

    PubMed

    Brahme, Anders; Nyman, Peter; Skatt, Björn

    2008-05-01

    A four-dimensional (4D) laser camera (LC) has been developed for accurate patient imaging in diagnostic and therapeutic radiology. A complementary metal-oxide semiconductor camera images the intersection of a scanned fan shaped laser beam with the surface of the patient and allows real time recording of movements in a three-dimensional (3D) or four-dimensional (4D) format (3D +time). The LC system was first designed as an accurate patient setup tool during diagnostic and therapeutic applications but was found to be of much wider applicability as a general 4D photon "tag" for the surface of the patient in different clinical procedures. It is presently used as a 3D or 4D optical benchmark or tag for accurate delineation of the patient surface as demonstrated for patient auto setup, breathing and heart motion detection. Furthermore, its future potential applications in gating, adaptive therapy, 3D or 4D image fusion between most imaging modalities and image processing are discussed. It is shown that the LC system has a geometrical resolution of about 0, 1 mm and that the rigid body repositioning accuracy is about 0, 5 mm below 20 mm displacements, 1 mm below 40 mm and better than 2 mm at 70 mm. This indicates a slight need for repeated repositioning when the initial error is larger than about 50 mm. The positioning accuracy with standard patient setup procedures for prostate cancer at Karolinska was found to be about 5-6 mm when independently measured using the LC system. The system was found valuable for positron emission tomography-computed tomography (PET-CT) in vivo tumor and dose delivery imaging where it potentially may allow effective correction for breathing artifacts in 4D PET-CT and image fusion with lymph node atlases for accurate target volume definition in oncology. With a LC system in all imaging and radiation therapy rooms, auto setup during repeated diagnostic and therapeutic procedures may save around 5 min per session, increase accuracy and allow efficient image fusion between all imaging modalities employed.

  14. SU-G-IeP4-07: Feasibility of Low Dose 18FDG PET in Pediatric Oncology Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Binzel, K; Hall, NC

    Purpose: To evaluate and demonstrate the feasibility of low dose FDG PET in pediatric oncology patients using virtual dose reduction as well as true patients PET/CT scans. Methods: Wholebody 18F-FDG PET/CT of 39 clinical pediatric patients (0.16±0.06MBq/kg) were scanned on a Gemini TF 64 system at 75±5 min post FDG injection using 3min/bed. Based on the 180s/bed listmode PET data, subsets of total counts in 120s, 90s, 60s, 30s and 15s per bed position were extracted for PET reconstruction to simulate lower dose PET at 2/3th, 1/2th, 1/3th, 1/6th and 1/12th dose levels. PET/CT scans of Jaszczak PET phantom withmore » 6 hot hollow spheres varying with sizes and contrast ratios were performed (real PET versus simulated PET) to validate the methodology of virtual dose PET simulation. Region of interests (ROIs) were placed on lesions and normal anatomical tissues with quantitative and qualitative assessment performed. Significant lower FDG dose PET/CT of 5 research adolescents were scanned to validate the proposal and low dose PET feasibility. Results: Although all lesions are visible on the 1/12th dose PET, overall PET image quality appears to be influenced in a multi-factorial way. 30%–60% dose reduction from current standard of care FDG PET is recommended to maintain equivalent quality and PET quantification. An optimized BMI-based FDG administration is recommended (from 1.1±0.5 mCi for BMI < 18.5 to 4.8±1.5 mCi for BMI > 30). A linear lowest “Dose-BMI” relationship is given. SUVs from 1/12th to full dose PETs were identified as consistent (R2 = 1.08, 0.99, 1.01, 1.00 and 0.98). No significant variances of count density, SUV and SNR were found across certain dose ranges (p<0.01). Conclusion: Pediatric PET/CT can be performed using current time-of-flight systems at substantially lower PET doses (30–60%) than the standard of care PET/CT without compromising qualitative and quantitative image quality in clinical.« less

  15. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulus, Daniel H., E-mail: daniel.paulus@imp.uni-erlangen.de; Thorwath, Daniela; Schmidt, Holger

    2014-07-15

    Purpose: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning. In this study, prototype RT positioning devices intended for PET/MR hybrid imaging are introduced and tested toward PET/MR compatibility and image quality. Methods: A prototype flat RT table overlay and two radiofrequency (RF) coil holders that each fix one flexible body matrixmore » RF coil for RT head/neck imaging have been evaluated within this study. MR image quality with the RT head setup was compared to the actual PET/MR setup with a dedicated head RF coil. PET photon attenuation and CT-based attenuation correction (AC) of the hardware components has been quantitatively evaluated by phantom scans. Clinical application of the new RT setup in PET/MR imaging was evaluated in anin vivo study. Results: The RT table overlay and RF coil holders are fully PET/MR compatible. MR phantom and volunteer imaging with the RT head setup revealed high image quality, comparable to images acquired with the dedicated PET/MR head RF coil, albeit with 25% reduced SNR. Repositioning accuracy of the RF coil holders was below 1 mm. PET photon attenuation of the RT table overlay was calculated to be 3.8% and 13.8% for the RF coil holders. With CT-based AC of the devices, the underestimation error was reduced to 0.6% and 0.8%, respectively. Comparable results were found within the patient study. Conclusions: The newly designed RT devices for hybrid PET/MR imaging are PET and MR compatible. The mechanically rigid design and the reproducible positioning allow for straightforward CT-based AC. The systematic evaluation within this study provides the technical basis for the clinical integration of PET/MR hybrid imaging into RT treatment planning.« less

  16. 90Y Liver Radioembolization Imaging Using Amplitude-Based Gated PET/CT.

    PubMed

    Osborne, Dustin R; Acuff, Shelley; Neveu, Melissa; Kaman, Austin; Syed, Mumtaz; Fu, Yitong

    2017-05-01

    The usage of PET/CT to monitor patients with hepatocellular carcinoma following Y radioembolization has increased; however, image quality is often poor because of low count efficiency and respiratory motion. Motion can be corrected using gating techniques but at the expense of additional image noise. Amplitude-based gating has been shown to improve quantification in FDG PET, but few have used this technique in Y liver imaging. The patients shown in this work indicate that amplitude-based gating can be used in Y PET/CT liver imaging to provide motion-corrected images with higher estimates of activity concentration that may improve posttherapy dosimetry.

  17. A Gain-Programmable Transit-Time-Stable and Temperature-Stable PMT Voltage Divider

    NASA Astrophysics Data System (ADS)

    Liu, Yaqiang; Li, Hongdi; Wang, Yu; Xing, Tao; Xie, Shuping; Uribe, J.; Baghaei, H.; Ramirez, R.; Kim, Soonseok; Wong, Wai-Hoi

    2004-10-01

    A gain-programmable, transit-time-stable, temperature-stable photomultiplier (PMT) voltage divider design is described in this paper. The signal-to-noise ratio can be increased by changing a PMT gain directly instead of adjusting the gain of the preamplifier. PMT gain can be changed only by adjusting the voltages for the dynodes instead of changing the total high voltage between the anode and the photocathode, which can cause a significant signal transit-time variation that cannot be accepted by an application with a critical timing requirement, such as positron emission tomography (PET) or time-of-flight (TOF) detection/PET. The dynode voltage can be controlled by a digital analog converter isolated with a linear optocoupler. The optocoupler consists of an infrared light emission diode (LED) optically coupled with two phototransistors, and one is used in a servo feedback circuit to control the LED drive current for compensating temperature characteristics. The results showed that a six times gain range could be achieved; the gain drift was <0.5% over a 20/spl deg/C temperature range; 250 ps transit-time variation was measured over the entire gain range. A compact print circuit board (PCB) for the voltage divider integrated with a fixed-gain preamplifier has been designed and constructed. It can save about $30 per PMT channel compared with a commercial PMT voltage divider along with a variable gain amplifier. The preamplifier can be totally disabled, therefore in a system with a large amount of PMTs, only one channel can be enabled for calibrating the PMT gain. This new PMT voltage divider design is being applied to our animal PET camera and TOF/PET research.

  18. Using molecular imaging to assess the delivery and infection of protease activated virus in animal model of myocardial infarction

    NASA Astrophysics Data System (ADS)

    Zhu, Banghe; Guenther, Caitlin; Kwon, Sunkuk; Sevick-Muraca, Eva M.; Suh, Junghae

    2017-02-01

    Cardiovascular diseases remain the greatest cause of death in the US and gene therapy has the potential to be an effective therapy. In this study, we demonstrated MMP-9 based protease-activatable virus (PAV) for selective infection of myocardial infarct (MI) that is associated with active MMP-9 expression. To test the specificity of PAV, we used expression of a far-red fluorescence protein (iRFP) delivered by the PAV together with a dual PET/NIRF imaging agent specific for active MMP-9 activity at the site of MI in a murine model. Calibrated fluorescence imaging employed a highly-sensitive intensified camera, laser diode excitation sources, and filtration schemes based upon the spectra of iRFP and the NIRF agent. One to two days after ligation of the left anterior descending artery, the PAV or WT AAV9 virus encoding for iRFP (5x1010 genomic particles) and radiolabeled MMP-9 imaging agent (3 nmol) were injected intravenously (i.v.). PET imaging showed MMP activity was associated with adverse tissue remodeling at the site of the MI. One week after, animals were again injected i.v. with the MMP-9 agent (3 nmol) and 18-24 h later, the animals were euthanized and the hearts were harvested, sliced, and imaged for congruent iRFP transgene expression and NIRF signals associated with MMP-9 tissue activity. The fluorescent margins of iRFP and NIRF contrasted tissues were quantified in terms Standard International units of mW/cm2/sr. The sensitivity, specificity, and accuracy of PAV and WT targeting to sites of MI was determined from these calibrated fluorescence measurements. The PAV demonstrated significantly higher delivery performance than that of the WT AAV9 virus.

  19. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer's disease

    PubMed Central

    Sehlin, Dag; Fang, Xiaotian T.; Cato, Linda; Antoni, Gunnar; Lannfelt, Lars; Syvänen, Stina

    2016-01-01

    Owing to their specificity and high-affinity binding, monoclonal antibodies have potential as positron emission tomography (PET) radioligands and are currently used to image various targets in peripheral organs. However, in the central nervous system, antibody uptake is limited by the blood–brain barrier (BBB). Here we present a PET ligand to be used for diagnosis and evaluation of treatment effects in Alzheimer's disease. The amyloid β (Aβ) antibody mAb158 is radiolabelled and conjugated to a transferrin receptor antibody to enable receptor-mediated transcytosis across the BBB. PET imaging of two different mouse models with Aβ pathology clearly visualize Aβ in the brain. The PET signal increases with age and correlates closely with brain Aβ levels. Thus, we demonstrate that antibody-based PET ligands can be successfully used for brain imaging. PMID:26892305

  20. Attenuation correction for brain PET imaging using deep neural network based on dixon and ZTE MR images.

    PubMed

    Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng

    2018-05-23

    Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.

  1. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538

  2. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    PubMed

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.

  3. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces

    DOE PAGES

    Sarmiento, Adel; Cortes, Adriano; Garcia, Daniel; ...

    2016-10-07

    We describe the development of a high-performance solution framework for isogeometric discrete differential forms based on B-splines: PetIGA-MF. Built on top of PetIGA, PetIGA-MF is a general multi-field discretization tool. To test the capabilities of our implementation, we solve different viscous flow problems such as Darcy, Stokes, Brinkman, and Navier-Stokes equations. Several convergence benchmarks based on manufactured solutions are presented assuring optimal convergence rates of the approximations, showing the accuracy and robustness of our solver.

  4. Selected PET radiomic features remain the same.

    PubMed

    Tsujikawa, Tetsuya; Tsuyoshi, Hideaki; Kanno, Masafumi; Yamada, Shizuka; Kobayashi, Masato; Narita, Norihiko; Kimura, Hirohiko; Fujieda, Shigeharu; Yoshida, Yoshio; Okazawa, Hidehiko

    2018-04-17

    We investigated whether PET radiomic features are affected by differences in the scanner, scan protocol, and lesion location using 18 F-FDG PET/CT and PET/MR scans. SUV, TMR, skewness, kurtosis, entropy, and homogeneity strongly correlated between PET/CT and PET/MR images. SUVs were significantly higher on PET/MR 0-2 min and PET/MR 0-10 min than on PET/CT in gynecological cancer ( p = 0.008 and 0.008, respectively), whereas no significant difference was observed between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images in oral cavity/oropharyngeal cancer. TMRs on PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min increased in this order in gynecological cancer and oral cavity/oropharyngeal cancer. In contrast to conventional and histogram indices, 4 textural features (entropy, homogeneity, SRE, and LRE) were not significantly different between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images. 18 F-FDG PET radiomic features strongly correlated between PET/CT and PET/MR images. Dixon-based attenuation correction on PET/MR images underestimated tumor tracer uptake more significantly in oral cavity/oropharyngeal cancer than in gynecological cancer. 18 F-FDG PET textural features were affected less by differences in the scanner and scan protocol than conventional and histogram features, possibly due to the resampling process using a medium bin width. Eight patients with gynecological cancer and 7 with oral cavity/oropharyngeal cancer underwent a whole-body 18 F-FDG PET/CT scan and regional PET/MR scan in one day. PET/MR scans were performed for 10 minutes in the list mode, and PET/CT and 0-2 min and 0-10 min PET/MR images were reconstructed. The standardized uptake value (SUV), tumor-to-muscle SUV ratio (TMR), skewness, kurtosis, entropy, homogeneity, short-run emphasis (SRE), and long-run emphasis (LRE) were compared between PET/CT, PET/MR 0-2 min , and PET/MR 0-10 min images.

  5. Imaging Prostate Cancer With Prostate-Specific Membrane Antigen PET/CT and PET/MRI: Current and Future Applications.

    PubMed

    Hope, Thomas A; Afshar-Oromieh, Ali; Eiber, Matthias; Emmett, Louise; Fendler, Wolfgang P; Lawhn-Heath, Courtney; Rowe, Steven P

    2018-06-27

    The purpose of this article is to describe the large number of radiotracers being evaluated for prostate-specific membrane antigen (PSMA) PET, which is becoming a central tool in the staging of prostate cancer. PSMA PET is a highly promising modality for the staging of prostate cancer because of its higher detection rate compared with that of conventional imaging. Both PET/CT and PET/MRI offer benefits with PSMA radiotracers, and PSMA PET findings frequently lead to changes in management. It is imperative that subsequent treatment changes be evaluated to show improved outcomes. PSMA PET also has potential applications, including patient selection for PSMA-based radioligand therapy and evaluation of treatment response.

  6. A unified Fourier theory for time-of-flight PET data

    PubMed Central

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D X-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions—the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D X-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions. PMID:26689836

  7. A unified Fourier theory for time-of-flight PET data.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2016-01-21

    Fully 3D time-of-flight (TOF) PET scanners offer the potential of previously unachievable image quality in clinical PET imaging. TOF measurements add another degree of redundancy for cylindrical PET scanners and make photon-limited TOF-PET imaging more robust than non-TOF PET imaging. The data space for 3D TOF-PET data is five-dimensional with two degrees of redundancy. Previously, consistency equations were used to characterize the redundancy of TOF-PET data. In this paper, we first derive two Fourier consistency equations and Fourier-John equation for 3D TOF PET based on the generalized projection-slice theorem; the three partial differential equations (PDEs) are the dual of the sinogram consistency equations and John's equation. We then solve the three PDEs using the method of characteristics. The two degrees of entangled redundancy of the TOF-PET data can be explicitly elicited and exploited by the solutions of the PDEs along the characteristic curves, which gives a complete understanding of the rich structure of the 3D x-ray transform with TOF measurement. Fourier rebinning equations and other mapping equations among different types of PET data are special cases of the general solutions. We also obtain new Fourier rebinning and consistency equations (FORCEs) from other special cases of the general solutions, and thus we obtain a complete scheme to convert among different types of PET data: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF data. The new FORCEs can be used as new Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. Further, we give a geometric interpretation of the general solutions--the two families of characteristic curves can be obtained by respectively changing the azimuthal and co-polar angles of the biorthogonal coordinates in Fourier space. We conclude the unified Fourier theory by showing that the Fourier consistency equations are necessary and sufficient for 3D x-ray transform with TOF measurement. Finally, we give numerical examples of inverse rebinning for a 3D TOF PET and Fourier-based rebinning for a 2D TOF PET using the FORCEs to show the efficacy of the unified Fourier solutions.

  8. Non-local means denoising of dynamic PET images.

    PubMed

    Dutta, Joyita; Leahy, Richard M; Li, Quanzheng

    2013-01-01

    Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while lowering the background noise variance.

  9. 3D-segmentation of the 18F-choline PET signal for target volume definition in radiation therapy of the prostate.

    PubMed

    Ciernik, I Frank; Brown, Derek W; Schmid, Daniel; Hany, Thomas; Egli, Peter; Davis, J Bernard

    2007-02-01

    Volumetric assessment of PET signals becomes increasingly relevant for radiotherapy (RT) planning. Here, we investigate the utility of 18F-choline PET signals to serve as a structure for semi-automatic segmentation for forward treatment planning of prostate cancer. 18F-choline PET and CT scans of ten patients with histologically proven prostate cancer without extracapsular growth were acquired using a combined PET/CT scanner. Target volumes were manually delineated on CT images using standard software. Volumes were also obtained from 18F-choline PET images using an asymmetrical segmentation algorithm. PTVs were derived from CT 18F-choline PET based clinical target volumes (CTVs) by automatic expansion and comparative planning was performed. As a read-out for dose given to non-target structures, dose to the rectal wall was assessed. Planning target volumes (PTVs) derived from CT and 18F-choline PET yielded comparable results. Optimal matching of CT and 18F-choline PET derived volumes in the lateral and cranial-caudal directions was obtained using a background-subtracted signal thresholds of 23.0+/-2.6%. In antero-posterior direction, where adaptation compensating for rectal signal overflow was required, optimal matching was achieved with a threshold of 49.5+/-4.6%. 3D-conformal planning with CT or 18F-choline PET resulted in comparable doses to the rectal wall. Choline PET signals of the prostate provide adequate spatial information amendable to standardized asymmetrical region growing algorithms for PET-based target volume definition for external beam RT.

  10. MR Performance Comparison of a PET/MR System Before and After SiPM-Based Time-of-Flight PET Detector Insertion

    NASA Astrophysics Data System (ADS)

    Khalighi, Mohammad Mehdi; Delso, Gaspar; Maramraju, Sri Harsha; Deller, Timothy W.; Levin, Craig S.; Glover, Gary H.

    2016-10-01

    A silicon photomultiplier (SiPM)-based time-of-flight capable PET detector has been integrated with a 70 cm wide-bore 3T MR scanner for simultaneous whole-body imaging (MR750w, GE Healthcare, Waukesha, WI). After insertion of the PET detector, the final PET/MR bore is 60 cm wide (SIGNA PET/MR, GE Healthcare, Waukesha, WI). The MR performance was compared before and after the PET ring insertion. B0 homogeneity, B1+ uniformity of the body coil along with peak B1+, coherent noise, and FBIRN (Function Biomedical Informatics Research Network) tests are used to compare the MR performance. It is shown that B0 homogeneity and coherent noise have not changed according to the system specifications. Peak B1+ is increased by 33% and B1+ inhomogeneity is increased by 4% after PET ring insertion due to a smaller diameter body coil design. The FBIRN test shows similar temporal stability before and after PET ring insertion. Due to a smaller body coil on the PET/MR system, the signal fluctuation to noise ratio (SFNR) and SNR for body receive coil, are improved by 40% and 160% for Echo Planar Imaging (EPI) and spiral sequences respectively. Comparison using RF- and gradient-intensive clinical sequences shows inserting the PET detectors into the wide-bore MRI has not compromised the MR image quality according to these tests.

  11. Evaluation of the impact of metal artifacts in CT-based attenuation correction of positron emission tomography scans

    NASA Astrophysics Data System (ADS)

    Wu, Jay; Shih, Cheng-Ting; Chang, Shu-Jun; Huang, Tzung-Chi; Chen, Chuan-Lin; Wu, Tung Hsin

    2011-08-01

    The quantitative ability of PET/CT allows the widespread use in clinical research and cancer staging. However, metal artifacts induced by high-density metal objects degrade the quality of CT images. These artifacts also propagate to the corresponding PET image and cause a false increase of 18F-FDG uptake near the metal implants when the CT-based attenuation correction (AC) is performed. In this study, we applied a model-based metal artifact reduction (MAR) algorithm to reduce the dark and bright streaks in the CT image and compared the differences between PET images with the general CT-based AC (G-AC) and the MAR-corrected-CT AC (MAR-AC). Results showed that the MAR algorithm effectively reduced the metal artifacts in the CT images of the ACR flangeless phantom and two clinical cases. The MAR-AC also removed the false-positive hot spot near the metal implants of the PET images. We conclude that the MAR-AC could be applied in clinical practice to improve the quantitative accuracy of PET images. Additionally, further use of PET/CT fusion images with metal artifact correction could be more valuable for diagnosis.

  12. Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer.

    PubMed

    Nestle, Ursula; Schaefer-Schuler, Andrea; Kremp, Stephanie; Groeschel, Andreas; Hellwig, Dirk; Rübe, Christian; Kirsch, Carl-Martin

    2007-04-01

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN(PET)). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN(PET)). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV(vis); 40% SUVmax: GTV40; SUV=2.5: GTV2.5; target/background (T/B) algorithm: GTV(bg)). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUVmax = 2.5; p = 0.0001 for technical delineability by GTV2.5; p = 0.003 by GTV40), favouring the GTV(bg) method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring.

  13. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan; Brady, Thomas J.; El Fakhri, Georges

    2014-04-15

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic{sup 18}F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking datamore » were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R{sup 2} = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast.« less

  14. MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: Phantom study1

    PubMed Central

    Huang, Chuan; Ackerman, Jerome L.; Petibon, Yoann; Brady, Thomas J.; El Fakhri, Georges; Ouyang, Jinsong

    2014-01-01

    Purpose: Artifacts caused by head motion present a major challenge in brain positron emission tomography (PET) imaging. The authors investigated the feasibility of using wired active MR microcoils to track head motion and incorporate the measured rigid motion fields into iterative PET reconstruction. Methods: Several wired active MR microcoils and a dedicated MR coil-tracking sequence were developed. The microcoils were attached to the outer surface of an anthropomorphic 18F-filled Hoffman phantom to mimic a brain PET scan. Complex rotation/translation motion of the phantom was induced by a balloon, which was connected to a ventilator. PET list-mode and MR tracking data were acquired simultaneously on a PET-MR scanner. The acquired dynamic PET data were reconstructed iteratively with and without motion correction. Additionally, static phantom data were acquired and used as the gold standard. Results: Motion artifacts in PET images were effectively removed by wired active MR microcoil based motion correction. Motion correction yielded an activity concentration bias ranging from −0.6% to 3.4% as compared to a bias ranging from −25.0% to 16.6% if no motion correction was applied. The contrast recovery values were improved by 37%–156% with motion correction as compared to no motion correction. The image correlation (mean ± standard deviation) between the motion corrected (uncorrected) images of 20 independent noise realizations and static reference was R2 = 0.978 ± 0.007 (0.588 ± 0.010, respectively). Conclusions: Wired active MR microcoil based motion correction significantly improves brain PET quantitative accuracy and image contrast. PMID:24694141

  15. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas

    PubMed Central

    Albert, Nathalie L.; Weller, Michael; Suchorska, Bogdana; Galldiks, Norbert; Soffietti, Riccardo; Kim, Michelle M.; la Fougère, Christian; Pope, Whitney; Law, Ian; Arbizu, Javier; Chamberlain, Marc C.; Vogelbaum, Michael; Ellingson, Ben M.

    2016-01-01

    This guideline provides recommendations for the use of PET imaging in gliomas. The review examines established clinical benefit in glioma patients of PET using glucose (18F-FDG) and amino acid tracers (11C-MET, 18F-FET, and 18F-FDOPA). An increasing number of studies have been published on PET imaging in the setting of diagnosis, biopsy, and resection as well radiotherapy planning, treatment monitoring, and response assessment. Recommendations are based on evidence generated from studies which validated PET findings by histology or clinical course. This guideline emphasizes the clinical value of PET imaging with superiority of amino acid PET over glucose PET and provides a framework for the use of PET to assist in the management of patients with gliomas. PMID:27106405

  16. Combined Modality Treatment for PET-Positive Non-Hodgkin Lymphoma: Favorable Outcomes of Combined Modality Treatment for Patients With Non-Hodgkin Lymphoma and Positive Interim or Postchemotherapy FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halasz, Lia M.; Jacene, Heather A.; Catalano, Paul J.

    2012-08-01

    Purpose: To evaluate outcomes of patients treated for aggressive non-Hodgkin lymphoma (NHL) with combined modality therapy based on [{sup 18}F]fluoro-2-deoxy-2-D-glucose positron emission tomography (FDG-PET) response. Methods and Materials: We studied 59 patients with aggressive NHL, who received chemotherapy and radiation therapy (RT) from 2001 to 2008. Among them, 83% of patients had stage I/II disease. Patients with B-cell lymphoma received R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone)-based chemotherapy, and 1 patient with anaplastic lymphoma kinase-negative anaplastic T-cell lymphoma received CHOP therapy. Interim and postchemotherapy FDG-PET or FDG-PET/computed tomography (CT) scans were performed for restaging. All patients received consolidated involved-field RT.more » Median RT dose was 36 Gy (range, 28.8-50 Gy). Progression-free survival (PFS) and local control (LC) rates were calculated with and without a negative interim or postchemotherapy FDG-PET scan. Results: Median follow-up was 46.5 months. Thirty-nine patients had negative FDG-PET results by the end of chemotherapy, including 12 patients who had a negative interim FDG-PET scan and no postchemotherapy PET. Twenty patients were FDG-PET-positive, including 7 patients with positive interim FDG-PET and no postchemotherapy FDG-PET scans. The 3-year actuarial PFS rates for patients with negative versus positive FDG-PET scans were 97% and 90%, respectively. The 3-year actuarial LC rates for patients with negative versus positive FDG-PET scans were 100% and 90%, respectively. Conclusions: Patients who had a positive interim or postchemotherapy FDG-PET had a PFS rate of 90% at 3 years after combined modality treatment, suggesting that a large proportion of these patients can be cured with consolidated RT.« less

  17. Thermo-mechanical simulation of liquid-supported stretch blow molding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way,more » a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.« less

  18. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, O.; Torres-Ulloa, C. L.; Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, AP 70-542, 04510, DF

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placedmore » during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).« less

  19. Sodium 18F-Fluoride PET/CT of Bone, Joint and Other Disorders

    PubMed Central

    Jadvar, Hossein; Desai, Bhushan; Conti, Peter S.

    2014-01-01

    The use of 18F-sodium fluoride (18F-NaF) with positron emission tomography-computed tomography (PET/CT) is increasing. This resurgence of an old tracer has been fueled by several factors including superior diagnostic performance over standard 99mTc-based bone scintigraphy, growth in the availability of PET/CT imaging systems, increase in the number of regional commercial distribution centers for PET radiotracers, the recent concerns about potential chronic shortages with 99mTc based radiotracers, and the recent decision by the Centers for Medicare and Medicaid Services to reimburse for 18F-NaF PET/CT for evaluation of patients with known or suspected bone metastases through the National Oncologic PET Registry. The major goal of this article is to review the current evidence on the diagnostic utility of 18F-NaF in the imaging assessment of bone and joint in a variety of clinical conditions. PMID:25475379

  20. The efficacy of the Eustachian Tube Dysfunction Questionnaire (ETDQ-7) for patulous Eustachian tube patient.

    PubMed

    Ikeda, Ryoukichi; Kikuchi, Toshiaki; Miyazaki, Hiromitsu; Hidaka, Hiroshi; Kawase, Tetsuaki; Katori, Yukio; Kobayashi, Toshimitsu

    2018-01-01

    To assess the efficacy of the Eustachian Tube Dysfunction Questionnaire (ETDQ-7) for patulous Eustachian tube (PET) patients. A prospective survey of medical records identified 36 patients and 47 ears with PET, and 15 patients and 15 ears as control. The ETDQ-7, patulous Eustachian tube handicap inventory-10 (PHI-10) and Likert scale were evaluated. PET patients were divided into two groups based on severity of symptoms using the PHI score. The Cronbach α value of the PET group was 0.765. The average total score of the ETDQ-7 in the control group was 7.6 ± 1.1 and 22.5 ± 10.0 in the PET group (p < .01). No correlation was found between ETDQ-7 and Likert scale (r = 0.248, p = .09). The average total score of the ETDQ-7 in the mild or moderate PET group was 19.9 ± 9.0 and 25.3 ± 11.1 in the severe PET group and this was not statistically different (p = .08). The highest ETDQ-7 score was also observed in PET patients and in ET dysfunction patients. These findings necessitate careful discrimination between ET dysfunction and PET in balloon dilation Eustachian tuboplasty (BET) based on ETDQ-7.

  1. Positron emission tomography/computed tomography with 18F-fluorocholine improve tumor staging and treatment allocation in patients with hepatocellular carcinoma.

    PubMed

    Chalaye, Julia; Costentin, Charlotte E; Luciani, Alain; Amaddeo, Giuliana; Ganne-Carrié, Nathalie; Baranes, Laurence; Allaire, Manon; Calderaro, Julien; Azoulay, Daniel; Nahon, Pierre; Seror, Olivier; Mallat, Ariane; Soussan, Michael; Duvoux, Christophe; Itti, Emmanuel; Nault, Jean Charles

    2018-03-06

    Hepatocellular carcinoma (HCC) staging according to the Barcelona Clinical Liver Cancer (BCLC) classification is based on conventional imaging. The aim of our study was to assess the impact of dual-tracer 18F-fluorocholine and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) on tumor staging and treatment allocation. A total of 192 dual-tracer PET/CT scans (18F-fluorocholine and 18F-fluorodeoxyglucose PET/CT) were performed in 177 patients with HCC. BCLC staging and treatment proposal were retrospectively collected based on conventional imaging, along with any new lesions detected, and changes in BCLC classification or treatment allocation based on dual-tracer PET/CT. Patients were primarily men (87.5%) with cirrhosis (71%) due to alcohol ± non-alcoholic steatohepatitis (26%), viral infection (62%) or unknown causes (12%). Among 122 patients with PET/CT performed for staging, BCLC stage based on conventional imaging was 0/A in 61 patients (50%), B in 32 patients (26%) and C in 29 patients (24%). Dual-tracer PET/CT detected new lesions in 26 patients (21%), upgraded BCLC staging in 14 (11%) and modified treatment strategy in 17 (14%). In addition, dual-tracer PET/CT modified the final treatment in 4/9 (44%) patients with unexplained elevation of alpha-fetoprotein (AFP), 10/25 patients (40%) with doubtful lesions on conventional imaging and 3/36 patients (8%) waiting for liver transplantation without active HCC after tumor response following bridging therapy. When used for HCC staging, dual-tracer PET/CT enabled BCLC upgrading and treatment modification in 11% and 14% of patients, respectively. Dual-tracer PET/CT might also be useful in specific situations (an unexplained rise in AFP, doubtful lesions or pre-transplant evaluation of patients without active HCC). Using a combination of tracers 18F-fluorocholine and 18F-fluorodeoxyglucose when performing positron emission tomography/computed tomography (PET/CT), often called a PET scan, helps to identify new tumor lesions in patients with hepatocellular carcinoma. This technique enabled staging modification of patients' tumors and led to changes in treatment allocation in certain patients. Copyright © 2018. Published by Elsevier B.V.

  2. Effect of compatibilizer on impact and morphological analysis of recycled HDPE/PET blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salleh, Mohd Nazry; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab

    Blends based on recycled high density polyethylene (rHDPE) and recycled polyethylene terephthalate (rPET) were prepared using a corotating twin screw extruder. PET and HDPE are incompatible polymers and their blends showed poor properties. Compatibilization is a step to obtain blends with good mechanical properties and in this work, ethylene glycidyl methacrylate copolymer (E-GMA) was used as a compatibilizing agent. The effect of blends based on rHDPE and rPET with and without a compatibilizer, E-GMA were examined. From the studies clearly showed that the addition of 5% E-GMA increased the impact strength. SEM analysis of rHDPE/rPET blends confirmed the morphological interactionmore » and improved interfacial bonding between two phases.« less

  3. SBML-PET-MPI: a parallel parameter estimation tool for Systems Biology Markup Language based models.

    PubMed

    Zi, Zhike

    2011-04-01

    Parameter estimation is crucial for the modeling and dynamic analysis of biological systems. However, implementing parameter estimation is time consuming and computationally demanding. Here, we introduced a parallel parameter estimation tool for Systems Biology Markup Language (SBML)-based models (SBML-PET-MPI). SBML-PET-MPI allows the user to perform parameter estimation and parameter uncertainty analysis by collectively fitting multiple experimental datasets. The tool is developed and parallelized using the message passing interface (MPI) protocol, which provides good scalability with the number of processors. SBML-PET-MPI is freely available for non-commercial use at http://www.bioss.uni-freiburg.de/cms/sbml-pet-mpi.html or http://sites.google.com/site/sbmlpetmpi/.

  4. The influence of CT based attenuation correction on PET/CT registration: an evaluation study

    NASA Astrophysics Data System (ADS)

    Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin

    2007-03-01

    We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.

  5. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

    PubMed

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang

    2015-09-01

    Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low-dose brain [(18)F]FDG PET image. In this paper, the authors propose a framework to generate standard-dose brain [(18)F]FDG PET image using low-dose brain [(18)F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [(18)F]FDG PET can be well-predicted using MRI and low-dose brain [(18)F]FDG PET.

  6. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images

    PubMed Central

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced image quality of low-dose brain [18F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [18F]FDG PET image using low-dose brain [18F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [18F]FDG PET can be well-predicted using MRI and low-dose brain [18F]FDG PET. PMID:26328979

  7. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET image and substantially enhanced image quality of low-dose brain [{sup 18}F]FDG PET image. Conclusions: In this paper, the authors propose a framework to generate standard-dose brain [{sup 18}F]FDG PET image using low-dose brain [{sup 18}F]FDG PET and MRI images. Both the visual and quantitative results indicate that the standard-dose brain [{sup 18}F]FDG PET can be well-predicted using MRI and low-dose brain [{sup 18}F]FDG PET.« less

  8. Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates

    PubMed Central

    2012-01-01

    Background Bisphosphonates possess strong affinity to bone. 99mTc bisphosphonate complexes are widely used for bone scintigraphy. For positron emission tomography (PET) bone imaging, Ga-68-based PET tracers based on bisphosphonates are highly desirable. Findings Two trimeric bisphosphonate conjugates of the triazacyclononane-phosphinate (TRAP) chelator were synthesized, labeled with Ga-68, and used for microPET imaging of bone in male Lewis rats. Both Ga-68 tracers show bone uptake and, thus, are suitable for PET bone imaging. Surprisingly, Ga-71 nuclear magnetic resonance data prove that Ga(III) is not located in the chelating cavity of TRAP and must therefore be bound by the conjugated bisphosphonate units. Conclusion The intrinsic Ga-68 chelating properties of TRAP are not needed for Ga-68 PET bone imaging with TRAP-bisphosphonate conjugates. Here, TRAP serves only as a trimeric scaffold. For preparation of Ga-68-based bone seekers for PET, it appears sufficient to equip branched scaffolds with multiple bisphosphonate units, which serve both Ga-68-binding and bone-targeting purposes. PMID:22464278

  9. PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity

    NASA Astrophysics Data System (ADS)

    Lerche, Christoph W.; Kaltsas, Theodoris; Caldeira, Liliana; Scheins, Jürgen; Rota Kops, Elena; Tellmann, Lutz; Pietrzyk, Uwe; Herzog, Hans; Shah, N. Jon

    2018-02-01

    One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR  +  PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.

  10. The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview.

    PubMed

    Treglia, Giorgio; Muoio, Barbara; Giovanella, Luca; Salvatori, Massimo

    2013-05-01

    Positron emission tomography (PET) and PET/computed tomography (PET/CT) with different tracers have been increasingly used in patients with thyroid tumours. The aim of this article is to perform an overview based on literature data about the usefulness of PET imaging in this setting. The role of Fluorine-18-Fluorodeoxyglucose (FDG) PET and PET/CT in differentiated thyroid carcinoma (DTC) is well established, particularly in patients presenting with elevated serum thyroglobulin levels and negative radioiodine whole-body scan. Iodine-124 PET and PET/CT may serve a role in staging DTC and obtaining lesional dosimetry for a better and more rationale planning of treatment with Iodine-131. FDG-PET and PET/CT are useful in the post-thyroidectomy staging of high-risk patients with less differentiated histological subtypes. PET and PET/CT with different tracers seem to be useful methods in localizing the source of elevated calcitonin levels in patients with recurrent medullary thyroid carcinoma. Incorporation of FDG-PET or PET/CT into the initial workup of patients with indeterminate thyroid nodules at fine needle aspiration biopsy deserves further investigation. FDG-PET report should suggest further evaluation when focal thyroid incidentalomas are described because these findings are associated with a significant risk of cancer.

  11. Effect of Pet Dogs on Children’s Perceived Stress and Cortisol Stress Response

    PubMed Central

    Kertes, Darlene A.; Liu, Jingwen; Hall, Nathan J.; Hadad, Natalie A.; Wynne, Clive D. L.; Bhatt, Samarth S.

    2016-01-01

    The present study tested whether pet dogs have stress-buffering effects for children during a validated laboratory-based protocol, the Trier Social Stress Test for Children (TSST-C). Participants were 101 children aged 7–12 years with their primary caregivers and pet dogs. Children were randomly assigned in the TSST-C to a pet present condition or one of two comparison conditions: parent present or no support figure present. Baseline, response, and recovery indices of perceived stress and cortisol levels were computed based on children’s self-reported feelings of stress and salivary cortisol. Results indicated that in the alone (no social support) condition, children showed the expected rise for both perceived stress and cortisol response to stress. Pet dog presence significantly buffered the perceived stress response in comparison to children in the alone and parent present conditions. No main condition effect was observed for cortisol; however, for children experiencing the stressor with their pet present, lower cortisol response to stress was associated with more child-initiated petting and less dog proximity-seeking behavior. The results support the notion that pet dogs can provide socio-emotional benefits for children via stress buffering. PMID:28439150

  12. RPC PET: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Couceiro, M.; Blanco, A.; Ferreira, Nuno C.; Ferreira Marques, R.; Fonte, P.; Lopes, L.

    2007-10-01

    The status of the resistive plate chamber (RPC)-PET technology for small animals is briefly reviewed and its sensitivity performance for human PET studied through Monte-Carlo simulations. The cost-effectiveness of these detectors and their very good timing characteristics open the possibility to build affordable Time of Flight (TOF)-PET systems with very large fields of view. Simulations suggest that the sensitivity of such systems for human whole-body screening, under reasonable assumptions, may exceed the present crystal-based PET technology by a factor up to 20.

  13. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    PubMed

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  14. Comparison of [68Ga]Ga-PSMA-11 PET/CT with [18F]NaF PET/CT in the evaluation of bone metastases in metastatic prostate cancer patients prior to radionuclide therapy.

    PubMed

    Uprimny, Christian; Svirydenka, Anna; Fritz, Josef; Kroiss, Alexander Stephan; Nilica, Bernhard; Decristoforo, Clemens; Haubner, Roland; von Guggenberg, Elisabeth; Buxbaum, Sabine; Horninger, Wolfgang; Virgolini, Irene Johanna

    2018-05-16

    The purpose of this study was to investigate the diagnostic performance of 68 Ga-PSMA-11 PET/CT in the evaluation of bone metastases in metastatic prostate cancer (PC) patients scheduled for radionuclide therapy in comparison to [ 18 F]sodium fluoride ( 18 F-NaF) PET/CT. Sixteen metastatic PC patients with known skeletal metastases, who underwent both 68 Ga-PSMA-11 PET/CT and 18 F-NaF PET/CT for assessment of metastatic burden prior to radionuclide therapy, were analysed retrospectively. The performance of both tracers was calculated on a lesion-based comparison. Intensity of tracer accumulation of pathologic bone lesions on 18 F-NaF PET and 68 Ga-PSMA-11 PET was measured with maximum standardized uptake values (SUV max ) and compared to background activity of normal bone. In addition, SUV max values of PET-positive bone lesions were analysed with respect to morphologic characteristics on CT. Bone metastases were either confirmed by CT or follow-up PET scan. In contrast to 468 PET-positive lesions suggestive of bone metastases on 18 F-NaF PET, only 351 of the lesions were also judged positive on 68 Ga-PSMA-11 PET (75.0%). Intensity of tracer accumulation of pathologic skeletal lesions was significantly higher on 18 F-NaF PET compared to 68 Ga-PSMA-11 PET, showing a median SUV max of 27.0 and 6.0, respectively (p < 0.001). Background activity of normal bone was lower on 68 Ga-PSMA-11 PET, with a median SUV max of 1.0 in comparison to 2.7 on 18 F-NaF PET; however, tumour to background ratio was significantly higher on 18 F-NaF PET (9.8 versus 5.9 on 68 Ga-PSMA-11 PET; p = 0.042). Based on morphologic lesion characterisation on CT, 18 F-NaF PET revealed median SUV max values of 23.6 for osteosclerotic, 35.0 for osteolytic, and 19.0 for lesions not visible on CT, whereas on 68 Ga-PSMA-11 PET median SUV max values of 5.0 in osteosclerotic, 29.5 in osteolytic, and 7.5 in lesions not seen on CT were measured. Intensity of tracer accumulation between 18 F-NaF PET and 68 Ga-PSMA-11 PET was significantly higher in osteosclerotic (p < 0.001) and lesions not visible on CT (p = 0.012). In comparison to 68 Ga-PSMA-11 PET/CT, 18 F-NaF PET/CT detects a higher number of pathologic bone lesions in advanced stage PC patients scheduled for radionuclide therapy. Our data suggest that 68 Ga-PSMA-11 PET should be combined with 18 F-NaF PET in PC patients with skeletal metastases for restaging prior to initiation or modification of therapy.

  15. PET-Tool: a software suite for comprehensive processing and managing of Paired-End diTag (PET) sequence data.

    PubMed

    Chiu, Kuo Ping; Wong, Chee-Hong; Chen, Qiongyu; Ariyaratne, Pramila; Ooi, Hong Sain; Wei, Chia-Lin; Sung, Wing-Kin Ken; Ruan, Yijun

    2006-08-25

    We recently developed the Paired End diTag (PET) strategy for efficient characterization of mammalian transcriptomes and genomes. The paired end nature of short PET sequences derived from long DNA fragments raised a new set of bioinformatics challenges, including how to extract PETs from raw sequence reads, and correctly yet efficiently map PETs to reference genome sequences. To accommodate and streamline data analysis of the large volume PET sequences generated from each PET experiment, an automated PET data process pipeline is desirable. We designed an integrated computation program package, PET-Tool, to automatically process PET sequences and map them to the genome sequences. The Tool was implemented as a web-based application composed of four modules: the Extractor module for PET extraction; the Examiner module for analytic evaluation of PET sequence quality; the Mapper module for locating PET sequences in the genome sequences; and the Project Manager module for data organization. The performance of PET-Tool was evaluated through the analyses of 2.7 million PET sequences. It was demonstrated that PET-Tool is accurate and efficient in extracting PET sequences and removing artifacts from large volume dataset. Using optimized mapping criteria, over 70% of quality PET sequences were mapped specifically to the genome sequences. With a 2.4 GHz LINUX machine, it takes approximately six hours to process one million PETs from extraction to mapping. The speed, accuracy, and comprehensiveness have proved that PET-Tool is an important and useful component in PET experiments, and can be extended to accommodate other related analyses of paired-end sequences. The Tool also provides user-friendly functions for data quality check and system for multi-layer data management.

  16. PET Image Reconstruction Incorporating 3D Mean-Median Sinogram Filtering

    NASA Astrophysics Data System (ADS)

    Mokri, S. S.; Saripan, M. I.; Rahni, A. A. Abd; Nordin, A. J.; Hashim, S.; Marhaban, M. H.

    2016-02-01

    Positron Emission Tomography (PET) projection data or sinogram contained poor statistics and randomness that produced noisy PET images. In order to improve the PET image, we proposed an implementation of pre-reconstruction sinogram filtering based on 3D mean-median filter. The proposed filter is designed based on three aims; to minimise angular blurring artifacts, to smooth flat region and to preserve the edges in the reconstructed PET image. The performance of the pre-reconstruction sinogram filter prior to three established reconstruction methods namely filtered-backprojection (FBP), Maximum likelihood expectation maximization-Ordered Subset (OSEM) and OSEM with median root prior (OSEM-MRP) is investigated using simulated NCAT phantom PET sinogram as generated by the PET Analytical Simulator (ASIM). The improvement on the quality of the reconstructed images with and without sinogram filtering is assessed according to visual as well as quantitative evaluation based on global signal to noise ratio (SNR), local SNR, contrast to noise ratio (CNR) and edge preservation capability. Further analysis on the achieved improvement is also carried out specific to iterative OSEM and OSEM-MRP reconstruction methods with and without pre-reconstruction filtering in terms of contrast recovery curve (CRC) versus noise trade off, normalised mean square error versus iteration, local CNR versus iteration and lesion detectability. Overall, satisfactory results are obtained from both visual and quantitative evaluations.

  17. A Systematic Review and Meta-Analysis of the Campylobacter spp. Prevalence and Concentration in Household Pets and Petting Zoo Animals for Use in Exposure Assessments

    PubMed Central

    Pintar, Katarina D. M.; Christidis, Tanya; Thomas, M. Kate; Anderson, Maureen; Nesbitt, Andrea; Keithlin, Jessica; Marshall, Barbara; Pollari, Frank

    2015-01-01

    Animal contact is a potential transmission route for campylobacteriosis, and both domestic household pet and petting zoo exposures have been identified as potential sources of exposure. Research has typically focussed on the prevalence, concentration, and transmission of zoonoses from farm animals to humans, yet there are gaps in our understanding of these factors among animals in contact with the public who don’t live on or visit farms. This study aims to quantify, through a systematic review and meta-analysis, the prevalence and concentration of Campylobacter carriage in household pets and petting zoo animals. Four databases were accessed for the systematic review (PubMed, CAB direct, ProQuest, and Web of Science) for papers published in English from 1992–2012, and studies were included if they examined the animal population of interest, assessed prevalence or concentration with fecal, hair coat, oral, or urine exposure routes (although only articles that examined fecal routes were found), and if the research was based in Canada, USA, Europe, Australia, and New Zealand. Studies were reviewed for qualitative synthesis and meta-analysis by two reviewers, compiled into a database, and relevant studies were used to create a weighted mean prevalence value. There were insufficient data to run a meta-analysis of concentration values, a noted study limitation. The mean prevalence of Campylobacter in petting zoo animals is 6.5% based on 7 studies, and in household pets the mean is 24.7% based on 34 studies. Our estimated concentration values were: 7.65x103cfu/g for petting zoo animals, and 2.9x105cfu/g for household pets. These results indicate that Campylobacter prevalence and concentration are lower in petting zoo animals compared with household pets and that both of these animal sources have a lower prevalence compared with farm animals that do not come into contact with the public. There is a lack of studies on Campylobacter in petting zoos and/or fair animals in Canada and abroad. Within this literature, knowledge gaps were identified, and include: a lack of concentration data reported in the literature for Campylobacter spp. in animal feces, a distinction between ill and diarrheic pets in the reported studies, noted differences in shedding and concentrations for various subtypes of Campylobacter, and consistent reporting between studies. PMID:26683667

  18. A Systematic Review and Meta-Analysis of the Campylobacter spp. Prevalence and Concentration in Household Pets and Petting Zoo Animals for Use in Exposure Assessments.

    PubMed

    Pintar, Katarina D M; Christidis, Tanya; Thomas, M Kate; Anderson, Maureen; Nesbitt, Andrea; Keithlin, Jessica; Marshall, Barbara; Pollari, Frank

    2015-01-01

    Animal contact is a potential transmission route for campylobacteriosis, and both domestic household pet and petting zoo exposures have been identified as potential sources of exposure. Research has typically focussed on the prevalence, concentration, and transmission of zoonoses from farm animals to humans, yet there are gaps in our understanding of these factors among animals in contact with the public who don't live on or visit farms. This study aims to quantify, through a systematic review and meta-analysis, the prevalence and concentration of Campylobacter carriage in household pets and petting zoo animals. Four databases were accessed for the systematic review (PubMed, CAB direct, ProQuest, and Web of Science) for papers published in English from 1992-2012, and studies were included if they examined the animal population of interest, assessed prevalence or concentration with fecal, hair coat, oral, or urine exposure routes (although only articles that examined fecal routes were found), and if the research was based in Canada, USA, Europe, Australia, and New Zealand. Studies were reviewed for qualitative synthesis and meta-analysis by two reviewers, compiled into a database, and relevant studies were used to create a weighted mean prevalence value. There were insufficient data to run a meta-analysis of concentration values, a noted study limitation. The mean prevalence of Campylobacter in petting zoo animals is 6.5% based on 7 studies, and in household pets the mean is 24.7% based on 34 studies. Our estimated concentration values were: 7.65x103cfu/g for petting zoo animals, and 2.9x105cfu/g for household pets. These results indicate that Campylobacter prevalence and concentration are lower in petting zoo animals compared with household pets and that both of these animal sources have a lower prevalence compared with farm animals that do not come into contact with the public. There is a lack of studies on Campylobacter in petting zoos and/or fair animals in Canada and abroad. Within this literature, knowledge gaps were identified, and include: a lack of concentration data reported in the literature for Campylobacter spp. in animal feces, a distinction between ill and diarrheic pets in the reported studies, noted differences in shedding and concentrations for various subtypes of Campylobacter, and consistent reporting between studies.

  19. Pet exposure in utero and postnatal decreases the effects of air pollutants on hypertension in children: A large population based cohort study.

    PubMed

    Lawrence, Wayne R; Yang, Mo; Lin, Shao; Wang, Si-Quan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Hu, Li-Wen; Dong, Guang-Hui

    2018-07-01

    The effect of ambient air pollution exposure on childhood hypertension has emerged as a concern in China, and previous studies suggested pet ownership is associated with lower blood pressure (BP). However, limited information exists on the interactive effects pet ownership and air pollution exposure has on hypertension. We investigated the interactions between exposure to pet ownership and air pollutants on hypertension in Chinese children. 9354 students in twenty-four elementary and middle schools (aged 5-17 years) in Northeastern China were evaluated during 2012-2013. Four-year average concentrations of particulate matter with aerodynamic diameter of ≤10 μm (PM 10 ), SO 2 , NO 2 , and O 3 , were collected in the 24 districts from 2009 to 2012. Hypertension was defined as average diastolic or systolic BP (three time measurements) in the 95th percentile or higher based on height, age, and sex. To examine effects, two-level regression analysis was used, controlling covariates. Consistent interactions between exposure to pet and air pollutants were observed. Compared to children exposed to pet, those not exposed exhibited consistently stronger effects of air pollution. The highest odds ratios (ORs) per 30.6 μg/m 3 increase in PM 10 were 1.79 (95%confidence interval [95%CI]: 1.29-2.50) in children without current pet exposure compared to 1.24 (95%CI: 0.85-1.82) in children with current pet exposure. As for BP, only O 3 had an interaction for all exposure to pet ownership types, and showed lower BP in children exposed to pet. The increases in mean diastolic BP per 46.3 μg/m 3 increase in O 3 were 0.60  mmHg (95%CI: 0.21, 0.48) in children without pet exposure in utero compared with 0.34  mmHg (95%CI: 0.21, 0.48) in their counterparts. When stratified by age, pet exposure was more protective among younger children. In conclusion, in this large population-based cohort, pet ownership is associated with smaller associations between air pollution and hypertension in children, suggesting pet ownership reduces susceptibility to the health effects of pollutants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Diagnostic accuracy of fused positron emission tomography/magnetic resonance mammography: initial results.

    PubMed

    Heusner, T A; Hahn, S; Jonkmanns, C; Kuemmel, S; Otterbach, F; Hamami, M E; Stahl, A R; Bockisch, A; Forsting, M; Antoch, G

    2011-02-01

    The aim of this study was to evaluate the diagnostic accuracy of fused fluoro-deoxy-D-glucose positron emission tomography/magnetic resonance mammography (FDG-PET/MRM) in breast cancer patients and to compare FDG-PET/MRM with MRM. 27 breast cancer patients (mean age 58.9±9.9 years) underwent MRM and prone FDG-PET. Images were fused software-based to FDG-PET/MRM images. Histopathology served as the reference standard to define the following parameters for both MRM and FDG-PET/MRM: sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy for the detection of breast cancer lesions. Furthermore, the number of patients with correctly determined lesion focality was assessed. Differences between both modalities were assessed by McNemaŕs test (p<0.05). The number of patients in whom FDG-PET/MRM would have changed the surgical approach was determined. 58 breast lesions were evaluated. The sensitivity, specificity, PPV, NPV and accuracy were 93%, 60%, 87%, 75% and 85% for MRM, respectively. For FDG-PET/MRM they were 88%, 73%, 90%, 69% and 92%, respectively. FDG-PET/MRM was as accurate for lesion detection (p = 1) and determination of the lesions' focality (p = 0.7722) as MRM. In only 1 patient FDG-PET/MRM would have changed the surgical treatment. FDG-PET/MRM is as accurate as MRM for the evaluation of local breast cancer. FDG-PET/MRM defines the tumours' focality as accurately as MRM and may have an impact on the surgical treatment in only a small portion of patients. Based on these results, FDG-PET/MRM cannot be recommended as an adjunct or alternative to MRM.

  1. Aortitis in giant cell arteritis: diagnosis with FDG PET/CT and agreement with CT angiography.

    PubMed

    Hommada, Mona; Mekinian, Arsène; Brillet, Pierre-Yves; Abad, Sébastien; Larroche, Claire; Dhôte, Robin; Fain, Olivier; Soussan, Michael

    2017-11-01

    To assess the detection rate of aortitis in giant cell arteritis (GCA) with fluorodeoxyglucose positron emission tomography/computed tomography (PET) and to compare the findings with CT angiography (CTA). Fifty-two GCA patients and 27 controls were included. GCA patients had a PET scan at diagnosis (35/52) or during relapse (17/52). Concomitant CTA was performed in 35/52 patients. Aortitis was defined as FDG uptake higher than the liver for PET and wall thickness≥3mm for CTA. Agreement between PET and CTA was evaluated by the kappa coefficient and Spearman correlation coefficient. Aortitis was diagnosed using PET in 40% (14/35) of patients at diagnosis and in 0% of controls (0/27). Agreement was perfect between PET and CT at a patient-based level, and very good at a vascular segment-based level (kappa: 0.72 to 1). PET was positive in 35% (6/17) of patients scanned during GCA relapse, showing aortitis (n=4) and/or articular uptake (n=4). Discrepancies between PET and CT were observed only in relapsing GCA (n=3). Correlation between the maximum standardized uptake value and wall thickness was moderate at diagnosis (r: 0.57 to 0.7) and not statistically significant during relapse. The detection rate of aortitis in GCA patients using PET is 40%, approximately in the range of CTA rates, suggesting that the two techniques have similar sensitivity. PET seems valuable in relapsing GCA, allowing the detection of vascular and articular activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Recent Developments in PET Instrumentation

    PubMed Central

    Peng, Hao; Levin, Craig S.

    2013-01-01

    Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121

  3. Human tracking over camera networks: a review

    NASA Astrophysics Data System (ADS)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  4. Algorithm for lung cancer detection based on PET/CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2009-02-01

    The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.

  5. Reproducibility of MR-Based Attenuation Maps in PET/MRI and the Impact on PET Quantification in Lung Cancer.

    PubMed

    Olin, Anders; Ladefoged, Claes N; Langer, Natasha H; Keller, Sune H; Löfgren, Johan; Hansen, Adam E; Kjær, Andreas; Langer, Seppo W; Fischer, Barbara M; Andersen, Flemming L

    2018-06-01

    Quantitative PET/MRI is dependent on reliable and reproducible MR-based attenuation correction (MR-AC). In this study, we evaluated the quality of current vendor-provided thoracic MR-AC maps and further investigated the reproducibility of their impact on 18 F-FDG PET quantification in patients with non-small cell lung cancer. Methods: Eleven patients with inoperable non-small cell lung cancer underwent 2-5 thoracic PET/MRI scan-rescan examinations within 22 d. 18 F-FDG PET data were acquired along with 2 Dixon MR-AC maps for each examination. Two PET images (PET A and PET B ) were reconstructed using identical PET emission data but with MR-AC from these intrasubject repeated attenuation maps. In total, 90 MR-AC maps were evaluated visually for quality and the occurrence of categorized artifacts by 2 PET/MRI-experienced physicians. Each tumor was outlined by a volume of interest (40% isocontour of maximum) on PET A , which was then projected onto the corresponding PET B SUV mean and SUV max were assessed from the PET images. Within-examination coefficients of variation and Bland-Altman analyses were conducted for the assessment of SUV variations between PET A and PET B Results: Image artifacts were observed in 86% of the MR-AC maps, and 30% of the MR-AC maps were subjectively expected to affect the tumor SUV. SUV mean and SUV max resulted in coefficients of variation of 5.6% and 6.6%, respectively, and scan-rescan SUV variations were within ±20% in 95% of the cases. Substantial SUV variations were seen mainly for scan-rescan examinations affected by respiratory motion. Conclusion: Artifacts occur frequently in standard thoracic MR-AC maps, affecting the reproducibility of PET/MRI. These, in combination with other well-known sources of error associated with PET/MRI examinations, lead to inconsistent SUV measurements in serial studies, which may affect the reliability of therapy response assessment. A thorough visual inspection of the thoracic MR-AC map and Dixon images from which it is derived remains crucial for the detection of MR-AC artifacts that may influence the reliability of SUV. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Dynamic PET/CT measurements of induced positron activity in a prostate cancer patient after 50-MV photon radiation therapy.

    PubMed

    Janek Strååt, Sara; Jacobsson, Hans; Noz, Marilyn E; Andreassen, Björn; Näslund, Ingemar; Jonsson, Cathrine

    2013-01-23

    The purpose of this work was to reveal the research interest value of positron emission tomography (PET) imaging in visualizing the induced tissue activity post high-energy photon radiation treatment. More specifically, the focus was on the possibility of retrieving data such as tissue composition and physical half-lives from dynamic PET acquisitions, as positron-emitting radionuclides such as 15O, 11C, and 13N are produced in vivo during radiation treatment with high-energy photons (>15 MeV). The type, amount, and distribution of induced positron-emitting radionuclides depend on the irradiated tissue cross section, the photon spectrum, and the possible perfusion-driven washout. A 62-year-old man diagnosed with prostate cancer was referred for palliative radiation treatment of the pelvis minor. A total dose of 8 Gy was given using high-energy photon beams (50 MV) with a racetrack microtron, and 7 min after the end of irradiation, the patient was positioned in a PET/computed tomography (CT) camera, and a list-mode acquisition was performed for 30 min. Two volumes of interests (VOIs) were positioned on the dynamic PET/CT images, one in the urinary bladder and the other in the subcutaneous fat. Analysis of the measured relative count rate was performed in order to compute the tissue compositions and physical half-lives in the two regions. Dynamic analysis from the two VOIs showed that the decay constants of activated oxygen and carbon could be deduced. Calculation of tissue composition from analyzing the VOI containing subcutaneous fat only moderately agreed with that of the tabulated International Commission on Radiation Units & Measurements (ICRU) data of the adipose tissue. However, the same analysis for the bladder showed a good agreement with that of the tabulated ICRU data. PET can be used in visualizing the induced activity post high-energy photon radiation treatment. Despite the very low count rate in this specific application, wherein 7 min after treatment was about 5% of that of a standard 18F-FDG PET scan, the distribution of activated tissue elements (15O and 11C) could be calculated from the dynamic PET data. One possible future application of this method could possibly be to measure and determine the tumor tissue composition in order to identify any hypoxic or necrotic region, which is information that can be used in the ongoing therapy planning process. The official name of the trial committee of this study is 'Regionala etikprövningsnämnden i Stockholm' (FE 289, Stockholm, SE-17177, Sweden). The unique identifying number is 2011/1789-31/2.

  7. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  8. Assessing FDG-PET diagnostic accuracy studies to develop recommendations for clinical use in dementia.

    PubMed

    Boccardi, Marina; Festari, Cristina; Altomare, Daniele; Gandolfo, Federica; Orini, Stefania; Nobili, Flavio; Frisoni, Giovanni B

    2018-04-30

    FDG-PET is frequently used as a marker of synaptic damage to diagnose dementing neurodegenerative disorders. We aimed to adapt the items of evidence quality to FDG-PET diagnostic studies, and assess the evidence available in current literature to assist Delphi decisions for European recommendations for clinical use. Based on acknowledged methodological guidance, we defined the domains, specific to FDG-PET, required to assess the quality of evidence in 21 literature searches addressing as many Population Intervention Comparison Outcome (PICO) questions. We ranked findings for each PICO and fed experts making Delphi decisions for recommending clinical use. Among the 1435 retrieved studies, most lacked validated measures of test performance, an adequate gold standard, and head-to-head comparison of FDG-PET and clinical diagnosis, and only 58 entered detailed assessment. Only two studies assessed the accuracy of the comparator (clinical diagnosis) versus any kind of gold-/reference-standard. As to the index-test (FDG-PET-based diagnosis), an independent gold-standard was available in 24% of the examined papers; 38% used an acceptable reference-standard (clinical follow-up); and 38% compared FDG-PET-based diagnosis only to baseline clinical diagnosis. These methodological limitations did not allow for deriving recommendations from evidence. An incremental diagnostic value of FDG-PET versus clinical diagnosis or lack thereof cannot be derived from the current literature. Many of the observed limitations may easily be overcome, and we outlined them as research priorities to improve the quality of current evidence. Such improvement is necessary to outline evidence-based guidelines. The available data were anyway provided to expert clinicians who defined interim recommendations.

  9. Sci—Thur AM: YIS - 08: Constructing an Attenuation map for a PET/MR Breast coil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, John C.; Imaging, Lawson Health Research Institute, Knoxville, TN; London Regional Cancer Program, Knoxville, TN

    2014-08-15

    In 2013, around 23000 Canadian women and 200 Canadian men were diagnosed with breast cancer. An estimated 5100 women and 55 men died from the disease. Using the sensitivity of MRI with the selectivity of PET, PET/MRI combines anatomical and functional information within the same scan and could help with early detection in high-risk patients. MRI requires radiofrequency coils for transmitting energy and receiving signal but the breast coil attenuates PET signal. To correct for this PET attenuation, a 3-dimensional map of linear attenuation coefficients (μ-map) of the breast coil must be created and incorporated into the PET reconstruction process.more » Several approaches have been proposed for building hardware μ-maps, some of which include the use of conventional kVCT and Dual energy CT. These methods can produce high resolution images based on the electron densities of materials that can be converted into μ-maps. However, imaging hardware containing metal components with photons in the kV range is susceptible to metal artifacts. These artifacts can compromise the accuracy of the resulting μ-map and PET reconstruction; therefore high-Z components should be removed. We propose a method for calculating μ-maps without removing coil components, based on megavoltage (MV) imaging with a linear accelerator that has been detuned for imaging at 1.0MeV. Containers of known geometry with F18 were placed in the breast coil for imaging. A comparison between reconstructions based on the different μ-map construction methods was made. PET reconstructions with our method show a maximum of 6% difference over the existing kVCT-based reconstructions.« less

  10. Improvement of semi-quantitative small-animal PET data with recovery coefficients: a phantom and rat study.

    PubMed

    Aide, Nicolas; Louis, Marie-Hélène; Dutoit, Soizic; Labiche, Alexandre; Lemoisson, Edwige; Briand, Mélanie; Nataf, Valérie; Poulain, Laurent; Gauduchon, Pascal; Talbot, Jean-Noël; Montravers, Françoise

    2007-10-01

    To evaluate the accuracy of semi-quantitative small-animal PET data, uncorrected for attenuation, and then of the same semi-quantitative data corrected by means of recovery coefficients (RCs) based on phantom studies. A phantom containing six fillable spheres (diameter range: 4.4-14 mm) was filled with an 18F-FDG solution (spheres/background activity=10.1, 5.1 and 2.5). RCs, defined as measured activity/expected activity, were calculated. Nude rats harbouring tumours (n=50) were imaged after injection of 18F-FDG and sacrificed. The standardized uptake value (SUV) in tumours was determined with small-animal PET and compared to ex-vivo counting (ex-vivo SUV). Small-animal PET SUVs were corrected with RCs based on the greatest tumour diameter. Tumour proliferation was assessed with cyclin A immunostaining and correlated to the SUV. RCs ranged from 0.33 for the smallest sphere to 0.72 for the largest. A sigmoidal correlation was found between RCs and sphere diameters (r(2)=0.99). Small-animal PET SUVs were well correlated with ex-vivo SUVs (y=0.48x-0.2; r(2)=0.71) and the use of RCs based on the greatest tumour diameter significantly improved regression (y=0.84x-0.81; r(2)=0.77), except for tumours with important necrosis. Similar results were obtained without sacrificing animals, by using PET images to estimate tumour dimensions. RC-based corrections improved correlation between small-animal PET SUVs and tumour proliferation (uncorrected data: Rho=0.79; corrected data: Rho=0.83). Recovery correction significantly improves both accuracy of small-animal PET semi-quantitative data in rat studies and their correlation with tumour proliferation, except for largely necrotic tumours.

  11. The origins of SPECT and SPECT/CT.

    PubMed

    Hutton, Brian F

    2014-05-01

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.

  12. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging

    PubMed Central

    Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.

    2017-01-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time. PMID:29270539

  13. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  14. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    PubMed Central

    Yang, Qiyao; Wang, Zhiguo; Zhang, Guoxu

    2017-01-01

    The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS) method and a dynamic threshold denoising (DTD) method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair) of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933) on feature images and less Euclidean distance error (ED = 2.826) on landmark points, outperforming the source data (NC = −0.496, ED = 25.847) and the compared method (NC = −0.614, ED = 16.085). Moreover, our method is about ten times faster than the compared one. PMID:28316979

  15. Fusion of multi-tracer PET images for dose painting.

    PubMed

    Lelandais, Benoît; Ruan, Su; Denœux, Thierry; Vera, Pierre; Gardin, Isabelle

    2014-10-01

    PET imaging with FluoroDesoxyGlucose (FDG) tracer is clinically used for the definition of Biological Target Volumes (BTVs) for radiotherapy. Recently, new tracers, such as FLuoroThymidine (FLT) or FluoroMisonidazol (FMiso), have been proposed. They provide complementary information for the definition of BTVs. Our work is to fuse multi-tracer PET images to obtain a good BTV definition and to help the radiation oncologist in dose painting. Due to the noise and the partial volume effect leading, respectively, to the presence of uncertainty and imprecision in PET images, the segmentation and the fusion of PET images is difficult. In this paper, a framework based on Belief Function Theory (BFT) is proposed for the segmentation of BTV from multi-tracer PET images. The first step is based on an extension of the Evidential C-Means (ECM) algorithm, taking advantage of neighboring voxels for dealing with uncertainty and imprecision in each mono-tracer PET image. Then, imprecision and uncertainty are, respectively, reduced using prior knowledge related to defects in the acquisition system and neighborhood information. Finally, a multi-tracer PET image fusion is performed. The results are represented by a set of parametric maps that provide important information for dose painting. The performances are evaluated on PET phantoms and patient data with lung cancer. Quantitative results show good performance of our method compared with other methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. F-18-FDG-PET Confined Radiotherapy of Locally Advanced NSCLC With Concomitant Chemotherapy: Results of the PET-PLAN Pilot Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleckenstein, Jochen; Hellwig, Dirk; Kremp, Stephanie

    2011-11-15

    Purpose: The integration of fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) in the process of radiotherapy (RT) planning of locally advanced non-small-cell lung cancer (NSCLC) may improve diagnostic accuracy and minimize interobserver variability compared with target volume definition solely based on computed tomography. Furthermore, irradiating only FDG-PET-positive findings and omitting elective nodal regions may allow dose escalation by treating smaller volumes. The aim of this prospective pilot trial was to evaluate the therapeutic safety of FDG-PET-based RT treatment planning with an autocontour-derived delineation of the primary tumor. Methods and Materials: Eligible patients had Stages II-III inoperable NSCLC, and simultaneous, platinum-based radiochemotherapy wasmore » indicated. FDG-PET and computed tomography acquisitions in RT treatment planning position were coregistered. The clinical target volume (CTV) included the FDG-PET-defined primary tumor, which was autodelineated with a source-to-background algorithm, plus FDG-PET-positive lymph node stations. Limited by dose restrictions for normal tissues, prescribed total doses were in the range of 66.6 to 73.8 Gy. The primary endpoint was the rate of out-of-field isolated nodal recurrences (INR). Results: As per intent to treat, 32 patients received radiochemotherapy. In 15 of these patients, dose escalation above 66.6 Gy was achieved. No Grade 4 toxicities occurred. After a median follow-up time of 27.2 months, the estimated median survival time was 19.3 months. During the observation period, one INR was observed in 23 evaluable patients. Conclusions: FDG-PET-confined target volume definition in radiochemotherapy of NSCLC, based on a contrast-oriented source-to-background algorithm, was associated with a low risk of INR. It might provide improved tumor control because of dose escalation.« less

  17. Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector

    NASA Astrophysics Data System (ADS)

    Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho

    2017-04-01

    There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.

  18. A PET Tracer for Renal Organic Cation Transporters, ¹¹C-Metformin: Radiosynthesis and Preclinical Proof-of-Concept Studies.

    PubMed

    Jakobsen, Steen; Busk, Morten; Jensen, Jonas Brorson; Munk, Ole Lajord; Zois, Nora Elisabeth; Alstrup, Aage K O; Jessen, Niels; Frøkiær, Jørgen

    2016-04-01

    Organic cation transporters (OCTs) in the kidney proximal tubule (PT) participate in renal excretion of drugs and endogenous compounds. PT function is commonly impaired in kidney diseases, and consequently quantitative measurement of OCT function may provide an important estimate of kidney function. Metformin is a widely used drug and targets OCT type 2 located in the PT. Thus, we hypothesized that (11)C-labeled metformin would be a suitable PET tracer for quantification of renal function. (11)C-metformin was prepared by (11)C-methylation of 1-methylbiguanide. In vitro cell uptake of (11)C-metformin was studied in LLC-PK1 cells in the presence of increasing doses of unlabeled metformin. In vivo small-animal PET studies in Sprague-Dawley rats were performed at baseline and after treatment with OCT inhibitors to evaluate renal uptake of (11)C-metformin. Kidney and liver pharmacokinetics of (11)C-metformin was investigated in vivo by dynamic (11)C-metformin PET/CT in 6 anesthetized pigs, and renal clearance of (11)C-metformin was compared with renal clearance of (51)Cr-ethylenediaminetetraacetic acid (EDTA). Formation of (11)C metabolites was investigated by analysis of blood and urine samples. The radiochemical yield of (11)C-metformin was 15% ± 3% (n= 40, decay-corrected), and up to 1.5 GBq of tracer were produced with a radiochemical purity greater than 95% in less than 30 min. Dose-dependent uptake of (11)C-metformin in LLC-PK1 cells was rapid. Rat small-animal PET images showed (11)C-metformin uptake in the kidney and liver, the kinetics of which were changed after challenging animals with OCT inhibitors. In pigs, 80% of the injected metformin dose was rapidly present in the kidney, and a high dose of metformin caused a delayed renal uptake and clearance compared with baseline consistent with transporter-mediated competition. Renal clearance of (11)C-metformin was approximately 3 times the renal clearance of (51)Cr-EDTA. We successfully synthesized an (11)C-metformin tracer, and PET studies in rats and pigs showed a rapid kidney uptake from the blood and excretion into the bladder similar to other radiopharmaceuticals developed for γ-camera renography. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data.

    PubMed

    Fuin, Niccolo; Pedemonte, Stefano; Catalano, Onofrio A; Izquierdo-Garcia, David; Soricelli, Andrea; Salvatore, Marco; Heberlein, Keith; Hooker, Jacob M; Van Leemput, Koen; Catana, Ciprian

    2017-05-01

    We present a novel technique for accurate whole-body attenuation correction in the presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MRI scanners. The proposed implant PET-based attenuation map completion (IPAC) method performs a joint reconstruction of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner. The attenuation coefficients in the area of the MR image subjected to metal susceptibility artifacts are then reconstructed from the PET emission data using the IPAC algorithm. The method was tested on 11 subjects presenting 13 different metallic implants, who underwent CT and PET/MR scans. Relative mean LACs and Dice similarity coefficients were calculated to determine the accuracy of the reconstructed attenuation values and the shape of the metal implant, respectively. The reconstructed PET images were compared with those obtained using the reference CT-based approach and the Dixon-based method. Absolute relative change (aRC) images were generated in each case, and voxel-based analyses were performed. Results: The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7% ± 7.8%, which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A mean Dice similarity coefficient of 73% ± 9% was obtained when comparing the IPAC- with the CT-derived implant shape. The voxel-based analysis of the reconstructed PET images revealed quantification errors (aRC) of 13.2% ± 22.1% for the IPAC- with respect to CT-corrected images. The Dixon-based method performed substantially worse, with a mean aRC of 23.1% ± 38.4%. Conclusion: We have presented a non-TOF emission-based approach for estimating the attenuation map in the presence of metallic implants, to be used for whole-body attenuation correction in integrated PET/MR scanners. The Graphics Processing Unit implementation of the algorithm will be included in the open-source reconstruction toolbox Occiput.io. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.

    PubMed

    Toy, Süleyman; Kántor, Noémi

    2017-01-01

    Human thermal comfort conditions can be evaluated using various indices based on simple empirical approaches or more complex and reliable human-biometeorological approaches. The latter is based on the energy balance model of the human body, and their calculation is supplemented with computer software. Facilitating the interpretation of results, the generally applied indices express the effects of thermal environment in the well-known temperature unit, just like in the case of the widely used index, the physiologically equivalent temperature (PET). Several studies adopting PET index for characterizing thermal components of climate preferred to organize the resulted PET values into thermal sensation categories in order to demonstrate the spatial and/or temporal characteristics of human thermal comfort conditions. The most general applied PET ranges were derived by Central European researchers, and they are valid for assumed values of internal heat production of light activity and thermal resistance of clothing representing a light business suit. Based on the example of Erzurum city, the present work demonstrates that in a city with harsh winter, the original PET ranges show almost purely discomfort and they seem to be less applicable regarding cold climate conditions. Taking into account 34-year climate data of Erzurum, the annual distribution of PET is presented together with the impact of application of different PET categorization systems, including 8°- and 7°-wide PET intervals. The demonstrated prior analyses lack any questionnaire filed surveys in Erzurum. Thus, as a next step, detailed field investigations would be required with the aim of definition of new PET categorization systems which are relevant for local residents who are adapted to this climatic background, and for tourists who may perform various kinds of winter activities in Erzurum and therefore may perceive the thermal environment more comfortable.

  1. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less

  2. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-03-01

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.

  3. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Anna M.

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2.more » Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.« less

  4. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-07

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.

  5. FPGA-based RF interference reduction techniques for simultaneous PET-MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.

  6. Deformation field correction for spatial normalization of PET images

    PubMed Central

    Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.

    2015-01-01

    Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272

  7. Effects of storage temperature and time of antimony release from PET bottles into drinking water in China.

    PubMed

    Qiao, Fei; Lei, Kun; Li, Zicheng; Liu, Qing; Wei, Zhanliang; An, Lihui; Qi, Hongli; Cui, Song

    2018-01-01

    Antimony (Sb) concentrations were measured in 10 brands of PET bottled drinking water available in supermarkets in China. To simulate general storage habits based on market research, these PET bottles with drinking water were stored for 4 weeks in a lab or a car trunk during the summer. Although the PET package material of brand A had the lowest Sb level (142.71 ± 29.81 μg/g), it showed a significant increase in Sb concentrations when stored in both the car trunk and the lab. There was significant release of Sb from the PET bottles into the water following 24 h of incubation at ≥ 40 °C (40, 50, 60, and 70 °C), especially at 70 °C. The potential health risk of Sb release from PET bottles was calculated based on daily intake values and determined to be acceptable for consumers under normal storage conditions.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torlakoglu, A.; Gueclue, G.

    Waste polyethylene terephthalate (PET) flakes were depolymerized by using propylene glycol (PG) in the presence of zinc acetate as catalyst. Glycolysis reaction products of waste PET obtained by using PET/glycol molar ratio 1/2. Two short oil alkyd resins of high acid values (30-40 mgKOH/g) were prepared from phthalic anhydride (PA), glycerin (G), coconut oil fatty acids (COFA) and glycolyzed products of waste PET (PET-based alkyd resins) or glycols (PG) (reference alkyd resins). These alkyd resins were blended with 30%, 40%, and 50% of a commercial urea-formaldehyde, melamine-formaldehyde and urea-formaldehyde/melamine-formaldehyde mixture (1/1 weight ratio) and heated at 140 deg. C. Themore » physical and chemical properties such as drying time, hardness, abrasion resistance, adhesion strength, water resistance, alkaline resistance, acid resistance, gelation time, and thermal oxidative degradation resistance (with thermogravimetric analysis, TGA) of these alkyd-amino resins were investigated. The properties of the waste PET-based resins were found to be compatible with the properties of the reference resins.« less

  9. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  10. Use of PET and Other Functional Imaging to Guide Target Delineation in Radiation Oncology.

    PubMed

    Verma, Vivek; Choi, J Isabelle; Sawant, Amit; Gullapalli, Rao P; Chen, Wengen; Alavi, Abass; Simone, Charles B

    2018-06-01

    Molecular and functional imaging is increasingly being used to guide radiotherapy (RT) management and target delineation. This review summarizes existing data in several disease sites of various functional imaging modalities, chiefly positron emission tomography/computed tomography (PET/CT), with respect to RT target definition and management. For gliomas, differentiation between postoperative changes and viable tumor is discussed, as well as focal dose escalation and reirradiation. Head and neck neoplasms may also benefit from precise PET/CT-based target delineation, especially for cancers of unknown primary; focal dose escalation is also described. In lung cancer, PET/CT can influence coverage of tumor volumes, dose escalation, and adaptive management. For cervical cancer, PET/CT as an adjunct to magnetic resonance imaging planning is discussed, as are dose escalation and delineation of avoidance targets such as the bone marrow. The emerging role of choline-based PET for prostate cancer and its impact on dose escalation is also described. Lastly, given the essential role of PET/CT for target definition in lymphoma, phase III trials of PET-directed management are reviewed, along with novel imaging modalities. Taken together, molecular and functional imaging approaches offer a major step to individualize radiotherapeutic care going forward. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Whole-body MRI including diffusion-weighted MRI compared with 5-HTP PET/CT in the detection of neuroendocrine tumors

    PubMed Central

    Carlbom, Lina; Caballero-Corbalán, José; Granberg, Dan; Sörensen, Jens; Eriksson, Barbro; Ahlström, Håkan

    2017-01-01

    Aim We wanted to explore if whole-body magnetic resonance imaging (MRI) including diffusion-weighted (DW) and liver-specific contrast agent-enhanced imaging could be valuable in lesion detection of neuroendocrine tumors (NET). [11C]-5-Hydroxytryptophan positron emission tomography/computed tomography (5-HTP PET/CT) was used for comparison. Materials and methods Twenty-one patients with NET were investigated with whole-body MRI, including DW imaging (DWI) and contrast-enhanced imaging of the liver, and whole-body 5-HTP PET/CT. Seven additional patients underwent upper abdomen MRI including DWI, liver-specific contrast agent-enhanced imaging, and 5-HTP PET/CT. Results There was a patient-based concordance of 61% and a lesion-based concordance of 53% between the modalities. MRI showed good concordance with PET in detecting bone metastases but was less sensitive in detecting metastases in mediastinal lymph nodes. MRI detected more liver metastases than 5-HTP PET/CT. Conclusion Whole-body MRI with DWI did not detect all NET lesions found with whole-body 5-HTP PET/CT. Our findings indicate that MRI of the liver including liver-specific contrast agent-enhanced imaging and DWI could be a useful complement to whole-body 5-HTP PET/CT. PMID:27894208

  12. A PET/CT-Based Strategy Is a Stronger Predictor of Survival Than a Standard Imaging Strategy in Patients with Head and Neck Squamous Cell Carcinoma.

    PubMed

    Rohde, Max; Nielsen, Anne L; Pareek, Manan; Johansen, Jørgen; Sørensen, Jens A; Diaz, Anabel; Nielsen, Mie K; Christiansen, Janus M; Asmussen, Jon T; Nguyen, Nina; Gerke, Oke; Thomassen, Anders; Alavi, Abass; Høilund-Carlsen, Poul Flemming; Godballe, Christian

    2018-04-01

    Our purpose was to examine whether staging of head and neck squamous cell carcinoma (HNSCC) by upfront 18 F-FDG PET/CT (i.e., on the day of biopsy and before the biopsy) discriminates survival better than the traditional imaging strategies based on chest x-ray plus head and neck MRI (CXR/MRI) or chest CT plus head and neck MRI (CCT/MRI). Methods: We performed a masked prospective cohort study based on paired data. Consecutive patients with histologically verified primary HNSCC were recruited from Odense University Hospital from September 2013 to March 2016. All patients underwent CXR/MRI, CCT/MRI, and PET/CT on the same day. Tumors were categorized as localized (stages I and II), locally advanced (stages III and IVB), or metastatic (stage IVC). Discriminative ability for each imaging modality with respect to HNSCC staging were compared using Kaplan-Meier analysis, Cox proportional hazards regression with the Harrell C-index, and net reclassification improvement. Results: In total, 307 patients with histologically verified HNSCC were included. Use of PET/CT significantly altered the stratification of tumor stage when compared with either CXR/MRI or CCT/MRI (χ 2 , P < 0.001 for both). Cancer stages based on PET/CT, but not CXR/MRI or CCT/MRI, were associated with significant differences in mortality risk on Kaplan-Meier analyses ( P ≤ 0.002 for all PET/CT-based comparisons). Furthermore, overall discriminative ability was significantly greater for PET/CT (C-index, 0.712) than for CXR/MRI (C-index, 0.675; P = 0.04) or CCT/MRI (C-index, 0.657; P = 0.02). Finally, PET/CT was significantly associated with a positive net reclassification improvement when compared with CXR/MRI (0.184, P = 0.03) but not CCT/MRI (0.094%, P = 0.31). Conclusion: Tumor stages determined by PET/CT were associated with more distinct prognostic properties in terms of survival than those determined by standard imaging strategies. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas.

    PubMed

    Röhrich, Manuel; Huang, Kristin; Schrimpf, Daniel; Albert, Nathalie L; Hielscher, Thomas; von Deimling, Andreas; Schüller, Ulrich; Dimitrakopoulou-Strauss, Antonia; Haberkorn, Uwe

    2018-05-07

    Dynamic 18 F-FET PET/CT is a powerful tool for the diagnosis of gliomas. 18 F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18 F-FET PET data, and the histological and epigenetic features of 44 gliomas. Dynamic 18 F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18 F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850 K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18 F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis. Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by methylation analysis. Multivariate analysis revealed slightly greater diagnostic accuracy with methylation-based diagnosis. IDH-mutant gliomas and GBM subgroups tended to differ in their 18 F-FET PET kinetics. The status of dynamic 18 F-FET PET as a biologically and clinically relevant imaging modality is confirmed in the context of molecular glioma diagnosis.

  14. Dental artifacts in the head and neck region: implications for Dixon-based attenuation correction in PET/MR.

    PubMed

    Ladefoged, Claes N; Hansen, Adam E; Keller, Sune H; Fischer, Barbara M; Rasmussen, Jacob H; Law, Ian; Kjær, Andreas; Højgaard, Liselotte; Lauze, Francois; Beyer, Thomas; Andersen, Flemming L

    2015-12-01

    In the absence of CT or traditional transmission sources in combined clinical positron emission tomography/magnetic resonance (PET/MR) systems, MR images are used for MR-based attenuation correction (MR-AC). The susceptibility effects due to metal implants challenge MR-AC in the neck region of patients with dental implants. The purpose of this study was to assess the frequency and magnitude of subsequent PET image distortions following MR-AC. A total of 148 PET/MR patients with clear visual signal voids on the attenuation map in the dental region were included in this study. Patients were injected with [(18)F]-FDG, [(11)C]-PiB, [(18)F]-FET, or [(64)Cu]-DOTATATE. The PET/MR data were acquired over a single-bed position of 25.8 cm covering the head and neck. MR-AC was based on either standard MR-ACDIXON or MR-ACINPAINTED where the susceptibility-induced signal voids were substituted with soft tissue information. Our inpainting algorithm delineates the outer contour of signal voids breaching the anatomical volume using the non-attenuation-corrected PET image and classifies the inner air regions based on an aligned template of likely dental artifact areas. The reconstructed PET images were evaluated visually and quantitatively using regions of interests in reference regions. The volume of the artifacts and the computed relative differences in mean and max standardized uptake value (SUV) between the two PET images are reported. The MR-based volume of the susceptibility-induced signal voids on the MR-AC attenuation maps was between 1.6 and 520.8 mL. The corresponding/resulting bias of the reconstructed tracer distribution was localized mainly in the area of the signal void. The mean and maximum SUVs averaged across all patients increased after inpainting by 52% (± 11%) and 28% (± 11%), respectively, in the corrected region. SUV underestimation decreased with the distance to the signal void and correlated with the volume of the susceptibility artifact on the MR-AC attenuation map. Metallic dental work may cause severe MR signal voids. The resulting PET/MR artifacts may exceed the actual volume of the dental fillings. The subsequent bias in PET is severe in regions in and near the signal voids and may affect the conspicuity of lesions in the mandibular region.

  15. A fully automated and scalable timing probe-based method for time alignment of the LabPET II scanners

    NASA Astrophysics Data System (ADS)

    Samson, Arnaud; Thibaudeau, Christian; Bouchard, Jonathan; Gaudin, Émilie; Paulin, Caroline; Lecomte, Roger; Fontaine, Réjean

    2018-05-01

    A fully automated time alignment method based on a positron timing probe was developed to correct the channel-to-channel coincidence time dispersion of the LabPET II avalanche photodiode-based positron emission tomography (PET) scanners. The timing probe was designed to directly detect positrons and generate an absolute time reference. The probe-to-channel coincidences are recorded and processed using firmware embedded in the scanner hardware to compute the time differences between detector channels. The time corrections are then applied in real-time to each event in every channel during PET data acquisition to align all coincidence time spectra, thus enhancing the scanner time resolution. When applied to the mouse version of the LabPET II scanner, the calibration of 6 144 channels was performed in less than 15 min and showed a 47% improvement on the overall time resolution of the scanner, decreasing from 7 ns to 3.7 ns full width at half maximum (FWHM).

  16. TU-F-12A-05: Sensitivity of Textural Features to 3D Vs. 4D FDG-PET/CT Imaging in NSCLC Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Nyflot, M; Bowen, S

    2014-06-15

    Purpose: Neighborhood Gray-level difference matrices (NGLDM) based texture parameters extracted from conventional (3D) 18F-FDG PET scans in patients with NSCLC have been previously shown to associate with response to chemoradiation and poorer patient outcome. However, the change in these parameters when utilizing respiratory-correlated (4D) FDG-PET scans has not yet been characterized for NSCLC. The Objectives: of this study was to assess the extent to which NGLDM-based texture parameters on 4D PET images vary with reference to values derived from 3D scans in NSCLC. Methods: Eight patients with newly diagnosed NSCLC treated with concomitant chemoradiotherapy were included in this study. 4Dmore » PET scans were reconstructed with OSEM-IR in 5 respiratory phase-binned images and corresponding CT data of each phase were employed for attenuation correction. NGLDM-based texture features, consisting of coarseness, contrast, busyness, complexity and strength, were evaluated for gross tumor volumes defined on 3D/4D PET scans by radiation oncologists. Variation of the obtained texture parameters over the respiratory cycle were examined with respect to values extracted from 3D scans. Results: Differences between texture parameters derived from 4D scans at different respiratory phases and those extracted from 3D scans ranged from −30% to 13% for coarseness, −12% to 40% for contrast, −5% to 50% for busyness, −7% to 38% for complexity, and −43% to 20% for strength. Furthermore, no evident correlations were observed between respiratory phase and 4D scan texture parameters. Conclusion: Results of the current study showed that NGLDM-based texture parameters varied considerably based on choice of 3D PET and 4D PET reconstruction of NSCLC patient images, indicating that standardized image acquisition and analysis protocols need to be established for clinical studies, especially multicenter clinical trials, intending to validate prognostic values of texture features for NSCLC.« less

  17. [18F]FDG PET/CT-based response assessment of stage IV non-small cell lung cancer treated with paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches.

    PubMed

    de Jong, Evelyn E C; van Elmpt, Wouter; Leijenaar, Ralph T H; Hoekstra, Otto S; Groen, Harry J M; Smit, Egbert F; Boellaard, Ronald; van der Noort, Vincent; Troost, Esther G C; Lambin, Philippe; Dingemans, Anne-Marie C

    2017-01-01

    Nitroglycerin (NTG) is a vasodilating drug, which increases tumor blood flow and consequently decreases hypoxia. Therefore, changes in [18F] fluorodeoxyglucose positron emission tomography ([18F]FDG PET) uptake pattern may occur. In this analysis, we investigated the feasibility of [18F]FDG PET for response assessment to paclitaxel-carboplatin-bevacizumab (PCB) treatment with and without NTG patches. And we compared the [18F]FDG PET response assessment to RECIST response assessment and survival. A total of 223 stage IV non-small cell lung cancer (NSCLC) patients were included in a phase II study (NCT01171170) randomizing between PCB treatment with or without NTG patches. For 60 participating patients, a baseline and a second [18F]FDG PET/computed tomography (CT) scan, performed between day 22 and 24 after the start of treatment, were available. Tumor response was defined as a 30 % decrease in CT and PET parameters, and was compared to RECIST response at week 6. The predictive value of these assessments for progression free survival (PFS) and overall survival (OS) was assessed with and without NTG. A 30 % decrease in SUVpeak assessment identified more patients as responders compared to a 30 % decrease in CT diameter assessment (73 % vs. 18 %), however, this was not correlated to OS (SUVpeak30 p = 0.833; CTdiameter30 p = 0.557). Changes in PET parameters between the baseline and the second scan were not significantly different for the NTG group compared to the control group (p value range 0.159-0.634). The CT-based (part of the [18F]FDG PET/CT) parameters showed a significant difference between the baseline and the second scan for the NTG group compared to the control group (CT diameter decrease of 7 ± 23 % vs. 19 ± 14 %, p = 0.016, respectively). The decrease in tumoral FDG uptake in advanced NSCLC patients treated with chemotherapy with and without NTG did not differ between both treatment arms. Early PET-based response assessment showed more tumor responders than CT-based response assessment (part of the [18F]FDG PET/CT); this was not correlated to survival. This might be due to timing of the [18F]FDG PET shortly after the bevacizumab infusion.

  18. PET/CT versus body coil PET/MRI: how low can you go?

    PubMed

    Appenzeller, P; Mader, C; Huellner, M W; Schmidt, D; Schmid, D; Boss, A; von Schulthess, G; Veit-Haibach, P

    2013-08-01

    The purpose of this study was to evaluate if positron emission tomography (PET)/magnetic resonance imaging (MRI) with just one gradient echo sequence using the body coil is diagnostically sufficient compared with a standard, low-dose non-contrast-enhanced PET/computed tomography (CT) concerning overall diagnostic accuracy, lesion detectability, size and conspicuity evaluation. Sixty-three patients (mean age 58 years, range 19-86 years; 23 women, 40 men) referred for either staging or restaging/follow-up of various malignant tumours (malignant melanoma, lung cancer, breast cancer, Hodgkin's lymphoma, non-Hodgkin's lymphoma, CUP, gynaecology tumours, pleural mesothelioma, oesophageal cancer, colorectal cancer, stomach cancer) were prospectively included. Imaging was conducted using a tri-modality PET/CT-MR set-up (full ring, time-of-flight Discovery PET/CT 690, 3 T Discovery MR 750, both GE Healthcare, Waukesha, WI). All patients were positioned on a dedicated PET/CT- and MR-compatible examination table, allowing for patient transport from the MR system to the PET/CT without patient movement. In accordance with RECIST 1.1 criteria, measurements of the maximum lesion diameters on CT and MR images were obtained. In lymph nodes, the short axis was measured. A four-point scale was used for assessment of lesion conspicuity: 1 (>25 % of lesion borders definable), 2 (25-50 %), 3 (50-75 %) and 4 (>75 %). For each lesion the corresponding anatomical structure was noted based on anatomical information of the spatially co-registered PET/CT and PET/MRI image sections. Additionally, lesions were divided into three categories: "tumour mass", "lymph nodes" and "lesions". Differences in overall lesion detectability and conspicuity in PET/CT and PET/MRI, as well as differences in detectability based on the localisation and lesion type, were analysed by Wilcoxon signed rank test. A total of 126 PET-positive lesions were evaluated. Overall, no statistically significant superiority of PET/CT over PET/MRI or vice versa in terms of lesion conspicuity was found (p = 0.095; mean score CT 2.93, mean score MRI 2.75). A statistically significant superiority concerning conspicuity of PET/CT over PET/MRI was found in pulmonary lesions (p = 0.016). Additionally, a statistically significant superiority of PET/CT over PET/MRI in "lymph nodes" regarding lesion conspicuity was also found (p = 0.033). A higher mean score concerning bone lesions were found for PET/CT compared with PET/MRI; however, these differences did not achieve statistical significance. Overall, PET/MRI with body coil acquisition does not match entirely the diagnostic accuracy of standard low-dose PET/CT. Thus, it might only serve as a back-up solution in very few patients. Overall, more time needs to be invested on the MR imaging part (higher matrix, more breath-holds, additional surface coil acquired sequences) to match up with the standard low-dose PET/CT. • Evaluation of whether PET/MRI with one sequence using body coil is diagnostically sufficient compared with PET/CT • PET/MRI with body coil does not match entirely the diagnostic accuracy of standard low-dose PET/CT • PET/MRI might only serve as a backup solution in patients.

  19. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation.

    PubMed

    Akbarzadeh, A; Ay, M R; Ahmadian, A; Alam, N Riahi; Zaidi, H

    2013-02-01

    Hybrid PET/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies.

  20. The development of a personalized patient education tool for decision making for postmenopausal women with osteoporosis.

    PubMed

    Hiligsmann, M; Ronda, G; van der Weijden, T; Boonen, A

    2016-08-01

    A personalized patient education tool for decision making (PET) for postmenopausal women with osteoporosis was developed by means of a systematic development approach. A prototype was constructed and refined by involving various professionals and patients. Professionals and patients expressed a positive attitude towards the use of the PET. The purpose was to systematically develop a paper-based personalized PET to assist postmenopausal women with osteoporosis in selecting a treatment in line with their personal values and preferences. The development of the PET was based on a systematic process including scope, design, development of a prototype, and alpha testing among professionals and patients by semi-structured interviews. The design and development resulted in a four-page PET prototype together with a one-page fact sheet of the different drug options. The prototype PET provided the personal risk factors, the estimated individualized risk for a future major osteoporotic fracture and potential reduction with drugs, and a summary of advantages and disadvantages whether or not to start drugs. The drug fact sheet presents five attributes of seven drugs in a tabular format. The alpha testing with professionals resulted in some adaptations, e.g., inclusion of the possibility to calculate fracture risk based on various individual risk scoring methods. Important results from the alpha testing with patients were differences in the fracture risk percentage which was seen as worthwhile to start drugs, the importance of an overview of side effects, and of the timing of the PET into the patient pathway. All women indicated that the PET could be helpful for their decision to select a treatment. Physicians and patients expressed a positive attitude towards the use of the proposed PET. Further research would be needed to test the effects of the PET on feasibility in clinical workflow and on patient outcomes.

  1. PET/CT imaging for treatment verification after proton therapy: A study with plastic phantoms and metallic implants

    PubMed Central

    Parodi, Katia; Paganetti, Harald; Cascio, Ethan; Flanz, Jacob B.; Bonab, Ali A.; Alpert, Nathaniel M.; Lohmann, Kevin; Bortfeld, Thomas

    2008-01-01

    The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications. PMID:17388158

  2. Sparsity-constrained PET image reconstruction with learned dictionaries

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie

    2016-09-01

    PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.

  3. Diagnostic Value of Software-Based Image Fusion of Computed Tomography and F18-FDG PET Scans in Patients with Malignant Lymphoma

    PubMed Central

    Henninger, B.; Putzer, D.; Kendler, D.; Uprimny, C.; Virgolini, I.; Gunsilius, E.; Bale, R.

    2012-01-01

    Aim. The purpose of this study was to evaluate the accuracy of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (FDG) positron emission tomography (PET), computed tomography (CT), and software-based image fusion of both modalities in the imaging of non-Hodgkin's lymphoma (NHL) and Hodgkin's disease (HD). Methods. 77 patients with NHL (n = 58) or HD (n = 19) underwent a FDG PET scan, a contrast-enhanced CT, and a subsequent digital image fusion during initial staging or followup. 109 examinations of each modality were evaluated and compared to each other. Conventional staging procedures, other imaging techniques, laboratory screening, and follow-up data constituted the reference standard for comparison with image fusion. Sensitivity and specificity were calculated for CT and PET separately. Results. Sensitivity and specificity for detecting malignant lymphoma were 90% and 76% for CT and 94% and 91% for PET, respectively. A lymph node region-based analysis (comprising 14 defined anatomical regions) revealed a sensitivity of 81% and a specificity of 97% for CT and 96% and 99% for FDG PET, respectively. Only three of 109 image fusion findings needed further evaluation (false positive). Conclusion. Digital fusion of PET and CT improves the accuracy of staging, restaging, and therapy monitoring in patients with malignant lymphoma and may reduce the need for invasive diagnostic procedures. PMID:22654631

  4. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma.

    PubMed

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A; Glas, Martin

    2017-01-31

    Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression.

  5. Myocardial perfusion imaging with PET

    PubMed Central

    Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr

    2013-01-01

    PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459

  6. Performance evaluation of a LYSO-based PET scanner for monitoring of dose delivery in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Fabbiani, E.; Belcari, N.; Camarlinghi, N.; Del Guerra, A.; Ferretti, S.; Kraan, A.; Panetta, D.; Sportelli, G.; Rosso, V.

    2015-12-01

    The DoPET scanner is a compact positron emission tomography (PET) device. It has been developed for monitoring the range of charged particles during therapy with hadron beams. Previous works have focused on the development and upgrade of the device and on data analysis. In this paper, a full performance characterization of the DoPET system in terms of the energy resolution, spatial resolution, sensitivity, uniformity, and noise equivalent count rate is reported. All measurements refer to an adapted version of the National Electrical Manufacturers Association (NEMA) NU 4 - 2008 protocol, which was written originally for small animal PET systems. Since DoPET is a dual head planar system, it requires a modified characterisation procedure with respect to those described for ring geometries as in the NEMA NU 4 - 2008 protocol. The presented procedure may be of interest for any other PET system with a similar geometry as DoPET.

  7. Pet ownership and adolescent health: cross-sectional population study.

    PubMed

    Mathers, Megan; Canterford, Louise; Olds, Tim; Waters, Elizabeth; Wake, Melissa

    2010-12-01

    To determine whether adolescent health and well-being are associated with having a pet in the household (any pet, or specifically dogs, cats or horses/ponies) or average daily time spent caring for/playing with pet(s). Design, setting and participants--Cross-sectional data from the third wave of the Health of Young Victorians Study (HOYVS), a school-based population study in Victoria, Australia. Predictors--Adolescent-reported pet ownership and average daily time spent caring for/playing with pet(s). Outcomes--Self-reported quality of life (KIDSCREEN); average 4-day daily physical activity level from a computerised diary; parent-proxy and self-reported physical and psychosocial health status (PedsQL); measured BMI status (not overweight, overweight, obese) and blood pressure. Statistical Analysis--Regression methods, adjusted for socio-demographic factors, and non-parametric methods. Household pet data were available for 928 adolescents (466 boys; mean age of 15.9 (SD 1.2) years). Most adolescents (88.7%) reported having a pet in their household. Of these, 75.1% reported no activity involving pets over the surveyed days. It appeared that neither owning a pet nor time spent caring for/playing with a pet was related, positively or negatively, to adolescent health or well-being. Despite high rates of pet ownership, adolescents had little interaction with pets. It appears that owning a pet and time spent caring for/playing with a pet was not clearly associated with adolescents' health or well-being. © 2010 The Authors. Journal of Paediatrics and Child Health © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  8. Modified physiologically equivalent temperature—basics and applications for western European climate

    NASA Astrophysics Data System (ADS)

    Chen, Yung-Chang; Matzarakis, Andreas

    2018-05-01

    A new thermal index, the modified physiologically equivalent temperature (mPET) has been developed for universal application in different climate zones. The mPET has been improved against the weaknesses of the original physiologically equivalent temperature (PET) by enhancing evaluation of the humidity and clothing variability. The principles of mPET and differences between original PET and mPET are introduced and discussed in this study. Furthermore, this study has also evidenced the usability of mPET with climatic data in Freiburg, which is located in Western Europe. Comparisons of PET, mPET, and Universal Thermal Climate Index (UTCI) have shown that mPET gives a more realistic estimation of human thermal sensation than the other two thermal indices (PET, UTCI) for the thermal conditions in Freiburg. Additionally, a comparison of physiological parameters between mPET model and PET model (Munich Energy Balance Model for Individual, namely MEMI) is proposed. The core temperatures and skin temperatures of PET model vary more violently to a low temperature during cold stress than the mPET model. It can be regarded as that the mPET model gives a more realistic core temperature and mean skin temperature than the PET model. Statistical regression analysis of mPET based on the air temperature, mean radiant temperature, vapor pressure, and wind speed has been carried out. The R square (0.995) has shown a well co-relationship between human biometeorological factors and mPET. The regression coefficient of each factor represents the influence of the each factor on changing mPET (i.e., ±1 °C of T a = ± 0.54 °C of mPET). The first-order regression has been considered predicting a more realistic estimation of mPET at Freiburg during 2003 than the other higher order regression model, because the predicted mPET from the first-order regression has less difference from mPET calculated from measurement data. Statistic tests recognize that mPET can effectively evaluate the influences of all human biometeorological factors on thermal environments. Moreover, a first-order regression function can also predict the thermal evaluations of the mPET by using human biometeorological factors in Freiburg.

  9. WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.

    PubMed

    Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X

    2011-03-30

    We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.

  10. The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Ping; Yang, Shing-Ru; Chen, Yung-Chang; Matzarakis, Andreas

    2018-02-01

    Physiologically equivalent temperature (PET) is a thermal index that is widely used in the field of human biometeorology and urban bioclimate. However, it has several limitations, including its poor ability to predict thermo-physiological parameters and its weak response to both clothing insulation and humid conditions. A modified PET (mPET) was therefore developed to address these shortcomings. To determine whether the application of mPET in hot-humid regions is more appropriate than the PET, an analysis of a thermal comfort survey database, containing 2071 questionnaires collected from participants in hot-humid Taiwan, was conducted. The results indicate that the thermal comfort range is similar (26-30 °C) when the mPET and PET are applied as thermal indices to the database. The sensitivity test for vapor pressure and clothing insulation also show that the mPET responds well to the behavior and perceptions of local people in a subtropical climate.

  11. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211

    PubMed Central

    Hatt, Mathieu; Lee, John A.; Schmidtlein, Charles R.; Naqa, Issam El; Caldwell, Curtis; De Bernardi, Elisabetta; Lu, Wei; Das, Shiva; Geets, Xavier; Gregoire, Vincent; Jeraj, Robert; MacManus, Michael P.; Mawlawi, Osama R.; Nestle, Ursula; Pugachev, Andrei B.; Schöder, Heiko; Shepherd, Tony; Spezi, Emiliano; Visvikis, Dimitris; Zaidi, Habib; Kirov, Assen S.

    2017-01-01

    Purpose The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. Approach A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. Findings A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. Conclusions Available comparison studies suggest that PET-AS algorithms relying on advanced image analysis paradigms provide generally more accurate segmentation than approaches based on PET activity thresholds, particularly for realistic configurations. However, this may not be the case for simple shape lesions in situations with a narrower range of parameters, where simpler methods may also perform well. Recent algorithms which employ some type of consensus or automatic selection between several PET-AS methods have potential to overcome the limitations of the individual methods when appropriately trained. In either case, accuracy evaluation is required for each different PET scanner and scanning and image reconstruction protocol. For the simpler, less robust approaches, adaptation to scanning conditions, tumor type, and tumor location by optimization of parameters is necessary. The results from the method evaluation stage can be used to estimate the contouring uncertainty. All PET-AS contours should be critically verified by a physician. A standard test, i.e., a benchmark dedicated to evaluating both existing and future PET-AS algorithms needs to be designed, to aid clinicians in evaluating and selecting PET-AS algorithms and to establish performance limits for their acceptance for clinical use. The initial steps toward designing and building such a standard are undertaken by the task group members. PMID:28120467

  12. Corrected Position Estimation in PET Detector Modules With Multi-Anode PMTs Using Neural Networks

    NASA Astrophysics Data System (ADS)

    Aliaga, R. J.; Martinez, J. D.; Gadea, R.; Sebastia, A.; Benlloch, J. M.; Sanchez, F.; Pavon, N.; Lerche, Ch.

    2006-06-01

    This paper studies the use of Neural Networks (NNs) for estimating the position of impinging photons in gamma ray detector modules for PET cameras based on continuous scintillators and Multi-Anode Photomultiplier Tubes (MA-PMTs). The detector under study is composed of a 49/spl times/49/spl times/10 mm/sup 3/ continuous slab of LSO coupled to a flat panel H8500 MA-PMT. Four digitized signals from a charge division circuit, which collects currents from the 8/spl times/8 anode matrix of the photomultiplier, are used as inputs to the NN, thus reducing drastically the number of electronic channels required. We have simulated the computation of the position for 511 keV gamma photons impacting perpendicularly to the detector surface. Thus, we have performed a thorough analysis of the NN architecture and training procedures in order to achieve the best results in terms of spatial resolution and bias correction. Results obtained using GEANT4 simulation toolkit show a resolution of 1.3 mm/1.9 mm FWHM at the center/edge of the detector and less than 1 mm of systematic error in the position near the edges of the scintillator. The results confirm that NNs can partially model and correct the non-uniform detector response using only the position-weighted signals from a simple 2D DPC circuit. Linearity degradation for oblique incidence is also investigated. Finally, the NN can be implemented in hardware for parallel real time corrected Line-of-Response (LOR) estimation. Results on resources occupancy and throughput in FPGA are presented.

  13. Performance evaluation and optimization of the MiniPET-II scanner

    NASA Astrophysics Data System (ADS)

    Lajtos, Imre; Emri, Miklos; Kis, Sandor A.; Opposits, Gabor; Potari, Norbert; Kiraly, Beata; Nagy, Ferenc; Tron, Lajos; Balkay, Laszlo

    2013-04-01

    This paper presents results of the performance of a small animal PET system (MiniPET-II) installed at our Institute. MiniPET-II is a full ring camera that includes 12 detector modules in a single ring comprised of 1.27×1.27×12 mm3 LYSO scintillator crystals. The axial field of view and the inner ring diameter are 48 mm and 211 mm, respectively. The goal of this study was to determine the NEMA-NU4 performance parameters of the scanner. In addition, we also investigated how the calculated parameters depend on the coincidence time window (τ=2, 3 and 4 ns) and the low threshold settings of the energy window (Elt=250, 350 and 450 keV). Independent measurements supported optimization of the effective system radius and the coincidence time window of the system. We found that the optimal coincidence time window and low threshold energy window are 3 ns and 350 keV, respectively. The spatial resolution was close to 1.2 mm in the center of the FOV with an increase of 17% at the radial edge. The maximum value of the absolute sensitivity was 1.37% for a point source. Count rate tests resulted in peak values for the noise equivalent count rate (NEC) curve and scatter fraction of 14.2 kcps (at 36 MBq) and 27.7%, respectively, using the rat phantom. Numerical values of the same parameters obtained for the mouse phantom were 55.1 kcps (at 38.8 MBq) and 12.3%, respectively. The recovery coefficients of the image quality phantom ranged from 0.1 to 0.87. Altering the τ and Elt resulted in substantial changes in the NEC peak and the sensitivity while the effect on the image quality was negligible. The spatial resolution proved to be, as expected, independent of the τ and Elt. The calculated optimal effective system radius (resulting in the best image quality) was 109 mm. Although the NEC peak parameters do not compare favorably with those of other small animal scanners, it can be concluded that under normal counting situations the MiniPET-II imaging capability assures remarkably good image quality, sensitivity and spatial resolution.

  14. Ultrasound, elastography, and fluorodeoxyglucose positron emission tomography/computed tomography imaging in Riedel's thyroiditis: report of two cases.

    PubMed

    Slman, Rouba; Monpeyssen, Hervé; Desarnaud, Serge; Haroche, Julien; Fediaevsky, Laurence Du Pasquier; Fabrice, Menegaux; Seret-Begue, Dominique; Amoura, Zahir; Aurengo, André; Leenhardt, Laurence

    2011-07-01

    Riedel's thyroiditis (RT) is a rare disease characterized by a chronic inflammatory lesion of the thyroid gland with invasion by a dense fibrosis. Publications of the imaging features of RT are scarce. To our knowledge, ultrasound elastography (USE) findings have not been previously reported. Therefore, we describe two patients with RT who were imaged with ultrasonography (US), USE, and fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). Two women were referred for a large, hard goiter with compressive symptoms (dyspnea and dysphagia); in one patient, the goiter was associated with retroperitoneal fibrosis. In both cases, RT was confirmed by surgical biopsy with pathological examination. Thyroid US imaging was performed with a US scan and a 10-13 MHz linear transducer. The hardness of the tissues was analyzed using transient USE (ShearWave, Aixplorer-SuperSonic Imagine). PET/CT scanning was performed with a Philips Gemini GXL camera (GE Medical Systems). In the first patient, US examination revealed a compressive multinodular goiter with large solid hypoechoic and poorly vascularized areas adjacent to the nodules. The predominant right nodule was hypoechoic with irregular margins. The second patient had a hypoechoic goiter with large bilateral hypoechoic areas. In both cases, an unusual feature was observed: the presence of tissue surrounding the primitive carotid artery, associated with thrombi of the internal jugular vein. Further, USE showed heterogeneity in the stiffness values of the thyroid parenchyma varying between 21 kPa and 281 kPa. FDG-PET/CT imaging showed uptake foci in the thyroid gland. In both cases, US showed a decrease in the thyroid gland volume and the disappearance of encasement of the neck vasculature in response to corticosteroid treatment. In contrast, the FDG-PET/CT features remained unchanged. US features, such as vascular encasement and improvement under corticosteroid treatment, seem to be specific to this rare disease. For the first time, USE documents the hardness of RT tissues. Apart from the FDG-PET/CT findings that merit further investigation, US and USE prove useful tools in the assessment of such a rare disease.

  15. Exploring the differences between pet and non-pet owners: Implications for human-animal interaction research and policy

    PubMed Central

    Saunders, Jessica; Parast, Layla; Babey, Susan H.; Miles, Jeremy V.

    2017-01-01

    There is conflicting evidence about whether living with pets results in better mental and physical health outcomes, with the majority of the empirical research evidence being inconclusive due to methodological limitations. We briefly review the research evidence, including the hypothesized mechanisms through which pet ownership may influence health outcomes. This study examines how pet and non-pet owners differ across a variety of socio-demographic and health measures, which has implications for the proper interpretation of a large number of correlational studies that attempt to draw causal attributions. We use a large, population-based survey from California administered in 2003 (n = 42,044) and find that pet owners and non-pet owners differ across many traits, including gender, age, race/ethnicity, living arrangements, and income. We include a discussion about how the factors associated with the selection into the pet ownership group are related to a range of mental and physical health outcomes. Finally, we provide guidance on how to properly model the effects of pet ownership on health to accurately estimate this relationship in the general population. PMID:28644848

  16. Physical and engineering aspect of carbon beam therapy

    NASA Astrophysics Data System (ADS)

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Yusa, Ken; Urakabe, Eriko; Mizuno, Hideyuki; Iseki, Yasushi; Kanazawa, Mitsutaka; Kitagawa, Atsushi; Tomitani, Takehiro

    2003-08-01

    Conformal irradiation system of HIMAC has been up-graded for a clinical trial using a technique of a layer-stacking method. The system has been developed for localizing irradiation dose to target volume more effectively than the present irradiation dose. With dynamic control of the beam modifying devices, a pair of wobbler magnets, and multileaf collimator and range shifter, during the irradiation, more conformal radiotherapy can be achieved. The system, which has to be adequately safe for patient irradiations, was constructed and tested from a viewpoint of safety and the quality of the dose localization realized. A secondary beam line has been constructed for use of radioactive beam in heavy-ion radiotherapy. Spot scanning method has been adapted for the beam delivery system of the radioactive beam. Dose distributions of the spot beam were measured and analyzed taking into account of aberration of the beam optics. Distributions of the stopped positron-emitter beam can be observed by PET. Pencil beam of the positron-emitter, about 1 mm size, can also be used for measurements ranges of the test beam in patients using positron camera. The positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for this verification before treatment. Wash-out effect of the positron-emitter was examined using the positron camera installed. In this report, present status of the HIMAC irradiation system is described in detail.

  17. MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging.

    PubMed

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-04-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Creutzfeldt-Jakob Disease Mimicking Alzheimer Disease and Dementia With Lewy Bodies-Findings of FDG PET With 3-Dimensional Stereotactic Surface Projection.

    PubMed

    Miyazawa, Nobuhiko

    2017-05-01

    A 78-year-old man received a diagnosis of sporadic Creutzfeldt-Jakob disease based on symptoms and findings of MRI, FDG PET, and cerebrospinal fluid markers. PET with 3-dimensional stereotactic surface projection (3D-SSP) showed that the distribution of hypometabolism mimicked that of Alzheimer disease. A 68-year-old woman was treated under a diagnosis of convulsion. Findings of MRI, PET, familial history, and cerebrospinal fluid markers revealed familial Creutzfeldt-Jakob disease. FDG PET with 3D-SSP disclosed that the hypometabolic pattern mimicked that of dementia with Lewy bodies. FDG PET with 3D-SSP can demonstrate similar patterns in various neurodegenerative disorders.

  19. Qualification Tests of Micro-camera Modules for Space Applications

    NASA Astrophysics Data System (ADS)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  20. Basic study of entire whole-body PET scanners based on the OpenPET geometry

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo

    2010-09-01

    A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.

  1. Implement of the Owner Distinction Function for Healing-Type Pet Robots

    NASA Astrophysics Data System (ADS)

    Nambo, Hidetaka; Kimura, Haruhiko; Hirose, Sadaki

    In recent years, a robotics technology is extremely progressive, and robots are widely applied in many fields. One of the most typical robots is a pet robot. The pet robot is based on an animal pet, such as a dog or a cat. Also, it is known that an animal pet has a healing effect. Therefore, the study to apply pet robots to Animal Assisted Therapy instead of an animal pet has begun to be investigated. We, also, have investigated a method of an owner distinction for pet robot, to emphasize a healing effect of pet robots. In this paper, taking account of implementation into pet robots, a real-time owner distinction method is proposed. In the concrete, the method provides a real-time matching algorithm and an oblivion mechanism. The real-time matching means that a matching and a data acquisition are processed simultaneously. The oblivion mechanism is deleting features of owners in the database of the pet robots. Additionally, the mechanism enables to reduce matching costs or size of database and it enables to follow a change of owners. Furthermore, effectivity and a practicality of the method are evaluated by experiments.

  2. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  3. Interpretation criteria for FDG PET/CT in multiple myeloma (IMPeTUs): final results. IMPeTUs (Italian myeloma criteria for PET USe).

    PubMed

    Nanni, Cristina; Versari, Annibale; Chauvie, Stephane; Bertone, Elisa; Bianchi, Andrea; Rensi, Marco; Bellò, Marilena; Gallamini, Andrea; Patriarca, Francesca; Gay, Francesca; Gamberi, Barbara; Ghedini, Pietro; Cavo, Michele; Fanti, Stefano; Zamagni, Elena

    2018-05-01

    ᅟ: FDG PET/CT ( 18 F-fluoro-deoxy-glucose positron emission tomography/computed tomography) is a useful tool to image multiple myeloma (MM). However, simple and reproducible reporting criteria are still lacking and there is the need for harmonization. Recently, a group of Italian nuclear medicine experts defined new visual descriptive criteria (Italian Myeloma criteria for Pet Use: IMPeTUs) to standardize FDG PET/CT evaluation in MM patients. The aim of this study was to assess IMPeTUs reproducibility on a large prospective cohort of MM patients. Patients affected by symptomatic MM who had performed an FDG PET/CT at baseline (PET0), after induction (PET-AI), and the end of treatment (PET-EoT) were prospectively enrolled in a multicenter trial (EMN02)(NCT01910987; MMY3033). After anonymization, PET images were uploaded in the web platform WIDEN® and hence distributed to five expert nuclear medicine reviewers for a blinded independent central review according to the IMPeTUs criteria. Consensus among reviewers was measured by the percentage of agreement and the Krippendorff's alpha. Furthermore, on a patient-based analysis, the concordance among all the reviewers in terms of positivity or negativity of the FDG PET/CT scan was tested for different thresholds of positivity (Deauville score (DS 2, 3, 4, 5) for the main parameters (bone marrow, focal score, extra-medullary disease). Eighty-six patients (211 FDG PET/CT scans) were included in this analysis. Median patient age was 58 years (range, 35-66 years), 45% were male, 15% of them were in stage ISS (International Staging System) III, and 42% had high-risk cytogenetics. The percentage agreement was superior to 75% for all the time points, reaching 100% of agreement in assessing the presence skull lesions after therapy. Comparable results were obtained when the agreement analysis was performed using the Krippendorff's alpha coefficient, either in every single time point of scanning (PET0, PET-AI or PET-EoT) or overall for all the scans together. DS proved highly reproducible with the highest reproducibility for score 4. IMPeTUs criteria proved highly reproducible and could therefore be considered as a base for harmonizing PET interpretation in multiple myeloma. A prospective clinical validation of IMPeTUs criteria is underway.

  4. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca; Chan, Elisa K.; Hsu, Fred

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified bymore » the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2-cm margin on the MRI GTV.« less

  5. Role of computed tomography and [18F] fluorodeoxyglucose positron emission tomography image fusion in conformal radiotherapy of non-small cell lung cancer: a comparison with standard techniques with and without elective nodal irradiation.

    PubMed

    Ceresoli, Giovanni Luca; Cattaneo, Giovanni Mauro; Castellone, Pietro; Rizzos, Giovanna; Landoni, Claudio; Gregorc, Vanesa; Calandrino, Riccardo; Villa, Eugenio; Messa, Cristina; Santoro, Armando; Fazio, Ferruccio

    2007-01-01

    Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (> or =25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation without a major increase in predicted toxicity.

  6. Automatic delineation of tumor volumes by co-segmentation of combined PET/MR data

    NASA Astrophysics Data System (ADS)

    Leibfarth, S.; Eckert, F.; Welz, S.; Siegel, C.; Schmidt, H.; Schwenzer, N.; Zips, D.; Thorwarth, D.

    2015-07-01

    Combined PET/MRI may be highly beneficial for radiotherapy treatment planning in terms of tumor delineation and characterization. To standardize tumor volume delineation, an automatic algorithm for the co-segmentation of head and neck (HN) tumors based on PET/MR data was developed. Ten HN patient datasets acquired in a combined PET/MR system were available for this study. The proposed algorithm uses both the anatomical T2-weighted MR and FDG-PET data. For both imaging modalities tumor probability maps were derived, assigning each voxel a probability of being cancerous based on its signal intensity. A combination of these maps was subsequently segmented using a threshold level set algorithm. To validate the method, tumor delineations from three radiation oncologists were available. Inter-observer variabilities and variabilities between the algorithm and each observer were quantified by means of the Dice similarity index and a distance measure. Inter-observer variabilities and variabilities between observers and algorithm were found to be comparable, suggesting that the proposed algorithm is adequate for PET/MR co-segmentation. Moreover, taking into account combined PET/MR data resulted in more consistent tumor delineations compared to MR information only.

  7. Clinical Evaluation of Zero-Echo-Time Attenuation Correction for Brain 18F-FDG PET/MRI: Comparison with Atlas Attenuation Correction.

    PubMed

    Sekine, Tetsuro; Ter Voert, Edwin E G W; Warnock, Geoffrey; Buck, Alfred; Huellner, Martin; Veit-Haibach, Patrick; Delso, Gaspar

    2016-12-01

    Accurate attenuation correction (AC) on PET/MR is still challenging. The purpose of this study was to evaluate the clinical feasibility of AC based on fast zero-echo-time (ZTE) MRI by comparing it with the default atlas-based AC on a clinical PET/MR scanner. We recruited 10 patients with malignant diseases not located on the brain. In all patients, a clinically indicated whole-body 18 F-FDG PET/CT scan was acquired. In addition, a head PET/MR scan was obtained voluntarily. For each patient, 2 AC maps were generated from the MR images. One was atlas-AC, derived from T1-weighted liver acquisition with volume acceleration flex images (clinical standard). The other was ZTE-AC, derived from proton-density-weighted ZTE images by applying tissue segmentation and assigning continuous attenuation values to the bone. The AC map generated by PET/CT was used as a silver standard. On the basis of each AC map, PET images were reconstructed from identical raw data on the PET/MR scanner. All PET images were normalized to the SPM5 PET template. After that, these images were qualified visually and quantified in 67 volumes of interest (VOIs; automated anatomic labeling, atlas). Relative differences and absolute relative differences between PET images based on each AC were calculated. 18 F-FDG uptake in all 670 VOIs and generalized merged VOIs were compared using a paired t test. Qualitative analysis shows that ZTE-AC was robust to patient variability. Nevertheless, misclassification of air and bone in mastoid and nasal areas led to the overestimation of PET in the temporal lobe and cerebellum (%diff of ZTE-AC, 2.46% ± 1.19% and 3.31% ± 1.70%, respectively). The |%diff| of all 670 VOIs on ZTE was improved by approximately 25% compared with atlas-AC (ZTE-AC vs. atlas-AC, 1.77% ± 1.41% vs. 2.44% ± 1.63%, P < 0.01). In 2 of 7 generalized VOIs, |%diff| on ZTE-AC was significantly smaller than atlas-AC (ZTE-AC vs. atlas-AC: insula and cingulate, 1.06% ± 0.67% vs. 2.22% ± 1.10%, P < 0.01; central structure, 1.03% ± 0.99% vs. 2.54% ± 1.20%, P < 0.05). The ZTE-AC could provide more accurate AC than clinical atlas-AC by improving the estimation of head-skull attenuation. The misclassification in mastoid and nasal areas must be addressed to prevent the overestimation of PET in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. A prototype MR insertable brain PET using tileable GAPD arrays.

    PubMed

    Hong, Key Jo; Choi, Yong; Jung, Jin Ho; Kang, Jihoon; Hu, Wei; Lim, Hyun Keong; Huh, Yoonsuk; Kim, Sangsu; Jung, Ji Woong; Kim, Kyu Bom; Song, Myung Sung; Park, Hyun-Wook

    2013-04-01

    The aim of this study was to develop a prototype magnetic resonance (MR)-compatible positron emission tomography (PET) that can be inserted into a MR imager and that allows simultaneous PET and MR imaging of the human brain. This paper reports the initial results of the authors' prototype brain PET system operating within a 3-T magnetic resonance imaging (MRI) system using newly developed Geiger-mode avalanche photodiode (GAPD)-based PET detectors, long flexible flat cables, position decoder circuit with high multiplexing ratio, and digital signal processing with field programmable gate array-based analog to digital converter boards. A brain PET with 72 detector modules arranged in a ring was constructed and mounted in a 3-T MRI. Each PET module was composed of cerium-doped lutetium yttrium orthosilicate (LYSO) crystals coupled to a tileable GAPD. The GAPD output charge signals were transferred to preamplifiers using 3 m long flat cables. The LYSO and GAPD were located inside the MR bore and all electronics were positioned outside the MR bore. The PET detector performance was investigated both outside and inside the MRI, and MR image quality was evaluated with and without the PET system. The performance of the PET detector when operated inside the MRI during MR image acquisition showed no significant change in energy resolution and count rates, except for a slight degradation in timing resolution with an increase from 4.2 to 4.6 ns. Simultaneous PET/MR images of a hot-rod and Hoffman brain phantom were acquired in a 3-T MRI. Rods down to a diameter of 3.5 mm were resolved in the hot-rod PET image. The activity distribution patterns between the white and gray matter in the Hoffman brain phantom were well imaged. The hot-rod and Hoffman brain phantoms on the simultaneously acquired MR images obtained with standard sequences were observed without any noticeable artifacts, although MR image quality requires some improvement. These results demonstrate that the simultaneous acquisition of PET and MR images is feasible using the MR insertable PET developed in this study.

  9. Neural Imaging Using Single-Photon Avalanche Diodes

    PubMed Central

    Karami, Mohammad Azim; Ansarian, Misagh

    2017-01-01

    Introduction: This paper analyses the ability of single-photon avalanche diodes (SPADs) for neural imaging. The current trend in the production of SPADs moves toward the minimum dark count rate (DCR) and maximum photon detection probability (PDP). Moreover, the jitter response which is the main measurement characteristic for the timing uncertainty is progressing. Methods: The neural imaging process using SPADs can be performed by means of florescence lifetime imaging (FLIM), time correlated single-photon counting (TCSPC), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Results: This trend will result in more precise neural imaging cameras. While achieving low DCR SPADs is difficult in deep submicron technologies because of using higher doping profiles, higher PDPs are reported in green and blue part of light. Furthermore, the number of pixels integrated in the same chip is increasing with the technology progress which can result in the higher resolution of imaging. Conclusion: This study proposes implemented SPADs in Deep-submicron technologies to be used in neural imaging cameras, due to the small size pixels and higher timing accuracies. PMID:28446946

  10. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, F; Byrd, D; Bowen, S

    2015-06-15

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolutionmore » of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter-institution studies attempting to validate prognostic values of PET texture features in cancer treatment.« less

  11. Driving with pets and motor vehicle collision involvement among older drivers: A prospective population-based study.

    PubMed

    Huisingh, Carrie; Levitan, Emily B; Irvin, Marguerite R; Owsley, Cynthia; McGwin, Gerald

    2016-03-01

    Distracted driving is a major cause of motor vehicle collision (MVC) involvement. Pets have been identified as potential distraction to drivers, particularly in the front. This type of distraction could be worse for those with impairment in the cognitive aspects of visual processing. The purpose of this study is to evaluate the association between driving with pets and rates of motor vehicle collision involvement in a cohort of older drivers. A three-year prospective study was conducted in a population-based sample of 2000 licensed drivers aged 70 years and older. At the baseline visit, a trained interviewer asked participants about pet ownership, whether they drive with pets, how frequently, and where the pet sits in the vehicle. Motor vehicle collision (MVC) involvement during the three-year study period was obtained from the Alabama Department of Public Safety. At-fault status was determined by the police officer who arrived on the scene. Participants were followed until the earliest of death, driving cessation, or end of the study period. Poisson regression was used to calculate crude and adjusted rate ratios (RR) examining the association between pet ownership, presence of a pet in a vehicle, frequency of driving with a pet, and location of the pet inside with vehicle with any and at-fault MVC involvement. We examined whether the associations differed by higher order visual processing impairment status, as measured by Useful Field of View, Trails B, and Motor-free Visual Perception Test. Rates of crash involvement were similar for older adults who have ever driven with a pet compared to those who never drove with their pet (RR=1.15, 95% CI 0.76-1.75). Drivers who reported always or sometimes driving with their pet had higher MVC rates compared to pet owners who never drive with a pet, but this association was not statistically significant (RR=1.39, 95% CI 0.86-2.24). In terms of location, those reporting having a pet frequently ride in the front of the vehicle had similar rates of MVC involvement compared to those who did not drive with a pet in the front. A similar pattern of results was observed for at-fault MVCs. This association was not modified by visual processing impairment status. The current study demonstrates a positive but non-significant association between frequently driving with pets and MVC involvement. More research is needed, particularly on restraint use and whether the pet was in the car at the time of the crash, to help characterize the public safety benefit of regulations on driving with pets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  13. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning.

    PubMed

    Paulus, Daniel H; Oehmigen, Mark; Grüneisen, Johannes; Umutlu, Lale; Quick, Harald H

    2016-05-07

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  -11.8% in the top part of the phantom was observable, which was reduced to  -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  -10.0% and  -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.

  14. Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases.

    PubMed

    Li, Yuxin; Schiepers, Christiaan; Lake, Ralph; Dadparvar, Simin; Berenji, Gholam R

    2012-01-01

    (18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders. Published by Elsevier Inc.

  15. Automatic calibration method for plenoptic camera

    NASA Astrophysics Data System (ADS)

    Luan, Yinsen; He, Xing; Xu, Bing; Yang, Ping; Tang, Guomao

    2016-04-01

    An automatic calibration method is proposed for a microlens-based plenoptic camera. First, all microlens images on the white image are searched and recognized automatically based on digital morphology. Then, the center points of microlens images are rearranged according to their relative position relationships. Consequently, the microlens images are located, i.e., the plenoptic camera is calibrated without the prior knowledge of camera parameters. Furthermore, this method is appropriate for all types of microlens-based plenoptic cameras, even the multifocus plenoptic camera, the plenoptic camera with arbitrarily arranged microlenses, or the plenoptic camera with different sizes of microlenses. Finally, we verify our method by the raw data of Lytro. The experiments show that our method has higher intelligence than the methods published before.

  16. An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging.

    PubMed

    Izquierdo-Garcia, David; Hansen, Adam E; Förster, Stefan; Benoit, Didier; Schachoff, Sylvia; Fürst, Sebastian; Chen, Kevin T; Chonde, Daniel B; Catana, Ciprian

    2014-11-01

    We present an approach for head MR-based attenuation correction (AC) based on the Statistical Parametric Mapping 8 (SPM8) software, which combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (μ maps) from MR data in integrated PET/MR scanners. Coregistered anatomic MR and CT images of 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray matter, white matter, cerebrospinal fluid, bone, soft tissue, and air), which were then nonrigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomic MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients to be used for AC of PET data. The method was validated on 16 new subjects with brain tumors (n = 12) or mild cognitive impairment (n = 4) who underwent CT and PET/MR scans. The μ maps and corresponding reconstructed PET images were compared with those obtained using the gold standard CT-based approach and the Dixon-based method available on the Biograph mMR scanner. Relative change (RC) images were generated in each case, and voxel- and region-of-interest-based analyses were performed. The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain linear attenuation coefficients (RC, 1.38% ± 4.52%) compared with the gold standard. Similar results (RC, 1.86% ± 4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and region-of-interest-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87% ± 5.0% and 2.74% ± 2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0% ± 10.25% and 9.38% ± 4.97%, respectively). Areas closer to the skull showed the largest improvement. We have presented an SPM8-based approach for deriving the head μ map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and requires only the morphologic data acquired with a single MR sequence. The method is accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. An SPM8-based Approach for Attenuation Correction Combining Segmentation and Non-rigid Template Formation: Application to Simultaneous PET/MR Brain Imaging

    PubMed Central

    Izquierdo-Garcia, David; Hansen, Adam E.; Förster, Stefan; Benoit, Didier; Schachoff, Sylvia; Fürst, Sebastian; Chen, Kevin T.; Chonde, Daniel B.; Catana, Ciprian

    2014-01-01

    We present an approach for head MR-based attenuation correction (MR-AC) based on the Statistical Parametric Mapping (SPM8) software that combines segmentation- and atlas-based features to provide a robust technique to generate attenuation maps (µ-maps) from MR data in integrated PET/MR scanners. Methods Coregistered anatomical MR and CT images acquired in 15 glioblastoma subjects were used to generate the templates. The MR images from these subjects were first segmented into 6 tissue classes (gray and white matter, cerebro-spinal fluid, bone and soft tissue, and air), which were then non-rigidly coregistered using a diffeomorphic approach. A similar procedure was used to coregister the anatomical MR data for a new subject to the template. Finally, the CT-like images obtained by applying the inverse transformations were converted to linear attenuation coefficients (LACs) to be used for AC of PET data. The method was validated on sixteen new subjects with brain tumors (N=12) or mild cognitive impairment (N=4) who underwent CT and PET/MR scans. The µ-maps and corresponding reconstructed PET images were compared to those obtained using the gold standard CT-based approach and the Dixon-based method available on the Siemens Biograph mMR scanner. Relative change (RC) images were generated in each case and voxel- and region of interest (ROI)-based analyses were performed. Results The leave-one-out cross-validation analysis of the data from the 15 atlas-generation subjects showed small errors in brain LACs (RC=1.38%±4.52%) compared to the gold standard. Similar results (RC=1.86±4.06%) were obtained from the analysis of the atlas-validation datasets. The voxel- and ROI-based analysis of the corresponding reconstructed PET images revealed quantification errors of 3.87±5.0% and 2.74±2.28%, respectively. The Dixon-based method performed substantially worse (the mean RC values were 13.0±10.25% and 9.38±4.97%, respectively). Areas closer to skull showed the largest improvement. Conclusion We have presented an SPM8-based approach for deriving the head µ-map from MR data to be used for PET AC in integrated PET/MR scanners. Its implementation is straightforward and only requires the morphological data acquired with a single MR sequence. The method is very accurate and robust, combining the strengths of both segmentation- and atlas-based approaches while minimizing their drawbacks. PMID:25278515

  18. PET-CT in the UK: current status and future directions.

    PubMed

    Scarsbrook, A F; Barrington, S F

    2016-07-01

    Combined positron-emission tomography and computed tomography (PET-CT) has taken the oncological world by storm since being introduced into the clinical domain in the early 21(st) century and is firmly established in the management pathway of many different tumour types. Non-oncological applications of PET-CT represent a smaller but steadily growing area of interest. PET-CT continues to be the focus of a large number of research studies and keeping up-to-date with the literature is important but represents a challenge. Consequently guidelines recommending PET-CT usage need to be revised regularly to encompass new developments. The purpose of this article is twofold: first, it provides a detailed review of the evidence-base underpinning the major uses of PET-CT in clinical practice, which may be of value to a wide-range of individuals, including those directly involved with PET-CT and to a much larger group with limited exposure, but for whom a précis of the current state-of-play may help inform other radiology and multidisciplinary team (MDT) work; the second purpose is as a companion to revised guidelines on evidence-based indications for PET-CT in the UK (being published concurrently) providing a detailed commentary on new indications with a summary of emerging data supporting these additional clinical uses of the technique. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.

    PubMed

    Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A

    2018-04-10

    Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in reference bone marrow for both tracers. Despite the limited number of patients analyzed in this pilot study, the first results of the trial indicate that 18 F-FLT does not seem suitable as a single tracer in MM diagnostics. Further studies with a larger patient population are warranted to generalize the herein presented results.

  20. Driving with pets and motor vehicle collision involvement among older drivers: a prospective population-based study

    PubMed Central

    Huisingh, Carrie; Levitan, Emily B.; Irvin, Marguerite R.; Owsley, Cynthia; McGwin, Gerald

    2016-01-01

    Objective Distracted driving is a major cause of motor vehicle collision (MVC) involvement. Pets have been identified as potential distraction to drivers, particularly in the front. This type of distraction could be worse for those with impairment in the cognitive aspects of visual processing. The purpose of this study is to evaluate the association between driving with pets and rates of motor vehicle collision involvementin a cohort of older drivers. Methods A three-year prospective was conducted in a population-based sample of 2000 licensed drivers aged 70 years and older. At the baseline visit, a trained interviewer asked participants about pet ownership, whether they drive with pets, how frequently, and where the pet sits in the vehicle. Motor vehicle collision (MVC) involvement during the three-year study period was obtained from the Alabama Department of Public Safety. At-fault status was determined by the police officer who arrived on the scene. Participants were followed until the earliest of death, driving cessation, or end of the study period. Poisson regression was used to calculate crude and adjusted rate ratios (RR) examining the association between pet ownership, presence of a pet in a vehicle, frequency of driving with a pet, and location of the pet inside with vehicle with any and at-fault MVC involvement. We examined whether the associations differed by higher order visual processing impairment status, as measured by Useful Field Of View, Trails B, and Motor-free Visual Perception Test. Results Rates of crash involvement were similar for older adults who have ever driven with a pet compared to those who never drove with their pet (RR=1.15, 95% CI 0.76-1.75). Drivers who reported always or sometimes driving with their pet had higherMVC rates compared topet owners who never drive with a pet, but this association was not statistically significant (RR=1.39, 95% CI 0.86-2.24). In terms of location, those reporting having a pet frequently ride in the front of the vehicle had similar rates of MVC involvement compared to those who did not drive with a pet in the front. A similar pattern of results was observed for at-fault MVCs. This association was not modified by visual processing impairment status. Conclusion The current study demonstrates a positive but non-significant association between frequently driving with pets and MVC involvement. More research is needed, particularly on restraint use and whether the pet was in the car at the time of the crash, to help characterize the public safety benefit of regulations on driving with pets. PMID:26774042

  1. Crystal Identification in Dual-Layer-Offset DOI-PET Detectors Using Stratified Peak Tracking Based on SVD and Mean-Shift Algorithm

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Dai, Tiantian; Ma, Tianyu; Liu, Yaqiang; Gu, Yu

    2016-10-01

    An Anger-logic based pixelated PET detector block requires a crystal position map (CPM) to assign the position of each detected event to a most probable crystal index. Accurate assignments are crucial to PET imaging performance. In this paper, we present a novel automatic approach to generate the CPMs for dual-layer offset (DLO) PET detectors using a stratified peak tracking method. In which, the top and bottom layers are distinguished by their intensity difference and the peaks of the top and bottom layers are tracked based on a singular value decomposition (SVD) and mean-shift algorithm in succession. The CPM is created by classifying each pixel to its nearest peak and assigning the pixel with the crystal index of that peak. A Matlab-based graphical user interface program was developed including the automatic algorithm and a manual interaction procedure. The algorithm was tested for three DLO PET detector blocks. Results show that the proposed method exhibits good performance as well as robustness for all the three blocks. Compared to the existing methods, our approach can directly distinguish the layer and crystal indices using the information of intensity and offset grid pattern.

  2. Practical guide for implementing hybrid PET/MR clinical service: lessons learned from our experience

    PubMed Central

    Parikh, Nainesh; Friedman, Kent P.; Shah, Shetal N.; Chandarana, Hersh

    2015-01-01

    Positron emission tomography (PET) and magnetic resonance imaging, until recently, have been performed on separate PET and MR systems with varying temporal delay between the two acquisitions. The interpretation of these two separately acquired studies requires cognitive fusion by radiologists/nuclear medicine physicians or dedicated and challenging post-processing. Recent advances in hardware and software with introduction of hybrid PET/MR systems have made it possible to acquire the PET and MR images simultaneously or near simultaneously. This review article serves as a road-map for clinical implementation of hybrid PET/MR systems and briefly discusses hardware systems, the personnel needs, safety and quality issues, and reimbursement topics based on experience at NYU Langone Medical Center and Cleveland Clinic. PMID:25985966

  3. Historical gridded reconstruction of potential evapotranspiration for the UK

    NASA Astrophysics Data System (ADS)

    Tanguy, Maliko; Prudhomme, Christel; Smith, Katie; Hannaford, Jamie

    2018-06-01

    Potential evapotranspiration (PET) is a necessary input data for most hydrological models and is often needed at a daily time step. An accurate estimation of PET requires many input climate variables which are, in most cases, not available prior to the 1960s for the UK, nor indeed most parts of the world. Therefore, when applying hydrological models to earlier periods, modellers have to rely on PET estimations derived from simplified methods. Given that only monthly observed temperature data is readily available for the late 19th and early 20th century at a national scale for the UK, the objective of this work was to derive the best possible UK-wide gridded PET dataset from the limited data available.To that end, firstly, a combination of (i) seven temperature-based PET equations, (ii) four different calibration approaches and (iii) seven input temperature data were evaluated. For this evaluation, a gridded daily PET product based on the physically based Penman-Monteith equation (the CHESS PET dataset) was used, the rationale being that this provides a reliable ground truth PET dataset for evaluation purposes, given that no directly observed, distributed PET datasets exist. The performance of the models was also compared to a naïve method, which is defined as the simplest possible estimation of PET in the absence of any available climate data. The naïve method used in this study is the CHESS PET daily long-term average (the period from 1961 to 1990 was chosen), or CHESS-PET daily climatology.The analysis revealed that the type of calibration and the input temperature dataset had only a minor effect on the accuracy of the PET estimations at catchment scale. From the seven equations tested, only the calibrated version of the McGuinness-Bordne equation was able to outperform the naïve method and was therefore used to derive the gridded, reconstructed dataset. The equation was calibrated using 43 catchments across Great Britain.The dataset produced is a 5 km gridded PET dataset for the period 1891 to 2015, using the Met Office 5 km monthly gridded temperature data available for that time period as input data for the PET equation. The dataset includes daily and monthly PET grids and is complemented with a suite of mapped performance metrics to help users assess the quality of the data spatially.This dataset is expected to be particularly valuable as input to hydrological models for any catchment in the UK. The data can be accessed at https://doi.org/10.5285/17b9c4f7-1c30-4b6f-b2fe-f7780159939c.

  4. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    PubMed Central

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-01-01

    Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898

  5. Evaluation of an attenuation correction method for PET/MR imaging of the head based on substitute CT images.

    PubMed

    Larsson, Anne; Johansson, Adam; Axelsson, Jan; Nyholm, Tufve; Asklund, Thomas; Riklund, Katrine; Karlsson, Mikael

    2013-02-01

    The aim of this study was to evaluate MR-based attenuation correction of PET emission data of the head, based on a previously described technique that calculates substitute CT (sCT) images from a set of MR images. Images from eight patients, examined with (18)F-FLT PET/CT and MRI, were included. sCT images were calculated and co-registered to the corresponding CT images, and transferred to the PET/CT scanner for reconstruction. The new reconstructions were then compared with the originals. The effect of replacing bone with soft tissue in the sCT-images was also evaluated. The average relative difference between the sCT-corrected PET images and the CT-corrected PET images was 1.6% for the head and 1.9% for the brain. The average standard deviations of the relative differences within the head were relatively high, at 13.2%, primarily because of large differences in the nasal septa region. For the brain, the average standard deviation was lower, 4.1%. The global average difference in the head when replacing bone with soft tissue was 11%. The method presented here has a high rate of accuracy, but high-precision quantitative imaging of the nasal septa region is not possible at the moment.

  6. Preclinical positron emission tomography scanner based on a monolithic annulus of scintillator: initial design study.

    PubMed

    Stolin, Alexander V; Martone, Peter F; Jaliparthi, Gangadhar; Raylman, Raymond R

    2017-01-01

    Positron emission tomography (PET) scanners designed for imaging of small animals have transformed translational research by reducing the necessity to invasively monitor physiology and disease progression. Virtually all of these scanners are based on the use of pixelated detector modules arranged in rings. This design, while generally successful, has some limitations. Specifically, use of discrete detector modules to construct PET scanners reduces detection sensitivity and can introduce artifacts in reconstructed images, requiring the use of correction methods. To address these challenges, and facilitate measurement of photon depth-of-interaction in the detector, we investigated a small animal PET scanner (called AnnPET) based on a monolithic annulus of scintillator. The scanner was created by placing 12 flat facets around the outer surface of the scintillator to accommodate placement of silicon photomultiplier arrays. Its performance characteristics were explored using Monte Carlo simulations and sections of the NEMA NU4-2008 protocol. Results from this study revealed that AnnPET's reconstructed spatial resolution is predicted to be [Formula: see text] full width at half maximum in the radial, tangential, and axial directions. Peak detection sensitivity is predicted to be 10.1%. Images of simulated phantoms (mini-hot rod and mouse whole body) yielded promising results, indicating the potential of this system for enhancing PET imaging of small animals.

  7. Neonatal polycythaemia: critical review and a consensus statement of the Israeli Neonatology Association.

    PubMed

    Mimouni, Francis B; Merlob, Paul; Dollberg, Shaul; Mandel, Dror

    2011-10-01

    The aim of this paper is to critically review neonatal polycythaemia (NP) literature, in terms of definition, diagnosis and management. We reviewed all Medline articles on NP up to December 2009. (i) The textbook definition of NP [venous haematocrit (HCT) > 65%] is empirical and not based on statistical definition, symptoms or complications. (ii) Measurement of viscosity is not better than HCT in predicting complications. (iii) Normovolaemic NP because of increased erythropoiesis may be different from hypervolaemic polycythaemia because of excessive foetal transfusion. (iv) Coexisting hypoglycaemia may worsen long-term outcome. (v) Four clinical trials (CTs) studied partial exchange transfusion (PET) on outcomes. In all trials, PET was performed after 6 h of life. There is no evidence that PET improves neurodevelopmental outcome of asymptomatic NP, and it might increase the risk of necrotizing enterocolitis. These CTs have inherent design flaws: (a) CNS 'damage' may occur before PET. (b) Confounding variables that may affect outcome have not been studied. (vi) If PET is performed, normal saline is the best alternative. (vii) The long-term effect of PET on symptomatic infants has not been studied. Current definition and management of NP are little evidence based, thus the need for a consensus based on expert opinion. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  8. TDC-based readout electronics for real-time acquisition of high resolution PET bio-images

    NASA Astrophysics Data System (ADS)

    Marino, N.; Saponara, S.; Ambrosi, G.; Baronti, F.; Bisogni, M. G.; Cerello, P.,; Ciciriello, F.; Corsi, F.; Fanucci, L.; Ionica, M.; Licciulli, F.; Marzocca, C.; Morrocchi, M.; Pennazio, F.; Roncella, R.; Santoni, C.; Wheadon, R.; Del Guerra, A.

    2013-02-01

    Positron emission tomography (PET) is a clinical and research tool for in vivo metabolic imaging. The demand for better image quality entails continuous research to improve PET instrumentation. In clinical applications, PET image quality benefits from the time of flight (TOF) feature. Indeed, by measuring the photons arrival time on the detectors with a resolution less than 100 ps, the annihilation point can be estimated with centimeter resolution. This leads to better noise level, contrast and clarity of detail in the images either using analytical or iterative reconstruction algorithms. This work discusses a silicon photomultiplier (SiPM)-based magnetic-field compatible TOF-PET module with depth of interaction (DOI) correction. The detector features a 3D architecture with two tiles of SiPMs coupled to a single LYSO scintillator on both its faces. The real-time front-end electronics is based on a current-mode ASIC where a low input impedance, fast current buffer allows achieving the required time resolution. A pipelined time to digital converter (TDC) measures and digitizes the arrival time and the energy of the events with a timestamp of 100 ps and 400 ps, respectively. An FPGA clusters the data and evaluates the DOI, with a simulated z resolution of the PET image of 1.4 mm FWHM.

  9. Nutritional sustainability of pet foods.

    PubMed

    Swanson, Kelly S; Carter, Rebecca A; Yount, Tracy P; Aretz, Jan; Buff, Preston R

    2013-03-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system.

  10. Automatic lesion tracking for a PET/CT based computer aided cancer therapy monitoring system

    NASA Astrophysics Data System (ADS)

    Opfer, Roland; Brenner, Winfried; Carlsen, Ingwer; Renisch, Steffen; Sabczynski, Jörg; Wiemker, Rafael

    2008-03-01

    Response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. However, dealing simultaneously with several PET/CT scans poses a serious workflow problem. It can be a difficult and tedious task to extract response criteria based upon an integrated analysis of PET and CT images and to track these criteria over time. In order to improve the workflow for serial analysis of PET/CT scans we introduce in this paper a fast lesion tracking algorithm. We combine a global multi-resolution rigid registration algorithm with a local block matching and a local region growing algorithm. Whenever the user clicks on a lesion in the base-line PET scan the course of standardized uptake values (SUV) is automatically identified and shown to the user as a graph plot. We have validated our method by a data collection from 7 patients. Each patient underwent two or three PET/CT scans during the course of a cancer therapy. An experienced nuclear medicine physician manually measured the courses of the maximum SUVs for altogether 18 lesions. As a result we obtained that the automatic detection of the corresponding lesions resulted in SUV measurements which are nearly identical to the manually measured SUVs. Between 38 measured maximum SUVs derived from manual and automatic detected lesions we observed a correlation of 0.9994 and a average error of 0.4 SUV units.

  11. Nutritional Sustainability of Pet Foods12

    PubMed Central

    Swanson, Kelly S.; Carter, Rebecca A.; Yount, Tracy P.; Aretz, Jan; Buff, Preston R.

    2013-01-01

    Sustainable practices meet the needs of the present without compromising the ability of future generations to meet their needs. Applying these concepts to food and feed production, nutritional sustainability is the ability of a food system to provide sufficient energy and essential nutrients required to maintain good health in a population without compromising the ability of future generations to meet their nutritional needs. Ecological, social, and economic aspects must be balanced to support the sustainability of the overall food system. The nutritional sustainability of a food system can be influenced by several factors, including the ingredient selection, nutrient composition, digestibility, and consumption rates of a diet. Carbon and water footprints vary greatly among plant- and animal-based ingredients, production strategy, and geographical location. Because the pet food industry is based largely on by-products and is tightly interlinked with livestock production and the human food system, however, it is quite unique with regard to sustainability. Often based on consumer demand rather than nutritional requirements, many commercial pet foods are formulated to provide nutrients in excess of current minimum recommendations, use ingredients that compete directly with the human food system, or are overconsumed by pets, resulting in food wastage and obesity. Pet food professionals have the opportunity to address these challenges and influence the sustainability of pet ownership through product design, manufacturing processes, public education, and policy change. A coordinated effort across the industry that includes ingredient buyers, formulators, and nutritionists may result in a more sustainable pet food system. PMID:23493530

  12. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma

    PubMed Central

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C.; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A.; Glas, Martin

    2017-01-01

    Rationale Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Methods Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Results Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Principal Conclusions Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression. PMID:28030820

  13. The Landscape of Clinical Trials Evaluating the Theranostic Role of PET Imaging in Oncology: Insights from an Analysis of ClinicalTrials.gov Database.

    PubMed

    Chen, Yu-Pei; Lv, Jia-Wei; Liu, Xu; Zhang, Yuan; Guo, Ying; Lin, Ai-Hua; Sun, Ying; Mao, Yan-Ping; Ma, Jun

    2017-01-01

    In the war on cancer marked by personalized medicine, positron emission tomography (PET)-based theranostic strategy is playing an increasingly important role. Well-designed clinical trials are of great significance for validating the PET applications and ensuring evidence-based cancer care. This study aimed to provide a comprehensive landscape of the characteristics of PET clinical trials using the substantial resource of ClinicalTrials.gov database. We identified 25,599 oncology trials registered with ClinicalTrials.gov in the last ten-year period (October 2005-September 2015). They were systematically reviewed to validate classification into 519 PET trials and 25,080 other oncology trials used for comparison. We found that PET trials were predominantly phase 1-2 studies (86.2%) and were more likely to be single-arm (78.9% vs. 57.9%, P <0.001) using non-randomized assignment (90.1% vs. 66.7%, P <0.001) than other oncology trials. Furthermore, PET trials were small in scale, generally enrolling fewer than 100 participants (20.3% vs. 25.7% for other oncology trials, P = 0.014), which might be too small to detect a significant theranostic effect. The funding support from industry or National Institutes of Health shrunk over time (both decreased by about 5%), and PET trials were more likely to be conducted in only one region lacking international collaboration (97.0% vs. 89.3% for other oncology trials, P <0.001). These findings raise concerns that clinical trials evaluating PET imaging in oncology are not receiving the attention or efforts necessary to generate high-quality evidence. Advancing the clinical application of PET imaging will require a concerted effort to improve the quality of trials.

  14. The Landscape of Clinical Trials Evaluating the Theranostic Role of PET Imaging in Oncology: Insights from an Analysis of ClinicalTrials.gov Database

    PubMed Central

    Chen, Yu-Pei; Lv, Jia-Wei; Liu, Xu; Zhang, Yuan; Guo, Ying; Lin, Ai-Hua; Sun, Ying; Mao, Yan-Ping; Ma, Jun

    2017-01-01

    In the war on cancer marked by personalized medicine, positron emission tomography (PET)-based theranostic strategy is playing an increasingly important role. Well-designed clinical trials are of great significance for validating the PET applications and ensuring evidence-based cancer care. This study aimed to provide a comprehensive landscape of the characteristics of PET clinical trials using the substantial resource of ClinicalTrials.gov database. We identified 25,599 oncology trials registered with ClinicalTrials.gov in the last ten-year period (October 2005-September 2015). They were systematically reviewed to validate classification into 519 PET trials and 25,080 other oncology trials used for comparison. We found that PET trials were predominantly phase 1-2 studies (86.2%) and were more likely to be single-arm (78.9% vs. 57.9%, P <0.001) using non-randomized assignment (90.1% vs. 66.7%, P <0.001) than other oncology trials. Furthermore, PET trials were small in scale, generally enrolling fewer than 100 participants (20.3% vs. 25.7% for other oncology trials, P = 0.014), which might be too small to detect a significant theranostic effect. The funding support from industry or National Institutes of Health shrunk over time (both decreased by about 5%), and PET trials were more likely to be conducted in only one region lacking international collaboration (97.0% vs. 89.3% for other oncology trials, P <0.001). These findings raise concerns that clinical trials evaluating PET imaging in oncology are not receiving the attention or efforts necessary to generate high-quality evidence. Advancing the clinical application of PET imaging will require a concerted effort to improve the quality of trials. PMID:28042342

  15. Attenuation correction in emission tomography using the emission data—A review

    PubMed Central

    Li, Yusheng

    2016-01-01

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors then look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy deficiencies of purely MRI-based AC approaches in PET/MRI and improve standalone PET imaging. PMID:26843243

  16. 68Ga-PSMA-11 Dynamic PET/CT Imaging in Primary Prostate Cancer.

    PubMed

    Sachpekidis, Christos; Kopka, Klaus; Eder, Matthias; Hadaschik, Boris A; Freitag, Martin T; Pan, Leyun; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2016-11-01

    The aim of our study is to assess the pharmacokinetics and biodistribution of Ga-PSMA-11 in patients suffering from primary prostate cancer (PC) by means of dynamic and whole-body PET/CT. Twenty-four patients with primary, previously untreated PC were enrolled in the study. All patients underwent dynamic PET/CT (dPET/CT) scanning of the pelvis and whole-body PET/CT studies with Ga-PSMA-11. The evaluation of dPET/CT studies was based on qualitative evaluation, SUV calculation, and quantitative analysis based on two-tissue compartment modeling and a noncompartmental approach leading to the extraction of fractal dimension (FD). A total of 23/24 patients (95.8%) were Ga-PSMA-11 positive. In 9/24 patients (37.5%), metastatic lesions were detected. PC-associated lesions demonstrated the following mean values: SUVaverage = 14.3, SUVmax = 23.4, K1 = 0.24 (1/min), k3 = 0.34 (1/min), influx = 0.15 (1/min), and FD = 1.27. The parameters SUVaverage, SUVmax, k3, influx, and FD derived from PC-associated lesions were significantly higher than respective values derived from reference prostate tissue. Time-activity curves derived from PC-associated lesions revealed an increasing Ga-PSMA-11 accumulation during dynamic PET acquisition. Correlation analysis revealed a moderate but significant correlation between PSA levels and SUVaverage (r = 0.60) and SUVmax (r = 0.57), and a weak but significant correlation between Gleason score and SUVaverage (r = 0.33) and SUVmax (r = 0.28). Ga-PSMA-11 PET/CT confirmed its capacity in detecting primary PC with a detection rate of 95.8%. Dynamic PET/CT studies of the pelvis revealed an increase in tracer uptake in PC-associated lesions during the 60 minutes of dynamic PET acquisition, a finding with potential applications in anti-PSMA approaches.

  17. Added Value of Including Entire Brain on Body Imaging With FDG PET/MRI.

    PubMed

    Franceschi, Ana M; Matthews, Robert; Bangiyev, Lev; Relan, Nand; Chaudhry, Ammar; Franceschi, Dinko

    2018-05-24

    FDG PET/MRI examination of the body is routinely performed from the skull base to the mid thigh. Many types of brain abnormalities potentially could be detected on PET/MRI if the head was included. The objective of this study was therefore to identify and characterize brain findings incidentally detected on PET/MRI of the body with the head included. We retrospectively identified 269 patients with FDG PET/MRI whole-body scans that included the head. PET/MR images of the brain were reviewed by a nuclear medicine physician and neuroradiologist, first individually and then concurrently. Both PET and MRI findings were identified, including abnormal FDG uptake, standardized uptake value, lesion size, and MRI signal characteristics. For each patient, relevant medical history and prior imaging were reviewed. Of the 269 subjects, 173 were women and 96 were men (mean age, 57.4 years). Only the initial PET/MR image of each patient was reviewed. A total of 37 of the 269 patients (13.8%) had abnormal brain findings noted on the PET/MRI whole-body scan. Sixteen patients (5.9%) had vascular disease, nine patients (3.3%) had posttherapy changes, and two (0.7%) had benign cystic lesions in the brain. Twelve patients (4.5%) had serious nonvascular brain abnormalities, including cerebral metastasis in five patients and pituitary adenomas in two patients. Only nine subjects (3.3%) had a new neurologic or cognitive symptom suggestive of a brain abnormality. Routine body imaging with FDG PET/MRI of the area from the skull base to the mid thigh may miss important brain abnormalities when the head is not included. The additional brain abnormalities identified on whole-body imaging may provide added clinical value to the management of oncology patients.

  18. Whole-Body Single-Bed Time-of-Flight RPC-PET: Simulation of Axial and Planar Sensitivities With NEMA and Anthropomorphic Phantoms

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Reis, João; Couceiro, Miguel; Blanco, Alberto; Ferreira, Nuno C.; Marques, Rui Ferreira; Martins, Paulo; Fonte, Paulo

    2012-06-01

    A single-bed, whole-body positron emission tomograph based on resistive plate chambers has been proposed (RPC-PET). An RPC-PET system with an axial field-of-view (AFOV) of 2.4 m has been shown in simulation to have higher system sensitivity using the NEMA NU2-1994 protocol than commercial PET scanners. However, that protocol does not correlate directly with lesion detectability. The latter is better correlated with the planar (slice) sensitivity, obtained with a NEMA NU2-2001 line-source phantom. After validation with published data for the GE Advance, Siemens TruePoint and TrueV, we study by simulation their axial sensitivity profiles, comparing results with RPC-PET. Planar sensitivities indicate that RPC-PET is expected to outperform 16-cm (22-cm) AFOV scanners by a factor 5.8 (3.0) for 70-cm-long scans. For 1.5-m scans (head to mid-legs), the sensitivity gain increases to 11.7 (6.7). Yet, PET systems with large AFOV provide larger coverage but also larger attenuation in the object. We studied these competing effects with both spherical- and line-sources immersed in a 27-cm-diameter water cylinder. For 1.5-m-long scans, the planar sensitivity drops one order of magnitude in all scanners, with RPC-PET outperforming 16-cm (22-cm) AFOV scanners by a factor 9.2 (5.3) without considering the TOF benefit. A gain in the effective sensitivity is expected with TOF iterative reconstruction. Finally, object scatter in an anthropomorphic phantom is similar for RPC-PET and modern, scintillator-based scanners, although RPC-PET benefits further if its TOF information is utilized to exclude scatter events occurring outside the anthropomorphic phantom.

  19. Heredity, pet ownership, and confounding control in a population-based birth cohort.

    PubMed

    Almqvist, Catarina; Egmar, Ann-Charlotte; van Hage-Hamsten, Marianne; Berglind, Niklas; Pershagen, Göran; Nordvall, S Lennart; Svartengren, Magnus; Hedlin, Gunilla; Wickman, Magnus

    2003-04-01

    The association between pet ownership in childhood and subsequent allergic disease is controversial. Bias related to selection of pet exposure has been suggested as a reason for contradictory study results. The purpose of this investigation was to elucidate how pet exposure depends on family history of allergic disease, smoking, and socioeconomic factors in a prospective birth cohort. Parents of 4089 two-month-old children answered a questionnaire that included detailed questions about family history of asthma (maternal, paternal, and sibling), rhinoconjunctivitis, atopic eczema/dermatitis syndrome, pollen and pet allergy, smoking habits, parental occupation, and family pet ownership (cat and dog). Dust samples collected from the mothers' beds were analyzed for Fel d 1 and Can f 1 in a subgroup of the cohort. Cats were less frequently kept in families with parental asthma, rhinoconjunctivitis, or pet or pollen allergy (3.5% to 5.8%) than in families without parental allergic disease (10.8% to 11.8%). Dogs were less common in families with (3.3%) than in families without (5.9%) parental atopic eczema/dermatitis syndrome. Families with smoking mothers and those with low socioeconomic index kept cats and dogs more frequently. Cat allergen levels were lower in homes with than in homes without maternal pet allergy, and this tended to hold true even for homes without a cat. Cat ownership decreased from birth to 2 years of age, especially in families with parental history of allergic diseases. There seems to be a selection of pet exposure based on parental history of allergy, maternal smoking, and socioeconomic factors. This has to be taken into consideration in evaluations of risk associations between pet exposure and allergic disease in childhood.

  20. Attenuation correction in emission tomography using the emission data—A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berker, Yannick, E-mail: berker@mail.med.upenn.edu; Li, Yusheng

    2016-02-15

    The problem of attenuation correction (AC) for quantitative positron emission tomography (PET) had been considered solved to a large extent after the commercial availability of devices combining PET with computed tomography (CT) in 2001; single photon emission computed tomography (SPECT) has seen a similar development. However, stimulated in particular by technical advances toward clinical systems combining PET and magnetic resonance imaging (MRI), research interest in alternative approaches for PET AC has grown substantially in the last years. In this comprehensive literature review, the authors first present theoretical results with relevance to simultaneous reconstruction of attenuation and activity. The authors thenmore » look back at the early history of this research area especially in PET; since this history is closely interwoven with that of similar approaches in SPECT, these will also be covered. We then review algorithmic advances in PET, including analytic and iterative algorithms. The analytic approaches are either based on the Helgason–Ludwig data consistency conditions of the Radon transform, or generalizations of John’s partial differential equation; with respect to iterative methods, we discuss maximum likelihood reconstruction of attenuation and activity (MLAA), the maximum likelihood attenuation correction factors (MLACF) algorithm, and their offspring. The description of methods is followed by a structured account of applications for simultaneous reconstruction techniques: this discussion covers organ-specific applications, applications specific to PET/MRI, applications using supplemental transmission information, and motion-aware applications. After briefly summarizing SPECT applications, we consider recent developments using emission data other than unscattered photons. In summary, developments using time-of-flight (TOF) PET emission data for AC have shown promising advances and open a wide range of applications. These techniques may both remedy deficiencies of purely MRI-based AC approaches in PET/MRI and improve standalone PET imaging.« less

  1. 24 CFR 5.315 - Content of pet rules: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...' content among projects and within individual projects, based on factors such as the size, type, location... not conflict with any applicable State or local law or regulation governing the owning or keeping of pets in dwelling accommodations. (d) Conflict with State or local law. The pet rules adopted by the...

  2. Computational analysis of PET by AIBL (CapAIBL): a cloud-based processing pipeline for the quantification of PET images

    NASA Astrophysics Data System (ADS)

    Bourgeat, Pierrick; Dore, Vincent; Fripp, Jurgen; Villemagne, Victor L.; Rowe, Chris C.; Salvado, Olivier

    2015-03-01

    With the advances of PET tracers for β-Amyloid (Aβ) detection in neurodegenerative diseases, automated quantification methods are desirable. For clinical use, there is a great need for PET-only quantification method, as MR images are not always available. In this paper, we validate a previously developed PET-only quantification method against MR-based quantification using 6 tracers: 18F-Florbetaben (N=148), 18F-Florbetapir (N=171), 18F-NAV4694 (N=47), 18F-Flutemetamol (N=180), 11C-PiB (N=381) and 18F-FDG (N=34). The results show an overall mean absolute percentage error of less than 5% for each tracer. The method has been implemented as a remote service called CapAIBL (http://milxcloud.csiro.au/capaibl). PET images are uploaded to a cloud platform where they are spatially normalised to a standard template and quantified. A report containing global as well as local quantification, along with surface projection of the β-Amyloid deposition is automatically generated at the end of the pipeline and emailed to the user.

  3. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    PubMed

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  4. Lung tumor segmentation in PET images using graph cuts.

    PubMed

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Optimized statistical parametric mapping for partial-volume-corrected amyloid positron emission tomography in patients with Alzheimer's disease and Lewy body dementia

    NASA Astrophysics Data System (ADS)

    Oh, Jungsu S.; Kim, Jae Seung; Chae, Sun Young; Oh, Minyoung; Oh, Seung Jun; Cha, Seung Nam; Chang, Ho-Jong; Lee, Chong Sik; Lee, Jae Hong

    2017-03-01

    We present an optimized voxelwise statistical parametric mapping (SPM) of partial-volume (PV)-corrected positron emission tomography (PET) of 11C Pittsburgh Compound B (PiB), incorporating the anatomical precision of magnetic resonance image (MRI) and amyloid β (A β) burden-specificity of PiB PET. First, we applied region-based partial-volume correction (PVC), termed the geometric transfer matrix (GTM) method, to PiB PET, creating MRI-based lobar parcels filled with mean PiB uptakes. Then, we conducted a voxelwise PVC by multiplying the original PET by the ratio of a GTM-based PV-corrected PET to a 6-mm-smoothed PV-corrected PET. Finally, we conducted spatial normalizations of the PV-corrected PETs onto the study-specific template. As such, we increased the accuracy of the SPM normalization and the tissue specificity of SPM results. Moreover, lobar smoothing (instead of whole-brain smoothing) was applied to increase the signal-to-noise ratio in the image without degrading the tissue specificity. Thereby, we could optimize a voxelwise group comparison between subjects with high and normal A β burdens (from 10 patients with Alzheimer's disease, 30 patients with Lewy body dementia, and 9 normal controls). Our SPM framework outperformed than the conventional one in terms of the accuracy of the spatial normalization (85% of maximum likelihood tissue classification volume) and the tissue specificity (larger gray matter, and smaller cerebrospinal fluid volume fraction from the SPM results). Our SPM framework optimized the SPM of a PV-corrected A β PET in terms of anatomical precision, normalization accuracy, and tissue specificity, resulting in better detection and localization of A β burdens in patients with Alzheimer's disease and Lewy body dementia.

  6. The application of positron emission tomography/computed tomography in radiation treatment planning: effect on gross target volume definition and treatment management.

    PubMed

    Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S

    2010-04-01

    To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, J; Chino, J; Craciunescu, O

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% thresholdmore » and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should be used complimentary to SUV metrics, especially when using gradient based segmentation.« less

  8. Impact of [18F]fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small-cell lung cancer: a prospective study.

    PubMed

    Kolodziejczyk, Milena; Kepka, Lucyna; Dziuk, Miroslaw; Zawadzka, Anna; Szalus, Norbert; Gizewska, Agnieszka; Bujko, Krzysztof

    2011-07-15

    To evaluate prospectively how positron emission tomography (PET) information changes treatment plans for non-small-cell lung cancer (NSCLC) patients receiving or not receiving elective nodal irradiation (ENI). One hundred consecutive patients referred for curative radiotherapy were included in the study. Treatment plans were carried out with CT data sets only. For stage III patients, mediastinal ENI was planned. Then, patients underwent PET-CT for diagnostic/planning purposes. PET/CT was fused with the CT data for final planning. New targets were delineated. For stage III patients with minimal N disease (N0-N1, single N2), the ENI was omitted in the new plans. Patients were treated according to the PET-based volumes and plans. The gross tumor volume (GTV)/planning tumor volume (PTV) and doses for critical structures were compared for both data sets. The doses for areas of potential geographical misses derived with the CT data set alone were compared in patients with and without initially planned ENI. In the 75 patients for whom the decision about curative radiotherapy was maintained after PET/CT, there would have been 20 cases (27%) with potential geographical misses by using the CT data set alone. Among them, 13 patients would receive ENI; of those patients, only 2 patients had the PET-based PTV covered by 90% isodose by using the plans based on CT alone, and the mean of the minimum dose within the missed GTV was 55% of the prescribed dose, while for 7 patients without ENI, it was 10% (p = 0.006). The lung, heart, and esophageal doses were significantly lower for plans with ENI omission than for plans with ENI use based on CT alone. PET/CT should be incorporated in the planning of radiotherapy for NSCLC, even in the setting of ENI. However, if PET/CT is unavailable, ENI may to some extent compensate for an inadequate dose coverage resulting from diagnostic uncertainties. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function.

    PubMed

    Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik

    2018-05-30

    The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018 Institute of Physics and Engineering in Medicine.

  10. Recyclability of PET/WPI/PE Multilayer Films by Removal of Whey Protein Isolate-Based Coatings with Enzymatic Detergents.

    PubMed

    Cinelli, Patrizia; Schmid, Markus; Bugnicourt, Elodie; Coltelli, Maria Beatrice; Lazzeri, Andrea

    2016-06-14

    Multilayer plastic films provide a range of properties, which cannot be obtained from monolayer films but, at present, their recyclability is an open issue and should be improved. Research to date has shown the possibility of using whey protein as a layer material with the property of acting as an excellent barrier against oxygen and moisture, replacing petrochemical non-recyclable materials. The innovative approach of the present research was to achieve the recyclability of the substrate films by separating them, with a simple process compatible with industrial procedures, in order to promote recycling processes leading to obtain high value products that will beneficially impact the packaging and food industries. Hence, polyethyleneterephthalate (PET)/polyethylene (PE) multi-layer film was prepared based on PET coated with a whey protein layer, and then the previous structure was laminated with PE. Whey proteins, constituting the coating, can be degraded by enzymes so that the coating films can be washed off from the plastic substrate layer. Enzyme types, dosage, time, and temperature optima, which are compatible with procedures adopted in industrial waste recycling, were determined for a highly-efficient process. The washing of samples based on PET/whey and PET/whey/PE were efficient when performed with enzymatic detergent containing protease enzymes, as an alternative to conventional detergents used in recycling facilities. Different types of enzymatic detergents tested presented positive results in removing the protein layer from the PET substrate and from the PET/whey/PE multilayer films at room temperature. These results attested to the possibility of organizing the pre-treatment of the whey-based multilayer film by washing with different available commercial enzymatic detergents in order to separate PET and PE, thus allowing a better recycling of the two different polymers. Mechanical properties of the plastic substrate, such as stress at yield, stress and elongation at break, evaluated by tensile testing on films before and after cleaning, were are not significantly affected by washing with enzymatic detergents.

  11. TH-E-BRF-10: Interim Esophageal Cancer Response Assessment Via 18FDG-PET Scanning During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, K; Wu, Q; Perez, B

    2014-06-15

    Purpose: Local failure occurs in a large proportion of esophageal cancer patients treated with chemoradiation. The treatment strategy for non-responders could potentially be modified if they are identified during therapy. This work investigates the utility of an interim 18FDG-PET scan acquired during the course of therapy as a predictor of pathological response post-therapy. Methods: Fifteen patients underwent 18FDG-PET scanning prior to radiation therapy (RT) and once during RT, after delivery of ∼32 Gy. The physician-contoured GTV on the planning CT scan was used to automatically segment a PET-based GTV on the pre-RT PET (GTV-pre-PET) as the volume with >40% ofmore » the maximum GTV PET SUV value. The pre- and intra-RT CTs were deformably registered to each other to transfer the GTV-pre-PET to the intra-RT PET (GTV-intra-PET). The fractional decrease in the maximum SUV, mean SUV and the SUV to the highest intensity 10% – 90% volumes from GTV-pre-PET to GTV-intra-PET were compared to pathological response assessed at the time of post-RT surgery. Results: Based on post-treatment pathology of 15 patients, 7 were classified as achieving favorable response (treatment effect grade ≤ 1) and 8 as unfavorable response (treatment effect grade > 1). Neither fractional decrease in maximum SUV nor mean SUV were significant between the favorable and unfavorable groups. However, the fractional decrease in SUV20% (SUV to the highest 20% volume) was significant (p = 0.02), with an area under the Receiver Operating Characteristics (ROC) curve of 0.84. An optimal cutoff value of 0.46 for this metric was able to distinguish between the two groups with 71% sensitivity (favorable) and 88% specificity (unfavorable). Conclusion: The fractional decrease in SUV to the volume with highest 20% intensity from pre- to intra-RT 18FDG-PET imaging may be used to distinguish between favorable and unfavorable responders with high sensitivity and specificity.« less

  12. CT-based texture analysis potentially provides prognostic information complementary to interim fdg-pet for patients with hodgkin's and aggressive non-hodgkin's lymphomas.

    PubMed

    Ganeshan, B; Miles, K A; Babikir, S; Shortman, R; Afaq, A; Ardeshna, K M; Groves, A M; Kayani, I

    2017-03-01

    The purpose of this study was to investigate the ability of computed tomography texture analysis (CTTA) to provide additional prognostic information in patients with Hodgkin's lymphoma (HL) and high-grade non-Hodgkin's lymphoma (NHL). This retrospective, pilot-study approved by the IRB comprised 45 lymphoma patients undergoing routine 18F-FDG-PET-CT. Progression-free survival (PFS) was determined from clinical follow-up (mean-duration: 40 months; range: 10-62 months). Non-contrast-enhanced low-dose CT images were submitted to CTTA comprising image filtration to highlight features of different sizes followed by histogram-analysis using kurtosis. Prognostic value of CTTA was compared to PET FDG-uptake value, tumour-stage, tumour-bulk, lymphoma-type, treatment-regime, and interim FDG-PET (iPET) status using Kaplan-Meier analysis. Cox regression analysis determined the independence of significantly prognostic imaging and clinical features. A total of 27 patients had aggressive NHL and 18 had HL. Mean PFS was 48.5 months. There was no significant difference in pre-treatment CTTA between the lymphoma sub-types. Kaplan-Meier analysis found pre-treatment CTTA (medium feature scale, p=0.010) and iPET status (p<0.001) to be significant predictors of PFS. Cox analysis revealed that an interaction between pre-treatment CTTA and iPET status was the only independent predictor of PFS (HR: 25.5, 95% CI: 5.4-120, p<0.001). Specifically, pre-treatment CTTA risk stratified patients with negative iPET. CTTA can potentially provide prognostic information complementary to iPET for patients with HL and aggressive NHL. • CT texture-analysis (CTTA) provides prognostic information complementary to interim FDG-PET in Lymphoma. • Pre-treatment CTTA and interim PET status were significant predictors of progression-free survival. • Patients with negative interim PET could be further stratified by pre-treatment CTTA. • Provide precision surveillance where additional imaging reserved for patients at greatest recurrence-risk. • Assists in risk-adapted treatment strategy based on interim PET and CTTA.

  13. Injuries caused by pets in Asian urban households: a cross-sectional telephone survey

    PubMed Central

    Chan, Emily Y Y; Gao, Yang; Li, Liping; Lee, Po Yi

    2017-01-01

    Objectives Little is known about pet-related injuries in Asian populations. This study primarily aimed to investigate the incidence rate of pet-related household injuries in Hong Kong, an urban Chinese setting. Setting Cantonese-speaking non-institutionalised population of all ages in Hong Kong accessible by telephone land-line. Participants A total of 43 542 telephone numbers were dialled and 6570 residents successfully completed the interviews. Primary and secondary outcome measures Data of pet-related household injuries in the previous 12 months, pet ownership and socio-demographic characteristics were collected with a questionnaire. Direct standardisation of the incidence rates of pet-related household injuries by gender and age to the 2009 Hong Kong Population Census was estimated. Univariate and multivariate analyses were performed to estimate risks of socio-demographic factors and pet ownership for the injury. Results A total of 84 participants experienced pet-related household injuries in the past 12 months, with an overall person-based incidence rate of 1.28%. The majority of the victims were injured once (69.6%). Cats (51.6%) were the most common pets involved. Pet owners were at an extremely higher risk after controlling for other factors (adjusted OR: 52.0, 95% CI 22.1 to 98.7). Females, the unmarried, those with higher monthly household income and those living in lower-density housing were more likely to be injured by pets. Conclusions We project a pet-related household injury incidence rate of 1.24% in the general Hong Kong population, with 86 334 residents sustaining pet-related injuries every year. Pet ownership puts people at extremely high risk, especially the unmarried. Further studies should focus on educating pet owners to reduce pet-related injuries in urban Greater China. PMID:28110284

  14. Competitive Advantage of PET/MRI

    PubMed Central

    Jadvar, Hossein; Colletti, Patrick M.

    2013-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. PMID:23791129

  15. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    NASA Astrophysics Data System (ADS)

    Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.

    2011-04-01

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  16. Competitive advantage of PET/MRI.

    PubMed

    Jadvar, Hossein; Colletti, Patrick M

    2014-01-01

    Multimodality imaging has made great strides in the imaging evaluation of patients with a variety of diseases. Positron emission tomography/computed tomography (PET/CT) is now established as the imaging modality of choice in many clinical conditions, particularly in oncology. While the initial development of combined PET/magnetic resonance imaging (PET/MRI) was in the preclinical arena, hybrid PET/MR scanners are now available for clinical use. PET/MRI combines the unique features of MRI including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most evidence for the potential clinical utility of PET/MRI is based on studies performed with side-by-side comparison or software-fused MRI and PET images. Data on distinctive utility of hybrid PET/MRI are rapidly emerging. There are potential competitive advantages of PET/MRI over PET/CT. In general, PET/MRI may be preferred over PET/CT where the unique features of MRI provide more robust imaging evaluation in certain clinical settings. The exact role and potential utility of simultaneous data acquisition in specific research and clinical settings will need to be defined. It may be that simultaneous PET/MRI will be best suited for clinical situations that are disease-specific, organ-specific, related to diseases of the children or in those patients undergoing repeated imaging for whom cumulative radiation dose must be kept as low as reasonably achievable. PET/MRI also offers interesting opportunities for use of dual modality probes. Upon clear definition of clinical utility, other important and practical issues related to business operational model, clinical workflow and reimbursement will also be resolved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Another breed of "service" animals: STARS study findings about pet ownership and recovery from serious mental illness.

    PubMed

    Wisdom, Jennifer P; Saedi, Goal Auzeen; Green, Carla A

    2009-07-01

    This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8 years) in the Study of Transitions and Recovery Strategies (STARS). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and "therapy"; (b) providing connections that can assist in redeveloping social avenues; (c) serving as "family" in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants' reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions.

  18. Another Breed of “Service” Animals: STARS Study Findings about Pet Ownership and Recovery from Serious Mental Illness

    PubMed Central

    Wisdom, Jennifer P.; Saedi, Goal Auzeen; Green, Carla A.

    2010-01-01

    This study elucidates the role of pets in recovery processes among adults with serious mental illness. Data derive from interviews with 177 HMO members with serious mental illness (52.2% women, average age 48.8). Interviews and questionnaires addressed factors affecting recovery processes and included questions about pet ownership. Data were analyzed using a modified grounded theory method to identify the roles pets play in the recovery process. Primary themes indicate pets assist individuals in recovery from serious mental illness by (a) providing empathy and “therapy”; (b) providing connections that can assist in redeveloping social avenues; (c) serving as “family” in the absence of or in addition to human family members; and (d) supporting self-efficacy and strengthening a sense of empowerment. Pets appear to provide more benefits than merely companionship. Participants’ reports of pet-related contributions to their well-being provide impetus to conduct more formal research on the mechanisms by which pets contribute to recovery and to develop pet-based interventions. PMID:19839680

  19. Pets, Purity and Pollution: Why Conventional Models of Disease Transmission Do Not Work for Pet Rat Owners.

    PubMed

    Robin, Charlotte; Perkins, Elizabeth; Watkins, Francine; Christley, Robert

    2017-12-07

    In the United Kingdom, following the emergence of Seoul hantavirus in pet rat owners in 2012, public health authorities tried to communicate the risk of this zoonotic disease, but had limited success. To explore this lack of engagement with health advice, we conducted in-depth, semi-structured interviews with pet rat owners and analysed them using a grounded theory approach. The findings from these interviews suggest that rat owners construct their pets as different from wild rats, and by elevating the rat to the status of a pet, the powerful associations that rats have with dirt and disease are removed. Removing the rat from the contaminated outside world moves their pet rat from being 'out of place' to 'in place'. A concept of 'bounded purity' keeps the rat protected within the home, allowing owners to interact with their pet, safe in the knowledge that it is clean and disease-free. Additionally, owners constructed a 'hierarchy of purity' for their pets, and it is on this structure of disease and risk that owners base their behaviour, not conventional biomedical models of disease.

  20. PET staging of amyloidosis using striatum.

    PubMed

    Hanseeuw, Bernard J; Betensky, Rebecca A; Mormino, Elizabeth C; Schultz, Aaron P; Sepulcre, Jorge; Becker, John A; Jacobs, Heidi I L; Buckley, Rachel F; LaPoint, Molly R; Vanini, Patrizia; Donovan, Nancy J; Chhatwal, Jasmeer P; Marshall, Gad A; Papp, Kathryn V; Amariglio, Rebecca E; Rentz, Dorene M; Sperling, Reisa A; Johnson, Keith A

    2018-05-21

    Amyloid PET data are commonly expressed as binary measures of cortical deposition. However, not all individuals with high cortical amyloid will experience rapid cognitive decline. Motivated by postmortem data, we evaluated a three-stage PET classification: low cortical; high cortical, low striatal; and high cortical, high striatal amyloid; hypothesizing this model could better reflect Alzheimer's dementia progression than a model based only on cortical measures. We classified PET data from 1433 participants (646 normal, 574 mild cognitive impairment, and 213 AD), explored the successive involvement of cortex and striatum using 3-year follow-up PET data, and evaluated the associations between PET stages, hippocampal volumes, and cognition. Follow-up data indicated that PET detects amyloid first in cortex and then in striatum. Our three-category staging including striatum better predicted hippocampal volumes and subsequent cognition than a three-category staging including only cortical amyloid. PET can evaluate amyloid expansion from cortex to subcortex. Using striatal signal as a marker of advanced amyloidosis may increase predictive power in Alzheimer's dementia research. Copyright © 2018. Published by Elsevier Inc.

  1. Focal dose escalation for prostate cancer using 68Ga-HBED-CC PSMA PET/CT and MRI: a planning study based on histology reference.

    PubMed

    Zamboglou, Constantinos; Thomann, Benedikt; Koubar, Khodor; Bronsert, Peter; Krauss, Tobias; Rischke, Hans C; Sachpazidis, Ilias; Drendel, Vanessa; Salman, Nasr; Reichel, Kathrin; Jilg, Cordula A; Werner, Martin; Meyer, Philipp T; Bock, Michael; Baltas, Dimos; Grosu, Anca L

    2018-05-02

    Focal radiation therapy has gained of interest in treatment of patients with primary prostate cancer (PCa). The question of how to define the intraprostatic boost volume is still open. Previous studies showed that multiparametric MRI (mpMRI) or PSMA PET alone could be used for boost volume definition. However, other studies proposed that the combined usage of both has the highest sensitivity in detection of intraprostatic lesions. The aim of this study was to demonstrate the feasibility and to evaluate the tumour control probability (TCP) and normal tissue complication probability (NTCP) of radiation therapy dose painting using 68 Ga-HBED-CC PSMA PET/CT, mpMRI or the combination of both in primary PCa. Ten patients underwent PSMA PET/CT and mpMRI followed by prostatectomy. Three gross tumour volumes (GTVs) were created based on PET (GTV-PET), mpMRI (GTV-MRI) and the union of both (GTV-union). Two plans were generated for each GTV. Plan95 consisted of whole-prostate IMRT to 77 Gy in 35 fractions and a simultaneous boost to 95 Gy (Plan95 PET /Plan95 MRI /Plan95 union ). Plan80 consisted of whole-prostate IMRT to 76 Gy in 38 fractions and a simultaneous boost to 80 Gy (Plan80 PET /Plan80 MRI /Plan80 union ). TCPs were calculated for GTV-histo (TCP-histo), which was delineated based on PCa distribution in co-registered histology slices. NTCPs were assessed for bladder and rectum. Dose constraints of published protocols were reached in every treatment plan. Mean TCP-histo were 99.7% (range: 97%-100%) and 75.5% (range: 33%-95%) for Plan95 union and Plan80 union , respectively. Plan95 union had significantly higher TCP-histo values than Plan95 MRI (p = 0.008) and Plan95 PET (p = 0.008). Plan80 union had significantly higher TCP-histo values than Plan80 MRI (p = 0.012), but not than Plan80 PET (p = 0.472). Plan95 MRI had significantly lower NTCP-rectum than Plan95 union (p = 0.012). No significant differences in NTCP-rectum and NTCP-bladder were observed for all other plans (p > 0.05). IMRT dose escalation on GTVs based on mpMRI, PSMA PET/CT and the combination of both was feasible. Boosting GTV-union resulted in significantly higher TCP-histo with no or minimal increase of NTCPs compared to the other plans.

  2. FDG-PET and Neuropsychiatric Symptoms among Cognitively Normal Elderly Persons: The Mayo Clinic Study of Aging.

    PubMed

    Krell-Roesch, Janina; Ruider, Hanna; Lowe, Val J; Stokin, Gorazd B; Pink, Anna; Roberts, Rosebud O; Mielke, Michelle M; Knopman, David S; Christianson, Teresa J; Machulda, Mary M; Jack, Clifford R; Petersen, Ronald C; Geda, Yonas E

    2016-07-14

    One of the key research agenda of the field of aging is investigation of presymptomatic Alzheimer's disease (AD). Furthermore, abnormalities in brain glucose metabolism (as measured by FDG-PET) have been reported among cognitively normal elderly persons. However, little is known about the association of FDG-PET abnormalities with neuropsychiatric symptoms (NPS) in a population-based setting. Thus, we conducted a cross-sectional study derived from the ongoing population-based Mayo Clinic Study of Aging in order to examine the association between brain glucose metabolism and NPS among cognitively normal (CN) persons aged > 70 years. Participants underwent FDG-PET and completed the Neuropsychiatric Inventory Questionnaire (NPI-Q), Beck Depression Inventory (BDI), and Beck Anxiety Inventory (BAI). Cognitive classification was made by an expert consensus panel. We conducted multivariable logistic regression analyses to compute odds ratios (OR) and 95% confidence intervals after adjusting for age, sex, and education. For continuous variables, we used linear regression and Spearman rank-order correlations. Of 668 CN participants (median 78.1 years, 55.4% males), 205 had an abnormal FDG-PET (i.e., standardized uptake value ratio < 1.32 in AD-related regions). Abnormal FDG-PET was associated with depression as measured by NPI-Q (OR = 2.12; 1.23-3.64); the point estimate was further elevated for APOE ɛ4 carriers (OR = 2.59; 1.00-6.69), though marginally significant. Additionally, we observed a significant association between abnormal FDG-PET and depressive and anxiety symptoms when treated as continuous measures. These findings indicate that NPS, even in community-based samples, can be an important additional tool to the biomarker-based investigation of presymptomatic AD.

  3. 11C-Choline PET/CT based Helical Tomotherapy as Treatment Approach for Bone Metastases in Recurrent Prostate Cancer Patients.

    PubMed

    Incerti, Elena; Gangemi, Vincenzo; Mapelli, Paola; Deantoni, Chiara Lucrezia; Giovacchini, Giampiero; Fallanca, Federico; Fodor, Andrei; Ciarmiello, Andrea; Baldari, Sergio; Gianolli, Luigi; Di Muzio, Nadia; Picchio, Maria

    2017-11-10

    To evaluate the efficacy of 11C-choline PET/CT (CHO-PET/CT) based helical tomotherapy (HTT) as a therapeutic approach for bone metastases in recurrent prostate cancer (PCa) patients. This retrospective study includes 20 PCa patients (median age: 67; range: 51-80 years) presenting biochemical relapse after primary treatment who underwent CHO-PET/CT based HTT on positive bone metastases from December 2007 to June 2014. The effectiveness of HTT has been assessed with biochemical response at 3/6/12 months, biochemical relapse free survival (bRFS) and overall survival (OS) at 2 years. Toxicity has also been considered and assessed according to Common Terminology Criteria for Adverse Events (CTCAE). All patients presented a relapse at the time of CHO-PET/CT at bone level. In addition 15/20 (75%) also at lymph nodes (LNs) level (total lesions= 54). All patients underwent HTT on bone metastases and 19/20 concomitantly on prostatic bed and LNs. The median follow-up from CHO-PET/CT was 2 years (range: 1-7 years). At 3 months after the beginning of HTT treatment complete or partial biochemical response occurred in 79% of patients, at 6 months in 82% and at 12 months in 63% of patients. bRFS and OS at 2 years were 50% and 55% of patients, respectively. Patients presented mostly grade 1 or 2 toxicity according to CTCAE. The only grade 3 late toxicity has been observed in one patient. CHO-PET/CT based HTT is a suitable therapeutic approach in patients with recurrent PCa presenting bone metastases with a medium-low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients.

    PubMed

    Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong

    2013-01-07

    Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.

  5. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients

    PubMed Central

    Jin, Shuo; Li, Dengwang; Yin, Yong

    2013-01-01

    Accurate registration of  18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from  18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381

  6. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging

    NASA Astrophysics Data System (ADS)

    Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.

    2015-10-01

    The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within  ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.

  7. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    PubMed

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-09-21

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  8. SU-E-J-270: Repeated 18F-FDG PET/CTs Based Feature Analysis for the Predication of Anal Cancer Recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Chuong, M; Choi, W

    Purpose: To identify PET/CT based imaging predictors of anal cancer recurrence and evaluate baseline vs. mid-treatment vs. post-treatment PET/CT scans in the tumor recurrence prediction. Methods: FDG-PET/CT scans were obtained at baseline, during chemoradiotherapy (CRT, midtreatment), and after CRT (post-treatment) in 17 patients of anal cancer. Four patients had tumor recurrence. For each patient, the mid-treatment and post-treatment scans were respectively aligned to the baseline scan by a rigid registration followed by a deformable registration. PET/CT image features were computed within the manually delineated tumor volume of each scan to characterize the intensity histogram, spatial patterns (texture), and shape ofmore » the tumors, as well as the changes of these features resulting from CRT. A total of 335 image features were extracted. An Exact Logistic Regression model was employed to analyze these PET/CT image features in order to identify potential predictors for tumor recurrence. Results: Eleven potential predictors of cancer recurrence were identified with p < 0.10, including five shape features, five statistical texture features, and one CT intensity histogram feature. Six features were indentified from posttreatment scans, 3 from mid-treatment scans, and 2 from baseline scans. These features indicated that there were differences in shape, intensity, and spatial pattern between tumors with and without recurrence. Recurrent tumors tended to have more compact shape (higher roundness and lower elongation) and larger intensity difference between baseline and follow-up scans, compared to non-recurrent tumors. Conclusion: PET/CT based anal cancer recurrence predictors were identified. The post-CRT PET/CT is the most important scan for the prediction of cancer recurrence. The baseline and mid-CRT PET/CT also showed value in the prediction and would be more useful for the predication of tumor recurrence in early stage of CRT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  9. Subject-specific bone attenuation correction for brain PET/MR: can ZTE-MRI substitute CT scan accurately?

    NASA Astrophysics Data System (ADS)

    Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude

    2017-10-01

    In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.

  10. Impact of time-of-flight PET on quantification errors in MR imaging-based attenuation correction.

    PubMed

    Mehranian, Abolfazl; Zaidi, Habib

    2015-04-01

    Time-of-flight (TOF) PET/MR imaging is an emerging imaging technology with great capabilities offered by TOF to improve image quality and lesion detectability. We assessed, for the first time, the impact of TOF image reconstruction on PET quantification errors induced by MR imaging-based attenuation correction (MRAC) using simulation and clinical PET/CT studies. Standard 4-class attenuation maps were derived by segmentation of CT images of 27 patients undergoing PET/CT examinations into background air, lung, soft-tissue, and fat tissue classes, followed by the assignment of predefined attenuation coefficients to each class. For each patient, 4 PET images were reconstructed: non-TOF and TOF both corrected for attenuation using reference CT-based attenuation correction and the resulting 4-class MRAC maps. The relative errors between non-TOF and TOF MRAC reconstructions were compared with their reference CT-based attenuation correction reconstructions. The bias was locally and globally evaluated using volumes of interest (VOIs) defined on lesions and normal tissues and CT-derived tissue classes containing all voxels in a given tissue, respectively. The impact of TOF on reducing the errors induced by metal-susceptibility and respiratory-phase mismatch artifacts was also evaluated using clinical and simulation studies. Our results show that TOF PET can remarkably reduce attenuation correction artifacts and quantification errors in the lungs and bone tissues. Using classwise analysis, it was found that the non-TOF MRAC method results in an error of -3.4% ± 11.5% in the lungs and -21.8% ± 2.9% in bones, whereas its TOF counterpart reduced the errors to -2.9% ± 7.1% and -15.3% ± 2.3%, respectively. The VOI-based analysis revealed that the non-TOF and TOF methods resulted in an average overestimation of 7.5% and 3.9% in or near lung lesions (n = 23) and underestimation of less than 5% for soft tissue and in or near bone lesions (n = 91). Simulation results showed that as TOF resolution improves, artifacts and quantification errors are substantially reduced. TOF PET substantially reduces artifacts and improves significantly the quantitative accuracy of standard MRAC methods. Therefore, MRAC should be less of a concern on future TOF PET/MR scanners with improved timing resolution. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Clinical utility of FDG PET in Parkinson's disease and atypical parkinsonism associated with dementia.

    PubMed

    Walker, Zuzana; Gandolfo, Federica; Orini, Stefania; Garibotto, Valentina; Agosta, Federica; Arbizu, Javier; Bouwman, Femke; Drzezga, Alexander; Nestor, Peter; Boccardi, Marina; Altomare, Daniele; Festari, Cristina; Nobili, Flavio

    2018-05-19

    There are no comprehensive guidelines for the use of FDG PET in the following three clinical scenarios: (1) diagnostic work-up of patients with idiopathic Parkinson's disease (PD) at risk of future cognitive decline, (2) discriminating idiopathic PD from progressive supranuclear palsy, and (3) identifying the underlying neuropathology in corticobasal syndrome. We therefore performed three literature searches and evaluated the selected studies for quality of design, risk of bias, inconsistency, imprecision, indirectness and effect size. Critical outcomes were the sensitivity, specificity, accuracy, positive/negative predictive value, area under the receiving operating characteristic curve, and positive/negative likelihood ratio of FDG PET in detecting the target condition. Using the Delphi method, a panel of seven experts voted for or against the use of FDG PET based on published evidence and expert opinion. Of 91 studies selected from the three literature searches, only four included an adequate quantitative assessment of the performance of FDG PET. The majority of studies lacked robust methodology due to lack of critical outcomes, inadequate gold standard and no head-to-head comparison with an appropriate reference standard. The panel recommended the use of FDG PET for all three clinical scenarios based on nonquantitative evidence of clinical utility. Despite widespread use of FDG PET in clinical practice and extensive research, there is still very limited good quality evidence for the use of FDG PET. However, in the opinion of the majority of the panellists, FDG PET is a clinically useful imaging biomarker for idiopathic PD and atypical parkinsonism associated with dementia.

  12. Future of keeping pet reptiles and amphibians: towards integrating animal welfare, human health and environmental sustainability.

    PubMed

    Pasmans, Frank; Bogaerts, Serge; Braeckman, Johan; Cunningham, Andrew A; Hellebuyck, Tom; Griffiths, Richard A; Sparreboom, Max; Schmidt, Benedikt R; Martel, An

    2017-10-28

    The keeping of exotic pets is currently under debate and governments of several countries are increasingly exploring the regulation, or even the banning, of exotic pet keeping. Major concerns are issues of public health and safety, animal welfare and biodiversity conservation. The keeping of reptiles and amphibians in captivity encompasses all the potential issues identified with keeping exotic pets, and many of those relating to traditional domestic pets. Within the context of risks posed by pets in general, the authors argue for the responsible and sustainable keeping of reptile and amphibian pets by private persons, based on scientific evidence and on the authors' own expertise (veterinary medicine, captive husbandry, conservation biology). © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Current research on ARO-positron emission tomography

    NASA Astrophysics Data System (ADS)

    Jan, Meei-Ling; Liang, Hsing C.; Huang, Shin W.; Shyu, Chuen-Shing; Tang, Jiy-Shan; Liu, Hong-Chih; Pei, Cheng-Chih; Yeh, Ching-Kai

    2000-06-01

    We are presently constructing `AROPET', a rotating PET scanner for imaging small animals. The design of the system has flexible geometry, using four detectors. Each detector is made of a position-sensitive PMTs (Hamamatsu R3941) coupled with 18 X 16 small individual BGO scintillator crystals of dimension 2.6 X 2.6 X 25 mm3. Animals can be imaged in two modes. One is similar to a gamma camera in which the detectors are stationary and a 2D planar projection imaging is obtained. This mode is used for initial characterization of the bio-distribution of tracers. In the other mode the detectors are rotated through 90 degree(s), and the diameter can be adjusted between 22 cm - 40 cm. This mode resembles a conventional 3D PET scan using a partial detector ring. Thirty-one tomographic images can be obtained after rebinning and reconstruction. The field of view is 51.3 mm (transaxial) by 45.6 mm (axial). The spatial resolution of the planar projection mode, and the results of the planar image of a phantom and the dynamical images of the bio-distribution of F18-FDG in a mouse are discussed.

  14. Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.

    PubMed

    Büther, Florian; Ernst, Iris; Frohwein, Lynn Johann; Pouw, Joost; Schäfers, Klaus Peter; Stegger, Lars

    2018-05-21

    Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [ 18 F]FDG PET/CT or [ 18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [ 18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all statistic levels. Motion resolution d/d max could be modeled as d/dmax=1-e-1.52(SNR-1)0.52, with d max as the actual respiratory shift. Determining d max from d and SNR in the 25 test datasets and the phantom scan demonstrated no significant differences to the MR navigator-derived shift values and the predefined shift, respectively. The SNR can serve as a general metric to assess the success of COM-based DDG, even in different scanners and patients. The derived formula for motion resolution can be used to estimate the actual motion extent reasonably well in cases of limited PET raw data statistics. This may be of interest for individualized radiotherapy treatment planning procedures of target structures subjected to respiratory motion. © 2018 American Association of Physicists in Medicine.

  15. A new scalable modular data acquisition system for SPECT (PET)

    NASA Astrophysics Data System (ADS)

    Stenstrom, P.; Rillbert, A.; Bergquist, M.; Habte, F.; Bohm, C.; Larsson, S. A.

    1998-06-01

    Describes a modular decentralized data acquisition system that continuously samples shaped PMT pulses from a SPECT detector. The pulse waveform data are used by signal processors to accurately reconstruct amplitude and time for each scintillation event. Data acquisition for a PMT channel is triggered in two alternative ways, either when its own signal exceeds a selected digital threshold, or when it receives a trigger pulse from one of its neighboring PMTs. The triggered region is restricted to seven, thirteen or nineteen neighboring PMT channels. Each acquisition module supports three PMT channels and connects to all other modules and a reconstruction computer via Firewire to cover the 72 channels in the Stockholm University/Karolinska Hospital cylindrical SPECT camera.

  16. Diagnosis of metastases from postoperative differentiated thyroid cancer: comparison between FDG and FLT PET/CT studies.

    PubMed

    Nakajo, Masatoyo; Nakajo, Masayuki; Jinguji, Megumi; Tani, Atsushi; Kajiya, Yoriko; Tanabe, Hiroaki; Fukukura, Yoshihiko; Nakabeppu, Yoshiaki; Koriyama, Chihaya

    2013-06-01

    To compare positron emission tomography (PET)/computed tomography (CT) studies performed with the glucose analog fluorine 18 ((18)F) fluorodeoxyglucose (FDG) and the cell proliferation tracer (18)F fluorothymidine (FLT) in the diagnosis of metastases from postoperative differentiated thyroid cancer. The institutional ethics review board approved this prospective study. From March 2010 to February 2012, 20 patients (mean age, 53 years; age range, 22-79 years) with postoperative differentiated thyroid cancer underwent both FDG and FLT PET/CT as a staging work-up before radioiodine therapy. In each patient, 28 anatomic areas were set and analyzed for lymph node and distant metastases. The McNemar exact or χ(2) test was used to examine differences in diagnostic indexes in the detection of lymph node and distant metastases between both tracer PET/CT studies. There were 34 lymph node metastases and/or 73 distant metastases (70 metastases in lung and one each in bone, nasopharynx, and brain) in 13 patients. At patient-based analysis, the sensitivity, specificity, and accuracy were 92% (12 of 13 patients), 86% (six of seven patients), and 90% (18 of 20 patients), respectively, for FDG PET/CT and 69% (nine of 13 patients), 29% (two of seven patients), and 55% (11 of 20 patients) for FLT PET/CT. The accuracy of FDG PET/CT was significantly better than that of FLT PET/CT (P = .023). At lesion-based analysis, the sensitivity, specificity, and accuracy for diagnosing lymph node metastases were 85% (29 of 34 lesions), 99.6% (245 of 246 lesions), and 97.9% (274 of 280 lesions), respectively, for FDG PET/CT and 50% (17 of 34 lesions), 90.7% (223 of 246 lesions), and 85.7% (240 of 280 lesions) for FLT PET/CT. The sensitivity, specificity, and accuracy for diagnosing distant metastases were 45% (33 of 73 lesions), 100% (207 of 207 lesions), and 85.7% (240 of 280 lesions), respectively, for FDG PET/CT and 6.8% (five of 73 lesions), 100% (207 of 207 lesions), and 75.7% (212 of 280 lesions) for FLT PET/CT. The sensitivity (P = .002), specificity (P < .001), and accuracy (P < .001) of FDG PET/CT in the diagnosis of lymph node metastases were superior to those of FLT PET, as were the sensitivity (P < .001) and accuracy (P < .001) in the diagnosis of distant metastases. FDG PET/CT is superior to FLT PET/CT in the diagnosis of postoperative differentiated thyroid cancer lymph node and distant metastases. Thus, FDG PET/CT is more suitable than FLT PET/CT for examining recurrence of postoperative differentiated thyroid cancer.

  17. TH-A-17A-01: Innovation in PET Instrumentation and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, M; Miyaoka, R; Shao, Y

    Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less

  18. Feasibility assessment of yttrium-90 liver radioembolization imaging using amplitude-based gated PET/CT

    PubMed Central

    Acuff, Shelley N.; Neveu, Melissa L.; Syed, Mumtaz; Kaman, Austin D.; Fu, Yitong

    2018-01-01

    Purpose The usage of PET/computed tomography (CT) to monitor hepatocellular carcinoma patients following yttrium-90 (90Y) radioembolization has increased. Respiratory motion causes liver movement, which can be corrected using gating techniques at the expense of added noise. This work examines the use of amplitude-based gating on 90Y-PET/CT and its potential impact on diagnostic integrity. Patients and methods Patients were imaged using PET/CT following 90Y radioembolization. A respiratory band was used to collect respiratory cycle data. Patient data were processed as both standard and motion-corrected images. Regions of interest were drawn and compared using three methods. Activity concentrations were calculated and converted into dose estimates using previously determined and published scaling factors. Diagnostic assessments were performed using a binary scale created from published 90Y-PET/CT image interpretation guidelines. Results Estimates of radiation dose were increased (P<0.05) when using amplitude-gating methods with 90Y PET/CT imaging. Motion-corrected images show increased noise, but the diagnostic determination of success, using the Kao criteria, did not change between static and motion-corrected data. Conclusion Amplitude-gated PET/CT following 90Y radioembolization is feasible and may improve 90Y dose estimates while maintaining diagnostic assessment integrity. PMID:29351124

  19. Molecular prevalence of Cryptosporidium species among household cats and pet shop kittens in Japan.

    PubMed

    Ito, Yoichi; Itoh, Naoyuki; Iijima, Yuko; Kimura, Yuya

    2017-01-01

    To address the lack of up-to-date published data, the present study evaluates the PCR-based prevalence of Cryptosporidium species infection and molecular characteristics of isolates among household cats and pet shop kittens in Japan. A total of 357 and 329 fresh faecal samples were collected from household cats and pet shop kittens, respectively, with or without clinical signs of infection. A nested PCR assay targeting the 18S rRNA gene was employed for the detection of Cryptosporidium species. After specific DNA fragments (approximately 826 base pairs) were confirmed, the amplicons were sequenced to determine species. Seven (2.0%) household cats and one (0.3%) pet shop kitten tested positive for the presence of Cryptosporidium species. In household cats, there was a significant difference in prevalence between cats aged <1 year (4.6%) and those aged ⩾1 year (0.4%). No significantly different prevalence was observed with regard to faecal condition in either household cats or pet shop kittens. A total of eight Cryptosporidium species isolates, seven from household cats and one from a pet shop kitten, were identified as Cryptosporidium felis . The present study demonstrates the risk of zoonotic transmission of Cryptosporidium species from household cats and pet shop kittens to humans is low in Japan.

  20. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  1. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  2. Radioembolization and the Dynamic Role of 90Y PET/CT

    PubMed Central

    Pasciak, Alexander S.; Bourgeois, Austin C.; McKinney, J. Mark; Chang, Ted T.; Osborne, Dustin R.; Acuff, Shelley N.; Bradley, Yong C.

    2014-01-01

    Before the advent of tomographic imaging, it was postulated that decay of 90 Y to the 0+ excited state of 90Zr may result in emission of a positron–electron pair. While the branching ratio for pair-production is small (~32 × 10−6), PET has been successfully used to image 90 Y in numerous recent patients and phantom studies. 90 Y PET imaging has been performed on a variety of PET/CT systems, with and without time-of-flight (TOF) and/or resolution recovery capabilities as well as on both bismuth-germanate and lutetium yttrium orthosilicate (LYSO)-based scanners. On all systems, resolution and contrast superior to bremsstrahlung SPECT has been reported. The intrinsic radioactivity present in LYSO-based PET scanners is a potential limitation associated with accurate quantification of 90 Y. However, intrinsic radioactivity has been shown to have a negligible effect at the high activity concentrations common in 90 Y radioembolization. Accurate quantification is possible on a variety of PET scanner models, with or without TOF, although TOF improves accuracy at lower activity concentrations. Quantitative 90 Y PET images can be transformed into 3-dimensional (3D) maps of absorbed dose based on the premise that the 90 Y activity distribution does not change after infusion. This transformation has been accomplished in several ways, although the most common is with the use of 3D dose-point-kernel convolution. From a clinical standpoint, 90 Y PET provides a superior post-infusion evaluation of treatment technical success owing to its improved resolution. Absorbed dose maps generated from quantitative PET data can be used to predict treatment efficacy and manage patient follow-up. For patients who receive multiple treatments, this information can also be used to provide patient-specific treatment-planning for successive therapies, potentially improving response. The broad utilization of 90 Y PET has the potential to provide a wealth of dose–response information, which may lead to development of improved radioembolization treatment-planning models in the future. PMID:24579065

  3. 18F-FDG PET/CT in breast cancer: Evidence-based recommendations in initial staging.

    PubMed

    Caresia Aroztegui, Ana Paula; García Vicente, Ana María; Alvarez Ruiz, Soledad; Delgado Bolton, Roberto Carlos; Orcajo Rincon, Javier; Garcia Garzon, Jose Ramon; de Arcocha Torres, Maria; Garcia-Velloso, Maria Jose

    2017-10-01

    Current guidelines do not systematically recommend 18F-FDG PET/CT for breast cancer staging; and the recommendations and level of evidence supporting its use in different groups of patients vary among guidelines. This review summarizes the evidence about the role of 18F-FDG PET/CT in breast cancer staging and the therapeutic and prognostic impact accumulated in the last decade. Other related aspects, such as the association of metabolic information with biology and prognosis are considered and evidence-based recommendations for the use of 18F-FDG PET/CT in breast cancer staging are offered. We systematically searched MEDLINE for articles reporting studies with at least 30 patients related to clinical questions following the Problem/Population, Intervention, Comparison, and Outcome framework. We critically reviewed the selected articles and elaborated evidence tables structuring the summarized information into methodology, results, and limitations. The level of evidence and the grades of recommendation for the use of 18F-FDG PET/CT in different contexts are summarized. Level III evidence supports the use of 18F-FDG PET/CT for initial staging in patients with recently diagnosed breast cancer; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a weak recommendation in this population. In patients with locally advanced breast cancer, level II evidence supports the use of 18F-FDG PET/CT for initial staging; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a strong recommendation in this population. In patients with recently diagnosed breast cancer, the metabolic information from baseline 18F-FDG PET/CT is associated with tumor biology and has prognostic implications, supported by level II evidence. In conclusion, 18F-FDG PET/CT is not recommended for staging all patients with early breast cancer, although evidence of improved regional and systemic staging supports its use in locally advanced breast cancer. Baseline tumor glycolytic activity is associated with tumor biology and prognosis.

  4. Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: Diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences.

    PubMed

    Becker, Minerva; Varoquaux, Arthur D; Combescure, Christophe; Rager, Olivier; Pusztaszeri, Marc; Burkhardt, Karim; Delattre, Bénédicte M A; Dulguerov, Pavel; Dulguerov, Nicolas; Katirtzidou, Eirini; Caparrotti, Francesca; Ratib, Osman; Zaidi, Habib; Becker, Christoph D

    2018-02-01

    To determine the diagnostic performance of FDG-PET/MRI with diffusion-weighted imaging (FDG-PET/DWIMRI) for detection and local staging of head and neck squamous cell carcinoma (HNSCC) after radio(chemo)therapy. This was a prospective study that included 74 consecutive patients with previous radio(chemo)therapy for HNSCC and in whom tumour recurrence or radiation-induced complications were suspected clinically. The patients underwent hybrid PET/MRI examinations with morphological MRI, DWI and FDG-PET. Experienced readers blinded to clinical/histopathological data evaluated images according to established diagnostic criteria taking into account the complementarity of multiparametric information. The standard of reference was histopathology with whole-organ sections and follow-up ≥24 months. Statistical analysis considered data clustering. The proof of diagnosis was histology in 46/74 (62.2%) patients and follow-up (mean ± SD = 34 ± 8 months) in 28/74 (37.8%). Thirty-eight patients had 43 HNSCCs and 46 patients (10 with and 36 without tumours) had 62 benign lesions/complications. Sensitivity, specificity, and positive and negative predictive value of PET/DWIMRI were 97.4%, 91.7%, 92.5% and 97.1% per patient, and 93.0%, 93.5%, 90.9%, and 95.1% per lesion, respectively. Agreement between imaging-based and pathological T-stage was excellent (kappa = 0.84, p < 0.001). FDG-PET/DWIMRI yields excellent results for detection and T-classification of HNSCC after radio(chemo)therapy. • FDG-PET/DWIMRI yields excellent results for the detection of post-radio(chemo)therapy HNSCC recurrence. • Prospective one-centre study showed excellent agreement between imaging-based and pathological T-stage. • 97.5% of positive concordant MRI, DWI and FDG-PET results correspond to recurrence. • 87% of discordant MRI, DWI and FDG-PET results correspond to benign lesions. • Multiparametric FDG-PET/DWIMRI facilitates planning of salvage surgery in the irradiated neck.

  5. Parents' acceptance and their children's choice of pet for animal-assisted therapy (A.A.T.) in 3- to 12-year-old children in the dental operatory -A questionnaire-based pilot study.

    PubMed

    Gupta, Nidhi; Yadav, Tushar

    2018-04-16

    To evaluate the parents' acceptance to therapy pets, child's most favoured pet, child's choice of soft toy as compared to live pet, and child's preference of his own pet versus therapy pet. Sixty-two children of age groups 3-6 year, 6-9 year, and 9-12 year were selected. The data from completed questionnaires were statistically analysed and subjected to z test, Chi-squared test with P value<0.05 considered as significant. The consent to the presence of pet was given by 41.47% parents of 9- to 12-year-old children, 34.15% parents of 6- to 9-year-old children and 24.39% parents of 3- to 6-year-old children. Children who chose dog as their preferred pet were 56.7%; those who chose cat as their preferred pet were 44%. A majority of 3-to 6-year-olds (63.15%) had dog & cat as their choice, while 6- to 9-year-olds (65.21%) & 9- to 12-year-olds (40%) preferred dogs over all others. Dog was the favourite pet of 46.8% children. More percentage of children wanted pet provided by clinic. Animal-Assisted Therapy (AAT) can prove to be a good behaviour management technique if more parents are made aware and informed about AAT; dog is one of the highly recommended pets for AAT, and therapy pet should be preferred over home pet. © 2018 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation With Treatment Efficacy.

    PubMed

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-06-01

    ⁹⁰Y PET/CT can be acquired after ⁹⁰Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using ⁹⁰Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from (99m)Tc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. (99m)Tc-MAA was injected during planning angiography and whole body (99m)Tc-MAA scan and liver SPECT/CT were acquired. After SIRT using ⁹⁰Y-resin microsphere, ⁹⁰Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT results. Lung shunt fraction was overestimated on (99m)Tc-MAA scan compared with ⁹⁰Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from (99m)Tc-MAA SPECT/CT was significantly lower than that from ⁹⁰Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on (99m)Tc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between (99m)Tc-MAA SPECT/CT and ⁹⁰Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on ⁹⁰Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by (99m)Tc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on (99m)Tc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on ⁹⁰Y-microsphere PET/CT is an effective method to predict treatment efficacy.

  7. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on 99mTc-MAA Imaging and Correlation With Treatment Efficacy

    PubMed Central

    Song, Yoo Sung; Paeng, Jin Chul; Kim, Hyo-Cheol; Chung, Jin Wook; Cheon, Gi Jeong; Chung, June-Key; Lee, Dong Soo; Kang, Keon Wook

    2015-01-01

    Abstract 90Y PET/CT can be acquired after 90Y-microsphere selective radiation internal therapy (SIRT) to describe radioactivity distribution. We performed dosimetry using 90Y-microsphere PET/CT data to evaluate treatment efficacy and appropriateness of activity planning from 99mTc-MAA scan and SPECT/CT. Twenty-three patients with liver malignancy were included in the study. 99mTc-MAA was injected during planning angiography and whole body 99mTc-MAA scan and liver SPECT/CT were acquired. After SIRT using 90Y-resin microsphere, 90Y-microsphere PET/CT was acquired. A partition model (PM) using 4 compartments (tumor, intarget normal liver, out-target normal liver, and lung) was adopted, and absorbed dose to each compartment was calculated based on measurements from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT, respectively, to be compared with each other. Progression-free survival (PFS) was evaluated in terms of tumor absorbed doses calculated by 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT results. Lung shunt fraction was overestimated on 99mTc-MAA scan compared with 90Y-microsphere PET/CT (0.060 ± 0.037 vs. 0.018 ± 0.026, P < 0.01). Tumor absorbed dose exhibited a close correlation between the results from 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (r = 0.64, P < 0.01), although the result from 99mTc-MAA SPECT/CT was significantly lower than that from 90Y-microsphere PET/CT (135.4 ± 64.2 Gy vs. 185.0 ± 87.8 Gy, P < 0.01). Absorbed dose to in-target normal liver was overestimated on 99mTc-MAA SPECT/CT compared with PET/CT (62.6 ± 38.2 Gy vs. 45.2 ± 32.0 Gy, P = 0.02). Absorbed dose to out-target normal liver did not differ between 99mTc-MAA SPECT/CT and 90Y-microsphere PET/CT (P = 0.49). Patients with tumor absorbed dose >200 Gy on 90Y-microsphere PET/CT had longer PFS than those with tumor absorbed dose ≤200 Gy (286 ± 56 days vs. 92 ± 20 days, P = 0.046). Tumor absorbed dose calculated by 99mTc-MAA SPECT/CT was not a significant predictor for PFS. Activity planning based on 99mTc-MAA scan and SPECT/CT can be effectively used as a conservative method. Post-SIRT dosimetry based on 90Y-microsphere PET/CT is an effective method to predict treatment efficacy. PMID:26061323

  8. Kinetic modeling in PET imaging of hypoxia

    PubMed Central

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  9. Evidence for the use PET for radiation therapy planning in patients with cervical cancer: a systematic review.

    PubMed

    Salem, A; Salem, A F; Al-Ibraheem, A; Lataifeh, I; Almousa, A; Jaradat, I

    2011-01-01

    In recent years, the role of positron emission tomography (PET) in the staging and management of gynecological cancers has been increasing. The aim of this study was to systematically review the role of PET in radiotherapy planning and brachytherapy treatment optimization in patients with cervical cancer. Systematic literature review. Systematic review of relevant literature addressing the utilization of PET and/or PET-computed tomography (CT) in external-beam radiotherapy planning and brachytherapy treatment optimization. We performed an extensive PubMed database search on 20 April 2011. Nineteen studies, including 759 patients, formed the basis of this systematic review. PET/ PET-CT is the most sensitive imaging modality for detecting nodal metastases in patients with cervical cancer and has been shown to impact external-beam radiotherapy planning by modifying the treatment field and customizing the radiation dose. This particularly applies to detection of previously uncovered para-aortic and inguinal nodal metastases. Furthermore, PET/ PET-CT guided intensity-modulated radiation therapy (IMRT) allows delivery of higher doses of radiation to the primary tumor, if brachytherapy is unsuitable, and to grossly involved nodal disease while minimizing treatment-related toxicity. PET/ PET-CT based brachytherapy optimization allows improved tumor-volume dose distribution and detailed 3D dosimetric evaluation of risk organs. Sequential PET/ PET-CT imaging performed during the course of brachytherapy form the basis of “adaptive” brachytherapy in cervical cancer. This review demonstrates the effectiveness of pretreatment PET/ PET-CT in cervical cancer patients treated by radiotherapy. Further prospective studies are required to define the group of patients who would benefit the most from this procedure.

  10. [The status of domestic PET/CT attendance in the light of the waiting list data].

    PubMed

    Galuska, László; Balkay, László

    2010-06-01

    The aim of the study is to demonstrate the diagnostic and geographical distribution of the domestic PET/CT examinations financed by the OEP based on the data from the waiting list of the past 4 years. The analysis of the demonstrated data can support the rational usage of PET/CT examination contingents in the domestic oncological attendance, which has growing importance. PET examinations with oncological aims have started in Debrecen more than 10 years ago. In 2005 already 1500 PET examinations have been carried out. According to the governmental regulation accepted in 2006, OEP ensures the financing of the three PET/CT centers until 2012, which means 12,000 examinations in 2012. However, the number of domestic oncological patients requiring PET/CT examinations can reach the number of 20,000-30,000 patients. The study summarizes the number of patients who applied for PET/CT examinations for the first time and later again between 2006 and 2010, based on the data of the waiting list, and the change of the patient assigning diagnosis and the number of examinations carried out with 18F-FDG and with 11C-methionine. The study demonstrates the number of examinations by counties which characterize the population's access to PET/CT. The assigning diagnosis in 2007 was already widespread and focused on problems. After the regulation came in to force in 2008 the possibilities significantly decreased. Clinical cases which were efficiently examined with PET/CT earlier were left out from the indication list. The distribution by county is uneven, although the number of examinations increases year by year. The number of repeated examinations increases as well. As a conclusion, the annual PET/CT examination contingents are constantly exploited. This might seem sufficient, because the method has not become a part of the oncological routine in all counties. Although the current indication list includes the most frequent oncological cases requiring PET/CT, the abandoning of the less frequent ones narrowed the professional latitude, which is disadvantageous for the patients suffering from such diseases. The radiopharmacon supply of PET/CT centers is inadequate thus they cannot provide modern oncological diagnostic attendance in case of frequent types of cancer (such as prostate). In the long run the growing number of repeated PET/CT examinations built in the oncological professional protocol has to be taken into account.

  11. On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners.

    PubMed

    Chen, Kevin T; Izquierdo-Garcia, David; Poynton, Clare B; Chonde, Daniel B; Catana, Ciprian

    2017-03-01

    To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. Continuous-valued linear attenuation coefficient maps ("μ-maps") were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the μ-maps. The accuracy of this probabilistic atlas-based continuous-valued μ-map ("PAC-map") generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the μ-maps generated from the data acquired at three time points. The proposed method produced continuous-valued μ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based μ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the μ-maps obtained at the three visits being 0.65 ± 0.95 %. Accurate and highly reproducible continuous-valued head μ-maps can be generated from MR data using a probabilistic atlas-based approach.

  12. AN OVERVIEW ON PET RADIOCHEMISTRY: PART 2 - RADIOMETALS.

    PubMed

    Brandt, Marie; Cardinale, Jens; Aulsebrook, Margaret; Gasser, Gilles; Mindt, Thomas

    2018-05-10

    This continuing educational review provides an overview on radiometals used for PET. General aspects of radiometal-based radiotracers are covered and the most frequently applied metallic PET radionuclides 68 Ga, 89 Zr, and 64 Cu are highlighted with a discussion of their strengths and limitations. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. High-performance polymer/layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Heidecker, Matthew J.

    High-performance layered-silicate nanocomposites of Polycarbonate (PC), poly(ethylene terephthalate) (PET), and their blends were produced via conventional melt-blending techniques. The focus of this thesis was on the fundamentals of dispersion, control of thermal stability, maintenance of melt-blending processing conditions, and on optimization of the composites' mechanical properties via the design of controlled and thermodynamically favorable nano-filler dispersions within the polymer matrices. PET and PC require high temperatures for melt-processing, rendering impractical the use of conventional/commercial organically-modified layered-silicates, since the thermal degradation temperatures of their ammonium surfactants lies below the typical processing temperatures. Thus, different surfactant chemistries must be employed in order to develop melt-processable nanocomposites, also accounting for polymer matrix degradation due to water (PET) or amine compounds (PC). Novel high thermal-stability surfactants were developed and employed in montmorillonite nanocomposites of PET, PC, and PC/PET blends, and were compared to the respective nanocomposites based on conventional quaternary-ammonium modified montmorillonites. Favorable dispersion was achieved in all cases, however, the overall material behavior -- i.e., the combination of crystallization, mechanical properties, and thermal degradation -- was better for the nanocomposites based on the thermally-stable surfactant fillers. Studies were also done to trace, and ultimately limit, the matrix degradation of Polycarbonate/montmorillonite nanocomposites, through varying the montmorillonite surfactant chemistry, processing conditions, and processing additives. Molecular weight degradation was, maybe surprisingly, better controlled in the conventional quaternary ammonium based nanocomposites -- even though the thermal stability of the organically modified montmorillonites was in most cases the lowest. Dependence of the resultant nanocomposites' mechanical properties on the preferential alignment of the montmorillonite nano-platelet was also evaluated. Highly aligned filler platelets did not result in an additional enhancement in mechanical properties. PC/PET blends and their respective PC/PET/montmorillonite nanocomposites were synthesized and compared. The dispersion of the organically modified nano-fillers in the PC/PET blends was controlled via thermodynamic considerations, realized through proper surfactant choice: Nanocomposites in which the layered silicate was preferentially sequestered in the PET phase were designed and synthesized. This preferential dispersion of the nano-filler in the PET phase of the PC/PET blend was insensitive to processing conditions, including approaches employing a master-batch (filler concentrate); regardless of the master-batch matrix, both PC and PET were employed, thermodynamics drove the layered silicate to preferentially migrate to the PET phase of the PC/PET blend. In a second approach, the development of a nanocomposite with controlled PC/PET compatibilization near the montmorillonite platelets, in absence of appreciable transesterification reactions, led to the formation of very high performance nanocomposites. These latter systems, point to an exciting new avenue of future considerations for nanocomposite blends with selective nano-filler dispersions, where performance can be tailored via the controlled preferential dispersion of nano-fillers in one phase, or by filler-induced polymer compatibilization.

  14. Comparison of 68Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology

    PubMed Central

    Zamboglou, Constantinos; Drendel, Vanessa; Jilg, Cordula A.; Rischke, Hans C.; Beck, Teresa I.; Schultze-Seemann, Wolfgang; Krauss, Tobias; Mix, Michael; Schiller, Florian; Wetterauer, Ulrich; Werner, Martin; Langer, Mathias; Bock, Michael; Meyer, Philipp T.; Grosu, Anca L.

    2017-01-01

    Purpose: The exact detection and delineation of the intraprostatic tumour burden is crucial for treatment planning in primary prostate cancer (PCa). We compared 68Ga-HBED-CC-PSMA PET/CT with multiparametric MRI (mpMRI) for diagnosis and tumour delineation in patients with primary PCa based on slice by slice correlation with histopathological reference material. Methodology: Seven patients with histopathologically proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT and MRI followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and prepared for histopathology. Invasive PCa was delineated on a HE stained histologic tissue slide and matched to ex-vivo CT to obtain gross tumor volume (GTV-)histo. Ex-vivo CT including GTV-histo and MRI data were matched to in-vivo CT(PET). Consensus contours based on MRI (GTV-MRI), PSMA PET (GTV-PET) or the combination of both (GTV-union/-intersection) were created. In each in-vivo CT slice the prostate was separated into 4 equal segments and sensitivity and specificity for PSMA PET and mpMRI were assessed by comparison with histological reference material. Furthermore, the spatial overlap between GTV-histo and GTV-PET/-MRI and the Sørensen-Dice coefficient (DSC) were calculated. In the case of multifocal PCa (4/7 patients), SUV values (PSMA PET) and ADC-values (diffusion weighted MRI) were obtained for each lesion. Results: PSMA PET and mpMRI detected PCa in all patients. GTV-histo was detected in 225 of 340 segments (66.2%). Sensitivity and specificity for GTV-PET, GTV-MRI, GTV-union and GTV-intersection were 75% and 87%, 70% and 82%, 82% and 67%, 55% and 99%, respectively. GTV-histo had on average the highest overlap with GTV-union (57±22%), which was significantly higher than overlap with GTV-MRI (p=0.016) and GTV-PET (p=0.016), respectively. The mean DSC for GTV-union, GTV-PET and GTV-MRI was 0.51 (±0.18), 0.45 (±0.17) and 0.48 (±0.19), respectively. In every patient with multifocal PCa there was one lesion which had both the highest SUV and the lowest ADC-value (mean and max). Conclusion: In a slice by slice analysis with histopathology, 68Ga-HBED-CC-PSMA PET/CT and mpMRI showed high sensitivity and specificity in detection of primary PCa. A combination of both methods performed even better in terms of sensitivity (GTV-union) and specificity (GTV-intersection). A moderate to good spatial overlap with GTV-histo was observed for PSMA PET/CT and mpMRI alone which was significantly improved by GTV-union. Further studies are warranted to analyse the impact of these preliminary findings for diagnostic (multimodal guided TRUS biopsy) and therapeutic (focal therapy) strategies in primary PCa. PMID:28042330

  15. Principal axis-based correspondence between multiple cameras for people tracking.

    PubMed

    Hu, Weiming; Hu, Min; Zhou, Xue; Tan, Tieniu; Lou, Jianguang; Maybank, Steve

    2006-04-01

    Visual surveillance using multiple cameras has attracted increasing interest in recent years. Correspondence between multiple cameras is one of the most important and basic problems which visual surveillance using multiple cameras brings. In this paper, we propose a simple and robust method, based on principal axes of people, to match people across multiple cameras. The correspondence likelihood reflecting the similarity of pairs of principal axes of people is constructed according to the relationship between "ground-points" of people detected in each camera view and the intersections of principal axes detected in different camera views and transformed to the same view. Our method has the following desirable properties: 1) Camera calibration is not needed. 2) Accurate motion detection and segmentation are less critical due to the robustness of the principal axis-based feature to noise. 3) Based on the fused data derived from correspondence results, positions of people in each camera view can be accurately located even when the people are partially occluded in all views. The experimental results on several real video sequences from outdoor environments have demonstrated the effectiveness, efficiency, and robustness of our method.

  16. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants: a phantom study.

    PubMed

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F

    2014-07-01

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of (18)F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml (18)F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external (137)Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with (137)Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the (18)F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. MAR combined with a trilinear CT number mapping for PET attenuation correction resulted in estimates of lesion activity comparable in accuracy to that obtained with (137)Cs transmission-based attenuation correction, and far superior to estimates made without attenuation correction or with a standard CT attenuation map. The ability to use CT images for attenuation correction is a potentially important development because it obviates the need for a (137)Cs transmission source, which entails extra scan time, logistical complexity and expense.

  17. Molecular Imaging and Therapy of Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    arsenic-based, IGF1R-targeted radiopharmaceuticals can allow for PET imaging, IRT, and monitoring the therapeutic response of PCa. Specific Aims: Aim 1: To...models with PET imaging. Aim 3: To monitor the efficacy of 76As-based IRT of PCa with multimodality imaging.

  18. Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.

    PubMed

    Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B

    2018-05-15

    In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Follow-up segmentation of lung tumors in PET and CT data

    NASA Astrophysics Data System (ADS)

    Opfer, Roland; Kabus, Sven; Schneider, Torben; Carlsen, Ingwer C.; Renisch, Steffen; Sabczynski, Jörg

    2009-02-01

    Early response assessment of cancer therapy is a crucial component towards a more effective and patient individualized cancer therapy. Integrated PET/CT systems provide the opportunity to combine morphologic with functional information. We have developed algorithms which allow the user to track both tumor volume and standardized uptake value (SUV) measurements during the therapy from series of CT and PET images, respectively. To prepare for tumor volume estimation we have developed a new technique for a fast, flexible, and intuitive 3D definition of meshes. This initial surface is then automatically adapted by means of a model-based segmentation algorithm and propagated to each follow-up scan. If necessary, manual corrections can be added by the user. To determine SUV measurements a prioritized region growing algorithm is employed. For an improved workflow all algorithms are embedded in a PET/CT therapy monitoring software suite giving the clinician a unified and immediate access to all data sets. Whenever the user clicks on a tumor in a base-line scan, the courses of segmented tumor volumes and SUV measurements are automatically identified and displayed to the user as a graph plot. According to each course, the therapy progress can be classified as complete or partial response or as progressive or stable disease. We have tested our methods with series of PET/CT data from 9 lung cancer patients acquired at Princess Margaret Hospital in Toronto. Each patient underwent three PET/CT scans during a radiation therapy. Our results indicate that a combination of mean metabolic activity in the tumor with the PET-based tumor volume can lead to an earlier response detection than a purely volume based (CT diameter) or purely functional based (e.g. SUV max or SUV mean) response measures. The new software seems applicable for easy, faster, and reproducible quantification to routinely monitor tumor therapy.

  20. Value of PET/CT 3D visualization of head and neck squamous cell carcinoma extended to mandible.

    PubMed

    Lopez, R; Gantet, P; Julian, A; Hitzel, A; Herbault-Barres, B; Alshehri, S; Payoux, P

    2018-05-01

    To study an original 3D visualization of head and neck squamous cell carcinoma extending to the mandible by using [18F]-NaF PET/CT and [18F]-FDG PET/CT imaging along with a new innovative FDG and NaF image analysis using dedicated software. The main interest of the 3D evaluation is to have a better visualization of bone extension in such cancers and that could also avoid unsatisfying surgical treatment later on. A prospective study was carried out from November 2016 to September 2017. Twenty patients with head and neck squamous cell carcinoma extending to the mandible (stage 4 in the UICC classification) underwent [18F]-NaF and [18F]-FDG PET/CT. We compared the delineation of 3D quantification obtained with [18F]-NaF and [18F]-FDG PET/CT. In order to carry out this comparison, a method of visualisation and quantification of PET images was developed. This new approach was based on a process of quantification of radioactive activity within the mandibular bone that objectively defined the significant limits of this activity on PET images and on a 3D visualization. Furthermore, the spatial limits obtained by analysis of the PET/CT 3D images were compared to those obtained by histopathological examination of mandibular resection which confirmed intraosseous extension to the mandible. The [18F]-NaF PET/CT imaging confirmed the mandibular extension in 85% of cases and was not shown in [18F]-FDG PET/CT imaging. The [18F]-NaF PET/CT was significantly more accurate than [18F]-FDG PET/CT in 3D assessment of intraosseous extension of head and neck squamous cell carcinoma. This new 3D information shows the importance in the imaging approach of cancers. All cases of mandibular extension suspected on [18F]-NaF PET/CT imaging were confirmed based on histopathological results as a reference. The [18F]-NaF PET/CT 3D visualization should be included in the pre-treatment workups of head and neck cancers. With the use of a dedicated software which enables objective delineation of radioactive activity within the bone, it gives a very encouraging results. The [18F]-FDG PET/CT appears insufficient to confirm mandibular extension. This new 3D simulation management is expected to avoid under treatment of patients with intraosseous mandibular extension of head and neck cancers. However, there is also a need for a further study that will compare the interest of PET/CT and PET/MRI in this indication. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning.

    PubMed

    Yu, Huan; Caldwell, Curtis; Mah, Katherine; Mozeg, Daniel

    2009-03-01

    Coregistered fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) has shown potential to improve the accuracy of radiation targeting of head and neck cancer (HNC) when compared to the use of CT simulation alone. The objective of this study was to identify textural features useful in distinguishing tumor from normal tissue in head and neck via quantitative texture analysis of coregistered 18F-FDG PET and CT images. Abnormal and typical normal tissues were manually segmented from PET/CT images of 20 patients with HNC and 20 patients with lung cancer. Texture features including some derived from spatial grey-level dependence matrices (SGLDM) and neighborhood gray-tone-difference matrices (NGTDM) were selected for characterization of these segmented regions of interest (ROIs). Both K nearest neighbors (KNNs) and decision tree (DT)-based KNN classifiers were employed to discriminate images of abnormal and normal tissues. The area under the curve (AZ) of receiver operating characteristics (ROC) was used to evaluate the discrimination performance of features in comparison to an expert observer. The leave-one-out and bootstrap techniques were used to validate the results. The AZ of DT-based KNN classifier was 0.95. Sensitivity and specificity for normal and abnormal tissue classification were 89% and 99%, respectively. In summary, NGTDM features such as PET Coarseness, PET Contrast, and CT Coarseness extracted from FDG PET/CT images provided good discrimination performance. The clinical use of such features may lead to improvement in the accuracy of radiation targeting of HNC.

  2. TandemPET-A High Resolution, Small Animal, Virtual Pinhole-Based PET Scanner: Initial Design Study

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Stolin, Alexander V.; Martone, Peter F.; Smith, Mark F.

    2016-02-01

    Mice are the perhaps the most common species of rodents used in biomedical research, but many of the current generation of small animal PET scanners are non-optimal for imaging these small rodents due to their relatively low resolution. Consequently, a number of researchers have investigated the development of high-resolution scanners to address this need. In this investigation, the design of a novel, high-resolution system based on the dual-detector, virtual-pinhole PET concept was explored via Monte Carlo simulations. Specifically, this system, called TandemPET, consists of a 5 cm × 5 cm high-resolution detector made-up of a 90 × 90 array of 0.5 mm × 0.5 × 10 mm (pitch = 0.55 mm) LYSO detector elements in coincidence with a lower resolution detector consisting of a 68 × 68 array of 1.5 mm × 1.5 mm × 10 mm LYSO detector elements (total size = 10.5 cm × 10.5 cm). Analyses indicated that TandemPET's optimal geometry is to position the high-resolution detector 3 cm from the center-of-rotation, with the lower resolution detector positioned 9 cm from center. Measurements using modified NEMA NU4-2008-based protocols revealed that the spatial resolution of the system is 0.5 mm FWHM, after correction of positron range effects. Peak sensitivity is 2.1%, which is comparable to current small animal PET scanners. Images from a digital mouse brain phantom demonstrated the potential of the system for identifying important neurological structures.

  3. Pet exposure and risk of atopic dermatitis at the pediatric age: a meta-analysis of birth cohort studies.

    PubMed

    Pelucchi, Claudio; Galeone, Carlotta; Bach, Jean-François; La Vecchia, Carlo; Chatenoud, Liliane

    2013-09-01

    Findings on pet exposure and the risk of atopic dermatitis (AD) in children are inconsistent. With the aim to summarize the results of exposure to different pets on AD, we undertook a meta-analysis of epidemiologic studies on this issue. In August 2012, we conducted a systematic literature search in Medline and Embase. We included analytic studies considering exposure to dogs, cats, other pets, or pets overall during pregnancy, infancy, and/or childhood, with AD assessment performed during infancy or childhood. We calculated summary relative risks and 95% CIs using both fixed- and random-effects models. We computed summary estimates across selected subgroups. Twenty-six publications from 21 birth cohort studies were used in the meta-analyses. The pooled relative risks of AD for exposure versus no exposure were 0.72 (95% CI, 0.61-0.85; I(2) = 46%; results based on 15 studies) for exposure to dogs, 0.94 (95% CI, 0.76-1.16; I(2) = 54%; results based on 13 studies) for exposure to cats, and 0.75 (95% CI, 0.67-0.85; I(2) = 54%; results based on 11 studies) for exposure to pets overall. No heterogeneity emerged across the subgroups examined, except for geographic area. This meta-analysis reported a favorable effect of exposure to dogs and pets on the risk of AD in infants or children, whereas no association emerged with exposure to cats. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Imaging performance of LabPET APD-based digital PET scanners for pre-clinical research

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Cadorette, Jules; Tétrault, Marc-André; Beaudoin, Jean-François; Leroux, Jean-Daniel; Fontaine, Réjean; Lecomte, Roger

    2014-02-01

    The LabPET is an avalanche photodiode (APD) based digital PET scanner with quasi-individual detector read-out and highly parallel electronic architecture for high-performance in vivo molecular imaging of small animals. The scanner is based on LYSO and LGSO scintillation crystals (2×2×12/14 mm3), assembled side-by-side in phoswich pairs read out by an APD. High spatial resolution is achieved through the individual and independent read-out of an individual APD detector for recording impinging annihilation photons. The LabPET exists in three versions, LabPET4 (3.75 cm axial length), LabPET8 (7.5 cm axial length) and LabPET12 (11.4 cm axial length). This paper focuses on the systematic characterization of the three LabPET versions using two different energy window settings to implement a high-efficiency mode (250-650 keV) and a high-resolution mode (350-650 keV) in the most suitable operating conditions. Prior to measurements, a global timing alignment of the scanners and optimization of the APD operating bias have been carried out. Characteristics such as spatial resolution, absolute sensitivity, count rate performance and image quality have been thoroughly investigated following the NEMA NU 4-2008 protocol. Phantom and small animal images were acquired to assess the scanners' suitability for the most demanding imaging tasks in preclinical biomedical research. The three systems achieve the same radial FBP spatial resolution at 5 mm from the field-of-view center: 1.65/3.40 mm (FWHM/FWTM) for an energy threshold of 250 keV and 1.51/2.97 mm for an energy threshold of 350 keV. The absolute sensitivity for an energy window of 250-650 keV is 1.4%/2.6%/4.3% for LabPET4/8/12, respectively. The best count rate performance peaking at 362 kcps is achieved by the LabPET12 with an energy window of 250-650 keV and a mouse phantom (2.5 cm diameter) at an activity of 2.4 MBq ml-1. With the same phantom, the scatter fraction for all scanners is about 17% for an energy threshold of 250 keV and 10% for an energy threshold of 350 keV. The results obtained with two energy window settings confirm the relevance of high-efficiency and high-resolution operating modes to take full advantage of the imaging capabilities of the LabPET scanners for molecular imaging applications.

  5. Different predictive values of interim 18F-FDG PET/CT in germinal center like and non-germinal center like diffuse large B-cell lymphoma.

    PubMed

    Kim, Jihyun; Lee, Jeong-Ok; Paik, Jin Ho; Lee, Won Woo; Kim, Sang Eun; Song, Yoo Sung

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a pathologically heterogeneous disease with different prognoses according to its molecular profiles. Despite the broad usage of 18 F-fluoro-2-dexoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT), previous studies that have investigated the value of interim 18 F-FDG PET/CT in DLBCL have given the controversial results. The purpose of this study was to evaluate the prognostic value of interim 18 F-FDG PET/CT in DLBCL according to germinal center B cell-like (GCB) and non-GCB molecular profiling. We enrolled 118 newly diagnosed DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). Interim 18 F-FDG PET/CT scans performed after 2 or 3 cycles of R-CHOP treatment were evaluated based on the Lugano response criteria. Patients were grouped as GCB or non-GCB molecular subtypes according to immunohistochemistry results of CD10, BCL6, and MUM1, based on Hans' algorithm. In total 118 DLBCL patients, 35 % were classified as GCB, and 65 % were classified as non-GCB. Interim PET/CT was negative in 70 %, and positive in 30 %. During the median follow-up period of 23 months, the positive interim 18 F-FDG PET/CT group showed significantly inferior progression free survival (PFS) compared to the negative interim 18 F-FDG PET/CT group (P = 0.0004) in entire patients. A subgroup analysis according to molecular profiling demonstrated significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in GCB subtype of DLBCL (P = 0.0001), but there was no significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in non-GCB subtype of DLBCL. Interim 18 F-FDG PET/CT scanning had a significant predictive value for disease progression in patients with the GCB subtype of DLBCL treated with R-CHOP, but not in those with the non-GCB subtype. Therefore, molecular profiles of DLBCL should be considered for interim 18 F-FDG PET/CT practice.

  6. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-04-15

    In quantitative PET/MR imaging, attenuation correction (AC) of PET data is markedly challenged by the need of deriving accurate attenuation maps from MR images. A number of strategies have been developed for MRI-guided attenuation correction with different degrees of success. In this work, we compare the quantitative performance of three generic AC methods, including standard 3-class MR segmentation-based, advanced atlas-registration-based and emission-based approaches in the context of brain time-of-flight (TOF) PET/MRI. Fourteen patients referred for diagnostic MRI and (18)F-FDG PET/CT brain scans were included in this comparative study. For each study, PET images were reconstructed using four different attenuation maps derived from CT-based AC (CTAC) serving as reference, standard 3-class MR-segmentation, atlas-registration and emission-based AC methods. To generate 3-class attenuation maps, T1-weighted MRI images were segmented into background air, fat and soft-tissue classes followed by assignment of constant linear attenuation coefficients of 0, 0.0864 and 0.0975 cm(-1) to each class, respectively. A robust atlas-registration based AC method was developed for pseudo-CT generation using local weighted fusion of atlases based on their morphological similarity to target MR images. Our recently proposed MRI-guided maximum likelihood reconstruction of activity and attenuation (MLAA) algorithm was employed to estimate the attenuation map from TOF emission data. The performance of the different AC algorithms in terms of prediction of bones and quantification of PET tracer uptake was objectively evaluated with respect to reference CTAC maps and CTAC-PET images. Qualitative evaluation showed that the MLAA-AC method could sparsely estimate bones and accurately differentiate them from air cavities. It was found that the atlas-AC method can accurately predict bones with variable errors in defining air cavities. Quantitative assessment of bone extraction accuracy based on Dice similarity coefficient (DSC) showed that MLAA-AC and atlas-AC resulted in DSC mean values of 0.79 and 0.92, respectively, in all patients. The MLAA-AC and atlas-AC methods predicted mean linear attenuation coefficients of 0.107 and 0.134 cm(-1), respectively, for the skull compared to reference CTAC mean value of 0.138cm(-1). The evaluation of the relative change in tracer uptake within 32 distinct regions of the brain with respect to CTAC PET images showed that the 3-class MRAC, MLAA-AC and atlas-AC methods resulted in quantification errors of -16.2 ± 3.6%, -13.3 ± 3.3% and 1.0 ± 3.4%, respectively. Linear regression and Bland-Altman concordance plots showed that both 3-class MRAC and MLAA-AC methods result in a significant systematic bias in PET tracer uptake, while the atlas-AC method results in a negligible bias. The standard 3-class MRAC method significantly underestimated cerebral PET tracer uptake. While current state-of-the-art MLAA-AC methods look promising, they were unable to noticeably reduce quantification errors in the context of brain imaging. Conversely, the proposed atlas-AC method provided the most accurate attenuation maps, and thus the lowest quantification bias. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Nuclear emission-based imaging in the study of brain function

    NASA Astrophysics Data System (ADS)

    Sossi, Vesna

    2016-09-01

    Nuclear emission - based imaging has been used in medicine for decades either in the form of Single Photon Emission Computerized Tomography (SPECT) or Positron Emission Tomography (PET). Both techniques are based on radiolabelling molecules of biological interest (radiotracers) with either a gamma (SPECT) or a positron (PET) emitting radionuclide. By detecting radiation from the radiolabels and reconstructing the acquired data it is possible to form an image of the radiotracer distribution in the body and thus obtain information on the biological process that the radiotracer is tagging. While most of the clinical applications of PET are in oncology, where the glucose analogue 18F-flurodeoxyglocose (FDG) is the most commonly used radiotracer, the importance of PET imaging for brain applications is rapidly increasing. Numerous radiotracers exist that can tag different neurotransmitter systems as well as abnormal protein aggregations that are known to underlie several brain diseases: amyloid deposition, a characteristic of Alzheimer's, and, more recently, tau deposition, which is deemed abnormal not only in dementia, but also in Parkinson's syndrome and traumatic brain injury. Imaging has shown that may brain diseases start decades before clinical symptoms, in part explaining the difficulty of developing adequate treatments. This talk will briefly summarize the role of PET imaging in the study of neurodegeneration and discuss the upcoming hybrid PET/MRI imaging instrumentation. NSERC, CIHR, MJFF.

  8. PET/CT alignment calibration with a non-radioactive phantom and the intrinsic 176Lu radiation of PET detector

    NASA Astrophysics Data System (ADS)

    Wei, Qingyang; Ma, Tianyu; Wang, Shi; Liu, Yaqiang; Gu, Yu; Dai, Tiantian

    2016-11-01

    Positron emission tomography/computed tomography (PET/CT) is an important tool for clinical studies and pre-clinical researches which provides both functional and anatomical images. To achieve high quality co-registered PET/CT images, alignment calibration of PET and CT scanner is a critical procedure. The existing methods reported use positron source phantoms imaged both by PET and CT scanner and then derive the transformation matrix from the reconstructed images of the two modalities. In this paper, a novel PET/CT alignment calibration method with a non-radioactive phantom and the intrinsic 176Lu radiation of the PET detector was developed. Firstly, a multi-tungsten-alloy-sphere phantom without positron source was designed and imaged by CT and the PET scanner using intrinsic 176Lu radiation included in LYSO. Secondly, the centroids of the spheres were derived and matched by an automatic program. Lastly, the rotation matrix and the translation vector were calculated by least-square fitting of the centroid data. The proposed method was employed in an animal PET/CT system (InliView-3000) developed in our lab. Experimental results showed that the proposed method achieves high accuracy and is feasible to replace the conventional positron source based methods.

  9. Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment

    NASA Astrophysics Data System (ADS)

    David, S.; Visvikis, D.; Roux, C.; Hatt, M.

    2011-09-01

    In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.

  10. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  11. Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman-Monteith methods in the study of global drylands

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Ma, Zhuguo; Zheng, Ziyan; Duan, Yawen

    2017-12-01

    Drylands are among those regions most sensitive to climate and environmental changes and human-induced perturbations. The most widely accepted definition of the term dryland is a ratio, called the Surface Wetness Index (SWI), of annual precipitation to potential evapotranspiration (PET) being below 0.65. PET is commonly estimated using the Thornthwaite (PET Th) and Penman-Monteith equations (PET PM). The present study compared spatiotemporal characteristics of global drylands based on the SWI with PET Th and PET PM. Results showed vast differences between PET Th and PET PM; however, the SWI derived from the two kinds of PET showed broadly similar characteristics in the interdecadal variability of global and continental drylands, except in North America, with high correlation coefficients ranging from 0.58 to 0.89. It was found that, during 1901-2014, global hyper-arid and semi-arid regions expanded, arid and dry sub-humid regions contracted, and drylands underwent interdecadal fluctuation. This was because precipitation variations made major contributions, whereas PET changes contributed to a much lesser degree. However, distinct differences in the interdecadal variability of semi-arid and dry sub-humid regions were found. This indicated that the influence of PET changes was comparable to that of precipitation variations in the global dry-wet transition zone. Additionally, the contribution of PET changes to the variations in global and continental drylands gradually enhanced with global warming, and the Thornthwaite method was found to be increasingly less applicable under climate change.

  12. Semi-Supervised Tripled Dictionary Learning for Standard-dose PET Image Prediction using Low-dose PET and Multimodal MRI

    PubMed Central

    Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang

    2017-01-01

    Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939

  13. Genetic and Environmental Influences on Individual Differences in Frequency of Play with Pets among Middle-Aged Men: A Behavioral Genetic Analysis

    PubMed Central

    Jacobson, Kristen C.; Hoffman, Christy L.; Vasilopoulos, Terrie; Kremen, William S.; Panizzon, Matthew S.; Grant, Michael D.; Lyons, Michael J.; Xian, Hong; Franz, Carol E.

    2014-01-01

    There is growing evidence that pet ownership and human–animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51–60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63–71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics. PMID:25580056

  14. Genetic and Environmental Influences on Individual Differences in Frequency of Play with Pets among Middle-Aged Men: A Behavioral Genetic Analysis.

    PubMed

    Jacobson, Kristen C; Hoffman, Christy L; Vasilopoulos, Terrie; Kremen, William S; Panizzon, Matthew S; Grant, Michael D; Lyons, Michael J; Xian, Hong; Franz, Carol E

    2012-12-01

    There is growing evidence that pet ownership and human-animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51-60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63-71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics.

  15. A new fast and fully automated software based algorithm for extracting respiratory signal from raw PET data and its comparison to other methods.

    PubMed

    Kesner, Adam Leon; Kuntner, Claudia

    2010-10-01

    Respiratory gating in PET is an approach used to minimize the negative effects of respiratory motion on spatial resolution. It is based on an initial determination of a patient's respiratory movements during a scan, typically using hardware based systems. In recent years, several fully automated databased algorithms have been presented for extracting a respiratory signal directly from PET data, providing a very practical strategy for implementing gating in the clinic. In this work, a new method is presented for extracting a respiratory signal from raw PET sinogram data and compared to previously presented automated techniques. The acquisition of respiratory signal from PET data in the newly proposed method is based on rebinning the sinogram data into smaller data structures and then analyzing the time activity behavior in the elements of these structures. From this analysis, a 1D respiratory trace is produced, analogous to a hardware derived respiratory trace. To assess the accuracy of this fully automated method, respiratory signal was extracted from a collection of 22 clinical FDG-PET scans using this method, and compared to signal derived from several other software based methods as well as a signal derived from a hardware system. The method presented required approximately 9 min of processing time for each 10 min scan (using a single 2.67 GHz processor), which in theory can be accomplished while the scan is being acquired and therefore allowing a real-time respiratory signal acquisition. Using the mean correlation between the software based and hardware based respiratory traces, the optimal parameters were determined for the presented algorithm. The mean/median/range of correlations for the set of scans when using the optimal parameters was found to be 0.58/0.68/0.07-0.86. The speed of this method was within the range of real-time while the accuracy surpassed the most accurate of the previously presented algorithms. PET data inherently contains information about patient motion; information that is not currently being utilized. We have shown that a respiratory signal can be extracted from raw PET data in potentially real-time and in a fully automated manner. This signal correlates well with hardware based signal for a large percentage of scans, and avoids the efforts and complications associated with hardware. The proposed method to extract a respiratory signal can be implemented on existing scanners and, if properly integrated, can be applied without changes to routine clinical procedures.

  16. PET image reconstruction using multi-parametric anato-functional priors

    NASA Astrophysics Data System (ADS)

    Mehranian, Abolfazl; Belzunce, Martin A.; Niccolini, Flavia; Politis, Marios; Prieto, Claudia; Turkheimer, Federico; Hammers, Alexander; Reader, Andrew J.

    2017-08-01

    In this study, we investigate the application of multi-parametric anato-functional (MR-PET) priors for the maximum a posteriori (MAP) reconstruction of brain PET data in order to address the limitations of the conventional anatomical priors in the presence of PET-MR mismatches. In addition to partial volume correction benefits, the suitability of these priors for reconstruction of low-count PET data is also introduced and demonstrated, comparing to standard maximum-likelihood (ML) reconstruction of high-count data. The conventional local Tikhonov and total variation (TV) priors and current state-of-the-art anatomical priors including the Kaipio, non-local Tikhonov prior with Bowsher and Gaussian similarity kernels are investigated and presented in a unified framework. The Gaussian kernels are calculated using both voxel- and patch-based feature vectors. To cope with PET and MR mismatches, the Bowsher and Gaussian priors are extended to multi-parametric priors. In addition, we propose a modified joint Burg entropy prior that by definition exploits all parametric information in the MAP reconstruction of PET data. The performance of the priors was extensively evaluated using 3D simulations and two clinical brain datasets of [18F]florbetaben and [18F]FDG radiotracers. For simulations, several anato-functional mismatches were intentionally introduced between the PET and MR images, and furthermore, for the FDG clinical dataset, two PET-unique active tumours were embedded in the PET data. Our simulation results showed that the joint Burg entropy prior far outperformed the conventional anatomical priors in terms of preserving PET unique lesions, while still reconstructing functional boundaries with corresponding MR boundaries. In addition, the multi-parametric extension of the Gaussian and Bowsher priors led to enhanced preservation of edge and PET unique features and also an improved bias-variance performance. In agreement with the simulation results, the clinical results also showed that the Gaussian prior with voxel-based feature vectors, the Bowsher and the joint Burg entropy priors were the best performing priors. However, for the FDG dataset with simulated tumours, the TV and proposed priors were capable of preserving the PET-unique tumours. Finally, an important outcome was the demonstration that the MAP reconstruction of a low-count FDG PET dataset using the proposed joint entropy prior can lead to comparable image quality to a conventional ML reconstruction with up to 5 times more counts. In conclusion, multi-parametric anato-functional priors provide a solution to address the pitfalls of the conventional priors and are therefore likely to increase the diagnostic confidence in MR-guided PET image reconstructions.

  17. Pets, Purity and Pollution: Why Conventional Models of Disease Transmission Do Not Work for Pet Rat Owners

    PubMed Central

    Robin, Charlotte; Perkins, Elizabeth; Watkins, Francine

    2017-01-01

    In the United Kingdom, following the emergence of Seoul hantavirus in pet rat owners in 2012, public health authorities tried to communicate the risk of this zoonotic disease, but had limited success. To explore this lack of engagement with health advice, we conducted in-depth, semi-structured interviews with pet rat owners and analysed them using a grounded theory approach. The findings from these interviews suggest that rat owners construct their pets as different from wild rats, and by elevating the rat to the status of a pet, the powerful associations that rats have with dirt and disease are removed. Removing the rat from the contaminated outside world moves their pet rat from being ‘out of place’ to ‘in place’. A concept of ‘bounded purity’ keeps the rat protected within the home, allowing owners to interact with their pet, safe in the knowledge that it is clean and disease-free. Additionally, owners constructed a ‘hierarchy of purity’ for their pets, and it is on this structure of disease and risk that owners base their behaviour, not conventional biomedical models of disease. PMID:29215554

  18. Low-count PET image restoration using sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli

    2018-04-01

    In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.

  19. Simultaneous PET-MRI in Oncology: A Solution Looking for a Problem?

    PubMed Central

    Yankeelov, Thomas E.; Peterson, Todd E.; Abramson, Richard G.; Garcia-Izquierdo, David; Arlinghaus, Lori R.; Li, Xia; Atuegwu, Nkiruka C.; Catana, Ciprian; Manning, H. Charles; Fayad, Zahi A.; Gore, John C.

    2012-01-01

    With the recent development of integrated positron emission tomography-magnetic resonance imaging (PET-MRI) scanners, new possibilities for quantitative molecular imaging of cancer are realized. However, the practical advantages and potential clinical benefits of the ability to record PET and MRI data simultaneously must be balanced against the substantial costs and other requirements of such devices. In this review we highlight several of the key areas where integrated PET-MRI measurements, obtained simultaneously, are anticipated to have a significant impact on clinical and/or research studies. These areas include the use of MR-based motion corrections and/or a priori anatomical information for improved reconstruction of PET data; improved arterial input function characterization for PET kinetic modeling; the use of dual-modality contrast agents; and patient comfort and practical convenience. For widespread acceptance, a compelling case could be made if the combination of quantitative MRI and specific PET biomarkers significantly improves our ability to assess tumor status and response to therapy, and some likely candidates are now emerging. We consider the relative advantages and disadvantages afforded by PET-MRI and summarize current opinions and evidence as to the likely value of PET-MRI in the management of cancer. PMID:22795930

  20. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    PubMed

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  1. Adaptive template generation for amyloid PET using a deep learning approach.

    PubMed

    Kang, Seung Kwan; Seo, Seongho; Shin, Seong A; Byun, Min Soo; Lee, Dong Young; Kim, Yu Kyeong; Lee, Dong Soo; Lee, Jae Sung

    2018-05-11

    Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alzheimer's disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of the same individual is technically challenging. In this study, we applied deep neural networks to generate individually adaptive PET templates for robust and accurate SN of amyloid PET without using matched 3D MR images. Using 681 pairs of simultaneously acquired 11 C-PIB PET and T1-weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network (GAN)] that produce adaptive best PET templates. More specifically, the networks were trained using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets and validated using 154 datasets. The input to the supervised neural networks was the 3D PET volume in native space and the label was the spatially normalized 3D PET image using the transformation parameters obtained from MRI-based SN. The proposed deep learning approach significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing the SN error observed when an average amyloid PET template is used. Given an input image, the trained deep neural networks rapidly provide individually adaptive 3D PET templates without any discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in clinical practice and research. © 2018 Wiley Periodicals, Inc.

  2. Enhanced Fibroblast Cellular Ligamentization Process to Polyethylene Terepthalate Artificial Ligament by Silk Fibroin Coating.

    PubMed

    Jiang, Jia; Ai, Chengchong; Zhan, Zufeng; Zhang, Peng; Wan, Fang; Chen, Jun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Chen, Tianwu; Zhou, Liang; Chen, Shiyi

    2016-04-01

    Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data.

    PubMed

    Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger

    2016-01-01

    Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.

  4. Use of Fc-Engineered Antibodies as Clearing Agents to Increase Contrast During PET

    PubMed Central

    Swiercz, Rafal; Chiguru, Srinivas; Tahmasbi, Amir; Ramezani, Saleh M.; Hao, Guiyang; Challa, Dilip K.; Lewis, Matthew A.; Kulkarni, Padmakar V.; Sun, Xiankai; Ober, Raimund J.; Mason, Ralph P.; Ward, E. Sally

    2015-01-01

    Despite promise for the use of antibodies as molecular imaging agents in PET, their long in vivo half-lives result in poor contrast and radiation damage to normal tissue. This study describes an approach to overcome these limitations. Methods Mice bearing human epidermal growth factor receptor type 2 (HER2)–overexpressing tumors were injected with radiolabeled (124I, 125I) HER2-specific antibody (pertuzumab). Pertuzumab injection was followed 8 h later by the delivery of an engineered, antibody-based inhibitor of the receptor, FcRn. Biodistribution analyses and PET were performed at 24 and 48 h after pertuzumab injection. Results The delivery of the engineered, antibody-based FcRn inhibitor (or Abdeg, for antibody that enhances IgG degradation) results in improved tumor-to-blood ratios, reduced systemic exposure to radiolabel, and increased contrast during PET. Conclusion Abdegs have considerable potential as agents to stringently regulate antibody dynamics in vivo, resulting in increased contrast during molecular imaging with PET. PMID:24868106

  5. Whole-body FDG PET-MR oncologic imaging: pitfalls in clinical interpretation related to inaccurate MR-based attenuation correction.

    PubMed

    Attenberger, Ulrike; Catana, Ciprian; Chandarana, Hersh; Catalano, Onofrio A; Friedman, Kent; Schonberg, Stefan A; Thrall, James; Salvatore, Marco; Rosen, Bruce R; Guimaraes, Alexander R

    2015-08-01

    Simultaneous data collection for positron emission tomography and magnetic resonance imaging (PET/MR) is now a reality. While the full benefits of concurrently acquiring PET and MR data and the potential added clinical value are still being evaluated, initial studies have identified several important potential pitfalls in the interpretation of fluorodeoxyglucose (FDG) PET/MRI in oncologic whole-body imaging, the majority of which being related to the errors in the attenuation maps created from the MR data. The purpose of this article was to present such pitfalls and artifacts using case examples, describe their etiology, and discuss strategies to overcome them. Using a case-based approach, we will illustrate artifacts related to (1) Inaccurate bone tissue segmentation; (2) Inaccurate air cavities segmentation; (3) Motion-induced misregistration; (4) RF coils in the PET field of view; (5) B0 field inhomogeneity; (6) B1 field inhomogeneity; (7) Metallic implants; (8) MR contrast agents.

  6. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    PubMed

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    PubMed

    Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu

    2012-01-01

    Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  8. Towards a high sensitivity small animal PET system based on CZT detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Levin, Craig

    2017-03-01

    Small animal positron emission tomography (PET) is a biological imaging technology that allows non-invasive interrogation of internal molecular and cellular processes and mechanisms of disease. New PET molecular probes with high specificity are under development to target, detect, visualize, and quantify subtle molecular and cellular processes associated with cancer, heart disease, and neurological disorders. However, the limited uptake of these targeted probes leads to significant reduction in signal. There is a need to advance the performance of small animal PET system technology to reach its full potential for molecular imaging. Our goal is to assemble a small animal PET system based on CZT detectors and to explore methods to enhance its photon sensitivity. In this work, we reconstruct an image from a phantom using a two-panel subsystem consisting of six CZT crystals in each panel. For image reconstruction, coincidence events with energy between 450 and 570 keV were included. We are developing an algorithm to improve sensitivity of the system by including multiple interaction events.

  9. MR Guided PET Image Reconstruction

    PubMed Central

    Bai, Bing; Li, Quanzheng; Leahy, Richard M.

    2013-01-01

    The resolution of PET images is limited by the physics of positron-electron annihilation and instrumentation for photon coincidence detection. Model based methods that incorporate accurate physical and statistical models have produced significant improvements in reconstructed image quality when compared to filtered backprojection reconstruction methods. However, it has often been suggested that by incorporating anatomical information, the resolution and noise properties of PET images could be improved, leading to better quantitation or lesion detection. With the recent development of combined MR-PET scanners, it is possible to collect intrinsically co-registered MR images. It is therefore now possible to routinely make use of anatomical information in PET reconstruction, provided appropriate methods are available. In this paper we review research efforts over the past 20 years to develop these methods. We discuss approaches based on the use of both Markov random field priors and joint information or entropy measures. The general framework for these methods is described and their performance and longer term potential and limitations discussed. PMID:23178087

  10. Analysis of polyethylene terephthalate PET plastic bottle jointing system using finite element method (FEM)

    NASA Astrophysics Data System (ADS)

    Zaidi, N. A.; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    For almost all injection molding applications of Polyethylene Terephthalate (PET) plastic was analyzed the strength, durability and stiffness of properties by using Finite Element Method (FEM) for jointing system of wood furniture. The FEM was utilized for analyzing the PET jointing system for Oak and Pine as wood based material of furniture. The difference pattern design of PET as wood jointing furniture gives the difference value of strength furniture itself. The results show the wood specimen with grooves and eclipse pattern design PET jointing give lower global estimated error is 28.90%, compare to the rectangular and non-grooves wood specimen of global estimated error is 63.21%.

  11. Molecular Imaging and Precision Medicine: PET/Computed Tomography and Therapy Response Assessment in Oncology.

    PubMed

    Sheikhbahaei, Sara; Mena, Esther; Pattanayak, Puskar; Taghipour, Mehdi; Solnes, Lilja B; Subramaniam, Rathan M

    2017-01-01

    A variety of methods have been developed to assess tumor response to therapy. Standardized qualitative criteria based on 18F-fluoro-deoxyglucose PET/computed tomography have been proposed to evaluate the treatment effectiveness in specific cancers and these allow more accurate therapy response assessment and survival prognostication. Multiple studies have addressed the utility of the volumetric PET biomarkers as prognostic indicators but there is no consensus about the preferred segmentation methodology for these metrics. Heterogeneous intratumoral uptake was proposed as a novel PET metric for therapy response assessment. PET imaging techniques will be used to study the biological behavior of cancers during therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. An unusual case of diffuse large B-cell lymphoma involving the vulva evaluated by 18F-FDG PET/CT.

    PubMed

    Treglia, Giorgio; Paone, Gaetano; Perriard, Ulrike; Ceriani, Luca; Giovanella, Luca

    2014-10-01

    We describe an unusual case of diffuse large B-cell lymphoma involving the vulva detected and staged by F-FDG PET/CT. An 83-year-old female patient with history of endometrial carcinoma underwent F-FDG PET/CT for follow-up. PET/CT detected an area of increased F-FDG uptake corresponding to a vulvar nodule; moderate and diffuse F-FDG uptake in the bone marrow was also evident. Based on these PET/CT findings, the patient underwent biopsy of the vulvar nodule. Histology demonstrated the presence of a diffuse large B-cell lymphoma of the vulva. Bone marrow biopsy was positive for lymphoid infiltration.

  13. Introduction of positron emission tomography into the Western Norwegian Health Region: Regional balance in resource utilization from 2009 to 2014.

    PubMed

    Stokmo, Henning Langen; Reitan, Bernt Christian; Johnsen, Boel; Gulati, Ankush; Kleven-Madsen, Nina; Adamsen, Tom Christian Holm; Biermann, Martin

    2017-09-01

    The aim was to compare resource utilization across the four health trusts within the Western Norway Regional Health Authority since the establishment of positron emission tomography (PET) at Haukeland University Hospital in Bergen in 2009. Metadata from all PET examinations from 2009 to 2014 were automatically imported from the PET centre's central production database into a custom-developed database system, MDCake. A PET examination was defined as a procedure based on a single injection of radioactive tracer. The patients' place of residence and tentative diagnosis were coded based on the available clinical information. The total number of PET examinations increased from 293 in 2009 to 1616 in 2014. The number of PET examinations per year increased across all diagnostic groups, but plateaued for lung cancer, gastrointestinal cancer and malignant melanoma since 2013. The number of examinations per capita was evenly distributed between the three northern health trusts with an average of 1260 PET studies per million inhabitants in 2014. However, patients residing in the most southerly health trust received between 44% (2010) and 27% (2014; P<0·001, repeated measures ANOVA) fewer examinations per capita per year. Centralized PET in the Western Norwegian health region meets the current clinical demand for patients residing in the three northern health trusts while patients from the most southern health trust receive approximately 30% fewer PET examinations. Access to specialized health care should be monitored routinely in order to identify inequalities in referral patterns and resource utilization. © 2015 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd on behalf of Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  14. Interim 18F-FGD PET/CT may not predict the outcome in primary central nervous system lymphoma patients treated with sequential treatment with methotrexate and cytarabine.

    PubMed

    Jo, Jae-Cheol; Yoon, Dok Hyun; Kim, Shin; Lee, Kyoungmin; Kang, Eun Hee; Park, Jung Sun; Ryu, Jin-Sook; Huh, Jooryung; Park, Chan-Sik; Kim, Jong Hoon; Lee, Sang Wook; Suh, Cheolwon

    2017-09-01

    18 F-fluoro-2-dexoy-D-glucose-positron emission tomography (PET)/computed tomography (CT) is a useful imaging technique for monitoring the treatment response in lymphoma cases. We investigated the value of interim brain PET/CT (I-PET/CT) for monitoring the response to intensive methotrexate-based chemotherapy in primary central nervous system lymphoma (PCNSL) patients with diffuse large B cell lymphoma (DLBCL). Of the 76 PCNSL patients treated with intensive methotrexate and cytarabine chemotherapy between September 2006 and December 2012, 66 patients with DLBCL were included in this study. The patient cohort of 66 individuals comprised 43 men and 23 women with a median age of 59 years (range, 17-75 years). During chemotherapy, 36 patients (54.5%) showed a negative metabolism on I-PET/CT, and 47 (71.2%) were negative on final (F) PET/CT. The baseline characteristics were similar between I-PET/CT-negative (n = 36) and I-PET/CT-positive patients (n = 30) except ECOG performance status. After a median follow-up of 27.5 months, there was no difference in the progression-free survival (PFS; P = 0.701) or overall survival (OS; P = 0.620) between the I-PET/CT-negative and I-PET/CT-positive groups. However, PFS in the F-PET/CT-negative group was significantly longer than that in the F-PET/CT-positive group (P < 0.001) without a significant difference in OS (P = 0.892). I-PET/CT may not predict the survival outcome of PCNSL patients with DLBCL treated with intensive methotrexate and cytarabine chemotherapy. Prospective trials are required to fully evaluate the role of I-PET/CT.

  15. Limited diagnostic value of Dual-Time-Point (18)F-FDG PET/CT imaging for classifying solitary pulmonary nodules in granuloma-endemic regions both at visual and quantitative analyses.

    PubMed

    Chen, Song; Li, Xuena; Chen, Meijie; Yin, Yafu; Li, Na; Li, Yaming

    2016-10-01

    This study is aimed to compare the diagnostic power of using quantitative analysis or visual analysis with single time point imaging (STPI) PET/CT and dual time point imaging (DTPI) PET/CT for the classification of solitary pulmonary nodules (SPN) lesions in granuloma-endemic regions. SPN patients who received early and delayed (18)F-FDG PET/CT at 60min and 180min post-injection were retrospectively reviewed. Diagnoses are confirmed by pathological results or follow-ups. Three quantitative metrics, early SUVmax, delayed SUVmax and retention index(the percentage changes between the early SUVmax and delayed SUVmax), were measured for each lesion. Three 5-point scale score was given by blinded interpretations performed by physicians based on STPI PET/CT images, DTPI PET/CT images and CT images, respectively. ROC analysis was performed on three quantitative metrics and three visual interpretation scores. One-hundred-forty-nine patients were retrospectively included. The areas under curve (AUC) of the ROC curves of early SUVmax, delayed SUVmax, RI, STPI PET/CT score, DTPI PET/CT score and CT score are 0.73, 0.74, 0.61, 0.77 0.75 and 0.76, respectively. There were no significant differences between the AUCs in visual interpretation of STPI PET/CT images and DTPI PET/CT images, nor in early SUVmax and delayed SUVmax. The differences of sensitivity, specificity and accuracy between STPI PET/CT and DTPI PET/CT were not significantly different in either quantitative analysis or visual interpretation. In granuloma-endemic regions, DTPI PET/CT did not offer significant improvement over STPI PET/CT in differentiating malignant SPNs in both quantitative analysis and visual interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Pet owners' attitudes and behaviours related to smoking and second-hand smoke: a pilot study.

    PubMed

    Milberger, S M; Davis, R M; Holm, A L

    2009-04-01

    Although research indicates that second-hand smoke (SHS) harms both human and animal health, data on the percentage of pet owners who smoke or allow smoking in their homes are not readily available. To investigate pet owners' smoking behaviour and policies on smoking in their homes, and the potential for educational interventions to motivate change in pet owners' smoking behaviour. A web-based survey was used with 3293 adult pet owners. The main outcome measures were smoking behaviour of pet owners and their cohabitants; policies on smoking in pet owners' homes; and impact of information about the dangers of pet exposure to SHS on pet owners' smoking intentions. Of respondents, 21% were current smokers and 27% of participants lived with at least one smoker. Pet owners who smoke reported that information on the dangers of pet exposure to SHS would motivate them to try to quit smoking (28.4%) and ask the people with whom they live to quit smoking (8.7%) or not to smoke indoors (14.2%). Moreover, non-smoking pet owners who live with smokers said that they would ask the people with whom they live to quit (16.4%) or not smoke indoors (24.2%) if given this information. About 40% of current smokers and 24% of non-smokers living with smokers indicated that they would be interested in receiving information on smoking, quitting, or SHS. Educational campaigns informing pet owners of the risks of SHS exposure for pets could motivate some owners to quit smoking. It could also motivate these owners and non-smoking owners who cohabit with smokers make their homes smoke-free.

  17. Motion Estimation Utilizing Range Detection-Enhanced Visual Odometry

    NASA Technical Reports Server (NTRS)

    Morris, Daniel Dale (Inventor); Chang, Hong (Inventor); Friend, Paul Russell (Inventor); Chen, Qi (Inventor); Graf, Jodi Seaborn (Inventor)

    2016-01-01

    A motion determination system is disclosed. The system may receive a first and a second camera image from a camera, the first camera image received earlier than the second camera image. The system may identify corresponding features in the first and second camera images. The system may receive range data comprising at least one of a first and a second range data from a range detection unit, corresponding to the first and second camera images, respectively. The system may determine first positions and the second positions of the corresponding features using the first camera image and the second camera image. The first positions or the second positions may be determined by also using the range data. The system may determine a change in position of the machine based on differences between the first and second positions, and a VO-based velocity of the machine based on the determined change in position.

  18. MR-Consistent Simultaneous Reconstruction of Attenuation and Activity for Non-TOF PET/MR

    NASA Astrophysics Data System (ADS)

    Heußer, Thorsten; Rank, Christopher M.; Freitag, Martin T.; Dimitrakopoulou-Strauss, Antonia; Schlemmer, Heinz-Peter; Beyer, Thomas; Kachelrieß, Marc

    2016-10-01

    Attenuation correction (AC) is required for accurate quantification of the reconstructed activity distribution in positron emission tomography (PET). For simultaneous PET/magnetic resonance (MR), however, AC is challenging, since the MR images do not provide direct information on the attenuating properties of the underlying tissue. Standard MR-based AC does not account for the presence of bone and thus leads to an underestimation of the activity distribution. To improve quantification for non-time-of-flight PET/MR, we propose an algorithm which simultaneously reconstructs activity and attenuation distribution from the PET emission data using available MR images as anatomical prior information. The MR information is used to derive voxel-dependent expectations on the attenuation coefficients. The expectations are modeled using Gaussian-like probability functions. An iterative reconstruction scheme incorporating the prior information on the attenuation coefficients is used to update attenuation and activity distribution in an alternating manner. We tested and evaluated the proposed algorithm for simulated 3D PET data of the head and the pelvis region. Activity deviations were below 5% in soft tissue and lesions compared to the ground truth whereas standard MR-based AC resulted in activity underestimation values of up to 12%.

  19. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on (18)F-FDG PET-CT for radiotherapy treatment planning.

    PubMed

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.

  20. Recommendations of the Spanish Societies of Radiation Oncology (SEOR), Nuclear Medicine & Molecular Imaging (SEMNiM), and Medical Physics (SEFM) on 18F-FDG PET-CT for radiotherapy treatment planning

    PubMed Central

    Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez

    2012-01-01

    Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032

  1. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  2. Associations Between PET Textural Features and GLUT1 Expression, and the Prognostic Significance of Textural Features in Lung Adenocarcinoma.

    PubMed

    Koh, Young Wha; Park, Seong Yong; Hyun, Seung Hyup; Lee, Su Jin

    2018-02-01

    We evaluated the association between positron emission tomography (PET) textural features and glucose transporter 1 (GLUT1) expression level and further investigated the prognostic significance of textural features in lung adenocarcinoma. We evaluated 105 adenocarcinoma patients. We extracted texture-based PET parameters of primary tumors. Conventional PET parameters were also measured. The relationships between PET parameters and GLUT1 expression levels were evaluated. The association between PET parameters and overall survival (OS) was assessed using Cox's proportional hazard regression models. In terms of PET textural features, tumors expressing high levels of GLUT1 exhibited significantly lower coarseness, contrast, complexity, and strength, but significantly higher busyness. On univariate analysis, the metabolic tumor volume, total lesion glycolysis, contrast, busyness, complexity, and strength were significant predictors of OS. Multivariate analysis showed that lower complexity (HR=2.017, 95%CI=1.032-3.942, p=0.040) was independently associated with poorer survival. PET textural features may aid risk stratification in lung adenocarcinoma patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Respiratory-gated CT as a tool for the simulation of breathing artifacts in PET and PET/CT.

    PubMed

    Hamill, J J; Bosmans, G; Dekker, A

    2008-02-01

    Respiratory motion in PET and PET/CT blurs the images and can cause attenuation-related errors in quantitative parameters such as standard uptake values. In rare instances, this problem even causes localization errors and the disappearance of tumors that should be detectable. Attenuation errors are severe near the diaphragm and can be enhanced when the attenuation correction is based on a CT series acquired during a breath-hold. To quantify the errors and identify the parameters associated with them, the authors performed a simulated PET scan based on respiratory-gated CT studies of five lung cancer patients. Diaphragmatic motion ranged from 8 to 25 mm in the five patients. The CT series were converted to 511-keV attenuation maps which were forward-projected and exponentiated to form sinograms of PET attenuation factors at each phase of respiration. The CT images were also segmented to form a PET object, moving with the same motion as the CT series. In the moving PET object, spherical 20 mm mobile tumors were created in the vicinity of the dome of the liver and immobile 20 mm tumors in the midchest region. The moving PET objects were forward-projected and attenuated, then reconstructed in several ways: phase-matched PET and CT, gated PET with ungated CT, ungated PET with gated CT, and conventional PET. Spatial resolution and statistical noise were not modeled. In each case, tumor uptake recovery factor was defined by comparing the maximum reconstructed pixel value with the known correct value. Mobile 10 and 30 mm tumors were also simulated in the case of a patient with 11 mm of breathing motion. Phase-matched gated PET and CT gave essentially perfect PET reconstructions in the simulation. Gated PET with ungated CT gave tumors of the correct shape, but recovery was too large by an amount that depended on the extent of the motion, as much as 90% for mobile tumors and 60% for immobile tumors. Gated CT with ungated PET resulted in blurred tumors and caused recovery errors between -50% and +75%. Recovery in clinical scans would be 0%-20% lower than stated because spatial resolution was not included in the simulation. Mobile tumors near the dome of the liver were subject to the largest errors in either case. Conventional PET for 20 mm tumors was quantitative in cases of motion less than 15 mm because of canceling errors in blurring and attenuation, but the recovery factors were too low by as much as 30% in cases of motion greater than 15 mm. The 10 mm tumors were blurred by motion to a greater extent, causing a greater SUV underestimation than in the case of 20 mm tumors, and the 30 mm tumors were blurred less. Quantitative PET imaging near the diaphragm requires proper matching of attenuation information to the emission information. The problem of missed tumors near the diaphragm can be reduced by acquiring attenuation-correction information near end expiration. A simple PET/CT protocol requiring no gating equipment also addresses this problem.

  4. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, theymore » conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.« less

  5. [Role of 18FDG-PET/CT in the management and gross tumor volume definition for radiotherapy of head and neck cancer; single institution experiences based on long-term follow-up].

    PubMed

    Hideghéty, Katalin; Cserháti, Adrienne; Besenyi, Zsuzsanna; Zag, Levente; Gaál, Szilvia; Együd, Zsófia; Mózes, Petra; Szántó, Erika; Csenki, Melinda; Rusz, Orsolya; Varga, Zoltán; Dobi, Ágnes; Maráz, Anikó; Pávics, László; Lengyel, Zsolt

    2015-06-01

    The purpose of our work is evaluation of the impact of 18FDG-PET/CT on the complex management of locoregionally advanced (T3-4N1-3) head and neck squamous cell cancer (LAHNSC), and on the target definition for 3D conformal (3DCRT) and intensity-modulated radiotherapy (IMRT). 18FDG-PET/CT were performed on 185 patients with LAHNSC prior to radiotherapy/chemoradiation in the treatment position between 2006 and 2011. Prior to it 91 patients received induction chemotherapy (in 20 cases of these, baseline PET/CT was also available). The independently delineated CT-based gross tumor volume (GTVct) and PET/CT based ones (GTVpet) were compared. Impact of PET/CT on the treatment strategy, on tumor response evaluation to ICT, on GTV definition furthermore on overall and disease-specific survival (OS, DSS) was analysed. PET/CT revealed 10 head and neck, 2 lung cancers for 15 patients with carcinoma of unknown primary (CUP) while 3 remained unknown. Second tumors were detected in 8 (4.4%), distant metastasis in 15 (8.2%) cases. The difference between GTVct and GTVpet was significant (p=0.001). In 16 patients (14%) the GTVpet were larger than GTVct due to multifocal manifestations in the laryngo-pharyngeal regions (4 cases) or lymph node metastases (12 cases). In the majority of the cases (82 pts, 72%) PET/CT-based conturing resulted in remarkable decrease in the volume (15-20%: 4 cases, 20-50%: 46 cases, >50%: 32 cases). On the basis of the initial and post-ICT PET/CT comparison in 15/20 patients more than 50% volume reduction and in 6/20 cases complete response were achieved. After an average of 6.4 years of follow-up the OS (median: 18.3±2.6 months) and DSS (median: 25.0±4.0 months) exhibited close correlation (p=0.0001) to the GTVpet. In cases with GTVpet <10 cm3 prior to RT, DSS did not reach the median, the mean is 82.1±6.1 months, while in cases with GTVpet 10-40 cm3 the median of the DSS was 28.8±4.9 months (HR = 3.57; 95% CI: 1.5-8.3), and in those with GTVpet >40 cm3 the median DSS was 8.4±0.96 months (HR= 11.48; 95% CI: 5.3-24.9). Our results suggest that 18FDG-PET/CT plays an important role for patient with LAHNSC, by modifying the treatment concept and improving the target definition for selective RT modalities. Volumetric PET/CT-based assessment of the tumor response after ICT gives valuable contribution to further therapy planning.

  6. Injuries caused by pets in Asian urban households: a cross-sectional telephone survey.

    PubMed

    Chan, Emily Y Y; Gao, Yang; Li, Liping; Lee, Po Yi

    2017-01-20

    Little is known about pet-related injuries in Asian populations. This study primarily aimed to investigate the incidence rate of pet-related household injuries in Hong Kong, an urban Chinese setting. Cantonese-speaking non-institutionalised population of all ages in Hong Kong accessible by telephone land-line. A total of 43 542 telephone numbers were dialled and 6570 residents successfully completed the interviews. Data of pet-related household injuries in the previous 12 months, pet ownership and socio-demographic characteristics were collected with a questionnaire. Direct standardisation of the incidence rates of pet-related household injuries by gender and age to the 2009 Hong Kong Population Census was estimated. Univariate and multivariate analyses were performed to estimate risks of socio-demographic factors and pet ownership for the injury. A total of 84 participants experienced pet-related household injuries in the past 12 months, with an overall person-based incidence rate of 1.28%. The majority of the victims were injured once (69.6%). Cats (51.6%) were the most common pets involved. Pet owners were at an extremely higher risk after controlling for other factors (adjusted OR: 52.0, 95% CI 22.1 to 98.7). Females, the unmarried, those with higher monthly household income and those living in lower-density housing were more likely to be injured by pets. We project a pet-related household injury incidence rate of 1.24% in the general Hong Kong population, with 86 334 residents sustaining pet-related injuries every year. Pet ownership puts people at extremely high risk, especially the unmarried. Further studies should focus on educating pet owners to reduce pet-related injuries in urban Greater China. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Useful diagnostic biometabolic data obtained by PET/CT and MR fusion imaging using open source software.

    PubMed

    Antonica, Filippo; Asabella, Artor Niccoli; Ferrari, Cristina; Rubini, Domenico; Notaristefano, Antonio; Nicoletti, Adriano; Altini, Corinna; Merenda, Nunzio; Mossa, Emilio; Guarini, Attilio; Rubini, Giuseppe

    2014-01-01

    In the last decade numerous attempts were considered to co-register and integrate different imaging data. Like PET/CT the integration of PET to MR showed great interest. PET/MR scanners are recently tested on different distrectual or systemic pathologies. Unfortunately PET/MR scanners are expensive and diagnostic protocols are still under studies and investigations. Nuclear Medicine imaging highlights functional and biometabolic information but has poor anatomic details. The aim of this study is to integrate MR and PET data to produce distrectual or whole body fused images acquired from different scanners even in different days. We propose an offline method to fuse PET with MR data using an open-source software that has to be inexpensive, reproducible and capable to exchange data over the network. We also evaluate global quality, alignment quality, and diagnostic confidence of fused PET-MR images. We selected PET/CT studies performed in our Nuclear Medicine unit, MR studies provided by patients on DICOM CD media or network received. We used Osirix 5.7 open source version. We aligned CT slices with the first MR slice, pointed and marked for co-registration using MR-T1 sequence and CT as reference and fused with PET to produce a PET-MR image. A total of 100 PET/CT studies were fused with the following MR studies: 20 head, 15 thorax, 24 abdomen, 31 pelvis, 10 whole body. An interval of no more than 15 days between PET and MR was the inclusion criteria. PET/CT, MR and fused studies were evaluated by two experienced radiologist and two experienced nuclear medicine physicians. Each one filled a five point based evaluation scoring scheme based on image quality, image artifacts, segmentation errors, fusion misalignment and diagnostic confidence. Our fusion method showed best results for head, thorax and pelvic districts in terms of global quality, alignment quality and diagnostic confidence,while for the abdomen and pelvis alignement quality and global quality resulted poor due to internal organs filling variation and time shifting beetwen examinations. PET/CT images with time of flight reconstruction and real attenuation correction were combined with anatomical detailed MRI images. We used Osirix, an image processing Open Source Software dedicated to DICOM images. No additional costs, to buy and upgrade proprietary software are required for combining data. No high technology or very expensive PET/MR scanner, that requires dedicated shielded room spaces and personnel to be employed or to be trained, are needed. Our method allows to share patient PET/MR fused data with different medical staff using dedicated networks. The proposed method may be applied to every MR sequence (MR-DWI and MR-STIR, magnet enhanced sequences) to characterize soft tissue alterations and improve discrimination diseases. It can be applied not only to PET with MR but virtually to every DICOM study.

  8. Evaluation of multispectral plenoptic camera

    NASA Astrophysics Data System (ADS)

    Meng, Lingfei; Sun, Ting; Kosoglow, Rich; Berkner, Kathrin

    2013-01-01

    Plenoptic cameras enable capture of a 4D lightfield, allowing digital refocusing and depth estimation from data captured with a compact portable camera. Whereas most of the work on plenoptic camera design has been based a simplistic geometric-optics-based characterization of the optical path only, little work has been done of optimizing end-to-end system performance for a specific application. Such design optimization requires design tools that need to include careful parameterization of main lens elements, as well as microlens array and sensor characteristics. In this paper we are interested in evaluating the performance of a multispectral plenoptic camera, i.e. a camera with spectral filters inserted into the aperture plane of the main lens. Such a camera enables single-snapshot spectral data acquisition.1-3 We first describe in detail an end-to-end imaging system model for a spectrally coded plenoptic camera that we briefly introduced in.4 Different performance metrics are defined to evaluate the spectral reconstruction quality. We then present a prototype which is developed based on a modified DSLR camera containing a lenslet array on the sensor and a filter array in the main lens. Finally we evaluate the spectral reconstruction performance of a spectral plenoptic camera based on both simulation and measurements obtained from the prototype.

  9. Characterization of highly multiplexed monolithic PET / gamma camera detector modules.

    PubMed

    Pierce, L A; Pedemonte, S; DeWitt, D; MacDonald, L; Hunter, W C J; Van Leemput, K; Miyaoka, R

    2018-03-29

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A [Formula: see text] mm 3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with [Formula: see text] position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer-Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guang, E-mail: lig2@mskcc.org; Schmidtlein, C. Ross; Humm, John L.

    Purpose: To assess and account for the impact of respiratory motion on the variability of activity and volume determination of liver tumor in positron emission tomography (PET) through a comparison between free-breathing (FB) and respiration-suspended (RS) PET images. Methods: As part of a PET/computed tomography (CT) guided percutaneous liver ablation procedure performed on a PET/CT scanner, a patient's breathing is suspended on a ventilator, allowing the acquisition of a near-motionless PET and CT reference images of the liver. In this study, baseline RS and FB PET/CT images of 20 patients undergoing thermal ablation were acquired. The RS PET provides near-motionlessmore » reference in a human study, and thereby allows a quantitative evaluation of the effect of respiratory motion on PET images obtained under FB conditions. Two methods were applied to calculate tumor activity and volume: (1) threshold-based segmentation (TBS), estimating the total lesion glycolysis (TLG) and the segmented volume and (2) histogram-based estimation (HBE), yielding the background-subtracted lesion (BSL) activity and associated volume. The TBS method employs 50% of the maximum standardized uptake value (SUV{sub max}) as the threshold for tumors with SUV{sub max} ≥ 2× SUV{sub liver-bkg}, and tumor activity above this threshold yields TLG{sub 50%}. The HBE method determines local PET background based on a Gaussian fit of the low SUV peak in a SUV-volume histogram, which is generated within a user-defined and optimized volume of interest containing both local background and lesion uptakes. Voxels with PET intensity above the fitted background were considered to have originated from the tumor and used to calculate the BSL activity and its associated lesion volume. Results: Respiratory motion caused SUV{sub max} to decrease from RS to FB by −15% ± 11% (p = 0.01). Using TBS method, there was also a decrease in SUV{sub mean} (−18% ± 9%, p = 0.01), but an increase in TLG{sub 50%} (18% ± 36%) and in the segmented volume (47% ± 52%, p = 0.01) from RS to FB PET images. The background uptake in normal liver was stable, 1% ± 9%. In contrast, using the HBE method, the differences in both BSL activity and BSL volume from RS to FB were −8% ± 10% (p = 0.005) and 0% ± 16% (p = 0.94), respectively. Conclusions: This is the first time that almost motion-free PET images of the human liver were acquired and compared to free-breathing PET. The BSL method's results are more consistent, for the calculation of both tumor activity and volume in RS and FB PET images, than those using conventional TBS. This suggests that the BSL method might be less sensitive to motion blurring and provides an improved estimation of tumor activity and volume in the presence of respiratory motion.« less

  11. Molecular prevalence of Cryptosporidium species among household cats and pet shop kittens in Japan

    PubMed Central

    Ito, Yoichi; Itoh, Naoyuki; Iijima, Yuko; Kimura, Yuya

    2017-01-01

    Objectives To address the lack of up-to-date published data, the present study evaluates the PCR-based prevalence of Cryptosporidium species infection and molecular characteristics of isolates among household cats and pet shop kittens in Japan. Methods A total of 357 and 329 fresh faecal samples were collected from household cats and pet shop kittens, respectively, with or without clinical signs of infection. A nested PCR assay targeting the 18S rRNA gene was employed for the detection of Cryptosporidium species. After specific DNA fragments (approximately 826 base pairs) were confirmed, the amplicons were sequenced to determine species. Results Seven (2.0%) household cats and one (0.3%) pet shop kitten tested positive for the presence of Cryptosporidium species. In household cats, there was a significant difference in prevalence between cats aged <1 year (4.6%) and those aged ⩾1 year (0.4%). No significantly different prevalence was observed with regard to faecal condition in either household cats or pet shop kittens. A total of eight Cryptosporidium species isolates, seven from household cats and one from a pet shop kitten, were identified as Cryptosporidium felis. Conclusions and relevance The present study demonstrates the risk of zoonotic transmission of Cryptosporidium species from household cats and pet shop kittens to humans is low in Japan. PMID:28955478

  12. Synthesis of cellulose diacetate based copolymer electrospun nanofibers for tissues scaffold

    NASA Astrophysics Data System (ADS)

    Liang, Wencheng; Hou, Jia; Fang, Xiangchen; Bai, Fudong; Zhu, Tonghe; Gao, Feifei; Wei, Chao; Mo, Xiumei; Lang, Meidong

    2018-06-01

    In this study, a novel cellulose diacetate based copolymer used as tissues scaffold, cellulose diacetate-graft-poly(ethylene terephthalate) (CDA-g-PET) was developed by "graft onto" strategy using 3-Isocyanatomethyl-3,5,5-trimethylcyc-lohexyl isocyanate (IPDI) as a coupling reagent of cellulose diacetate and poly(ethylene terephthalate), and using dibutyltin dilaurate (DBTDL) and 1-butyl-3-methylimidazolium chloride salt ([Bmim]Cl) as catalysts. CDA-g-PET copolymers with five different grafting ratios were obtained by the regulation of the reaction time. It was proved by the FT-IR spectra of the purified copolymers that PET had been successfully grafted onto CDA backbone. Afterwards, CDA-g-PET nanofibers were fabricated via electrospinning and further were cross-linked by means of treating in glutaraldehyde (25%wt) aqueous solution for 48 h. The uniform and smooth fiber morphology was proved by SEM and the diameter decreased with the increase of grafting ratio. Moreover, the value of TGA revealed that the grafting PET onto CDA backbone would improve heat-resistant quality of CDA and help to improve the ability of thermo processing. The graft of PET onto CDA significantly enhanced mechanical property of copolymer compared with CDA. The results of hemolysis ratio indicated that hemolysis ratio has decreased compared with CDA, highlighting the potential application in the field of contacting with blood. In vitro cell viability indicated that CDA-g-PET would enhance biocompatibility compared with CDA.

  13. Resistive plate chambers in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Crespo, Paulo; Blanco, Alberto; Couceiro, Miguel; Ferreira, Nuno C.; Lopes, Luís; Martins, Paulo; Ferreira Marques, Rui; Fonte, Paulo

    2013-07-01

    Resistive plate chambers (RPC) were originally deployed for high energy physics. Realizing how their properties match the needs of nuclear medicine, a LIP team proposed applying RPCs to both preclinical and clinical positron emission tomography (RPC-PET). We show a large-area RPC-PET simulated scanner covering an axial length of 2.4m —slightly superior to the height of the human body— allowing for whole-body, single-bed RPC-PET acquisitions. Simulations following NEMA (National Electrical Manufacturers Association, USA) protocols yield a system sensitivity at least one order of magnitude larger than present-day, commercial PET systems. Reconstruction of whole-body simulated data is feasible by using a dedicated, direct time-of-flight-based algorithm implemented onto an ordered subsets estimation maximization parallelized strategy. Whole-body RPC-PET patient images following the injection of only 2mCi of 18-fluorodesoxyglucose (FDG) are expected to be ready 7 minutes after the 6 minutes necessary for data acquisition. This compares to the 10-20mCi FDG presently injected for a PET scan, and to the uncomfortable 20-30minutes necessary for its data acquisition. In the preclinical field, two fully instrumented detector heads have been assembled aiming at a four-head-based, small-animal RPC-PET system. Images of a disk-shaped and a needle-like 22Na source show unprecedented sub-millimeter spatial resolution.

  14. Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI

    NASA Astrophysics Data System (ADS)

    Akamatsu, G.; Ikari, Y.; Ohnishi, A.; Nishida, H.; Aita, K.; Sasaki, M.; Yamamoto, Y.; Sasaki, M.; Senda, M.

    2016-08-01

    Amyloid PET is useful for early and/or differential diagnosis of Alzheimer’s disease (AD). Quantification of amyloid deposition using PET has been employed to improve diagnosis and to monitor AD therapy, particularly in research. Although MRI is often used for segmentation of gray matter and for spatial normalization into standard Montreal Neurological Institute (MNI) space where region-of-interest (ROI) template is defined, 3D MRI is not always available in clinical practice. The purpose of this study was to examine the feasibility of PET-only amyloid quantification with an adaptive template and a pre-defined standard ROI template that has been empirically generated from typical cases. A total of 68 subjects who underwent brain 11C-PiB PET were examined. The 11C-PiB images were non-linearly spatially normalized to the standard MNI T1 atlas using the same transformation parameters of MRI-based normalization. The automatic-anatomical-labeling-ROI (AAL-ROI) template was applied to the PET images. All voxel values were normalized by the mean value of cerebellar cortex to generate the SUVR-scaled images. Eleven typical positive images and eight typical negative images were normalized and averaged, respectively, and were used as the positive and negative template. Positive and negative masks which consist of voxels with SUVR  ⩾1.7 were extracted from both templates. Empirical PiB-prone ROI (EPP-ROI) was generated by subtracting the negative mask from the positive mask. The 11C-PiB image of each subject was non-rigidly normalized to the positive and negative template, respectively, and the one with higher cross-correlation was adopted. The EPP-ROI was then inversely transformed to individual PET images. We evaluated differences of SUVR between standard MRI-based method and PET-only method. We additionally evaluated whether the PET-only method would correctly categorize 11C-PiB scans as positive or negative. Significant correlation was observed between the SUVRs obtained with AAL-ROI and those with EPP-ROI when MRI-based normalization was used, the latter providing higher SUVR. When EPP-ROI was used, MRI-based method and PET-only method provided almost identical SUVR. All 11C-PiB scans were correctly categorized into positive and negative using a cutoff value of 1.7 as compared to visual interpretation. The 11C-PiB SUVR were 2.30  ±  0.24 and 1.25  ±  0.11 for the positive and negative images. PET-only amyloid quantification method with adaptive templates and EPP-ROI can provide accurate, robust and simple amyloid quantification without MRI.

  15. Are camera surveys useful for assessing recruitment in white-tailed deer?

    DOE PAGES

    Chitwood, M. Colter; Lashley, Marcus A.; Kilgo, John C.; ...

    2016-12-27

    Camera surveys commonly are used by managers and hunters to estimate white-tailed deer Odocoileus virginianus density and demographic rates. Though studies have documented biases and inaccuracies in the camera survey methodology, camera traps remain popular due to ease of use, cost-effectiveness, and ability to survey large areas. Because recruitment is a key parameter in ungulate population dynamics, there is a growing need to test the effectiveness of camera surveys for assessing fawn recruitment. At Savannah River Site, South Carolina, we used six years of camera-based recruitment estimates (i.e. fawn:doe ratio) to predict concurrently collected annual radiotag-based survival estimates. The coefficientmore » of determination (R) was 0.445, indicating some support for the viability of cameras to reflect recruitment. Here, we added two years of data from Fort Bragg Military Installation, North Carolina, which improved R to 0.621 without accounting for site-specific variability. Also, we evaluated the correlation between year-to-year changes in recruitment and survival using the Savannah River Site data; R was 0.758, suggesting that camera-based recruitment could be useful as an indicator of the trend in survival. Because so few researchers concurrently estimate survival and camera-based recruitment, examining this relationship at larger spatial scales while controlling for numerous confounding variables remains difficult. We believe that future research should test the validity of our results from other areas with varying deer and camera densities, as site (e.g. presence of feral pigs Sus scrofa) and demographic (e.g. fawn age at time of camera survey) parameters may have a large influence on detectability. Until such biases are fully quantified, we urge researchers and managers to use caution when advocating the use of camera-based recruitment estimates.« less

  16. Rational design of a pH-insensitive cyan fluorescent protein CyPet2 based on the CyPet crystal structure.

    PubMed

    Liu, Rui; Hu, Xiao-Jian; Ding, Yu

    2017-06-01

    The emission spectrum of widely used CyPet is pH-sensitive. In order to synthesize a pH-insensitive cyan fluorescent protein by rational design, we solved the crystal structures of CyPet under different pH conditions. The indole group of the CyPet chromophore adopts a cis-coplanar conformation in acidic and neutral conditions, while it converts to trans-coplanar under basic conditions. His148 and Glu222 play a vital role in this isomerization. The pH-sensitive chromophore isomerization and change in the emission spectrum can be explained by the coexistence of several different fluorescent states. We trap the chromophore in the trans conformation by A167I mutation (CyPet2), which also prevents the multiconformation of the seventh β-strand. CyPet2 exhibits an unchanged emission spectral shape as a function of pH. © 2017 Federation of European Biochemical Societies.

  17. Positron emission tomography (PET) imaging with 18F-based radiotracers

    PubMed Central

    Alauddin, Mian M

    2012-01-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that is widely used in early detection and treatment follow up of many diseases, including cancer. This modality requires positron-emitting isotope labeled biomolecules, which are synthesized prior to perform imaging studies. Fluorine-18 is one of the several isotopes of fluorine that is routinely used in radiolabeling of biomolecules for PET; because of its positron emitting property and favorable half-life of 109.8 min. The biologically active molecule most commonly used for PET is 2-deoxy-2-18F-fluoro-β-D-glucose (18F-FDG), an analogue of glucose, for early detection of tumors. The concentrations of tracer accumulation (PET image) demonstrate the metabolic activity of tissues in terms of regional glucose metabolism and accumulation. Other tracers are also used in PET to image the tissue concentration. In this review, information on fluorination and radiofluorination reactions, radiofluorinating agents, and radiolabeling of various compounds and their application in PET imaging is presented. PMID:23133802

  18. Zero-Extra-Dose PET Delayed Imaging with Data-Driven Attenuation Correction Estimation.

    PubMed

    Pang, Lifang; Zhu, Wentao; Dong, Yun; Lv, Yang; Shi, Hongcheng

    2018-05-08

    Delayed positron emission tomography (PET) imaging may improve sensitivity and specificity in lesion detection. We proposed a PET data-driven method to estimate the attenuation map (AM) for the delayed scan without an additional x-ray computed tomography (CT). An emission-attenuation-scatter joint estimation framework was developed. Several practical issues for clinical datasets were addressed. Particularly, the unknown scatter correction was incorporated in the joint estimation algorithm. The scaling problem was solved using prior information from the early CT scan. Fourteen patient datasets were added to evaluate the method. These patients went through two separate PET/CT scans. The delayed CT-based AM served as ground truth for the delayed scan. Standard uptake values (SUVmean and SUVmax) of lesion and normal tissue regions of interests (ROIs) in the early and delayed phase and the respective %DSUV (percentage change of SUVmean at two different time points) were analyzed, all with estimated and the true AM. Three radiologists participated in lesion detection tasks with images reconstructed with both AMs and rated scores for detectability. The mean relative difference of SUVmean in lesion and normal liver tissue were 3.30 and 6.69 %. The average lesion-to-background contrast (detectability) with delayed PET images using CT AM was 60 % higher than that of the earlier PET image, and was 64 % higher when using the data-based AM. %DSUV for lesions and liver backgrounds with CT-based AM were - 0.058 ± 0.25 and - 0.33 ± 0.08 while with data-based AM were - 0.00 ± 0.26 and - 0.28 ± 0.08. Only slight significance difference was found between using CT-based AM and using the data-based AM reconstruction delay phase on %DSUV of lesion. The scores associated with the two AMs matched well consistently. Our method may be used in delayed PET imaging, which allows no secondary CT radiation in delayed phase. The quantitative analysis for lesion detection purpose could be ensured.

  19. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    NASA Astrophysics Data System (ADS)

    Rota Kops, Elena; Herzog, Hans

    2013-02-01

    AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.

  20. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    PubMed

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no image segmentation or accurate registration is required. Our method demonstrates superior performance in CT prediction and PET reconstruction compared with competing methods. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

Top